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Resumo 

 

A produção de energia é um tema de tendência atualmente, com o excesso 

de combustíveis fóssil e a disseminação de energias renováveis. A busca por 

novas formas de produzir energia é ampla. Neste caso, uma bactéria gram-ne-

gativa Serratia marcescens é usada com uma célula de combustível microbiana 

(MFC). Este dispositivo irá converter a energia química proveniente da atividade 

catalítica da bactéria em eletricidade. Para otimizar o sistema de referência, a 

fim de aumentar a sua eficiência elétrica, é utilizada uma deposição de filme de 

grafeno sobre uma camada de contato condutiva, materiais condutores recentes 

feitos de tecido são alternativa ao habitual filme comum de crómio-ouro, para 

manter a neutralidade e evitar a difusão de oxigênio utiliza-se uma Membrana 

de Troca de Protões (PEM) ou uma membrana diferente de acetato de celulose. 

Essa estrutura permite uma captura mais profunda dos elétrodos livres da câ-

mara anódica.  

Palavras-chave: MFC; Grafeno; Tecido Condutor; PLA; Serratia marces-

cens. 
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Abstract 

 

The production of energy is a trend subject nowadays, with overdo of fossil 

fuels and the spread of renewable energies. The search for new ways to produce 

energy is wide; in this case, a gram-negative bacteria Serratia marcescens is 

usedwith a Microbial Fuel Cell (MFC). This device will convert the chemical en-

ergy coming from the catalytic activity of the bacteria into electricity. To optimize 

the reference system, in order to increase the electrical efficiency, a graphene 

film deposition is used over a conductive contact layer, recent conductive mate-

rials made of fabric are an alternative to the common chromium-gold film, to main-

tain the neutrality and avoid the oxygen diffusion it is used a Proton Exchange 

Membrane (PEM) and a different membrane made of cellulose acetate. This 

structure allows a more in-depth capture of the free electrodes from the anode 

chamber.  

Keywords: MFC; Graphene; Conductive Fabric; PLA; Serratia mar-

cescens. 
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Introduction 

1.1. Microbial Fuel Cell  

A Microbial Fuel Cell (MFC) is a device that converts chemical energy, contained 

in the chemical bonds of organic compounds, to electrical energy through catalytic reac-

tions of microorganisms under anaerobic conditions. The electrons produced by the bac-

teria from these substrates are transferred to the anode (negative terminal) and flow to 

the cathode (positive terminal) and their linked by a conductive material containing a 

resistor or operated under a load.  

It has been known for many years that it is possible to generate electricity directly 

by using bacteria to break down organic substrates.  Bacteria can be used in Microbial 

Fuel Cells to generate electricity while accomplishing the biodegradation of organic mat-

ters or wastes.  

 Figure 1 shows a schematic diagram of a typical MFC for producing electricity. 

The anodic and cathodic chambers are separated by a proton exchange membrane 

(PEM). Keeping the microorganisms separated from oxygen or any other end terminal 

acceptor other than the anode makes the generation of electric current possible, requir-

ing only an anaerobic anodic chamber. A MFC mimics the way nature uses to recycle 

the energy from renewable biomass, it does not require fossil fuels, which makes it a 

clean energy. (Du, Li, & Gu, 2007) 

The process is simple, microbes are injected into the anode of the MFC that oxi-

dize when added a substrate and generate electrons and protons in the process, the 

electrons in the anode are transferred to the cathode through an external circuit, the 

protons cross over a PEM to move into the cathode, as in figure 2. The performance of 

an MFC is related to the electrochemical reactions that occur between the organic sub-

strate, at a low potential, such as glucose and the final electron acceptor with a high 

potential, such as oxygen. Microbes in the anode will extract electrons and protons. In 

the dissimilative process of oxidizing organic substrates, however, it’s not possible to 

1 
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know the ideal cell voltage because the electrons are transferred to the anode from the 

organic substrate through a complex respiratory chain that varies from microbe to mi-

crobe and even for the same microbe when growth conditions differ.( Du, Li, & Gu, 2007) 

(Pant, Van Bogaert, Diels, & Vanbroekhoven, 2010) 

Microbial cells not only can produce energy (Eq.3) but also have as products 

water (Eq.2), heat and, depending on the fuel source, little amount of gases release such 

as carbon dioxide (Eq.1), nitro dioxide and other. (Fernandes, Rocha, & Carneiro, 

2014)(Kalathil, Patil, & Pant, 2017) 

Anodic reaction: CH3COO- + 2H2O ⟶ (microbes) 2CO2 + 7H+ + 8e-       Eq. (1) 

Cathode reaction: O2 + 4e− + 4H+ → 2H2O                  Eq. (2) 

Overall: CH3COOH+2O2  2CO2 +2H2O+ Biomass + Electricity            Eq. (3) 

There are a few types of MFC system designs considering de disposition of the 

anode and cathode chambers. According to  (Du, Li, & Gu, 2007) we can find a single-

compartment MFC, a two-compartment MFC, a Up-flow mode MFC and a Stacked MFC.  

The system used in this study is a two-compartment MFC (figure 1). The anode 

and the cathode chambers are separated/connected by a Proton Exchange Membrane, 

this system allows the protons to move across to the cathode chamber while blocking 

oxygen diffusion into the anode chamber. The shapes of each chamber can be whatever 

the user design it to be, the most simple and also the one of choose for this study was a 

square chamber, as shown in figure1B. 

