
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Real Time Data Intake and Data
Warehouse Integration

Luís Pedro Teixeira Barreto

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Luís Paulo Reis

Second Supervisor: Jorge Amaral

July 24, 2019

© Luís Pedro Teixeira Barreto, 2019

Abstract

It is safe to say that the introduction to the ease of access to the Internet, in the daily life of an entire
society, sets a critical transition point from the Industrial Age to the, current, Digital Age. As a
result of such a marked shift, there is an urgent need to adapt to the imposed changes on existing
corporate structures regarding several factors, among which, relevant to the present project, is the
means to deal with the vast volume of data originated by the various technologies and activities
that the mentioned network makes possible. The concepts of Big Data, Business Intelligence, Real
Time and Cloud Computing systems are, therefore, solutions to this phenomenon.

Within the scope of solving a B2F client’s need for a Business Intelligence solution, the op-
portunity to design and implement a system in Cloud environment, able to receive a considerable
amount of data, via HTTP request, interpret them, process them, upload them to a database capa-
ble of hosting them and, finally, present information, extracted from the same data, in a graphical
interface, in real time, arises.

To support this project’s implementation, Microsoft’s Cloud Computing solution, Microsoft
Azure, was used to create a tool to read the information contained in the HTTP request data,
comparing it with data contained in reference files and transforming it into a readable format by
the technology responsible for the same’s visual presentation, presenting its operation in real time,
as a fundamental requirement.

In order to guarantee the system’s viability, HTTP requests were simulated and sent, confirm-
ing its consistency resorting to the opted analysis tool, Power BI, also belonging to Microsoft,
being able to verify data entries in real time, fulfilling the stated requirement.

Keywords Big Data, Business Intelligence, Cloud Computing, Data Warehouse, ETL, Real
Time, SQL.

i

ii

Resumo

É seguro afirmar que a introdução da facilidade de acesso à Internet, no quotidiano de toda uma
sociedade, marca um ponto crítico de transição da Era Industrial para a, atual, Era Digital. Como
resultado de tão acentuada mudança, urge a necessidade de adaptação às alterações impostas sobre
as estruturas corporativas existentes relativamente a diversos fatores, entre os quais, e relevante
para o presente projeto, se destaca o meio para tratar do tão ingente volume de dados originado
pela utilização das diversas tecnologias e atividades, que a mencionada rede torna possíveis. Os
conceitos de sistemas de Big Data, Business Intelligence, Tempo Real e Cloud Computing surgem,
assim, como soluções para o fenómeno assinalado.

Enquadrada no âmbito de resolver a necessidade de uma solução de Business Intelligence
de um cliente da B2F, surge a oportunidade de desenhar e implementar um sistema em ambi-
ente Cloud, capaz de receber um considerável volume de dados, via pedido HTTP, interpretá-los,
processá-los, carregá-los para uma base de dados capaz de os albergar e, por fim, apresentar infor-
mação, retirada desses mesmos dados, numa interface gráfica, em tempo real.

Como suporte à implementação deste projeto, recorreu-se à solução de Cloud Computing da
Microsoft, Microsoft Azure, de forma a criar uma ferramenta apta para ler a informação con-
tida nos dados do pedido HTTP, compará-la com dados contidos em ficheiros de referência e
transformá-la para um formato legível pela tecnologia responsável pela apresentação visual da
mesma, apresentando o seu funcionamento em tempo real, como requisito fundamental.

De forma a garantir a viabilidade do sistema, foram simulados e enviados pedidos HTTP, con-
firmado a consistência do mesmo através da ferramenta de análise optada, Power BI, pertencendo,
também, à Microsoft, podendo ser verificada a entrada dos dados em tempo real, cumprindo com
o referido critério indispensável.

Palavras-Chave: Big Data, Business Intelligence, Cloud Computing, Data Warehouse, ETL,
SQL, Tempo Real.

iii

iv

Agradecimentos

Agradeço, em primeiro lugar, ao meu orientador Luís Paulo Reis, pelo apoio e dedicação presta-
dos, durante todo o decorrer deste projeto.

Agradeço à empresa B2F, nomeadamente ao Doutor Manuel Pereira, ao meu co-orientador
Jorge Amaral e a todos os elementos das equipas de BI e de Desenvolvimento à Medida, pela
oportunidade e confiança que depositaram em mim e pelo auxílio nas várias dificuldades que
encontrei no decorrer do projeto. Um agradecimento especial ao meu mentor, e grande amigo,
Francisco Capa, por tudo o que me ensinou, pela incansável paciência e apoio que demonstrou e
por ter acreditado no meu sucesso desde o primeiro dia.

Agradeço ao corpo docente do MIEEC por todo o conhecimento que me permitiu adquirir e
que levo comigo para a próxima etapa da minha vida.

Agradeço aos meus colegas do edifício J, pela companhia nas muitas noitadas de estudo e
trabalho.

Um agradecimento especial à minha namorada e aos meus amigos, por me terem acompanhado
nos momentos mais difíceis e pela contribuição para o meu crescimento pessoal, académico e
profissional.

Por fim, mas não menos importante, um especial agradecimento à minha família pelo exemplo
que me dão, desde sempre. À minha mãe e ao meu pai, pelas pessoas que são, pelo amor, pela
força, incentivo e incontáveis oportunidades que me proporcionaram durante toda a minha vida,
inclusivé durante o meu percurso académico. À minha querida avó, Maria José, pela mulher
maravilhosa que sempre foi e por ter sido, sempre, uma mãe para mim, e ao meu avô, António
Teixeira, a quem devo o gosto pela engenharia, e o homem no qual me tornei, e que teria o maior
orgulho da sua vida por me ver a concluir esta etapa.

A todos vós, colegas, amigos e familiares, dedico este projeto.

Luís Pedro Teixeira Barreto

v

vi

Ao meu avô, e melhor amigo, António Teixeira

vii

viii

Contents

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Objectives . 2
1.3 Problem Explanation . 2
1.4 Structure of the Dissertation . 3

2 Bibliographic Review 5
2.1 Data Definition . 5
2.2 Business Intelligence . 5

2.2.1 Extraction, Transformation, Load . 6
2.2.2 Data Warehouse vs. Data Mart . 7
2.2.3 Dimensional Modeling . 8
2.2.4 Analysis Technologies . 11

2.3 DW/BI System Requirements . 13
2.4 Concept of Big Data . 13

2.4.1 The Five V’s . 15
2.5 Concept of Real Time Processing . 16

2.5.1 Lambda Architecture . 17
2.5.2 Kappa Architecture . 20
2.5.3 Lambda Architecture vs. Kappa Architecture 21

2.6 Cloud Computing . 21
2.6.1 Service Models . 22
2.6.2 Deployment Models . 24
2.6.3 Cloud Computing Technologies . 25

2.7 Conclusions . 33

3 Proposed Solution 35
3.1 Solution Architecture . 35
3.2 Data Model . 36
3.3 Pricing . 38

3.3.1 Resource Group . 38
3.3.2 Storage Account . 38
3.3.3 Function App . 39
3.3.4 Event Hubs . 40
3.3.5 Stream Analytics . 40
3.3.6 SQL Database . 40
3.3.7 Data Factory . 41

3.4 Conclusions . 43

ix

x CONTENTS

4 Solution Implementation 45
4.1 Proposed Architecture Implementation . 45

4.1.1 Resource Creation . 45
4.1.2 Resource Implementation . 46

4.2 Data Model Implementation . 51
4.3 Reporting Implementation . 51
4.4 Conclusions . 51

5 Results 53
5.1 Results Analysis . 53
5.2 Project Budget . 58

5.2.1 Storage Account . 58
5.2.2 Function App . 60
5.2.3 Event Hubs . 60
5.2.4 Stream Analytics . 61
5.2.5 SQL Database . 61
5.2.6 Data Factory . 61
5.2.7 Power BI . 63
5.2.8 Final Budget . 63

5.3 Conclusions . 63

6 Conclusion 65
6.1 Future Work . 66

A Example of Batch Layer Computation 67

B Example of an HTTP Request in XML Format According to SOAP 69

C Code Developed in C# to Transform HTTP Requests in XML Format According to
SOAP into JSON Format 73

D Stored Procedure for Logs 77

E Example of Transformation Query 79

F Stream Analytics Output Query 83

References 87

List of Figures

2.1 Data Warehouse & Data Mart . 8
2.2 Star Schema . 10
2.3 Snowflake Schema . 10
2.4 Magic Quadrant for Analytics and Business Intelligence Platforms[1] 11
2.5 Data Never Sleeps 6.0 [2] . 14
2.6 The Five V’s of Big Data . 16
2.7 Real Time System Structure Example . 17
2.8 Lambda Architecture Layers . 17
2.9 Batch Layer . 18
2.10 Lambda Architecture . 19
2.11 Kappa Architecture . 20
2.12 Infrastructure as a Service[3] . 23
2.13 Platform as a Service[4] . 23
2.14 Software as a Service[5] . 24
2.15 Magic Quadrant for Cloud Infrastructure as a Service, Worldwide[6] 25
2.16 Azure Resource Group . 26
2.17 Azure Storage Account, Containers and Blobs 27
2.18 Azure Function App . 27
2.19 Azure Event Hub . 28
2.20 Azure Stream Analytics . 29
2.21 Azure SQL Database . 29
2.22 Azure Data Factory . 30

3.1 Proposed Solution Architecture . 35
3.2 Proposed Solution Data Model . 37

4.1 Deployed Storage Account’s Composition . 47
4.2 Get Metadata and ForEach Connection . 48
4.3 Inside IF Condition Diagram . 48
4.4 ETL Process Level Hierarchy . 48
4.5 Transform Process . 49
4.6 Load Process . 49
4.7 Extract, Transform and Load Control Packages, Respectively 50
4.8 ETL Control Package . 50

5.1 Power BI Report Main Page . 54
5.2 Power BI Report Location-Oriented Analysis 54
5.3 Power BI Report Customer-Oriented Analysis 55
5.4 Power BI Report SandDance Professions by City Analysis 56

xi

xii LIST OF FIGURES

5.5 Power BI Report SandDance Amount Transacted by City Analysis 56
5.6 Power BI Report SandDance Monthly Income by City Analysis 57
5.7 Power BI Report SandDance Gender Distribution by Country Analysis 57
5.8 Power BI Report SandDance Professions by Country Analysis 58

