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Abstract 

 

Background: Profiling of chronic diseases of the airways (CDA) is becoming 

increasingly relevant to choose the most adequate treatment for each patient. 

Frequently, CDA have common risk factors and can occur in the same patient. There is 

a need of moving from a theory-driven (imposed by current knowledge) to an approach 

that identifies groups of patients (phenotypes) with similar characteristics and response 

to treatments, in an unsupervised manner (data-driven). 

Aim: To explore multidimensional models, supported by advanced statistical methods, 

for (re)classification of phenotypes of CDA, based on clinical, functional, and immuno-

inflammatory characteristics. The specific aims were: 1) describe the proportion of 

overlap of five commonly reported asthma phenotypes (theory-driven), among adults 

from the general population and to examine their association with asthma-related 

outcomes; 2) compare previously defined theory-driven with newly derived data-driven 

asthma phenotypes, identified by latent class analysis (LCA); 3) identify distinct 

phenotypes of allergic respiratory diseases obtained by LCA and more comprehensive 

asthma-related variables, and then, to distinguish each phenotype using classification 

and regression tree (CART) analysis. 

Methods: Data from two independent datasets, derived from general population, were 

analysed: participants in the United States (US) National Health and Nutrition 

Examination Surveys (NHANES) from 2007-2012 (n=30,442) and Portuguese 

participants in the Control and Burden of Asthma and Rhinitis (ICAR), a nationwide 

cross-sectional study (n=858). First, adults (≥ 18 years) with current asthma from the 

NHANES were included (n=1,059). Data were weighted for the US population and 

analyses were stratified by age (< 40 and ≥ 40 years old). Second, LCA was applied to 

variables commonly used to subdivide asthma, using the same sample of adults with 

current asthma from the NHANES. LCA models were derived independently according 

to both age groups. Third, all adults from the ICAR (n=728) that underwent a structured 

medical interview combined with blood collection, skin prick tests, spirometry with 

bronchodilation, and exhaled nitric oxide collection were analysed. LCA was applied to 

19 variables and the CART algorithm selected the most likely variables distinguishing 

LCA‐classes. 

Results: In NHANES data, a substantial overlap of different theory-driven phenotypes 

was observed both in subjects aged < 40 years (44%) and ≥ 40 years (54%). About 
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14% of the current asthma patients were “non-classified”. Regardless of phenotype 

classification, having concomitant phenotypes was significantly associated with 

FEV1<LLN (adjusted OR, 95% CI: 3.21, 1.74–5.94) and ≥ 2 controller medications 

(2.03, 1.16–3.57). LCA identified two data-driven phenotypes among adults with current 

asthma, for both age groups. The proportions of the theory-driven phenotypes were 

similar among the two data-driven phenotypes (p>0.05). Class A<40 years 

(n=285;75%) and Class A≥40 years (n=462;73%), respectively, were characterized by 

a predominance of highly symptomatic asthma subjects with poor lung function, 

compared to Class B<40 years (n=94;25%) and Class B≥40 years (n=170;27%). In the 

other dataset (ICAR study), a six‐class model was obtained. Class 1 (25%): nonallergic 

participants without bronchial or ocular symptoms. Classes 2 (22%) and 3 (11%): nasal 

and ocular (low levels) symptoms without nasal impairment, mono-sensitized (Class 2) 

or polysensitized (Class 3). Class 4 (13%): polysensitized participants with high levels 

of nasal and ocular symptoms, and nasal impairment. Classes 5 (16%) and 6 (14%): 

high level of nasal, bronchial and ocular symptoms with nasal impairment (non‐allergic 

or polysensitized, respectively). Participants in classes 5 and 6 had more 

exacerbations and unscheduled medical visits (p<0.001). Ocular symptoms were 

significantly higher in classes with nasal impairment, compared to those without 

impairment (p<0.001) or no nasal symptom (p<0.001). CART algorithm highlighted 

ocular symptoms as the most relevant variable in distinguishing LCA‐classes. 

Conclusions: 1) A prevalent overlap of commonly reported asthma phenotypes was 

observed among adults with asthma from the US general population, with implications 

for objective asthma outcomes. 2) The clinical and physiological variables commonly 

used to subdivide asthma seem to be insufficient to differentiate specific asthma 

phenotypes among these population, irrespective of using data-driven or theory-driven 

approaches. 3) Applying a more comprehensive disease features available in the ICAR 

study, revealed novel severe phenotypes with co‐occurrence of ocular, nasal and 

bronchial symptoms, and prone to exacerbations.  

In summary, the complexity and unique features of phenotyping CDA requires a 

combination of unsupervised analysis (data-driven) and clinical knowledge with broader 

data availability, to provide a better taxonomy of these conditions. 
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Resumo 

 

Introdução: A classificação das doenças crónicas das vias aéreas tem-se tornado 

cada vez mais importante na escolha do tratamento mais adequado para cada 

indivíduo. Frequentemente, estas doenças têm fatores de risco comuns e podem 

ocorrer simultaneamente no mesmo doente. Existe uma necessidade de mudar de 

uma abordagem orientada pela teoria (imposta pelo conhecimento atual, theory-driven) 

para uma abordagem que identifique grupos de doentes (fenótipos) com 

características e respostas terapêuticas semelhantes, de modo não-supervisionado 

(orientada por dados, data-driven). 

Objetivos: Explorar modelos multidimensionais, apoiados em métodos estatísticos 

avançados, para (re)classificar fenótipos de doenças crônicas das vias aéreas, com 

base nas características clínicas, funcionais e imuno-inflamatórias. Os objetivos 

específicos foram: 1) descrever a proporção de sobreposição entre cinco fenótipos de 

asma habitualmente reportados na literatura (theory-driven), em adultos da população 

geral e avaliar a sua influência nas manifestações da asma; 2) comparar os fenótipos 

de asma previamente definidos com novos fenótipos data-driven, identificados pela 

análise de classes latentes (LCA); 3) identificar fenótipos distintos de doenças 

respiratórias alérgicas obtidos por LCA, utilizando um conjunto abrangente de 

variáveis e distinguir cada fenótipo através da análise de classificação e árvore de 

regressão (CART). 

Métodos: Foram analisados dados de duas bases de dados independentes, obtidos 

da população geral: participantes no inquérito National Health and Nutrition 

Examination Surveys (NHANES) dos Estados Unidos da América (EUA), entre 2007-

2012 (n=30,442) e participantes no estudo nacional e transversal Impacto e Controlo 

da Asma e Rinite (ICAR), realizado em Portugal (n=858). Primeiro, foram incluídos 

adultos (≥18 anos) com asma do NHANES (n=1,059). Os dados foram ponderados 

para a população dos EUA e a análise foi estratificada por idade (< 40 e ≥ 40 anos). A 

LCA foi, então, aplicada às variáveis habitualmente utilizadas para subdividir a asma, 

usando a mesma amostra de adultos com asma do NHANES. Os modelos de LCA 

foram obtidos de forma independente de acordo com os dois grupos etários. Por fim, 

foram analisados dados de todos adultos do ICAR (n=728), submetidos a uma 

entrevista médica estruturada com colheita de sangue, testes cutâneos, espirometria 

com prova de broncodilatação e medição de óxido nítrico exalado. A LCA foi aplicada 
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a 19 variáveis e o algoritmo CART selecionou as mais úteis para a diferenciação das 

classes obtidas por LCA.  

Principais resultados: Nos dados do NHANES, foi observada uma elevada 

sobreposição entre os fenótipos de asma definidos pela abordagem theory-driven, na 

população geral, em indivíduos com <40 anos (44%) e ≥ 40 anos (54%). Cerca de 

14% dos pacientes com asma não eram enquadráveis em nenhum dos fenótipos 

conhecidos. Independentemente da classificação fenotípica, ser incluído em mais de 

um fenótipo foi significativamente associado a FEV1<LLN (OR ajustado, IC 95%: 3.21, 

1.74–5.94) e ter ≥2 medicamentos de controlo (2.03, 1.16–3.57). A LCA identificou 

dois fenótipos data-driven em adultos com asma, para ambos os grupos etários. As 

proporções dos fenótipos theory-driven foram semelhantes entre os dois fenótipos 

data-driven (p> 0.05). Classe A<40 anos (n=285;75%) e Classe A≥40 anos 

(n=462;73%), foram caracterizados pela predominância de indivíduos muito 

sintomáticos e com má função pulmonar, comparativamente à classe B < 40 anos 

(n=94;25%) e classe B≥40 anos (n=170;27%), respetivamente. No outro conjunto de 

dados (estudo ICAR), foi obtido um modelo de seis classes. Classe 1 (25%): 

participantes não-alérgicos sem sintomas brônquicos nem oculares. Classes 2 (22%) e 

3 (11%): sintomas nasais e oculares (níveis baixos) sem limitações nasais, mono-

sensibilizados (Classe 2) ou polissensibilizados (Classe 3). Classe 4 (13%): indivíduos 

polissensibilizados com elevada sintomatologia nasal e ocular e com limitações nasais. 

Classes 5 (16%) e 6 (14%): elevada sintomatologia nasal, brônquica e ocular, com 

comprometimento nasal (não-alérgicos ou polissensibilizados, respetivamente). Os 

indivíduos das classes 5 e 6 tiveram mais exacerbações e consultas médicas não 

programadas (p<0,001). Os sintomas oculares foram significativamente mais elevados 

nas classes com comprometimento nasal, em comparação com indivíduos sem 

comprometimento (p<0,001) ou sintomatologia nasal (p<0,001). O algoritmo CART 

evidenciou os sintomas oculares como a variável mais relevante na diferenciação das 

classes de LCA. 

Conclusões: 1) Foi observada uma elevada sobreposição entre os fenótipos de asma 

habitualmente reportados na literatura, em adultos com asma da população geral dos 

EUA, com implicações objetivas na asma. 2) As variáveis clínicas e fisiológicas 

normalmente utilizadas para subdividir a asma parecem ser insuficientes na 

diferenciação de fenótipos de asma específicos nesta população, independentemente 

da utilização de abordagens theory-driven ou data-driven. 3) A aplicação de 

características da doença mais abrangentes e disponíveis no estudo ICAR, revelou 
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novos fenótipos graves, com sintomas oculares, nasais e brônquicos concomitantes, e 

suscetíveis a exacerbações. 

A complexidade e características ímpares da classificação das doenças crónicas das 

vias aéreas requerem uma combinação entre análise não-supervisionada (data-driven) 

e conhecimento clínico, com uma maior acessibilidade de dados, para auxiliar uma 

melhor taxonomia destas patologias. 
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1. Introduction 

 

This chapter is an overview of the paradigm of precision medicine and of phenotyping 

the chronic diseases of the airways, that are relevant for the remainder of this thesis. It 

is divided in four main topics: 1) Precision medicine, focusing on the shift of medical 

paradigms; 2) Data mining applied to healthcare data; 3) Phenotypes, their definitions 

and data-driven techniques; and 4) Dimensions of the phenotypes of chronic diseases 

of the airways, focusing data-driven asthma phenotypes.  

 

1.1 Precision Medicine 

As early as the year 370 BC, Hippocrates, the father of Western medicine, famously 

said that "it is far more important to know what person the disease has than what 

disease the person has". Today, it is clear the urgent need to shift the old paradigm in 

medicine of diagnosing and classifying the diseases into organ systems and 

specialized field, towards a tailored prevention, diagnostic and treatment of the 

individual.  

However, most of the current healthcare systems still operate with the “one-size-fits-all” 

approach, treating the disease or symptoms instead of the person (Vanfleteren et al., 

2014). For this reason, treatments can be very successful for some patients but not for 

others, leading to poor outcomes, unnecessary suffering and elevated direct and 

indirect costs. In 2011, the Institute of Medicine used the term “Precision Medicine” as 

an emerging approach for disease and people stratification based on an individual’s 

genetic, environment and lifestyle variability (National Research Council, 2011).  

This new comprehensive paradigm in medicine aims at the patient’s stratification of 

clinical and functional heterogeneity of symptom profiles, conditions and responses to 

therapy, by identifying patient-to-patient variation. Based on the Precision Medicine 

approach, a preventive or therapeutic intervention targeting individual characteristics 

can allow a more effective and personalized approach to patient care (Bousquet et al., 

2016; Hodson, 2016). 

Before the term Precision Medicine, a related concept was called “P4 medicine” 

(predictive, preventive, personalised and participative), which can be summarized as 

the convergence of three main components: 1) systems biology approaches, 2) 

analytics of big data and 3) the patient-driven health management (Galas & Hood, 
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2009). The personalization aspect is addressed by the Precision Medicine, that 

formalizes “a framework for developing a more precise and more accurate 

classification of disease based on molecular biology” (National Research Council, 

2011). This “New Taxonomy” of disease - also known as redefining the disease 

phenotype - could not only lead to tailored treatments, but also to individualized 

prevention strategies and personalized diagnosis (Flores, Glusman, Brogaard, Price, & 

Hood, 2013). 

Precision Medicine has been increasingly recognized as the way forward for optimizing 

patient care (Hellings et al., 2017). However, major collaborations between 

interdisciplinary fields are required to integrate different sources of information, and to 

gain a comprehensive understanding of biology and medicine. Due to the large sizes 

and complex nature of biomedical systems, data integration remains a challenge in 

applying the Precision Medicine concept to omics data types and clinical datasets of 

patient features (Gligorijević, Malod-Dognin, & Pržulj, 2016). Modelling complex 

biological systems requires linking knowledge across many levels of science, from 

genes to disease, to patient and environment. Further, the data characteristics of the 

problems have also grown from static to dynamic and spatiotemporal, complete to 

incomplete, and centralized to distributed, and grow in their scope and size - this is 

known as “Big Data” (Chu, 2014). 

The term “Big Data” refers not only to the availability of large volumes of healthcare 

data, but also to the complexity of this data, typically seen in genetic, environmental 

and phenotypic data. It is often characterized by three Vs (volume, velocity and 

variety), where traditional databases and/or processing methods are inadequate or 

insufficient (De Mauro, Greco, & Grimaldi, 2016). Moreover, Big Data provides the 

potential for “learning” patterns or predicting health outcomes and optimal treatment 

strategies based on prior information (Belgrave et al., 2016). 

Using Big data could potentially help in a more personalized and precision medicine for 

patients by improving diagnosis’ accuracy, and therapy tailored to the individual 

(Gligorijević et al., 2016). This promise comes from data collected from numerous 

sources, ranging from molecules to individuals and populations, and the integration of 

these data into networks that improve understanding of heath and disease (Asri, 

Mousannif, Al Moatassime, & Noel, 2015). 

The evolution of powerful tools and technologies to analyse such high-dimensional, 

large datasets has expanded the traditional and accepted disease phenotypes. The 
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process of exploring data in search of consistent patterns and/or systematic 

relationships between variables is called “Data Mining” (Miralles et al., 2014).  

 

1.2 Data Mining in Healthcare 

The past decade has seen an exponential growth in the use of genomics, proteomics 

and functional genomics in biomedical research. Data Mining is the analysis of (often 

large) observational data sets to find unsuspected relationships and to summarize the 

data in novel ways that are both understandable and useful to the data owner (Han, 

Kamber & Pei, 2012). Data Mining has been successfully applied to diverse areas, 

given its potential for solving complex problems (Basile & Ritchie, 2018). Many of these 

applications search for patterns in complex structural information.  

Despite the concept of Data Mining going back to 1937, when Alan Turing introduced 

the idea of an “Universal Machine”, that could perform computations similar to those of 

modern-day computers (Turing, 1937), this is considered a relatively new 

interdisciplinary field. Data Mining comprises areas such as database systems, data 

warehousing, statistics/Machine Learning, data visualization, information retrieval, and 

high-performance computing. Other contributing areas include neural networks, pattern 

recognition, spatial data analysis, image databases, and signal processing (Han et al., 

2012). 

Machine Learning provides the technical basis of Data Mining. It can look at patterns 

and learn from them to adapt future behaviours, using Data Mining as an information 

source. Particularly, the essential role of statistics within Machine Learning in the 

context of Big Data analysis is now often called Statistical Learning (Bednekoff, 2008). 

Statistical Learning emphasizes models and their interpretability, precision and 

uncertainty, while Machine Learning has a greater emphasis on large scale 

applications and prediction accuracy, such as Marketing (Hastie, Tibshirani, & 

Friedman, 2009). 

The methods that underlie Statistical Learning are those who understand “what the 

data says” - learning from data, i.e. methods able to explore and retain 

structures/patterns from data that is replicable across different samples extracted from 

the same population (Hastie et al., 2009). There are three main categories of learning 

from data (Everitt, Landau, Leese, & Stahl, 2011; Huddleston & Brown, 2018):  

- Supervised learning, which typically involves building an algorithm in which the 

input is a dataset of predictors - known as features or attributes (e.g. age, biomarkers, 
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lung function) and can predict the value of a specific outcome or output (e.g. asthma 

exacerbations) (Huddleston & Brown, 2018). Supervised learning includes 

classification (categorical outcome) and regression problems (quantitative outcomes). 

The first includes the following approaches: 1) Mathematical formulae (e.g. linear 

discriminants); 2) Logical approaches (e.g. classification trees); 3) Probabilistic (e.g. 

naive Bayes); and 4) others (e.g. neural networks and supporting vector machines). 

Regression problems include: 1) Mathematical formulae (e.g. linear regression, 

multiple adaptive regression splines, etc.); 2) Logical approaches (e.g. regression 

trees); and 3) others (e.g. neural networks and supporting vector machines) (T. Hastie 

et al., 2009). These different approaches entail different compromises in terms of 

prediction error, computational complexity and model interpretability (Prosperi et al., 

2013). 

- Unsupervised learning, where there is no predefined outcome to be predicted, 

just a set of predictors measured on a set of samples. The goal is to find groups of 

samples/features that behave similarly (e.g. groups of patients who share similar 

clinical or test result profiles) (Huddleston & Brown, 2018). Moreover, unsupervised 

learning can find linear combinations of features with the most variation, discovering 

the data structure. The two foundations of this method are 1) clustering, that can be 

either distance-based i.e. distance/similarity between observations (e.g. 

Agglomerative/Divisive Hierarchical Clustering, Partition around medoids (PAM) and 

Fuzzy Clustering) or model-based i.e. a based on a probability model for the data (e.g. 

latent class analysis); and 2) dimensionality reduction (e.g. principal components 

analysis and factor analysis) (Hastie et al., 2009).   

- Semi-Supervised learning, that combines insights from both supervised and 

unsupervised methods by exploring observations where the outcome is known only for 

a small amount of data (e.g. build an algorithm using data of patients’ profile that 

response positively or negatively to a drug and then training the algorithm in patients 

with unknown treatment outcome) (Huddleston & Brown, 2018). 

 

The vast increase in huge volumes of high-dimensional, and heterogenous healthcare 

data lead to a shift in “formulate hypothesis, build model, and evaluate results” 

paradigm (traditional hypothesis-based research) toward a data-driven hypothesis 

generating paradigm, with the process: “collect and store data, mine for new 

hypotheses, confirm with data or experimentation” (Han et al., 2012). This latter 

approach is an advantage in the case of heterogeneous diseases with possibly 
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different underlying pathophysiological mechanisms, such as asthma or other chronic 

diseases of the airways. Moreover, it is aligned with the concept of Precision Medicine, 

as it seeks to identify patterns of the disease through deep phenotyping (disease 

subclassification), allowing for optimal treatment based on an individual’s unique 

combination of genes, environment, and comorbidities (Ashley, 2016). 

The need to refocus efforts to propose a new taxonomy of airway diseases is 

emphasised by the emergence of highly specific therapies, since a positive response is 

more likely to be phenotype-specific rather than disease-specific (Bafadhel et al., 2011; 

Pavord et al., 2018). Therefore, a new era of airways disease phenotyping has 

emerged, incorporating the Precision Medicine principles and Big Data analytics 

(Statistical Learning) into daily care of patients. 

 

1.3 Phenotyping  

One of the first attempts to establish a system for disease classification, largely based 

on symptoms, was undertaken by the renowned taxonomist Carl Linnaeus, in his 

Genera Morborum (Varieties of Diseases) (Linnaeus, 1759). The rise of data-intensive 

biology, advances in information technology, and changes in the way healthcare is 

delivered have created the urgent need to create a “New Taxonomy” (National 

Research Council, 2011), novel phenotypes, that integrates multidimensional data 

(Wardlaw et al., 2005). 

The classic definition of phenotype is “the observable characteristics without direct 

relation with the pathological process” (Rice, Saccone, & Rasmussen, 2001). A clinical 

phenotype is “a single or combination of disease attributes that describe differences 

between individuals as they relate to clinically meaningful outcomes, such as 

symptoms, exacerbations, response to therapy, rate of disease progression, or death” 

(Robinson, 2012). Furthermore, disease phenotyping stratifies a heterogeneous group 

of patients with a specific disease into homogeneous subgroups, based on clinical, 

molecular, or other types of patient features (Delude, 2015).  

Accurate phenotyping and disease stratification into subtypes according to their 

underlying biological mechanisms are fundamental steps towards Precision Medicine. 

However, they often do not capture the full diversity of clinical and even 

pathophysiological manifestations (Delude, 2015). Disease stratification using classical 

diagnostic methods that relies solely on signs and symptoms may not be sufficient for a 

more effective and personalized patient care (Miralles et al., 2014), particularly in those 
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patients with co-occurrence of two or more chronic medical conditions, such as the 

asthma-rhinitis phenotype (Siroux et al., 2018).  

The interaction of different diseases and the impact they have on clinical outcomes 

must be considered in daily clinical practice – the multimorbidity concept (Barnett et al., 

2012). Multimorbidity, therefore, constitutes a broader, patient-centred concept, in 

contrast to comorbidity that is an index disease-based concept (Valderas, Starfield, 

Sibbald, Salisbury, & Roland, 2009). Multimorbidity considers all aspects of a patient’s 

condition, including the potential disease interaction and potential pathophysiological 

links; however, it is complex and may be difficult to manage in clinical practice (Barnett 

et al., 2012).  

 

1.3.1 Theory- and Data-driven classification 

Current approaches used to classify patients into sub-groups of diseases are: theory-

driven (imposed by current knowledge) and data-driven (hypothesis-generating). In the 

first approach, diseases are subclassified a priori either by the presence or absence of 

specific risk factors or based on clinical and/or molecular phenotypes. Conversely, in 

the data-driven approach, no prior disease classification is required (Bousquet et al., 

2011b; Prosperi et al., 2013) and often start with a broad hypothesis and using (or 

collecting) data relevant to that hypothesis. Then, these data are explored to generate 

more specific and automatic hypotheses, providing new insights into phenotypes of 

complex disease pathogenesis and novel reclassifications (Bousquet et al., 2011b).  

Airways diseases do not escape the great steps of unravelling their complexity through 

the refinement of the clinical phenotypes using of data-driven techniques. Recently, a 

combination of both hypothesis- and data-driven approaches was proposed to assess 

multimorbidity of allergic diseases of the airways by Mechanisms of the Development 

of ALLergy, FP7 (MeDALL), using Machine Learning tools (Anto et al., 2017).  

 

1.3.2 Data-driven methods for phenotype classification 

Various classes of data-driven (unsupervised) algorithms have been implicated in 

tackling the problems of traits heterogeneity. This topic will specifically focus on 

distance-based (clustering analysis) and model-based (latent class analysis) 

approaches, as they are the most utilized techniques to address phenotypic 

heterogeneity in healthcare data (Basile & Ritchie, 2018). Moreover, these two 
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approaches are not mutually exclusive and need to be thoroughly evaluated according 

to the study and patients’ characteristics. 

 

Distance-based approaches 

Cluster analysis is a generic name for a wide variety of procedures to identify clusters, 

homogenous groups of objects (or cases, observations), being very dissimilar to 

objects not belonging to that cluster (Everitt et al., 2011). 

Most clustering methods use the information on the distances among observations in a 

data set to decide on the natural groupings of the cases using a measure of 

(dis)similarity to generate a (dis)similarity matrix, with most commonly used being the 

Euclidean Distance Function (Caillez & Kuntz, 1996) (Figure 1), defined as: 

𝑑(𝑥, 𝑦) = ඩ෍(𝑥𝑖 − 𝑦𝑖)
2

𝑝

𝑖=1

 

 

Figure 1. Formula for the calculation of the Euclidian distance. Where x and y are two 
observations described by p variables. 