 

 

Figure 1 - Schematic diagram of a typical two-chamber microbial fuel cell. A- 

Rectangular shape; B- Square minimize shape. (Du, Li, & Gu, 2007) 
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Figure 2 – Schematic of the functioning reactions occurring on a microbial fuel 

cell. (Lovley, 2006) 

 

1.2. Materials for Microbial Fuel Cell Construction 

A wide range of materials have been tested to improve the performance of MFCs. 

The performance of MFC directly depends on the kinetics of the electrode reactions 

within the cell, and its performance is very influenced by the materials they are made 

from. A superior biocompatible material will increase the bacterial adhesion and hence 

the life of the MFC. (Mustakeem, 2015)  

Anodic materials must be conductive, biocompatible, and chemically stable in the 

reactor solution. Metal anodes must be noncorrosive stainless-steel mesh, but copper is 

not useful due to the toxicity to the bacteria. The most versatile electrode material is 

carbon, available as compact graphite plates, rods, or granum- les, as fibrous material 

(felt, cloth, paper, fibers, foam), and as glassy carbon. (Logan et al., 2006) 

Cathode materials due to its good performance, ferricyanide (K3[Fe (CN)6]) is very 

popular as an experimental electron acceptor in microbial fuel cells. The greatest ad-

vantage of ferricyanide is the lower overpotential when using a plain carbon cathode, 

resulting in a cathode working potential close to its open circuit potential. The greatest 

disadvantage, however, is the insufficient re-oxidation by oxygen, which requires the 

catholyte to be regularly replaced or used in tests that required a shorter period of time. 

The output power of MFCs is greatly constrained by the surface area of electrodes. 

The ohmic losses are directly proportional to the resistance of the electrode. A wider and 

effective surface area is considerably important to improve the efficiency of the cell. At 
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the same time, the interfacial impedance of the electrode material should be low to facil-

itate the electron transfer. At the cathode, the ionic conductivity is also required to facili-

tate triple phase boundary reaction. (Mustakeem, 2015) 

1.3. Microbial culture: Serratia marcescens 

The anodic electron transfer mechanism in MFC is a key issue in understanding 

the theory of how MFCs work. As mentioned above, microbes transfer electrons to the 

electrode through an electron transport system that either consists of a series of compo-

nents in the bacterial extracellular matrix or together with electron shuttles dissolved in 

the bulk solution.(Du, Li, & Gu, 2007) Substrate is important for any biological process 

as it serves as carbon (nutrient) and energy source. The efficiency and economic viability 

of converting organic wastes to bioenergy depend on the characteristics and compo-

nents of the waste material. (Ghanapriya, Rana, & Kalaichelvan, 2010) Theoretically, 

most microbes can potentially be used as a biocatalyst in MFC. In this study it was used 

Serratia marcescens, a gram-negative bacillus classified as a member of the Enterobac-

teriaceae, that has been recognized as a cause of hospital-acquired infection for the last 

two decades. S. marcescens can use a wide range of nutrients and has the ability to 

survive and grow under extreme conditions, including in disinfectant, antiseptics and 

double distilled water and it’s easily recognized by its red colonies. (Hejazi & Falkiner, 

1997)  

1.4. Applications 

The microfluidic MFC device developed could serve as a versatile platform for 

studying the interactive effects of cell growth, electrode reactivity, and ion transport at 

the micro-/Nano-scale.(Qian, Baum, Gu, & Morse, 2009) 

Presently, most of the world’s energy is derived from fossil fuels, but their effi-

ciency, security and environmental effects hold it back from being a preferred energy 

resource. To meet future energy demands, there is a need of reliable, sustainable and 

clean energy source. While nuclear power may be an alternative mean of energy, a safer 

and reliable implementation is always a beneficial choice. Currently, real-world applica-

tions of MFCs are limited because of their low power density. (Pant. 2010) 

 There are a few applications being studied nowadays with Microbial Fuel Cells, 

the potential of producing energy out of microorganism opens a new perspective for the 

creation of Bioenergy, new alternative Bio-sensors and for the residual water’s treatment. 

And the reason for that is that MFCs are theoretically energy profitable, based on their 

low energy consumption and direct electricity generation, they have a low adverse im-

pact on the environment and, theoretically, have a good operational stability and low 

operational cost. (Liu, Cheng, 2014) 

Wastewaters Treatment 

A lot of energy is stored in wastewaters, capturing this energy is of great signifi-

cance for meeting the world’s energy needs, reducing wastewater handling costs and 
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increasing the sustainability of wastewater treatment. The microbial fuel cell can be used 

for electrical energy recovery from the organic pollutants in wastewaters. MFCs hold 

great promise for sustainable wastewater treatment. More importantly, MFCs are capa-

ble of directly producing electricity from the organic matter in wastewater with a high 

energy conversion rate, whereas the conversion of biogas (e.g., CH4 or H2) into elec-

tricity causes a significant energy loss of more than 60% (Rittmann, 2008). 