List of Tables

2.1 Top Down vs Bottom Up . 9
2.2 Star Schema vs. Snowflake Schema . 11
2.3 Analysis Technologies Comparison . 12
2.4 Lambda Architecture vs. Kappa Architecture 21
2.5 GCP, AWS and Azure Compute Services . 31
2.6 GCP, AWS and Azure Storage, Database and Backup Services 31
2.7 GCP, AWS and Azure Storage, AI/ML, IoT and Serverless Services 32
2.8 GCP, AWS and Azure General Pros and Cons 32

3.1 Storage Redundancy Strategies Comparison . 38
3.2 Storage Account LRS Pricing . 39
3.3 Azure Function App Pricing . 40
3.4 Event Hubs Pricing . 40
3.5 Stream Analytics Pricing . 40
3.6 Azure SQL Database Pricing . 41
3.7 Data Factory Pipeline Orchestration and Execution Pricing 42
3.8 Data Factory Data Flow Execution and Debugging Pricing 42
3.9 Data Factory Operations Pricing . 42

4.1 Data Factory Used Activities . 51

5.1 Project Budget . 63

xiii

xiv LIST OF TABLES

Abbreviations and Symbols

AI Artificial Intelligence
AMI Amazon Machine Image
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
AWS Amazon Web Services
B2F BUSINESSTOFUTURE
BI Business Intelligence
CAD Computer-Aided Design
CASE Computer-Aided Software Engineering
CRM Customer Relationship Management
CSV Comma Separated Value
DSA Data Staging Area
DSS Decision Support System
DTU Database Transaction Unit
DW Data Warehouse
EC2 Elastic Compute Cloud
EIM Enterprise Information Management
EIS Executive Information System
ERP Enterprise Resource Planning
ETL Extract, Transform, Load
GCP Google Cloud Platform
GRS Geographically Redundant Storage
HR Human Resources
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IaaS Infrastructure as a System
ICT Information and Communications Technology
IoT Internet of Things
IT Information Technology
JSON JavaScript Object Notation
KPI Key Performance Indicator
LRS Locally Redundant Storage
ML Machine Learning
MS Microsoft
MTBF Mean Time Between Failures

xv

xvi Abbreviations and Symbols

MTTR Mean Time To Repair
OLAP Online Analytical Processing
OS Operative System
PaaS Platform as a System
RA-GRS Read-Access Geographically Redundant Storage
RDBMS Relational Database Management System
S3(Microsoft) Secure Storage Service
S3(Amazon) Simple Storage Service
SaaS Software as a System
SOAP Simple Object Access Protocol
SP Stored Procedure
SQL Structured Query Language
UI User Interface
VM Virtual Machine
VPN Virtual Private Network
XML Extensible Markup Language
ZRS Zone Redundant Storage

Chapter 1

Introduction

Within the scope of the UC Dissertação of Faculty of Engineering of the University of Porto’s

Integrated Masters in Electrotechnical and Computer Engineering, carried out in a business en-

vironment, at B2F, the present document was developed and, in the following first chapter, the

context in which the placed problem fits, as well as its explanation, will be demonstrated, accom-

panied by the intended end as well as by the structure of the whole document.

1.1 Context and Motivation

In a society where technological barriers are overcome, almost daily, implying a nearly exponential

growth of the same character, urges the need to organise the information generated as quickly and

efficiently as possible, whose evolution is accompanied by the aforementioned.

It is possible to identify the birth of the Internet (WWW) as the greatest technological leap in

human history, allowing almost all of the perks to which modern society is accustomed, such as

constant connection between all users, allowing communication and sharing of ideas or files, the

ease of access to information and/or media consumption concerning any subject and storage and

Cloud computing.

The number of people who currently have access to the Internet is higher than the total of

the human population in 1960, being easily concluded that the volume of data being engendered

is considerably higher than it may have ever been in the history of humanity, giving continuity,

and increasing, the need to organise and transform such a large volume of data into information,

conceding value to it. The world has, therefore, become a digital place, where the information is

decentralised and available to any user, thus giving birth to a new concern regarding what to do

with the immense amounts of data being constantly generated.

In order to keep up with the observed abundance of data, a series of technologies were de-

veloped with the purpose of organising them, transforming them into useful information and

analysing them.

1

2 Introduction

With this in mind, the main focus of the present dissertation, Real Time technology, comes to

light, whose main characteristics and also advantages, translate into the possibility of constant and

instantaneous access to information, with low latency response, about business operations.

1.2 Objectives

The present dissertation was proposed by BUSINESSTOFUTURE as a response to the need of one

of its clients. It is a company with more than 13 years of experience in the increasingly requested

area of ICT and demonstrates innumerable successful cases regarding the value attribution to the

collected information of data, presenting, as its main area of activity, EIM and DSS solutions

modelling, development and implementation for medium and large companies, in a wide set of

markets.

As such, B2F is a company specialised in BI solutions, supporting its clients in transforming

the data they have in their databases into information endowed of value and knowledge, allow-

ing a better decision making, supported and directed to the improvement of their position in the

competitive market where they stand, whilst improving their profitability.

Therefore, the proposed milestones are presented by B2F, consisting of data intake via HTTP

requests, their respective integration in Real Time into a DW, verification and monitoring of data

consolidation errors and data duplication upon new records integration, and Real Time analysis,

resorting to analysis tools.

1.3 Problem Explanation

There has been an increasing interest in Cloud and Real Time technologies and in the way how

they can promote a company’s continuous development.

In fact, a system’s ability to receive data from a variety of sources, formats, and volumes and to

transform said data into value-added information, in an almost instantaneous way, is an appealing

concept that promises to contribute to any company’s, willing to adopt it, financial development

and business advantage.

In the context of implementing such a system, by a B2F client, arises the need to receive data

via HTTP requests in order for them to be analysed in Real Time. So that the integrity of the data

presented in reporting technologies can be ensured, it is important to develop a solid and robust

system capable of reading them, comparing them with reference data, which are integrated into the

system via files, uploading them to a single database, promoting the information’s centralisation,

and redirecting them to the reporting platforms, allowing visually and impactful analysis, with

considerably low latency.

Hence, appears the interest in Cloud Computing technologies, which make it possible to mi-

grate this type of systems to a Cloud environment, regardless of on-premises infrastructures, or

even to build the whole system in the aforementioned environment, allowing the migration process

to be bypassed, hence easing the entire project’s construction.

1.4 Structure of the Dissertation 3

1.4 Structure of the Dissertation

This dissertation is composed of 6 chapters, so that in chapter 2 the state of the art is described,

clarifying a set of fundamental concepts for the project’s development, in chapter 3, the solution

developed in response to the proposed problem is addressed as well as an elucidation of the plat-

forms and interfaces used for the same purpose, in chapter 4, the implementation of the previously

developed solution is exposed, clarifying all the steps of the same, in chapter 5, the results obtained

after the aforementioned implementation are presented, as well as a budget analysis of the project

and a demonstration of reports and, in chapter 6, the illations withdrawn, as the project was being

developed, are disclosed.

4 Introduction

Chapter 2

Bibliographic Review

In the following chapter, so that the present dissertation can correctly be understood, a set of

fundamental concepts and essential questions will be explored, clarified and answered, such as

"What can be defined as Data?", "What is BI and how can it be used?" or "How big is Big Data?"

among others.

2.1 Data Definition

For starters, it is imperative that the concept of data is understood. On that account, according

to Nathan Marz and James Warren, "you must go back to first principles." and must answer the

question "what does a data system do?" [7].

As stated by the authors mentioned above, a data system is not limited to collecting data

and exposing the information contained in them, but rather to combine small pieces, as if from a

puzzle, for the purpose of producing answers to questions posed by the user or customer, such as

the balance of a particular bank account, the answer of which is a series of data relating to dates,

transactions and identification of the customer in question[7].

As such, it can be concluded that not all data are equal, in that certain data are the result of

sets of others, which can be derived. Thus, although there may be different notions regarding the

concept of data, the one that will, henceforth, be used will assign a non-derivable aspect to the

information, being considered raw information[7].

2.2 Business Intelligence

It was in 1865 that the term Business Intelligence was first mentioned[8], in the work of Richard

Miller Devens, Cyclopaedia of Commercial and Business Anecdotes, in which it is used to justify

the way one of his characters triumphs, having anticipated knowledge of problems and instabili-

ties, both politically and financially speaking[9]

Only about 90 years later, in 1958, Hans Peter Luhn, now recognized as one of the main

drivers of the BI concept, demonstrated the potential behind it in his article entitled "A Business

5

6 Bibliographic Review

Intelligence System", published in the IBM Journal, in which the author argues that "Automatic

dissemination has been given little consideration; however, unless substantial portions of human

effort in this area can be replaced by automatic operations, no significant over-all improvement will

be achieved."[10]. With this in mind, the computer scientist states that in order to define Business

Intelligence, the two terms that compose it must be separated in order to better understand it,

defining business as a set of activities carried out in order to achieve a given end and intelligence

as the ability to interpret a series of facts and information in such a way that allows tracing the path

of actions to take. That being so, approximately 30 years later, in 1989, analyst Howard Dresner

integrated the term discussed in EIS and DSS[11].

In today’s society, so that the best and most informed decisions are made, it is considered of

the utmost importance to have constant knowledge of what happens, as well as to hold accurate

forecasts, hence the imperative inclusion of BI systems for the proper functioning of a company,

allowing the knowledge of the best policies of action to be taken, as well as team management, and

the discovery of cause and effect relationships among several elements that make up the processes,

thus affecting, in a positive way, the business operations[12].

According to Carlo Vercellis, in his work "Business Intelligence, Data Mining and Optimiza-

tion for Decision Making", the definition of Business Intelligence has undergone, in recent years,

through a series of changes, from being considered as a set of methodologies, which consist , only

in electronic tools for the purpose of querying, data visualising and reporting for accounting and

control, to be recognised as "a set of mathematical models and analysis methodologies that exploit

the available data to generate information and knowledge useful for complex decision-making

processes"[13].

Having defined the meaning of BI, in a clearer way, it is possible to identify the main purposes

of BI systems as being to "provide knowledge workers with tools and methodologies that allow

them to make effective and timely decisions"[13].

2.2.1 Extraction, Transformation, Load

The fact that the destination’s type of data storage may be different from the one from the source,

or have different formats or even have the need to clean the data before the extraction to the

destination, translates into a serious challenge faced by the companies.

Thus, Extraction, Transformation, Load, commonly referred to as ETL, is a procedure that

allows data extraction from several RDBMS sources to a DSA, subsequent processing into infor-

mation, through data cleansing and optimisation strategies, and its loading into a DW for analysis,

reporting and mining purposes[14].