 

The main types of clustering methods are 1) hierarchical, 2) partitional and 3) two-step 

clustering, which is largely a combination of the first two methods. The hierarchical 

method generates a hierarchy of groups, from 1 to n groups, where n is the number of 

lines in the data set. Hierarchical clustering techniques may be further divided into i) 

agglomerative methods, which proceed by a series of successive fusions of the n 

individuals into groups, and ii) divisive methods, which separate the n individuals 

successively into finer groupings (Everitt et al., 2011). The main characteristic of these 

methods is to present the results in a dendrogram, a mathematical and pictorial 

representation of the complete clustering procedure. The nodes of the dendrogram 

represent clusters, and the lengths of the stems (heights) represent the distances at 

which clusters are joined (Everitt et al., 2011). An example is shown in Figure 2.  
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The links between objects are represented as upside-down U-shaped lines (Figure 2). 

The height of the “U” indicates the distance between the objects. In the top, the 

observations are all in one group and in the bottom, there are as many groups as 

observations. 

The partitional methods divide the data into non-overlapping subsets so that each 

subject is classified into exactly one subgroup. The most popular methods are k-means 

and k-medoids (e.g. PAM). K-means clustering seeks the minimum within-cluster 

variation as a measure to form homogenous clusters and is suitable for quantitative 

variables (Jain, 2010). Meanwhile, PAM algorithm searches for k representative 

medoids – the object of a cluster whose average dissimilarity to all the objects in the 

cluster is minimal – and constructs k clusters by assigning each object to its nearest 

medoid (Everitt et al., 2011). 

Compared to k-means, PAM is more robust to the presence of outliers because it uses 

original objects as centroids instead of averages that may be subject to the effects of 

outliers and is used for categorical/binary variables. Moreover, PAM uses a more 

robust measure of the clustering quality, an absolute error instead of the squared error 

used in k-means (Kaufman & Rousseeuw, 1990). 

 

Figure 2. Example of a dendrogram of the hierarchical binary cluster tree. The 
different possibilities of clustering the data are represented. 
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Model-based approaches 

In model-based clustering methods, the “true” clusters are defined by parametric 

probability distributions that can be interpreted to generate homogeneous points, and 

the whole data set is modelled by a mixture of such distributions (Banfield & Raftery, 

1993). 

This approach assumes a formal statistical model that assumes that the population 

consists of several subpopulations (clusters) in each the variables have a different 

multivariate probability density function, resulting in what is known as a finite mixture 

density. Model-based methods estimate clusters based on the maximum value of the 

following estimated posterior probability (Everitt et al., 2011). Moreover, this approach 

is appropriate to variables that have a multivariate normal distribution. 

To provide suitable models for categorical data, the mixture modelling uses multivariate 

Bernoulli densities which arise from assuming that, within each group, the categorical 

variables are independent of one another, the so-called conditional independence 

assumption. It is this approach which is the basis of latent class analysis (Goodman, 

2009).  

Latent class analysis (LCA) classify individuals into homogenous groups (latent 

classes) using observed response patterns of individuals across a set of categorical 

(nominal or ordinal) variables (such as symptoms present vs. absent; questionnaire 

items measured on a Likert scale), based on their maximum likelihood class 

membership (Collins & Lanza, 2009).  

The latent classes divide individuals into mutually exclusive groups, i.e. the individual 

differences in observed item response patterns are explained by differences in latent 

class membership, where each class shows a characteristic, class-specific response 

profile (Oberski, 2016), as graphically described in Figure 3.  
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In the diagram, the arrows from c to the latent class indicators u1, u2, u3, and u4 

indicate that the thresholds of the latent class indicators vary across the classes of c 

(Figure 3). This implies that the probabilities of the latent class indicators vary across 

the classes of c. The arrows correspond to the regressions of the latent class indicators 

on a set of dummy variables representing the categories of c. 

Both distance- and model-based approaches have identified relevant and important 

features about disease traits, not yet known by expert knowledge (Burgel, Paillasseur, 

& Roche, 2014; Green et al., 2016). However, each model has strengths and 

weaknesses, and both will need to be thoroughly evaluated for the application of 

identifying and refining phenotypes in biomedical data. 

Latent class-based methods have been extensively used in a wide scopes of 

healthcare research (Larsen, Pedersen, Friis, Glümer, & Lasgaard, 2017; Leventhal, 

Huh, & Dunton, 2014; Rovner, Vowles, Gerdle, & Gillanders, 2015), and also in the 

identification of phenotypes of chronic diseases of the airways (Bochenek et al., 2014; 

Cecere et al., 2012; Couto et al., 2015; Jeong et al., 2017). Moreover, simulation 

results showed that the model-based approach produces substantially less biased 

estimates of the effect compared to other classification technique (Lanza, Tan, & Bray, 

2013). 

 

Figure 3. Path diagram for basic latent class analysis model. Where c is a 
categorical latent variable and ux are the latent class indicators. 
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1.4 Phenotypes of Chronic Diseases of the Airways  
 

1.4.1 Chronic Diseases of the Airways 

Airway diseases represent one-sixth of all deaths worldwide and one in eight of all 

deaths in the European Union (Loddenkemper, Gibson, Sibille, & Lundbäck, 2013). 

Five respiratory conditions, known as “The Big Five”, include: 1) chronic obstructive 

pulmonary disease (COPD); 2) asthma; 3) acute respiratory infections; 4) tuberculosis; 

and 5) lung cancer, which make the largest contribution to morbidity and mortality, and 

account for most of the burden associated with respiratory diseases (Marciniuk et al., 

2014). More than 1 billion people in the world are burdened with chronic respiratory 

diseases (CRD), which is one among the four major noncommunicable diseases, 

preventable and treatable diseases (WHO, 2007).  

CRDs are a group of chronic diseases affecting the airways and the other structures of 

the lungs, in which interactions between genetic and environmental lead to harmful 

inflammatory responses (Beaglehole, Ebrahim, Reddy, Voûte, & Leeder, 2007). The 

most common and prevalent CRDs worldwide are: asthma (≈ 300 million), COPD (≈ 

210 million), allergic rhinitis (AR) (≈ 400 million), and sleep apnoea syndrome (>100 

million) (WHO, 2008). In Portugal, respiratory diseases are a major cause of morbidity 

and mortality, in particular CRDs, whose prevalence is about 40%, with a tendency to 

increase (Fonseca-Antunes, Bárbara, & Melo-Gomes, 2013). 

The presence of CRD is an important risk factor for lower quality of life, particularly 

among older adults (Carreiro-Martins et al., 2016), possibly due to their comorbidities 

and higher predisposition to respiratory infections compared to younger subjects 

(Bentayeb et al., 2013). To raise the recognition of the importance of CRDs as one of 

the most important health problems globally, an alliance of national and international 

organizations and institutions supported by the World Health Organization (WHO), was 

created, the Global Alliance against chronic Respiratory Diseases (GARD) (Bousquet, 

Dahl, & Khaltaev, 2007; WHO, 2007). In this context, since 2007, GARD is 

implemented in Portugal, developing activities for the improvement of CRD outcomes 

and against its burden, at country level (Rosado-Pinto & Carreiro-Martins, 2017). 

Currently, GARD Portugal is integrated in the Portuguese National Programme for 

Respiratory Diseases, under the responsibility of the Portuguese Ministry of Health 

(Fonseca-Antunes et al., 2013). 
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Among each specific CRD, the ones that have the higher burden and social impact are 

asthma, AR and COPD (Lozano et al., 2012; Nunes, Pereira, & Morais-Almeida, 2017; 

Wise et al., 2018), also they often overlap in the same person (Bousquet et al., 2008; 

Cruz et al., 2007; Kim et al., 2018). The understanding of the overlapping features in 

the chronic diseases of the airways (CDA) remains incomplete (Bateman et al., 2015). 

 

Overlapping conditions 

Each CRD is heterogenous and characterized by defined symptoms, exposure to risk 

factors, inflammation or patterns of airflow obstruction and airway hyperresponsiveness 

(Wardlaw, Silverman, Siva, Pavord, & Green, 2005). However, it remains unclear 

whether all these different phenotypes represent the expression of one single disease 

with multiple mechanisms or whether some phenotypes represent distinct diseases 

with similar symptomatology (Pavord et al., 2018).  

The CRDs’ clinical profile is extensive. Patients may have similar symptoms, common 

environmental risk factors and frequently they occur in the same patient (Bousquet et 

al., 2008), originating concepts that aggregate asthma with COPD or asthma with 

rhinitis (Bousquet et al., 2008; Gibson & Simpson, 2009). In fact, they can be viewed as 

partially overlapping syndromes, that require a better characterization of the 

phenotypes found in the general population (Bateman, Reddel, van Zyl-Smit, & Agusti, 

2015; Wenzel, 2006). 

A vast majority of patients with asthma have concomitant rhinitis (Bousquet et al., 

2008). On the other hand, around 20-40% of patients with AR have bronchial 

symptoms (Bousquet et al., 2008), regardless of having allergic sensitization (Leynaert 

et al., 2004). The significant overlap between asthma and rhinitis led to the Allergic 

Rhinitis and its Impact on Asthma (ARIA) guidelines recommending that patients with 

AR should be tested for asthma (Demoly & Bousquet, 2008). 

Regarding asthma and COPD, the most common symptoms are similar, such as 

dyspnoea, cough, wheezing. The changes in lung function can also be remarkably 

similar, since reversible airflow limitation, the defining key feature of asthma, may also 

be observed in some subjects with COPD (Albert et al., 2012). Likewise, an 

accelerated decline in lung function, a supposedly defining key feature of COPD, has 

been seen in smoking subjects with asthma (James et al., 2005) and in patients with 

uncontrolled asthma and with exacerbations (O’Byrne, Pedersen, Lamm, Tan, & 

Busse, 2009). 
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Surprisingly, both these respiratory conditions are still diagnosed and treated based on 

airways symptoms and traditional lung function measures, which is been demonstrated 

as being an outdated and non-specific approach (Reddel et al., 2015; Vogelmeier et 

al., 2017), potentially leading to sub-optimal treatments. Furthermore, although it is 

currently widely accepted that these chronic conditions are complex and include a 

heterogeneous broad of disease subtypes with different underlying pathophysiological 

mechanisms (Pavord et al., 2018; Vanfleteren et al., 2014), there is an ongoing debate 

between those who considered asthma and COPD different expressions of a single 

disease (the lumpers), concept known as the “Dutch Hypothesis”, and those who 

favoured splitting into separate entities (the splitters), the “British Hypothesis” (Orie et 

al., 1961; Ghebre et al., 2015). 

Recently, the concept of Precision Medicine has been proposed in the context of CDA 

based on the integrated assessment of the complex clinical and biological status of 

individual patients – “Treatable traits” (Agusti et al., 2016). This label-free approach 

proposes a deconstruction of each CRD into single components, starting with the 

diagnosis of airways disease, rather than attempting to diagnose a specific CRD, which 

may not be possible or necessary in clinical practice (Agusti et al., 2016). Treatable 

traits are “therapeutic targets identified by phenotype or endotype discovery through 

validated biomarker(s)” (König, Fuchs, Hansen, von Mutius, & Kopp, 2017), and they 

can coexist and change over time in the same patients, surpassing the phenotype 

concept (Agustí et al., 2017). This is considered a promising strategy to choose the 

most appropriate therapeutic strategy for individual patients, and to provide optimal 

improvement of disease control and quality of life (Agustí et al., 2015). 

Therefore, there is an unprecedented potential to go beyond the simplistic concept that 

ignores individual heterogeneity. Currently, there are major research opportunities due 

to the recent development and establishment of techniques for sample collection from 

the airways and new biostatistical methods for integrating data from multiple sources 

and levels (Agustí et al., 2017). Thus, it is an ideal time to re-examine the identification 

of novel CRDs phenotypes using detailed information from patients.  

 

Rhinitis 

Rhinitis is characterized by inflammation of the nasal mucosa causing nasal 

obstruction, runny nose, sneezing, and/or pruritus in the nose (Greiner, Hellings, 

Rotiroti, & Scadding, 2011), affecting 23% of European adults (Akdis et al., 2015). In 
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Portugal, the overall estimated prevalence ranges from 26.1% to 43.4% (Morais-

Almeida et al., 2013a; Morais-Almeida et al., 2013b; Todo-Bom et al., 2007). 

Three main phenotypes of rhinitis are distinguishable based on history and clinical 

examination: AR, infectious rhinitis, and nonallergic non-infectious rhinitis (NAR) 

(Papadopoulos et al., 2015). If we disregard infectious rhinitis, the most common 

rhinitis phenotype is AR, in which a clinical response to an otherwise innocent 

environmental factor or allergen in combination with specific immunoglobulin E (IgE) 

targeting aeroallergens results in symptoms (Greiner et al., 2011). AR is usually 

subdivided in different phenotypes based on duration (intermittent/persistent) and 

severity of disease (mild/moderate-severe, and severe chronic upper airways disease), 

clinical presentation with most bothersome symptoms (“runners”, “sneezers”, 

“blockers”), presence of comorbidities (such as asthma, sinusitis, conjunctivitis), 

response to treatment (with or without corticoid response), time trend (seasonal, 

perennial) (Droessaert et al., 2016; Papadopoulos et al., 2015), and level of control 

(evaluated by several tools such as Control of Allergic Rhinitis and Asthma Test 

(Fonseca et al., 2010), Rhinitis Control Assessment Test (Nathan et al., 2010) or visual 

analogue scales (Bousquet, Combescure, Klossek, Daurès, & Bousquet, 2009) 

scores). 

Despite of allergic rhinoconjunctivitis being a very common phenotype of AR 

(Papadopoulos et al., 2015), allergic conjunctivitis is frequently considered as a 

comorbidity rather than an independent risk factor for AR (Bielory, 2010). According to 

the World Allergy Organization, more than a billion people suffer from allergic 

conjunctivitis (Pawankar, Canonica, Stephen, Richard, & Michael, 2013). Ocular 

symptoms are common in patients with AR (50-90%) and contribute to the burden of 

rhinitis (Rosario & Bielory, 2011), even though they are often underdiagnosed and 

consequently undertreated. Conjunctivitis is now increasingly recognized as a distinct 

disorder that may be coupled with more severe disease (Cibella et al., 2015; Garcia-

Aymerich et al., 2015). 

The second most common rhinitis phenotype is NAR, which is defined as a form of 

non-infectious rhinitis in which an allergic component it is not identifiable (De Greve et 

al., 2017; Papadopoulos et al., 2015). NAR can be further subdivided in many 

phenotypes, such as environmental (occupational, smoking), inflammation (NAR with 

eosinophilia syndrome or local allergic rhinitis, hormones (pregnancy), drug-induced 

(rhinitis medicamentosa, non-steroidal anti-inflammatory drugs, aspirin), age (rhinitis of 
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the elderly), and/or idiopathic rhinitis (none of these triggers are present) (Hellings et 

al., 2017; Muraro et al., 2016). 

Recently, a novel phenotype of rhinitis has been recognized, known as Nasal hyper-

reactivity, where the nasal symptoms are induced by exposure to a variety of 

environmental and endogenous triggers like temperature/humidity changes, physical 

exercise, stress, and/or exposures to irritants, irrespective of the presence of allergy 

(Van Gerven, Steelant, & Hellings, 2018). Also, concomitant chronic rhinosinusitis 

with/without nasal polyps must be considered as anatomical factors that might worsen 

rhinitis (Hastan et al., 2011).  

To help guide appropriate treatment decisions, clarifying the various phenotypes 

specific to each airway disease is of the highest importance (Heaney & McGarvey, 

2017; Kraft, 2011). To this end, biomarkers represent the pillar of stratified medicine 

allowing for an adequate classification of individuals into subpopulations that differ in 

their susceptibility to a specific disease or in their response to a singular treatment 

(Arron, Townsend, Keir, Yaspan, & Chan, 2015; Wagner, 2002). However, the 

characterization of rhinitis phenotypes is made difficult by the scarcity of distinct 

biomarkers, even for allergic rhinitis, for which the immunopathogenesis is more clearly 

defined (Hellings et al., 2017).  

 

COPD 

COPD is “a common, preventable and treatable disease that is characterized by 

persistent respiratory symptoms and airflow limitation that is due to airway and/or 

alveolar abnormalities usually caused by significant exposure to noxious particles or 

gases” (Vogelmeier et al., 2017). According to WHO estimations, about 65 million 

people suffer from COPD (Forum of International Respiratory Societies, 2017), with an 

estimated global prevalence of 11.7% (8.4%–15.0%) in 2010 (Adeloye et al., 2015). In 

Portugal, it is estimated that about 800.000 subjects having more than 40 years are 

affected with this condition, with a prevalence of 14.2% (Bárbara et al., 2013). 

Over the last two decades, phenotypes of COPD moved away from a forced expiratory 

volume in 1 second (FEV1)-centric view to one which also considers clinically relevant 

domains of the disease such as the level of current symptoms and the history of 

previous exacerbations (Agusti & MacNee, 2013; Vogelmeier et al., 2017). 

Characterization of these phenotypes is currently based on clinical manifestations 

(breathlessness, cough, sputum production, wheezing and chest tightness), patients 
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characteristics (age, sex, ethnicity), environmental exposures (active/passive smoking, 

indoor cooking, workplace exposures, ambient pollution, and infections), lung function 

abnormalities (airflow limitation, bronchial hyperresponsiveness, gas trapping and 

increased lung volumes, low diffusion capacity, and abnormal pulmonary gas 

exchange), imagological characterization (lung structural abnormalities, including 

emphysema, airway wall thickening, and/or bronchiectasis), COPD exacerbations 

(“frequent exacerbator”), extrapulmonary comorbidities (such as metabolic, lung cancer 

and cardiovascular), genetic factors (α1-antitrypsin deficiency), and/or systemic 

inflammation (blood eosinophils count, leukocytes, C-reactive protein, IL-6 IL-8, and 

fibrinogen) (Brightling et al., 2000; Celli & Agustí, 2018; Han et al., 2010; Singh, 

Kolsum, Brightling, Locantore, & Agusti, 2014). The serum level of α1-antitrypsin is a 

well-established biomarker and may be treatable, in α1-antitrypsin deficiency 

(Chapman et al., 2015). Other biomarkers that have been proposed, despite of none of 

them has been accepted for COPD could also be useful in future decision-making 

(Agustí et al., 2012; Kostikas, Bakakos, Papiris, Stolz, & Celli, 2013). 

 

Asthma 

Asthma is currently defined by the Global Initiative Program for Asthma as “a 

heterogeneous disease, usually characterized by chronic airway inflammation; it is 

defined by the history of respiratory symptoms such as wheeze, shortness of breath, 

chest tightness and cough that vary over time and in intensity, together with variable 

expiratory airflow limitation” (Gibson, Loddenkemper, Lundbäck, & Sibille, 2013). In 

Europe, asthma affects about 30 million children and young adults, with a prevalence in 

northern and western countries among adults aged 18-44 ranging from 3% to 9%. In 

Portugal, asthma affects 6.8% of the population (Sá-Sousa et al., 2012). 

Asthma phenotypes were initially characterized by Rackemann (1927) based on a 

single dimension and focused on simple classifications. That work described two 

clinical asthma phenotypes: extrinsic asthma (believed to be due to allergens from 

outside the body and associated with younger age of onset, environmental triggers, 

atopy and the presence of other allergic diseases) and intrinsic asthma (due to factors 

intrinsic to the body associated with older age at onset and the absence of atopy 

(Rackemann, 1927). 

The assumption that asthma must be classified only regarding its allergic component 

(allergic vs non-allergic asthma) has been increasingly challenged and disproved (The 
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Lancet, 2006). Asthma is nowadays recognised as a heterogeneous condition, an 

“umbrella term” for several distinct diseases, caused by a distinct underlying 

pathophysiological mechanism, having common symptoms but different aetiology, 

pathogenesis and responses to treatment (Wenzel, 2006). Therefore, under such 

umbrella term, different phenotypes of asthma may occur. 

Over the years, many more different clinical phenotypes of asthma have been 

described in the literature. Currently, the approaches to phenotyping asthma most 

commonly used include demographic and risk factors (such as age, obesity, smokers), 

clinical (such as early/late-onset, symptoms, exercise-induced, health status), response 

to treatment (such as inhaled and/or oral steroid sensitivity), airway obstruction 

(variable or partially fixed), type of airway inflammation (eosinophilic, neutrophilic, 

mixed, pauci-granulocytic), trigger-related, bronchial hyperresponsiveness, 

exacerbations, and atopy (Agache, Akdis, Jutel, & Virchow, 2012; Hüls et al., 2019; 

Pavord et al., 2018). Other less frequent phenotypes are based on prognostic factors 

(brittle asthma, near-fatal asthma and benign asthma) and extensive remodelling (such 

as thicker small airways, goblet cell hyperplasia and mucus production) (Agache et al., 

2012). Moreover, phenotypes of severe asthma arose from several studies from 

specialized centres (Lefaudeux et al., 2017; Moore et al., 2010; Schatz et al., 2014) 

and were mainly organized by clinical, trigger or inflammatory characteristics (Chanez 

et al., 2007; Moore et al., 2010). 

Several biomarkers are already available for asthma, particularly severe, and difficult-

to-treat asthma (Schleich, Demarche, & Louis, 2016; Wadsworth, Sin, & Dorscheid, 

2011), and, in some cases, their use has been incorporated into treatment guidelines 

(Chung et al., 2014; Global Initiative for Asthma, 2018). The ideal asthma biomarker 

links the disease pathogenetic mechanism (endotype) with the phenotype. Also, 

biomarkers should predict disease exacerbation, severity, response to treatment, 

stability over time, and they must be easily replicated across populations with different 

genetic backgrounds (Agache et al., 2012; Agache, 2013). However, biomarkers 

substantially vary across age, severity, complexity and in time (Agache, 2014). 

The most scrutinized biomarkers in asthma are related to type 2 immune response 

associated with atopy and eosinophilic inflammation (Robinson et al., 2017; Woodruff 

et al., 2009), however there are also clinically defined variant forms of the disorder 

which are independent of atopy (Macfarlane et al., 2000). Asthma is usually driven by T 

cell activation, where T helper (Th) 2 cytokines IL‐4, IL‐5, IL‐9 and IL‐13 are thought to 

play a role in the pathophysiology of allergic and non‐allergic asthma (Lemanske & 
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Busse, 2003; Wills-Karp, 1999). On the other hand, it has been shown that asthma, as 

a heterogeneous disease, involves other mechanisms that are not so well understood 

and respond poorly to corticosteroid therapy (non-type 2-mediated) (Hastie et al., 2013; 

Woodruff et al., 2009). A striking example is the interferon-γ, a classical Th1 cytokine, 

that may cause severe airway inflammation (Hansen, Berry, DeKruyff, & Umetsu, 

1999). Subsequently, the phenotypic description of patients with asthma according to 

the type of underlying inflammation used to distinguish between the so-called “type 2-

high” and “type 2-low” phenotypes (depending on the evidence or not of Th2 typical 

biomarkers assessed in each single patient) (Woodruff et al., 2009). 

There has been a recent rise in the number of studies trying to identify asthma 

phenotypes based on non-invasive, reliable, and easy-to-assess biomarkers, such as 

blood eosinophils (B-Eos) count, fraction of exhaled nitric oxide (FeNO), serum total 

IgE, sputum eosinophils and neutrophils, C reactive protein (CRP), eosinophil cationic 

protein (ECP), serum amyloid A, and/or periostin (Haldar et al., 2008; Jia et al., 2012; 

Malinovschi, Fonseca, Jacinto, Alving, & Janson, 2013; Rufo, Taborda-Barata, & 

Lourenço, 2013; Silkoff et al., 2017). In addition, promising novel biomarkers were 

discovered in the field of breath metabolomics (e.g. volatile organic compounds and 

exhaled breath condensate) (Donnelly, 2010; Ibrahim et al., 2011). However, several of 

these biomarkers are at a research level and currently unavailable for clinical practice. 