Biosensors 

 

According to previous studies (Kim, Chang, Gil, Park & Kim 2003) (Chang, Jang, 

Gil, Kim 2004) MFC could be used to continuously measure the biochemical oxygen 

demand (BOD) of wastewater for real-time monitoring. The directly proportional relation 
between the coulomb that is being produced from the microbial fuel cell and the strength 
of the wastewater make possible to use this technology as a BOD sensor. 
 
Bio- Hydrogen 
 

Hydrogen can be produced from certain forms of biomass by biological fermen-
tation though yields are low. However by electrochemically expanding the cathode po-
tential in a MFC circuit it is possible to directly produce hydrogen from protons and elec-
trons produced by the bacteria. This technique will reduce the energy needed to make 
hydrogen directly from organic matter compared to that required for hydrogen production 
from water via electrolysis. Deriving the protons and electrons from organic matter in-
stead of water, we can directly generate hydrogen at a low voltage using a type of MFC 
device that does not require oxygen. The use of a completely anaerobic process should 
increase the Coulombic efficiency of the MFC process using mixed cultures as oxygen 
diffusion through the cathode is avoided (Liu, Grot, Logan 2005). 
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Materials and Methods 
 

This research is based on a previous work (Fernandes, Rocha, & Carneiro, 2014), 

consists on building a MFC with alternative materials such as polymeric structure and 

conductive fabric for electrodes.  

First phase: redo a complete new MFC using the same design structure but re-

placing acrylic and glass parts with a PLA 3D printed piece, silicone was replaced with 

PDMS and Nafion PEM with cellulose acetate.  

A compatibility test had to be done using PLA and the bacterial environment in use, 

Serratia marcescens, in order to make sure that the change of material wouldn’t affect 

the bacteria growth. The process is displayed in figure 14 in Appendix 1. 

Second phase: Replace from the original cell only the glass material with PC parts with 
five times the thickness of the glass, to make a less fragile and a more tightened cell. 
The electrodes were also replaces for [Cu+Ni+Au] conductive fabric from METALINE, 

instead of the Cr/Au + Carbon Nanotubes and Nafion PEM (Nafion N-117 membrane, 

0.180mm thick, => 0.90 meq-7g exchange capacity) 

Third phase: Introduction of graphene, in this phase two experiments were to be 

done (1) switch the carbon nanotubes for graphene using the same reference method; 

(2) combining graphene with the conductive fabric using the method performed in phase 

two of this research.  

Since the experiment uses liquid solutions, it was mandatory that this new structure 

would avoid any leakage so it wouldn’t compromised the study. To ensure this a sealing 

test was done in all the cells. Guarantee the sterilization of the cell and the materials for 

the inoculation was also required so to ensure that every glass/plastic material went 

through an autoclave at 121ºC and the cell (MFC) parts  Every single part from the MFC 

was sterilized using Ethanol 80% concentrated bath for 20-30 min and 30 min exposure 

to UV light. (Phillips, P: TUV 15WaH/ G15T8 ≈40cm) 

For the MFC trials the following solutions were made using phosphate buffer in-

stead of distilled water, this way the volume is slightly minimalized and therefore we can 

increase the volume of microorganisms, as represented in table 1.  

2 
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S. marcescens was inoculated in 18 mL of LB solution with 2 mL of S.m., for every 

trial the temperature for the inoculation was kept at 37ºC in a controlled environment 

without agitation. The microorganism are added in the MFC after 23 hours of inoculation. 

 

Table 1 - List of the MFC baseline tests and introduction of S. marcescens. 

   

Figure 3 - Reference Microbial Fuel Cell structure adapted from (Fernandes, 

Rocha, & Carneiro, 2014).  

Tests Composition Anode Cathode 

1 

 

Glucose (400 μL) [1.5 M] X  

Potassium Ferricyanide  (400 μL) [0.02 M]  X 

2 
Methyleme Blue (400 μL) [0.01 M] X  

Potassium Ferricyanide   (400 μL) [0.02 M]  X 

3 
Glucose (200 μL) [1.5 M] +  Methyleme Blue (200 μL) [0.01 M] X  

Potassium Ferricyanide (400 μL) [0.02 M ]  X 

4 

Glucose (100 μL) [1.5 M] +  Methyleme Blue  (100 μL) [0.01 M] + 

LB solution with Serratia marcescens (200 μL) 

X   

Potassium Ferricyanide (400 μL) [0.02 M]  X  
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Results and Discussion 
 

1st Phase - 3D printed Microbial Fuel Cell 

 

 In this early state we’ll start to see how the microorganism in study does behaves 

and how is this behavior being affected by the presence of new materials. Because the 

biocompatible properties in a microbial fuel cell and especially in the anode can define 

the adhesion of the microbes to the material. (Mustakeem, 2015) 

In all the tests presented in this section, the growth of microorganisms was carried 

out in 75 ml of LB solution, inoculated with 7.5 ml of microorganisms. The growths were 

carried out with an agitation of 120 rpm and a constant temperature of 30 º C and 37°C 

in order to see the impact of the temperature in the growth process, and with the purpose 

of studying a controlled environment temperature and a temperature influenced by the 

season during the tests were being performed. The PLA trials were carried out at 37 ºC 

and 120 rpm of agitation. 

 The cell mass of all the trials was measured by reading the absorbance at 600 nm 

as it can be seen in figure 4.   