With the mentioned concepts in mind, it is possible to infer that the process in question is

divided into three stages:

1. Extraction - The first step is to read the data available in the various source databases, such

as ERP, CRM, OS and HR, followed by copying it, as previously mentioned, to a DSA,

2.2 Business Intelligence 7

which is a space used between the source and destination, for cleansing and processing

purposes[15];

2. Transformation - Subsequent to the Extraction, it is applied a series of transformations, such

as, according to Ralph Kimball, "correcting misspellings, resolving domain conflicts, deal-

ing with missing elements, or parsing into standard formats, combining data from multiple

sources, and de-duplicating data."[15], matching the customer requirements and assigning

value to it;

3. Loading - The final stage in an ETL pipeline consists, as its name states, in loading the

worked information into a DW, so that it can be analysed, reported, mined, among other

utilities.

Therefore, due to the complexity stated, this process is the most critical and time consuming

in regard of building a DW.

2.2.2 Data Warehouse vs. Data Mart

In "Building the Data Warehouse" by William H. Inmon, considered the father of the DW concept,

the author states that "One confusing aspect of data warehousing is that it is an architecture, not a

technology."[16] which, in the past, caused scepticism regarding its implementation.

It is, currently, possible to identify a Data Warehouse, as its name implies, as a storehouse

of considerable volumes of data, typically submitted to the ETL process where, as already men-

tioned in chapter 2.2.1, they are previously collected from a series of databases in order to be

transformed, and finally loaded into the Data Warehouse, thus being an informational system that

allows an integrated view of the enterprise, an effortless access to both historical and recent en-

terprise information, consistency in the company’s information and presents itself as a flexible,

elastic and interactive strategic information storehouse [17].

A Data Warehouse is, therefore, the basis for processing any modern DSS. According to

William H. Inmon, a DW environment is composed by a set of 4 key features that describe it

as "a subject-oriented, integrated, nonvolatile, and time-variant collection of data in support of

management’s decisions"[16].

1. Subject-Oriented, as it adapts to the set of unique subjects required by different companies,

regardless of the area;

2. Integrated, in so far as, regardless of the various sources’ consistency, when the data is avail-

able in the data warehouse, after being submitted to the transformation process displayed in

chapter 2.2.1, it presents a single image, eliminating any existing inconsistency;

3. Nonvolatile, as with the entry of new records, rather than updating and/or eliminating the

information that was already in the DW, typically, the old one is kept unaltered and the

new one is written, keeping a total history of the information in the DW;

8 Bibliographic Review

4. Time-Variant, as, whilst traditional databases only contain information regarding the time of

the query, a DW contains a history of all events and activities recorded and can be consulted

at any time.

While the father of the Data Warehouse advocates implementing the mentioned flexible, data-

oriented and subject-oriented structure, Ralph Kimball introduces the structure designated by Data

Mart, not as a replacement to the DW but rather as a way to complement its functionality, sharing

the same technological framework. As such, as can be seen in the picture 2.1, Data Marts are Data

Warehouse substets, in which only the data related to a certain company’s department are found,

instead of the first structure, in which all data is stored[13].

Figure 2.1: Data Warehouse & Data Mart

The main differences between the two mentioned structures are stated in the following ta-

ble 2.1, being easily perceived that a Data Mart is a structure created in order to complement a

Data Warehouse, depending on the taken Approach, Top-Down or Bottom-Up, being based on

the information contained therein, satisfying eventual customer needs in restricting accesses and

reducing operating times [17].

2.2.3 Dimensional Modeling

In order to define the Dimensional Modeling concept, it is necessary to clarify the meaning of Fact

Tables and Dimension Tables. These are two types of key elements, which constitute the way data

is organised into a dimensional model[15].

• Fact Tables store information about the company’s performance measurements for a given

business, which translate into the largest sets of data, being crucial that there is no data

replication as a result of its need for organisational functions. Each line of the fact table

corresponds to a measurement event, which is constituted by a certain level of detail, defined

as grain, and the whole table should be composed of events with the same grain. With the

2.2 Business Intelligence 9

Top-Down Bottom-Up
Advantages

Single storage
of data

Faster and easy
implementation

Centralized
information

Less risk of failure

Inherently
architected

Inherently
incremental

Disadvantages
Takes longer

to be built
Permeates redundant

data in every data mart
High risk to

failure of the entire organisation
Each Data Mart is

blind to requirements

Table 2.1: Top Down vs Bottom Up

aspects mentioned, it is conclusive that a fact table is composed of numerical values, such

as sales price, number of sales or investment for a given purpose, thus containing Data

Mart metric values related to the identifiers, or dimension table codes, therefore, holding

the information that is used for analysis in order to provide competitive advantage to the

company. It is fundamental that this type of information is held by a centralised repository,

granting both cohesive and consistent data;

• Dimension Tables store information regarding the company’s performance measurements

event context, containing information about the entities involved, such as customers, prod-
ucts, regions, addresses or time, describing outlined objectives in a BI project. It can, thus,

be observed that it is a type of table that contains both textual and numerical values, serving

as a main source of query constraints. Ralph Kimball hints that these types of attributes can

be easily identified as the "by words", in that they always follow the word "by", for example,

if a user intends to see the number of sales by store, store has to be available as a dimension.

Among several techniques to present analytic data, dimensional modeling appears as a main option

in the business world. In fact, as reported by Ralph Kimball and Margy Ross[15], this technique

is able to "Deliver data that’s understandable to the business users" and to "Deliver fast query

performance.", in that it makes it possible to simplify the databases, allowing a more accessible

reading of data and requiring less processing power by the software utilised, which translates into

more accurate and fast results.

2.2.3.1 Star Schema VS. Snowflake Schema

The approach to the type of data modeling mentioned in chapter 2.2.3 can be done through several

schemas, the most common and advantageous of which being the Star Schema and Snowflake

Schema, such that the first consists, as its name implies, in arranging the tables in a star shape

10 Bibliographic Review

where the fact table is placed in a central position, connected directly to the dimension tables,

and the second, in connecting the fact table to dimension tables which, in turn, are interconnected

among themselves, having the dimensions’ information normalisation as main purpose[15].

In Figures 2.2 and 2.3 it is possible to observe, respectively, a schematic representation of a

Star Schema and a Snowflake Schema.

Figure 2.2: Star Schema

Figure 2.3: Snowflake Schema

It is thus perceptible that it is possible to take advantage of both schemas for different purposes,

as can be seen in the following table 2.2.

2.2 Business Intelligence 11

Star Schema Snowflake Schema
Design Simple Complex

Complexity
A single JOIN creates a

relationship between Fact
table and Dimension table

Many JOINs are required to
create a relationship between

Fact table and Dimension
Hierarchies Stored in Dimension Table Spread across separate Dimension tables

Normalisation Denormalised Normalised
Performance Queries run faster Queries run slower

Data Redundancy High Level Low Level
Data

Distribution
Each Dimension table

contains aggregated data
Data is spread across

various Dimension tables
Applications Data Marts Data Warehouse

Table 2.2: Star Schema vs. Snowflake Schema

2.2.4 Analysis Technologies

Once the data processing has been completed, having gone through the ETL process described

in chapter 2.2.1, it is essential to develop analytic models capable of making data visualisation

appealing, simple and enlightening. To this end, there are several feature rich analysis technologies

that can be used.

According to a study by Gartner, titled Magic Quadrant for Analytics and Business Intelligence

Platforms, the results of which are shown in the following figure 2.4, the leading market analysis

solutions are Microsoft’s Power BI, Tableau Software’s Tableau and QlikTech’s QlikView.

Figure 2.4: Magic Quadrant for Analytics and Business Intelligence Platforms[1]

12 Bibliographic Review

These three tools present the best that the current market has to offer, in terms of analytical

technologies:

• QlickView excels by in-memory engine capabilities of visualising patterns, flexible analytic

features, offering up to a maximum of 500 GB of cloud storage and Self-Service Analytic

Tools[18];

• Tableau stands out from the competition in terms of graphics and visualisation capabilities,

integration with Cloud technologies such as Microsoft Azure, AWS or GCP, and due to a

"drag and drop" feature[19];

• Power BI stands out in the Magic Quadrant due to its ease of use, customisable Dashboards,

simplicity regarding Big Data systems integration, quick and easy integration with the Mi-

crosoft ecosystem, financial analysis tools with fraud protection, compliance monitoring

and highly optimised security features. .

As such, even though the three mentioned technologies have advantages and disadvantages related

to their use, it is evident that Microsoft’s platform affirms itself as market leader in the year 2019,

due to Big Data Integration, appealing UI and highly customisable dashboards [18].

In the following table 2.3, there is a brief direct comparison between the main characteristics

that define each one of the mentioned solutions.

Qlik Tableau Power BI

Visualisation
In-memory engine
capable of pattern

visualisation

Excellent Graphics
and Visualisations

Easy to use

Connection to OLAP To provide encapsulated
data views

For deep level
cube interaction

For multi-
dimensional analysis

Speed

Better, since data
is stored in the

server
(in-memory storage)

Depends on
RAM memory

Use of Smart Recovery

Ease of Learning User friendly User friendly User friendly
Cost High Very High Low

Analytic Capabilities Doesn’t support neither
R nor Python

Supports R and Python Supports R

Big Data Integration

Allows data management,
regardless of its source,
from one single work

environment

Can connect to various
data repositories,
from MS Excel to
Hadoop clusters

Simple, very effective,
secure and stable

Cloud Storage 500 GB 100 GB 10 GB
Table 2.3: Analysis Technologies Comparison

2.3 DW/BI System Requirements 13

2.3 DW/BI System Requirements

In "The Data Warehouse Toolkit, 3rd Edition", the DW visionary, Ralph Kimball, clearly states a

set of 7 mandatory requirements in order to give birth to a DW/BI system[15]:

1. A DW/BI system must allow its information to be easily accessible, as the data contained

in the system must be comprehensive and intuitive, not only for the developer but also for

the client, and must be returned quickly;

2. A DW/BI system must present information in a consistent manner, in so far as its credibility,

integrity and quality must be ensured and exposed only when prepared for user consump-

tion;

3. A DW/BI system must be prepared to undergo changes, in so far as both the needs of

customers, as well as the data that compose it and the technologies that constitute it, can be

changed. The system must be prepared to receive such changes and manoeuvre as needed,

not altering data that may already be contained in it. If the system’s descriptive data has to

be changed, this modification must be transparent to users;

4. A DW/BI system must display the information contained therein on a temporary basis, so

that the decisions made on its basis are of greater efficiency and conscience;

5. A DW/BI system must be a secure bastion, being able to protect its content, as it holds

all the company’s sensitive and confidential information, being fundamental to effectively

control who has access to it;

6. A DW/BI system must be a reliable basis for the best decision making, holding the correct

data to support it, functioning as a DSS;

7. A DW/BI system must be accepted by the business community in order to gain popu-

larity, since, unlike operating systems implementation, without which a company cannot

operate, it can be considered optional, so this type of systems’ success can be measured by

its acceptance observed in said community.

