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Abstract

Field Programmable Gate Arrays (FPGAs) are becoming a popular solution for accelerating the
execution of software applications. The use of high level synthesis (HLS) tools intends to provide
levels of abstraction comfortable to software developers when targeting FPGA-based hardware
accelerators. However, the need to restructure the software code and to use adequate directives
require both mastering the HLS tool used and FPGA hardware. This dissertation presents a new
approach for code restructuring intended to help software developers in achieving efficient hard-
ware implementations. The approach uses an unfolded graph representation, which is generated
from program execution traces, together with graph-based optimizations such as folding to gen-
erate suitable C code to input to HLS tools, such as Vivado HLS. The experiments show that the
approach is capable of generating efficient hardware implementations only otherwise achievable
using manual restructuring of the input software code and manual insertion of adequate directives.
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Resumo

Field Programmable Gate Arrays FPGAs apresentam se cada vez mais como uma solução para
acelerar aplicações de software. O uso de ferramentas síntese de alto nível permite níveis altos de
abstração acessíveis a programadores de software, quando este pretendem utilizar aceleradores em
hardware baseados em FPGAs. Mas a necessidade de restruturar código de software e o uso ade-
quado de diretivas requer tanto conhecimento da ferramenta de HLS tal como do hardware. Esta
dissertação pretende mostrar os nossa investigação em novos métodos para obter restruturações
de código para ajudar a programadores de software a obterem implementações em hardware efi-
cientes. O nosso método baseia-se num uso de uma representação em grafo do traço de execução
de um programa, aliado a otimizações de grafos como enrolamento para gerar código de C ade-
quado a ferramentas de HLS como Vivado HLS. As nossas experiencias demonstram que o nosso
método é capaz de gerar implementações mais eficientes, que só seriam possíveis a partir de re-
struturação manual do código e uso adequado de diretivas.
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Chapter 1

Introduction

1.1 Motivation

Multiple aspects of our daily lives are only possible due to computers. One of the most important

aspect of these machines is their capacity for doing a massive numbers of calculations. There have

been many important milestones in the improvement of the computation capacity of computers,

such as smaller transistors or multi core processors. A common method of achieving higher perfor-

mance is utilizing graphical processing units (GPUs) to accelerate application execution [1]. An

alternative to this approach is the use of accelerators implemented in field-programmable gate ar-

rays (FPGAs) [2] [3] [4]. FPGAs are a form of reconfigurable integrated circuits. A single FPGA

can be reconfigured for many different applications. An FPGA is configured by synthesizing a

description of the targeted problem. This mutability aspect enables the designer to accelerate mul-

tiple applications without custom building new hardware. When optimized, these FPGA-based

accelerators are capable of outperforming GPU based accelerators [5]. Additionally to the high

performance, FPGAs are energy efficient.

A custom hardware implementation of an application differs fundamentally from a software

one. In the former the hardware is always a CPU and the programmer designs solutions by spec-

ifying a sequence of instructions that the hardware must complete in sequential order. There are

many different types of CPUs that can be optimized differently, but the fundamental form of pro-

gramming one is the same. Therefore, programming languages have been designed to describe

problems in ways that are clear for programmers and implementable in a CPU in efficient man-

ners. However, in digital hardware design, instead of determining instructions that are executed

in order, the designer creates and connects functional units, such as adders and multiplexers, so

that the circuit implements the behavior of the given algorithm. This gives the designer a lot of

freedom to tailor the hardware to execute faster than a software-based approach. For example,

the designer is capable of executing multiple independent operations concurrently as long as the

hardware provides enough resources, thereby improving execution of algorithms that have high

degrees of instruction level parallelism (ILP). In fact, the circuit can execute entire tasks con-

currently if they are independent. However, to actually put this into practice, it is necessary to
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2 Introduction

describe the algorithm in the form of the flow of the signals through the functional units of the

circuit instead of sequenced instructions. Certain tools are capable of programming into FPGAs

hardware register-transfer level (RTL) [6] descriptions in hardware-description languages (HDL)

such as Verilog [7]. These are capable of expressing the data and control flow of the circuit and

take into account factors like clock signals and concurrent operations. However, in doing so they

differ drastically from software languages. So, to design optimal hardware one must have many

different skillsets and understand very distinct languages than a standard software programmer.

Additionally, to describe an entire application at such low level is very time-consuming. These

differences create a huge entry barrier to use FPGAs as accelerators.

To solve this there have been developments in the field of high-level synthesis (HLS) which

allow designers to describe hardware solutions at higher levels of abstractions, such as a software

programming language like C. The intention of employing these higher levels of abstraction is

to allow developers to design for hardware with more ease and be able to handle more complex

applications without the time consumption of designing every hardware module at low level. The

typical HLS flow [8] synthesizes higher levels of abstraction first by scheduling operations to

specific clock cycles. Resources are allocated based on the scheduling and then bound to specific

hardware units. The HLS tool can then create an implementable HDL description of the input.

The HDL description describes the dataflow and control flow of the hardware implementation

of the application. There are many different allocation, scheduling and binding algorithms as

well as approaches to defining the control flow of the implementation. Typically, this design flow

does not generate implementations as good as manually designed ones, but it allows a higher

level of abstraction. However, even though these tools raise the level of abstraction, they still

require expertise in hardware to implement optimized solutions in any chosen tool. These tools

may accept programming languages like C but the structure of the code has a large impact on the

results [9]. Additionally, some tool may require added directives or configurations to generate

optimal implementations. So, current HLS tools still have a barrier of entry for programmers. By

lowering this barrier, more designers are enabled to use the power of FPGA-based heterogeneous

implementations to accelerate code execution, leading to improvements in computing performance

and energy consumption. Advancing the state of the art of HLS by increasing its accessibility is

the main motivation for this dissertation work.

1.2 Objectives

1.2.1 Problem description

C based languages are a common input for many HLS tools [5]. However, C has many limitations

as a language to describe hardware implementations [10]. Thus, HLS tools compensate these lim-

itations by allowing the programmer to guide the synthesis through configurations or directives.

Additionally, the structure of the code has a large impact on performance. For example, a multipli-

cation with a variable that actually is constant can be implemented by a shift. Shift registers with
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one operand as a constant are far more efficient and easy to implement in hardware that multipli-

cations but for an unexperienced programmer that is not an obvious change. But actually, without

changing the multiplication for a shift in the code the HLS tools might instantiate a multiplier

that is slower and more resource intensive. This is a simple example and there are much more

complex optimizations, such as structuring a loop to be optimally pipelined. A synthesized im-

plementation in hardware is primarily measured in three aspects: The clock frequency, the latency

and the resource usage. Optimized C code in HLS can obtain far better results in these aspects

than unoptimized C code. Thus, to make C-based HLS more accessible, there needs to be a way

to easily restructure the code.

1.2.2 Proposed solution

This dissertation proposes a framework to automatically generate optimized C code. It consist

of a frontend that generates a dataflow graph (DFG) from the execution trace. This DFG is then

processed in a backend to generate the C output which is input to a HLS tool. This graph based

approach is chosen because DFGs are good representations of the dataflow and express very well

properties such as parallelism which are essential for hardware implementations. Additionally

with a flexible front end it would be possible to generate DFGs from multiple different input

languages. This would further increase the accessibility by allowing programmers of different

languages to use C-based HLS tools.

This dissertation focuses on the implementation of the back end and the way it manipulates

and analyzes the graphs to automatically generate the output C code. It also details the type of

graphs the front end should generate, as well as methods to generate them from execution traces.

In this dissertation Vivado HLS [11] is used as the C-based HLS tool, and thus some opti-

mizations, such as directives, take this target into account. Vivado HLS handles all stages of HLS

design. It requires timing constraints to schedule the application. Vivado HLS can synthesize

loops and implement them using pipeline schemes. It also handles the generation of the memory

and interfaces for the applications. The tool also allows the setting of resource constraints either by

directly limiting specific resources or by limiting the amount of concurrent operations. All these

elements can be manipulated through directives. However, the backend could be reconfigured to

target different tools.

Figure 1.1 shows a representation of the framework. The framework implements code restruc-

turing automatically, thus the user only needs to input the source and a few simple configurations

such as the inputs and outputs of functions. The quality of an FPGA implementation is measured

by the speed and resource usage. Speed is determined based on the clock frequency as well as

the total number of clock cycles (latency) of the implementation. FPGAs typically specify 4 main

types of resources. Lookup tables (LUTs), which implement the logic, Flip Flops (FF), which are

used to store values between clock cycles, DSP units, which are specific units utilized to efficiently

implement operations typical for digital signal processing like multiplications and accumulation

operations, and BRAMs (Block RAM) which is the type of RAM memory used in the FPGA to

store data as memory. Typically, BRAMs only have two read and write ports, so Vivado HLS
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needs to partition the memory into multiple blocks to increase the amount of concurrent reads.

DSP units could be implemented in LUTs but they would require more area and would be slower.

This dissertation intends to demonstrate that a graph based approach can generate optimized

C with improved sped and resource usage while maintaining accessibility for software developers.

C code

Frontend

user configurations

Backend

DFG

C code + directives

Figure 1.1: Representation of the the framework of the approach

1.3 Organization of the dissertation

The rest of the dissertation is organized in five additional chapters. Chapter 2 presents the related

work to the dissertation. This chapter overviews the state of the art of HLS by analyzing different

tools. The Chapter 2 also does an in-depth study of the works that deal with optimized C code for

hardware. We analyze multiple examples of manually restructured code for different applications

and some specific Vivado HLS implementations. Additionally multiple works related to graph

analysis and manipulation are presented. Chapter 3 gives an overview of the framework. It starts

by detailing the frontend that generates the DFG. Then the chapter presents the structure and

implementation of the backend. Chapter 4 describes in depth all of the steps taken by the backend,

with multiple examples of graphs and code. Chapter 5 presents the result of the framework on
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a set of benchmarks. The final chapter ends the dissertation with some concluding remarks and

proposals for future work.
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Chapter 2

Related Work

This chapter compiles and details a number of work efforts related to the main topics of this

dissertation.

2.1 State of the art of HLS tools

A contemporary survey of HLS tools, presented in [5], gives an overview of the landscape of state

of the art of HLS tools. This survey introduces multiple tools, both commercial and academic, and

indicates some of the common approaches they take to achieve high performance. The survey also

features an analysis of four different tools. The results show that academic tools are in parity with

commercial tools and that they are capable of achieving higher performance than software-based

implementations.

This section details some of the most relevant related approaches. One of the tools is the

LegUp HLS tool [12] [13]. The objective of LegUp is to compile standard C code to be then

implemented in a hybrid FPGA-based software/hardware system-on-chip. The approach taken by

LegUp is to first compile the C code using the low level virtual machine (LLVM)[14] compiler.

The compiler optimizes the code through multiple compilation passes, and the LegUp framework

modifies these passes to implement HLS optimization algorithms. The compiled instructions are

simple enough to be implemented in hardware. The input code is executed on a MIPS proces-

sor with profiling capability. The objective of the profiler is to determine which functions to be

implemented in hardware. It analyzes and displays the results for each function and using this

profile data the user can choose which functions to implement in hardware. The selected functions

are then passed through the stages of HLS and implemented in an FPGA, while the remainder

run in the MIPS processor. The experiments and evaluations of the LegUp framework indicate

significant increases in performance even in comparison to commercial tools.

Another approach is the one taken by the Cameron project [15]. The framework is tailored

for image processing algorithms. The framework considers as input language SA-C (Single As-

signment C), which is based on the programming language C. The presented framework processes

the SA-C code and generates a specific data flow graph (DFG). This DFG is then translated into

7
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VHSIC Hardware Description Language (VHDL) [16] for hardware implementations. The SA-C

language is structured so that the compiler can generate an optimized DFG to be implemented in

hardware. The framework contains many optimization passes and algorithms, and techniques to

port the DFG to VHDL.

A third approach is the language for aggressive loop pipelining (LALP) [17]. This domain

specific language is aimed at improving the implementation of loops on FPGAs by maximizing

the throughput. Many tools implement loops by statically scheduling the operation and controlling

the execution through a finite state machine (FSM). The loop implementation of this approach

discards a global FSM and instead operations are executed at specific clock cycles after the start

of an iteration. The language allows the designer to specify exactly on what cycle an operation

executes, how many pipeline stages some operations have and the number of cycles until the new

iteration starts. The execution of operations is controlled by passing along the datapath of the

loop, the iteration number and a step signal. An operation is executed when it receives this step

signal, thereby imposing a correct execution order without a global FSM. This approach gives the

designer a large freedom to optimize the loop, without adding extra complexity. The tool presented

in [17] still has some limitations. It requires that designers explicitly deal with data dependencies,

otherwise it might schedule the execution of non-independent operations to the same execution

cycle. The language also does not support if-then statements, but allows assignments whose values

have two distinct sources. The LALP code is implemented in an FPGA by first being translated

to a CDFG. This CDFG is then scheduled and balanced. Afterwards, the CDFG is translated into

RTL VHDL to be implemented in an FPGA.

A fourth approach is ASC [18]. This approach also uses a new language also called ASC.

The language is based on C++ and a specific C library. In this language the designer describes

the algorithm as a stream of operations on an input that generate an output. The representation is

then implemented on FPGA by having FIFOs at the inputs and outputs and a datapath in between.

The language allows many ways for the designer to define variables and memory usage. It also

allows users to indicate what aspect of the implementation to optimize. The user can chose be-

tween optimizing latency, area or throughput and different parts of the stream can be optimized

differently. The tool translates the stream into a graph and operations are scheduled statically and a

control block is generated. The hardware modules implemented on FPGA are generated using the

PAM-Blox II framework [19], and different modules are chosen depending on the optimizations

and implementations of the designer. The Pam-Blox II contains a module-generation library in

C++, which generates specific modules based on given parameters. This software-based approach

allows the library to be designed in such a way that the tool can be used with many different kinds

of FPGAs by, for example, overloading functions.

Another HLS tool is bambu [20]. It can support various features of C such as function calls

and pointers. The tool generates the VHDL description of the input algorithm and a testbench

to verify the description. It can also generate interfaces with software if requested by the user.

Additionally, it allows users to integrate commercial tools to implement the generated HDL de-

scriptions in hardware. The tool also applies custom HLS scripts based on these integrated tools.
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The user influences compilation and optimization through a configuration defined in a XML file.

The design flow starts with a GCC compiler at the frontend that generates a call graph of the in-

put compiled by GCC. The GCC front end allows programmers with knowledge of C to use some

GCC optimizations. The next stage of the design flow analyzes the call graph and deals with mem-

ory allocation. The updated graph then advances to the next step, which generates the data path

and control flow. This generation is influenced by the aforementioned XML configuration file.

Bambu instantiates a module for every function and thereby allows the user to uniquely configure

the generation of different segments, such as loops or functions, as well as the whole program.

The next stage generates the netlist for the data and control paths and, if necessary, the interface

for HW/SW integration.

Another approach is presented in [21]. The authors propose a solution based on the dataflow

language RCV-CAL. They give a basic explanation of dataflow programming. It consist on a con-

nection of actors that have their own set of actions and only communicate through buffers and

tokens. The design flow starts with a behavioral description in RCV-CAL as well as constraints

for the implementation and the target architecture. These are fed into a compiler which verifies

the description and analyzes it. Afterwards, the hardware or software code is generated, and the

hardware code is synthesized for the architecture. The results can be implemented in a FPGA.

The code is also lead to a stage that assesses the performance and profiles the result based on

the constraints. The results of the profiling are fed back to the compiler to implement necessary

changes. Orcc is an open source RCV-CAL compiler. It can translate the input into source code

or an IR-representation. Their approach uses Xronos tool which uses Orcc as a back end to gen-

erate an IR-representation. It creates a CDFG and sends it to a tool called Openforge to generate

a Verilog representation. The authors present the approach based on a Xronos implementation

specifically targeting Vivado HLS. They continue to use Orcc as a back end but now use Xronos to

generate optimized C code that is fed to the Vivado HLS tool. The authors explain how they im-

plement actor communication through an AXI Stream interface, action selection as well as some

optimizations such as expression splitting to improve resource usage of Vivado HLS.

2.2 HLS tools from industry

There are several HLS toll from Industry. A popular commercial tool is Vivado HLS from Xilinx

[5] [11]. This tool accepts C, System C and C++ code as inputs. The tool also requires constraints

and test benches as inputs, so as to properly evaluate the implementation. Additionally, the devel-

oper can define a series of directives to control the hardware implementation, such as whether to

implement loop unrolling. Vivado is based on LLVM. The inputs are compiled and then synthe-

sized to an RTL implementation in VHDL. This RTL description is then implemented in Xilinx

hardware. Vivado offers an expansive IDE to develop the hardware. This IDE allows developers

to evaluate and improve the implementation on multiple levels.

Another commercial tool is MaxCompiler by Maxeler Technolgies [5] [22]. This tool allows

developers to build data-flow engines (DFEs) and integrate them in a CPU program. The tool
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divides the application in three basic components. One are the kernels, which describe the data

flow and are implemented in hardware. Another are the managers, which manage the connection

between kernels and the CPU. And the rest are CPU programs to read and write from the ker-

nels. The kernels are written using a Java based language called MaxJ. This language allows the

description of data flows through objects called cores. There are multiple kinds of cores, such

as input/output cores, computational cores, which implement arithmetical and logical operations,

multiplexer cores for selecting many different values, etc. A dataflow is described as combination

of cores that operate on an input stream and generate an output stream. This description can then

be easily represented as a DFG and then compiled by the MaxCompiler to be implemented in

hardware. This tool implements the DFG in a highly pipelined manner so as to achieve a high

throughput. The pipelined data flow implementation the MaxCompiler tool is efficient for algo-

rithms that allow for a fast streaming of inputs into the kernel. The tool also permits the developer

to guide the hardware implementation by defining aspects like the amount of parallel DFEs.

2.3 Overview of HLS tools

Table 2.1 presents a succinct overview on some relevant aspects of the presented HLS tools.It

highlights the academic or commercial nature of the tools, the input languages and the options

the tools provide to users to optimize the implementation. Table 2.2 continues the overview. It

presents the specific FPGA hardware each tool targets, what kind of output it generates, their

compilation frameworks, and some benchmarks used in the evaluation. Some of this information

is unavailable for certain tools.

Tool or Framework Type Input Language Optimizations

LegUP [12] Academic C, System C, OpenCL Different Types of Com-
pilation passes

Vivado HLS [5] [11] Commercial C, System C, C++ Directives

Max Compiler [5] [22] Commercial MaxJ Directives

ASC [18] Academic ASC -

LALP [17] Academic LALP -

Cameron Project [15] Academic SA-C -

bambu [15] - C Configuration File

Xronos for
Vivado-HLS

[21] Academic RCV-CAL -

Table 2.1: Overview of some of the most relevant HLS tools
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Tool or Framework
Target

Devices
Output Compiler

Framework
Benchmarks

LegUP various Verilog RTL LLVM set of benchmarks

Vivado HLS Xilinx VHDL LLVM based -

Max Compiler various max file Max Compiler -

ASC Xilinx hardware
modules

GNU com-
piler

Wavelet Compres-
sion, Kasumi En-
cryption

LALP various VHDL LALP frame-
work

signal processing,
encoding/decoding

Cameron Project various VHDL & C
(for host)

SA-C com-
piler

Prewitt algorithm

bambu various VHDL GCC compiler -

Xronos for
Vivado-HLS

various VHDL Orcc -

Table 2.2: Overview of some of the most relevant HLS tools

2.4 Code restructuring

Software code is written to be implemented in a CPU, which executes most operations sequen-

tially. As explained before, much of the acceleration from FPGAs is due to their ability to perform

operations in parallel [5] [8]. However, many software programs are not written in a manner that

exposes parallelism in the algorithm. This lack of clear parallelism may lead to many inefficient

implementations in FPGAs. Code restructuring is necessary to generate optimized C which ex-

poses the parallelism better than the original code.