In figure 4A it’s possible to see the Serratia marcescens growth curve for two dif-

ference temperatures (30 ºC; 37 ºC) this variance of temperature appears to have the 

same growth rate in general for the culture in study. 

We can see in the figure 4B and 4C that the growth curve of our bacteria has the 

same behavior with and without de presence of the PLA. This means that we got good 

results concerning the new polymeric material, PLA, hence shows no negative impact to 

the Serratia marcescens growth rate. 

A 3D sample was printed with these materials as compact as possible with very 

thin filaments to avoid any porosity. Though this 3D printed cell fails containing the liquids 

(H2O) being only sustainable for 2 hours maximum after that time leakage would be per-

ceived in the top cover parts and 5 hours later in the central (main container) part of the 

cell. 

This only discards the 3D printed process used for this trial, the process itself de-

livers parts with a substantial porosity that doesn’t allow the parts to be used on experi-

ments involving liquids. 

3 
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However, PLA is still validated as a possible material to be used on futures expe-

riences with microorganisms due to not affecting its growth rate and for its resistance to 

microbial attack compared to other microbial and synthetic aliphatic polymers. The deg-

radation of PLA is slow and that takes a long time for degradation to start. (Tokiwa, 

Calabia, Ugwu, & Aiba, 2009)  

 

 
 

 

 
 

B 

A 
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Figure 4 - Growth curve for Serratia marcescens. b) Presence of PLA trial 1; c) 

presence of PLA trial 2 

 

 

2nd Phase – Conductor fabric as MFC electrode 

In this part of the experiment the cell structure in use is similar to the one presented 

in figure 3 with a few changes, instead of the glass we have polycarbonate parts and in 

the conductive fabric goes to Cr/Au place. Before of each trial the structure and the con-

ductive fabric went through the sterilization process mentioned in chapter 2 and in Ap-

pendix 1. 

This structure contains the solutions perfectly which allowed for the research to 

proceed to the next step, conductivity trials using a [Cu+Ni+Au] conductive fabric as 

electrodes. The cells used from the MFC were the left one (1) and the one on the right 

(3) in all trials except for the ones in series.  

The conductivity test was done with Phosphate Buffer and Glucose Figure 5a and 

5b respectively. It’s possible to see some electrical charge going throughout the time in 

case of glucose and in we can also see a peak of charge even when the same solution 

was being tested in both anodic and cathodic chambers. This another proof that our cell 

at this point is containing properly our solutions. 

Moving on to what we call the test for baselines, to evaluate all the solutions iso-

lated and together, compare them to the trial with S.marcescens and see their contribu-

tion and if the microbial component really optimizes our system. In figure 6 - 8 we can 

see the baseline trials 1 - 3 stated on Table 1 and in figure 9 a resume of the two best 

results from these baselines. Trial 4 presented on table 1 can be seen on figure 10. 

 

 

 

C 
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Figure 5 - a) Phosphate Buffer trial in two sub-cell compartments; b) Glucose 

trial in two sub-cell compartments 

  

  

 

-30

-20

-10

0

10

0 0,5 1 1,5 2

V
O

L
T

A
G

E
 [

M
V

]

TIME [HOUR]

SubCell-1 SubCell-3

-100

-75

-50

-25

0

0 5 10 15 20

V
O

L
T

A
G

E
 [

M
V

]

TIME [HOUR]

"SubCell-1" "SubCell-2" SubCell-3

A 

B 



15 

 

 

Figure 6 – Results for Glucose Baseline (1). 

 

 

Figure 7 – Results for Methylene Blue Baseline (2). 
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Figure 8 – Results for the combo Glucose + Methylene Blue Baseline (3); A – 

Dry-up conductive fabric; B – Conductive fabric previously bathed in Phosphate buffer 

solution. 

 

When the conductive fabric is previously humidified has a certain stability for a 

longer period of time as we see in figure 8B. 
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Figure 9 – All baselines, this graphic displays only the two best results from all 

the   trials performed. 

 

The results in figure 9 show a maximum of 436 mV that corresponds to 436 nA 

being produced by one single sub-cell of the MFC, since 1 MΩ resistor was being used. 

The peak is from the baseline 3, Glucose + Methylene Blue as the anode and Ferricya-

nide as the cathode. 

 

Introducing Serratia marcescens to the trials 

  

In all the tests presented in this section, the growth of microorganisms was carried 

out in 20 ml of LB solution, inoculated with 2 ml of microorganisms. The growths were 

carried out with a constant temperature of 37°C. The cell mass of all the trials was meas-

ured by reading the absorbance at 600 nm. In figure 10 we see a typical growth curve 

for our bacteria. We can detect two different behaviors, one we can see all the stages of 

the growth (leg, log and stationary) reaching the stationary stage 24 hours after the in-

oculation and the other one we see that the bacterial culture hasn’t reach the stationary 

state even 30 hours after the inoculation. Compared to the study from (Fernandes, 

Rocha, & Carneiro, 2014 ) we already can spot a difference, somehow our inoculations 

were influenced between 5h – 25h that led to a different growth rate, most likely temper-

ature fluctuations influenced by the environment where the culture was staying. In the 

previous study the best state for Serratia marcescens ended up to be the stationary state 

with an absorbance at 600 nm of ≈ 1.7  (14 hours after inoculation) and in this study the 
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stationary state is at an absorbance (600 nm) of ≈ 1.5 and in the present study is needed 

≈23 hours for the bacteria to reach this state.  