2.4 Concept of Big Data

As already mentioned, in chapter 1.1, with the increasing ease of access to the Internet, as well

as to all types of content and media contained therein, the volume of data to be generated sees

its evolution at an exponential rate. According to Forbes’ contributor, Bernard Marr, the volume

of data generated every day at the current rate is approximately 2.5 exabytes, a value that can be

translated to approximately 2500 petabytes, or 2.5 million terabytes, and which is in a growing

trend, also due to the spread of IoT[20].

All these data are distributed across large number of operations carried out on surprisingly

short time bases, such as the number of searches performed, per second, with Google search

14 Bibliographic Review

engine, which surrounds the 65 thousand searches, the number of videos watched, per minute, on

Youtube, which round 4.33 million videos, the number of hours of video streamed, every minute,

by Netflix users, of about 97.3 thousand, the number of photos uploaded on Instagram daily, of

about 71.1 million, the number of emails sent per minute, which are around 156 million, of which

103.5 millions are considered spam, the $68.500 processed by Venmo on peer-to-peer transactions,

per minute, the number of packages shipped, per minute, by Amazon, of about 1.1 thousand, and,

given the, already mentioned, IoT growth, the number of voice-first handsets available and in

circulation of about 33 million, as stated in Data Never Sleeps 6.0, a study conducted by Domo,

the result of which is shown in the diagram of figure 2.5[2].

Figure 2.5: Data Never Sleeps 6.0 [2]

To this phenomenon of increasing growth was assigned the designation of Big Data, which,

in contrast to traditional data, consists of large volumes of data that do not necessarily follow a

homogeneous structure. This heterogeneity, which consists of structured, unstructured and semi-

structured data, describes the complex nature of the phenomenon in question as well as the de-

manding technological requirements and powerful algorithms for efficient Big Data applications.

As such, in Big Data - Principles and best practices of scalable real-time data systems, Nathan

Marz and James Warren explain that in order for a Big Data system to deliver the best performance,

as "volume and the velocity of transmission of data, whose volume and velocity exceed the limits

of traditional database systems", it must have "Robustness and Fault Tolerance", demanding cor-

rect operation regardless of data complexity, duplication, and consistency, and it must be human-

fault tolerant, as it is an inevitability, "Low Latency Reads and Updates", as the requirements’

update latency may vary, which should be achieved without jeopardising its robustness, "Scala-

bility", being able to properly perform, regardless of data or load increasing due to the increment

of resources to the system, "Generalization", in so far as it should be useful at several types of

2.4 Concept of Big Data 15

applications, from financial management systems to scientific applications or even social network

analytics, "Extensibility", as it should be able to withstand new features and properly perform large

scale migrations of old data into new formats, as required, "Ad Hoc Queries", to the extent that,

since any dataset has an undetermined number of unexpected values, it is important to be able to

ask arbitrary questions in order to get interesting information about it, "Minimal Maintenance",

anticipating when machines to scale should be added so that the processes continue to function

properly, minimising the need for maintenance, and, in case something faults, the necessary de-

bug, being crucial the implementation of algorithms as simple as possible, and "Debuggability",

as, in case of failure, it must provide the necessary information to debug, allowing to trace each

element of the system in order to discover the source of error[7].

2.4.1 The Five V’s

It is noticeable that the concept of Big Data does not have a concrete universal definition as there

is disagreement among the various authors regarding it, however, there is consensus regarding 5

topics considered elements that support the structure of Big Data. These 5 elements, are designated

as Five V’s and, according to Oscar Herencia[21], they can be observed as a pyramidal structure,

as displayed in figure 2.6, such that, as pointed by Yuri Demchenko and Peter Membrey[22]:

1. Volume - The most easily identifiable and important feature of Big Data[22], which de-

mands the adaptation of traditional technologies to the new requirements. It consists of a

large set of data to be processed and stored, with a tendency to increase exponentially and

boundlessly in size, raising serious difficulties to the already mentioned traditional tech-

nologies, requiring their adaptation and the development of new ones, as all data contained

in this set is of the utmost importance to companies[23];

2. Velocity - Big data is generated very quickly and, often, in real time. This speed concerns

two factors, data volume growth speed, which, in turn, is due to a steady increase in the

number of Internet users, as mentioned in chapter 2.4, to the emerging IoT, due to the in-

creasing number of connected devices, to Cloud Computing, whose evolution contributes

significantly to the number of data to be processed, managed and stored, to the increasing

number of available websites and to the large number of scientific data, and data transmis-

sion speed, which varies depending on the number of data to be transferred, the distance it

has to travel, the system’s latency and bandwidth [22];

3. Variety - As previously mentioned, data heterogeneity consists of structured data, which

includes tabular forms of data, unstructured data, which consists of different types of files,

such as distinct video, image or scientific information file extensions, and semi-structured

data, such as log data and XML data[23];

4. Veracity - Consists of "accuracy, truthfulness and meaningfulness", to the extent that if the

data do not meet these requirements, they become irrelevant and disposable[23]. In order to

16 Bibliographic Review

ensure data veracity, they must be consistent, which is defined by their statistical reliability,

and trustworthiness, defined by data origin and collection and processing methods[22];

5. Value - The purpose of Big Data is to accredit value to large volumes of data, and this is the

only way to do it, such that "data in itself has no value"[23].

Figure 2.6: The Five V’s of Big Data

Due to the combination between the second and third V’s, serious questions are raised, regard-

ing the lack of ability to perform analysis in a continuous way, due to refresh latency, making the

ability to process streaming data in real time a key factor in order to obtain meaningful information

and react accordingly[24].

2.5 Concept of Real Time Processing

As a result of the various aspects previously discussed in chapter 2.4, it is deductible that both the

number of connected users and, as a consequence, the volume of data generated tends to increase,

being accompanied by greater demands regarding its treatment and visualisation. As a result,

the concept of Real-Time arises, which, in contrast to the traditional methods of data processing,

stands out due to its set of technologies which seek to process data as soon as it is available,

presenting low latency levels.

This concept is fundamental, such that it is due to the existence of said low data flow processing

latency that fast and efficient decisions can be made regarding business operations [25]. Thus, as

shown in the following figure 2.7, a real time system typically consists of collecting data from

various sources, passing them through a pipeline, where they are handled, then processed and

made available for analysis.

2.5 Concept of Real Time Processing 17

Figure 2.7: Real Time System Structure Example

2.5.1 Lambda Architecture

According to Nathan Marz, author of the Lambda Architecture, the main purpose of said archi-

tecture is to structure a Big Data system in the form of a set of 3 layers, with a hierarchical

relationship, which are Speed, Serving and Batch[7], as shown in figure 2.8.

Figure 2.8: Lambda Architecture Layers

The author states that, even though the ideal scenario would be to run the function from which

the whole system starts, query=function(alldata), on the fly, with massive volumes of data, an

unreasonable amount of resources and time would be consumed, such that, for example, to read a

given data, it would be necessary to run the entire database, ceasing to be a viable process[7].

2.5.1.1 Batch Layer

In view of the situation described in 2.5.1, the first layer, designated as batch layer, comes to light,

in which the precomputation of the query function previously demonstrated is carried out, being

able to undergo random readings.

Instead of the referred on the fly methodology, a function is initially processed to read all data,

obtaining the batch view. After said reading, in order to know the result to a query, a function

is run in the batch view, returning the values quickly, replacing the need to read all data for each

18 Bibliographic Review

query. As such, this system would look like batch view = function(alldata) followed by query =

function(batch view), as demonstrated in figure 2.9.

Figure 2.9: Batch Layer

Thus, the batch layer is responsible for implementing said function batch view = function(alldata)

and must be able to store an immutable and constantly growing dataset and also compute arbitrary

functions in the same dataset. However, this approach is incomplete, being an operation with high

latency, during the reading of said function, resulting in the delay of new data collected, which, as

a result, will not get into the batch view in time[7].

2.5.1.2 Serving Layer

As already explained, in 2.5.1.1, batch views are emitted as a result of the batch layer running

function, thus entering the Serving layer, which can be considered as a distributed database, re-

sponsible for transferring said data, supporting the batch views, allowing batch updates, receiving

random readings and not supporting random writes, as these last ones cause most of databases’

complexity. With the availability of new batch views, it automatically swaps them so that the most

up-to-date data are always available.

Therefore, it is presented as robust, predictable and easy to set up and operate[7].

2.5.1.3 Speed Layer

Due to the layers described in sections 2.5.1.1 and 2.5.1.2, almost all properties demanded by a

big data system are satisfied, only remaining the updates, which are performed with low latency.

Hence, it is necessary the existence of a real time data system, thus appearing the speed layer,

in order to fill the observed fault, which translates into the data not represented in the batch view,

as they enter during the precomputation process and the serving layer only refreshes when said

process ends.

This third layer’s main purpose is, therefore, "to ensure new data is represented in query func-

tions as quickly as needed for the application requirements"[7], being similar to the batch layer,

as it also produces views of the data it receives, designated as realtime views, but being different

2.5 Concept of Real Time Processing 19

in that the speed layer only looks at recent data, while the batch layer always looks at all data

available.

Moreover, the speed layer does not look at all recent data at the same time, that is, instead of

recomputing all recent data, it performs incremental computation, updating realtime views only

with the introduction of new data.

This layer can be formalised as realtimeview = function(realtimeview; newdata), which leads

to the three equations with which it is possible to summarise the Lambda Architecture:

• batch view = function(alldata);

• realtimeview = function(realtimeview; newdata);

• query = function(batchview; realtimeview).

In order that this architecture can be visualised in a simpler way, the diagram of figure 2.10 was

created[7].

One of this architecture’s main advantages is that, the moment the data changes from the batch

to the serving layer, the corresponding results in the realtime views can be discarded, such that

they are no longer necessary.

