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Abstract

Background: We describe a female infant with Fragile-X syndrome, with a fully expanded FMR1 allele and preferential
inactivation of the homologous X-chromosome carrying a de novo deletion. This unusual and rare case demonstrates
the importance of a detailed genomic approach, the absence of which could be misguiding, and calls for reflection on
the current clinical and diagnostic workup for developmental disabilities.

Case presentation: We present a female infant, referred for genetic testing due to psychomotor developmental delay
without specific dysmorphic features or relevant family history. FMR1 mutation screening revealed a methylated full
mutation and a normal but inactive FMR1 allele, which led to further investigation. Complete skewing of X-chromosome
inactivation towards the paternally-inherited normal-sized FMR1 allele was found. No pathogenic variants were identified
in the XIST promoter. Microarray analysis revealed a 439 kb deletion at Xq28, in a region known to be associated with
extreme skewing of X-chromosome inactivation.

Conclusions: Overall results enable us to conclude that the developmental delay is the cumulative result of a methylated
FMR1 full mutation on the active X-chromosome and the inactivation of the other homologue carrying the de novo
439 kb deletion. Our findings should be taken into consideration in future guidelines for the diagnostic workup on the
diagnosis of intellectual disabilities, particularly in female infant cases.
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Background
Fragile-X syndrome (FXS, MIM #300624) is the most
common cause of hereditary intellectual disability (ID)
with an X-linked inheritance pattern and incomplete
penetrance in females. FXS has been shown to be caused
by an unstable CGG repeat within the 5’untranslated
region of the fragile mental retardation-1 (FMR1) gene
[1, 2]. This repeat is highly polymorphic with normal
alleles harbouring 8 to 54 CGGs, while full expansions

have more than 200 repeats [3]. The expansion within
the full mutation range usually accompanied by
abnormal methylation of the FMR1 gene promoter and
repetitive region, reducing Fragile X mental retardation
protein (FMRP) expression [4]. The physical, neurocog-
nitive and behavioural FXS features are therefore the
result of a typical loss-of-function mutation with epigen-
etic changes (histone modifications and DNA methyla-
tion), by mechanisms still not entirely understood [5]. A
recent FXS epidemiologic study estimates the frequency
of affected males at 1.4:10,000 and that of affected
females at 0.9:10,000 [6]. The typical FXS phenotypic
characteristics have been described in males. Around
50% of full mutation female carriers present some
degree of cognitive impairment (from mild learning
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disability to severe cognitive dysfunction), but usually
less severe than in FXS males [7, 8]. FXS should be
considered in the presence of particular physical charac-
teristics such as long face, large and protruding ears and
macroorchidism, combined with ID or autistic behav-
iour. Besides familial cases, both males and females with
ID, even those without the other clinical signs, should be
tested for fragile-X because the pathognomonic FXS
features are not always obvious or present [9]. Herein,
we present the case of a female infant, referred for gen-
etic consultation due to developmental delay and hyper-
activity, without specific dysmorphic features or relevant
family history. FMR1 mutation screening revealed the
presence of a methylated full mutation and a normal but
inactive allele, which prompted further investigation.

Case presentation
The proband was first referred to our genetics clinic at
11 months of age. She showed developmental delay and
hyperactivity without specific dysmorphic features and
with irrelevant family history. At 33 months the devel-
opmental profile was similarly delayed with limited
speech and language acquisition. The proband had
early intervention for speech and language as well as
occupational therapy. The last evaluation at 44 months
revealed remarkable inattentiveness besides persistence
of developmental delay, poor language skills and a glo-
bal developmental profile equivalent to 30 months and
handling skills equivalent to 24 months. Irrelevant dys-
morphisms included redundant eyelids, bulbous nose
and protruding ears. Analytic studies showed slightly
elevated creatine phosphokinase levels and normal cre-
atinine metabolism. The parents and other relatives
gave informed consent for samples to be used in this
research study, approved by the medical ethics commit-
tee of the Centro Hospitalar do Porto (CHP, E.P.E.).
Following the proband’s referral for genetic testing, a
normal karyotype was found together with an FMR1
full mutation and a normal but inactive allele (Fig. 1).
Co-segregation studies identified two at-risk females
with FMR1 premutations and excluded FMR1 expan-
sion in a maternal aunt. HUMARA testing [10], carried
out on the proband’s peripheral blood, showed
complete skewing of the X-chromosome inactivation
(XCI) pattern. Further FMR1 analysis, by AmplideX®
FMR1 mPCR, showed absence of size and/or methyla-
tion mosaicism (above 1%) and confirmed that the
normal-sized allele was inactivated, suggesting that
another cause was implicated in the skewing (Fig. 1)
[11]. A good candidate for skewed XCI is XIST (MIM
314670), a non-protein coding gene, as a C to G
transversion present in the minimal promoter (pos-
ition − 43) underlies skewing in some families [12].