 

 

Figure 10 - Serratia marcescens growth curve with test conditions through 30 hours. 

 

When adding the 100 µL of S.marcescens and reducing to half (100 µL) the Glu-

cose volume, the electric potential registered doesn’t go above the 200 mV, as seen in 

figure 10, we get one rehearsal with a continuous electric charge during approximately 

14 hours and 2 other that have their peak in the first minutes and go immediately down-

wards in the next 4 hours.  

The conducting fabric doesn’t have the same electron acceptance as a nanocar-

bon based electrode or a graphene coated electrode would’ve, this and the possibility of 

the concentration of substrate in the anode chamber be insufficient for the number of 

microorganisms in the anode, can be one explanation for the results obtained. 

(Mustakeem, 2015) There are a lot of variables associated to this new microbial fuel cell 

technique, due to the alternative materials that has being used. 

We can see in figure 10 that different concentration of Serratia marcescens show 

different behaviors on the MFC, the middle concentrated cultures of the four show the 

highest currents and for the first 4 hours we got and average current of 171.902 nA for 

the culture with 1.592 Abs (600 nm) and 117.8122 nA for the culture with 1.723 Abs (600 

nm). 

This difference shows that the inoculation process was suffering an external inter-

ference that made the process longer than it was theoretically expected to be and, there-

fore the trials in the MFC were not always performed in the stationary stage of the bac-

teria. This can explain part of the results that we see on figure 11. For the “Serratia 1.592 

Abs” and “Serratia 1.723” we see periods of great energy production which indicates that 
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the inoculum used was indeed in the stationary stage, on the other hand the other two 

results indicates that most probably the bacteria was still on the logarithmic stage. 

 

 

Figure 11 – Introduction of Serratia marcescens (4) in the MFC trials. 

 

We will analyze the data for Glucose + Methylene Blue and after adding S.mar-

cescens in the first 5 hours to see if we can find some similarity between them and see 

if the energy being produced is influenced by the Serratia marcescens or only the Glu-

cose., for that we will make a brief statistic. 

 

Statistical view 

To better understand these results, it was performed an Analysis of Variance 

(ANOVA) between those 4 trials and see if we can find some statistical values that lead 

us to some conclusions about these tests.  

Samples in study: 

   A – Serratia marcescens 1.592 Abs (600 nm) 

B – Serratia marcescens 1.723 Abs (600 nm) 

C – Glucose + Methylene Blue – Potassium Ferricyanide _1 

D- Glucose + Methylene Blue – Potassium Ferricyanide _2 

ANOVA is one of the most frequently used methods in statistics and it allows us to 

compare more than two group means in a continuous response variable, which is our case. 

To perform an ANOVA model we’re assuming 3 things:  
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1. the probability distribution of responses in each group is normal.  

2. Each probability distribution has the same variance.  

3. Samples are independent.(Liu, 2015) 

The null hypothesis for Welch’s F-test is H0: “The means are equal”  

The null hypothesis for Levene’s test if H0: “The variance are equal” 

 

Table 2 – Standard Statistics for the 4 populations in study. 

SUMMARY STATISTICS 

  Sample A Sample  B Sample  C Sample  D 

SAMPLE SIZE 201 201 201 201 

MEAN -36.313 -56.820 -7.251 128.704 

STDEV 128.799 99.669 179.397 104.857 

SKEWNESS 1.002 1.193 1.142 -0.050 

KURTOSIS -0.776 0.101 -0.414 -1.691 

MIN -146.100 -146.100 -146.100 -12.900 

1ST QUARTILE -130.800 -130.800 -130.800 12.400 

MEDIAN -104.100 -104.100 -104.100 155.000 

3RD QUARTILE 113.800 1.500 237.400 233.300 

MAX 191.800 187.200 436.300 282.000 
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Table 3 - Welch ANOVA results. 

WELCH ANOVA 

 

HO : means are 

equal 

Sum of 

Squares 

Degrees 

of Free-

dom 

Mean 

Squares F ratio P value 

Among Groups 1142637.447 3 380879,1491 224.9 7.85E-44 

Within Groups 398253.1918 98.19 4055.944513   

Total 1540890.639 203       

H0 rejected, Group Means are different 

Overall statistics Test of equal Variance 

Grand Mean 204.5926471 Levene's test W critic P value 

Average Sam-

ple Size 51 statistic W 40.13649422 2.649751643 2.39E-20 

Number of 

Groups 4 Variances are unequal 

 

 

The red curve represents the estimated population distribution assuming normalilty 

 

The green lines represent the 95% Individual Confidence Intervals for Means 

            

            

            

            

            

            

            

            

      

Through ANOVA we can say with 95% confidence that there is an heterogeneity 

between the means and the variances of these 4 groups or at least one of them, since 

when the null hypothesis is rejected from different independent groups, ANOVA only 

provides information that the means of the four groups may differ and at least one group 

may show a difference (Kim, 2017). At the histograms presented in Table 2 we can have 

an indication that the data of our four samples possibly doesn’t tend to a normal distri-

bution therefore this test will not give us a conclusion free of errors concerning S. mar-

cescens. Since the data is not normal instead of looking for the means or the variance it 

would be better to check the medians of the groups, for that we will perform a Kruskal-

Wallis test. The Kruskal-Wallis test is a non-parametric test, which means that it does 

A B C D
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not assume that the data came from a distribution that can be completely described by 

two parameters, mean and standard deviation (the way a normal distribution can), it is 

less sensitive to outliers, and the efficiency loss compared to ANOVA decreases for large 

samples. Since our results are not normal then this test can be done. 