Although induced sputum allows a direct insight of airway inflammation, having the 

highest diagnostic value for asthma (Henry, 2002), it is not widely used, mainly 

because it requires extremely invasive and complicated techniques, thus becoming 

hard to use as a routine diagnostic tool (Pavord et al., 2002). Instead, blood eosinophils 

count is obtained as proxy of airway eosinophilia (Wagener et al., 2015).  

There are different cut-offs of B-Eos counts when assessing different populations: 

150/mm3, 300/mm3 (most used), 400/mm3 and 450/mm3 (less used). The variation for 

this cut-off is so great, even though Schleich et al. (2014) identified an ideal cut-off of 

188/mm3 for blood eosinophils to detect sputum eosinophilia of ≥3% in a population 

with severe asthma with a sensitivity of 72% and specificity of 73%. Despite not being 

very sensitive and specific for predicting a sputum eosinophil of ≥3%, B-Eos cut-offs 

may help the stratification of type 2-high versus type 2-low asthma phenotypes 

(Froidure et al., 2016; Katial et al., 2017). Recently, the ELEN index, a model that 

combines different variables obtained by a complete blood count (CBC), estimated a 

high or low probability that the patient has eosinophilic airway disease (Khatry et al., 

2015). However, further validation is required.  
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Other biomarkers are obtained in exhaled air. FeNO is a non-invasive biomarker that 

primarily signals airway inflammation triggered by IL-4 and IL-13 (Alving & Malinovschi, 

2010), that is both easy and quick to measure. The use of FeNO as a diagnostic and 

decision-support tool for asthma management has been gradually increasing in routine 

care (Dweik et al., 2011). The American Thoracic Society (ATS) guidelines 

recommended the following cut-offs: if FeNO <25 parts per billion (ppb) (20 ppb in 

children <12 years old) there is a low likelihood of eosinophilic inflammation and 

corticosteroid responsiveness; if FeNO >50 ppb (>35 ppb in children) there is a high 

probability of eosinophilic airway inflammation. The intermediate FeNO range of 25-50 

ppb (20-35 ppb in children) should be interpreted with consideration of the clinical 

context (Dweik et al., 2011). However, the guidelines recognize that these fixed cut-offs 

have low quality of evidence. Recently, a novel model for prediction of reference FeNO 

values has been proposed (Jacinto et al., 2018). This could be a useful approach to the 

interpretation of FeNO in clinical practice, however it should be further validated in 

large samples. 

Both FeNO and B-Eos count partially reflect different inflammatory pathways, 

representing a local (associated more closely with IL-5-driven) and a systemic type 2-

marker (mostly dependent on IL-4/IL-13-driven), respectively (Silkoff et al., 2017). 

Moreover, there appears to be an additive role of biomarkers, such as B-Eos and 

FeNO, in relation to recent asthma morbidity (Malinovschi et al., 2013). These two 

biomarkers are not interchangeable and the use of both biomarkers in combination 

may allow for better targeted and personalized treatment for at least certain subsets of 

asthma patients (Malinovschi et al., 2013; Malinovschi, Janson, Borres, & Alving, 

2016). However, this combination of B-Eos and FeNO to better provide information on 

the site of inflammation, as has been shown in asthma (Malinovschi et al., 2013), may 

not be possible in patients with COPD, possibly reflecting the variable effect of smoking 

and airway infection on FeNO in patients with more complex airway disease (Schleich, 

Corhay, & Louis, 2016). 

Other distinct subgroups of asthma phenotypes are increasingly being reported due to 

its specific characteristics, such as steroid therapy resistance and lack of inflammatory 

markers: e.g. subjects with asthma without evidence of type 2-inflammation; obese 

asthmatic subjects; and patients with asthma-COPD overlap syndrome (ACOS) (Carr, 

Zeki, & Kraft, 2018; Christenson et al., 2015; Gibeon et al., 2013; Kobayashi, 

Hanagama, Yamanda, Ishida, & Yanai, 2016). Therefore, there is an increase need for 

improving the definition of asthma phenotypes. 
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1.4.2 Data-driven asthma phenotypes 

Asthma phenotypes are still classified based on single dimensions of the disease, such 

as clinical symptoms, triggers, pathology or patterns of airway obstruction (Borish, 

2016; Hekking & Bel, 2014; Hirano & Matsunaga, 2018; Wenzel, 2012), failing to 

account for its complexity and heterogeneity. In an attempt to explore the 

pathophysiology of specific asthma subgroups and help stratify patients for targeted 

therapies, unsupervised (data-driven) approaches are being applied in airways disease 

to identify “novel” accurate and distinct phenotypes, taking into account the 

multidimensional characteristics of the disease (Haldar et al., 2008; Moore et al., 2010; 

Siroux et al., 2011; Wu et al., 2014). 

There is a clear heterogeneity regarding asthma phenotypes using unsupervised 

statistical methods since the initial work of Haldar et al. (2008) that sparked further 

interest in clustering methodology. These studies derived from different samples, with 

different subjects’ characteristics, multiple variables/dimensions chosen to be analysed 

and clustering methods (e.g., k-means or LCA). Despite, there have been studies that 

identified clusters mainly coincident with other larger-scale cluster analysis (Loureiro, 

Sa-Couto, Todo-Bom & Bousquet, 2015; Loza et al., 2016; Wu et al., 2014), there is 

lack of statistical confirmation of the differences found in inter- and intra-clusters. 

Therefore, a systematic review of the adult asthma phenotypes derived with data-

driven methods, using variables easily measurable in a clinical setting, is being 

undertaken by our research team, as described in Appendix I.  

All the 52 studies included were published in the last 11 years and recruited patients 

mostly from specialized centres (n=41; 79%). The most frequent number of phenotypes 

identified per study was 4 and 5 phenotypes. The studies identified from our literature 

search which used distance-based approaches for subtyping asthma are shown in 

Table 1 and those with model-based approaches in Table 2.  
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Table 1. Studies that identified asthma phenotypes using distance-based approaches, stratified by the data-driven method applied. 

Study ID 
(Author Year) 

                  Label 

Hierarchical cluster analysis 

Baptist 2018 

- “Late-onset asthma” 
- “Mildest asthma” 
- “Atopic, long duration of asthma” 
- “The most severe asthma” 

Delgado-Eckert 2018 - “Mild-to-moderate” 
- “Severe asthma” 

Fingleton 2017 

- "Severe late-onset asthma/COPD overlap group" 
- "Moderately severe early-onset asthma/COPD overlap group" 
- "Moderate to severe asthma group with type 2 predominant disease" 
- “Early-onset, minimal airflow obstruction” 
- “Late-onset, minimal airflow obstruction” 

Fingleton 2015 

- “Moderate-to-severe childhood-onset atopic asthma” 
- “Asthma-COPD overlap” 
- “Obese-comorbid” 
- “Mild childhood-onset atopic asthma” 
- “Mild intermittent” 

Khusial 2017 

- “Early atopic” 
- “Late onset female” 
- “Reversible” 
- “Smokers” 
- “Exacerbators” 

Konno 2018 
- “Early-Onset, Atopic, Mild Eosinophilic” 
- “Late-Onset, Low T-Helper Cell Type 2-relatedIndices” 
- “Late-Onset, Fixed Airflow Limitation, intense T-helper cell type 2-related indices” 
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- “Late-Onset, Fixed Airflow Limitation, low T-helper cell type 2-related indices” 
- “Female Predominance, High BMI, and Intense T-helper Cell Type2–related Indices” 

Moore 2010 

- “Early onset atopic asthma with normal lung function treated with two or fewer controller medications and 
minimal health care utilization” 
- “Early-onset atopic asthma and preserved lung function but increased medication and health care utilization” 
- “Older obese women with late-onset nonatopic asthma, moderate reductions in FEV1, and frequent oral 
corticosteroid use” 
- “Severe airflow obstruction with bronchodilator responsiveness, childhood onset and atopic” 
- “Female, later-onset disease and less atopy, with severe airflow obstruction with BD responsiveness” 

Qiu 2018 

- “Female, small degree of airflow obstruction and early-onset, neutrophilic and mixed granulocytic inflammation” 
- “Eosinophilic inflammation, severe airflow obstruction” 
- “Female, neutrophilic with mixed granulocytic asthma, moderate degree of reduction in FEV1” 
- “Eosinophilic with mixed granulocytic inflammation, severe airflow obstruction” 

Schatz 2014 

- “White female, adult onset, without aspirin sensitivity, lower total IgE levels” 
- “Atopic dermatitis” 
- “Male sex” 
- “Nonwhite race” 
- “Aspirin sensitivity” 

Seino 2018 
- “Elderly, severe, poorly controlled asthma, possible adherence barriers” 
- “Elderly with a low BMI and no significant adherence barriers but had severe, poorly controlled asthma” 
- “Younger, with a high BMI, no significant adherence barriers, well-controlled asthma, no severely affected” 

SendÝn-Hernßndez 
2018 

- “Intermittent or mild persistent asthma, without family antecedents of atopy, asthma, or rhinitis, lowest total IgE 
levels” 
- “Mild asthma with a family history of atopy, asthma, or rhinitis, and intermediate levels of total IgE” 
- “Moderate-severe persistent asthma with corticosteroids and long-acting b-agonists, with high total IgE levels” 

Sutherland 2012 

- “Nonobese female asthmatics” 
- “Nonobese male asthmatics” 
- “Obese uncontrolled asthma” 
- “Obese well-controlled asthma” 
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Weatherall 2009 

- “Severe and markedly variable airflow obstruction with features of atopic asthma, chronic bronchitis and 
emphysema” 
- “Features of emphysema alone” 
- “Atopic asthma with eosinophilic airways inflammation” 
- “Mild airflow obstruction without other dominant phenotypic features” 
- “Chronic bronchitis in nonsmokers” 

Ye 2017 

- “Early onset atopic asthma” 
- “Small airway obstruction and atopic asthma” 
- “Late-onset and non-atopic asthma” 
- “Severe airflow obstruction and obvious airway remodeling” 

Youroukova 2017 
- “Late-onset, non-atopic asthma with impaired lung function” 
- “Late-onset, atopic asthma” 
- “Late-onset, aspirin sensitivity, eosinophilic asthma” 
- “Early-onset, atopic asthma” 

K-means cluster analysis 

Amelink 2013 
- “Severe eosinophilic inflammation, persistent airflow limitation” 
- “Obese female symptomatic, high health care utilization” 
- “Mild-to-moderate, well-controlled asthma with normal lung function” 

Deccache 2018 

- "Rather confident" 
- "Rather committed" 
- "Rather questing" 
- "Rather concerned" 

Jang 2013 

- “Well-preserved pulmonary function” 
- “Female, severe airway obstruction” 
- “Female, bronchial hyperresponsiveness” 
- “Male, smokers” 

Kim 2017 
- “Early-onset atopic asthma with preserved lung function” 
- “Late-onset non-atopic asthma with impaired lung function” 
- “Early-onset atopic asthma with severely impaired lung function” 
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- “Late-onset non-atopic asthma with well-preserved lung function” 

Konstantellou 2015 
- “Not related to persistent airflow obstruction, non-atopic patients, without high-dose ICS or OCS” 
- “Persistent airflow obstruction, atopic, with high dose ICS and OCS” 
- “Not related to persistent airflow obstruction, atopic, without high-dose ICS or OCS” 

Lee 2017 

- “Near-normal” 
- “Asthmatic” 
- “COPD” 
- “Asthmatic-overlap”  
- “COPD-overlap” 

Musk 2011 

- “Normal males” 
- “Normal females” 
- “Atopic younger” 
- “Obese females” 
- “Atopic with high eNO” 
- “Atopic males with poor FEV1” 
- “Atopic with BHR” 

Park 2013 

- “High asthma control test (ACT) scores, low FEV1, high systemic corticosteroid use” 
- “Lowest FEV1, ACT, and quality of life questionnaire for adult Korean asthmatics (QLQAKA) scores, high 
systemic corticosteroid use” 
- “Low FEV1and systemic corticosteroid use, improvement in subjective symptoms over time” 
- “High FEV1, the lowest systemic corticosteroid use, and had high ACT and QLQAKA scores” 

Park 2015 

- “Long symptom duration and marked airway obstruction” 
- “Female dominance and normal lung function” 
- “Smoking male dominance and reduced lung function” 
- “High body mass index and borderline lung function” 

Rootmensen 2016 

- “History of extensive cigarette smoking, airway obstruction without signs of emphysema” 
- “Features of the emphysematous type of COPD” 
- “Characteristics of allergic asthma” 
- “Features suggesting an overlap syndrome of atopic asthma and COPD” 
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Tanaka 2018 
- “Rapid exacerbation, young to middle-aged, hypersensitive to environmental triggers and furred pets” 
- “Fairly rapid exacerbation, middle-aged and older and low perception of dyspnea” 
- “Slow exacerbation, high perception of dyspnea, smokers, and chronic daily mild-moderate symptoms” 

Wu 2018 
- “Atopic nasal polyps and comorbid asthma (NPcA)” 
- “Smoking NPcA” 
- “Older NPcA” 

Zaihra 2016 
- “Severe asthmatics and predominantly late-onset disease” 
- “Female, severe asthmatics, with higher BMI” 
- “Severe asthma with reductions in pulmonary function at baseline, early onset, atopic” 
- “Moderate asthmatics and the majority had good lung function” 

Two-step cluster analysis 

Haldar 2008 

- “Early-onset atopic asthma” 
- “Obese female with no eosinophilic inflammation” 
- “Benign asthma” 
- “Early-onset, symptom-predominant group with minimal eosinophils” 
- “Late-onset, male predominant, eosinophilic inflammation with few symptoms” 

Hsiao 2018 

Female: 
- “Late-onset, normal BMI, nonatopy, low neutrophils, low eosinophils, normal lung function” 
- “Young adults with atopy, normal BMI, high blood eosinophils, low neutrophils” 
- “Late-onset, obesity, high neutrophils, low eosinophils and IgE” 
Male: 
- “Late-onset, with low IgE and blood eosinophils, normal BMI, normal lung function” 
- “Young adults with atopy, current smoking, and high blood neutrophils” 
- “Late-onset, ex-smokers, high blood eosinophils” 

Ilmarinen 2017 

- “Nonrhinitic asthma” 
- “Smoking asthma” 
- “Female asthma” 
- “Obesity-related asthma” 
- “Early-onset atopic adult asthma” 
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Kim 2013 

- “Smoking asthma” 
- “Severe obstructive asthma” 
- “Early-onset atopic asthma” 
- “Late-onset mild asthma” 

Lemiere 2014 
- “Exposition to high molecular-weight (MW), normal lung function, no taking ICS, atopy” 
- “Exposition to high MW, lower lung function, taking ICS, atopy” 
- “Only exposed to low MW agents, lower lung function, taking ICS less atopy” 

Newby 2014 

- “Early-onset atopic” 
- “Late-onset obese” 
- “Least severe disease” 
- “Late-onset eosinophilic” 
- “Significant severe airflow obstruction” 

Serrano-Pariente 
2015 

- “Elderly with clinical and therapeutic criteria of severe asthma” 
- “High proportion of respiratory arrest, impaired consciousness level and mechanical ventilation” 
- “Younger, insufficient anti-inflammatory treatment and sensitization to Alternaria alternata and soybean” 

Wang 2017 

- “Allergic asthma”  
- “Fixed airflow limitation” 
- “Low socioeconomic status” 
- “Female, mild asthma with slight airway obstruction and low exacerbation risk” 
- “Male, mild asthma with slight airway obstruction and low exacerbation risk” 

Wu 2014 

- “Severe asthma, less asthma symptoms and better AQLQ scores” 
- “Early-onset allergic asthma with low lung function and eosinophilic inflammation” 
- “Later-onset, mostly severe asthma with nasal polyps and eosinophilia” 
- “Persistent inflammation in blood and bronchoalveolar lavage fluid and exacerbation” 
- “Severe asthma, Hispanic woman, frequent symptoms, low AQLQ scores, high degree of allergic sensitization” 
- “Severe asthma, normal lung function and no symptoms” 

K-medoids cluster analysis  

Lefaudeux 2017 - “Severe late-onset asthma with airway obstruction, high BMI, smoking, and OCS use” 
- “Severe asthma with airway obstruction and OCS use but no smoking history” 
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Legend: HC: Hierarchical clustering; PAM: Partition-around-medoids 

 

 

- “Severe asthma with female predominance, high BMI, frequent exacerbations, and OCS use but no history of 
smoking or airway obstruction” 
- “Moderate to severe” 
- “Well controlled” 

Loureiro 2015 

- “Early onset mild allergic asthma” 
- “Moderate allergic asthma, with long evolution, female prevalence and mixed inflammation” 
- “Allergic brittle asthma in young females with early disease onset and no evidence of inflammation” 
- “Severe asthma in obese females with late disease onset, highly symptomatic despite low Th2 inflammation” 
- “Severe asthma with chronic airflow obstruction, late disease onset and eosinophilic inflammation” 

Loza 2016 

- "Mild, good lung function, early onset" 
- "Moderate, hyper-responsive, eosinophilic" 
- "Mixed severity, predominantly fixed obstructive, non-eosinophilic and neutrophilic" 
- "Severe uncontrolled, severe reversible obstruction, mixed granulocytic" 

Sekiya 2016 

- “Younger‐onset asthma with severe baseline symptom” 
- “Female‐predominant elderly asthma” 
- “Allergic asthma without baseline ICS treatment” 
- “Male‐predominant COPD‐overlapped elderly asthma” 
- “Asthma with almost no baseline symptoms” 

Hierarchical clustering followed by K-means and K-medoids 

Brinkman 2018 
- “Middlemost cluster” 
- “Neutrophilic inflammation predominant” 
- “Eosinophilc inflammation predominant” 
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Table 2. Studies that identified asthma phenotypes using model-based approaches, stratified by the data-driven method applied. 

Study ID 
(Author Year) 

    Label 

Latent class analysis 

Couto 2015 - “Atopic asthma” 
- “Sports asthma” 

Jeong 2017 

- “Persistent multiple symptom-presenting asthma” 
- “Symptom-presenting asthma” 
- “Symptom-free atopic asthma” 
- “Symptom-free non-atopic asthma” 

Makikyro 2017 

Female:  
- “Controlled, mild asthma” 
- “Partly controlled, moderate asthma” 
- “Uncontrolled asthma, unknown severity” 
- “Uncontrolled, severe asthma” 
Male:  
- “Controlled, mild asthma” 
- “Poorly controlled asthma, unknown severity” 
- “Partly controlled, severe asthma” 

Siroux 2011 

- ‘‘Active treated allergic childhood-onset asthma’’ 
- ‘‘Active treated adult-onset asthma’’ 
- ‘‘Inactive/mild untreated allergic asthma’’ 
- ‘‘Inactive/mild untreated nonallergic asthma’’ 
- ‘‘Active treated allergic childhood-onset asthma’ 
- ‘‘Active treated adult-onset asthma’’ 
- ‘‘Inactive/mild untreated allergic childhood-onset asthma’’ 
- ‘‘Inactive/mild untreated adult onset asthma’’ 
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Legend: HCP: Health care professional; OCS: oral corticosteroids; BHR: Bronchial hyperresponsiveness 

van der Molen 2018 

- “Confident and self-managing" 
- "Confident and accepting of their asthma" 
- "Confident but dependent on others" 
- "Concerned but confident in their health care professional (HCP)" 
- “Not confident in themselves or their HCP” 

Factor analysis 

Alves 2008 

- “Treatment-resistant, more nocturnal symptoms and exacerbations” 
- “Persistent airflow limitation” 
- “Allergic rhinosinusitis, nonsmokers, reversible airflow obstruction” 
- “Aspirin intolerance” 

Moore 2014 

- “Mild-to-moderate early-onset allergic asthma with paucigranulocytic or eosinophilic sputum inflammatory cell 
patterns” 
- “Mild-to-moderate early-onset allergic asthma with paucigranulocytic or eosinophilic sputum inflammatory cell 
patterns, OCS use” 
- “Moderate-to-severe asthma with frequent health care use despite treatment with high doses of inhaled or oral 
corticosteroids, normal lung function” 
- “Moderate-to-severe asthma with frequent health care use despite treatment with high doses of inhaled or oral 
corticosteroids, reduced lung function” 

Latent transition analysis // Expectation-maximization 

Boudier 2013 

- “Allergic, few symptoms, no treatment,” 
- “Non-allergic, few symptoms, no treatment” 
- “Non-allergic, high symptoms, treatment” 
- “Allergic, high symptoms, treatment, BHR” 
- “Allergic, moderate symptoms, BHR” and  
- “Allergic, moderate symptoms, normal lung function” 
- “Non-allergic, moderate symptoms, no treatment” 

Janssens 2012 
- “Well-controlled asthma” 
- “Intermediate asthma control” 
- “Poorly controlled asthma” 
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The distance-based approaches were the most applied (n=43; 83%), particularly the 

following data-driven methods: hierarchical methods, k-means and two-step cluster 

analysis (Table 1). Of the 9 studies that applied model-based approaches (Table 2), 

the most method used was LCA (n=5). 

The most frequent data-driven phenotypes were the allergic and non-allergic asthma 

with multiple variants. Also, phenotypes stratified by the predominant sex and age of 

asthma onset was frequently observed in both distance- and model-based approaches.  

Although the two approaches proved capable of recovering cluster structure with 

clinical meaning, they are not interchangeable and must be applied regarding the 

respective specifications of each statistical method. 

Variables were matched and categorized into six groups: clinical, functional, socio-

demographic, inflammation, atopy, and other (psychological/behaviour variables, 

asthma-related medication use and healthcare use). 

Figure 4 presents the proportions of studies that used each dimension for asthma 

phenotyping. The most used dimensions were variables regarding clinical and 

functional data, however, a substantial difference was observed according to the 

sample characteristics, data availability, study aim and data sources. 

 
 

Figure 4. Proportion of each dimension chosen for the data-driven phenotyping. 
*Psychological/behavioural variables, asthma-related medication use, healthcare use. 
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Moreover, studies evaluating the consistency of phenotypes (n=15; 29%) followed at 

least one of the criteria: longitudinal stability, cluster repeatability, reproducibility, 

internal and external validity. However, studies with population-based samples and 

reporting longitudinal consistency of data-driven phenotypes are scarce, and 

generalization to the “overall” asthma population may be limited. 

As expected, a high degree of variability regarding the data-driven methods and 

variables applied in the models was observed. Therefore, this systematic review 

intended to provide important information on limitations of data-driven phenotype 

studies in asthma and the need for improvement in future studies of population-based 

studies.  
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2. Aims 

 

To answer the question: “Can the phenotypes of chronic diseases of the airways be 

better classified/refined using multidimensional models and data-driven approaches?”, 

we aimed: 

- To explore multidimensional models, supported by advanced data-driven 

statistical methods, for classification of phenotypes of chronic diseases of the 

airways, based on clinical, functional, and immuno-inflammatory characteristics. 

 

As specific aims, we intended: 

1- To describe the proportion of overlap of five theory-driven asthma phenotypes 

of adults from the US National Health and Nutrition Examination Survey 

(NHANES) population-based study, and to examine their association with 

asthma-related outcomes; 

 

2- To compare previously defined theory-driven asthma phenotypes with newly 

data-driven ones, identified by latent class analysis (LCA), in the US adults with 

current asthma from the NHANES. 

 
3- To identify distinct phenotypes of allergic respiratory diseases, using LCA, in 

adults from the Portuguese Control and Burden of Asthma and Rhinitis (ICAR) 

nationwide study and to and to explore the most relevant clinical variables that 

could be used to distinguish each class. 
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3. Studies 

 

3.1 Study I 

 

Amaral, R., Fonseca, J. A., Jacinto, T., Pereira, A. M., Malinovschi, A., Janson, C., & 

Alving, K.  

“Having concomitant asthma phenotypes is common and 

independently relates to poor lung function in NHANES 2007–2012”.  

Clinical and Translational Allergy. 2018; 8:13. 