Figure 2.10: Lambda Architecture

20 Bibliographic Review

2.5.2 Kappa Architecture

While the Lambda Architecture is subject of strong attention, Jay Kreeps states, in his article

"Questioning the Lambda Architecture"[26], that its main purpose is to process data as a stream,

not seeking to play a substitute role for the architecture presented in Chapter 2.5.1, unless really

necessary.

This architecture consists of incoming data stream processing, through a real time layer, whose

results are arranged in a serving layer for queries, as shown in the image of the following fig-

ure 2.11.

This architecture’s main purpose is to provide real time processing and continuous reprocess-

ing simultaneously and in a single data stream processing mechanism, implying that the received

data can be partially or completely re-read. As a result of changes suffered in the code, it is up to a

second stream processing to run the data again, using the last real time mechanism, replacing the

data stored in the serving layer[27].

Figure 2.11: Kappa Architecture

2.6 Cloud Computing 21

2.5.3 Lambda Architecture vs. Kappa Architecture

In order to summarise the differences between the two architectures presented in subchapters 2.5.1

and 2.5.2, the following table 2.4 was created.

Architectures
Lambda Kappa

Immutability Immutable Immutable
Scalability Scalable Scalable

Storage Permanent Non-Permanent
Fault Tolerant Tolerant

Layers
-Batch
-Speed
-Serving

-Speed
-Serving

Processing Data Batch and Streaming Streaming

Processing Guarantees -Guaranteed in Batch
-Approximate in Streaming

Once

Re-Processing Paradigm In Every Batch Cycle When Code Changes
Accuracy Non-Accurate Accurate

Table 2.4: Lambda Architecture vs. Kappa Architecture

2.6 Cloud Computing

The introduction of cloud computing technologies makes it possible for IT analysts to overcome

a series of concerns, such as processing power, storage space and bandwidth, unavoidable issues

until the existence of such technologies, which ensure an outstanding performance for large scale

and complex operations, a pay-per-use policy, ensuring that a client pays only for the use of a

particular resource, a virtually non-existent risk, given the high degree of security guaranteed by

the services and an elastic structure, as the service’s characteristics can be redefined according

to new operating conditions or business requirements, being easy to conclude that cloud comput-

ing technologies are at the forefront of technological development and computation’s geography

shift[28].

Although there is no official definition for the term, as there are authors who argue that Cloud

Computing may be "anything new or trendy on the Internet"[29], and others who reveal that it

consists of Internet based scalable IT services, it is consensual that Cloud Computing consists of

two main aspects which include applications that are delivered in the form of services and the

hardware and software in the datacenters that deliver them[30].

According to Peter Mell and Timothy Grance, there is a specific set of five characteristics that

translate into the essence of what Cloud Computing is[31]:

1. On-demand self-service which consists in altering resources allocated, as needed, without

human interaction between service providers, as the user has the possibility to increase or

decrease the allocated resources computational capacities;

22 Bibliographic Review

2. Broad Network Access which translates into ease of access to the various features, provided

there is an Internet connection, regardless of the client’s platform, be it a smartphone, a

laptop or a tablet, among other mobile devices;

3. Resource Pooling which consists of grouping the provider’s computational resources through

a multi-allocation model, composed of demand-driven physical and virtual resources, in or-

der to serve multiple consumers. In these conditions, the client has no control over the

resources’ location and may only have information on it. These features can be of the type

of storage memory, processing capacity or and network bandwidth;

4. Rapid Elasticity which translates into the fact that the capacities are elastically and auto-

matically generated and supplied, so that they can expand or retract accordingly to demand,

regardless of quantity or time;

5. Measured Service which represents the cloud systems’ ability to automatically control and

optimise the use of resources, showing this information to the consumer, enabling it to track

consumptions and providing a transparent environment for both the provider and the client,

simplifying the payment process.

2.6.1 Service Models

According to Peter Mell and Timothy Grance, there is also a specific set of 3 fundamental service

models to cloud computing standards, which should be defined before selecting a deployment

model[31]:

1. Infrastructure as a Service is a service model characterised by the delivery of hardware,

in the form of server, storage or network, associated with software, in the form of operating

system’s virtualisation technologies or database systems, as a service. As a considerable

advantage, it presents the absence of the need for commitment, that is, it makes use of a

pay-per-use philosophy, allowing users to allocate resources as needed. The IaaS provider

abstains, almost entirely, from the management and configuration of the applications, allo-

cated operating systems and softwares, role occupied by the user, remaining the functions

of keeping the servers, datacenters and firewalls, operational, as can be seen in figure 2.12’s

Microsoft Azure illustration. Amazon’s EC2 and S3 are two examples of IaaS models[32];

2.6 Cloud Computing 23

Figure 2.12: Infrastructure as a Service[3]

2. Platform as a Service is considered as middle ground between IaaS and SaaS, as it consists

of a model characterised by the delivery of hardware and a certain set of applications soft-

ware. It is a facilitated application development environment provided to web developers via

web in that it does not imply the complexity or costs associated with the purchase and man-

agement of its intrinsic infrastructure[32], including the network, servers, storage, or operat-

ing systems, this role being the service provider’s responsibility, while still allowing control

over deployed applications and a restricted set of "application hosting environment-related

configurations", as can be seen in figure 2.13’s Microsoft Azure illustration, and as men-

tioned by Stephen R. Smoot and Nam K. Tan in their work "Private Cloud Computing"[33].

Google’s AppEngine is an example of a PaaS offer, where developers are able to write in

Java or Python[32];

Figure 2.13: Platform as a Service[4]

3. Software as a Service is a type of service model that allows the user to use available soft-

ware, running on a platform, which in turn runs on an infrastructure, via the web, being

a complete software solution where the user pays per use. This type of service blocks any

customisation or management control related to hardware or software installation, resources,

servers or operating systems, from the user, as these are already configured by the service

provider, being able to effortlessly access to applications, only requiring an Internet connec-

tion, as can be observed in figure 2.14’s Microsoft Azure illustration. Google’s Gmail and

Oracle CRM on Demand are two examples of SaaS[32];

24 Bibliographic Review

Figure 2.14: Software as a Service[5]

2.6.2 Deployment Models

Having clarified the available service models in the cloud environment, in chapter 2.6.1, in order

to meet the different organisational needs, there are four cloud computing deployment models,

each with different permissions and associated costs[34]:

1. Public Cloud is a type of cloud deployment capable of supporting all types of users looking

for computing resources, whether they are hardware, such as operating systems, storage

memory or processing capacity, or software, such as databases or application servers. This

type of cloud deployment model is most commonly used for email services and application

development and testing[34]. Any type of service belonging to the SPI system (Software,

Platform, Infrastructure) can be offered by this sort of deployment model, for example,

Amazon EC2 is a public cloud that provides IaaS, Google AppEngine is a cloud of same

type that delivers PaaS and SalesForce.com is also a public cloud that, in turn, presents

SaaS. The absence of capital expenditure and low to nonexistent costs involved for the end

user, the way they are consumed, and their high scalability on demand are the three factors

that make public cloud so peculiar, being structured to support a large number of users[35];

2. Private Cloud is a type of restricted access cloud deployment, being an infrastructure typ-

ically used only by a single organisation. To this extent, it can be managed and maintained

by the company itself, in order to allow access to a whole group of users within itself,

or by a service provider. The costs associated with this type of cloud deployment model

are typically high, taking into account the capital expenditure involved, namely to manage

and comply with the demanding security and privacy requirements of enterprises, while be-

ing able to control all aspects of the cloud structure in order to optimize performance and

usability[34];

3. Hybrid Cloud consists of a type of cloud deployment model that interconnects both public

and private cloud’s characteristics, maintaining aspects related to the privacy demanded by

the companies as intrinsic characteristics, whilst also allowing infrastructures’ expansion,

2.6 Cloud Computing 25

as required. Several companies make use of this type of structure, maintaining a high pri-

vacy profile while being able to, as necessary, rapidly expand the infrastructure, resorting to

public cloud’s scalability[34]. Amazon’s Virtual Private Cloud, for example, has a hybrid

cloud through a VPN connection between the aforementioned Amazon EC2 and a Private

Cloud. Hybrid Cloud, thus, presents itself as the most cost effective[36];

4. Community Cloud is a type of cloud deployment model that allows the access of several

organisations to the same cloud environment and computational resources, as, for example,

universities while cooperating in research projects[34]. This structure differs from the public

cloud, in that there is a common concern or purpose for the whole community, while the

latter serves a large set of users with different needs, as well as from the private cloud,

insofar as any element belonging to the community has access to control the service, while

in the private cloud, it is provided exclusively by the owner of the same which internally

manages the accesses[35].

2.6.3 Cloud Computing Technologies

Having clarified the meaning of Cloud Computing, as well as the main characteristics, the service

models and deployment models that define it, it is fundamental to know the main service and

Cloud Infrastructure providers and which stand out in the competitive market. In order to do

so, it’s possible to understand that, by analysing figure 2.15 Gartner’s Magic Quadrant, AWS,

Microsoft and GCP are the market leaders.

Figure 2.15: Magic Quadrant for Cloud Infrastructure as a Service, Worldwide[6]

26 Bibliographic Review

2.6.3.1 Google Cloud Platform

Google Cloud Platform translates into a set of Cloud Computing features, delivered as a public

cloud, provided to customers in the form of VMs, and stands out for more than 50 types of services

belonging to the Software, Platform and Infrastructure model, for purposes of computing, analysis,

Big Data, AI and ML.

2.6.3.2 Amazon Web Services

Amazon Web Services is the Cloud Computing market leader, immediately followed by Mi-

crosoft’s Microsoft Azure,

2.6.3.3 Microsoft Azure

Microsoft Azure is Microsoft’s Cloud Computing service, with more than nine years of experience

in Cloud department, and one of the top three market leaders, ranking second behind AWS, as

already demonstrated in figure 2.15, related to Gartner’s Magic Quadrant. This is a robust set of

Cloud services that offers the three service models outlined in subchapter 2.6.1. Among the large-

scale set of available resources, those that highlight Microsoft Azure as one of the best Cloud

Computing services, are:

• Resource Group is is a container to which all the resources that are used, for a given Azure

solution, are associated. Being in the same Resource group, the mentioned resources share

a common life cycle, so that key functionalities, such as access management, billing and

resource management, are aggregated at the same resource level[37]. This type of container

is represented by the icon of figure 2.16 ;

Figure 2.16: Azure Resource Group

• Storage Account consists of a virtual space in which are contained all the objects of the

azure storage, such as Blobs, Files, Tables and Queues, presenting, as appealing charac-

teristics, the fact that it can be accessed via HTTP or HTTPS, as well as the fact that the

data held in the storage account is durable, highly available, secure, and massively scalable.