A typical transformation is loop unrolling. In this optimization, iterations of a loop are explic-

itly and separately written leading to a larger loop with fewer iterations. If the iterations of the

original loop are independent, then this transformation allows them to be executed in parallel in an

FPGA. This is, however, a resource intensive optimization and works better for small independent

loops. For larger loops it might be preferable to unroll a specific amount of iterations instead of all

of them. Loop unrolling also allows the index of the loop to be described as a constant instead of

a variable, meaning that the FPGA can optimize operations that use the index, like implementing

a doubling as a simple logical left shift.

Another optimization is loop pipelining. In this case, the loop is restructured so that it can be

easily pipelined. A way to achieve this is by loading values for the next iteration while simultane-

ously calculating the result of the current iteration, so that in the next clock cycle the calculations

of the next output can be immediately started. This transformation allows the FPGA implementa-

tions to achieve high throughput by pipelining large loops.

However, not everything can be expressed directly in the code. Reference [10] describes how
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C still lacks some requirements for hardware descriptions. There exist C-like languages such as

System-C that heavily modify C to be more acceptable for hardware development. However, some

tools like Vivado HLS are built specifically for typical software C. They allow the user to impose

timing and resource constraints that are essential for hardware developments and they also deal

with memory usage. Crucially, most tools allow users to chose different kinds of optimizations

through directives. These optimizations also have drawbacks. For example, loop unrolling uti-

lizes a lot of resources, and this is unwanted in implementations that minimize resource usage.

However, if one wants to accelerate the implementation, loop unrolling is essential to increase

concurrency. Thus, allowing users to choose optimizations is important, so as to achieve a desired

implementation goal. However, directives have to be generic and many optimization still requires

users to restructure the code. For example, Vivado HLS has a directive to unroll the loop and even

implement it as a pipeline. But there is no directive that optimizes the pipeline through approaches

such as the aforementioned loop pipelining technique. This improvement has to be implemented

manually in the input code. Also merely unfolding might not accelerate the implementation due to

memory bottlenecks, and these have to be handled by separate directives. There are other code op-

timizations that cannot be simply handled by directives and requires users to manually restructure

the code, which can be complicated.

The article by Stephen Cong et al. [9] explains the issues of code restructuring and presents a

framework that attempts to facilitate code restructuring. The article starts with a simple code with

three nested loops and modifies it step by step. They change the loop order, add pragmas to handle

memory, pipeline the loop, optimize memory usage and implement a first in first out (FIFO) array.

The final code is significantly different and a user not used to Vivado HLS might have difficulties

writing such code. To make this restructuring they present a framework, which is Merlin Compiler.

Its purpose is to receive code with a few directives and generate a restructured Open CL output

for a specific FPGA. This Open CL code can then be used by a HLS tool. The flow of the tool is

to first parse the input code and generate an abstract syntax tree (AST). It then analyzes the AST

recording information such as loops and accesses. Afterwards, the compiler models the program

into an intermediate graph representation and passes it through multiple optimization passes. After

optimization, it develops an interface with the software for the resulting program and generates

the OpenCL code.

For optimizing the input the compiler requires a few directives. These are pipeline, parallelize

and task pragmas. The last pragma is used to specify the tasks to accelerate. The parallelize and

pipeline pragma are used to specify which type of optimizations to implement. These pragmas are

context sensitive. If this pipeline pragma is placed on outer loops or functions calls, the compiler

implements coarse grained pipelining, meaning it analyzes the contents of the loop and its depen-

dencies and groups them into tasks. The tool then schedules the tasks into stages and connects

these to be able to implement an efficient pipeline. If the parallelize pragma is placed on outer

loops the compiler will attempt to implement coarse grained parallelization, meaning it instanti-

ates units that implements the contents of the loop in parallel. If the contents of the loop are not

completely independent the compiler handles the dependencies to parallelize as much as possi-
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ble. If these pragmas are placed on the innermost loops the compiler optimizes the code at the

instruction level. The pipeline pragma optimizes the pipelined execution of the instruction while

the parallelize pragma directs the compiler to attempt to execute the contents in parallel. These

directives can be combined. The compiler analyzes the instruction and restructures the code to

implement these efficiently. One of the factors it focuses on is handling the memory accesses to

ensure that the data necessities do not limit the initiation interval of the pipeline or parallel units

by partitioning the memory into appropriate banks in the FPGA. The compiler also implements

some optimizations automatically, such as reusing data. In this case the compiler keeps data read

from memory that is used later in a buffer.

Another tool with a similar approach is detailed in [23]. The tool accepts a C file and an extra

file that details the compilation strategies. This files is written in a aspect oriented language called

LARA. This language allows for the developer to define compilation strategies independently that

can be ported to multiple different codes as well as non functional constraints that are important

for hardware. The authors implement a strategy by defining three sections of an aspect. The first

is the select section in which the authors define the segment of code that they which to target,

such as a statement, a function a type of loop. When compiling the code the tool places all the

segments that were selected for the aspect in a table. Thus, if the user selects all innermost loops,

the tool builds a table with all innermost loops. Another section is the condition section, in which

the developer can place conditions on the types of elements selected. So if all loops are selected,

this section can limit the selection to loops of certain sizes. The final stage is the action stage, in

which the authors detail what the optimization the tool might do for the selected code segments

that fulfill the conditions. This can be modifications to the code or the additions of pragmas. The

input source code is passed through a weaver. The weaver handles the partitioning of the input

for hardware/software implementation as well as the communications between these two parts.

There is also an IR weaver in which optimizations are made to a IR representation of the input.

After the optimizations, the resulting C code is fed into a HLS tool. The framework also allows

for feedback from the synthesized implementation as well as profiling the input source code. The

tool implements a design exploration tool that receives the feedback and allows for changes in the

input LARA file.

The authors detail actual optimizations done to two specific case studies. One is a 3D path-

planning (3DPP) which is an application that plans a path for a flying vehicle, and the other is

stereo navigation that uses two images to inform a vehicle about its navigation. For 3DPP profiling

indicates that 90% of the execution time is dedicated to function called gridit which has 3 levels of

nested loops that update a 3d matrix. One of the first optimizations is done to the loop that calls the

gridit function. This loop calls gridit 5 times and has 12 iterations. This loop can be moved inside

gridit. So, instead of having 60 calls of gridit the implementation has only 5, and the function has

an added outer loop with 12 iterations. The algorithm still does the same number of total iterations

but the invocations of gridit are far fewer which vastly improves SW/HW systems, because there

is a lot of overhead associated with communicating with a function in hardware. Afterwards, they

unroll the innermost loop and replicate a matrix to have multiple concurrent load/stores. They also
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coalesce the middle loops since no action is done between them so coalescing increases efficiency

of the execution. The authors also use on-chip memories to reduce the number of data transfers as

well as reuse data to minimize accesses. So these are multiple different types of optimizations that

are more intuitive to the hardware specialist. A lot of these optimizations such as the loop unrolling

are implemented through pragmas. In this case the target HLS tool is Catapult-C, therefore the

authors use its directives.

As for the second case study the heaviest execution time is dedicated to convolutions imple-

mented through three functions with multiple single precision floating points and accumulations.

To improve the execution the authors implement a strategy that executes the convolution opera-

tions in parallel . Floating point operations are harder to implement in HW than integer-based

operations, so the authors attempt too implements any floating point as an integer if possible.

Inputs that are constants are instead implemented in local arrays in HW to minimize data transfer.

When comparing these optimized version with the software implementations the authors ob-

tained high speed gains. In the case of 3DPP, the hardware cores implement their tasks with an

overall 12.15x speedup compared to the software version, and the overall application has a 6.8x

execution speed gain. As for the second case study the speedup of the overall execution is 2.12x

and the convolution is 3.90x.

Another in depth case study that demonstrates the impact of code restructuring is discussed

in [24]. The authors present a HW/SW FPGA implementation for an application that detects ar-

rhythmia through digital signal processing of electrocardiogram signals using Vivado HLS. The

application consists of an initial stage that detects the heartbeats and a second stage that makes

a diagnostic based on the heartbeats. The diagnostic part is based on a support vector machine

(SVM)[25] and it is the stage that takes most execution time. Therefore, it was the stage consid-

ered for hardware acceleration. The SVM classifier takes as an input a test vector and classifies

it into one of two categories. The algorithm calculates the quadratic Euclidean distance of every

input vector to a set of support vectors, each vector belonging to one of the two categories. Then

every distance is weighted by a variable gamma and the exponential of the negative result is cal-

culated. The algorithm then multiplies this with a coefficient distinct for every input vector and

finally subtracts by a bias value. This calculation is done for every input vector and the results are

accumulated. The algorithm then classifies the inputs based on the sign of the accumulation.

SVM is a generic algorithm and the user can define the gamma and b parameters, the support

vectors and coefficients to tailor the algorithm to the desired application. The algorithm in C code

consist of a nested loop that goes through every support vector and accumulates the distances. The

distances are calculated in the inner loop. The first optimization is partitioning the calculations of

the distances of the vectors since these are independent of each other. This independence means

that those tasks can run concurrently. To do so the authors write a version of the initial SVM that

uses smaller inputs and then partition the inputs so that the tasks can be called concurrently. The

authors called the smaller version multiple times and utilize the HLS dataflow directive to direct

Vivado HlS to run all of the tasks concurrently. The authors compare partitioning the memories

manually to using directives and conclude that manually partitioned arrays are preferable. After-
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wards, the authors optimize the actual SVM algorithm. They first manually unfold 6 iterations of

the inner loop. This inner loop contains a chain of accumulations of all the quadratic distances.

This chain lowers the ILP because it forces the additions to be scheduled sequentially. Addition-

ally, to pipeline the inner loop this chain will increase the initiation interval of the pipeline since

the implementation needs the result of the previous chain to start the next. But this is unnecessary

due to the associative property of additions allowing us to add items in a different order. So the

authors implement the accumulations chain as a tree to increase the ILP. After this change the

authors no longer restructure that code and instead only apply directives. The applied directives

are the pipeline directive, to increase the throughput of the loops, the unroll directive to increase

the ILP and array reshape and array partition to increase the memory throughput.

As there are many possible combinations of these directives, the authors isolate each and

execute an exhaustive search to find the best optimizations. Pipelining and unrolling the inner loop

produces improvements on average. Pipelining the outer loop improves the latency, but forces a

very large usage of resources because the directives forces the inner loop to be fully unrolled.

The memory directives lead to large increase in block RAM usage and have a lower impact on

the usage of other resources and the latency. The authors outline afterwards a guideline to setting

directives. They advise that the partition factor or reshape factor if used alone must be equal to the

unroll factor of the inner loop. If used together the product of their factors must equal that of the

unroll factor. Using these guidelines they vastly lower the search space for the directives. Utilizing

the best combination of these, the authors achieve a performance in hardware that is 78.9 times

better than the original. They also compare their implementation with full SW implementations

and conclude that they obtain a 10 times increase in performance compared to a dual-core 64 bit

ARM CPU.

There have been other attempts to detail the impact of correct code optimization. In [26] the

authors use LegUp to study the impact of compiler optimizations on performance of HW imple-

mentations. LegUP, as explained before, implements compilation passes to optimize the code for

HLS. The authors analyzed the impact of individual passes and combinations of these. They also

er a method that generates custom recipes of passes and show how these custom recipes perform

better than the standard LegUp passes. The paper also analyzes what kind and in which situations

certain code optimizations have a significant impact on performance. It determines that the most

useful passes are those that increase ILP, remove operations or allow further optimizations. This

article reiterates the necessity of restructuring the code, and how that in combination with an HLS

tool directives can achieve better results.

Efficient off-chip memory usage is an important issue in the use of hardware accelerators.

Many implementations do not take into account some issues with memory such as cache misses.

Therefore, such problems can lead to many wasted clock cycles as the execution stalls to obtain

the correct memory value. Some approaches to improve this problem have been presented. In [27]

the authors present an approach that transforms CDFGs before inputing them to an HLS tool. The

idea of the approach is to generate a dataflow engine from the original CDFG. The original CDFG

is analyzed and partitioned into multiple stages of a pipeline. A new pipeline stage is created when
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there is a memory access or the latency of a node is large. This partitioning allows for latency due

to memory issues to be hidden, since cache misses happen while other stages are being executed.

Thus, instead of the execution being stalled, the other stages proceed independently. As long as

the value is obtained before another stage requires it, the execution is not stalled. This approach

also allows for the different stages to be optimized independently.

2.5 Graph restructuring

Dataflow graphs are highly used in HLS tools since they are suitable representations for hardware

models [8]. A dataflow graph is a directed graph that models the way data changes when flow-

ing from the input to the outputs. The nodes of the graph typically represent basic operations,

although for higher levels of abstraction they can also represent a more complex function . The

edges connecting the nodes model the way data flows through the system. This representation is

appropriate since the nodes can be directly associated to hardware units in an FPGA. They are also

capable of explicitly representing parallelism. If sections of the data flow are not dependent they

can then run concurrently. A well optimized graph can greatly improve speed and resource usage.

Due to their utility in hardware development there are several studies of using DFGs for FPGAs

and what kind of graph leads to a better hardware implementation.

N.Voss et al detail in [28] many important optimizations for DFGs. Their goal is to present a

method of automatically generating an optimized graph focusing on datapath merging, which is

relevant for our work. The authors present a tool that implements the optimizations automatically.

It uses the Max-Compiler which was previously mentioned. Max-Compiler represent every kernel

in the algorithm as a DFG. The authors’ approach combines every graph in order to optimize the

entire dataflow at once. Then they eliminate unnecessary code. They proceed with eliminating

unnecessary operation through constant folding. Associative operations are also optimized. If two

similar ones are connected they can be combined into a single node minimizing resource usage.

If the dataflow has a sequential chain of associative operations the chain can be compacted into a

balanced tree which can result in large improvements due to the increased parallelism and faster

output generation. To further optimize the DFG the tool eliminates redundant operations. If the

DFG executes two equal operations with the same inputs then the results are going to be same,

therefore duplicated nodes are removed. Thanks to the previous associative node merging the tool

can recognize more hidden redundant operations. The calculations a+ c+b+ e and e+ c+a+b

are redundant but without node merging this factor is more difficult to discover.

The tool attempts to minimize divisions which are very costly in hardware by taking advantage

of operations that have common divisors. If that happens, the numerators are first multiplied with

each other and the result is divided by the common divisor. This improves the implementation,

because it uses more multiplications than divisions. Similarly, another optimization is to substitute

divisions by constants with multiplications with the inverse value of the constant.

Another important element is merging identical sequences of nodes. The authors detail the

merging conditions, which are that the nodes need to be of the same operations and handle the
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same type of input data. The authors also need to be careful merging nodes to avoid a situation in

which a node needs to calculate two results in the same cycle which might not be possible. The tool

distinguishes inputs of merged nodes using multiplexers. Therefore, it is unnecessary to optimize

operations, such as and or or since they use less resources in hardware than multiplexers. The

decision about which nodes to merge is via a heuristic. A merger adds new dependencies to the

graph and also changes it creating potential new merges. The heuristic is greedy and will attempt

to first merge nodes in order of expensiveness. The tool starts with most expensive one. The tool

determines a list of candidates based on the shared inputs and proximity. Multiple mergers can

lead to a large number of large multiplexers, so the tool minimizes the number of multiplexers

and their size. These optimizations can greatly improve the resource usage of the graph and the

authors present two examples in which they achieve 2x and 4x less area.

Another very important aspect is matching sequences of nodes, thereby identifying large se-

quences which can be manipulated in various ways to accelerate execution of the program. The

authors of the article [29] demonstrate a design flow to partition a DFG into multiple subgraphs by

tacking advantage of isomorphism in the graph. They attempt to identify large identical clusters

in an algorithm, and afterwards accelerate their execution in hardware. The matching algorithm

they propose is divided into four parts. In the first stage they level the graph and assign a weight

to every node based on a heuristic that accounts for the level the node type and the nodes it is

connected to. The weight algorithm assigns the same weight to similar nodes. Leveling is a pro-

cess by which each node is identified by its depth in the graph. Next, the algorithm identifies all

possible subgraphs. The algorithm does an exhaustive search of the graph, level by level. For

every node of a level the algorithm creates a subgraph. The algorithm builds up the subgraph by

adding adjacent nodes to the first node added in the subgraph. It continues building the subgraph

by checking the nodes connected to every new node added to the subgraph. A node is added if its

level is neither lower than that of the original or nor higher than the current highest level of the

subgraph plus 1. If there are no more nodes that meet the criteria, the algorithm adds the subgraph

to a list o subgraphs. After applying this to every node of a level, the algorithm advances to the

next level. This process ends once the algorithm reaches the final node of the last level. In the next

stage all subgraphs are given a weight and compared with each other. Subgraphs of similar weight

are put on a list of isomorphic graphs, and the performance of the subgraphs is estimated. The al-

gorithm is applied to benchmarks from digital signal processing since they have many isomorphic

sequences.

The approach of this dissertation also handles matching in the graph to be able to compact the

extremely large graphs that represent execution traces. Although the purpose is different compared

to the one explained, the authors demonstrate a manner to match patterns in a DFG, and the impact

of this merging on the type of algorithms that are also targeted by our work.
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2.6 Summary

This chapter presents the related work in the fields that are essential for this dissertation. The first

section discusses various HLS tools to understand the state of the art of the available tool. There

are many different ones with many distinct approaches. An overview of the state of the art of HLS

tools indicates that a lot of new approaches are being tested, and there are already implementations

with positive results. This chapter also presents literature related to restructuring C code for HLS

tools. Some specific examples of code restructure and the obtained result are detailed. Addition-

ally, the chapter presents some tools that attempt to implement such restructuring automatically.

The final sections discusses work related to handling and optimizing DGFs specifically for FPGA

implementations.

The survey [5] at the beginning of this chapter shows how active the field of HLS tools is.

Although, in this chapter we highlighted some that more connected to our approach, the survey

shows a multitude of current tools with various approaches, showing there is space for innovation

in the field of HLS tools. Among many tools the C programming language is one of the possi-

ble input languages. However despite the popularity of C it is not a language that perfectly fits

descriptions for HLS, as it is meant for sequential software implementations. Therefore, many

tools have approaches to identify characteristics in the code that are essential for good hardware

implementations. The most important is concurrency. By implementing multiple operations simul-

taneously the hardware implementation can outperform software implementations. Concurrency

can be achieved by performing multiple different operation in parallel or identifying segments in

the algorithm, such as loops that can be implemented as pipelines. The studied works show that to

expose such properties in the C code it is necessary to restructure it, as well as use some specific

directives or commands from HLS tool. In the case of Vivado HLS the latter are directives injected

in the code. DFG are a good representation of hardware models and by optimizing them we can

ensure an improved hardware performance. Thus, there are ways to study DFGs of algorithms to

generate C code that has the aforementioned properties more exposed.
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Description of the Approach

This chapter gives an overview of the developed framework to generate optimized C code with

directives targeting Vivado HLS.