 

 

 

The aims of study I (Appendix II) were to describe the proportion of overlap of five 

commonly reported asthma phenotypes: asthma with obesity (AwObesity), asthma with 

concurrent COPD (AwCOPD), B-Eos-high, FeNO-high and B-Eos&FeNO-low asthma, 

and to examine the association of their overlap with asthma-related outcomes, using 

population-based data from the National Health and Nutrition Examination Surveys 

(NHANES), 2007–2012. 
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Methods 

 

Study setting 

The NHANES is a nationally representative survey of the civilian, non-institutionalized 

US population that uses a complex stratified, multistage probability sampling. Also, 

NHANES is a program of studies designed to assess the health and nutritional status 

of adults and children in the United States. The survey combines interviews and 

physical examinations. The interview includes demographic, socioeconomic, dietary, 

and health-related questions, while the examination consists of medical, dental, and 

physiological measurements, as well as laboratory tests administered by highly trained 

medical personnel (CDC, 2017). The National Center for Health Statistics, Ethics 

Review Board approved NHANES protocol, and all participants gave written informed 

consent.  

Subjects selection 

Six survey years (NHANES 2007–2012) were analyzed, resulting in 30,442 individuals 

of all ages (Figure 5). We included adults (≥ 18 years-old) with current asthma 

(n=1059), defined by a positive answer to the questions: “Has a doctor ever told you 

that you have asthma?” together with “Do you still have asthma?”, and either 

“wheezing/whistling in the chest in the past 12 months” or “asthma attack in the past 12 

months.”  

Variables 

Demographic characteristics, such as age, gender, body mass index (BMI), 

race/ethnicity, and educational status were analyzed. B-Eos count, FeNO and 

spirometric measurements, collected at the NHANES Mobile Examination Center were 

also examined. FeNO and spirometric measurements not fulfilling ATS/ERS 

recommendations (Miller, 2005; Silkoff, 2005) were excluded (n = 653). After predicted 

values of basal FEV1 and FEV1/functional vital capacity (FEV1/FVC) were calculated 

(Hankinson, Odencrantz, & Fedan, 1999), with a correction factor for ethnicity 

(Hankinson et al., 2010), abnormal lung function was defined if either one of them were 

less than the lower limit of normal (LLN), defined as lower fifth percentile of the 

reference population (Pellegrino, 2005). 
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Figure 5. Flowchart of the study analysis. †Seventy-seven patients were considered “non-

classified” (non-single and non-multiple phenotype) 

 

B-Eos were part of the complete blood counts and assessed on a Beckman Coulter 

MAXM® instrument (Beckman Coulter, Fullerton, Calif). FeNO measurements were 

performed using the analyzer NIOX MINO® (Aerocrine, Solna, Sweden). A detailed 

description can be found elsewhere (CDC, 2011a, 2011b, 2013).  

Demographic characteristics, such as age, gender, BMI, race/ethnicity, and educational 

status were analyzed. The following categorization was performed: 

- BMI was calculated and classified based on the definition of the World Health 

Organization (WHO, 1995): underweight (BMI ≤18.4 kg/m2); normal (18.5-24.9 

kg/m2), overweight (25–29.9 kg/m2), and obese (≥30 kg/m2); 
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- Educational status was divided in: less than high school (<high school) and 

completion or greater than high school (≥high school). 

- Current smoking was considered if participants had a positive answer to both 

questions: “Have you smoked ≥100 cigarettes during lifetime” and “Do you now 

smoke cigarettes?”. If participants answered positively to the first question but 

negatively to the second one, they were considered ex-smokers. 

Moreover, clinical variables were defined as: 

- Self-reported asthma attacks and asthma-related emergency department (ED) visits 

(Yes/No), in the past 12 months were analyzed.  

- Work/school absenteeism was defined as having at least one day lost at 

work/school due to wheezing (Yes/No).  

- Asthma symptoms were evaluated with the following questions regarding the last 12 

months: “Had wheezing/whistling in your chest?”; “Had disturbed sleep due to 

wheezing?”; “Had dry hard cough at night, not associated with a cold for at least 14 

days in a row?”; “Had wheezing during/after exercise?”; and “Had limited activity due 

to wheezing?”.  

- Self-reported rhinitis was defined by an affirmative answer to “During the past 12 

months, have you had an episode of hay fever?”. 

- Use of reliever/rescue medication for asthma was considered if the participant used 

short-acting β2-agonist, anticholinergic, or inhaled corticosteroids (ICS)/formoterol.  

- Controller medication included: ICS; leukotriene modifiers; long-acting inhaled β2-

agonist (LABA) and ICS combination; ICS/LABA associated with methylxanthine, 

cromoglycate, and/or oral corticosteroids. Details on the prescription medication 

data collection in NHANES 1999–2012 are available elsewhere (CDC, 2014).  

Asthma phenotypes definition 

A B-Eos count ≥ 300/mm3 was used to define a B-Eos-high asthma phenotype (Castro 

et al., 2015; Sally Wenzel et al., 2013), while FeNO-high was defined as FeNO ≥ 35 

ppb (Dweik et al., 2010). Asthma patients with both B-Eos <150/mm3 and FeNO <20 

ppb were categorized as B-Eos&FeNO-low asthma (McGrath et al., 2012). Additionally, 

we considered subjects with either B-Eos-high or FeNO-high as having “Type 2-high” 

asthma. The AwObesity phenotype was defined by a BMI ≥ 30 kg/m2 in individuals 

with current asthma (Flegal, Carroll, Kuczmarski, & Johnson, 1998). Finally, the 

AwCOPD phenotype was considered if participants ≥ 40 years-old had concurrent 

asthma and COPD, defined by a positive answer to “Has a doctor ever told you that 

you have chronic bronchitis/emphysema”, with age of diagnosis ≥ 40 years and having 
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self-reported smoking history (being either a current or ex-smoker) (Buist et al., 2007; 

Rossi et al., 2017). 

Statistical analysis 

In accordance with the NHANES sampling design, the weights for each full sample 2-

year mobile examination center were used to obtain weighted percentages adjusted to 

the US adult population. Categorical variables were described as frequencies and 

weighted proportions, and continuous variables were described as median and first and 

third quartiles (Q1–Q3). Chi square test and Mann–Whitney U-test were used to 

compare groups. To explore the association of concomitant (having at least 2 

concurrent) phenotypes with each asthma-related outcome we performed multivariate 

logistic regression modelling. Separate models were run using each asthma-related 

outcome and abnormal lung function as dependent variable and having multiple 

phenotypes as independent variables. Adjustments were also made for potential 

confounders: sex, age, race, current smoking and rhinitis. Adjusted odds ratios (aOR) 

with 95% confidence intervals (95% CI) were presented, and model fit was assessed 

using the svylogitgof function (Archer, Lemeshow, & Hosmer, 2007). According to age 

(<40 or ≥40 years-old), a four- or five-set Venn-Euler diagram was used to quantify the 

proportion of individuals with different asthma phenotypes and to illustrate the overlap. 

The diagrams were created using R software version 3.2.0 (“VennDiagram”, 

“venneuler” and “reshape2” packages) and all statistical analyses were performed in 

Stata version 13.1 (StataCorp, TX, USA), using the survey command to account for the 

complex sampling design and weights in the NHANES. The MI command was used to 

perform sensitivity analysis by multiple-imputation of missing values; however, to 

create the Venn-Euler diagrams, a listwise deletion for missing data was applied. A p-

value <0.05 was considered statistically significant.
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Results 

 

Of the 18,619 adults included in NHANES 2007–2012 datasets, 1059 (5.6% [95% CI 

5.1–5.9]) had current asthma (Figure 5). Of these, 63% were female, and the median 

(Q1–Q3) age was 48.0 (32.0–62.0) years. After excluding subjects with missing data 

on the main variables, 634 individuals were included for phenotype classification 

(Figure 5). Despite having all information available, 77 patients did not meet the criteria 

for any of the defined asthma phenotypes and were considered “non-classified”. These 

were non-obese subjects with asthma who did not meet the criteria for COPD, had B-

Eos values ranging between 150 and 300/mm3, and FeNO ranging 20–34 ppb. 

Phenotypes and overlap description 

The weighted proportions of asthma phenotypes were (in descending order): 49% for 

AwObesity, 36% for B-Eos-high asthma, 26% for B-Eos&FeNO-low asthma, 18% for 

FeNO-high asthma, and 8% for AwCOPD (Table 3). Demographic and clinical 

characteristics among all 5 asthma phenotypes and the “non-classified” group are 

described in Table 4. There is a female predominance among all phenotypes, 

particularly in the B-Eos&FeNO-low (78%). Subjects with AwCOPD phenotype were 

the oldest group (median [Q1–Q3]: 61.0 [52.0–69.0] years-old), with the lowest 

proportion of individuals that had ≥ high school and lowest FEV1/FVC (0.63 [0.50–

0.75]), comparing to the other phenotypes. 
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Table 3. Characteristics of adults with current asthma: included and excluded from phenotype classification and stratified by single or multiple 

phenotypes. 

Demographic characteristics 
n (weighted %) 

Included 
subjects 

n=634 

Excluded 
subjects 
n= 425 

p-
value* 

Single 
phenotype† 

n= 271 

Multiple 
phenotypes† 

n= 286 

p-
value* 

Female gender 410 (63) 261 (64) .93 174 (64) 192 (66) .68 

Age (yrs), median (Q1-Q3) 
44.0  

(31.0-57.0) 
48.9  

(33.7-68.0) 
<0.001 

42.0  
(30.0-55.0) 

47.5  
(34.0-60.0) 

0.003 

BMI (kg/m2), median (Q1-Q3) 
30.8  

(25.4-35.9) 
31.4  

(24.4-35.7) 
.99 

28.7  
(24.2-35.0) 

33.7  
(30.7-39.0) 

<0.001 

Obesity status       
Underweight (≤18.4 kg/m2) 2 (0.3) 13  (4) <0.001 1 (0.2) 1 (0.5) .41 
Normal (18.5-24.9 kg/m2) 142 (25) 98 (27) .44 78 (30) 20 (8) <0.001 
Overweigh (25-29.9 kg/m2) 151 (26) 77 (19) 0.07 80 (32) 38 (15) <0.001 
Obese (≥30 kg/m2) 339 (49) 187 (49) .94 112 (38) 227 (77) <0.001 

Race and/or Ethnicity       
Hispanic 105 (8) 85 (10) .30 38 (8) 56 (9) .24 
Non-Hispanic white 323 (74) 184 (63) 0.005 135 (72) 138 (72) .93 
Non-Hispanic black 167 (14) 117 (18) 0.03 76 (14) 81 (16) .71 
Other Race 39   (4) 39   (7) 0.06 22 (6) 11 (3) .11 

Smoking status       
Current smoker 199 (29) 114 (32) .40 89 (31) 87 (27) .46 
Ex-smoker 163 (29) 98 (23) .13 56 (20) 89 (36) 0.003 
Non-smoker 272 (43) 154 (45) .53 126 (49) 110 (37) 0.02 

Education       
≥High school 478 (84) 225 (69) <0.001 205 (86) 209 (81) .13 

Asthma-related medication ‡       
Reliever medication** 276 (41) 202 (48) .16 113 (37) 132 (47) .10 
Oral corticosteroids 33 (8) 29 (3) 0.001 12 (3) 15 (4) .75 
Inhaled corticosteroids§ 153 (25) 122 (30) .14 55 (19) 81 (32) .01 
Other control medications|| 53 (9) 63 (14) .19 15 (8) 33 (10) .50 

Asthma phenotype       
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AwObesity 339 (49) -  112 (38)  227 (76) <0.001 
B-Eos-high 237 (36) -  61 (22) 176 (62) <0.001 
B-Eos&FeNO-low  157 (26) -  74 (30) 83 (30) .95 
FeNO-high 110 (18) -  18 (8) 92 (34) <0.001 
AwCOPD 57   (8) -  6 (2) 51 (17) <0.001 
Non-classified††  77 (14) -  - -  

Legend: *Chi-square test or Mann-Whitney U-test was used. †Seventy-seven subjects included in the “non-classified” group were considered as missing. 

‡Prescribed medication taken in the past 30 days. §Alone or in combination with long-acting inhaled β2-agonist. || Included long-acting inhaled β2-agonist 

(without corticosteroids), leukotriene inhibitors, and mast cell stabilizers. **Short-acting β2-agonist and/or anticholinergic. †† Subjects with non-single & non-

multiple asthma phenotype. Data presented as absolute numbers and proportions weighted for the US population. P-values <0.05 are presented in bold. Yrs: 

years; BMI: Body Mass Index; Q1: first quartile; Q3: third quartile; BMI: body mass index; AwObesity: Asthma with obesity; AwCOPD: Asthma with concurrent 

COPD.  

 

 

Table 4. Demographic and clinical characteristics among all 5 phenotypes and in the “Non-classified” group. 

Characteristics 
n (weighted %) 

AwObesity  
n=339 

B-Eos-high  
n= 237 

B-Eos&FeNO-
low  

n= 157 

FeNO-high  
n= 110 

AwCOPD 
n=57 

Non-classified†† 
n=77 

Female gender 366 (67) 196 (55) 138 (78) 78 (52) 71 (58) 44 (56) 

Age (yrs), median (Q1-Q3) 
48.0 (34.0-

59.0) 
47.0 (31.0-

59.0) 
41.0 (27.0-57.0) 

45.0 (30.0-
54.0) 

61.0 (52.0-
69.0) 

39.0 (28.0-53.0) 

BMI (kg/m2), median (Q1-
Q3) 

35.4 (32.5-
40.4) 

30.3 (25.9-
36.8) 

28.9 (24.2-33.0) 
27.6 (24.9-

33.4) 
30.3 (25.1-

35.1) 
24.3 (22.8-27.5) 

Race and/or Ethnicity       
Hispanic 94   (9) 78 (11) 30   (8) 29 (10) 18  (4) 11  (6) 
Non-Hispanic white 230 (65) 175 (73) 79 (69) 65 (75) 80 (81) 50 (86) 
Non-Hispanic black 177 (21) 74 (12) 62 (17) 38 (13) 27 (11) 10  (6) 
Other Race 25   (5) 21   (4) 13   (6) 6   (2) 10  (4) 6  (2) 
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Smoking status       
Current smoker 150 (27) 104 (32) 48 (23) 18 (13) 65 (52) 23 (28) 
Ex-smoker 134 (27) 100 (32) 35 (25) 42 (39) 70 (48) 18 (30) 
Non-smoker 229 (45) 124 (35) 88 (51) 66 (49) 0   (0) 36 (42) 

Education       
≥High school 358 (79) 227 (80) 125 (81) 102 (87) 73 (59) 64 (91) 

Asthma-related 
medication ‡ 

      

Reliever medication** 234 (42) 172 (51) 82 (44) 65 (46) 69 (57) 31 (36) 
Oral corticosteroids 36   (5) 17   (5) 4   (2) 10   (7) 15   (7) 2   (2) 
Inhaled 
corticosteroids§ 

144 (27) 103 (32) 36 (20) 36 (33) 60 (47) 17 (19) 

Asthma-related outcomes       
Asthma attack 363 (68) 252 (74) 125 (68) 98 (71) 85 (63) 54 (75) 
Asthma-related ED 130 (27) 80 (23) 41 (23) 26 (13) 37 (32) 9   (8) 
>2 asthma symptoms 311 (66) 199 (65) 92 (55) 80 (57) 90 (74) 42 (59) 
Work/school 
absenteeism 

66 (18) 43 (16) 25 (18) 23 (14) 12 (20) 10 (14) 

Lung function       
FEV1% predicted, 
median (Q1-Q3) 

89.0 (75.6-
99.2) 

84.1 (75.2-
95.4) 

93.2 (83.8-100.8) 
82.7 (75.9-

95.4) 
74.0 (62.9-

90.1) 
89.9 (80.5-103.5) 

FEV1/FVC, median 
(Q1-Q3) 

0.77 (0.62-
0.82) 

0.74 (0.65-
0.80) 

0.79 (0.72-0.83) 
0.72 (0.66-

0.79) 
0.63 (0.50-

0.75) 
0.76 (0.69-0.82) 

Legend: †† Subjects with non-single & non-multiple asthma phenotype. ‡Prescribed medication taken in the past 30 days. **Short-acting β2-agonist and/or 

anticholinergic. §Alone or in combination with long-acting inhaled β2-agonist. Data presented as absolute numbers and proportions weighted for the US 

population. Yrs: years; BMI: Body Mass Index; Q1: first quartile; Q3: third quartile; BMI: body mass index; AwObesity: Asthma with obesity; AwCOPD: Asthma 

with concurrent (COPD); ED: emergency-department; FEV1: Forced expiratory volume in 1 second; FEV1/FVC: Forced expiratory volume in 1 second and 

functional vital capacity ratio; LLN: Lower limit of normality. 
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When categorized by age, < 40 (n = 227) and ≥ 40 years-old (n = 330), the most 

prevalent phenotypes were AwObesity (42 and 53%, respectively) and B-Eos-high 

asthma (34 and 37%). The less ones were FeNO-high asthma (18 and 19%) and 

AwCOPD (19% in the older group) (Figure 6). The areas of intersection in the four- and 

five-set Venn-Euler diagrams revealed 5 and 12 overlapping categories, and 

proportions of 17 and 12% of non-classified asthma subjects, respectively. 

In both diagrams, a substantial total overlap was observed: 44% in subjects < 40 

years-old and 54% in subjects ≥ 40 years-old. About 40% of the individuals in both age 

groups had two concomitant asthma phenotypes, 4% of the younger group had 3 

concomitant phenotypes and 13% of the older group had ≥ 3 (Table 5 and Figure 6). 

Furthermore, 1% of the older subjects had four concomitant asthma phenotypes: 

AwObesity, AwCOPD, FeNO-high, and B-Eos-high asthma. 

The most prevalent overlaps in both groups (<40 and ≥40 years-old) were AwObesity 

together with either B-Eos-high (15 and 12%, respectively) or B-Eos&FeNO-low 

asthma (13 and 11%) (Figure 6). Moreover, the proportions of subjects having 

AwObesity together with other phenotypes were high: 53% for the B-Eos-high 

phenotype, 48% for AwCOPD, 45% for the B-Eos&FeNO-low, and 44% for the FeNO-

high phenotype. Also, the proportion of individuals having AwCOPD together with the 

B-Eos-high phenotype was high (36%), whereas the proportions were lower for the B-

Eos&FeNO-low and the FeNO-high asthma phenotypes (15 and 10%, respectively) 

(data not shown). 

In this population, only 12 and 15% of asthma subjects (<40 and ≥40 years-old, 

respectively) with high B-Eos count had a concomitant high FeNO values (Figure 6). 

Moreover, the two biomarkers were non-congruent across cut-offs. For example, when 

comparing groups with B-Eos count <150/mm3 and 150–300/mm3, the proportion of 

asthma subjects having low FeNO (<20 ppb), was not significantly different (Table 6). 
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Figure 6. Venn-Euler diagrams quantifying the overlap among the asthma phenotypes, stratified by age. †Seventy-seven patients were considered 

“non-classified” (non-single and non-multiple phenotype) 
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Table 5. Distribution and comparisons of the asthma-related outcomes among asthma phenotypes, stratified by age 

Total  
n (weighted 

%) 

Asthma 
attack 

Asthma-
related 

ED 

≥2 asthma 
symptoms 

Work/school 
absenteeism 

Asthma medication  Lung function 

≥1 reliever 
medication† 

≥2 
controller 

medication 

 
FEV1 
<LLN 

FEV1% 
predicted § 

FEV1/FVC 
<LLN 

<40 yrs             

1 phenotype 118 (56) 85 (70) 27 (20) 59 (56) 15 (21) 55 (43) 17 (11)  10 (7) 
95.6 

(90.2-102.1) 
26 (20) 

2 phenotypes 97 (40) 69 (75) 26 (32) 57 (73) 12  (9) 41 (40) 8  (9)  
19 

(23) 
91.8 

(81.3- 99.2) 
25 (29) 

3 phenotypes 12  (4) 10 (73) 5 (40) 8 (72) 4 (25) 9 (68) 1  (4)  3 (36) 
81.9 

(75.3- 84.6) 
4 (29) 

p-value*            
1 vs 2  0.43 0.10 0.052 0.04 0.72 0.64  0.006 0.07 0.25 
2 vs 3  0.92 0.55 0.96 0.07 0.15 0.46  0.43 0.009 0.98 
1 vs 3  0.86 0.11 0.39 0.73 0.20 0.34  0.01 <0.001 0.48 

≥40 yrs            

1 phenotype 153 (46) 104 (65) 35 (23) 76 (62) 20 (15) 58 (33) 26 (17)  
29 

(20) 
91.2 

(81.6-99.2) 
34 (26) 

2 phenotypes 136 (41) 92 (69) 28 (21) 70 (55) 12  (9) 60 (46) 43 (36)  
31 

(37) 
80.4 

(70.0-91.7) 
27 (32) 

≥3 phenotypes 41 (13) 26 (72) 4 (9) 30 (70) 8 (40) 22 (60) 16 (40)  
12 

(46) 
74.0 

(63.0-85.8) 
16 (53) 

p-value*            
1 vs 2  0.56 0.82 0.38 0.41 0.12 0.02  0.01 0.007 0.46 
2 vs ≥3  0.80 0.27 0.30 0.002 0.24 0.67  0.47 0.22 0.09 
1 vs ≥3  0.50 0.21 0.54 0.03 0.053 0.02  0.01 0.006 0.02 

Legend: *Chi-square test or Mann-Whitney U-test was used. †Short-acting β2-agonist or/and anticholinergic. §Presented as median (Q1-Q3). Data presented 
as absolute numbers and proportions weighted for the US population. P-values <0.05 are presented in bold. The 77 subjects included in the “non-classified” 
group were considered as missing. ED: emergency-department; FEV1: Forced expiratory volume in 1 second; FEV1/FVC: Forced expiratory volume in 1 
second and functional vital capacity ratio; LLN: Lower limit of normality; Q1: first quartile; Q3: third quartile. 
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Associations between asthma‐related outcomes and phenotype overlap 

A comparison of the clinical characteristics of participants with one, two or three or 

more asthma phenotypes, stratified by age, is presented in Table 4 and no significant 

differences were observed in any age groups regarding asthma attacks, asthma-

related ED, ≥ 2 asthma symptoms, and use of ≥1 reliever. In the older group, the 

proportion of individuals with work/school absenteeism, ≥ 2 controller medications and 

with FEV1/FVC < LLN was significantly higher in participants with concomitant 

phenotypes than in those with a single phenotype (Table 4). In both age groups, the 

proportion of patients with FEV1< LLN was significantly higher when participants 

presented multiple phenotypes, as well as they presented lower median FEV1% 

predicted values. 

When analyzing the asthma-related outcomes in subjects with a single phenotype with 

those having specific combination of asthma phenotypes, the overall findings were that 

subjects having multiple phenotypes had significantly higher proportion of using ≥ 1 

reliever and ≥ 2 controller medications and had decreased lung function, with the 

exception of those with the B-Eos&FeNO-low phenotype combined with any of the 

other phenotypes (Table 7 and Table 8). 

Moreover, there was a significant association between FeNO and B-Eos categories in 

both groups, except when comparing the B-Eos groups: <150/mm3 and 150-300/mm3 

above and below a FeNO cut-off of 20 ppb, in current asthma patients (Table 6). 