There are several types of storage accounts for different types of purposes, such as General-

purpose V2 accounts which are basic storage accounts for blobs, files, tables and queues,

recommended by Microsoft for most scenarios, Block blob storage accounts, oriented only

for blob integration with premium performance features and recommended by Microsoft for

high transaction frequency scenarios, making use of small dimension objects or requiring

2.6 Cloud Computing 27

consistently low storage latency and FileStorage (preview) storage accounts, file-only ori-

ented integration with premium performance features and recommended by Microsoft for

enterprise applications or high performance scale scenarios. This resource also allows the

option of different types of access tier, in order to optimise the costs, taking into account

the standard of use or access to the stored data, having 3 options, Hot acces tier, default

option when creating a storage account, optimised for recurring access, being cost-effective

in this regard, bust more expensive regarding storage, Cool access tier, in turn, storage opti-

mised, being able to store data for at least 30 days, being more cost-effective for this purpose

and more expensive to access data and Archive access tier, optimised for data capable of

tolerating hours-long reception latency, storing data for at least 180 days, being the most

cost effective in regard of storing data and the most expensive in terms of accessing it[38].

The schematic of Figure 2.17 represents the relationship between a storage account and the

subsequent containers and blobs;

Figure 2.17: Azure Storage Account, Containers and Blobs

• Function App is a solution with the purpose of running small sections of code in a cloud

environment, allowing development to be even more productive, being a very versatile re-

source as it allows the user to choose the language to use, such as C#, F#, Node.js, Java

or PHP, presents a payment model that follows the aforementioned philosophy of pay-per-

use, being charged only the time during which the developed code is running and is easily

integrated with other SaaS, such as Azure Event Hubs, Azure Storage, Azure Cosmos DB,

Azure Service Bus and Azure Event Grid, being an excellent solution for data processing,

IoT related projects and APIs development[39]. This type of resource is represented by the

icon of figure 2.18;

Figure 2.18: Azure Function App

28 Bibliographic Review

• Event Hub is a fully managed, with minimal configuration, PaaS, being an ideal platform

for Big Data processing, with the ability to process millions of events per second, which

can be processed and stored through any real-time analysis provider, being mostly used for

anomaly detection, like fraud detection, application logging, live dashboarding, transaction

processing, and data archiving. This resource allows event publishers to send events via

HTTP, HTTPS, or AMQP, and is composed by partitions, defining that each consumer only

has access to read specific message stream parts, consumer groups, which consist of views

of the entire event hub, independent of each other, allowing the corresponding message

stream part reading and consumption to be performed independently and at different rates

for each event receiver, belonging to the respective consumer group, as can be seen in the

scheme of figure 2.19, and also, by event receivers, entities that receive and read the data

coming from the event hubs[40];

Figure 2.19: Azure Event Hub

• Stream Analytics is an event-processing engine that allows the examination of large vol-

umes of data from different sources, such as sensors, websites, social media feeds, devices

and applications, making it possible to discover patterns and relationships between them,

being common to make use of this resource for IoT and Point of Sale sensor fusion for in-

ventory control and, consequently, anomaly detection real-time analysis, for web logs and

geospatial analytics, for fleet management and driverless vehicles and both remote monitor-

ing and predictive maintenance of high value assets, purposes. This resource’s operation, as

shown in figure 2.20’s diagram, consists of 3 distinct steps, Input, which may be associated

with Azure IoT Hub or Azure Blob Storage ingestion of events from softwares or devices,

Transformation Query, based on SQL, used to quickly and easily filter, order, aggregate

and join streaming data, and Output, which can be associated to Power BI for analysis, to

store in Azure storage services, for reference data purposes, training ML models and trigger

alerts[41];

2.6 Cloud Computing 29

Figure 2.20: Azure Stream Analytics

• SQL Database is a reliable, secure, high-performance and scalable relational cloud database

that allows the construction of data-oriented applications, without the need for infrastructure

management. This resource is represented by the icon demonstrated in figure 2.21;

Figure 2.21: Azure SQL Database

• Data Factory is a cloud service capable of facing complex ETL and data integration projects.

This resource is composed by pipelines, a logical grouping of activities responsible for per-

forming specific parts of a work, in sequential or parallel order, allowing independent man-

agement of each activity instead of doing it as a whole, activities, which translates to a

pipeline processing step, such as Copy activities, which allows to copy data from one data

store to another, and StoredProcedure activities, which in turn allows to make use of a given

procedure created in Azure’s SQL Database, Datasets, which represent data structures that

serve as reference for the inputs/outputs to be used in the activities, Linked Services, which

act as connection strings, allowing the Data Factory to be connected to external sources to

the purpose of representing a computational resource for hosting the execution of an activ-

ity and representing a data store, such as an on premises SQL server or Oracle database,

Fileshare or Azure Blob Storage Account, Triggers, which, as its name implies, represent

the control over the events that trigger the execution of a pipeline, in order to automate it,

Pipeline Runs, instances of the execution of a given pipeline, initiated, typically, by passing

30 Bibliographic Review

the parameters that define it manually or by a trigger, Parameters, defined in the pipeline

and passed during the execution of a given pipeline, being a dataset an example of a strongly

typed parameter, allowing the activity to consume, as parameters, the properties defined in

the dataset, and Control Flows, which represent the ability to manipulate the set of pipeline

activities, such as creating pipeline sequences, as well as branching them, or passing loops,

such as ForEach iterators. It is thus observable that it is a resource that ingests data from var-

ious sources, prepares, transforms and analyses it and, finally, publishes to various outputs,

as can be seen from the image Figure 2.22[42].

Figure 2.22: Azure Data Factory

2.6.3.4 GCP vs. AWS vs. Azure

In this subsection, a comparison is made between the three exposed Cloud Computing technolo-

gies in relation to 3 topics, which are Computing Services, stated in table 2.5, Storage, Database

and Backup Services, as shown in table 2.6, main Cloud Computing Tools for AI, ML, IoT and

Serverless Services, presented in table 2.7, and, finally, a pros and cons comparison of each one,

in table 2.8[43].

2.6 Cloud Computing 31

GCP AWS Azure

Compute Services

• Kubernetes;
• Compute Engine;
• Cloud Functions;
• GPU;
• Knative.

• EC2;
• Elastic Container Service;
• Auto Scaling;
• VMware Cloud on AWS;
• Batch.

• Virtual Machines;
• Container Instances;
• Batch;
• Service Fabric;
• Container Instances;
• Cloud Services.

Table 2.5: GCP, AWS and Azure Compute Services

GCP AWS Azure

Storage Services
• Cloud Storage;
• Transfer Appliance;
• Transfer Service.

• S31;
• Elastic Block Storage;
• Elastic File System;
• Storage Gateway.

• Blob Storage;
• Queue Storage;
• File Storage;
• Disk Storage;
• Data Lake Store.

Database Services

• Cloud SQL;
• Cloud Bigtable;
• Cloud Spanner;
• Cloud Datastore.

• Aurora;
• RDS;
• DynamoDB;
• Neptune;

•
Database Migration
Service.

• SQL Database;

•
Database for
MySQL;

•
Database for
PostgreSQL;

• Data Warehouse;

•
Server Stretch
Database;

• Cosmos DB;
• Table Storage;
• Data Factory.

Backup Services •
No backup
service available.

• Glacier
• Archive Storage;
• Backup;
• Site Recovery.

Table 2.6: GCP, AWS and Azure Storage, Database and Backup Services

1Amazon’s Simple Storage Service

32 Bibliographic Review

GCP AWS Azure

AI/ML

•
Cloud Machine

Learning Engine;

•
DialogFlow

Enterprise Edition;

•
Cloud Natural

Language;

• Cloud Speech API;

• Cloud Translation API;

•
Cloud Video

Intelligence.

• SageMaker;

• Comprehend;

• Lex

• Polly;

• Rekognition;

• Machine Learning;

• Translate;

• Transcribe;

• DeepLens;

• Deep Learning AMI’s;

• TensorFlow on AWS.

• Machine Learning;

• Azure Bot Service;

• ML Studio;

• Cognitive Services.

IoT • Cloud IoT Core (Beta).

• IoT Core

• FreeRTOS;

• Greengrass;

• IoT 1-Click;

• IoT Analytics;

• IoT Button;

• IoT Defender;

•
IoT Device

Management.

• IoT Hub;

• IoT Edge;

• Stream Analytics;

•
Time Series

Insights.

Serverless • Cloud Functions(Beta).

• Lambda;

•
Serverless Application

Repository.

• Functions.

Table 2.7: GCP, AWS and Azure Storage, AI/ML, IoT and Serverless Services

GCP AWS Azure

Pros

• Cloud-native businesses;

•
Open source and
portability;

•
Discounts and
flexible contracts;

• DevOps expertise.

• Dominant market position;

•
Extensive and
mature offerings;

•
Support for large
organisations;

• Extensive training;
• Global reach.

• Second largest provider;

•
Integration with
Microsoft tools and software;

• Broad feature set;
• Hybrid cloud;

•
Support for
open source.

Cons
• Late entrant to IaaS market;
• Less features and services;
• Not as enterprise focused.

• Difficult to use;
• Cost management;
• Overwhelming options.

•
Issues with
documentation;

•
Incomplete management
tooling.

Table 2.8: GCP, AWS and Azure General Pros and Cons

2.7 Conclusions 33

2.7 Conclusions

Completed this second chapter, which is critical for clarifying key concepts, as well as for exposing

historical landmarks and curiosities about the current state of the vast and constantly evolving

worlds that are BI, Big Data and Cloud Computing, and also for an enumeration and presentation

of different technologies of Cloud Computing and Reporting, it is essential to leave defined which

ones where adopted for the the current project’s development. As such, due to its rapid growth,

support for open source and integration with Microsoft tools and software, Microsoft Azure was

the chosen Cloud Computing technology and because of its low pricing, ease of access to the

chosen referred technology and dashboard features, Power BI was the opted Reporting technology.

It is also relevant to clarify that, since these are paid resources, their use is subject to costs, being

charged for execution time, number of executions, write operations, consumed execution memory

and occupied storage memory.