The null hypothesis for Kruskal-Wallis test is H0: “The medians are equal”  

 

Table 4 - Kruskal-Wallis Result. 

Kruskal-Wallis test  

K 211.54 

K critic χ² approximation 7.81 

Pvalue χ² approximation 1.35E-45 

 H0 rejected,medians are different 

 

The Kruskal-Wallis test states that the medians are different comparing all four 

populations, which means that we can say with 95% confidence that the trials performed 

with the presence of bacteria are not the same that the ones with baseline 3 which means 

that the MFC is functioning the same way with Serratia marcescens.  

To better understand the negative impact that is seen in the MFC efficiency after 

S.marcescens some additional tests should’ve been made with brand new fabric to see 

the impact of the reutilization of it in this study, even though every material was sterilized 

the UV light can only reach the surface of each part, so the internal fibers of this electrode 

can only be cleaned with the ethanol bath and this can be one of the causes for our 

results. After concluding the additional tests it’s important to retain the best method from 

that and make new trials with different glucose concentrations and possibly at different 

stages of the bacteria growth. This path with help us to reach the best conditions for 

these MFC using a textile electrode. Unfortunately, these tests were not conducted due 

to stock rupture in the supplier for this conductive fabric.  

 

Microbial Fuel Cell with 3 Sub cells in series 

The three sub cells of the Microbial Fuel Cell were filled with the respective anode 

and cathode composition and connected in series to a circuit with 1MΩ resistor. 

The expected results would’ve been to have approximately three times more power 

coming out from the system, however the actual data is presented in figure 11, and the 

energy being collected from the system dropped from the initial tests with the bacteria.   
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Figure 12 - MFC test in series with all three compartments connected to the   cir-

cuit. 

 

It’s possible to see a peak of around 100 nA at the first half an hour and after that 

the current from the system drops to negative values a close indicative that there’s no 

more substrate available in the anode or that our microorganisms are not feeding as it is 

supposed to.  

 In these later batches of Serratia marcescens the culture took at least 5 to 6 hour 

more to reach the absorption value at 600 nm than usual, the color was also a little 

lighter, this probably is one of the main reasons to a low energy production for the trial 

in series. 

The conductive fabric had been reutilized since the introduction of bacterial cul-

ture, due to out of stock from the supplier and at these stages the electrode were too 

castoff due to all the process of sterilization, some of the fibers were already peeling out 

and the porosity was starting to be seen. The Microbial fuel cell was tightened even more 

too avoid any leakage of contaminating material though the use of the same cell also 

provoked the shatter of the Polycarbonate parts. I believe all that together led to the 

results presented in figure 9 and 10, because even though the fabric as an electrode 

isn’t the most optimized choice, it proved to work and ended up to get 436nA as its 

maximum current without microbial influence and 191 nA with it. 

The electrons released from microbes have to travel along an external circuit after 

passing through the anode, thus the conductivity of these materials is a determinant 

aspect for a study like this. The high electrical conductivity of the electrode material 

makes the electron flow with less resistance. At the same time, the interfacial impedance 

should be low to facilitate the electron transfer. At the cathode, the ionic conductivity is 

also required to facilitate triple phase boundary reaction. Therefore, the material for elec-

trodes should be durable as well as stable in an acidic and a basic environment. 

(Mustakeem, 2015) And the conductive fabric in study presented to be durable for at 
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least 3 to 4 sterilization process and from then on each time it went through that process 

and through another microbial trial the fibers would wear out more and more. 

 

Third phase – Graphene 

 

The introduction of graphene as a new electrode, the procedure to be done would 

be similar, the structure used is presented in figure 13, and the concentrations for the 

anode and cathode components would be the ones stated in table 5, 6 and 7. Initially the 

purpose of this phase would be to combine the graphene with the [Cu+Ni+Au] conductive 

fabric and also use the reference (figure 3) construction adding graphene to the electrode 

Cr/Au, but the main supplier for [Cu+Ni+Au] conductive fabric stopped supplying to us. 

First, we need to find new optimal conditions so, new concentrations were recal-

culated in order to improve the previous steps and to try and find the optimum condition 

for this specific design with these particular materials, and at the same time try to under-

stand the balance and the exact contribution of the main solutions to the energetic ca-

pability of the microbial fuel cell. 

In table 5 we keep the same conditions apart from the glucose volume to be used 

that is now 150 μL; in table 6 we decrease the glucose concentration, keep the volume 

as 150 μL, double the concentration for Methylene Blue to 0.02 M and get half the con-

centration for Potassium Ferricyanide (0.01 M); in table 7 the glucose concentration goes 

back to 1.5 M and it’s maintained the same conditions in table 6. 

 

Table 5 - Proposed nº1 concentrations to reach optimal conditions. 