 

Table 6. Distribution and comparisons between the FeNO and B-Eos cut-offs used in 

this study, among individuals with current asthma 

  Total 
n 

(weigthed 
%) 

B-Eos 
n (weigthed %) 

 
p-value 

    
Class I 

<150/mm3 

Class II 
150-

300/mm3 

Class III 
≥300/mm3 

 
I vs II II vs III I vs III 

Current asthma (n= 1,059) 332 (37) 276 (27) 348 (36)      

 FeNO  

<20ppb 501 (65) 184 (73) 146 (67) 141 (50)  
0.12 <0.001 <0.001 

≥20ppb 273 (35) 60 (27) 66 (33) 130 (50)  

<35ppb 636 (82) 229 (94) 186 (86) 184 (65)  
0.02 <0.001 <0.001 

≥35ppb 138 (18) 15 (6) 26 (14) 87 (35)  

Legend: FeNO: Fraction of exhaled nitric oxide; B-Eos: blood eosinophils.  
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Table 7. Weighted percentages and comparisons of asthma-related outcomes among subjects with a single asthma phenotype versus: non-

classified, and specific combinations of asthma phenotypes 

Weighted % Total 
Asthma 
attack 

Asthma-
related 

ED 

≥2 asthma 
symptoms 

Work/school 
absenteeism 

Asthma medication  Lung function 

≥1 reliever 
medication 

≥2 
controller 

medication 

 
FEV1 
<LLN 

FEV1% 
predicted§ 

FEV1/FVC 
<LLN 

Single 
phenotypes* 

43 67 21 59 17 38 14  14 
94  

(86-97) 
23 

AwObesity 38 61 27 59 15 31 14 
 

18 
92  

(84-104) 
16 

B-Eos-high 22 81 29 70 19 47 15 
 

17 
95  

(84-99) 
27 

FeNO-high 8 80 6 31 3 33 28 
 

11 
94  

(87-96) 
55 

B-Eos&FeNO-
low 

30 64 14 55 20 46 9 
 

7 
93  

(88-102) 
20 

AwCOPD 2 24 20 93 61 6 23 
 

30 
97  

(57-97) 
30 

Non-classified† 14 75 8 59 14 36 15  25 
90  

(80-103) 
23 

Multiple phenotypes‡43 72 23 64 14 49 27  34 
83  

(74-95) 
34 

AwObesity + 
others 

48 71 23 65 16 48 25  30 
81  

(74-92) 
26 

B-Eos-high + 
others 

19 75 20 65 14 51 31  39 
80  

(69-91) 
42 

FeNO-high + 
others 

10 68 16 66 17 51 30  37 
81  

(74-92) 
38 

B-Eos&FeNO-
low + others 

9 78 33 59 18 42 18  25 
90  

(74-100) 
21 

AwCOPD + 5 61 22 61 20 66 38  50 74  63 
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others (63-86) 
Specific combinations of 
phenotypes 

         

B-Eos-high + 
AwObesity 

8 77 25 62 8 46 27  32 
85  

(77-95) 
32 

AwObesity+ B-
Eos&FeNO-
low 

7 79 30 64 13 35 16  18 
94  

(77-101) 
9 

B-Eos-high + 
FeNO-high 

5 73 19 66 6 44 35  41 
80  

(69-90) 
51 

B-Eos-high + 
FeNO-high 
+ 
AwObesity 

3 80 16 65 40 67 22  33 
79  

(75-86) 
30 

FeNO-high + 
AwObesity 

2 26 8 67 12 47 27  32 
93  

(74-96) 
9 

B-Eos-high + 
AwCOPD 

1 71 14 73 25 69 4  22 
110  

(90-110) 
43 

AwObesity + 
AwCOPD 

1 20 19 67 0 71 12  14 
85  

(83-85) 
14 

AwCOPD+ B-
Eos&FeNO-
low 

1 76 44 20 12 84 44  71 
66  

(63-77) 
85 

Legend: AwObesity: Asthma with obesity; AwCOPD: Asthma with COPD; ED: Emergency-department; FEV1: Forced expiratory volume in 1 second; 

FEV1/FVC: Forced expiratory volume in 1 second and functional vital capacity ratio; LLN: Lower limit of normality. Values are presented as weighted 

percentages and significant associations (p<0.05) between multiple and single phenotypes are presented in bold. *Subjects having only one of the 5 asthma 

phenotypes: AwObesity, B-Eos-high, FeNO-high, B-Eos&FeNO-low or AwCOPD. † Subjects with non-single and non-multiple phenotypes. ‡Subjects having 

at least one of the other asthma phenotypes. § Presented as median (Q1-Q3). 
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Table 8. Weighted percentages and comparisons of asthma-related outcomes among subjects with a single asthma phenotype versus: non-

classified, and specific combinations of asthma phenotypes 

Weighted % Total 
Asthma 
attack 

Asthma-
related 

ED 

≥2 
asthma 

symptom
s 

Work/school 
absenteeism 

Asthma medication  Lung function 

≥1 reliever 
medication 

≥2 
controller 

medication 

 
FEV1 
<LLN 

FEV1% 
predicted§ 

FEV1/FVC 
<LLN 

Single 
phenotypes * 

49 68 22 59 15 40 18  18 
92  

(82-99) 
28 

AwObesity 31 61 27 59 15 29 15  18 
92  

(84-111) 
16 

Type 2-high† 43 77 23 59 11 46 25  25 
90 

(80-98) 
41 

B-Eos&FeNO-
low 

24 64 14 55 20 45 9  7 
93  

(88-102) 
20 

AwCOPD 2 24 20 93 61 11 24  20 
97  

(57-97) 
30 

Non-classified‡ 13 75 8 59 14 36 15  25 
90  

(80-103) 
23 

Multiple 
phenotypes || 

38 71 24 65 19 51 27  32 
85  

(74-96) 
30 

AwObesity+ 
others 

26 71 23 67 20 49 26  30 
85  

(75-96) 
26 

Type 2-high+ 
others 

19 70 20 68 21 54 32  37 
82  

(74-93) 
36 

B-Eos&FeNO-
low+ others 

9 78 33 59 18 42 18  25 
90  

(74-100) 
21 

AwCOPD+ 
others 

6 64 23 66 18 66 43  50 
74  

(63-86) 
63 

Specific combinations of 
phenotypes 

         

Type 2-high+ 15 70 22 66 22 52 25  32 83  28 
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AwObesity (76-94) 
Type 2-high+ 

AwCOPD 
2 74 24 86 11 69 47  18 

90  
(81-110) 

52 

Legend: AwObesity: Asthma with obesity; AwCOPD: Asthma with COPD; ED: Emergency-department; FEV1: Forced expiratory volume in 1 second; 

FEV1/FVC: Forced expiratory volume in 1 second and functional vital capacity ratio; LLN: Lower limit of normality. Values are presented as weighted 

percentages and significant associations (p<0.05) between multiple and single phenotypes are presented in bold. *Subjects with only one of the 4 asthma 

phenotypes: AwObesity, Type 2-high, B-Eos&FeNO-low or AwCOPD. †Type 2-high (B-Eos-high or FeNO-high), ‡ subjects with non-single and non-multiple 

phenotypes. ||Subjects having at least one of the other asthma phenotypes. § Presented as median (Q1-Q3) 

 

Table 9. Multivariable logistic regression models between each asthma-related outcome and having multiple asthma phenotypes, adjusted for 

co-variables 

 
Asthma attack 
aOR (95% CI) 

Asthma-related 
ED 

aOR (95% CI) 

≥2 asthma 
symptoms 

aOR (95% CI) 

Work/school 
absenteeism 
aOR (95% CI) 

≥1 reliever 
medication* 

aOR (95% CI) 

FEV1/FVC <LLN 
aOR (95% CI) 

Multiple vs. single 
phenotype 

1.27 (0.78-2.06) 1.17 (0.74-1.86) 1.26 (0.76-2.11) 0.79 (0.37-1.68) 1.55 (0.97-2.49) 1.74 (0.94-3.24) 

Female 1.34 (0.87-2.07) 2.05 (1.08-3.90) 1.96 (1.16-3.31) 1.35 (0.66-2.79) 0.88 (0.53-1.49) 0.53 (0.31-0.90) 
Age ≥ 40 yrs 0.80 (0.50-1.27) 0.91 (0.59-1.41) 0.94 (0.55-1.60) 1.09 (0.60-2.00) 1.08 (0.67-1.73) 1.50 (0.90-2.49) 
Caucasian vs. other 0.89 (0.54-1.46) 0.38 (0.23-0.64) 0.72 (0.46-1.15) 0.76 (0.39-1.50) 1.03 (0.65-1.63) 0.92 (1.16-3.51) 
Current smoker vs. 

non-/ex-smokers 
0.89 (0.55-1.43) 1.60 (0.94-2.72) 1.22 (0.69-2.14) 0.82 (0.37-1.83) 1.95 (1.35-2.83) 2.02 (1.16-3.51) 

Rhinitis 0.96 (0.59-1.57) 0.77 (0.38-1.56) 0.88 (0.50-1.52) 0.70 (0.32-1.53) 0.66 (0.42-1.04) 1.04 (0.62-1.75) 
Goodness-of-fit test      

χ2 (p-value) 0.59 (0.80) 0.59 (0.81) 1.33(0.22) 1.27 (0.25) 1.14 (0.33) 3.05 (0.002) 
Legend: CI: confidence interval; aOR: adjusted odds ratio; ED: emergency-department; FEV1/FVC: Forced expiratory volume in one second and forced vital 

capacity ratio; LLN: Lower Limit of Normal; χ2: Chi-square. All asthma-related outcomes were analyzed separately and treated as dependent variables. The 

aOR values with p<0.05 are presented in bold. *Short-acting β2-agonist and/or anticholinergic. 
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A lower proportion of subjects reporting asthma attacks was observed, in subjects with 

AwObesity and either FeNO-high (26%) or AwCOPD (20%), compared to those with a 

single phenotype (67%) (Table 7). Subjects with concomitant AwCOPD and B-

Eos&FeNO-low phenotypes had the lowest proportion of ≥ 2 asthma symptoms (20%) 

but had the highest proportion of using ≥ 1 reliever medication (84%) as well as having 

FEV1< LLN (71%). 

In multivariate regression analysis, adjusting for covariables, having multiple 

phenotypes was significantly associated with using ≥ 2 controller medications (aOR, 

95% CI 2.03, 1.16–3.57), and having reduced FEV1 (3.21, 1.73–5.94) (Table 10). 

However, no associations were seen with asthma attacks, asthma-related ED, ≥ 2 

asthma symptoms, work/school absenteeism, use of reliever medication or FEV1/FVC 

< LLN (Table 9). 

 

Table 10. Regression models with significant associations between having multiple 

asthma phenotypes and asthma-related outcomes, adjusted for co-variates 

 ≥2 controller 
medications 

FEV1<LLN 

aOR 95% CI aOR 95% CI 
Multiple vs. single phenotype 2.03 1.16-3.57 3.21 1.74-5.94 
Female gender 1.39 0.77-2.50 1.51 0.81-2.81 
Age ≥40yrs 3.01 1.52-5.95 2.55 1.29-5.03 
Caucasian vs. others 1.38 0.86-2.23 1.37 0.78-2.42 
Current smoker vs. non-/ex-smokers 1.02 0.52-2.02 2.01 1.21-3.33 
Rhinitis 1.08 0.57-2.16 0.94 0.54-1.63 
Goodness-of-fit test     

χ2 (p-value) 0.86 (0.56) 0.80 (0.61) 
Legend: Multivariate logistic regression models adjusted for gender, age, race, current 

smoking and rhinitis. The aOR values with p<0.05 are presented in bold. FEV1: Forced 

expiratory volume in 1 second; LLN: Lower limit of normal; CI, confidence interval; aOR, 

adjusted odds ratio; χ2, Chi-square goodness-of-fit. 

 

Furthermore, subjects aged ≥ 40 years-old, had significantly higher odds of using ≥ 2 

controller medications and having FEV1 < LLN predicted, compared to those < 40 

years-old, adjusted for covariates (Table 10). Being a current smoker was significantly 

associated with using ≥ 1 reliever medication (1.95, 1.35–2.83) and with reduced lung 

function: FEV1< LLN predicted (2.01, 1.21–3.33) and FEV1/FVC < LLN (2.02, 1.16–

3.51) and not associated with any other asthma-related outcomes (Table 9 and Table 

10). 
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The association between having concomitant phenotypes and using multiple controller 

medications was consistent when considering oral corticosteroids (OCS) separated 

from other controller medications (1.87, 1.09–3.21) (data not shown). 

We also analyzed the potential bias of controller medications in the phenotype 

classification, particularly in the B-Eos-high and FeNO-high phenotypes (Figure 7).  

 

No significant differences in asthma related treatment were found between the 

phenotypes, with exception for a higher proportion of patients treated with ICS within 

the FeNO-high and B-Eos-high phenotypes compared to those with B-Eos&FeNO-low 

phenotype (p = 0.03). When restricting to subjects with a single asthma phenotype no 

significant differences were found. 

Moreover, sensitivity analyses showed that the proportion of total overlap (weighted 

53%), and the associations between having multiple phenotypes and asthma outcomes 

were similar when imputing all missing values (data not shown). The goodness-of-fit 

test revealed adequate fitting for all regression models, except when using 

FEV1/FVC<LLN as dependent variable (Table 9) and no statistically significant 

interactions between co-variables were observed. 

Figure 7. Proportions of subjects having asthma controller medications stratified into the 

different phenotypes. Left: all participants included for asthma phenotype classification. Right: 

and only in those with a single phenotype. NA: Non-applicable (as some participants had both B-

Eos-high and FeNO-high asthma phenotypes) 
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3.2 Study II 

 

Amaral, R., Pereira, A. M., Jacinto, T., Malinovschi, A., Janson, C., Alving, K., & 

Fonseca, J.A.  

“Comparison of hypothesis- and data-driven asthma phenotypes in 

NHANES 2007-2012: the importance of comprehensive data 

availability”.  

Clinical and Translational Allergy. 2019; 9:17. 

 

 

 

The aim of study II (Appendix III) was to compare previously defined hypothesis-driven 

asthma phenotypes with data-driven asthma phenotypes derived by applying latent 

class analysis, in a sample of adults representative of the US general population. 
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Methods 

 

Study setting and participants 

We have included subjects that participated in the NHANES study, a nationally 

representative survey of the civilian, non-institutionalized US population performed with 

the aim of gathering data regarding health and nutritional status. Protocols were 

approved by the National Center for Health Statistics Research Ethics Review Board 

and all participants gave written informed consent.  

Data from three NHANES surveys was used (n=30,442). We included adults (≥18 

years old) with current asthma (n=1,059), defined by a positive answer to the questions 

(Amaral et al., 2018a): “Has a doctor ever told you that you have asthma?” together 

with “Do you still have asthma?”, and either “wheezing/whistling in the chest in the past 

12 months” or “asthma attack in the past 12 months.”  

Variables 

Anthropometric and demographic characteristics, such as age, gender, BMI, and 

smoking status were analysed, as well as B-Eos count, FeNO and spirometric 

parameters. FeNO and spirometry were performed following ATS/ERS 

recommendations (Miller, 2005; Silkoff, 2005). Basal predicted values of FEV1 and FVC 

were calculated (Hankinson et al., 1999; Hankinson et al., 2010) and abnormal values 

were defined as being below the LLN (Stanojevic et al., 2008). 

The main questions used to define the asthma-related questions were collected from 

the structured clinical interview assessment. Variables were defined by the following 

questions:  

- Smoking status: current smoker defined as smoking at least one cigarette every day 

for one year; ex-smokers reported having quit smoking for more than one month; 

non-smokers reported neither smoking nor ex-smoking. 

- Self-reported chronic bronchitis/emphysema: Positive answer to either “Has a doctor 

ever told you/SP that you had chronic bronchitis?” or “Has a doctor ever told you/SP 

that you had emphysema?” 
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- Age of chronic bronchitis/emphysema diagnosis: defined with the answer to the 

question “How old were you when you were first told you had chronic 

bronchitis/emphysema?” 

- Age of asthma onset: defined with the answer to the question “How old were you 

when you were first told you had asthma?” 

- Wheezing attack: defined if at least one was reported to the question “In the past 12 

months, how many attacks of wheezing or whistling have you?” 

- Wheezing with exercise: Positive answer to “In the past 12 months, has your chest 

sounded wheezy during or after exercise or physical activity?” 

- Sleep disturbance by wheezing: defined if at least one was reported to the question 

“In the past 12 months, how often, on average, has your sleep been disturbed 

because of wheezing?” 

- Limit activity by wheezing: defined if at least a little amount was reported to the 

question to “During the past 12 months, how much did you/SP limit your usual 

activities due to wheezing or whistling?” 

- Absenteeism by wheezing: defined if at least 1 to 7 days option was reported to the 

question “During the past 12 months, how many days of work or school did you miss 

due to wheezing or whistling?” 

- Asthma-related emergency department visits: Positive answer to “During the past 12 

months, have you had to visit an emergency room or urgent care center because of 

asthma?” 

- Hay fever: Positive answer to “During the past 12 months, have you had an episode 

of hay fever?” 

- Oral corticosteroids use: Positively answer to “In the past month, have you used or 

taken medication for which a prescription is needed?” and then reported OCS use. 

Hypothesis-driven asthma phenotypes 

The analysis based on the report of smoking status, presence of obesity and 

inflammatory markers enabled the definition of five asthma phenotypes (Amaral et al., 

2018a): B-Eos-high asthma phenotype, if B-Eos ≥ 300/mm3; FeNO-high asthma, if 

FeNO ≥ 35ppb; B-Eos&FeNO-low asthma, if B-Eos < 150/mm3 and FeNO < 20ppb; 

AwObesity, if BMI ≥ 30 kg/m2; and AwCOPD, if subjects had self-reported chronic 

bronchitis/emphysema with age of diagnosis ≥40 years and being either a current or an 
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ex-smoker (ever smoked). Subjects were considered as “non-classified” if they did not 

meet the criteria for any of the defined asthma phenotypes. Additionally, to account for 

individuals with probable co-existence of asthma and COPD and minimize age as a 

confounding variable, we conducted the analysis considering two age groups: <40 and 

≥40 years old (Amaral et al., 2018a). 

Data-driven asthma phenotypes 

LCA was used to identify asthma phenotypes in an unsupervised manner, i.e. without 

the need for historical or a priori assumptions (data-driven approach). Each participant 

was assigned to one class for each measure with the highest posterior class 

membership probability. The most appropriate number of classes was determined by 

examining commonly used criteria, including the Akaike Information Criterion (AIC), the 

Bayesian Information Criterion (BIC), the sample size-adjusted BIC, the Lo-Mendell-

Rubin Likelihood Ratio Test, and the entropy (Muthén & Muthén, 2012).  

Two models for “current asthma” were developed (Table 11): Model 1 was based on 

the 4 variables previously used to define the hypothesis-driven asthma phenotypes 

(BMI ≥30kg/m2, ever-smoking status, FeNO ≥35ppb, B-Eos ≥300/mm3) (Amaral et al., 

2018a); and in Model 2, we have added to the former 4 variables, sex, early asthma 

onset (<16 years old), wheezing-related questions (presence/absence of at least one 

wheezing attack, wheezing with exercise, sleep disturbance by wheezing, limit activity 

by wheezing, absenteeism by wheezing), asthma-related ED visit in the previous 12 

months, FEV1/FVC <LLN, FEV1<LLN, and self-reported hay fever.  

Additionally, to explore the results in different “asthma populations”, we’ve developed 

two other models using similar variables. For the “ever asthma” subgroup (model 3) we 

included subjects with a positive answer to “Has a doctor ever told you that you have 

asthma?” (n=2,611); and for the “difficult asthma” (model 4) we included subjects with 

poor asthma-related outcomes, defined as current asthma plus, at least, one of the 

following: asthma-related ED visit, FEV1<LLN, or oral corticosteroids use in the past 30 

days (n=673) (Table 11).  

Latent class models were derived independently for each age group, using the same 

variables, and a secondary analysis without stratifying by age was done on the three 

asthma subgroups. 

 



56 
 

Table 11. Description of the LCA-models and the respective included variables in the 

different “asthma populations”. In gray is the selected model used to compare with the 

hypothesis-driven asthma phenotypes 

 

Variables included in the model  

Number of LCA classes  
(p-value*) 

<40 yrs 
old 

≥40 yrs 
old 

Without age 
stratification 

Model 1 

“Current 

asthma” † 

n= 1,059 

- BMI ≥30kg/m2 (Y/N) 

- Ever smoked (Y/N) 

- FeNO ≥35ppb (Y/N) 

- B-Eos ≥300/mm3 (Y/N) 

1 

(N/A) 

1 

(N/A) 

1 

(N/A) 

Model 2 

“Current 

asthma” † 

n= 1,059 

- BMI ≥30kg/m2 (Y/N) 

- Ever smoked (Y/N) 

- FeNO ≥35ppb (Y/N) 

- B-Eos ≥300/mm3 (Y/N) 

- Sex (M/F) 

- Early asthma onset (Y/N) 

- Wheezing-related questions (Y/N): 

at least one wheezing attack, 

wheezing with exercise, sleep 

disturbance/limit 

activity/absenteeism by wheezing 

- FEV1/FVC <LLN (Y/N) 

- FEV1<LLN (Y/N) 

- Asthma-related ED visit (Y/N) 

- Hay fever (Y/N) 

2 

(0.003) 

2 

(0.04) 

2 

(<0.001) 

Model 3 

“Ever 

asthma” ‡ 

n= 2,611 

- BMI ≥30kg/m2 (Y/N) 

- Ever smoked (Y/N) 

- FeNO ≥35ppb (Y/N) 

- B-Eos ≥300/mm3 (Y/N) 

- Sex (M/F) 

- Early asthma onset (Y/N) 

- Wheezing-related questions (Y/N): 

at least one wheezing attack, 

wheezing with exercise, sleep 

disturbance/limit 

activity/absenteeism by wheezing 

2 

(<0.001) 

2 

(0.001) 

2 

(<0.001) 
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- FEV1/FVC <LLN (Y/N) 

- FEV1<LLN (Y/N) 

- Asthma-related ED visit (Y/N) 

- Hay fever (Y/N) 

Model 4 

“Difficult 

asthma” ¥ 

n= 673 

- BMI ≥30kg/m2 (Y/N) 

- Ever-smoking status (Y/N) 

- FeNO ≥35ppb (Y/N) 

- B-Eos ≥300/mm3 (Y/N) 

- Sex (M/F) 

- Early asthma onset (Y/N) 

- Wheezing-related questions (Y/N): 

at least one wheezing attack, 

wheezing with exercise, sleep 

disturbance/limit 

activity/absenteeism by 

wheezing; 

- Hay fever (Y/N) 

1 

(N/A) 

1 

(N/A) 

1 

(N/A) 

Legend: N/A: not applicable; Y/N: Yes/No; BMI: body mass index; FeNO: Fractional exhaled 

nitric oxide; B-Eos: Blood eosinophils count; FEV1: Forced Expiratory Volume in the first 

second; FVC: Forced vital capacity; LLN: Lower limit of normality; ED: Emergency department. * 

p-value obtained by the Lo-Mendell-Rubin Likelihood Ratio Test. † Current asthma defined as a 

positive answer to the questions: “Has a doctor ever told you that you have asthma?” together 

with “Do you still have asthma?”, and either “wheezing/whistling in the chest in the past 12 

months” or “asthma attack in the past 12 months.” ‡ Ever asthma defined as a positive answer 

to “Have you ever had asthma?” ¥ Difficult asthma defined as current asthma plus, at least, one 

of the following: asthma-related ED visit in the previous 12 months, FEV1<LLN, or LLN, or oral 

corticosteroids use in the past 30 days. 

 

Statistical analysis 

All analyses considered the complex multistage sampling and 6-year sampling weights 

provided by the NHANES documentation (CDC & National Center for Health Statistics, 

2013). LCA was performed with MPlus (version 6.12), that considered the complex 

survey design of NHANES when performing LCA-modelling. All other analysis was 

performed in Stata/IC 15.1 (Stata Corp, College Station, TX, USA). A p-value <0.05 

was considered statistically significant. 
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Results 

 

We included 1,059 adults with current asthma. The weighted proportions of the 

previously defined hypothesis-driven asthma phenotypes, according to age groups 

(<40 and ≥40 years old) were, respectively: 42% and 53% with AwObesity; 34% and 

37% with B-Eos-high asthma; 26% and 21% for B-Eos&FeNO-low; 18% and 19% with 

FeNO-high asthma; and 19% AwCOPD, in the older group (Amaral et al., 2018a). In 

addition, 17% and 12% of the individuals in the <40 and ≥40 years old groups, 

respectively, were categorized as “non-classified”. 

In Model 1, LCA was not able to differentiate any asthma subgroup among subjects 

with current asthma (Table 11). On the other hand, by adding more asthma-related 

variables (Model 2), LCA identified a two-class model as the best solution for both age 

groups (Table 11 and Table 12). Classes A<40 years (n=290;75%) and A≥40 years 

(n=494;73%) had marked predominance of highly symptomatic asthma subjects, with 

poorer lung function, compared to classes B<40 years (n=96;25%) and B≥40 years 

(n=179;27%), respectively (Table 12). Regarding inflammatory markers, the proportion 

of patients with high levels of B-Eos and FeNO was not significantly different between 

classes, both in the younger group (p= 0.99 and p=0.82, respectively) and in the older 

group (p=0.57 and p=0.53). 