34 Bibliographic Review

Chapter 3

Proposed Solution

In this chapter the proposed solution to the problem raised in chapter 1.3 will be explained, initially

addressing the developed architecture, followed by the data model to be found in the DW and,

finally, a contextualisation of the project in real time.

3.1 Solution Architecture

In order to respond to the requirements raised by a real-time data integration system and its real-

time analysis, the architecture, presented in the diagram of figure 3.1, was developed, which is

divided into two fundamental sections.

Figure 3.1: Proposed Solution Architecture

1. Real Time Data Intake Section - As is understandable, the system consists of receiving in-

formation on transactions in the form of Post-type HTTP requests, in XML format according

to the SOAP protocol, having to be intercepted by an Azure Function, so as to convert them

35

36 Proposed Solution

into registers capable of being received by the following Event Hubs, insofar as the latest

not being able to read XML information under the referred protocol. As such, the Function

App receives the XML registers and converts them to a valid format for the Event Hubs,

in this case, JSON, creating a queue, as explained in subchapter 2.6.3.3. The resource that

follows is Stream Analytics, whose functionality in this architecture doesn’t deviate from its

operating principle, also deepened in subchapter 2.6.3.3, receiving the registers queued by

the Event Hubs, in the form of stream, and in real time, and directing them, in the form of

readable information, into two outputs, Power BI, allowing Real Time analysis, and Azure

SQL Database, thus appearing the second main component of this architecture.

2. Data Processing Section - It is in the DW that all the tables with information relevant to

the project under study are stored, including the reference ones. Since Azure SQL Database

is a resource which is an output to Stream Analytics, it receives, in a table, the informa-

tion streamed, filling it as new transactions are processed. It is in this way that this table

is prepared to undergo an ETL process, as the data does not reach the database properly

processed. For this purpose, the Data Factory resource is used, which is able to access the

Azure SQL Database and collect the data contained in it, processing it. On the other hand,

there is a need to cross the information, coming from the section described above, with ref-

erence data, in order to verify its accuracy and consistency. This way, files under the .CSV

extension are temporarily received and stored as blobs, in a Blob Storage resource, so that

they can, as well, be collected by the Data Factory, submitted to an ETL process, and stored

in the Azure SQL Database, according to the data model, presented in the next subchapter.

Having both stream and reference data processed, the Data Factory resource generates files,

with the same extension as previously mentioned, into the Blob Storage, which serves as

input for Stream Analytics, allowing the analysis to be performed on Power BI to be based

on both stream and old data.

3.2 Data Model

Multidimensional modelling is fundamental so that an in-depth analysis of the data can be carried

out, allowing it to be observed from different points of view, making it possible to detect trends

and/or exceptions. For this reason, the multidimensional model presented in the scheme of the

following figure 3.2, corresponding to the tables’ distribution in the Azure SQL Database, was

developed.

3.2 Data Model 37

Figure 3.2: Proposed Solution Data Model

As can be seen, the model’s Facts table is populated with all the information coming from

the HTTP request and with all the data resulting from its cross-reference with the information

contained in the model’s dimension tables.

In order to print an appropriate time scale, the FACT_Transactions table is related to the time

dimension, DIM_Date, via its Primary Key, DIM_DateID. This phenomenon can be observed a

second time, in the relation between the Facts table and the Dimension table DIM_Transactioncode,

these being related by the Primary Key DIM_TransactioncodeID, and a third time, with respect

to the accounts, linking the Facts table with the accounts Dimension table DIM_Contas by the

Primary Key DIM_ContasID. The latter, in turn, collects contracts information, linking itself to

the contracts Dimension table DIM_Contratos, via its Primary Key DIM_ContratosID, a situation

that also occurs in the relationship between the contracts Dimension table and the Clients’ Di-

mension table, DIM_ClientesID, by the second’s Primary Key DIM_ClientsID. In this way, all the

necessary information, in order to carry out a detailed analysis of each integrated transaction, is

gathered.

An example of an HTTP request, in the mentioned format and according to the referred proto-

col, in subchapter 3.1, can be observed in appendix B.

38 Proposed Solution

3.3 Pricing

In order to be able to carry out a budget analysis for the project, there is a need to explain the

costs associated with the use of Azure’s various resources, indicated in chapter 2.6.3.3. Thus, the

following sub-chapters will clarify the prices and payment philosophies adjacent to each resource.

3.3.1 Resource Group

Due to its unique resource management and centralisation nature, this Azure tool does not have

implicit associated costs.

3.3.2 Storage Account

In order to define Azure Storage Account resource’s pricing, it’s imperative that the 4 storage

redundancy strategies available, Locally Redundant Storage, Zone Redundant Storage, Geograph-

ically Redundant Storage and Read-Access Geographically Redundant Storage, are properly un-

derstood. In the following table 3.1 the information required to define the best strategy to a project,

such as durability and availability for various scenarios, are presented.

Strategy
Scenario LRS ZRS GRS RA-GRS

Node unavailability
within a data center YES YES YES YES

Data center
unavailable NO YES YES YES

A region-wide
outage NO NO YES YES

Read access
in the event

of region-wide
unavailability

NO NO NO YES

Durability
per year

At least 99.9 %
(11 9’s) by keeping

multiple copies
in one datacenter.

At least 99.9 %
(12 9’s) by keeping

multiple copies
across multiple

datacenters
or regions.

At least 99.9 %
(16 9’s) by keeping

multiple copies
in one region and
asynchronously
replicating to a
second region.

At least 99.9 %
(16 9’s) durability
and 99.99 % read

availability by
allowing read

access from the
second region
used for GRS.

Supported storage
account types GPv2, GPv1, Blob GPv2

GPv2, GPv1,
Blob

GPv2, GPv1
Blob

Table 3.1: Storage Redundancy Strategies Comparison

3.3 Pricing 39

According to the aspects presented in the previous table, the strategy addressed in the devel-

opment of this project is LRS, the pricing of which is demonstrated, in euros, in the following

table 3.2.

PREMIUM HOT COOL ARCHIVE

Data Storage

First 50 (TB)
/ month 0.16453 0.01663 0.00853 0.00163

Next 450 TB
/ Month 0.16453 0.01593 0.00853 0.00163

Over 500 TB
/ Month 0.16453 0.01533 0.00853 0.00163

Operations and
Data Transfer

Write Operations1 0.0193 0.0456 0.0844 0.1012
List and Create

Container Operations1 0.0549 0.0456 0.0456 0.0456

Read Operations1 0.0016 0.0037 0.0085 5.0598
All other Operations 1 2 0.0016 0.0037 0.0037 0.0037

Data Retrieval 3 Free Free 0.0085 0.0203
Data Write 3 Free Free Free Free

Table 3.2: Storage Account LRS Pricing

3.3.3 Function App

As mentioned earlier, in chapter 2.6.3.3, this resource is based on a pay-per-use payment policy,

charging only its consumption per second and execution, per month, including the first million

executions free of charge.

As mentioned earlier, in Chapter 2.6.3.3, this resource is based on a pay-per-use payment pol-

icy, charging only its consumption per second and execution, per month, including the first million

executions, as well as first 400000 GB/s of resource consumption, free of charge, per subscription

over all Function Apps. Resource consumption is calculated by multiplying the average memory

size, in GB, by the time, in milliseconds, that the function takes to execute, rounding up to the

nearest 1 millisecond. In turn, the memory consumed by the function is measured by rounding up

to the nearest 128 MB, up to a maximum memory size of 1536 MB. It also has a minimum execu-

tion time of 100 milliseconds and a minimum memory consumption of 128 MB. In the following

table 3.3, the prices, in euros, imposed for the use of this resource can be observed.

1Per 10000 operations
2Except Delete, which is free
3Per GB

40 Proposed Solution

METER PRICE FREE GRANT (PER MONTH)
Execution Time 0.0000144 400,000 GB-s
Total Executions 0.1695 1 million executions

Table 3.3: Azure Function App Pricing

3.3.4 Event Hubs

As explained in Chapter 2.6.3.3, this resource is a service that can integrate real-time data in a

simple, secure and scalable way. The costs associated with its use are explained, in euros, by the

information contained in table 3.4 below.

BASIC STANDARD DEDICATED
Throughput Unit6 0.013 /hour 0.026 /hour Billed per Capacity Unit (CU)

Ingress Events 0.0247 0.0247 Included
Capture Not available 0.085 /hour Included

Apache Kafka Not available Available Available
Extended Retention Not available 0.11884 GB included per TU) 0.11810 TB included per CU)

Table 3.4: Event Hubs Pricing

3.3.5 Stream Analytics

The payment method imposed on the use of this resource, which is fundamental for a real-time

analysis project implementation, consists of charging, per hour of use, the number of streaming

units, as demonstrated, in euros, in the following table 3.5.

Usage Price
Streaming unit 0.102/hour

Table 3.5: Stream Analytics Pricing

3.3.6 SQL Database

There are 3 main options available, through Azure, to define the database to use, which are Single

Database, offering provisioned computing, serverless compute tier choices and performance tiers,

which are Basic, Standard and Premium, Elastic Pool, which is a shared resource that allows better

efficiency for resource consumption, ideal for Saas applications or to modernise existing applica-

tions for Saas, and Managed Instance, which provides the broadest compatibility of SQL Server

engine, allowing easier migration of databases without the need to switch between applications.
4Per GB/s
5Per 1 million executions
61 MB/s ingress, 2 MB/s egress
7Per 1 million events
8Per GB/month

3.3 Pricing 41

For the purpose of this project, it was opted for Single Database with 10 DTUS, S0, the

associated costs of which are shown, in euros, in the following table 3.6.

DTUS9 Included Storage Max Storage Price for DTUS
and Included Storage

Basic B 5 2 GB 2 GB 0.0057/hour

Standard

S0 10 250 GB 250 GB 0.0171/hour
S1 20 250 GB 250 GB 0.0341/hour
S2 50 250 GB 250 GB 0.0851/hour
S3 100 250 GB 1 TB 0.1701/hour
S4 200 250 GB 1 TB 0.3401/hour
S6 400 250 GB 1 TB 0.6802/hour
S7 800 250 GB 1 TB 1.3603/hour
S9 1,600 250 GB 1 TB 2.7205/hour

S12 3,000 250 GB 1 TB 5.1010/hour

Premium

P1 125 500 GB 1 TB 0.5271/hour
P2 250 500 GB 1 TB 1.0542/hour
P4 500 500 GB 1 TB 2.1083/hour
P6 1,000 500 GB 1 TB 4.2165/hour

P11 1,750 4 TB 4 TB 7.9344/hour
P15 4,000 4 TB 4 TB 18.1355/hour

Table 3.6: Azure SQL Database Pricing

3.3.7 Data Factory

The responsible resource for conducting the ETL is charged, as can be observed in the following

table 3.7, in euros, based on Pipeline orchestration and execution, by integration runtime hours,

which provide the required computation resources to execute the various pipelines.