Several authors recognized that a C to A transversion
at the same position results in skewing of XCI to-
wards the active X homologue of heterozygous
females [12, 13], while others found no such associ-
ation [14]. XCI skewing in the proband was further
investigated by sequencing the XIST promoter. No
pathogenic variants were identified.
aCGH analysis was performed, revealing a 439 kb dele-

tion in Xq28 (chrX:154,120,961–154,560,374 (hg19))
encompassing 16 genes. Similar deletions have been shown
to be associated with extreme deviation of XCI, compatible
with the skewing observed in our case [15, 16].

Discussion and conclusions
Diagnostic yield for chromosomal microarray analysis
(CMA) in unexplained ID is between 15%- 20%, half of
these carrying a de novo copy number variant [17].
CMA to assess DNA copy number is currently recom-
mended as a first-tier test for postnatal evaluation of
patients with developmental delay, intellectual disability,
autism spectrum disorders and/or multiple congenital
anomalies [17]. In this case, however, application of
CMA technology in the first instance, revealing a de
novo 439 kb deletion, could have misguided the diagnos-
tic workup; for example, searching for hemizygous point
mutations in the RAB39B and CLIC2 genes – included
in this recurrently duplicated/deleted region – both of
which have been implicated in ID [18, 19]. Although the
deletion breakpoints were not sequenced in our case, ac-
cording to previous publications, one can assume that
they are within the directly orientated low-copy repeat
(LCR) regions int22h-1 and int22h-2, located in the F8
gene (MIM #300841) [15]. There is no family history of
haemophilia A, although the observed preferential XCI
could explain the absence of haemophilic clinical signs
in the proband. Another deleted gene in this region is
VBP1 (MIM #300133), heterozygous deletions of which
associate with high miscarriage rates in females without
cognitive function involvement [16]. A methylated
FMR1 full mutation was identified and according
to Godler et al., the presence of an expansion is
closely associated with an X-inactivation pattern skewed
towards the mutated chromosome [20]. Here, we have
showed that the developmental delay is the cumula-
tive result of a methylated FMR1 full mutation on the
active X-chromosome and the inactivation of the
other homologue carrying the de novo Xq28 deletion,
although we were unable to exclude FMR1 tissue
mosaicism or the presence of other X-linked recessive
pathogenic variants in genes involved in the Xq28
deletion. Overall, this report describes an atypical fragile-
X female infant whose phenotype one may speculate
should develop in a similar manner as that described for
typical FXS males. This case poses additional challenges
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for genetic counseling and also calls for reflection on the
clinical and diagnostic workup for developmental disabil-
ities, particularly in infant females: a positive aCGH result
should not hinder FMR1 sizing and methylation analysis

and vice-versa. In the present case, first-tier aCGH could
have misguided the clinical geneticist towards sequencing
several genes involved in ID (e.g. RAB39B and CLIC2)
resulting in a completely distinct diagnostic workflow.

Fig. 1 Pedigree and summary of overall laboratory findings. a – Proband’s pedigree (III:1) showing FMR1 genotyping and XCI ratio results.
b – Southern blot analysis using GLFXDig1 probe (Gene LinkTM , Hawthorne, NY, US) and DNA Molecular Weight Markers II and III, DIG-labeled from
Merck KGaA, Darmstadt, Germany; Female control with a full mutation (C+) c.-128_-126[30];[250_400]; Proband III:1 showing complete absence of
normal, active FMR1 allele. Premutation carriers (II:3 and II:4) show four fragments corresponding to the normal active, expanded active (2.8 kb and
above) and normal inactive and expanded inactive (5.2 kb and above) alleles [21]. c - HUMARA results obtained in proband’s leukocytes (III:1) [10]. HhaI
completely digested the maternal allele indicating that the other allele is fully methylated (ME) and suggesting total skewing of the XCI pattern. The
additional two females tested (II:3 and I:4) showed a normal XCI pattern (data not shown). d – Array Comparative Genomic Hybridisation (aCGH)
performed using the Cytochip ISCA 8x60K (Cambridge Bluegnome, Illumina Inc., San Diego CA,USA) showed a deletion of 439Kb in chromosome
X within band Xq28, classified as pathogenic, involving the genes: F8; CTD-2183H9.7; EEF1A1P31; CTD- 2183H9.3; FUNDC2; CMC4; MTCP1; BRCC3;
RP11-143H17.1; VBP1; RP13-228 J13.9; RAB39B; CLIC2; RP13-228 J13.6; RP13-228 J13.10. Array design included a median resolution of 120Kb throughout
the genome (Backbone) with increased density oligonucleotide probes in selected regions associated with clinically relevant phenotypes, in line with
the International Standard Cytogenetic Array (ISCA) consortium. Analysis was performed using the Bluefuse software (Cambridge Bluegnome, Illumina
Inc., San Diego CA, US) coupled with publicly available databases. Mutation nomenclature guidelines suggested by the Human Genome
Variation Society (HGVS) (http://varnomen.hgvs.org/) were used. FMR1 reference sequence NM_002024.5
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