Figure 8 shows that the distribution of the hypothesis-driven phenotypes is similar 

(p>0.05) in both classes identified by LCA regardless age group.  

Additionally, LCA identified 2 classes on the models for “ever-asthma” and “current 

asthma” without stratifying by age, but not for the difficult-asthma sub analysis where 

no subgroup was identified (Table 11). 
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Table 12. Proportions of each variable according to the LCA-classes identified in Model 

2 (subjects with current asthma, n=1,059). Variables are ordered by the highest mean 

difference between the 2 classes of each age group and each coloured box represents 

the prevalence of the variables within the class, ranging from 0% (light yellow) to 100% 

(red). 

Class A<40 
years 

n=290 (75%) 

Class B<40 
years 

n=96 (25%) 
Variables 

Class A≥40 
years 

n=494 (73%) 

Class B≥40 
years 

n=179 (27%) 
99% 0% Limit activity by wheezing 65% 2% 
76% 0% Wheezing with exercise 68% 8% 
64% 0% Sleep disturbance by wheezing 63% 0% 
66% 34% Wheezing attack 99% 45% 
29% 10% FEV1/FVC <LLN 34% 15% 
19% 0% Absenteeism by wheezing 16% 0% 
28% 14% ED by asthma 26% 11% 
41% 59% Female 66% 55% 
20% 11% FEV1 <LLN 35% 19% 
16% 25% FeNO ≥35 ppb 21% 15% 
34% 35% B-Eos ≥300/mm3 40% 30% 
47% 41% Ever smoked 61% 56% 
26% 20% Hay fever 44% 46% 
43% 41% BMI ≥30kg/m2 55% 52% 
51% 50% Early asthma onset 25% 22% 

Legend: FEV1: Forced Expiratory Volume in the first second; FVC: Forced vital capacity; LLN: 

Lower limit of normality; ED: Emergency department; FeNO: Fractional exhaled nitric oxide; B-

Eos: Blood eosinophils count; BMI: body mass index. 
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Figure 8. Distribution of the hypothesis-driven asthma phenotypes according to the 

data-driven classes identified in Model 2 (subjects with current asthma). Both Class A<40 

and Class A≥40 are the phenotypes with more asthma-related symptoms and low lung function. 

No significant differences (p>0.05) were observed between the proportions of the hypothesis-

driven within the data-driven phenotypes. NS: Non-significant 
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3.3 Study III 

 

Amaral, R., Bousquet, J., Pereira, A.M., Araújo, L., Sá-Sousa, A., Jacinto, T., Almeida, 

R., Delgado, L. & Fonseca, J.A.  

“Disentangling the heterogeneity of allergic respiratory diseases by 

latent class analysis reveals novel phenotypes”.  

Allergy. 2019; 74(4), 698-708. 

 

 

 

The aim of study III (Appendix IV) was to identify distinct classes of allergic respiratory 

diseases using latent class analysis, in Portuguese adults from a general population 

sample and to explore the most relevant clinical variables that could be used to 

distinguish each class, using classification and regression tree analysis. 
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Methods 

 

Sample and study design 

This is a secondary analysis of a national and cross-sectional study conducted in the 

Portuguese general population, ICAR (Control and Burden of Asthma and Rhinitis) 

study (Sá-Sousa et al., 2019). All subjects that have been included in the first 

Portuguese National Asthma Survey (INAsma) (Sá-Sousa et al., 2012; Sá-Sousa et al., 

2015) and that have expressed their willingness to participate in a clinical assessment, 

were eligible for ICAR study, along with their family members. Briefly, INAsma study 

was a nationwide, telephone interview study, aiming to evaluate asthma prevalence 

and control among the Portuguese population (Sá-Sousa et al., 2012; Sá-Sousa et al., 

2015). It was based on a random sample of households within each municipality, using 

a list of landline phone numbers. 

Participants were then screened by telephonic interview into one of the groups: self-

reported diagnosis of asthma or/and rhinitis, and participants with no history of 

respiratory symptoms or diseases (Table 13), only to ensure that all the requirements 

of the sample size were fulfilled and not for disease diagnostic purposes. Additionally, 

an advertisement in the local media invited volunteers to participate in the clinical 

assessment regardless of previous diagnosis, to increase sample size (Figure 9). 

 

Table 13. Distribution of the pre-screening categories according to the obtained LCA 

classes, in the ICAR participants 

Self-reported 
diagnosis: 

Asthma and 
rhinitis  
n=104 

Rhinitis only  
n=268 

Asthma only  
n=48 

Without 
asthma/rhinitis 

n= 308 
Class 1 3 (3) 21 (8) 3 (6) 155 (50) 
Class 2 6 (6) 67 (25) 4 (8) 80 (26) 
Class 3 15 (14) 23 (9) 12 (25) 27 (9) 
Class 4 14 (14) 74 (28) 4 (8) 10 (3) 
Class 5 18 (17) 53 (20) 11 (23) 32 (10) 
Class 6 48 (46) 30 (11) 14 (29) 4 (1) 
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Figure 9. Diagram summarizing the inclusion of individuals. † Participants from the 

INAsma study that stated willingness to participate in a clinical assessment; ‡ Volunteers were 

family members of the INAsma patients or recruited by advertisement in the local media. 

 

Data collection took place between 30th October 2012 and 12th July 2014, at the 

participants’ communities, encompassed all districts of the continent, using a mobile 

diagnostic unit or at two allergy clinics in Lisbon and Porto, based on geographical 

convenience. It comprised anthropometric measurements, lung function, inflammation 

and allergy tests, a structured clinical assessment and standardized questionnaires. 

The data collection was part of a funded FCT project (PTDC/SAU‐SAP/ 119192/2010). 

ICAR study enrolled 858 participants, from 3 to 89 years-old, with and without self-

reported asthma and/or rhinitis (Figure 9) and, for this analysis, we considered all 

adults (≥ 18 years old, n=728) (Table 13).  

Ethical approval was obtained from the Hospital Ethics Committee (Comissão de Ética 

do Hospital São João, E.P.E) and national data protection committee (n.12372/2011). 

All participants gave written informed consent. The paper follows the STROBE 

guidelines for reporting observational studies (von Elm et al., 2008). 
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Variables 

Demographic characteristics, such as age, gender, BMI and smoking status were 

analyzed. Data regarding nasal, bronchial and ocular symptoms, bronchial 

exacerbation and unscheduled medical visit, in the last 12 months, were collected by 

clinical interview, performed by a trained physician. 

Variables were defined by the following questions:  

- Smoking status: Non-smokers were considered if participants smoked <100 

cigarettes in life-time; current smoker if responded “Every day”/ “Some days” to the 

question: “Do you now smoke cigarettes?”; and a response of “Not at all” was 

coded as former smoker. 

- Age at onset of the bronchial symptoms: “How old were you when you begin to 

have asthma symptoms?” 

- Bronchial exacerbation was defined as bronchial symptoms worsening, in the 

past 12 months, with/without the need for oral corticosteroid use, assessed in the 

clinical interview.  

- Unscheduled medical visit was defined as having at least one emergency 

department and/or any unscheduled medical attendance due to bronchial 

exacerbation, in the previous 12 months. 

- Sneezing: “During the past 12 months, have you had a problem with sneezing 

when you did not have a cold or the flu?” 

- Rhinorrhea: “During the past 12 months, have you had a problem with runny 

nose when you did not have a cold or the flu?”  

- Nasal pruritus: “During the past 12 months, have you had a problem with itchy 

nose when you did not have a cold or the flu?”  

- Nasal congestion: “During the past 12 months, have you had a problem with 

blocked nose when you did not have a cold or the flu?” 

- Impaired sleep due to nasal symptoms: “During the past 12 months, have these 

nose problems disturbed your sleep?” 

- Impairment in daily activities by nasal symptoms: “During the past 12 months, 

have these nose problems interfere in your daily activities?” 

- Impairment in work/school by nasal symptoms: “During the past 12 months, have 

these nose problems interfere in your work or school?” 

- Dyspnea: “In the past 12 months have you had shortness of breath/dyspnea?” 

- Dyspnea at night: “In the past 12 months have you woke up during the night due 

to shortness of breath/dyspnea?” 
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- Wheezing: “In the past 12 months have you had wheezing or whistling in your 

chest?” 

- Chest tightness: “In the past 12 months have you had chest tightness?” 

- Watery eyes: “In the past 12 months have you had watery eyes?” 

- Itchy eyes: “In the past 12 months have you had itchy eyes?” 

 

Nasal severity score was adapted from the ARIA severity score (Bousquet et al., 2018) 

and it was calculated using questions regarding impact of nasal symptoms on daily 

activities, work and sleep, ascribed with the score 1 if “Yes” and 0 if “No”. The nasal 

severity score was then categorized as “no/mild impairment” (ranging 0-2) and “severe 

impairment” (score=3).  

Additionally, a diagnosis of rhinitis, asthma and other allergic diseases was established 

by an allergy specialist according to the structured and complementary exams. The use 

of asthma/allergy medication in the last 12 months, was also analyzed. 

Measurements 

The structured interview was conducted by a trained physician and included: physical 

examination; use of health resources and medications due to asthma/rhinitis; detailed 

personal and family medical history. The self-administered questionnaires have been 

previously reported (Sá-Sousa et al., 2019) and included detailed questions on recent 

or past respiratory symptoms and diseases control. 

Allergic sensitization was assessed by skin-prick tests (SPT), following the GA2LEN 

recommendations (Bousquet et al., 2012). The standardized allergen panel included 28 

allergens (Stallergenes Greer®, France) (Heinzerling et al., 2005), categorized into 6 

groups: mites (Dermatophagoides pteronyssinus, Lepidoglyphus destructor, 

Dermatophagoides farinae and Glycyphagus domesticus), dog and cat epitheliums, 

tree (olive, plane, birch, cypress, pine, poplar, cork, oak, chestnut, hazel, alder), weed 

(Parietaria judaica, Artemisia vulgaris, Plantago lanceolata, Ambrosia tryphida, 

Chaenopodium album and Urtica dioica), grass pollens mixtures and molds 

(Penicillum, Cladosporium, Aternaria alternata and Aspergillus fumigatus). All SPTs 

included a positive (histamine 10 mg/ml) and negative control (saline/glycerol) 

(Heinzerling et al., 2013). Allergic sensitization was defined by a positive SPT with a 

mean wheal diameter ≥3 mm, for at least one of the 6 groups of allergens. 

Monosensitization and polysensitization were defined, respectively, as sensitization to 

only one and to two or more groups of allergens. Furthermore, sensitization data of 25 

participants with current antihistamine medication were considered as missing. 
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Total IgE, serum ECP and B-Eos were obtained from blood sampling. Phadiatop® 

(Thermo Fisher Scientific, Uppsala, Sweden) was used as a screening test; if ≥0.35kU/l 

the sample was considered as Phadiatop-positive, and additional determinations were 

performed to assess individual allergen-specific IgE antibody concentrations.  

Predicted values of basal FEV1 and bronchodilator response were obtained by 

spirometry procedure, following the ATS/ERS recommendations (Hankinson et al., 

1999; Miller, 2005). FEV1 were considered abnormal if less than the LLN (Quanjer, 

Cole, Hall, & Culver, 2013). FeNO measurements were performed using NIOX MINO® 

(Aerocrine, Solna, Sweden), following the ATS/ERS criteria (Silkoff, 2005).  

Biases 

To reduce the risk of bias, several quality assurance measures were followed: research 

assistants performing the evaluations were blinded to the subject classification at 

screening; data validity was periodically verified soon after being collected and custom 

statistic algorithms were used to detect extreme, illogical and missing value and 

amendments to the protocol were done if necessary.  

Statistical analyses 

Categorical variables are presented as absolute frequencies and proportions. 

Continuous variables were presented according to their distributions. The socio-

demographic and clinical variables of the classes derived from the LCA were described 

and compared using chi-square test, one-way analysis of variance and Kruskal-Wallis 

test with Bonferroni correction.  

Mplus 6.12 (Los Angeles, CA: Muthén & Muthén) was used to conduct LCA analysis 

and R 3.3.3 (https://www.r-project.org/) to establish the classification model and build 

the respective decision tree, using the “rpart” and “DMwR” packages, respectively.  All 

other analyses were performed using SPSS Statistics 25.0 (Armonk, NY: IBM Corp) 

and p-values <0.05 were defined as statistically significant. 

Unsupervised analysis 

LCA was applied to identify underlying unobserved (latent), mutually exclusive 

subgroups (classes) based on categorical manifest variables without the need for 

historical or a priori assumptions (Wang & Wang, 2012). Nineteen dichotomic variables 

(defined as Yes/No) were chosen regarding nasal, ocular and bronchial symptoms and 

the 6 groups of AS. The optimal number of classes resulting from the nineteen 

variables was determined by evaluating k classes versus k-1 classes sequentially, until 
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adding an additional class was no longer significantly improved, measured by Lo-

Mendell-Rubin-Adjusted Likelihood Ratio test. The best model was determined by the 

largest entropy and the lowest BIC values. 

Supervised analysis 

Classification and regression tree (CART) analysis was performed to obtain the 

classification tree algorithm, using Gini impurity index and the Cost-Complexity pruning 

algorithm (Witten & Frank, 2005). This algorithm consists in generating a sequence of 

sub-trees of an overly large tree, then obtain individual reliable error estimates by 

cross-validation estimation procedure. The chosen result is within one standard error of 

the tree with best error estimate, to avoid overfitting and validating the classification 

tree internally. Variables that did not contribute significantly were automatically 

removed from the final model.  

The algorithm allows to select the variables most likely to identify LCA-classes, which 

included parameters easily accessible in most outpatient settings. Variables included in 

the CART analysis were the following: demographic characteristics (gender, age, and 

BMI); presence of nasal (sneezing, rhinorrhea, nasal pruritus, nasal congestion), 

bronchial (dyspnea, dyspnea at night, wheezing, chest tightness) and ocular (watery 

eyes, itchy eyes) symptoms (Yes, if at least one symptom is present/No, without 

symptoms); nasal-related impairment: disturbed sleep (Yes/No), impairment of daily 

activities (Yes/No) and work/school (Yes/No), due to nasal symptoms; objective 

measures: number of groups allergic sensitization by SPTs, FEV1 (categorized as 

<LLN and ≥LLN), and FeNO values. 

Variable importance was given by Gini index (ranging 0-100%) (Sauve & Tuleau-Malot, 

2014). Additionally, we randomly divided the dataset into a training (70%) and a test set 

(30%) to obtain a reliable estimate of the model’s predictive performance. Cohen's 

kappa coefficient (kappa) was used to evaluate model performance for imbalanced 

datasets (Koch & Landis, 1977), using the “cohen.kappa” function of the “psych” 

package in R software. 
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Results 

 

Sample characteristics 

728 adults (63% female) were included, mean(sd) age of 43.9(15.2) years, 61% were 

non-smokers and 11% were taking ICS. Demographic and clinical characteristics of the 

6 classes are shown in Table 14. 

Latent class analysis  

A six-class model was selected as the best solution for these data, with a significantly 

better fitting than a five-class model (p=0.013), and a non-significantly different fit from 

a seven-class model (p=0.363) (Table 15). Furthermore, entropy of the six-class model 

was 0.873, a good overall certainty in classification.  

Figure 10 presents the probability of latent class membership for each of the six-class 

LCA model and Table 16 shows the stratification of the LCA-classes, according to 

clinical and allergic profiles. Average posterior probabilities were at least 89% for all 

classes, indicating a low chance of misclassification. 

Two classes were characterized by non-allergic participants (>70% with negative SPT): 

classes 1 (n=182;25%) and 5 (n=114;16%). Class 1 had very low probability of having 

respiratory or ocular symptoms. Class 5 had a very high probability of having nasal, 

bronchial and ocular symptoms with nasal severe impairment (nasal severity score≥3).  

Three classes were predominantly allergic (100% sensitization): classes 3 (n=77; 

11%), 4 (n=96; 13%) and 6 (n=102; 14%). Class 3 had a high probability of nasal and 

ocular symptoms without severe nasal impairment (score ≤2). Classes 4 and 6 

predominantly had high nasal and ocular symptoms with nasal impairment, differing by 

the absence (Class 4) or presence of bronchial symptoms (Class 6).  

Class 2 (n=157; 22%) was characterized by participants with a very high probability of 

having nasal symptoms without severe nasal impairment, with a moderately increased 

probability of ocular symptoms, and 55% of them were allergic.  



69 
 

Table 14. Demographics and clinical characteristics of the 6 LCA-derived classes 

 Total  
(n=728) 

Class 1  
 (n=182;25%) 

Class 2  
 (n=157;22%) 

Class 3  
 (n=77;11%) 

Class 4  
 (n=102;14%) 

Class 5 
 (n=114;16%) 

Class 6  
 (n=96;13%) 

p-value 

Female, n (%) 461 (63) 105 (58) 89 (57) 45 (58) 65 (64) 95 (83) 62 (65) <0.001* 
Age, mean (sd) 43.9 (15.2) 46.9 (16.5) 45.5 (16.4) 39.9 (14.8) 40.3 (12.9) 45.2 (13.4) 41.3 (13.2) <0.001** 

BMI, mean (sd) 25.9 (4.7) 26.6 (4.7) 25.1 (4.0) 25.8 (4.3) 25.2 (4.6) 25.8 (5.0) 27.1 (5.3)  0.003 ** 
Age of bronchial 
symptoms onset, 
median (P25-P75) 

8.0 
(3.0-20.0) 

6.0  
(1.0-13.0) 

3.0  
(2.0-18.0) 

5.0  
(3.0-7.5) 

7.0  
(2.0-12.0) 

15.0  
(3.0-25.0) 

12.0  
(4.0-30.0) 

0.06*** 

Smoking status, n (%)         
Non-smoker  441 (61) 108 (59) 95 (60) 47 (61) 67 (66) 75 (66) 49 (51) 

0.01* Smoker 154 (21) 47 (26) 33 (21) 20 (26) 17 (17) 22 (19) 15 (16) 
Ex-smoker 133 (18) 27 (15) 29 (18) 10 (13) 18 (18) 17 (15) 32 (33) 

Packs-year, mean (sd) 5.9 (12.8) 8.3 (15.6) 6.5 (14.2) 5.0 (10.6) 3.6 (8.4) 4.2 (8.4) 5.7 (14.0) 0.03 ** 
Current medication, n 
(%) 

        

ICS 81 (11) 3 (2) 6 (4) 14 (18) 5 (5) 18 (16) 35 (36) <0.001* 
Number of AS groups, 
median (P25-P75) 

2.0  
(0-6.0) 

0  
(0-0.7) 

1.0  
(0-2.0) 

4.0  
(3.0-5.0) 

4.0  
(3.0-5.0) 

0  
(0-0) 

4.0  
(3.0-6.0) 

<0.001 *** 

Level of sensitization, n 
(%) 

        

Monosensitization† 100 (14) 37 (21) 37 (24) 0 (0) 0 (0) 22 (19) 4 (4) 
<0.001* 

Polysensitization‡ 332 (46) 8 (4) 50 (32) 77 (100) 101 (100) 4 (3) 92 (96) 
Group of AS, n (%)         

Mites 336 (46) 31 (17) 55 (35) 73 (95) 77 (76) 19 (17) 81 (84) <0.001* 
Cat and dog 

epithelium 
220 (30) 2 (1) 18 (11) 64 (83) 60 (59) 7 (6) 69 (72) <0.001* 

Molds 135 (19) 0 (0) 11 (7) 33 (43) 40 (40) 1 (1) 50 (52) <0.001* 
Pollens§ 335 (46) 16 (9) 55 (35) 70 (91) 101 (100) 3 (3) 90 (94) <0.001* 

Lung function         
FEV1% predicted, 

mean (sd) 
97.4 (15.5) 99.4 (16.1) 99.6 (13.3) 95.3 (13.9) 98.9 (13.9) 97.2 (15.6) 90.1 (18.4) <0.001 ** 
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FEV1 <LLN, n (%) 69 (9) 16 (9) 8 (5) 6 (8) 9 (9) 8 (7) 22 (23) <0.001* 
Positive BD, n (%) 55 (8) 11 (6) 5 (3) 7 (9) 4 (4) 12 (11) 16 (17) 0.001* 

Legend: BMI: body mass index; P25-P75: 25th Percentile-75th Percentile; ICS: Inhaled corticosteroids; AS: Allergen sensitizations; FEV1: Forced Expiratory 

Volume in the first second; LLN: Lower limit of normal; BD: Bronchodilatation; † sensitization to 1 group of allergens; ‡ sensitization to 2 or more groups of 

allergens; § including tree, grass and weed sensitizations; * Chi-square test; ** One-way analysis of variance (ANOVA); *** Kruskal-Wallis test. 

 
 
 
 
Table 15. Fit Statistics for LCA Models with 4 through 8 Classes 

Number of classes: 4 5 6 7 8 
AIC 11 815.7 11 646.1 11 498.9 11 456.1 11 363.5 
BIC 12 141.6 12 054.6 11 990.1 12 029.9 12 020.0 
Sample Adjusted BIC 11 916.1 11 772.0 11 650.3 11 633.0 11 565.9 
Entropy 0.861 0.877 0.873 0.866 0.869 
p-value LMR-LRT 0.001 0.014 0.013 0.363 0.305 
Number of parameters 
estimated 

71 89 107 125 143 

Legend: AIC: Akaike Information Criteria; BIC: Bayesian Information Criteria; LMR-LRT: Lo-Mendell-Rubin-Likelihood Ratio Test 
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Figure 10. Proportions for the latent classes based on the estimated posterior 

probabilities 

 

Latent class characteristics 

There were significant differences among the 6 LCA-classes in all variables described 

in Table 14, except in age of bronchial symptoms onset (p=0.06). A female 

predominance across all classes was observed, particularly in Class 5 (83%).  

Most participants in classes 3, 4 and 6 were polysensitized, with the more frequent 

allergic sensitization groups being: mites, pollens and cat/dog epithelia (Table 14 and 

Table 16). Moreover, half of the participants in Class 2 (n=87; 55%) were sensitized, 

particularly to mites (n=55; 35%) and classes 1 and 5 were mainly non-allergic. 
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Table 16. Classification/stratification of the LCA-classes, according to clinical and 

allergic profile 

Class: 1 2 3 4 5 6 
 n=182 n=157 n=77 n=102 n=114 n=96 

Rhinitis symptoms $ 9 72 25 93 86 91 
Asthma symptoms $ 6 6 14 6 28 72 
Ocular symptoms $ 7 38 20 82 61 72 
No. of nasal 
impairment* 

0 0 0 3 3 1 

Sensitization (%)       
No sensitization 75 45 0 0 77 0 
Monosensitized 21 24 0 0 18 4 
Polysensitized 4 32 100 100 3 96 

Group of AS $       
Mite 17 35 92 77 17 83 
Molds 0 6 43 39 1 52 
Dog-cat epitheliums 2 12 79 59 6 71 
Pollen £ 4 14 64 78 1 69 

Total IgE, geom 
mean 

85.5 76.9 202.8 184.8 52.2 227.6 

Specific IgE, median 0  0 3.6 7.4 0  13.2  
Lung function       

FEV1, mean 99.4  99.6 95.3 98.9 97.2  90.1  
Reversibility (%) 6 3 9 4 11 17 

Current ICS use (%) 2 4 18 5 16 36 
Smoking (%) 26 21 26 17 19 16 
Healthcare use (%)       

Bronchial 
Exacerbations  

2 2 15 7 16 54 

Unscheduled 
medical visits  

1 0 7 2 10 37 

Legend: $: mean posterior probabilities (in %); * Any posterior probabilities >50 %; £: Pollens 

included weed, tree and grass. Colour coding: Green boxes indicated the more 

prevalent/frequent variables and yellow boxes the intermediate ones. 
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Regarding the presence of ocular symptoms (Figure 11), the proportion of participants 

with ocular symptoms is significantly higher in those with severe nasal impairment 

(score ≥3), compared to those without nasal impairment (p<0.001). Similarly, the rate of 

participants with ocular symptoms having severe nasal impairment was significantly 

higher when compared to those with mild nasal impairment (score ≤2) (p<0.001) or 

without nasal symptoms (p<0.001). Also, among participants without nasal symptoms, 

the proportion of ocular symptoms was very low (12%). 