3.1 Overview of the frontend

Frontend

C code

instrumentation code

 

execution

DFG dot description

DFG

Figure 3.1: Architecture of the frontend

The purpose of the frontend of our framework is

to build a DFG representing the execution trace of

an algorithm. The DFG includes every operation

from the original execution and data dependences

are obligatorily maintained. This last aspect is im-

portant as the graph only records the dependencies

of the algorithm and not the actual execution or-

der, therefore operations that can execute in parallel

appear without interdependencies in the DFG. The

frontend is intended to be as simple and generic as

possible to in order fit many different inputs. The

initial frontend was implemented for C code input,

but it can be easily be ported to other programming

languages. The DFG is generated by inserting in-

strumentation code in the original software code of

the input. Currently, the instrumentation code is in-

serted manually. Figure 3.1 shows the structure of

the frontend of the framework.

3.2 DFG at the frontend

The DFG generated at our frontend is a directed

acyclic graph that is structured to represent an ex-

19
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ecution trace of the algorithm. As the name indicates, dataflow graphs describe how the input

data changes throughout the execution resulting in the output values. Currently, the DFG uses

three types of nodes to describe the flow of data of the targeted C code. These are the constant

nodes ("const") that represent constants used in the code, the variable nodes ("var") that represent

the construct of variables in the C language. The frontend DFG can represent scalar variables

and arrays with these nodes. "var" nodes represent the value in a variable at a specific point of

the execution. If the value in a variable is changed, a new node to represent the variable with

that value is added to the DFG. Thus, the DFG can contain many nodes representing the same

variable, as they are all associated to points during the execution where that variable was written,

thereby representing how data changes throughout the execution of the code. In addition there

are the operation nodes ("op") that represent the operations in the C code. Currently, the frontend

DFG handles arithmetic and logical operations such as +, - or «. Edges represent the data transfer

between nodes. The entering edge of a "var" node represents the storing of data into the variable,

and the outgoing edge represents the transfer of the data in the variable. The entering edges of

the "op" node connect it to the data that is used in the operation, and the outgoing edge represents

the transferring of the resulting value. By connecting these nodes, the resulting graph shows the

way data is changed throughout a kernel’s execution. Figure 3.2 shows the DFG resulting of the

statements b = a and d = c+b. The input data starts in a and c. The data in a is stored in variable

b. The data from c and b is inputed in to the "op" node + that represents the sum in the code.

Finally that resulting data is stored in d that is the output of the code.

Figure 3.2: Graph corresponding to statements a = b and d = b+ c

3.3 Operation descriptions

The output DFG is described in the DOT language [30]. In this language nodes are described by

an identifier and a sequence of attributes (see Listing 3.1). Every node has at least two attributes.
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Node type Attributes

"op" Node
label: stores the symbol of the operation

att1: op

"var" Node

label: store name of variable
att1: var

att2: locality of the variable
att3: type of variable

"const" Node
label: value of constant

att1: const
Table 3.1: Overview of frontend node information

One is the label and the other the type. A node can have three types, which are constant ("const"),

variable ("var") and operation ("op"). As for the label attribute, it stores the name of the variable,

the value of a constant or the symbol of an operation depending on the type of node. If a variable

is an array the node also includes the index of the access. Additionally, variable nodes also hold as

attributes the type of variable and whether it is a local variable or an input parameter of a function.

Currently, the framework can only deal with kernels consisting of basic operations. Assign-

ments are represented by connections between nodes (e.g., from a constant type node to a variable

type node). Operations are represented by "op" nodes connected to "var" and "const" nodes. The

nodes connected to the entering edges of the "op" node are the operands and the node connected

to the outgoing edge is the result of the operation. The result node can only be a "var" node as

constants and other operations cannot be a result of an operation. Additionally, the front end also

supports function calls that modify a value of a variable. These modifications are added as an

attribute to an edge. So for the case of b = abs(a) the edge that goes from a to b has as an added

attribute called mod containing the value abs(). The approach does not have an equivalent opera-

tion node for a return statement. Instead, a node of the same type is instantiated and defined as an

interface node. Thus, the equivalent operation for the return statements is assigning the returned

variable to the added interface node.

As a simple example, Listing 3.1 shows how to describe in DOT language the DFG in Figure

3.2. The description starts of specifying that the graph is directed with the statement "Digraph G".

Afterwards, all the nodes are described. In this case there are 4 "var" nodes that are all of type int

and they are all local variables. These nodes represent the variables a, b, c and d. We have the edge

connecting a to textitb to represent the transferring of data from the b = a statement. Afterwards,

the three edges used to connect the nodes for the statement d = b+ c are declared. The edges

connecting the operand b and c have as attributes the side of the operand in the original code.

Digraph G{

a [ l a b e l = a , a t t 1 =var , a t t 2 = loc , a t t 3 = i n t ] \ \ nodes

b [ l a b e l = b , a t t 1 =var , a t t 2 = loc , a t t 3 = i n t ]

c [ l a b e l = c , a t t 1 =var , a t t 2 = loc , a t t 3 = i n t ]

d [ l a b e l = d , a t t 1 =var , a t t 2 = loc , a t t 3 = i n t ]
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+ [ l a b e l = + , a t t 1 =op ]

a−>b \ \ edges

c−>+ [ pos= r ]

b−>+ [ pos= l ]

+−>d

}

Listing 3.1: Basic graph described in the DOT language

3.3.1 Graph generation

The current approach to the generation of the DFG, representing the execution of a kernel, is to

write out the DOT description to a file during execution. The DFG is generated by injecting instru-

mentation code into the original C version, compile and executing it. The basic instrumentation

rule is to append the code before statements in the original C code. The added code describes the

operations based on the approach described earlier. For an assignment statement the input "var"

or "const" node and the output "var" node are instantiated. To complete the description of the

assignment, the instrumentation code to describe an edge from the input node to the output node is

added. For other statements the approach prints out four nodes. The values of the nodes describe

the current operation, so for a statement such as a = b+ c the instrumentation code generates a

description in the DOT language of a node for the variables c, b and a, and includes as attributes

the variable names, type and locality. If a node is an array access, the added instrumentation code

describes it as a variable and the label is the access with the explicit array index. The operation

node in the statement a = b+ c has the label +. The description of the statement is completed

by adding edges from the operand nodes to the "op" node, and and edge from "op" to the result

node. The edges that connect the inputs to the operation node also record the position in the state-

ment, in this case right for b and left for c. An "op" node can only have two input nodes. If the

codes has a single statement with multiple operations, such as a = b+c+d, it is decomposed into

temp = c+ d and a = temp+ b. Thus, the approach defines an extra variable node to hold the

value of the first calculation, and this is used in the next operation. It is important to ensure that

the name of the variable is unique, so that the resulting code is correct since these are all new vari-

ables. To ensure the uniqueness, the labels for these extra variables are the word "temp" appended

with the number of the line of original statement in the code. In case the variable is added in a

loop, the iteration number is also appended to further differentiate the variable. So if we had in a

loop the statement a = b+ c+d at line 5 in the code, the names of the added variables would be

temp_l5_i1, temp_l5_i2, temp_l5_i3 and so forth.

Another very important aspect is to ensure the correct representation of dependencies. A

variable can have multiple values along the execution. For every new value a variable takes, a

new node has to be created in the graph. The tool must also be able to know exactly the identifier

of the node that corresponds to the most recent value of a variable instead of any outdated value.

The instrumented code uses as identifiers a modified version of a variables name to reflect the most
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recent assignment. The instrumentation code adds to the variable name a number representing that

assignment. So, if the code starts with the sequence a = b; d = a+c; a = d+a; the identifiers a_1

b_0 for the first operation d_1 a_1 c_0 for the second and a_2 d_1 a_1 for the last are used. The

approach also uses a counter for the number of "op", extra variables and "const" nodes created.

When a new operating node is created the counter is incremented. The identifier of the "op" node

is the word "op" append with the counter number, to ensure that all "op" nodes are unique. The

same process is applied for the "const" and the added variables.

Figure 3.3: DFG of the dot product with vectors of size 4

Listing 3.3 shows the dotproduct benchmark (see original in Listing 3.2 ) code with the instru-

mentation code. Listing 3.4 shows the DFG resulting from the execution of the code in Listing

3.3 with a vector of size 4. Since this frontend was applied to C code the text was written to a dot
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file using the fprintf function. In this case the output file is "dotprod_graph.dot". The first string

written ("Digraph G") specifies the name of the graph and that it is directed. At the beginning,

the instrumentation code to initialize all the counters is added. Then, the instrumentation code for

each operation is added. For the first operation sum = 0 the two necessary nodes are created. The

constant the counter is incremented in line 14 and in line 15 the string describing the "const" node

is printed out to the output file. As per our approach the identifier is the word "const" appended

with the counter and the label is the value of the a constant and the type of node is "const". Line

16 prints out the description for the variable sum. As the sum variable is the result, the identifier of

the node is the name of the variable appended with the counter incremented by one. The attribute

label is "sum", as that is the name of the variable. The rest of the attributes specify that it is a "var"

node and that the variable is of type int and local. Then, in line 19 the edge connecting the two

nodes is printed and afterwards the counter for the sum variable is incremented. These operations

generate in the dot file the lines 4, 5 and 6.

Through lines 28 to 67 the instrumentation code of the statement sum+ = x[i]∗ y[i] is shown.

Lines 28 to 31 generate the nodes describing the variables x[i] and y[i]. We can see in those lines

that the label of the nodes use the exact index access. The instrumentation code in the next 5 lines

describe the "op" ,which in this case is a multiplication, and the result node. The node that receives

the result of the operation is in this case an extra variable to break up the statement, according to the

approach we described earlier. Then, the code that instantiates the respective edges is added. Lines

10 to 17 of Listing 3.4 show the description of nodes and edges that represent the multiplication

for the first iteration. Lines 50 to 67 of Listing 3.3 show the instrumentation code for the addition

of the statement. In this case we have two nodes that represent the same variable but with two

different values. The statement the instrumentation code represents is sum = sum+ temp. Thus,

one of the input nodes of the operation should link to the last value of the variable sum and a new

node should represent the new value of the variable sum. So, the instrumentation code in Line

52 generates a node with the identifier sum appended with the current value of the counter for

the variable sum, while the instrumentation code in Line 56 generates a node with the identifier

sum appended with the incremented value of the counter for the variable sum. Lines 18 and 20 in

Listing 3.4 show the description of these two nodes for the first iteration. The first node has the

identifier sum_1 and the other sum_2. Line 5 shows that the previous node for the variable sum

has the identifier sum_1, so the node description coincides as required. Figure 3.3 shows the graph

described by the dot in Listing 3.4. The DFG clearly shows the dataflow of the dot product of two

vectors. Figure 3.3 presents multiple nodes with the label sum. All these different nodes represent

the values that the variable sum takes along the execution of the program.

int dotprod(const short *x, const short *y){

int sum=0;

for (i = 0; i < NX; i++){

sum += x[i] * y[i]; }

return sum;}

Listing 3.2: Code of the dotproduct benchmark
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1 int dotprod_graph(const short *x, const short *y)

2 {

3 short n_x[NX]={0};

4 short n_y[NX]={0};

5 short n_sum=0;

6 int n_const=0;

7 int n_temp=0;

8 int n_op=0;

9 int n_out=0;

10 int ne=0;

11 FILE *f=fopen("dotprod_graph.dot","w");

12 fprintf(f,"Digraph G{\n");

13
14 // instrumenation for assignement

15 n_const++;

16 fprintf(f,"const%d [label=\"0\", att1=const];\n",n_const);

17 fprintf(f,"\"sum_%d\" [label=\"sum\", att1=var, att2=loc,

18 att3=int ];\n",n_sum+1);

19 ne++;

20 fprintf(f,"const%d->\"sum_%d\" [ ord=\"%d\"];\n",n_const,n_sum+1,ne,ne);

21 n_sum++;

22 int sum=0;

23
24
25 for (i = 0; i < NX; i++){

26
27 // instrumentation code for the multiplication

28
29 fprintf(f,"\"x[%d]_%d_l\" [label=\"x[%d]\", att1=var, att2=inte,

30 att3=short ];\n" ,i, n_x[i] ,i);

31 fprintf(f,"\"y[%d]_%d_r\" [label=\"y[%d]\", att1=var, att2=inte,

32 att3=short ];\n",i, n_y[i] ,i);

33 n_op++;

34 fprintf(f,"op%d [label=\"*\", att1=op];\n",n_op);

35 n_temp++;

36 fprintf(f,"temp%d [label=\"temp_l83_i%d\", att1=var, att2=loc,

37 att3=int ];\n",n_temp,n_temp);

38
39 ne++;

40 fprintf(f,"\"x[%d]_%d_l\"->op%d [ord=\"%d\", pos=\"l\"];\n",

41 i, n_x[i],n_op,ne,ne);

42 ne++;

43 fprintf(f,"\"y[%d]_%d_r\"->op%d [ ord=\"%d\", pos=\"r\"];\n",

44 i,n_y[i],n_op,ne,ne);
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45 ne++;

46 fprintf(f,"op%d->temp%d [ ord=\"%d\"];\n"

47 ,n_op,n_temp,ne,ne);

48
49 // instrumentation code for the sum

50
51 fprintf(f,"temp%d [label=\"temp_l83_i%d\", att1=var, att2=loc,

52 att3=int];\n",n_temp,n_temp);//nc-2

53 fprintf(f,"\"sum_%d\" [label=sum, att1=var, att2=loc,

54 att3=int ];\n",n_sum);

55 n_op++;

56 fprintf(f,"op%d [label=\"+\", att1=op ];\n",n_op);//nc-1

57 fprintf(f,"\"sum_%d\" [label=sum, att1=var, att2=loc,

58 att3=int ];\n",n_sum+1);

59
60 ne++;

61 fprintf(f,"temp%d->op%d [ ord=\"%d\", pos=\"r\"];\n",

62 n_temp,n_op,ne,ne);

63 ne++;

64 fprintf(f,"\"sum_%d\"->op%d [ ord=\"%d\", pos=\"l\"];\n",

65 n_sum,n_op,ne,ne);

66 ne++;

67 fprintf(f,"op%d->\"sum_%d\" [ ord=\"%d\"];\n",n_op,n_sum+1,ne,ne);

68 n_sum++;

69
70 sum += x[i] * y[i];

71 }

72
73 // instrumentation code for the output

74 fprintf(f,"\"sum_%d\" [label=sum, att1=var, att2=loc,

75 att3=int];\n",n_sum);

76 fprintf(f,"\"out_%d\" [label=\"*out\",att1=var, att2=inte,

77 att3=int];\n",n_out);

78 fprintf(f,"\"sum_%d\"->out_%d [ ord=\"%d\",pos=equal];\n",

79 n_sum,n_out,ne,ne);

80 return sum

81 }

Listing 3.3: Code of dot product with instrumentation code

1 Digraph G{

2 \\ sum=0

3
4 const1 [label="0", att1=const];

5 "sum_1" [label="sum", att1=var, att2=loc, att3=int ];

6 const1->"sum_1" [ ord="1"];
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7
8 \\sum+=x[0]*y[0]

9
10 "x[0]_0_l" [label="x[0]", att1=var, att2=inte, att3=short ];

11 "y[0]_0_r" [label="y[0]", att1=var, att2=inte, att3=short ];

12 op1 [label="*", att1=op];

13 temp1 [label="temp_l83_i1", att1=var, att2=loc, att3=int ];

14 "x[0]_0_l"->op1 [ ord="2", pos="l"];

15 "y[0]_0_r"->op1 [ ord="3", pos="r"];

16 op1->temp1 [ ord="4"];

17 temp1 [label="temp_l83_i1", att1=var, att2=loc, att3=int ];

18 "sum_1" [label=sum, att1=var, att2=loc, att3=int ];

19 op2 [label="+", att1=op ];

20 "sum_2" [label=sum, att1=var, att2=loc, att3=int ];

21 temp1->op2 [ ord="5", pos="r"];

22 "sum_1"->op2 [ ord="6", pos="l"];

23 op2->"sum_2" [ ord="7"];

24 ...

25 ...

26 \\sum+=x[4]*y[4]

27
28 "x[4]_0_l" [label="x[4]", att1=var, att2=inte, att3=short ];

29 "y[4]_0_r" [label="y[4]", att1=var, att2=inte, att3=short ];

30 op9 [label="*", att1=op];

31 temp5 [label="temp_l83_i5", att1=var, att2=loc, att3=int ];

32 "x[4]_0_l"->op9 [ ord="26", pos="l"];

33 "y[4]_0_r"->op9 [ ord="27", pos="r"];

34 op9->temp5 [ ord="28"];

35 temp5 [label="temp_l83_i5", att1=var, att2=loc, att3=int ];

36 "sum_5" [label=sum, att1=var, att2=loc, att3=int ];

37 op10 [label="+", att1=op ];

38 "sum_6" [label=sum, att1=var, att2=loc, att3=int ];

39 temp5->op10 [ ord="29", pos="r"];

40 "sum_5"->op10 [ ord="30", pos="l"];

41 op10->"sum_6" [ ord="31"];

42
43 \\return sum

44
45 "sum_6" [label=sum, att1=var, att2=loc, att3=int ];

46 "out_0" [label="*out", att1=var, att2=inte, att3=int ];

47 "sum_6"->out_0 [ ord="32", pos=equal];

48 }

Listing 3.4: Dot descritption of the dotproduct DFG with vectors of size 4
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3.3.2 Information lost through tracing

This approach for generating DFGs has an important issue concerning information compared to

the original C code. As described, our approach represents simply the flow of data during the

execution. Thus, the approach does not have a method of representing constructs such as for or

while statements at the frontend. The goal of the frontend is to generate the resulting unfolded

DFG and input into the backend, so that it can restructure this basic representation of the original

kernel. This leads to a problem if kernel depends on certain inputs and calculations made inside a

loop. For example, Listing 3.5 shows three different kernels. The execution trace of the first kernel

would be composed of 3 increments to the input variable a. Thus, the trace would be valid for any

input of the kernel. However, for the second kernel the for loop depends on the input variable b. If

the execution was traced for a b equaling 5 the resulting trace would have 5 increments of a. So,

the backend would generate a C code that always increments a five times regardless of the value

of b. Thus, the resulting C code of the kernel is only valid for implementations of b equaling 5. In

the third kernel the loop depends on both of the inputs so the resulting trace would only be valid

for certain combination of inputs. Therefore, when implementing this approach at the frontend, it

is essential to understand which information is going to be lost in the creation of the DFG, to be

sure that the resulting C code will be usable.

void main(){

int a,a1,a2,a3,b;

a1=foo_kernel_1(a);

a2=foo_kernel_2(a,b);

a3=foo_kernel_3(a,b);

}

int foo_kernel_1(int a){

for(int i=0; i < 3, i++)

a+=1;

return a;

}

int foo_kernel_1(int a,int b){

for(int i=0; i < b, i++)

a+=1;

return a;

}

int foo_kernel_1(int a,int b, int N){

for(int i=0; i < b-a, i++)

a+=1;

return a;

}

Listing 3.5: Examples of kernels
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Possible uses of hardware accelerators generated for the two latter examples would have to

evaluate the validity of them according to the input values and to decide at runtime about their use

or not.