Solution 
Molecular For-

mula 
[ ] M 

Volume (μL) in 

cell 

Glucose C6H12O6 1.5 150 

Potassium Ferricyanide C6FeK3N6 0.02 400 

Methylene Blue 
C16H18CIN3S xH2O 

(x=2-3) 
0.01 50 

LB solution + Serratia mar-

cescens Abs(600 nm)~1.7 
- - 200 
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Table 6 - Proposed nº2 concentrations to reach optimal conditions. 

Solution Molecular Formula [ ] M 
Volume (uL) in 

cell 

Glucose C6H12O6 1 150 

Potassium Ferricyanide C6FeK3N6 0.01 400 

Methylene Blue 
C16H18CIN3S xH2O 

(x=2-3) 
0.02 50 

LB solution + Serratia mar-

cescens Abs(600 nm)~1.7 
- - 200 

 

Table 7 - Proposed nº3 concentrations to reach optimal conditions. 

Solution Molecular Formula [ ] M 
Volume (uL) in 

cell 

Glucose C6H12O6 1.5 150 

Potassium Ferricyanide C6FeK3N6 0.01 400 

Methylene Blue 
C16H18CIN3S xH2O 

(x=2-3) 
0.02 50 

LB solution + Serratia 

marcescens Abs(600 

nm)~1.7 

- - 200 

  

With this new set of experiments we have a new baseline for this new MFC using 

graphene and we can from these results set the best concentrations and volumes. It 

would also be interesting to test different concentrations S. marcescens between 1.4 Abs 

(600 nm) and 1.9 Abs (600 nm) just to see if there is actually a better range at this 

microorganism state to increase their proliferation inside the MFC and therefore contrib-

ute to more free electrons being released. 

In this stage, to avoid more variables the structure that is going to be used just like 

the referenced cell (figure 3) but instead of the carbon nanotubes we’ll have a graphene 

film deposited on the same electrical conductive material (Chromium and Gold). For the 

Cr/Au deposition the procedure used was the Physical vapor deposition also known as 

PVD on a thinner glass (this glass was previously machined with a diamond tip drill in 

order to perform the screws holes without breaking the entire glass).  
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Table 8 - Reference characteristics used for the Cr/Au film deposition in this study. 

(Fernandes, Rocha, & Carneiro, 2014) 

Characteristics Chromium Gold 

Z-factor 0.305 0.381 

D 7.2 gm/ cm3 19.2 gm/ cm3 

Initial Pressure 3.2x10-6 mbar 2.4x10-6 mbar 

Final Pressure  4.0x10-6 mbar 

Current 20-30 mA 120 A 

Voltage 10 kV 1.3 V 

Deposition rate ≈ 120 λ/s ≈ 3.1 λ/s 

Thickness 120 nm 200 nm 

Technique PVD E-beam PVD Resistive Evaporation 

 

  

Figure 13 - MFC structure with graphene as an electrode. Adapted (Fernandes, 

Rocha, & Carneiro, 2014).  

 

Graphene has been attracting strong scientific and technological interest with great 

application potentials in various fields, such as lithium ion batteries, solar cells and elec-

trochemical super-capacitors, for its unique nanostructure and extraordinary properties 
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such as high surface area that allows the capture of electrons that come from all direction 

in comparison with NTC, excellent conductivity, outstanding mechanical strength and 

extraordinary electro catalytic activities. (Zhang., 2011) 

Using graphene in the MFC and the best conditions in the anodic chamber we not 

only are optimizing the electrical source but also the collection of the energy that is being 

produced on the cell, because the graphene film on top of the Cr/Au will increase the 

electron acceptance area and condition, hence a higher energy gain for our microbial 

fuel cell. 

Unfortunately, of graphene was not possible to proceed due to a not yet optimized 

procedure for the graphene deposition in our facilities. But the studies stay open for when 

the chance to proceed with it appears. 
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Conclusion 

 

The outcomes of this thesis were not what we initially expected for this research, 

though we were trying to test a new set of materials and in science we cannot always 

expect to have positive results, but we are always learning something new and look for-

ward to try new methods, techniques and materials. 

Despite the unavailability of some of the materials that didn’t allow the research to 

continue, that are some positive conclusions to attain from this study:  

- The presence of Polylactic Acid (PLA) doesn’t not affect the normal growth 

rate of Serratia marcescens and that this strain is actually pretty resistant; 

 

- Biodegradable materials such as PLA are a possible material to be use in 

future studies involving pathological strain of bacteria; 

 

- The [Cu+Ni+Au] conductive fabric can be used as a capable electrode for 

MFC studies, though the architecture implemented in this study isn’t the best 

for this type of electrode; 

 

- This research show that [Cu+Ni+Au] conductive fabric does have its limita-

tions should not be used too many consecutive times but, it still allowed to 

recollect some of the energy being produced in the MFC. 

 

- Compared to our referenced study the bacteria didn’t always had a stable 

growth state and the stationary stage oscillated depending on external         

factors, so a better knowledge of Serratia m. growth should’ve been done in 

order to find the external factor and exactly at what time (after inoculation) 

should the bacteria reached its stationary state. In the reference study we 

had a mark of aprox. 14h to reach the optimum stage and in this study we 

needed aprox. 23h in some cases and more than 30h on other cases.  