Classes 1 and 6 represented two extreme phenotypes: Class 1 was the mildest 

phenotype whereas Class 6 was the most severe, including participants with the lowest 

and the highest values of B-Eos, FeNO and total IgE and proportions of urgent medical 

care, respectively (Table 17 and Figure 12). Class 6 participants had significantly 

higher proportions of current use of ICS, abnormal lung function and positive 

bronchodilation as compared to other classes (Table 14). After Class 6, the non-allergic 

Class 5 had the second highest proportions of participants with current use of ICS 

(16%), positive bronchodilation (11%), and bronchial exacerbations, comparing to other 

classes. 

 

Figure 11. Proportions of participants with ocular symptoms, stratified by (A) the 

presence of nasal-related impairment and (B) ARIA severity score. Presence of nasal-

related impairment defined as at least one of the following questions: impairment of daily 

activities by nasal symptoms, impairment of school/work by nasal symptoms and/or disturbed 

sleep due to nasal symptoms. 
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An “Intermediate” phenotype was found. Class 3 had the lowest mean age, and when 

compared to other classes, had significantly higher proportions of participants with 

sensitization to indoor allergens, with 18% of them having current ICS medication 

(Table 14). Participants in Class 3 had a significantly higher proportion of bronchial 

exacerbations in the past 12 months, compared to classes 1 and 2 (p<0.001) (Figure 

12).  

 

 

Figure 12. Proportions of participants with bronchial exacerbations and 

unscheduled medical visits, stratified by LCA-classes 
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Table 17. Distribution and comparison of FeNO and laboratory tests, according to each obtained LCA-classes 

 Class 1  
 (n=182;25%) 

Class 2  
 (n=157;22%) 

Class 3  
 (n=77;11%) 

Class 4 
(n=102;14%) 

Class 5 
 (n=114;16%) 

Class 6  
 (n=96;13%) 

Significant p-values† 

FeNO, geom 
mean (CI 95%) 

17.9  
(16.0-19.9) 

18.1  
(16.2-20.0) 

24.9  
(18.9-30.9) 

26.5  
(22.0-31.0) 

19.3  
(16.1-22.4) 

35.1 
 (28.7-41.5) 

C1/C4, C1/C6, C3/C4, 
C3/C6, C4/C5, C5/C6 

S-ECP, geom 
mean (CI 95%) 

13.2  
(11.2-15.2) 

14.5  
(11.9-17.1) 

13.2  
(10.6-15.9) 

15.1  
(11.7-18.5) 

12.0  
(9.8-14.3) 

16.8  
(13.7-20.0) 

N.S. 

B-Eos, geom 
mean (CI 95%) 

158.7  
(133.6-183.8) 

177.2  
(152.3-202.0) 

200.9  
(169.0-232.7) 

205.3  
(174.7-236.0) 

189.3  
(161.8-216.8) 

237.2  
(197.4-277.1) 

C1/C2, C1/C4, C1/C6 

Phadiatop® 
sIgE, median 
(P25-P75) 

0  
(0-0) 

0  
(0-1.6) 

3.6  
(0-16.5) 

7.4  
(1.9-23.2) 

0  
(0-0) 

13.2  
(0.6-31.3) 

C1/C3, C1/C4, C1/C6, 
C2/C3, C2/C4, C2/C6, 
C3/C5, C4/C5, C5/C6 

Total IgE, geom 
mean (CI 95%) 

85.5  
(52.4-118.7) 

76.9  
(54.7-99.2) 

202.8  
(138.5-267.0) 

184.8  
(111.0-258.6) 

52.2  
(36.2-68.2) 

227.6  
(170.0-285.3) 

C1/C3, C1/C4, C1/C6, 
C2/C3, C2/C4, C2/C6, 
C3/C5, C4/C5, C5/C6 

Legend: FeNO: Fractional exhaled nitric oxide; CI: Confidence interval; S-ECP: serum eosinophilic cationic protein; B-Eos: blood eosinophilic count; sIgE: 

specific IgE; C: Class; N.S.: non-significant. † significant if p-values<0.05, using Kruskal-Wallis test with Bonferroni correction.
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Serum total IgE levels and Phadiatop® specific IgE were highest in sensitized groups 

(classes 3, 4 and 6) (Table 17). B-Eos values were significantly higher in classes 2, 4, 

and 6 comparing with Class 1. FeNO values were highest in classes 4 and 6, by 

comparison to classes 1, 3, and 5 (p<0.03) (Figure 13). 

 

 
 

Figure 13. Comparison of total IgE, B-Eos and FeNO within each LCA-class. Different 

superscripts (* vs. **) and horizontal lines over bars indicate significant differences between 

classes (p<0.05), using Kruskall-Wallis test with Bonferroni correction. IgE: Immunoglobulin E; 

B-Eos: blood eosinophils count; FeNO: fractional exhaled nitric oxide. 

 

Furthermore, medical diagnosis of rhinitis was common in classes 2, 4, 5 and 6 (Table 

18), while asthma diagnosis was more frequent in Class 6 (75%), and less, but also 

prevalent, in classes 3 and 5 (35% and 31%, respectively). A high proportion of 

conjunctivitis was diagnosed in participants belonging to classes 4, 5 and 6. Class 1 

participants had the lowest proportion of diseases medical-diagnosed, except for the 

proportion of other respiratory diseases (20%) (Table 18). 
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Table 18. Medical diagnosis of the 6 LCA-derived classes 

 Class 1  
 n=182 
(25%) 

Class 2  
 n=157 
(22%) 

Class 3  
 n=77 
(11%) 

Class 4 
 n=102 
(14%) 

Class 5 
 n=114 
(16%) 

Class 6  
 n=96 
(13%) 

Medical diagnosis, n (%)       
Asthma 10 (5) 13 (8) 27 (35) 12 (12) 35 (31) 72 (75) 
Rhinitis 34 (19) 143 (91) 51 (66) 101 (99) 112 (98) 95 (99) 
Conjunctivitis 19 (11) 80 (51) 22 (30) 93 (92) 84 (74) 79 (82) 
Other resp. disease 36 (20) 12 (8) 10 (13) 4 (4) 6 (5) 4 (4) 
Other allergic 
disease 

2 (1) 0 (0) 2 (3) 0 (0) 0 (0) 0 (0) 

 

CART analysis 

Nine terminal nodes were formed in the classification tree (Figure 14), with a kappa 

(95% CI) =0.75 (0.72-0.79). Classification tree showed that ocular symptoms were the 

variable with the highest relative contribution to the model (37%), followed by number 

of AS groups (21%), having impairment of school/work by nasal symptoms (15%), 

presence of bronchial symptoms (13%), having impairment of daily activities (12%) and 

sleep disturbance due to nasal symptoms (3%). 

On the right side of the tree (corresponding to participants sensitized to ≥3 AS groups), 

the presence of bronchial symptoms, distinguished Class 6 from all the others. When 

bronchial symptoms were absent, the presence/absence of impairment in daily 

activities and sleep disturbance by nasal symptoms, differentiated classes 3 and 4. 

Using a training (n=509) and a test set (n=219), the obtained CART algorithm was 

identical and similar kappa was also obtained (kappa [95% CI] = 0.73 [0.67-0.80]). 
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Figure 14. Classification tree algorithm generated by CART analysis using easily accessible parameters available in the clinical setting. (A) At 

least 1 ocular symptom: Watery eyes and/or Itchy eyes. (B) Mites, Cat/dog epitheliums, Tree, Grass, Weed, Molds. (C) Impairment due to nasal symptoms: 

Sneezing, Rhinorrhea, Nasal pruritus, Nasal congestion; (D) At least one bronchial symptom: Dyspnea, Dyspnea at night, Wheezing and/or Chest tightness. 

N: No; Y: Yes. 
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4. Discussion 

 

This chapter provides a general discussion of the results from the three studies that 

compose this thesis. Its major findings are summarized and discussed, followed by its 

strengths, limitations and suggestions for future research. Finally, the concluding 

remarks are presented.  

 

 

4.1 Major findings 

 

A significant overlap of commonly reported, hypothesis-driven asthma phenotypes, was 

observed, in adults with current asthma in a large population sample, derived from the 

US NHANES surveys, with almost half of them having two or more concomitant 

phenotypes. Furthermore, having multiple asthma phenotypes, regardless of their 

classification, was associated with poorer asthma outcomes, namely the increased use 

of controller medication and reduced lung function.  

In the same adults with current asthma, two data-driven phenotypes were identified 

using an unsupervised classification method, LCA, only differing on asthma-related 

symptoms and lung function.  

The prevalent phenotypes overlap and the fact that only two data-driven phenotypes 

were identified, suggests that the clinical and physiological variables commonly used to 

subdivide asthma seem to be insufficient to differentiate specific asthma phenotypes in 

this population, regardless of using data-driven or hypothesis-driven approaches. 

This suggestion was then corroborated when studying the comprehensive disease 

features available in the ICAR study, conducted in the Portuguese general population. 

Novel data-driven phenotypes of allergic respiratory diseases with co‐occurrence of 

ocular, nasal and bronchial symptoms, and prone to exacerbations were revealed. 

Also, for the first time, ocular symptoms per se were used in LCA and were ranked, by 

a classification tree algorithm, as the most relevant variable to differentiate allergic 

respiratory diseases phenotypes. 
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In this work, we analysed multiple diseases/conditions not only using data-driven 

methods but also in individuals recruited directly from the general population rather 

than health services settings, unlike most studies that usually analyse severe disease 

phenotypes or data derived from tertiary care alone (Lefaudeux et al., 2017; Moore et 

al., 2010; Wu et al., 2014). Moreover, to our knowledge, this is the first time CART 

analysis is studied in a population‐based study of ARD, using parameters easily 

accessible in most outpatient settings, with a potential to be further validated and 

applied in a routine clinical practice. 

 

 

4.2 Interpretation of the results 

 

In Study I five hypothesis-driven asthma phenotypes frequently used in the literature 

were defined (Bousquet et al., 2016), and a high overlap was shown between them. 

This finding was similar to the Tran et al. study (2016), that used datasets from 

previous NHANES surveys to evaluate the overlap of asthma phenotypes. However, 

the latter study focused only on allergic asthma phenotypes, based on IgE levels, and 

was therefore limited to the 2005–2006 survey that lacks data on FeNO. Other distinct 

subgroups of asthma phenotypes are increasingly being reported due to its 

characteristics of steroid therapy resistance and lack of inflammatory markers, e.g. 

subjects with asthma without evidence of type-2 inflammation (Th2-low phenotype) 

(Fahy, 2015; Robinson et al., 2017); obese asthmatic subjects (obesity-related asthma 

phenotype) (Gibeon et al., 2013); and patients with ACOS (Christenson et al., 2015). 

Therefore, in Study I, a broader analysis of phenotypes that included not only the 

eosinophil- and FeNO-based phenotypes (B-Eos-high, FeNO-high, and B-Eos&FeNO-

low), but also other phenotypes not defined by biomarkers (AwObesity, AwCOPD) was 

found using a much larger dataset (six years NHANES survey). 

Interestingly, there is a significant additive effect of having more than one asthma 

phenotype (regardless the specific combination) in abnormal FEV1 and some asthma-

related outcomes, such as using more controller medications, supporting the view that 

these patients are the ones with a more complex disease and a higher asthma 

morbidity (Anto et al., 2017b; Onder et al., 2015). This also suggests that these asthma 

patients may have an inadequate response to prescribed therapies since lung function 

was reduced and that they may represent a group of patients with the need of add-on 
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treatments, such as biological therapies; however, the choice of specific treatments will 

be more difficult considering the complexity introduced by having multiple phenotypes. 

The more prevalent combinations of phenotypes observed in this study were 

AwObesity together with either B-Eos-high or B-Eos&FeNO-low phenotypes. This 

supports the view that obesity-related asthma, despite often suggested to be a 

separate asthma phenotype associated with non-eosinophilic airway inflammation, may 

also be associated with eosinophilic inflammation (Bates et al., 2017; Leiria, Martins, & 

Saad, 2015). Also, it is of note that there were 77 subjects with asthma that could not 

be classified as having any of the studied phenotypes, supporting the fact that there is 

a considerable number of asthma patients whose clinical phenotype is not easily 

classified (e.g. asthmatics with irreversible airflow obstruction, patients with similar 

airways symptoms but with different pattern of airway inflammation), which suggests 

the presence of sub-phenotypes (Agusti et al., 2016; Christenson et al., 2015; Froidure 

et al., 2016; Zedan, 2015). 

Furthermore, in Study I, previous observations were extended regarding B-Eos and 

FeNO being independently associated with current asthma and asthma-related 

outcomes (Malinovschi et al., 2013). In this study, using the highest cut-off for FeNO 

(35 ppb), we still had more than 30% of asthma patients with B-Eos <300/mm3, 

supporting the view that each biomarker partially reflects a different inflammatory 

pathway with a separate trigger mechanism and the use of both biomarkers seems to 

provide added value for asthma classification (Malinovschi et al., 2013; Malinovschi et 

al., 2016). A striking example is the treatment with type 2-high-driven therapies 

targeting Th2 cytokines (IL-5, and IL-4/IL-13) which have different acting pathways: the 

anti-IL-5 biologic Mepolizumab led to a decrease in blood and sputum eosinophils but 

not FeNO (Haldar et al., 2009; Pavord et al., 2012). This fact is in line with the 

hypothesis that FeNO is primarily driven by IL-4/IL-13. In contrast, treatment with the 

anti-IL-13 biologic Lebrikizumab led to an increase in blood eosinophils and a decrease 

in FeNO (Corren et al., 2011). 

As shown by our research (Amaral et al., 2016; Amaral et al., 2018a), the complexity 

and unique features of the concomitant asthma phenotypes when categorizing asthma 

in adults, suggest that using only the “classical” (theory-driven) approach, do not have 

enough robustness and may require a broader interventional approach. A combination 

of hypothesis and data-driven approaches could result in better characterization of the 

asthma patients, as defended by other authors (Belgrave et al., 2016; Bousquet et al., 

2016), including clinical information and several biomarkers. Also, using data-driven 
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(unsupervised) statistical methods could lead to iteratively progress our knowledge on 

asthma phenotypes, biomarkers, endotypes, and biology. 

Different types of data-driven methods have been widely used in airway diseases, such 

as hierarchical (Moore et al., 2010), partitioning (Lefaudeux et al., 2017), and LCA 

(Couto et al., 2015; Amaral et al., 2018c). Notably, LCA appeared to account better for 

the heterogeneity of airways symptoms, compared to other commonly used data-driven 

approaches (e.g. PAM) (Amaral et al., 2018b), suggesting that LCA is a person-centred 

analysis as opposed to variable-centred analysis. Moreover, the application of the 

latent class assignments developed from a national data source has previously 

demonstrated higher degrees of generalizability (Evenson, Wen, Howard, & Herring, 

2016). 

However, as reported in Study II, using the same sample from Study I to derive new 

data-driven asthma phenotypes, the proportions of the hypothesis-driven phenotypes 

were similar between the two data-driven phenotypes obtained by LCA, when applying 

clinical and physiological variables commonly used to characterize asthma (Amaral et 

al., 2018a). This was the first study to compare previously defined hypothesis-driven 

asthma phenotypes with data-driven ones in a large population sample, representative 

of the US general population. 

Overall, the data-driven phenotypes of current asthma only differed in symptom 

frequency and lung function parameters. The inflammatory biomarkers, presence of 

obesity, smoking status, age of asthma onset and self-reported hay fever were not 

different between classes. This fact suggests that, for the general asthma population, 

the clinical and physiological variables available to classify asthma and commonly used 

predefined cut-offs seem to be insufficient to identify specific phenotypes (Amaral et al., 

2019d). However, using a less stringent asthma definition (ever asthma) and in 

subjects with poor clinical outcomes (difficult asthma), these variables were also 

suboptimal to differentiate asthma subgroups (Amaral et al., 2019c).  

Previous studies using data-driven approaches contributed to the definition of 

clusters/phenotypes based on similarities in clinical and inflammatory biomarkers 

(Lefaudeux et al., 2017; Moore et al., 2010; Wu et al., 2014). However, these 

approaches have been mostly applied to patients with moderate to severe asthma 

and/or clinically based settings. Therefore, the generalization to the general asthma 

population may be limited. 

Similarly, research efforts are being made to integrate clinical characteristics with 

available biomarkers to identify data-driven asthma phenotypes in children (Collins et 
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al., 2013; Depner et al., 2014). However, the obtained phenotypes vary on key features 

that are more pronounced during childhood, including natural history of wheeze over 

time (Henderson et al., 2008), suggesting that further research is required to compare 

data- and hypothesis-driven approaches to identify asthma phenotypes in children. 

Previously, it has been reported that the same biomarkers have different discriminatory 

features when identifying data-driven asthma phenotypes. For example, Loza et al. 

(2016) found that, despite type 2 inflammation was a major characteristic for defining 

the phenotypes, it only distinguished two phenotypes. The other three identified were 

clinically distinguished by the degree of asthma control and reduced lung function. 

Similarly, in the Wu et al. (2014) study, variables for age of asthma onset, quality of life, 

symptoms, and medication use were the most discriminatory features, while the 

inflammatory profile was the less distinguishing feature of the asthma phenotypes. 

Additionally, Study II highlighted that the fixed cut-offs values commonly used may 

potentially miss more complex, and yet unidentified phenotypes. Although the cut-off 

choices of the asthma phenotypes were based on studies that used the same FeNO 

and B-Eos cut-off for therapeutic decisions and showed better efficacy (Castro et al., 

2015; Dweik et al., 2010; Wenzel et al., 2016), neither of them could differentiate 

asthma phenotypes, in an unsupervised manner. This fact suggests that these fixed 

cut-offs not only should be interpreted with consideration of the clinical context but 

should also be avoided. Furthermore, FeNO guidelines recognized that fixed cut-offs 

are weakly recommended based on their low quality of evidence (Dweik et al., 2011).  

Likewise, blood eosinophilia has been used as a marker of eosinophilic asthma 

phenotype. However, the most accurate cut-off for blood eosinophilia has not yet been 

established. In fact, various studies have used different cut-offs, and so a single 

eosinophil count may not be enough to classify asthma phenotype with confidence 

(Casciano et al., 2016; Florence Schleich, Corhay, et al., 2016; Singh, Kolsum, 

Brightling, Locantore, Agusti, et al., 2014). Recent studies that use data-driven 

methods include absolute values/counts instead of using cut-offs (Hsiao, Lin, Wu, 

Wang, & Wang, 2019; Sendín-Hernández et al., 2018). Also, the use of reference 

equations for predicted values, adjusted to the individual characteristics of each 

subject, could potentially be a useful approach (Jacinto et al., 2018; Quanjer et al., 

2012). 

Thus, assessing the relevance of additional biomarkers that have been shown to be 

helpful in discriminating asthma phenotypes in population-based study settings, such 

as serum IgE (Patelis et al., 2012), combined with a broad set of variables from 
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different domains - clinical, physiologic, and/or disease features (such as objective 

assessment of atopy, nasal and ocular symptoms), and including them in the data-

driven models, may result in the identification of more precise phenotypes, with the 

potential to be useful for clinicians and for population-based research. 

Study III identified novel phenotypes of allergic respiratory disease (ARD), using more 

comprehensive disease features, such as using ocular symptoms as an independent 

disorder, and combining unsupervised and supervised analysis. This study revealed 

novel insights of ARD phenotyping, while helping confirm and integrate phenotypes 

previously reported. 

Moreover, patient’s profiles differed by their association with IgE, as two non‐allergic 

ARD phenotypes (classes 1 and 5), three allergic phenotypes (classes 3, 4, and 6) and 

one with 50% participants being allergic (Class 2) were identified. Novel severe 

phenotypes of participants with co‐occurrence of ocular, nasal and bronchial symptoms 

and exacerbation‐prone (classes 5 and 6), were also revealed. Also, there was a class 

that was the mildest phenotype, without symptoms or inflammation (Class 1). 

The obtained LCA‐classes were derived from the general population and were very 

similar to previously published clinical phenotypes in non‐allergic and allergic 

rhinoconjunctivitis patients (Di Lorenzo et al., 2011; Mølgaard et al., 2007), reinforcing 

the different patterns of multimorbidity in participants with rhinitis. 

Class 5 comprised predominantly females, with low FeNO and B‐Eos, and a high 

proportion of urgent healthcare use, suggesting that bronchial symptoms can be linked 

with NAR or rhinosinusitis (Shaaban et al., 2008). Moreover, participants in this class 

have some characteristics similar to the NAR phenotype obtained by cluster analysis in 

other studies (Burte et al., 2015; Kurukulaaratchy et al., 2015). 

A polysensitized multimorbid phenotype was also identify in Study III, the Class 6, 

previously proposed by MeDALL (Mechanisms of the Development of ALLergy) (Anto 

et al., 2017; Bousquet et al., 2015) and now confirmed. This class was associated not 

only with rhinitis and asthma severity, but also to conjunctivitis. Furthermore, this class 

has some characteristics similar to those found in other unsupervised clustering 

studies, which has labelled as “late‐onset, inflammation predominant” (de Vries et al., 

2018; Haldar et al., 2008). 

One surprising issue was the prevalence of conjunctivitis in the four classes. For the 

first time, ocular symptoms per se were used in LCA, being very informative, 

suggesting that they are essential to identify clusters of ARD patients. Also, it was 
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found that ocular symptoms were associated with the severity of nasal symptoms 

suggesting that rhinitis and rhinoconjunctivitis represent two distinct phenotypes. This 

is supported by another study that showed that the number of allergens recognized in 

the two phenotypes differ (low number in rhinitis, significantly higher number for 

rhinoconjunctivitis) (Siroux et al., 2019). 

The unsupervised analysis did not identify clusters of participants having asthma, 

rhinitis, or conjunctivitis only, in this sample (Amaral et al., 2018c; Amaral et al., 

2019a), suggesting that these conditions could be different manifestations of the same 

disease. Particularly, we found that there was no asthma cluster without rhinitis in 

agreement with the findings of the epidemiologic study European Community 

Respiratory Health Survey, where asthma alone represents less than 10% of the 

asthmatic population (Janson et al., 2001). Thus, it seems that in clinical practice, 

multimorbidity should always be investigated in ARD patients. This fact also holds for a 

Precision medicine approach based on treatable traits, rather than diagnostic labels, in 

the clinical management of the ARDs (Agusti et al., 2016; Bousquet, Vignola, & 

Demoly, 2003). 

In Portugal, a previous study using an unsupervised clustering method was performed 

with a sample from a tertiary care outpatient clinic (Loureiro et al., 2015). Five clusters 

were obtained differing on age of disease onset, obesity, lung function, FeNO and 

disease severity. However, the lack of other biomarkers (e.g. serum IgE), nasal and 

ocular symptoms, and the fact that was performed in a different clinical setting, 

prevented the comparison to the LCA-phenotypes obtained in Study III.  

To help classify patients in clinical settings and to distinguish between lower or higher 

degrees of airways allergic multimorbidity, a classification tree algorithm was generated 

by CART analysis using easily accessible parameters available in the clinical setting. 

CART is commonly used to develop reliable clinical decision rules in the development 

of new classification of patients into categories (Moore et al., 2010), because of their 

easily interpretive nature and ability to handle missing data (Marshall, 2001). In Study 

III, the tree algorithm reinforced the importance of including the presence of ocular 

symptoms in the expression of ARD phenotypes among other parameters. 

These findings challenge the conventional disease classification of a “classical” clinical 

diagnosis organ‐based approach to data-driven view, based on clinical characteristics 

and allergy profiles focusing on allergic multi-morbidities. Moreover, the concept of the 

importance of ocular symptoms in allergic multimorbidity was raised by a big data study 

using an App in uncharacterized users - MASK (MACVIA-ARIA Sentinel NetworK for 
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allergic rhinitis), and suggested by MeDALL (Bousquet et al., 2018). This hypothesis-

generating study is now confirmed in a “classical” epidemiologic study. This is the first 

time in the field of allergy (and possibly other groups of diseases) that a big data 

analysis is confirmed by an epidemiologic study. 