3.3.3 Fronted limitations

The approach has currently some limitations and it was out of scope of this dissertation to address

those limitations. For example, conditional statements such as if or switch statements are a type of

construct our framework does not currently handle. Since conditional statements change the flow

of the execution it is not trivial to include them in the DFG. Potentially the approach could ignore

the conditional statement, but the DFG would not correctly represent the code, instead the DFG

would only represent the execution for the given inputs. If the conditional statements branch into

different dataflow paths, then with this approach only one of the paths would be represented in the

resulting DFG. Meaning that the backend could optimize the DFG, but the resulting C code would

only be correct for specific input values. Another option would be describing all the potential

dataflows, but then that would go against the original idea of representing the execution trace,

since the resulting dataflow would include operations that did not in fact occur in the original

sequence. Therefore, to represent such conditional statements there would need to be a decision

regarding the nature of the input DFG in this approach. Currently, the frontend simply does not

handle conditional statements.

Another issue is handling accesses that depend on inputs. As stated beforehand as the ex-

ecution is traced the accesses are recorded with their index. Meaning the DFG does not store

the information on the calculation that generates this input. Therefore if the access depends on

information that cannot be determined solely from the graph, then optimizations in the backend

might not be applied. Therefore, a programmer that uses this approach has to be sure that vector

accesses are independent of the input values, thereby making the final code non applicable for

other inputs. A potential solution to this problem would be implementing the access to an array as

an operation instead of a single variable node. This "op" node would symbolizes an array access,

and the operands would be the array and the index. The index could be a constant or a variable.

This approach would allow for a more versatile representation of array accesses compared to the

current approach.

Function calls also present limitations for the approach. Currently, the approach is capable of

representing functions that modify the value of a single variable, but this implementation is still

very limited. Currently, the execution of the called functions is not traced and therefore cannot be

optimized by the backend. Also if functions have multiple inputs they cannot be represented solely

as an attribute in an edge. Additionally, there is also the issue of the inputs being changed inside

of the function in ways that cannot be determined without checking the code of the function, since

functions do not explicitly state which inputs are changed. For example, the function f oo(a,b,x)

can change the value of a, and that is not clear simply by the function call. Thus, without knowing

the content of f oo the next statements that use a would not depend on f oo and the trace would

be incorrect. A solution could be the representation of the function as a node. This would allow
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for the representation of functions with multiple inputs. However, the node would also need a

way to store a representation of the trace of the functions content. That would requires adding

instrumentation code to the called function. Additionally, the node would also need to store the

information about which input is changed to record the correct interdependencies in the execution

trace. Thus, the implementation of function calls is not trivial with this approach.

3.4 Overview of backend

Backend

1: Graph Initializations

2: Output Analysis

3: Parallel Matching

4: Sequential Matching

5: Dataflow Optimizations

6: Graph Unfolding

7: C code generation

C code + directives

DFG

 

user Configuations

 

Figure 3.4: Architecture of the backend

The framework consists of stages responsible for

analyzing and optimizing the input DFG. The pur-

pose of the backend is to optimize the DFG to gen-

erate optimized C code with directives that can be

input to and HLS tool. The exact optimizations de-

pend on the input DFG and the users given configu-

rations. The user can choose the number of simulta-

neous load/stores, whether to optimize memory ac-

cesses and arithmetic operations. The user can also

choose to avoid optimizations, although that will

generate as output a code comprised of all the in-

structions in the algorithm fully unfolded. If the al-

gorithm has many instruction then the output with-

out graph folding will be unfeasible to implement

in an FPGA due to resource demand. Appendix B

shows an example of a possible configuration. The

backend is the heaviest and most complex part of

the framework as it implements all the code restruc-

turing, optimizations and injects the directives for

Vivado HLS.

3.4.1 Backend graph description

Sections 3.3 and 3.2 detailed the properties of the

input DFG. During the course of the backend the

input DFG is modified and updated. One of these

modifications is the node types. The backend ex-

pands on the type of nodes so that it can achieve a graph with the desired properties of the ap-

proach. The first new node type is the "nop" type. This type is used to signal the nodes that are

used to make connections in the graph but do no represent any variable, structure or operation like

other nodes. The most important "nop" nodes are the Start and End nodes. As their name suggests,

these nodes signal the start and end of a dataflow and are essential for the analysis of the graph.
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Node type Attributes

"nop" Node
label: either start or end

att1: nop

"hyper" Node

label: hyper
att1: hyper

subgraph: stores the subgraph
type: indicates the type of subgraph stored

"buff" Node
label: buff
att1: buff

Table 3.2: Overview of backend node information

It also leads to every graph having a similar structure with a single starting and ending node. The

terms Start and End to refer to these nodes will be used from herein.

Another type are the "buff" nodes, which exist to establish a certain sequence order in the

graph. In certain situations there are operations that have to follow a specific order in the C code

but that order is not explicit in the dataflow. By connecting operations with a "buff" node correct

sequencing is ensured. The nodes can be seen as a specific "nop" type but they are differentiated

so that they can be handled differently.

The final new node type is the "hyper" type. As explained before, the graphs express dataflows,

but some of these happen in different contexts such as loops. The transition between these dif-

ferent contexts is handled by a hierarchical representation of the dataflow. Traversing to lower

levels of the hierarchy is signaled by the "hyper" nodes. These nodes contain as an attribute a

graph that describes the new dataflow. This graph has attributes, which inform the context to in-

terpret the graph. Lower levels can have "hyper" nodes that lead to even lower levels, creating a

hierarchy allowing us to describe structures such as nested loops. With this approach the tool has

unique dataflow graphs that exist in different contexts and is capable of handling them accordingly,

without developing highly complex algorithms that deal with a single graph with many different

exceptions and properties.

3.4.2 Structure of the backend

As for the structure of the backend, at the moment the backend is divided into seven stages as

shown in Figure 3.4. Theses stages are: Graph Initializations, Output Analysis, Parallel Matching,

Sequential Matching, Data flow Optimizations, Graph Unfolding and C code generation. From

herein the stages are identified by the order in which they are applied (see Figure 3.4).

The approach of the framework is to initially prune the DFG and compact it. Afterwards, the

tool optimizes the execution of compacted dataflow. It is important to identify repeating patterns

that can be folded. Since the patterns occur multiple times by optimizing their sequence, a large

part of the execution is optimized. After the tool compacts the dataflow it can then restructure

it. Specifically, the first three stages deal with editing and identifying the loops, the subsequent 3

stages optimize the dataflow, and the last stage produces the C output with possible directives. The
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next subsections gives an overview of each stage, and in the next chapter each stage is described

in depth while using code examples.

3.4.3 First Stage: Graph Initializations

The first stage is dedicated to some mandatory steps to edit and analyze the initial input DFG prior

to the next optimizations. The most essential are the removal of unnecessary nodes, which can

vastly improve the execution time and complexity of further algorithms, and the addition of Start

and End nodes, which are essential to all algorithms.

3.4.4 Second Stage: Output Analysis

The second stage analyzes the outputs and prepares the graph if necessary for the next stage. The

initial graph might be very large and there may exist many different ways to make it more compact.

As Parallelism is a property the approach seeks to take advantage of, the start of the folding focuses

on parallelization of the generation of the outputs. In case the kernel has a single output this

stage as well as the next are skipped. In case of the output being an array the tool separates the

dataflows for every individual output value. Then, the tool separates all the common operations

from the ones that are unique to every output. The upcoming stage uses these separate dataflows to

identify patterns and build loops. Therefore, if they include operations that are common these can

be compacted into a loop leading to a far more efficient implementation, since these only need to

be executed once in the course of the program, because that single result is used unchanged for the

calculation of every output. So after this stage and in case of multiple outputs, the tool produces

a graph with all the common operations and then a list of graphs of unique sequences responsible

for each output. Before the next stage, the tool needs to actually order the list to simplify the next

stages. In case of the outputs being various accesses to the same array, the list gets ordered in the

ascending order of the indexes. So if the tool has an output vector A[n] the list follows the order

A[0], A[1],..., A[n-1].

3.4.5 Third Stage: Parallel Matching

The third stage compares the sequence of each output. The goal is to determine whether it can

combine these in a loop. Of course if there are no parallel outputs this step is skipped. If successful,

the tool is able to compact the loop into a node and represent all the iterations with a single DFG.

As this merely compacts the input graph, which does not lead to a new improved C output, the tool

needs to optimize the dataflow. This stage allows for large compressions of the graph that makes

further optimizations more efficient. However, by compressing all the separate iterations into a

single loop, the tool decreases ILP. Further stages are dedicated to decompressing these loops.
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3.4.6 Fourth Stage: Sequential Matching

The purpose of the fourth stage is to optimize the current version of the graph by implementing a

pipeline. In the third stage, the tool dealt with the parallelization of the outputs. However, the tool

can still have a large graph with a lot of opportunities to optimize. The tool can continue matching

the graph to find other parallel loops, but this can lead to a lot of time dedicated to building non-

efficient loops. It can have, for example, multiple assignments in parallel and make a loop out of

these. This folding only worsen the dataflow by hiding ILP, and complicates the graph leading to

less efficient algorithms. As the related work indicate loop pipelining in hardware is a powerful

method to optimize algorithm execution. Thus, in this stage the tool identifies a potential variable

under certain criteria and pipelines the graph along this variable. To identify the variable, the tool

passes through the dataflow from every input node to the output, and records for every separate

pass the amount of times a variable is written to. It then compares the records of every pass and

selects the maximum for every variable. Then, it compares these and selects the variables with

the highest maximum sequential writes. After this identification, the tool matches the sequences

that generate all these variables. If these sequences are similar, they can be folded and pipelined

to increase the efficiency of the dataflow. The pipeline can travel across the hierarchy developed

in the previous stage. In case the pipeline breaks the previous loop, the tool prioritizes the latter.

The criteria is a heuristic, and the reasoning is that without knowledge of the input code it is the

most probable way of identifying the largest pipeline. This stage can generate a pipeline identical

to the one in the original code or in certain cases generate a better one. The fact that the tool can

identify other pipelines than the opportunities present in the original code is important, because it

shows that the tool can identify better ways to represent the algorithm for HLS tools.

3.4.7 Fifth Stage: Dataflow Optimizations

The next stage is dedicated to implementing optimizations in the dataflow. Currently, the tools

optimizes arithmetic operations and memory accesses. These optimizations can have a large im-

pact on the performance in many different ways. Optimization of memory accesses can lower

the amount of memory reads in loops. Memory reads are a significant source of bottlenecks in

the execution and by lowering them the performance is improved. Currently, the approach to im-

proving them is through array partition and memory reuse. Another method of optimizing the

memory accesses is by applying array partition directives of Vivado HLS to be able to have more

concurrent memory accesses in hardware. The tool analyzes the memory accesses and identifies

the necessary level of memory partitioning to minimize the memory bottleneck. As for the arith-

metic optimizations the tool detects chains of identical commutative operations in a row in the

DFG. It improves this chain by restructuring it as a tree which enables more ILP. The tool also

optimizes divisions in the DFG. Divisions are costly operation in resources and time for hardware

implementations. Therefore, if multiple divisions have a common divisor the tool restructures the

DFG to first calculate the inverse o the divisor and then replace the division with multiplications
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with the inverse value. Thus, divisions are replaced by multiplications that are more efficient in

hardware.

3.4.8 Sixth Stage: Graph Unfolding

The sixth stage unfolds to a user defined extent the loops the tool generated. In the first two steps

the input graph is compacted. This action can simplify the optimizations and minimize resource

usage, but the tools also needs to unfold the loops to take advantage of ILP, since without this cru-

cial aspect all these optimizations might not have a positive impact. The unfolding graph process

depends on the type of loops the tools has generated, since the stage four loops have interdepen-

dencies while the stage three loops were completely independent. The reason for the cycle between

the sixth and fifth stages is due to the fact that every time a loop is unfolded that changes the graph

presenting more opportunities for dataflow optimizations. By allowing controlled unfolding, it is

ensured that users have higher control on hardware resource usage to satisfy their design goals.

The tool also automatically injects memory partition directives to satisfy the indicated number of

load/stores.

3.4.9 Seventh Stage: C code generation

The last stage is dedicated to writing the output C code with directives from the given graph.

Before the tool outputs the code it passes through the graph to check all the variables in use so

that they are correctly initialized. This has to be done at the end since the many variables could be

removed or inserted. The tool also levels the graph so that it can identify the order in which the

operations are to be written.

3.5 Summary

In this chapter we presented the implementation of the framework. The task of the frontend of

the approach is to generate a DFG representing an execution trace of a program. The first section

details the way the DFG should be structured to represent various operations and the information

it should contain. The second section explained how to insert the appropriate instrumentation

code to generate the trace from an execution. The next sections detailed te implementation of the

backend. The first presented an overview of its purpose and the next presented new node types

introduced in the backend. The final section detailed the structure of the backend that is composed

in seven stages that are introduced in the subsections. The stages were briefly described as next

chapter explains them in detail.

The current fronted of our approach is still in an initial stage. It does not deal with all forms

of potential C constructs like multi-input function calls. There are also certain constructs, such

as conditional statements, that would require the approach to be reevaluated to settle on a clear

approach to handle these constructs. Additionally, the injection of the instrumentation code is still

done manually instead of automatically. However, the presented approach is already capable of
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representing many algorithms that do not use such constructs. These algorithms can have many

typical C constructs such as array accesses. The approach is clear and can be easily applied to

different codes. When the corrected instrumentation code is added the resulting DFG is an accurate

representation of the algorithm, in the form that is required for the the backend of the tool. As for

the backend it is capable of restructuring the input DFG completely automatically. The backend is

more developed than the frontend, as it consists of a more versatile structure capable of applying

many different optimizations. The backend can optimize different aspects of the DFG such as its

structure or the memory usage. Due to all the optimizations the resulting code can be very different

from the original version. Users can guide the backend optimizations through some configurations

that are easy to apply. Despite its more developed state, the backend is also in a initial stage and

there are still many aspects of the backend to improve.
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Chapter 4

Backend C Code Restructuring

This chapter presents a detailed description of the implementation of all the stages of the backend

of the framework. To help describing the stages, the filter subband benchmark is used as an

example. Figure 4.1 shows the graph for two outputs.The dataset size is small to maintain visual

clarity. Listing 4.1 shows the original C code for the algorithm.

void filter_subband_double_golden(double z[Nz],

double s[Ns], double m[Nm]){

double y[Ny];

int i,j;

for (i=0;i<Ny;i++){

y[i] = 0.0;

for (j=0; j<(int)Nz/Ny;j++)

y[i] += z[i+Ny*j];

}

for (i=0;i<Ns;i++){

s[i]=0.0;

for (j=0; j<Ny;j++)

s[i] += m[Ns*i+j] * y[j];

}

}

Listing 4.1: filter subband original source code

4.1 Initializations

Upon Loading of the input graph, the tool adds the Start and End nodes to define the dataflow.

These nodes are essentials as they are the starting and end points of multiple algorithms. All non

"nop" nodes in the graph without entering edges are connected to the Start node and the nodes

without outgoing edges are connected to the End node. Afterwards, the tool passes through the

graph to gather information for the eventual output C code. It records all the different variable

37
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Figure 4.1: DFG of the filter subband benchmark considering an execution with Nz, Ns, Nm and
Ny equal to 4, 2, 1024, and 2, respectively

names and types as well as size and dimensions of arrays. After these initializations the tool

compacts the graph by pruning nonessential nodes. These are variable nodes that exist between

operations. They were essential in generating and connecting the initial graph at the frontend,

but for the analysis they are not relevant. This information can be more efficiently stored on

edges between operation nodes since for the dataflow analysis the most essential aspect is the

sequence of operations. It also leads to simpler representations of operations, since now they are

all defined by a single node instead of a connection between multiple nodes of different types.

The tool also changes nodes to represent assignments. The variable nodes at the start and end stay

unchanged since they represent the dataflow interface. The pseudo code in Algorithm 1 details the

approach. This optimization greatly reduces the number of nodes in the graph leading to faster and

simpler algorithms. After pruning the algorithm advances to the next stage. Figure 4.2 shows the

result of the Stage 1 steps for the filter subband benchmark.When compared to the DFG prior to

initializations (seen in Figure 4.1) the differences are clear. The beginning and end of the dataflow

is defined by specific nodes. Between the inputs and outputs there are only operation nodes with

the variables being indicated in the edges between the operations. Additionally the graph shows

that the array y has been replaced by variables such as y0. The new representation is then inputed
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to the next stage.
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Figure 4.2: filter subband after stage 1 initializations

4.2 Output Analysis

The output analysis stage is dedicated to analyzing the graph for further analysis. If the original

code consists of loops without ifs then the dataflow consists of multiple similar sequences that

generate different outputs. With this knowledge the tool attempts to compact the subgraphs by

identifying parallel outputs’ dataflows that can be looped. This stage prepares the tool for the
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Algorithm 1 Intermediate node removal
1: procedure INTERMEDIATE NODE REMOVAL(Graph G(V,E))
2: for each node n do
3: if n.type = var then
4: p← pred(n)
5: if p.type = op AND succ(n) = op then
6: for every node n2 ∈ succ(n) do
7: G.add_edge(p,n2)
8: copy_attributes(n,edge(p,n2))
9: end for

10: G.node_remove(n)
11: else if p.type = var then . specific case of assignment
12: copy_attributes(p,edge(p,n))
13: for every node n2 ∈ succ(n) do
14: copy_attributes(n,edge(n,n2))
15: end for
16: clear_attributes(n)
17: set_nodetype(n,op)
18: set_nodelabel(n,=)
19: end if
20: end if
21: end for
22: return G
23: end procedure
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matching in the next stage. The first step is to identify the outputs. In case the output is a single

variable the tool can skip this stage and the next. In case the output is an array the tool decomposes

the dataflow that lead to each output. The tool applies the Algorithm 2 to acquire a list of dataflows.

Each member of the list is a subgraph that generates a single unique output value. The tool

identifies these sequences by starting at the endpoint of each subgraph and moving up in the

subgraph. Every node and edge encountered are added to a new graph.

The sequences created in this ways might still not be independent since they can share opera-

tions that are in fact done only once, and whose result is used for every output. It is important then

to separate these operations, since they would lead to generating loops with unnecessary instruc-

tions, slowing down the execution severely. The problem is handled by Algorithm 4. It identifies

common operations by comparing the ids of nodes. As mentioned in Chapter 3 any new node has

a unique id. When the tool creates the new graphs it reuses these ids. So, if there are matching ids

between subgraphs, then that exact operation was executed in both sequences. If this id is used

in all sequences the operation is common to all sequences. These nodes are removed from the

separate sequences and placed in a graph dedicated to common nodes. The only common nodes

that are not removed from the separate graphs are the ones with an outgoing edge that is used

for a non-common operation. If a node has this quality it means that it is on the border between

common and non-common nodes and it has to be kept so that algorithms can correctly pass be-

tween hierarchies. Without them the tool would not be capable of knowing how to continue when

passing through hierarchies. This separation leads to an upper graph with all the operation that are

executed for every output. This graph has a hyper node that then contains the list of all individual

sequences.