 

- In this study the peak of current that was able to get with a full MFC 

working structures was aprox. 200 nA for about 5 consecutive hours, was 

lower than previous reference study where was possible to generate 616 

nA. Though is important to enhance that in this study was not used car-

bon nanotubes vertically aligned as it was used on the reference study 

and that contributed to a better capture of the electrons within the cell. 
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In the future, probably the reutilization of the material would be something to lose 

and try and use always brand-new fabric to not attack the fibers with the aggressive 

process of sterilization nor the possible contamination of the bacterial culture. Probably 

a new cell design would be beneficial in future studies using conductive fabric, this one 

had the contact area to the circuit on the bottom and to avoid possible leaks through the 

fibers a MFC with the electrodes coming from above would be the best choice. 
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Future Perspectives 

 

I believe that Microbial Fuel Cells studies will be an advantage to science and the 

world. With too much fossil fuel consumption and the limitations of renewable energy, is 

imperative that an alternative may be found. 

Combining the waste waters around the globe, or starting to power up small elec-

tronics with these type of alternative energy using glucose or sucrose substrate, will have 

a gigantic impact in a good way, decreasing the human footprint and will help long term 

to safe some of the precious land resources. 

A fusion with a new and sprouting technology that we are creating on the daily 

basis, 3D printing, conductive materials made of textiles, photolithography, paper         en-

gineering are some of the examples. 

In (Fraiwan, Mukherjee, Sundermier, Lee, Choi, 2013) work, a paper-based MFC was 

created featuring a paper-based PEM and chambers for the anode and cathode. Flexible 

carbon clothes were employed as the electrodes and hydrophobic barriers in paper sand 

carbon clothes were patterned with photoresist. This MFC was able to generate a current 

of 74 μA and an operating voltage of 74mV. This paper-based MFC has the advantages 

of being easy to use, are disposable and cost-effective, and a good solution for a power 

source for disposable diagnostic devices. 
 

A new mini-MFC array was designed and microfabricated, and its electricity gen-
eration performance was evaluated. Compared to the previous mini-MFCs reported in 
the literature, the mini-MFC fabricated in this work has the highest maximum power den-
sity of the reported micro-liter scale MFCs and maximum current density of 29mW/m2 
and 2148mA/m2, respectively. The microfabrication process, configuration design and 
utilization of air cathode are likely to have contribution to the great performance of the 
mini-MFC. 
 

Another example is towards fabrication of small-sized MFCs for their potential ap-
plication as miniature devices. A miniature volume and a low substrate consumption, 
makes a mini-MFC especially useful in medical, communication and other areas, and is 
also suitable for evaluating the electricity generation characteristics of microorganisms, 
such as electrochemical activity, maximal potential, and power density. 

 
In (Chen, Zhao, Qiu, Chu, …, (2010) work, a new single-chamber mini-MFC was 

fabricated using a micro fabrication technique by applying sputtering deposition, photo-
lithography and ion-beam etching. A mini-MFC array was designed and micro fabricated, 

5 

 



32 

 

and its electricity generation performance was evaluated. The mini-MFC fabricated in 
this work reported a very high power and current density of 29mW/m2 and 2148mA/m2, 
respectively. 

 
 There are also some frontline researches in the mutagenesis and even recombi-

nant DNA technology that can possibly be used in the future to obtain some super mi-
croorganisms for MFCs. Microbes may be used as a pure culture or a mixed culture 
forming a synergistic microbial consortium to offer better performance.  

One type of bacterium in a consortium may provide electron mediators that are 
used by another type of bacterium to transport electrons more efficiently to an anode 
(Rabaey & Verstraete, 2005), but it is possible that an optimized microbial consortium 
can be obtained to operate an MFC without extraneous mediators or biofilms while 
achieving superior mass transfer and electron transfer rates and this is also an                     
innovating technique to be explored in the future (Du, Li, & Gu, 2007). 
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Appendix 1 

Preparation of LB solution 

 

For V= 250 mL of LB solution: 

 

Reagents:  

Peptone – 2. 5 g 

 Yeast Extract – 1. 25 g 

 NaCl – 1. 25 g 

 Distilled H2O – till 250 ml  

 

Preparation: Balanced every single reagent mixed all together and start dissolving with 

a little distilled water when all the solution is dissolved and presents no solids, fill the rest 

of the Shott flask till 250 mL total. Seal it and proceed to sterilization of the mean (auto-

clave). 

 

Biocompatibility - test method  

 

 

 

Figure 14 - Sketch of the PLA/S.m. biocompatibility test (Erlen Mayer with S. 

marcescens). 

 

The unprocessed and processed PLA parts (previously sterilized) would be put 

inside the Serratia marcescens culture each material had its own cultures and it would 

be introduced 3 – 4 pieces of about 2-3 cm for the unprocessed material and 5 – 6 parts 

of 1 cm x 1 cm squares for the processed material 
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Sterilization process: 

 

20-30 min – Bath of 80% concentrated Ethanol solution. 

30 min – Exposed to UV light to surface sterilization. 

Involved the parts with the silver paper also UV sterilized and keep the parts there till it’s 

time do use. 

 

Microbial Fuel Cell Setup: 

 

 

Figure 15 - Standard setup used for all the MFC tests using a resistor of 1 

MΩ. 

 

 