 

 

4.3 Strengths and limitations 

 

Studies I and II, utilized data from the NHANES survey, a nationally representative 

survey of the civilian, non-institutionalized US population that uses a complex stratified, 

multistage probability sampling (CDC, 2017). Study III used data from the national and 

cross‐sectional study conducted in the Portuguese general population, ICAR study (Sá-

Sousa et al., 2019). Because of their cross-sectional design it was not possible to 

evaluate stability and interactions between phenotypes/classes longitudinally.  

In Study I, it was also not possible to determine which phenotype occurred first in 

patients with concomitant phenotypes. Moreover, the “current asthma” and COPD 

definitions were based on self-reported diagnosis, rather than relying on lung function 

tests, so the acquired information is subject to recall and misclassification biases. 

However, in epidemiological studies, specific characteristics seem to be associated 

with better classification, depending on what questions we have available (Sá-Sousa et 

al., 2014), so we tried to use their combination to increase the acuity of the definition.  

In the literature, we observed that not only current asthma was most frequently defined 

by the combination of: “ever diagnosed with asthma by a health professional” with “still 

having asthma” (Sá-Sousa et al., 2014); but also that in some studies, which validated 

asthma questionnaires with lung function tests and physician diagnosis, found that 

questions on wheeze are the most sensitive, while and questions such as “Have you 

ever had asthma?”, or questions on “waking with attacks of shortness of breath” and 

“morning tightness”, have higher specificity for asthma (De Marco, Cerveri, Bugiani, 

Ferrari, & Verlato, 1998; Toren, Brisman, & Jarvholm, 1993).  

Similarly, the definition of COPD can be based on the diagnostic method (e.g. self-

reported or spirometry), the criteria commonly used to define COPD (e.g. Global 

Initiative for Chronic Obstructive Lung Disease, ATS/ERS), and simultaneously the age 

group analysed (e.g. > 18 years or > 40 years). However, the most frequent 



87 
 

combination, using NHANES population, is a positive response to both “Has a doctor 

ever told you that you have chronic bronchitis?” and similar questions asked about 

“Has a doctor ever told you that you have emphysema?” (Diaz-Guzman, Khosravi, & 

Mannino, 2011; Tilert, Dillon, Paulose-Ram, Hnizdo, & Doney, 2013). Still, we opted to 

use a broader combination of questions to increase the accuracy of the definition: self-

reported chronic bronchitis/emphysema + with age of diagnosis ≥ 40 years + having 

self-reported smoking history. Moreover, the choice of stratifying the analysis into less 

than 40 years-old or more than 40 years-old, was based on the Burden of Obstructive 

Lung Disease (BOLD) Initiative (Buist et al., 2005), that developed standardized 

methods for estimating COPD prevalence and for obtaining information about risk 

factors. The BOLD protocol included individuals aged 40 years and older as COPD 

develops over several decades of exposure to inhaled particulates (Buist et al., 2007; 

Vollmer et al., 2009) and this cut-off is frequently used in the literature (Lamprecht et 

al., 2011; Soriano et al., 2010; Toelle et al., 2013). 

The label "asthma with concurrent COPD" (AwCOPD) was used as a proxy of ACOS, 

given that there is no standard definition of ACOS, and previous studies showing 

heterogeneity of ACOS by combining asthma and COPD diagnosis, i.e. by self-report 

of having current asthma and COPD (Mendy, Forno, Niyonsenga, Carnahan, & 

Gasana, 2018). 

Moreover, given the high prevalence in the US population, in sample from the 

NHANES study, obesity is likely to be a comorbidity, rather than the primary reason for 

asthma (Gonzalez-Barcala et al., 2013); however, we defined the AwObesity 

phenotype as a separate group, since the interdependence on inflammatory markers to 

targeting different asthma therapies makes essential the accurate characterization of 

inflammation in obese asthmatic subjects (Amelink et al., 2013; Gibeon et al., 2013). 

Also, we performed an additional analysis excluding the AwObesity phenotype and the 

proportion of subjects with overlap of phenotypes remained high. Similar results were 

obtained if we do not consider only the B-Eos-high phenotype. 

In Study I, the lack of other biomarkers in the NHANES years (2007-2012), prevented 

the analysis of other asthma phenotypes and the use of alternative definitions, such as 

the allergic asthma phenotypes based on total/specific IgE levels. This data was limited 

only to the 2005–2006 survey, however, data on FeNO was absent in this year range. 

Therefore, biomarkers of type-2 inflammation in both blood and exhaled air were 

analysed, available in the 2007-2012 NHANES survey years, and that has been shown 

previously to be independently related to asthma morbidity (Malinovschi et al., 2013, 
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2016). However, as there is no consensual definition of biomarker-defined asthma 

phenotypes, we based our definitions on cut-offs used in previous studies to 

discriminate patients in single asthma phenotypes (Castro et al., 2015; Dweik et al., 

2010), rather than on any reported specificity or sensitivity for predicting asthma 

morbidity or response to therapeutics.  

For high probability of airway inflammation, the cut-off value for FeNO has been 

suggested to be >50 ppb for adults (Loza et al., 2016). However, we chose a FeNO 

cut-off of 35 ppb, based on the mean baseline FeNO levels of patients included in 

randomized controlled trials of anti-IL-13 treatment (Corren et al., 2011; Dweik et al., 

2010). Similarly, the variation of the cut-off of blood eosinophils counts is wide, even 

though they may help the stratification of type 2-high versus type 2-low asthma 

phenotypes (Froidure et al., 2016; Katial et al., 2017). As in our studies we have a non-

severe, non-tertiary based population, we based our work on studies that either used 

the same cut-off for therapeutic decision or showed better efficacy in subjects with B-

Eos≥ 300/mm3 (Castro et al., 2015; Máspero, 2017). 

In Study III, an important limitation is the decreased external validity, and therefore, 

less generalizability. This study, undertaken in Portugal, needs to be confirmed in other 

countries as regional variations exist (e.g. in allergen sensitizations). However, a study 

on multimorbidity and allergen sensitizations showed that similar data were observed in 

France and Sweden suggesting common biological mechanisms (Siroux et al., 2018). 

The unsupervised analysis based on airways symptoms and allergy profile data 

remains a powerful approach toward ARD phenotyping (Bousquet et al., 2011; 

Bousquet et al., 2016; Garcia-Aymerich et al., 2015); however, a potential source of 

bias for unsupervised (data-driven) analysis is how individuals were included, because 

the interpretation of any unsupervised model dependent on how the participant 

selection is performed. However, latent classes provide a useful exploration tool for 

representing heterogeneity across the dimensions included in the model more than 

with traditional analytic approaches (e.g. regression analysis). Also described, was that 

the performance (i.e. the quality of estimation) of LCA is mainly affected by small 

sample sizes (Finch & Bronk, 2011) and few or/and poor-quality indicators/inputs 

(Marsh, Hau, Balla, & Grayson, 1998; Oertzen, Hertzog, Lindenberger, & Ghisletta, 

2010), and we very strongly believe we have fulfilled these requirements.  

Importantly, a major strength in Study III is that, not only the variables used in the LCA 

were obtained in the medical evaluation (being much more comprehensive than those 

used in the initial screening), but also variables regarding ocular symptoms that were 
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not part of the initial screening. Therefore, the literature and use of data analysts 

strongly supports the methods and interpretation of results we have chosen.  

Additional variables could have been included in the model. Ideally, the data selected 

for input in the LCA model should comprehend all the health domains relevant to the 

understanding of the ARD to classify observations into discrete and mutually exclusive 

classes (Wang & Wang, 2012). However, a high number of variables potentially 

increases the risk of some dimensions or domains being allocated too much weight in 

the modelling process (Oberski, 2016; Pepe & Janes, 2007). We chose to use only 

clinical variables comprising the 4 main dimensions of the ARDs - ocular, nasal and 

bronchial symptoms, and allergic profiles. 

While some previous studies used only unsupervised‐clustering methods to identify 

phenotypes of ARD (Burte et al., 2015; Haldar et al., 2008; Kurukulaaratchy et al., 

2015; Siroux et al., 2011), Study III extended this approach into providing information 

on the importance of the variables that best distinguish between the obtained classes, 

using CART analysis. To our knowledge, this is the first time CART analysis is studied 

in a population‐based study of ARD. This analysis has various advantages over other 

methods, including multivariable logistic regression: it is a nonparametric method; 

results are summarized in a tree, much simpler to interpret and more practical in a 

clinical setting; and measures the variable relevance in the model (relative impact of 

the predictors on the output) (Sauve & Tuleau-Malot, 2014). Also, our tree algorithm 

based on parameters already used in clinical practice performed well using a training 

and a test set, suggesting a high potential to be further applied. 

 

 

4.4 Future research 

 

Our understanding of chronic diseases of the airways has evolved in the past decades. 

However, because of its heterogeneity and complexity, a considerable number of 

features of the disease must be considered when identifying or refining phenotypes of 

chronic diseases of the airways. Individual environmental factors, such as air pollution, 

tobacco smoke and/or indoor allergens, could also influence phenotypes (Gilmour et 

al., 2006; Ho, 2010; Lim et al., 2016; McCreanor et al., 2007). Further studies 

describing the overlap in patients with COPD, severe asthma and studies examining 
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asthma patients exposed to different environmental factors are needed, such as the 

comparison of subjects who live in cities versus rural areas. 

The tree algorithm obtained in Study III, revealed a high potential to be further applied 

in assigning subjects into the six defined LCA-classes, using easily available variables 

in the clinical setting. Further studies to evaluate the clinical utility of this algorithm must 

be conducted in a separate and diverse population. 

After this validation, future work should also address biologic associations, such as 

total/specific IgE, serum eosinophil cationic protein, and mechanisms within the 

phenotypes, to investigate treatment and outcome differences between them. Also, 

studies on the differentiation of COPD phenotypes, rhinitis phenotypes, allergic vs 

non‐allergic conjunctivitis, and regarding symptoms’ deterioration among non-smokers 

vs smokers/former‐smokers and among different sensitizations, should be done, 

especially with prospective designs. 

Future studies that combine comprehensive clinical, physiologic, and/or disease 

features with a broader availability of additional easily measurable biomarkers might 

provide several avenues for future research. Ideally, tailoring models to the individual 

should comprehend the optimal use of clustering methodologies and datasets 

incorporating genetic, epigenetic, and detailed molecular-level data (Wenzel, 2012; 

Pembrey et al., 2018).  

Therefore, further improvements in the way that data are collected and stored to 

facilitate the standardization of data pre-processing and analyses should be developed 

and applied. Disease registries as data sources could be the solution to facilitate the 

gathering of data. These registries are considered as powerful tools to improve 

disease-related knowledge (Agency for Healthcare Research and Quality, 2014), such 

as the Portuguese Severe Asthma Registry, a national web-based disease registry of 

adult and paediatric severe asthma patients, that prospectively collects clinical data 

and is prepared for further data exchange (Sá-Sousa et al., 2018).  

There are many potentialities regarding this longitudinal real-life data, particularly when 

combined disease registries with mobile health (mHealth) applications (e.g. MASK, 

MACVIA-ARIA Sentinel Network for the management of allergic rhinitis mobile 

(Bousquet, Schunemann, Fonseca, Samolinski, & Bachert, 2015), which are becoming 

increasingly popular among physicians, patients and the general public. 

Moreover, variables collected longitudinally are of extreme importance to evaluate 

stability of the obtained phenotypes and further validate them. Clinically relevant 
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factors/components that could longitudinally predict persistent/new-onset respiratory 

symptoms remain to be further examined, particularly in subjects with asthma from 

general population. Furthermore, recent evidence indicates that there is plasticity 

among T-cell programming, influenced by a specific microenvironmental context 

(allergen exposure/atopy, genetic background, age, infection history, pollution, or diet) 

(Veldhoen et al., 2008; Lloyd & Saglani, 2013). However, a better understanding of the 

molecular mechanisms underlying T-cell plasticity in different asthma phenotypes are 

required perhaps with longitudinal analysis to map fluctuations in phenotypes and 

correlate with changes in clinical disease. 

Data-driven methods have been increasingly used to derive asthma phenotypes; 

however, the resulting models should be interpreted with caution when translating the 

results into clinical practice. In the preliminary results of a systematic literature review, 

we have identified a significant heterogeneity of the variables and statistical methods 

used for phenotyping (Amaral et al., 2019b). As described in Appendix I, this work aims 

to systematically review asthma phenotypes derived with data-driven methods, using 

variables easily measurable in a clinical setting, and to summarize their consistency. 

To expand this preliminary work, we are currently analysing the differences between 

the data-driven asthma phenotypes of each study, how they differ according to the 

sample characteristics, data availability, variables used and applied methodology. First, 

using the clusters’ labels (phenotypes) identified in the systematic review (Tables 1 and 

2), relevant terms/keywords and phrases (words co-occurrence) will be automatically 

extracted with the unsupervised Rapid Automatic Keyword Extraction (RAKE) algorithm 

(Rose, Engel, Cramer & Cowley, 2010). Secondly, a multiple correspondence analysis 

(MCA) will be applied to the clusters’ labels, aiming to detect and explore relationships 

between socio-demographic, clinical, functional, inflammation, atopy, and other 

variables, such as psychological/behaviour variables, asthma-related medication use 

and healthcare use, revealing patterns in a complex dataset. MCA allows the analysis 

of multivariate categorical data and visualization of the results in a graphical manner, to 

provide a global view of the data that is useful for interpretation (Greenacre, 1992; 

Sourial et al., 2010). The matrix data, comprising all asthma-related domain, will be 

converted into dimensions that are structured from the most explicative to the least and 

respective composite scores will be given. Finally, a hierarchical clustering will be 

performed with the scores from the MCA dimensions, using the Euclidian distance and 

Ward’s clustering method, to identify the major groups of variables in an unsupervised 

manner. The result of agglomerative clustering will be visualized as a dendrogram, 

according with the order of the variables’ similarity.  
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With these exploratory analyses we hope to provide further insights in how the multiple 

domains of asthma are related (between variables and between different 

categories/levels of each variable), taking into account the different patient’s 

characteristics, derived from difference data sources (such as electronic health 

records, clinical registries, surveys, mHealth data).  
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5. Conclusion 

 

The findings of this thesis bring novel insights into phenotyping chronic diseases of the 

airways by exploring multidimensional models supported by data-driven statistical 

approaches. This work challenges the conventional disease classification of a 

“classical” clinical diagnosis organ‐based approach (theory-driven), to a combination of 

unsupervised analysis (data-driven) and clinical knowledge. 

A prevalent overlap of commonly reported asthma phenotypes was observed among 

non-selected adults from the general population, with implications for objective asthma 

outcomes. The complexity and unique features of profiling chronic diseases of the 

airways required a broader data analysis approach, irrespective of using data-driven or 

theory-driven approaches. This was demonstrated when more comprehensive disease 

features were applied to a non-severe, non-tertiary based population, using the same 

data-driven method and it was revealed novel severe phenotypes of airways diseases. 

This thesis suggests improvements to the way in which data-driven methods are used 

and combined with clinical information and biomarkers, and also provides practical 

advice and tools for development and validation of a population- and evidence-based, 

multidimensional model, based on each individual clinical, functional and immuno-

inflammatory characteristics. 

In summary, progress in the identification and refinement of phenotypes of chronic 

diseases of the airways requires embracing the Precision Medicine paradigm, going 

beyond simplistic concepts, and aiming to identify patient-to-patient variation. Given the 

current efforts to target the clinical and functional heterogeneity of patients’ symptom 

profiles, conditions and responses to therapy, I hope that the adoption of ideas 

presented here can lead to improvements in the precision and completeness of the 

conclusions drawn from experimental data and contribute to future progress in this 

field. 
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7. Appendices 

 

Appendix I 

 

Characterization of asthma phenotypes derived from data-

driven methods: Systematic review and unsupervised 

exploratory analysis (draft) 

R. Amaral, T. Jacinto, B. Sousa-Pinto, J.A. Fonseca 

 

Aims 

To review asthma phenotypes derived from data-driven methods using variables easily 

measurable in a clinical setting, and to characterize them with unsupervised 

exploratory methods (automatic keyword extraction, multiple correspondence analysis 

and hierarchical clustering). 

 

Methods 

Three databases were used to perform the systematic search: PubMed, Scopus, and 

Web of Science, with no date/language restrictions. Studies were considered eligible if 

they identify asthma subtypes/phenotypes of adult patients (≥ 18 years old), using 

clinical parameters/variables that can be collected in current clinical practice (such as 

demographic, clinical, inflammatory, functional, healthcare use, use of asthma-

medication) and that applied data-driven methods. Studies were excluded if they: a) 

focused exclusively on children and/or genotyping and theory-driven methods and were 

b) conference abstracts, editorials and opinion articles with no original data. Reviews 

were initially included to explore the references. Non-English publications were 

translated if considered eligible. Finally, only full-text studies containing original data 

were included. The detailed search strategy is available in the Table 19. Studies were 

assessed by two independent reviewers (R.A. & T.J.) independently and 

disagreements were resolved by consensus or by a third reviewer (J.A.F.). Unweighted 

kappa statistics was calculated. 
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Table 19. Search strategy to retrieve studies according to each database 

Database Query 

PubMed 
 

(phenotyp*[Title/Abstract] OR cluster*[Title/Abstract]) AND 
("Asthma"[MeSH] OR asthm*[Title/Abstract]) AND 
("Adult"[MeSH] OR "Adult"[ Title/Abstract] OR adult*[ 
Title/Abstract] OR "Middle Aged"[Mesh:NoExp] OR 
"Aged"[Mesh:NoExp ]) AND (humans[mesh:noexp]) OR (#3 
NOT animals[mesh:noexp]) NOT ((Review[ptyp] OR Meta-
Analysis[ptyp] OR Letter[ptyp] OR Case Reports[ptyp])) 

Scopus 
 

(TITLE-ABS-KEY (asthm*)  AND  TITLE-ABS-KEY ((phenotyp* 
OR cluster*))  AND  TITLE-ABS-KEY ((adult* OR "middle aged" 
OR elderly))) AND (EXCLUDE (DOCTYPE,  "re") OR EXCLUDE 
(DOCTYPE, "le") OR EXCLUDE (DOCTYPE, "ed") OR 
EXCLUDE (DOCTYPE, "no") OR EXCLUDE (DOCTYPE, "ch") 
OR EXCLUDE (DOCTYPE, "sh")) 

Web of Science 
 

TÓPICO: (asthm*) AND TÓPICO: ((phenotyp* OR cluster*)) 
AND TÓPICO: ((adult* or middle aged or elderly)) 
Refinado por: [excluindo] TIPOS DE DOCUMENTO: (BOOK 
CHAPTER OR REVIEW OR EDITORIAL MATERIAL OR NOTE 
OR LETTER) 

 

 

Figure 15 summarizes the selection criteria for the included studies. We identified 

6,415 citations, of which 3,757 unique published articles were identified after exclusion 

of duplicate articles. After screening titles and abstracts, 419 studies were found to be 

potentially eligible for further review. Fifty-two studies of data-driven asthma phenotype 

were included (Figure 15).  

For data preprocessing, we extract the English text and annotate it for language 

detection. Annotation performs natural language processing (tokenisation, parts of 

speech tagging, lemmatisation and dependency parsing), to identify words and label if 

the word is a noun/verb/adverb or if it is a person, a city, a number or a specific object 

(Berry & Kogan, 2010). 

For automatic keyword extraction we used both algorithms: a graph-based ranking 

algorithm – TextRank, that finds the most relevant keywords and their cooccurrence in 

a sentence (Mihalcea & Tarau, 2004); and an unsupervised, domain-independent, and 

language-independent method – rapid automatic keywords extraction (RAKE), that 

search for keywords by looking to a contiguous sequence of words which do not 
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contain irrelevant words, namely by calculating a score for each word which is part of 

any candidate keyword (Rose, Engel, Cramer & Cowley, 2010).  

 

Figure 15. Flow diagram of articles selection process. 

 

An exploratory analysis of the potential relationships between the multiple domains of 

asthma phenotypes, considering the different patient’s characteristics, derived from 

difference data sources was then performed using a multiple correspondence analysis 

(MCA). MCA allows the analysis of multivariate categorical data and visualization of the 

results in a graphical manner (Greenacre, 1992; Sourial et al., 2010). For each study 

included in the systematic review, the socio-demographic, clinical, functional, 

inflammation, atopy, and other parameters (such as psychological/behavior variables, 

asthma-related medication use and healthcare use) were marked as a ‘1’ if present and 

‘0’ if absent. The matrix data were then converted into dimensions that were structured 

from the most explicative to the least. To allow visualization, the scores from the two 

dimensions that account for the most variance are projected to create a factor plane. 

Finally, a hierarchical clustering using the Euclidian distance and Ward’s clustering 

method was performed, in order to identify the major groups of variables/characteristics 

retrieved from the asthma phenotypes, in an unsupervised manner. 
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All analyses were performed using the R programming environment (version 3.2.0) 

using the following packages: “udpipe”, “textrank”, “FactoMineR”, “cluster”, “factoextra” 

and “wordcloud”. 

 

Preliminary Results 

Keyword extraction 

In Figure 16 is demonstrated the more frequent cooccurrence of keywords in the same 

sentence, in this case only nouns or adjectives, obtained with the TextRank algorithm. 

The most frequent are: asthma + onset (n=32), lung + function (n=23), severe + 

asthma (n=20), late + onset (n=19) and airflow + obstruction (n=15). 

 

 

 

 

Table 20 lists the top 15 keywords extracted by RAKE, order by the highest RAKE 

score to the lowest. The keywords that obtained a higher RAKE score were: “significant 

adherence barriers”, “minimal airflow obstruction”, “persistent airflow obstruction” (6.0, 

5.7 and 5.7, respectively). However, when considering all obtained keywords and 

ordering by its frequency, combined keywords such as “normal lung function” (n=9), 

“onset atopic asthma” (n=8), “lung function” (n=8), “Severe asthma” (n=8) and “onset 

asthma” (n=8) were the most frequent (Figure 17). 

Figure 16. Keyword cooccurrence graph. The green line connects the cooccurrence of the 
keywords and the thickness represents the frequency of the cooccurrence. 
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Table 20. Top 15 of keywords extracted by RAKE algorithm. 

Keywords Freq RAKE score 

Significant adherence barriers 2 6 

Minimal airflow obstruction 2 5.7 

Persistent airflow obstruction 2 5.7 

Lower lung function 2 5.5 

Good lung function 2 5.2 

Slight airway obstruction 2 5.2 

Severe airflow obstruction 5 5 

Normal lung function 9 4.75 

Late disease onset 2 4.52 

Low exacerbation risk 2 4.2 

Onset allergic asthma 3 4.1 

High blood eosinophils 2 4.2 

Onset non-atopic asthma 2 3.8 

Onset atopic asthma 8 3.6 

COPD overlap group 2 3.5 

Legend: RAKE: Rapid Automatic Keyword Extraction; COPD: chronic 
obstructive pulmonary disease; Freq: frequency 

 

 

 

 

 

Figure 17. Word cloud of the more frequent combination of 
keywords obtained with RAKE algorithm. 
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Appendix II 
 

Study I 

Amaral, R., Fonseca, J. A., Jacinto, T., Pereira, A. M., Malinovschi, A., Janson, 

C., & Alving, K. (2018). Having concomitant asthma phenotypes is common and 

independently relates to poor lung function in NHANES 2007–2012. Clinical and 

Translational Allergy, 8:13. doi:10.1186/s13601-018-0201-3. 
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Appendix III 

 

Study II 

Amaral, R., Pereira, A. M., Jacinto, T., Malinovschi, A., Janson, C., Alving, K., & 

Fonseca, J.A. (2019). Comparison of hypothesis- and data-driven asthma 

phenotypes in NHANES 2007-2012: the importance of comprehensive data 

availability. Clinical and Translational Allergy, 9:17. doi.org/10.1186/s13601-

019-0258-7. eCollection 2019. 
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Appendix IV 

 

Study III 

Amaral, R., Bousquet, J., Pereira, A.M., Araújo, L., Sá-Sousa, A., Jacinto, T., 

Almeida, R., Delgado, L. & Fonseca, J.A. (2019). Disentangling the 

heterogeneity of allergic respiratory diseases by latent class analysis reveals 

novel phenotypes”. Allergy, 74(4), 698-708. doi: 10.1111/all.1367 0. Epub 2018 

Dec 5. 
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