To avoid comparing every node of a sequence with all the nodes of the other sequences and

thereby having exponential complexity the tool first levels the graph. Leveling is implemented

by the algorithm described by the pseudo code Algorithm 3. The result is a list of levels each

containing nodes. The levels indicate when an operation can be executed. If an operation has no

predecessor it can execute immediately and is placed at the first level. If operation has predecessor

it is only placed at a level after all its predecessors are leveled. In that case it is placed on the

level that comes after the highest level of its predecessors. The reason for the leveling is that if

the dataflows have equal operations in each sequence, then they will execute at the same level. So,

for the separation algorithm the tool only compares nodes of the same level thereby lowering the

complexity. After obtaining the list of separate dataflows, the tool orders them for the next stage.

If the output is a single dimensional array the outputs are ordered in ascending value of the index.

So for a array x[n] the tool generates the order x[0], x[1], ... , x[n]. In case of multiple dimensions

the tool orders them by ascending order and from the first dimension to the last. So, array m[n][n]

gets ordered as m[0][0], m[0][1], ...,m[0][n], m[1][0],...,m[1][n],...,m[n][n].

Figure 4.3 shows the result of this separation for two outputs. Compared to Figure 4.2 there is

a clear separation of the dataflow. The common subgraph that exist on the upper level (see Figure

4.3a) is the dataflow that calculates the y values of the kernel. These exact values are used in the

calculations of both of the outputs as the code in Listing 4.1 and the original dataflow in Figure
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Figure 4.3: Filter subband benchmark after second stage of the tool and considering an execution
with Nz, Ns, Nm and Ny equal to 4, 2, 1024, and 2, respectively

4.2 indicate. After the calculation of the y values then there is no more dependences between the

dataflows that generate the outputs. Then these flows are separated into their individual sequences

as shown in figures 4.3b and 4.3c. In those sequences, some common nodes are kept, such as the

nodes that produce the definitive y values. If the tool passes from the upper level to one of the

subgraphs of lower level by going from the node that produces y1. It knows that the lower level

graph will have an equivalent node with the same identifier so it starts the algorithm directly from

that equivalent node.

In every graph the first level of nodes are always input nodes that connect to the interface of

the dataflow of other levels, so the tool handles them differently. For example even if they are of

the type "op" the writing Algorithm 10 never views them as valid operations and therefore does

not write the C code that they represent. Even though the dataflow repeats the operation nodes, the

actual statement of the operation appears only once in the output C code at the correct position.
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Algorithm 2 Get Individual Output Sequence

1: procedure DETECT INDIVIDUAL OUTPUT SEQUENCE(Graph G(V,E))
2: graphlist=new_List()
3: for each node n pred(G.End) do
4: G’← new_graph()
5: G’.addnode(n)
6: nodelist.add(n)
7: repeat
8: n′← nodelist.head()
9: for every node p ∈ pred(n′) do

10: if p 6= G.Start then
11: G’.addnode(p)
12: nodelist.add(p)
13: end if
14: end for
15: nodelist.remove(n′)
16: until nodelist is empty
17: graphlist.add(G’)
18: end for
19: return graphlist
20: end procedure
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Algorithm 3 Leveling Algorithm

1: procedure LEVELING ALGORITHM(Graph G(V,E))
2: level← 0
3: current_level.add(G.Start)
4: Start.add_attribute(level)
5: list_of_levels.add(current_level)
6: current_level.clear()
7: for each node n succ(G.Start)) do
8: nodelist.add(n)
9: end for

10: repeat
11: level← level +1
12: for every node n’ ∈ nodelist do
13: if pred(n’) is leveled then
14: current_level.add(n’)
15: mark n’ as leveled
16: end if
17: end for
18: list_of_levels.add(current_level)
19: nodelist← nodelist 3 current_level . remove leveled nodes from list
20: for every node n” current_level do . add successors to list
21: nodelist.add(succn(n”))
22: end for
23: current_level.clear()
24: until nodelist is empty
25: return list_of_levels
26: end procedure
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Algorithm 4 Separation Algorithm

1: procedure SEPARATION ALGORITHM(Gl)
2: Commongrah← new_graph()
3: leveledgraphlist← Leveling Algorithm(Gl)
4: for every level le ∈ levelgraphlist do
5: for every node n ∈ le ∈ levelgraphlist.head() do
6: for every node n’∈ le do
7: if n.Id = n′.Id then
8: matches← matches+1
9: end if

10: end for
11: if matches = graphlist.size then
12: commongrah.addNode(n)
13: connect_node(n)
14: n.addAttribute(common,true) . every attribute has a label and a value
15: end if
16: end for
17: end for
18: for each Graph G ∈ Gl do
19: for each node n ∈ G do
20: if n.hasAttribute(common) AND succ(n).hasAttribute(common) then
21: graphlist.remove_node(n)
22: end if
23: end for
24: end for
25: commongraph.addNode(hyper) . hyper node that holds the graphlist
26: hyper.addAttribute(Gl) . place the separate sequences on another level
27: return commongraph
28: end procedure
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4.3 Parallel Matching

In this stage the tool handles the matching of the individual sequences represented as subgraphs

that the tool creates in the previous section. The goal is to identify a single dataflow that can be

written in a loop to represent all parallel dataflows. In the graph two nodes matching means that

the nodes are the same operation and the edges are reproducible. Edges being reproducible in this

context depend on the type of edge. If its a constant then they have to be the same value. If it is

a non array variable they only need to be of the same type. Since in the DFG all the edges are

connections of values the name of the variable is not important for the matching. For vectors the

edges need to have the same name and a consistent way of calculating the next index. For example,

Figure 4.4 shows the dataflow for four outputs of the filter subband benchmark. The purple node

of the dataflow in Figure 4.4a can reproduce the purple and blue nodes of the dataflow in Figure

4.4b, since the variables are of the same type, the vector access are of the same vector and m[0]

can reproduce m[4] of the purple node by merely adding 4 to the index or m[5] of the blue node by

adding 5 to the index. Once these nodes are matched to the dataflows in figures 4.4c and 4.4d then

the only viable match is the purple nodes, since m[8] can be accessed by adding 4 to to the index

m[4] and m[12] by adding 4 to the index of m[8]. Other matches are not possible since there are no

ways of having a consistent method of calculating the next index. For example matching the red

node with blue node and the green node of the dataflows in figures 4.4a, 4.4b and 4.4c respectively,

is impossible since to reach the blue node from the red node the index should be incremented by

2. But to reach the green node from the blue node the index need to be incremented by 5. Without

using conditional statements an index cannot increment by two in one iteration and five in another,

therefore the matching is not possible.

This notion is expanded for entire sequences. Sequences are reproducible if every single node

in a sequence has a matching one in the other, and if two nodes match then the parent nodes must

also match. For example, figures 4.4a and 4.4b show that any nodes of the first dataflow, that

represent an addition, can be matched with any other node that represent an addition of the other

dataflows . If the pink node of the second dataflow is compared with the light blue of the first they

match. Once the parent nodes are compared these will not match, since they are different types of

nodes. Therefore there is no matching sequence containing that specific match. If the matching

process is started with the light blue nodes of the first two dataflows then it is possible to match

the two dataflows up to the inputs. Finally, to have a loop it must be ensured that the inputs and

outputs between the matched sequences are similar. While matching the body of the loop a name

of a variable is not significant but if that variable is used outside of the loop it is important to

ensure the connection is correct.

Thanks to the preparation in the previous stage, the complexity of this section is lower. If the

tool made no assumptions then it would need to compare every node with every other node of other

sequences. This easily leads to an extremely large number of possible comparison, with many

potential non optimal paths or failed paths. Also blindly matching can develop multiple small

loops and HLS tools can have difficulties exploiting ILP between sequences of loops, leading to
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Figure 4.4: Separate sequences for filter subband considering an execution with Nz, Ns, Nm and
Ny equal to 8, 4, 1024, and 4, respectively
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non optimal hardware implementations. Even in the previous examples many different matches

were shown. Thus, the tool simplifies the problem due to the preparation and by specifically

aiming to match the output generation.

The tool applies the matching algorithm described in Algorithm 6. It starts from the bottom

which are the output nodes. The tool creates a list of nodes to compare for every DFG. The lists

are initialized with the bottom output nodes. The tool then compares the nodes on the list of a

graph with only the nodes on the list of the next graph. This is because the tool needs to check if

the nodes can be reproduced by the previous iteration. The nodes are compared through the labels

and the edges are compared using Algorithm 5. In this algorithm the tools has an exception for

when both of the edges are not checked. If the first one has been checked the tool only needs to

mark the next one. This is especially important for vector access because in the first comparison

the tool does not demand a specific increment between iterations. However, the next comparisons

need to have the same increments as the first two since then the tool could not generate a loop. The

tool always compares input edges taking into account whether they are right or left hand operands.

If a comparison is successful the tool adds their parent nodes to the list of nodes to compare. The

tools always adds them in order of right and left operand so that the list stays ordered. This means

that the tool always knows exactly which parent nodes to compare thereby lowering the amount

of unnecessary comparisons. After a node has passed all comparisons the tool adds it to the new

graph that is going to represent the loop.
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The tool bases the compact dataflow on the lowest indexed dataflow, since it is going to be the

first iteration of the loop. Therefore, the edges have the same labels as the first dataflow. Edges

corresponding to vector accesses also have information on how much to increment for the next

iteration of the loop. In case, there is a mismatch the tool has to remove the mismatched paths

from the comparisons list. The tool saves the nodes that cause the mismatch in a list. And after

generating the loop it places the mismatched dataflows outside the loop.

Figure 4.5 shows the matched nodes and the resulting sequence. In case of success the tool is

able to represent multiple sequences by a single one. Listing 4.2 shows the equivalent C code. This

code now produces the outputs in a loop. That loop contains a pipeline directive since loops with

independent iterations are improved through pipelining. Comparing this code with the original

version we conclude that the difference is the pipeline directive, the y vector and that all the

loops except the outer loop of second loop are completely unfolded. With the exception of the

implementation of the y vector as variables lowering the amount of BRAMs, there has been no

significant code restructuring that could not have been implemented by basic directives. However,

a more compact representation of the dataflow is already obtained. This aspect is crucial for

further optimizations, since changing the loop dataflow optimizes all the iterations of that loop.

Therefore the complexity and time investment is lower. The code also shows why the separation

of the previous section is crucial. In this case the calculation of the y values is common to all the

outputs. If they were kept in the unique sequence then they would have been successfully matched

and included in the loop, because their pattern is exactly the same for every output. So the loop

would calculate every y value per iteration, which is completely inefficient and would generate a

far worse implementation. The next stages apply larger restructuring to the graph that lead to the

more complex optimizations and better results.

void filter_subband_double_golden(double z[Nz],

double s[Ns], double m[Nm]){

double y[Ny];

y0=0;

y0=y0+z[0];

... \\calulation of y values

y3=y3+z[7]

for (i=0;i<4;i++){

#pragma HLS pipeline

s[i]=0;

temp_l86_i1=m[i*4]*y0;

temp_l86_i2=m[i*4+1]*y1;

...

s[i]=s[i]+temp_l86_i1;

...

s[i]=s[i]+temp_l86_i4;}

}

Listing 4.2: Filter subband equivalent output code after stage 3 folding
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The tool is also capable of generating nested loops, e.g to compact two dimensional arrays. In

the C language to pass through all elements of a multi dimensional array nested loops can be used.

To generate nested loops the tool simply applies the matching algorithm multiple times. Every

pass compacts the subgraphs along one of the dimensions of the array. Stage 2 aligned the values

so that the first pass compacts the loop along the first dimension, the second pass along the second

dimension. The benchmark 2D Convolution that filters a 2D image by a 2D kernel is an example

of the 2D folding. Figure 4.6 shows the dataflows of the inner loops after the first and second pass

through the matching algorithm. Looking at both dataflows, it is clear that the one in Figure 4.6b

is a folded version of the one in Figure 4.6a.
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Figure 4.6: Inner loops of the 2D Convolution benchmark during stage 3 four considering an
execution with N, K, equal to 2 and 1, respectively

void conv2d_first(int input_image[2][2],

int output_image[2][2], int kernel[1][1]){

\\calc of normal factor

for (i=0;i<2;i++){

#pragma HLS pipeline

sum1=0;

sum2=0;
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temp_l258_i1=input_image[i][0]*kernel[0][0];

temp_l258_i2=input_image[i][1]*kernel[0][0];

sum1=temp_l258_i1 +sum1;

sum2=temp_l258_i2 +sum2;

output_image[i][0] = sum1/normal_factor;

output_image[i][1] = sum1/normal_factor;

}

}

void conv2d_second(int input_image[2][2],

int output_image[2][2], int kernel[1][1]){

\\calc of normal factor

for (i=0;i<2;i++){

for (j=0;j<2;j++){

#pragma HLS pipeline

sum=0;

temp_l258_i1=input_image[i][j]*kernel[0][0];

sum=temp_l258_i1 +sum;

output_image[i][j] = sum1/normal_factor;

}

}

}

Listing 4.3: 2D Convolution stage 3 output

4.4 Sequential matching

In the previous step, the tool attempts to compact sequences known as parallel. After compacting

the outputs, the tool obtains a more compact dataflow that can generate every output. This can still

be very large and contain properties left to explore. In the fourth stage the tool identifies a potential

variable satisfying certain criteria and pipelines the graph along this variable. The tool applies the

pipelining at Stage 4 to DFGs that generate a single output. Thus, either the input graph only has

a single output or the input DFG was successfully compacted in Stage 3. The tool chooses the

variable which is written more times sequentially. The tool determines this variable by passing

through every input down to the output. For every pass it stores how many times a variable was

written. The tool compares the results for every input. The variable most often written is then

identified and selected for the optimization. The tool sets in a list all the writes of the chosen

variable and orders them in the order of first to last write.

The tool matches the dataflows that generate all these different values of the variable using an

algorithm similar to Algorithm 6. A substantial difference from the previous algorithm is that the

pipeline matching can traverse the hierarchy upwards. It starts at the lowest hierarchy in which the

variables were written to and after completing the matching at that level it can pass to the upper
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Algorithm 5 Compare edges

1: procedure COMPARE EDGES(Graph G, Edge E,Edge E’)
2: if E.type = const AND E’.type = const then
3: if E.name = E’.name then
4: if E.has_mark then
5: E’.addAttribute(mark,true)
6: return true
7: else
8: MARKFIRSTEDGES(E,E’)
9: return true

10: end if
11: end if
12: else if E.type = var AND E’.type = var then
13: if E.is_array = false AND E’.is_array = false then
14: if E.var_type = E’.var_type then
15: if E.has_mark then
16: E’.addAttribute(mark,true)
17: return true
18: else
19: MARKFIRSTEDGES(E,E’)
20: return true
21: end if
22: end if
23: else
24: incr← E’.index-E.index
25: if E.has_mark then
26: if E.name = E’.name AND increment = G.get_edge(E).increment then
27: E’.addAttribute(mark,true)
28: return true
29: end if
30: else if E.name = E’.name then
31: MARKFIRSTEDGES(E,E’)
32: G.Edge(E).addAttribute(increment, incr)
33: return true
34: end if
35: end if
36: end if
37: return false
38: end procedure
39: procedure MARKFIRSTEDGES(Edge E, Edge E’)
40: G.addNode(pred(E)) . A node has to be added to add the matched edge
41: E.addAttribute(mark)
42: E’.addAttribute(mark)
43: end procedure
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Algorithm 6 Parallel Matching

1: procedure PARALLEL MATCHING(graphlist Gl, G)
2: for every Node End ∈ Gl do
3: nodelist.add(pred(End)) . start algorithm with bottom node of every graph
4: nodelist_l2.add(nodelist) . nodelist_l2 is a list of nodelist
5: end for
6: repeat
7: for i← 0 : nodelist_l2.size - 1 do
8: mismatch← false
9: for j← 0 : nodelist.size do

10: Node n← nodelist_l2.get(i).get(j)
11: Node n’← nodelist_l2.get(i+1).get(j)
12: check_edges← check_edges AND compare edges(G,n.left,n’.left)
13: check_edges← check_edges AND compare edges(G,n.right,n’.right)
14: check_edges← check_edges AND compare edges(G,n.result,n’.result)
15: if n.name = n’.name AND check_edges = true ) then
16: if i=0 then
17: next_nodelist_l2.get(i).add(pred(n)) . first add left then right input
18: end if
19: next_nodelist_l2.get(i+1).add(pred(n’))
20: else
21: mismatch← true
22: exit loop 9
23: end if
24: end for
25: if mismatch then
26: exit loop 7
27: end if
28: end for
29: if mismatch then . mistmatch therefore no longer necessary to compare
30: if i > nodelist_l2.size / 2 then
31: for k← nodelist_l2.size,i +1 do
32: REMOVE_MISMATCH(k)
33: end for
34: else
35: for k← 0,i do
36: REMOVE_MISMATCH(k)
37: end for
38: end if
39: end if
40: nodelist_l2.clear()
41: nodelist_l2← next_nodelist_l2
42: next_nodelist_l2.clear()
43: until nodelist_l2.get(0) is empty
44: resolve_conflict(conflict)
45: store loop information in G
46: return true
47: end procedure
48: procedure REMOVE_MISMATCH(k)
49: conflict.add(nodelist_l2(k)) . save conflict nodes
50: nodelist_l2.remove(k) . remove sequences from matchlist due to mismatch
51: next_nodelist_l2.remove(k)
52: end procedure
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level of the graph. The matching ends at the level that the algorithm was called at. If the tool calls

it from the upper level then the algorithm stops matching at that level. Due to this characteristic,

the pipeline loop is prioritized over the loop generated at Stage 3 and is capable of changing it.

The tool normally calls the algorithm from the highest level, except when the highest level has no

actual operations, since that would automatically match and destroy unnecessarily the loop created

in Stage 3. After the tool obtains the pipeline structure it has to handle the nodes outside the loop.

Like in the previous stage, the tool places the graph that represents the dataflow of the pipeline in

a hyper node and all the nodes that do not fit in the pipeline are placed outside of the "hyper" node.

The tool handles the nodes depending of the context. If the pipeline does not break the previous

loop, the conflicting nodes stay as part of the previous loop. If the previous loop is broken, then

the nodes have to be placed at the upper level. That level does not handle compacted nodes so

if the conflicting nodes were folded representations of the previous loop, they have to be placed

unfolded in the upper level. It is important to place the conflicting nodes at the right positions. In

the previous stage all the dataflows were parallel, but this stage applies a sequential fold, therefore

it is important to know if the conflicting nodes are to be placed after or before the loop. The

configurations allow the user to chose how much to fold. If the user choses medium it only applies

the stage 3 folding. If he/she chooses high the tool applies the full folding up to stage 4.

hyper2

end

=

s[0]

0

0

=

s[1]

0

0

=

s[2]

0

0

=

s[3]

0

0

start

(a) DFG of the highest hierarchy
level

hyper1

end

+

y0

z[4]

z[4]

+

y0

z[0]

z[0] =

y0

0

0

start

(b) Compact DFG of outer loop

*

+

temp_l86_i1

end

s[0]

=

s[0]

m[0]

m[0]

+

y0

start

(c) Compact DFG of inner loop
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Nm and Ny equal to 8, 4, 1024, and 4, respectively
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The filter subband benchmark is a good example of the pipelining algorithm. By analyzing the

original code in Listing 4.1 it is clear that every time a y value is calculated it can be immediately

used, while other y values are being calculated. This relationship is not explicit in the original

code and therefore HLS tools might have difficulties recognizing this opportunity for parallelism.

However, through the DFG representation, this parallelism is easier to verify. When the graph of

this benchmark reaches stage four, the tool selects to pipeline along the array s, leading to the code

in Listing 4.4. This modified description of the algorithm exposes the aforementioned parallelism

clearly and implements a pipeline that can take advantage of it. Figure 4.7 shows the dataflow of

the pipeline. In Figure 4.7a the operations that do not fit the pipeline are shown. These are the

initializations of the s vector. Figures 4.7b and 4.7c display the pipeline dataflow and they are

compacted dataflows of the ones in Figures 4.5a and 4.5b.

void filter_subband_pipe(double z[8],

double s[4], double m[1024]){

... // initilizations of s vector

for( int i =0; i < 4; i=i+1){

#pragma HLS pipeline

y0_w7=0;

y0_w6=z[i] + y0_w7;

y0_=z[i+4] + y0_w6;

for( int j =0; j < 4; j=j+1){

temp_l86_i1=m[(4)*j+i] * y0;

s[j]=s[j] + temp_l86_i1;

}

}

}

Listing 4.4: filter subband code output after the pipeline of the fourth stage of the tool

4.5 Graph Unfolding

The sixth stage is dedicated to unfolding loops that were generated in Stages 3 and 4. The sixth

stage is presented before the fifth because as the backend structure indicates after every pass

through this stage the tool returns to the previous one. Unfolding loops opens new avenues for

optimizations in Stage 5, so it is preferable to explain Stage 6 first. As mentioned before com-

pacting the graph is very efficient for optimizations, but to take further advantage of ILP the tool

needs to unfold the loops. Algorithm 7 describes the approach taken to unfold a loop. The tool

can unfold the loop simply by copying the dataflow multiple times and updating the indexes of

vector accesses and appending a label to the new variables. This name change is important to dif-

ferentiate the new variables and it is only skipped for edges that are inputs and outputs of the loop

to maintain correct communication with the outside of the loop. In case of unfolding the pipeline,

the tool takes an extra step to connect the copied dataflows according to dependencies. The tool

knows which edges to connect, since the tool annotated the connecting edge in the previous stages.
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he unfolding process starts at the innermost loop. After a loop is unrolled the resulting dataflow

is checked for Stage 5 optimizations, and after these the graph returns to Stage 6. This process ends

when there is no more loops to unfold. The unfolding process needs to be ordered from innermost

to outermost loop, because unfolding an inner loop does not affect the outer loop. However,

unfolding an outer loop affects its nested loops. The only time an inner loop is not unfolded is

when it is inside a loop that is going to be pipelined. That is because the pipeline directive of

Vivado HLS automatically unrolls all loops inside it.

In the case of the filter subband pipeline (see Listing 4.4), the inner loop that calculates the s

values will be fully unrolled by Vivado HLS as the outer loop is pipelined, thus it is unnecessary

to unroll the inner loop. Figure 4.8 shows the result of unfolding the filter subband pipeline

loop showed in Figure 4.8. Figures 4.7a and 4.8a are the same because the unfolding stage does

not affect non looped dataflows. Figure 4.8b shows the dataflow of 4.7b replicated four times.

Analyzing the replicated dataflows, the replicated variables with different names can be seen,

such as y0, y0_10, y0_a20 and y0_a30. Without the name changes, the tool would output the

operations y0 = z[4]+ y0, y0 = z[5]+ y0, y0 = z[6]+ y0, y0 = z[7]+ y0 which would lead to the

wrong implementation. The indexes are updated based on the loop that is being unrolled and the

information stored on the edges during the folding. In this case, the folding recorded that in the

next iteration the index would increment by 1, therefore one is added to the index. This is clear by

checking Figure 4.7b and comparing the dataflows. The original dataflow accesses z[0] and z[4]

while the next accesses z[1] and z[5]. This is also consistent with the code in Listing 4.4.

The unrolled inner loop is displayed in Figure 4.8c and it is different compared to the original

in 4.7c. When dealing with inner loops it is essential to distinguish along which loop to unfold.

Listing 4.4 shows that unrolling the access m[(4∗ j)+ i] is very different depending on the chosen

loop. Unfolding along j the next access is m[(4∗ j)+ i+4] and unrolling along i the next access is

m[(4 ∗ j)+ i+1]. Therefore, the tool starts the unrolling algorithm with the name, folding factor

and loop type of the initial loop. If that loop has a nested loop, the tool unrolls it and propagates

the name of the outer loop, the folding factor and type as seen in line 22 of Algorithm 7. The inner

loop is unrolled based on that inherited information. In this case, the tool unrolls the outer pipeline

loop, so the inner loop will be unrolled along i, which is verified by the fact that the dataflow uses

the accesses m[0], m[1], m[2] and m[3].

Lastly an important distinctions is that these replicated dataflows are not in parallel like in

Figure 4.8c. The type of loop the tool is unrolling in this case is sequential, meaning that the

iterations are not fully independent. So, if a values from a previous iteration is used in the next

iteration the dataflow must represent that. The edges to connect have a unique attribute. In this

case, the loop is from Stage 4 and it indicated the edge with label s as the edges to connect

between iterations. The Algorithm 7 replicates the dataflows as if they were parallel and then

connects them. The result of the connection is the chain in Figure 4.8c.

Algorithm 7 is applied to loops from Stages 3 and 4, but there are some modifications for loops

that have been optimized through memory reuse as applied in Stage 5. That optimization changes

some properties of the graphs and loops as the next section details. By applying the memory
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optimization the parallel loops are no longer independent, since the memory buffers need to be

adequately loaded before the next iteration. Therefore the loops need to be replicated in a manner

that expresses that interdependency. The tool replicates them as if the loops were independent, but

instead of placing the replicated iteration in parallel the algorithm places them after the dataflow

of the previous iteration to maintain the correct execution order. After the dataflows are placed in

the correct order, the algorithm connects the variables to achieve an appropriate dataflow.

Vivado HLS has a pragma to unroll the loops, but it has limitations. For example, if a loop

containing an inner loop is imperfect, the unroll pragma at the outer loop directs Vivado HLS to

replicate the inner loop by the unroll factor. This lowers the ILP in the implementation by having

separate loops and limits optimization between them. Thus, unrolling them manually ensures

a better hardware implementation. The user can determine the number of iterations to unfold

directly or by detailing a number of load/stores. In the second case the tool analyzes the graphs

and determines the load/stores that can be in parallel, and unfolds the loop enough times to have

the number of simultaneous load/stores desired.

4.6 Dataflow optimizations

After Stage 4, the tool obtains a DFG that can be further optimized. In this stage, the tool currently

has two types optimizations. One type focuses on arithmetic optimizations. One of these is the

accumulation optimization Algorithm 9. This optimization is dedicated to writing an accumulation

from partial sums. It first detects an accumulation chain and afterwards proceeds to balance it. If

the chain is the length of a power of two balancing is trivial. If the length of chain is not a power

of two, then at some point during the balancing process, the tool will need to connect an uneven

amount of nodes. To solve this, it makes the number even by simply removing one of the nodes

from the list of nodes to connect. The next time the algorithm detects an uneven amount of nodes

instead of removing, the tool adds the previously removed extra node to the list thereby making

the list even again. There is eventually an uneven amount of nodes since the tree ends in a single

node. Figure 4.9 shows a balanced accumulation compared to the chain in Figure 4.8.

A balanced accumulation provides more ILP and can improve the execution of an algorithm.

Although Vivado HLS is capable of balancing expressions it maintains the dependencies even if

not necessary. For a pipeline, Vivado HLS may increase the II. As seen in Figure 4.8c the first

addition depends on the result of the last sum. Therefore, the next stage of the pipeline can only

initiate after the clock cycles necessary to execute that chain. However, Figure 4.9 shows that the

value calculated in the previous iteration is used only once at the final sum. Therefore, the pipeline

only needs to be delayed for the duration of a single sum instead of an entire accumulation chain.

Another arithmetic optimization is applied to divisions. This operation is very costly in hard-

ware both in resources and latency so if the input code includes multiple divisions with a common

divisor, then the inverse of the divisor can be calculated, and then used to implement the divisions

as multiplications. For divisions with divisors which are a power of two constants the tool can sim-

ply change the operation to a right shift a constant. If that is not applicable, it identifies the source
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Algorithm 7 Unfold Graph

1: procedure UNFOLD GRAPH(Graph G , int fold ,String type,String name)
2: connect← new_List()
3: for every Node ∈ Graph do
4: if ¬n.type=nop AND ¬n.type=hyper then
5: for i←0,fold do
6: new_node← n . create copy of node n
7: G.add_node(new_node)
8: G.connect_node(new_node)
9: for every Edge e ∈ new_node do

10: if e.type=var then
11: if e.isArray then
12: e.update_index(name)
13: else
14: e.append_label(i)
15: end if
16: if e.hasConnect then . added by stage 4
17: connect.add(e) . add updated edge
18: end if
19: end if
20: end for
21: end for
22: end if
23: if n.type=hyper then
24: UNFOLD GRAPH(hyper.subgraph,fold,type, name)
25: end if
26: end for
27: if type = Sequential then
28: connect_edges(connect) . Connects necessary edges between unfolded iterations
29: end if
30: end procedure
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Figure 4.9: Partial sum accumulation applied to unfolded dataflow in Figure 4.8c

of the divisor. If that source is unique to multiple divisions the tool adds the nodes to calculate the

inverse, and substitutes the divisions with multiplications with the inverse.

Another optimization is the parallel access optimization. In case this optimization is applied

to Stage 3 loop, the Stage 4 pipelining does not occur. Memory reads in an FPGA can lead to

large bottlenecks in the execution as block RAMs are limited to two simultaneous reads per cycle.

Therefore, lowering the amount of reads lowers the amount of cycles needed to start executing the

operations. Also memory accesses affect pipeline implementations as the next stage of the pipeline

can only start after the memories are free to be used by the next stage. Thus, lowering memory

accesses enable the hardware implementation to execute more efficiently. The concept behind this

optimization is simple. If the next iteration of a loop accesses memory values that were used in

the current iteration then those values should be stored in buffers between iterations. Algorithm

8 demonstrates the approach. First, the tool identifies the reusable accesses by comparing the

accesses of one iteration with the accesses of the next. If it identifies accesses it can reuse, the tool

creates the buffers for storing the values. The tool inserts the necessary nodes to read the values

of the first iteration before the loop. The tool then restructures the loop to use the buffers. The

tool also structures the loop to load the buffers with the values for the next iteration in the correct

order. The tool adds appropriate edges and "buff" nodes to ensure that the correct dependencies

are maintained.
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Figure 4.10: Result of memory accesses optimization for the benchmark 1D fir
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Figure 4.10 shows the end result for the benchmark 1D fir. The original code for 1D fir is

described in Listing A.4. This optimization was applied to a filter with 4 coefficients. Thus, any

output requires 4 input values to be calculated. As 3 of those values were already used in the

previous iteration they can be reused. Listing 4.5 shows the resulting code from the optimizations.

In the optimized code, the buffers are loaded with the values for the first iteration. Inside the loop,

the new values are read and at the end of the loop the buffers are filled with the values for the next

iteration. This optimization changes the structure of the Stage 3 loop. Beforehand the iterations

were independent, but now they need to be executed in order, as the buffers need to be filled with

new values before advancing to the next iteration. Another crucial difference is the use of "buff"

type nodes to impose correct code order. This can be seen on the left side of Figure 4.10b . Without

"buff" nodes, the operations temp_l34_i4 = x_0_b1∗ c_3_b0; and x_0_b1 = x_1_b1; can happen

in parallel since all of the necessary values for the operation are available since the start of the loop.

But those lines of code are not interchangeable as that would lead to a very different execution.

Additionally, the buffers need to filled in the correct order. All the operations x_0_b1 = x_1_b1;

x__b1 = x_2_b1; x_2_b1 = x_3_b1; can execute in parallel and therefore without "buff" nodes the

output code can have these statements in any order. However, only a specific order leads to the

correct implementation. So, the tool adds the buff nodes and connects them, so that the new value

can only be loaded after the old one has been used, and the correct order for loading the buffers is

maintained.

void fir_b_data_opt(int x[256],

int y[256], int c[4]){

...

\\calculation of y values

...

c_0_b0=c[0];

... \\preload of buffers

x_0_b1=m[0];

x_1_b1=m[1];

x_2_b1=m[2];

...

for( int i =0; i < 252; i=i+1){

#pragma HLS pipeline

x_3_b1=x[i+3];

temp_l34_i1=x_3_b1 * c_0_b0;

temp_l34_i2=x_2_b1 * c_1_b0;

temp_l34_i3=x_1_b1 * c_2_b0;

temp_l34_i4=x_0_b1 * c_3_b0;

output=0;

output=output+temp_l34_i1;

...

y[i+3]=output;

x_0_b1=x_1_b1;
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x_1_b1=x_2_b1

x_2_b1=x_3_b1;

}

}

Listing 4.5: 1D fir output code after meory access optimizations in Stage 5

Another optimizations the user can choose is the full partitioning of arrays to remove mem-

ory bottlenecks. The previous optimization by the tool reduced memory accesses through data

reuse. However, the DFG might still contain a lot of memory accesses that slow the execution

of the hardware implementation. Another way of lowering the memory bottleneck is through ar-

ray partitioning directives. Previously, the tool set this directive based on the minimum amount

of load/stores the user demanded. Based on that amount the tool unrolls the loops in the DFG,

so that every single array meets that minimum. However, when doing so some arrays may have

more accesses than the defined minimum, and therefore not all the accesses in the dataflow can

be scheduled in one clock cycle by the HLS tool. If the user chooses to fully partition the arrays

the tool makes a final pass through the whole DFG after it was unrolled and optimized. At ev-

ery hierarchy level, the tool counts the number of accesses made to the arrays. It compares the

amounts at every level and based on the highest number, the tool sets the appropriate array par-

titioning factor. These optimizations can significantly increase the resource usage. First because

it increase the amount of concurrent memory reads by reproducing the original array in smaller

separate BRAMs. Many FPGA BRAMs have a number of ports to be accessed so by separating

an array into multiple BRAMs more concurrent accesses are possible. Another reason for the re-

source increase is the added logic to organize and connect the multiple BRAMs. Also by lowering

the memory bottleneck more operations can be implemented in parallel, thereby increasing the

amount of LUTs and DSPs required. So, although this optimizations is capable of enabling large

speedups, it is not appropriate if resource usage is limited.

4.7 C code generation

The last stage generates the C code with Vivado HLS directives. First the tool passes through the

graph to identify all the added variables so they can be initiated correctly. Through this pass the

tool also adds a wire number to every edge that is not a input and output. After that, the tool levels

the graph. This leveled graph is used to write the output. The tool has to use the leveled graph to

ensure that operations are written in correct ordered. Operation of the same level are parallel and

the order does not matter. However, the tool must write out the levels in order to ensure that the

C output uses the correct values at the correct operations. Algorithm 10 illustrates the approach to

writing. At the start, the tool initializes the function header and all the local variables if it is at the

upper level. If the tool is on a lower level it instead initiates a loop. In theses initial steps the tool

also injects the HLS directives. At the upper level the memory partition directives are inserted and

in the loops the pipeline directive is placed. As for the operation itself the tool passes through the

leveled graph. If a node is an operation node the tool writes out the corresponding statement. If
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Algorithm 8 Access Optimization

1: procedure ACCESS OPTIMIZATION(Graph G, graphlist upperlevel ) . G has to be a loop
2: for every node n ∈ G do
3: for every entering edge e ∈ n do
4: if e.isArray then
5: curr_access.add(e)
6: e’← e.increment_index . Get the index of the access at next iteration
7: next_access.add(e’)
8: end if
9: end for

10: order_access(curr_access,next_access)
11: check_redundant_access(curr_access,next_access)
12: for i← 0,curr_access.size do
13: if curr_access(i).redundant then
14: store value in buffer before the loop
15: end if
16: change label of curr_access to buffer . update label use buffer value
17: if ¬curr_access(i).redundant) then
18: read non redundant value too buffer
19: connect current buffer to next . update buffers by shifting
20: end if
21: end for
22: end for
23: end procedure
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Algorithm 9 Partial Sum Accumulation
1: procedure PARTIAL SUM ACCUMULATION(Graph G , String var)
2: for every Node n ∈ G do
3: if pred(n).name = succ(n).name then
4: DETECT_CHAIN_UP(pred(n),G)
5: DETECT_CHAIN_DOWN(succ(n),G)
6: G.remove_node(n)
7: end if
8: end for
9: repeat

10: if nodes_to_connect is odd then . Only an even amount can be summed
11: if extra = false then
12: extra_node← nodes_to_connect.tail() . make even by removing a node
13: nodes_to_connect.remove_tail()
14: extra← true
15: else
16: nodes_to_connect.add(extra_node) . make even by adding a node
17: extra_node← null
18: extra← false
19: end if
20: end if
21: for k← 0 : k+2 : nodes_to_connect/2 do
22: G.addNode(sum)
23: G.addEdge(nodes_to_connect(k))
24: G.addEdge(nodes_to_connect(k+1))
25: next_iteration.add(sum)
26: end for
27: nodes_to_connect.clear()
28: nodes_to_connect=next_iteration
29: next_iteration.clear()
30: until nodes_to_connect only has one node AND extra = false
31: connect last sum to end of chain
32: end procedure

33: procedure DETECT_CHAIN_UP(Node n, Graph G)
34: if n has input edge e with same name as output edge then
35: nodes_to_connect(input_node(e)) . add other input to list
36: Dectect_chain_up(pred(n))
37: G.remove_node(n)
38: end if
39: end procedure

40: procedure DETECT_CHAIN_DOWN(Node n,Graph G)
41: if n has input edge e with same name as output edge then
42: nodes_to_connect(input_node(e)) . add other input to list
43: Dectect_chain_up(succ(n))
44: G.remove_node(n)
45: end if
46: end procedure
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one of the edges of the operation is a vector the tool needs to change the index. The tool changes

the index to depend on the loop iteration variables if necessary. The tool does so by checking

the attributes that the tool added during the matching algorithms. If the node is not an operation

node but a "hyper" node, the tool extracts the DFG the hyper node contains, and passes it through

Algorithm 10. Once the output is generated, the backend terminates.

4.8 Limitations

The backend still has limitations. Currently, it cannot handle conditional statements. Conditional

statements are important and at the moment they cannot be implemented by our tool. Another

limitation is C structures, as the backend does not correctly parse the ways they are called.

The tool also only optimizes kernels and generates loops but has no way of generating multi-

ple separate functions and connecting them, which is important to build optimized dataflows for

certain applications. Another limitation is that dataflows are good representations for hardware

implementations, but they lack a way maintaining execution order which is important for situa-

tions such as the data optimizations in Stage 5. That case was solved through the usage of "buff"

nodes, but those additions still force the dataflow to awkward graphs that limit other optimizations.

Although DFGs are good representations of hardware, the rules of C code implementations might

not align with such a representation.

There are also limitations in the way the graph applies the matching algorithms in Stage 4 and

3. Execution traces can be really big and the tool matches sequences based on certain assumptions.

Considering that the input algorithm has 2 loops writing on the same array. For example, if one of

the loops writes on even numbers and the other on odd, the tool would be incapable of compacting

the resulting trace. So, the folding technique lacks some flexibility.

4.9 Summary

This chapter presented the implementation of the code restructuring at the backend in-depth. The

backend is responsible for restructuring the graph output from the frontend to generate optimized

C code. The next sections detailed in depth the steps taken at every stage, and presented the

resulting DFGs and code from applying the algorithms of the different stages to some of the

benchmarks. These sections show how the backends folds the initial unfolded DFG and then how

the tool optimizes the compacted dataflow, to generate C code that shows the desired properties

for an HLS tool. The backend automatically restructures the input graph leading to a C output that

might be very different from the original C input code, based on a few configurations from the

user. The final section presented some limitations of the tool.

The current version of the backend is capable of handling many different types of input DFGs

and automatically generating an optimized C code with directives. This result is achieved by

passing through a sequence of stages that first compact the graphs and subsequently restructure it

to obtain and improved representation. The current improvements in the tool are achieved through
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Algorithm 10 Generate C code
1: procedure GENERATE C CODE(leveledgraph Gl , boolean upper)
2: if upper=true then
3: write function header
4: else
5: write loop header
6: end if
7: for every level l ∈ Gl do
8: for every node ∈ l do
9: if n.type = op then

10: WRITE_OP(n,upper)
11: else if n.type = hyper then
12: GENERATE C CODE(n.subgraph.leveledgraph, not upper)
13: end if
14: end for
15: end for
16: end procedure

17: procedure WRITE_OP(Node n,upper)
18: result← n.outgoing_edge.label
19: op← n.label
20: if op.label = " =" then . In case of attribution
21: input← n.entering_edge.label
22: if ¬upper then
23: index_for_loop(result)
24: index_for_loop(input)
25: end if
26: write_out(result = input,outputfile) . Write C in outputfile
27: else
28: input_right← n.entering_edge_right.label
29: input_left← n.entering_edge_left.label
30: if ¬upper then
31: index_for_loop(result)
32: index_for_loop(input_right)
33: index_for_loop(input_left)
34: end if
35: write_out(result = input_left op input_right,outputfile)
36: end if
37: end procedure
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identifying potential pipelines in the DFG, optimizing memory accesses and optimizing arithmetic

importation in the DFG. These optimizations can greatly restructure the DFGs as shown by the

multiple iterations of the DFGs that this chapter shows. These DFGs correspond to output source

codes that implement the same algorithm as the original code but are structured very differently

depending on the chosen input configurations. Although, the backend is more developed than

the frontend, the backend still has limitations. Like the frontend, it cannot handle conditional

statements, and it does not handle function calls inside the DFGs. Despite these limitations, the

backend is till versatile and can output many different kinds of optimized C code automatically

with some simple configurations.



Chapter 5

Experimental Results

This chapter outlines the results obtained by the tool. The approach is applied to a series of

benchmarks. The frontend stage was implemented manually and the backend processed the graphs

and generated the C code with directives automatically. The results are dependent on the input

configurations.

5.1 Experimental setup

All the benchmarks consist of operation heavy algorithms with very little control flow. Tables 5.1

and 5.2 detail information about the benchmarks. They represent DSP algorithms. The bench-

marks are either from the DSPLIB from Texas Instruments [32], the UTDSP Benchmark Suite

[33] or from an MPEG audio encoder [31]. The SVM kernel is the one presented in [24]. The sim-

plest benchmark is the dotproduct from DSPLIB. The Autocorrelation benchmark from DSPLIB

is also used. The 1D fir benchmark is a typical code implementing a FIR filter with N taps. The

filter subband benchmark comes from a part of an MPEG audio encoder. 2D Convolution is the

largest benchmark which is a kernel that performs a 2D convolution. This convolution is part

of the Sobel edge detection application from UTDSP. The dataset sizes are identical to the orig-

inal benchmarks except for the dotproduct, in which larger input vector is used, and for the 2D

Convolution, in which the image size is decreased. The code for all benchmarks is in Appendix A.

The effectiveness of the approach is analyzed for the multiple optimization levels presented

in Table 5.3. Level 01 applies no directives or code restructuring. Level 02 passes through all

the stages, but does not implement Stage 5 optimizations (see Fig 3.4). Level 03 adds automated

memory partitioning directives to the previous level. Level 04 applies the memory optimizations

in Stage 5 (see Fig 3.4). Level 05 adds the arithmetic optimizations to Level 03, and Level 06 adds

the arithmetic optimizations to level 04. Level 07 and 08 apply full array partitioning to Level

05 and 06 respectively. The results of the C code generated considering these optimizations are

compared over the input C code with manual optimizations. These C code versions are briefly

summarized in Table 5.4. Without directives, the implementation in FPGAs is very unoptimized.

resulting in achievements by the tool of better results with very little work. It is a fair assumption

69
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Benchmark Benchmark
Source

Dataset
Size

Brief Description

filter subband MPEG [31]

Ns =32
Ny=64
Nz=512

Nm 1024

Compresses an Nz sized input into Ny sized
vector. Filters this vector with Ny coeffi-
cients of an Nm sized vector to an Ns sized
output

Autocorrelation DSPLIB [32]
sd =170
ac=10

Calculates the autocorrelation value of a
given vector

dotproduct DSPLIB [32] N=2000 Calculates the dot product of two equal
sized vectors

1D fir in-house
N=257
Nc=32

A finite-impulse response (FIR) filter con-
sidering N input samples and Nc taps

2D Convolution UTDSP [33]
K=3

N=64
Convolves NxN input image using a KxK
kernel

SVM Paper [24]
N_sv=1248

D_sv=18
Support Vector Machine (SVM) kernel ap-
plied to arrhythmia detection

Table 5.1: Benchmark information

Benchmark
Nr Lines of code

Nr. of loops
Nested Structure Nr. of Node Nr. of Edges

filter subband
16
4

Two sets of nested loops
10,976
6402

13,920
11,040

Autocorrelation
10
2

A single nested loop set
6779
3581

9640
6799

dotproduct
9
1

A single loop
12,003
8006

12,002
12,005

1D fir
12
2

A single nested loop set
2051
1542

2050
2053

2D Convulution
45
4

A single nested loop set with
4 levels

157,892
88,693

222,986
165,584

SVM
145

2
A single nested loop set

168,503
192,195

97,369
146,041

Table 5.2: Main Frontend DFG information for each benchmark
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Optimization level
of the framework

Brief Description

01 No optimizations on the graph
02 Input graph is folded as much as possible, and unfolded according to

user configurations
03 Adds array partitioning to level 02
04 Adds data reuse to level 03
05 Adds arithmetic optimizations to level 03
06 Adds arithmetic optimizations to level 04
07 Adds full array partition to level 05
08 Adds full array partition to level 06

Table 5.3: Description of framework levels

that a software programmer could use some very basic directives. However, one cannot assume a

typical software programmer is proficient with all types of directives. Thus, this approach to the

evaluation allows us to perceive the effectiveness of the tool for different levels of hardware design

knowledge. In certain cases more directives lead to worse implementations. In those cases C-high

and C-inter coincide.

The speed and resource values are the ones presented in the reports resulting from synthesizing

the C code with Vivado HLS 2017.4, and targeting a Artix™-7 FPGA Xilinx (xc7z020clg484-1).

The tool was executed in a PC with an Intel Core i7-7700 with 32GB RAM. From the reports we

take for every benchmark the number of LUTs, DSPs, BRAMs and FFs, as well the Latency, which

is the number of clock cycles necessary to complete the kernel in hardware, and the duration of

the clock cycles, which are in nanoseconds. All of the benchmarks had a time constraint of 10ns

except filter subband which has a constraint of 20ns. The total execution time of a hardware

implementation is calculated as the multiplication between the max frequency and the latency

indicated in the post synthesis report. The speedups are the result of dividing the total execution

time of the implementations from Table 5.4 by the total execution time of the results of different

framework optimizations levels. The correctness of the C code generated by the tool is evaluated

using Vivado HLS. Vivado HLS allows both the C as well as the resulting RTL description to be

validated. Both the C code as well as the RTL implementations are validated trough testbenches.

All of the implementations passed the Vivado HLS evaluation.

5.2 Results

The filter subband benchmark is a very good example for showing the best aspects of the tool since

at every level the tool presents speedup gains even compared to the C-high. Figure 5.1 shows the

speedups relative to the original C, C-inter and C-high. Level 01 has a large speedup because

it exposes the most ILP since it has no loops and is completely unrolled. However its resource

usage greatly surpasses the maximum resources of the FPGA used. To limit the resource usage
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Comparison code Brief Description
C Original code without any modifications

C-inter Input code optimized with basic directives such as the
pipeline directive

C-high Improved C-inter implementation with unroll and
memory partition directives

Table 5.4: Description of the different versions of input code used to compare results
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Figure 5.1: Speedups for filter subband

the tool compacts the dataflow in loops. By folding in level 02 the tool achieves improved results

compared to C-high. The configuration for the folding for this benchmark are four load/stores

and high folding. This speedup is due to the pipeline the tool generates as seen in Listing 4.4

which performs the algorithm more efficiently. In level 03 the tool the speedup increases to 2.81×

times compared to the C-high version. Level 04 optimizations result in a speedup of 2.55 times

compared to C-high. This speedup is due to the fact that every output calculation reuses half of

the data that was used for the previous iteration. Thus, by reusing data the tool halves the memory

reads per iteration. This has a large impact on the pipeline since the tool can lower the initiation

value (II) of loop pipelining by lowering the amount of memory reads. The optimized loop is
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Source LUT FF DSP BRAM Latency Time(ns)

C 2,050 1,115 14 2 23,746 17.22
C-inter 6,633 11,911 28 98 1,581 18.34
C-high 6,633 11,911 28 98 1,581 18.34

framework-01 38,132 77,945 162 0 648 20
framework-02 9,480 19,196 31 0 1,083 15.97
framework-03 12,065 18,840 59 0 563 18.34
framework-04 23,746 45,107 112 321 621 18.34
framework-05 12,676 23,554 59 0 557 15.89
framework-06 23,291 30,074 112 0 461 18.34
framework-07 47,537 42,598 118 0 293 17.09
framework-08 4.41 ·105 2.22 ·105 3,584 0 74 17.22

Table 5.5: HLS results for filter subband

the stage 3 loop so the stage 4 pipeline cannot be implemented. Level 05 obtains a speedup of

3.28 times compared to C-high. This is a significant increase compared to 2.81× in level 03.

The arithmetic optimizations do not heavily affect the latency or the II of the implementation.

However, by separating the accumulation chains Vivado HLS synthesizes the code differently.

Previously to execute the chained sums Vivado HLS applied adders that are chained together to

be more efficient. However, with partial sums Vivado HLS synthesizes addition in parallel. The

implementation of these adders is different and therefore the result has a lower frequency that

leads to the larger speedup. By adding arithmetic optimizations in level 06 a speedup of 3.43× is

obtained. Due to the fact that previously all results of the sums were saved in the output vector

Vivado HLS had to write in memory every middle values which is unnecessary. By balancing

this chain and storing the result in local variables delays caused by memory accesses are removed.

Level 07 obtains a speedup of 5.49× compared to C-high, because by partitioning the memory

more ILP is possible. Level 08 has a very large speedup but is not included since the necessary

resource are far beyond the capabilities of the target FPGA. When it comes to resource usage all

the implementations use more resources since they have more ILP (see Table 5.5). However, they

use fewer BRAMs because the output code no longer uses a local array, and instead stores the

values in registers. In the previous method, Vivado HLS dealt with two different loops so it had

to store the values, calculated in the first loop, in memory before start the new loop. The only

exception is the level 04 that uses a lot of BRAMs. This is because it stores the results of every

sum in the output vector. So to allow pipelining it requires to instantiate additional BRAMs to

store the result of the sums to ensure values are not lost. However, by partitioning the sums in

level 06, Vivado HLS only stores in the output vector at the end. So it does not need any additional

BRAMs and instead saves them in registers.

The dotproduct is a simple algorithm. For the benchmark 8 load/stores and high folding is

used. The first levels do not lead to better results. But once the tool applies memory partitioning

it matches the speed of the C-high version as seen in Figure 5.2 and Table 5.6. The output of

level 03 is faster then the basic and inter versions of the input with a 16.8× and a 5.6× speedup,
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Figure 5.2: Speedups for dotproduct

Source LUT FF DSP BRAM Latency Time(ns)

C 76 90 1 0 6,001 6.38
C-pipe 104 83 1 0 1,003 8.7
C-high 294 435 8 0 254 8.93

framework-01 51,284 62,338 2,000 0 257 10.75
framework-02 104 83 1 0 2,003 6.38
framework-03 294 581 8 0 255 8.93
framework-05 294 581 8 0 255 8.93
framework-07 294 581 8 0 255 8.93

Table 5.6: HLS results for dotproduct

respectively. Without memory redundancy level 04 does not change results. All the higher levels

do not add anything impact-full, therefore the speedups do not change for levels 03, 05 and 07.

Autocorrelation is another kernel that shows very interesting results (see Figure 5.3). It con-

sist of a small outermost loop with a big internal loop. The configuration for the folding in this

benchmark are four load/stores and high folding. The tool already obtains positive results by level

02 with 1.3× gain compared to C-high and 2.7× compared to C-inter. This is because of the inner-
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Figure 5.3: Speedups for Autocorrelation

Source LUT FF DSP BRAM Latency Time(ns)

C 106 107 1 0 6,421 6.38
C-inter 400 310 1 0 1,604 8.46
C-high 1,986 894 10 0 1,643 7.66

framework-01 41,868 31,170 1,600 0 853 7.66
framework-02 930 459 10 0 655 7.66
framework-03 1,117 603 10 0 655 7.66
framework-04 9,083 7,277 160 0 655 7.66
framework-05 1,117 587 10 0 655 7.66
framework-06 9,083 7,277 160 0 96 8.6
framework-07 1,282 3,567 11 0 669 8.26
framework-08 8,025 7,114 160 0 16 8.6

Table 5.7: HLS results for Autocorrelation

most loop, since the unroll directive on the outer loop does not consider loop fusion of the unrolled

code. The directive generates multiple independent copies of the inner loop which has pipeline

directives. The manual unfolding combines them in a single loop and exposes more ILP. It has



76 Experimental Results

many benefits in the Autocorrelation application which has a lot of redundant memory use. If

the pipelines are separated then Vivado HLS does not take advantage of these redundant accesses

and schedules many more memory reads. This improved loop unrolling capacity showcases an-

other superiority of the DFG approach as it allows us to generate better unrolled innermost parallel

loops, since it is only needed to replicate the dataflow and continue having a single inner loop. As

mentioned, this application has a lot of redundant memory accesses so it is a prime target for the

level 04 optimization. When the memory usage is optimized, the implementation has an increase

in performance. It is 7.9× times faster than the highly optimized C input and 16.44× compared to

C-inter. Of course this comes at a cost of a large increase in resource usage (see Table 5.7). This

increase is due to the fact that by applying this optimization, the innermost loop of the kernel is

fully unrolled. The arithmetic optimizations in Level 06 do not increase the speedup relative to

level 04. Level 08 is not included in Figure 5.3 because it reaches a speedup of 47.49× compared

to C-high which is far bigger then the rest. This is because the tool completely partitions the input

array, and in the case of the Level 06 Autocorrelation benchmark a lot of cycles were dedicated to

reading the sd values before starting the loop. Reading them all in a single cycle hugely affects the

output. However, this level of partitioning is possible because the autocorrelated vector is a small

input vector of 170 integer values. Larger vectors cannot be fully partitioned. Level 08 does not

increase a lot the resource usage compared to level 06.

Source LUT FF DSP BRAM Latency Time(ns)

C 206 170 3 0 29,251 8.51
C-inter 1,556 702 6 0 3,605 8.74
C-high 4,623 2,968 117 0 1,942 8.74

framework-01 5.37 ·106 3.03 ·105 19,155 0 962 8.74
framework-02 3,945 2,912 126 0 1,929 8.74
framework-03 3,945 2,912 126 0 1,929 8.74
framework-04 4,587 6,579 192 0 135 8.74
framework-05 3,945 2,912 126 0 1,929 8.74
framework-06 4,587 6,579 192 0 135 8.74
framework-07 12,774 13,136 192 0 242 8.74
framework-08 4,297 5,641 192 0 120 8.74

Table 5.8: HLS results for 1D fir

The 1D fir benchmark shows the impact of Stage 5 optimizations. For this benchmark medium

folding and 2 concurrent load/stores were set in the configuration files. By merely folding in

Level 02 and 03 near identical results to the C-high version are obtained, as seen in Figure 5.4.

This is because the tool identifies the same loops as the original. The output of level 03 only

has a speed gain of 1.86× compared to C-inter. Once the tool optimizes the accesses in Level

04 the speedup is of 14.39× compared to C-high version and 26.7× compared to the C-inter.

This is a significant improvement to an already optimized implementation. In this benchmark

32 coefficients are used. Thus, 32 inputs are needed to calculate a new output. However 31 are

reused from the previous iteration so only one new value is read with this optimization, leading
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Figure 5.4: Speedups for 1D fir

to the significant performance increase. This optimization enables the pipelined loop with a II of

1 compared to 17, which is consistent with the near 17× speedup of 14.39×. Again the resource

usage is increased by the exposure of more ILP (see Table 5.8). The most noticeable increases are

in FFs to store more values and in DSPs to do more concurrent multiplications. The arithmetic

optimizations of Level 06 do not impact the speedup compared to 04. Level 07 optimization

have a large impact reaching a speedup of 8 times compared to 1× of 05. This is due to memory

partitioning minimizing the memory bottleneck. Partitioning the memory in Level 08 increases

the speedup of 06 to 16.18× compared to C-high.

As in some of the the previous cases, for the 2D Convolution benchmark Level 02 and 03

generate identical loops so there is no speedup compared to C-high and 1.6× times speedup com-

pared to C-inter (see Figure 5.5 ). 2 load/stores and high folding were the configuration for this

benchmark. With a 3x3 kernel every time an new pixel is calculated it is necessary to have the

values of the 9 adjacent pixels. However 6 of those were used in the calculation of the previous

pixel so only 3 new values are needed. By applying data reuse at Level 04 a speedup of 1.36×

compared to C-high and 2.25× compared to C-inter is achieved. In this case the II achieved for

the pipeline of the inner loop was 3 instead of 6 due to less memory accesses. The speedup is not
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Figure 5.5: Speedups for 2D Convolution

Source LUT FF DSP BRAM Latency Time(ns)

C 994 721 3 0 3.04 ·105 8.51
C-inter 277 2,977 6 0 19,294 8.74
C-high 5,169 5,833 36 0 11,606 8.74

framework-02 5,249 6,000 39 0 11,578 8.74
framework-03 5,249 6,000 39 0 11,578 8.74
framework-04 5,354 6,575 54 0 8,563 8.74
framework-05 4,750 3,082 51 0 11,577 8.74
framework-06 4,085 3,461 57 0 7,097 8.74
framework-07 6,376 3,408 57 0 3,886 8.74
framework-08 5,862 3,794 60 0 3,125 12.97

Table 5.9: HLS results for 2D Convolution

as large as expected because by adding memory reuse the structure of the loops is changed. The

2D convolution uses two nested loops to traverse the 2D array. In the original code there is no op-

erations between the outer and inner loop so it is a perfect loop. By optimizing memory accesses

the buffers are loaded before entering the inner loop, so the outer loop is no longer a perfect loop.
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Previously Vivado HLS automatically flattened the loops and optimized the execution. Without a

perfect loop that is not possibly so the improvement is not as high as expected.

In level 06 this speedup is increased by combining it with arithmetic optimizations. The differ-

entiator here is optimizing the division in the loop. Since the divisor is common in every iteration,

the tool calculates the inverse outside the loop and it substitutes the division by a multiplication

with the inverse. Since multiplications are more efficient in hardware than divisions, the pipeline

depth decreases by. Thus, the speedup of this level is of 1.64×. The results of Level 05 shows

that arithmetic optimizations without data reuse do not have a big impact simply because of loop

flattening. Like in Level 06 the iteration latency is decreased but due to loop flattening the im-

plementation only has one loop, and lowering the iteration latency in a large pipeline with many

stages does not have a large impact, because the divisions still has to be implemented outside the

loop before starting the pipeline. On level 06 without loop flattening a smaller pipeline is going

to be executed multiple times in a loop, so decreasing the iteration latency has a bigger impact.

Another benefit of the the division optimization is that it lowers the resource usage (see Table 5.9).

As partitioning the arrays in Levels 07 and 08 achieves speedups of 2.99× and 2.5× respectively.

Unlike in other cases, level 07 has a better implementation than 08. This is due to the way that

Vivado HLS implements the two solutions in this case. Level 08 has a pipeline with lower II and

lower depth than 07. The partitioning of 08 actually performs better, but the implementation of

Vivado HLS worsen the results because the inner loop is unrolled by a factor of 2 and Vivado

HLS implements the last two multiplications in a single unit with larger frequency than a single

multiplier. This does not happen in 07 and ,therefore the frequency is lower, leading to the higher

speedup. For level 07, if the memory partition is applied but not the arithmetic ones, the speedup

would only be of 2.27×, because the accumulation chains lower the effectiveness of the imple-

mentations. Therefore, it is not just a question of partitioning memory with directives. It is also

necessary to restructure the code to unlock more ILP and larger speedups.

Source LUT FF DSP BRAM Latency Time(ns)

C 5,923 3,471 45 0 4.04 ·105 8.23
C-inter 9,020 8,042 57 0 11,351 8.23
C-high 9,020 8,042 57 0 11,351 9.38

framework-02 9,248 9,027 56 0 11,351 9.38
framework-03 9,248 9,027 56 0 11,351 9.38
framework-04 9,288 9,068 56 0 11,351 9.38
framework-05 8,470 6,295 56 0 11,351 9.38
framework-06 8,506 6,954 56 0 11,351 9.38
framework-07 14,263 12,504 91 0 3,207 8.4
framework-08 14,221 12,505 91 0 3,208 8.4

Table 5.10: HLS results for SVM kernel

Another benchmark is an SVM kernel which was also discussed in the related work section

[24]. For the SVM benchmark two load/stores and high folding are used. This algorithm is an ex-



80 Experimental Results

02 03 04 05 06 07 08

50

100

31 31 31 31 31

123 123

framework level

Sp
ee

du
p

vs
.C

(a)

02 03 04 05 06 07 08

1

2

3

0.9 0.9 0.9 0.9 0.9

3.473.47

framework level

Sp
ee

du
p

vs
.C

-i
nt

er

(b)

02 03 04 05 06 07 08

1

2

3

0.9 0.9 0.9 0.9 0.9

3.473.47

framework level

Sp
ee

du
p

vs
.C

-h
ig

h

(c)

Figure 5.6: Speedups for SVM

ample of the implementation that is bottlenecked by memory accesses that cannot be reused. The

result obtained by the tool are seen in Figure 5.6 and Table 5.10. Previously, memory redundancy

was taken advantage of to allow ILP and improve the execution. Without that, it is necessary to

rely on memory partitioning to be able to accesses more memory positions simultaneously. The

SVM algorithm contains a very big outer loop with a smaller inner loop. It is far more preferable

to fully unroll the inner loop and pipeline the outer loop since it is the bigger one and Vivado

HLS cannot handle pipelines within pipelines. Also the majority of the resources come from the

outer loop that calculates a floating-point exponential. But better results are obtained without un-

rolling. This is due to the fact that the bottleneck is all the memory reads so by unrolling ILP is

not increased, and in fact the frequency is worsened. It is because of that, that levels 01 to 06

have lower performances than the original, since the tool unrolls the loop by a factor of 2 due to

the fact that 2 load/reads were indicated in the configurations. These level obtain a speedup of

0.88. However, when we start maximizing the array partitioning the performance improves. In

Level 07 and 08 speedup of 3.47× relative to C-high is achieved. If the tool did not optimize the

arithmetic operation in the dataflow the speedup would only be of 1.12× compared to C-high. So,

as with the previous benchmark, SVM shows that it is necessary to limit memory bottlenecks and
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executional bottlenecks. Thus, continuing to show the necessity of a combination of directives and

code restructuring to achieve the optimal results.

Comparing the result of the tool with that of [24], we see that the authors optimized the kernel

in a very similar way. The original version of the authors code is identical to the one in Appendix

A with the exception of a single final if statement that classifies the vectors based on the sum.

There are many similarities in the resulting codes, depending on the optimizations. The big dif-

ference is that the tool does not partition the SVM kernel itself to increase concurrency. The tool

attempts to obtain a similar result through unfolding the outer loop and applying array partitioning

directives. The rest of the optimizations proposed in [24] are very similar. The authors balance

the accumulations in a tree just like our approach. They also unroll the inner loops and apply

pipeline directives like our tool. Thus, our tool automatically obtains a similar code compared to

the optimized one shown in the article, depending on the users given tool configurations.

In [24] the authors present the speedups to the original C implementation for varying vector

dimensions while unrolling the inner loop and balancing operations. The authors also use the same

FPGAs as the one used in our evaluations. In our implementation the number of elements in the

vectors are 18 and we pipelined the outer loop. In the authors implementation they partition the

outer loop by factor of 2 and they unroll the inner loop. For a unroll factor of 9 and 18 elements in

the vector the authors achieve a speedup of approximately 12×. If we extrapolate this result for a

unroll factor of 18, which would be the same as our implementation, the speedup would be around

24× compared to our 31.2× in levels 02-06. Although the optimizations are similar the difference

in this case is the pipelining of the outer loop, leading to our implementation being faster, as the

authors do not pipeline it. However, the pipelining of the outer loops is not possible for large

dimension as the inner loop would be too large and the resource intensive. The authors did not

apply in that measurement array partitioning to maximize the concurrency, thus when compared

with Levels 07-08 our backend tool achieves even larger speedups. The authors do not indicate

resource usage.

5.3 Execution time and scalability

We measured the execution times of the backend, to further asses the results of the tool. Although

the the tool improves the resulting implementations, if it takes too long to process, then it might not

be a viable tool. Table 5.11 presents the execution times of the backend. For most benchmarks the

time was between 1 and 2 seconds, with the exceptions of 2D Convolution that averages between

11 and 12 seconds of execution time and SVM which averages between 4.5 and 6 seconds of

execution time. Another exception is the level 04 for the Autocorrelation which executed in 5

sec. Due to the memory optimizations there is no Stage 4 folding, leading to a very large DFG

in comparison to the fully folded implementations. The fastest levels are 02 and 03. Although,

01 implements no optimizations the processing of a large DFG leads to long execution times.

The increase of the execution time for 04 depends on the complexity and size of the optimized

loop. Level 05 to 08 do not impact the execution times compared to the previous levels, with the
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exception of Level 06 and 08 for the SVM benchmark. These optimizations do not lead to large

execution time differences because they do not significantly change the size of the DFG and they

are applied to the compacted DFGs.

Benchmark 01 02 03 04 05 06 07 08
filter subband 2634 1944 1944 2829 2030 2791 2050 2900

Autocorrelation 1613 995 995 4757 1002 5300 1003 4985
dotproduct 2455 804 804 – 880 – 890 –

1D fir 10917 1695 1695 1715 1790 1793 1812 1824
2D Convolution – 11408 11544 11642 11608 11783 11628 11790

SVM – 4535 4535 4702 4700 5839 4541 5922
Table 5.11: Execution time of backend in ms for each optimization level
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Figure 5.7: Backend execution time in seconds for multiple input image sizes

In order to analyze the impact of the dataset sizes, and consequently of the input DFG size, on

the execution time of the backend, the execution times of the backend was measured for different

input sizes of the 2D Convolution benchmark. Figure 5.7 shows the the results. The chosen

optimization level for the measurements was 07. The measurement consist of the execution times

needed for the completion of the stages until the generation of the C code and when the input

image sizes are 64x64, 96x96, 128x128 and 160x160. At input size of 96x96 it takes 50 seconds

to execute the backend. By increasing this input size to 128x128 it takes the backend almost 2.8

minutes to be execute. An input image of 160x160 requires around 7 minutes to be processed
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in the backend. Assuming this rate of growth between iterations is consistent it wold require

around 28 minutes to process a 256x256 input image, which is along time for a modest pixel

resolution. Thus, the current implementation of the approach is not very scalable for large input

traces. Analyzing the time required for every stage it is clear that the reason for the large increase

is the stage 2 processing. The time required for stages 4 to 7 do not change depending on the

input size since stage 3 always compacts the input DFG to the same size. Stage 3 also does not

take much longer for bigger inputs. Because stage 2 processing allows the stage 3 matching to

be applied efficiently. It is stage 2 that requires substantial execution time . An output image of

96x96 pixels has 9216 outputs and 128x128 has 16384 outputs,i.e almost twice as many outputs.

As described in the previous chapter, the backend isolates every dataflow that generates an output.

Each is leveled an then compared for common nodes. This implies that for a 128x128 image, the

backend generates, levels and compares 16384 dataflows. A way to accelerate the backend and

make the approach more scalable would be a more efficient stage 2 implementation. For example,

the stage could be optimized to separate common nodes and unique nodes as the DFGs of the

outputs are being generated.

5.4 Summary

This chapter presented the results obtained by the tool when applied to six benchmarks. The first

section presented the benchmarks used to evaluate the tool. The tool is applied to the benchmarks

with different possible configurations to check how they affect the resulting C code. The tool is

compared with three different implementations for each benchmark. These implementations have

different levels of optimizations so that one can compare the results with many different levels of

expertise. The next section presented the speedups the tool obtained compared to these inputs, as

well as the resource, latency and cycle time given through by Vivado HLS. The results the tool

obtains show that for every input level it achieves better performance for every benchmark. The

final section presents the execution times of the backend for different optimizations, as well as the

scalability of the tool.

The results presented strongly show the usefulness of the approach and specifically of the

framework. For every single benchmark, the framework achieved a restructured code that is on

par or superior to the original C implementation, even when manually optimized with some direc-

tives. All C codes presented to show the approach were fully generated by the tool without manual

intervention. Since the tool implements the optimizations automatically users would only require

understating the configurations to obtain the optimized C code, and would not need a deep under-

standing of FPGAs and Vivado HLS. Our results show that optimizations that increase the ILP are

the source of the biggest speedups. This increased ILP can be achieved through minimizing mem-

ory accesses or restructuring the arithmetic operations. For many of our benchmarks the memory

accesses were a consistent bottleneck, and therefore the optimizations that handled the memory

accesses tended to achieve the better results. The filter subband and Autocorrelation benchmarks

also show that just applying the graph-based approach to folding and unfolding the input DFG,
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can achieve improved results. These results are a strong motive to pursue further developments to

the tool.



Chapter 6

Conclusion

This dissertation presents an approach to transform software code in order to be more suitable to

high-level synthesis (HLS) tools. The approach is based on a dataflow graph (DFG) representa-

tion of the computations (at arithmetic, logical, operator level) currently obtained by executing the

critical functions of the application previously added with instrumentation code. The approach

relies on folding and unfolding graph operations and transforming the structure of the graph itself.

The approach has been implemented in a framework able to fully restructure the code of critical

application kernels. Although in the current work C code is considered as input, the approach has

the potential to address different input programming languages via the inclusion of adequate in-

strumentation code. The framework consists of two stage, a frontend and a backend. The frontend

generates DFGs from the execution trace through injection of instrumentation code to the original

version. Currently the instrumentation code is inserted manually following certain rules to gener-

ate the appropriate DFG. The backend of the framework is capable of automatically restructuring

the DFG and generate C code added with directives in a HLS-friendly way. The results, when tar-

geting Xilinx FPGAs and using Vivado HLS, achieved are very promising. When compared with

the original C codes, the C code generated by the framework outperforms them and significant

speedups are achieved. The achieved C code is even comparable and in most cases better than

manually optimized C code added with directives. When compared with the original unmodified

C code the approach obtains implementations that are 30 to 100 times faster. When compared with

C optimized with Vivado HLS directives the approach obtains implementations that are 2 to 15

times faster. However, the C code with directives generated by the framework can be always repli-

cated by manual code transformations applied by experts. Thus, the approach can enable software

developers to target efficient hardware accelerators using C code as input and typical HLS tools as

backend, without requiring support of HLS, such as Vivado HLS, experts.

6.1 Future work

However the framework is in its initial phase and additional work is planned to improve it. Ongo-

ing work is focused on additional DFG optimizations. An obvious advancement is the automation

85
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of the insertion of the instrumentation code.

Future work will be focusing on the support to conditional constructs (if-else, switch), on more

complex memory optimizations through analysis of the DFG, and on parameterized schemes to

enable the representation of large execution traces in a DFG. Beyond supporting conditional con-

structs at the input code, another important feature is making the backend capable of creating

new DFGs with those conditional statements. When conditional statements are simple cases, like

comparisons between integers, then they can be very efficiently implemented with multiplexers,

and even more efficient than having a more complex dataflow to circumvent the conditional state-

ments. Additionally, even if it the tool supports conditional statements at the input it needs to be

able to optimize them. The statements might be unnecessary or they might be implemented in a

manner that is non optimal.

Another essential focus of the future work is the interface of the kernel. HLS tools such as

Vivado HLS have many different options of interfaces and these have a profound effect on the

implementation. Improving the tool to implement these when appropriate or specified by the user

is essential, as hardware/software interfaces can be difficult to address by software programmers.

Beyond adding more features to the tool, another important future work is increasing its flex-

ibility, primarily in the way the tool folds the graphs. To handle more complex kernels and even

applications the way the tool identifies patterns and creates loops should be more flexible, instead

of just two distinct passes. It would also be interesting to use the matching algorithm to not just

generate loops but also identify similar patterns that may not be implemented as loops, but could

be optimized together. Increasing the flexibility is essential to expand the tool to handle large

applications instead of just kernels.

Lastly, an improvement for the tool would be a better feedback system. It is important to

inform the developer why certain optimizations fail, so that they might improve the code. The

tool is limited by the information it is given. For example, the tool assumes any of the inputs

variables can be any possible values. However if the programmer knows that the input is always

going to have a specific value, then it would be better to define the input as a constant in the actual

kernel, because hardware operations with constants are implemented differently than operation

with variables. The tool could inform the user of this fact so that they might use constants in the

code and allow for further optimizations.

All of these aspects could further improve the good results of the current tool. This clearly

shows the growth potential of the graph-based approach chosen for this dissertation.
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Appendix A

Benchmark C code

This appendix shows all the source codes for the benchmarks used in this dissertation.

void filter_subband_double_golden(double z[Nz],

double s[Ns], double m[Nm]){

double y[Ny];

int i,j;

for (i=0;i<Ny;i++){

y[i] = 0.0;

for (j=0; j<(int)Nz/Ny;j++)

y[i] += z[i+Ny*j];

}

for (i=0;i<Ns;i++){

s[i]=0.0;

for (j=0; j<Ny;j++)

s[i] += m[Ns*i+j] * y[j];

}

}

Listing A.1: filter subband original source code

int DSP_dotprod_c(const short *x, const short *y, int nx)

{

int sum = 0, i;

for (i = 0; i < nx; i++)

sum += x[i] * y[i];

return sum;

}

Listing A.2: dotproduct original source code

void aut(short sc[N], short sd[M+N]){

for (i = 0; i < M; i++){

sum = 0;
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for (k = 0; k < N; k++) {

sum += sd[k+M] * sd[k+M-i];

}

ac[i] = (sum >> 15);

}

Listing A.3: Autocorrelation original source code

void convolve2d(int input_image[N][N],

int kernel[K][K], int output_image[N][N]){

int i;

int j;

int c;

int r;

int normal_factor;

int sum;

int dead_rows;

int dead_cols;

dead_rows = K / 2;

dead_cols = K / 2;

normal_factor = 0;

for (r = 0; r < K; r++) {

for (c = 0; c < K; c++) {

normal_factor += abs(kernel[r][c]);

}

}

if (normal_factor == 0)

normal_factor = 1;

for (r = 0; r < N - K + 1; r++) {

for (c = 0; c < N - K + 1; c++) {

sum = 0;

for (i = 0; i < K; i++) {

for (j = 0; j < K; j++) {

sum += input_image[r+i][c+j] * kernel[i][j];

}

}

output_image[r+dead_rows][c+dead_cols]

= (sum / normal_factor);

}

}

}

Listing A.4: 1D fir original source code



Benchmark C code 93

#define gamma

#define b

float sup_vectors[D_sv][N_sv];

void svm_predict(float test_vector[D_sv], float *sum){

float diff;

float norma;

for(int i=0; i< N_sv;i++){

for(int j=0; j<D_sv;j++){

diff=test_vector[j] - sup_vectors[j][i];

diff=diff*diff;

norma=norma + diff;

}

*sum = *sum + (exp(-gamma*norma)*sv_coeff[i]);

norma=0;

}

*sum= *sum-b;

}

Listing A.5: SVM original source code
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Appendix B

Operation Mode

The backend of the framework has been implemented in Java and uses the Graphstream API.

Users indicate the configurations for the backend in a JSON file. The backend tool is executed

in command line using:

java -jar backend.jar config.json

where the file "config.json" identifies the configuration file for a specific input example and op-

timization options. In this configuration file (see an example in Listing B.1), users must indicate

the names and types of the inputs and outputs, the maximum sizes of the arrays involved and the

name of the dot file with the input DFG. Users can choose to have no, medium or high folding.

Other options include "arithmetic", "data_reuse" and "full_partitioning".

{

"loadstores":4,

"inputs":[

"z[512]",

"m[1024]"

],

"input_types":[

"double",

"double"

],

"outputs":"s[32]",

"output_type": "double",

"folding" :high,

"arithmetic_optimiaztion" : true,

"data_reuse" : false,

"full_partitioning" : true,

"graph" : "fsubba_graph.dot"

}

Listing B.1: JSON configuration file example for the filter subband benchmark
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