9Performance measure unit, more DTUS equals better performance

42 Proposed Solution

Type Price Description

Orchestration
0.844 per 1,000 runs Activity, trigger, and debug runs

Self-hosted integration runtime
1.265 per 1,000 runs

Execution

Azure integration runtime
Cost to execute an activity on

Azure integration runtime

Data movement activities: 0.211/hour

Pipeline activities: 0.005/hour

External: 0.000211/hour

Self-hosted integration runtime
Cost to execute an activity on

a self-hosted integration runtime

Data movement activities: 0.085/hour

Pipeline activities: 0.002/hour

External: 0.000085/hour
Table 3.7: Data Factory Pipeline Orchestration and Execution Pricing

This resource is, also, charged for data flow execution and debugging, the costs of which are

distributed by type of purpose and are shown, in euros, in the following table 3.8

Type Price Description

Compute Optimised 0.064 per hour
Data flow built on

Compute Optimised computing

General Purpose 0.092 per hour
Data flow built on

General Purpose computing

Memory Optimised 0.125 per hour
Data flow built on

Memory Optimised computing
Table 3.8: Data Factory Data Flow Execution and Debugging Pricing

The use of Azure Data Factory is charged, as well, for the number of operations, such as

pipeline creation and monitoring, the costs of which, can be observed, in euros, in the following

table 3.9 .

Type Price Examples

Read/Write 0.42210 Read/write of entities
in Azure Data Factory

Monitoring 0.21111
Monitoring of pipeline,

activity, trigger,
and debug runs

Table 3.9: Data Factory Operations Pricing

10Per 50000 modified/referenced entities
11Per 50000 run records retrieved

3.4 Conclusions 43

3.4 Conclusions

Having completed this third chapter, the solution found and proposed to solve the problem de-

scribed in chapter 1.3’s fundamental principles are clarified, as well as the way in which the re-

sources chosen for this purpose’ usage are charged, as its understanding is crucial for the project’s

execution.

In this way, the conditions for proceeding with its implementation are gathered.

44 Proposed Solution

Chapter 4

Solution Implementation

This chapter presents the various steps taken to implement the solution proposed in Chapter 3, as

well as possible obstacles that may have arisen, followed by their solution

4.1 Proposed Architecture Implementation

In order to start the project’s implementation, it is necessary to have an account in Microsoft Cloud

Computing solution, Azure, which provides the amount of 170 euros to freely explore its resources

during the period of thirty days.

4.1.1 Resource Creation

After completing the aforementioned fundamental basic step for the development of the project in

question, follows the creation of a Resource Group, which can be accomplished by logging into

the Azure account and searching Azure’s Marketplace. There are no requirements to create this

crucial resource, apart from having an active Microsoft Azure account.

Next, a Storage Account is created, which has to be associated with the Resource Group

already designed. It is prompted to define the account type, account redundancy strategy, per-

formance quality, and access tier. For the purpose of this dissertation, it was chosen standard

performance, StorageV2 type account, LRS data redundancy and Hot access tier. After, within

the Storage Account, containers were created, destined to receive reference .CSV files (Blobs), as

well as those of which were both successfully and unsuccessfully integrated.

The creation of an Azure SQL Database follows, for which it is necessary to associate the

Resource Group, once more, as well as to create a server, to which an administrator login and

password have to be assigned, to which the database is associated, and define the database type

as well as the performance tier. For the purpose of this thesis, it was decided, as mentioned in

subchapter 3.3.6, for the Single Database with Standard S0 performance, providing 250 GB of

storage and 10 DTUS.

Next, the Function App is created by accessing the Marketplace. In order for this resource to

be properly used, it should be associated with the Resource Group and Storage Account already

45

46 Solution Implementation

created. It is, then prompted for an OS to be selected, as well as a Hosting Plan and Runtime

Stack. For the purpose of this dissertation, it was selected Windows OS, Consumption Hosting

Plan and .NET Runtime Stack. It is inside this Function App space that functions can be created,

being prompted that the programming language to be used and the function name are defined. The

function that was created was written in C#.

The following resource to be created is the Event Hubs, for which it is necessary to create a

Event Hub Namespace, which is a container for a group of Event Hubs, to which the Resource

Group is ,once again, associated, as well as the Pricing Tier and the Throughput Units number.

For the creation of the Event Hubs that was used in the project, the Namespace was defined with

Basic Pricing Tier, which includes 1 consumer group, and 1 Throughput Unit. Thus, the Event

Hubs was created, the available parameters of which are Partition Count and Message Retention.

Given that the Event Hubs Namespace defined is a Basic Tier one, the Message Retention number

was set to 1 and the Partition Count was set to the minimum available value of 2 Partitions.

The Stream Analytics resource creation follows, the prompted configurations of which consist

of associating it to the, already created, Resource Group, as well as defining a Hosting Environ-

ment and specifying the number of Streaming Units. For the purpose of this project, it was opted

for a Cloud Hosting Environment and 1 Streaming Unit.

The last resource to be created is the Data Factory. So that this resource can be brought to

existence, it is prompted to state the Data Factory version with which it is wished to develop the

ETL, as well as to, once again, associate the Resource Group. For the sake of this thesis, and

because it consists of a more visually appealing platform, it was opted for V2 Version.

4.1.2 Resource Implementation

As mentioned in the previous subchapter 4.1.1, the Runtime Stack defined for the funtion app was

.NET, so the code developed to convert the HTTP into a readable format by the Event Hubs, which

can be observed in appendix C, was based in C#. As such, it receives transaction information, via

HTTP Post request, in XML format, according to SOAP, and transforms it into JSON format,

being possible to identify the SOAP headers so that they can be stored in a list of strings with

"<fields>" as well as "<key>" elements removed. In order for the mentioned transformation’s

outcome to be sent to the Event Hubs, two connection strings are used, one that points to the

name of the Event Hubs and another that points to the connection string-primary key of the same

resource, whose information is obtained in root managed shared access key section, under Event

Hubs’ shared access policies.

In order that the data can be observed in real time, the Event Hubs is defined as stream input

in Stream Analytics, being necessary to indicate the source’s Namespace, as well as to define the

event hub policy name and key, event serialisation format and the encoding, the last two having

been designated, respectively, as JSON format and UTF-8 encoding, and also an output, which in

this case is Power BI, the connection for which is created logging in with the same azure account

on this reporting technology’s online platform. Thus, the proposed architecture’s Real Time Data

4.1 Proposed Architecture Implementation 47

Intake Section is implemented. In order to ensure data integrity, as well as that they remain up-to-

date regarding accounts and customers, the data processing section is set in motion.

The reference files are received by the "uniblobs" container, located in the storage account, as

shown in figure 4.1

Figure 4.1: Deployed Storage Account’s Composition

In order for the data from the transactions, represented in Power BI, to be cross-referenced

with those contained in the reference .CSV files, it is necessary to create a table that receives them

in the Azure SQL Database which is also defined as a Stream Analytics output, being prompted

to specify the created database’s name, as well as the server’s, in the output details. The crossing

process is based on Data Factory pipelines, as described below.

Since Data Factory is the responsible resource for the ETL development, its implementation

is distributed in 3 stages:

1. E - Firstly two connection strings, that point to the created storage account, as well as

to the Azure SQL Database, through the Connections section of Factory Resources, are

created. Secondly, a pipeline is created, which includes an activity that reads the contents

of the container responsible for receiving the reference files, pointing to it through a dataset,

which includes the connection string created, the path to the container in question, and

the type of column delimiter which, because they are .CSV files, is defined as Comma (,)

Column Delimiter. A ForEach cycle is attached to this activity, as shown in the image

of figure 4.2, below, within which an If Condition is created, which iterates over all files

with a certain name, for example, in the case of accounts reference files, it reads all files

that contain the word "conta" in its name. Inside of it, a series of activities are created, as

shown in the following figure 4.3, which consists of the Process Log creation, resorting to

a Stored Procedure, developed in SQL in the Azure SQL Database, the code of which can

48 Solution Implementation

be observed in appendix D, while receiving, as parameters, the file name, a variable that

defines whether the Log is starting or ending, the process level, the hierarchy of which can

be observed in the image of fig. 4.4, and the process’ name, ID and type.

Figure 4.2: Get Metadata and ForEach Connection

Figure 4.3: Inside IF Condition Diagram

Figure 4.4: ETL Process Level Hierarchy

Attached to this SP, there is a Copy activity whose function is, as its name implies, to

copy all the files identified by the previous IF Condition to the Azure SQL Database, being

required to create a dataset for this specific type of files, "contas", for Source, as well as to

properly identify them, which is done through a wildcard and to specify that it is essential

to copy recursively. For Sink, it is necessary to create, again, a dataset that makes use

of the connection string that points to the mentioned database, specifying the table that will

receive the data, in the DSA. Regarding the files that are successfully integrated, the logging

process ends, as successful, and another copy activity is presented, responsible for copying

them to the "success" container of successfully integrated files, in order to keep a record of

files that went through the ETL process, followed by a Delete activity, which deletes them

from the container where they originally entered. The same process occurs, in regard of

unsuccessfully integrated files, this time with the logging process ending as unsuccessful,

being copied to the "failure" container, being deleted, as well, from the original container.

4.1 Proposed Architecture Implementation 49

This Level 2 Process, is repeated for the remaining .CSV reference files, whether they are

contracts, clients, transaction codes, or received HTTP requests, creating their respective

datasets and copying them to the corresponding tables in the DSA.

2. T - All the data extracted in the reference files comes as string type, therefore, so that they

can be properly analysed, this data treatment process consists of eliminating unnecessary

columns and converting the remaining ones to the corresponding data types, such as nvar-

char, tinyint, int, bigint, date, datetime or decimal, as well as treating NULL values, through

SQL commands, such as CAST or CASE, resulting in a query as the one that can be ob-

served in appendix E. As in the extraction process,for this sequence to exists, a pipeline is

created, beginning with the start of the Logs, using the same SP as before, followed by a

Copy activity, in which, as Source, the mentioned query is used, returning, to the Azure

SQL Database, a table with the data treated, serving as Sink, followed by the end of the

Logs, as can be seen in the diagram of figure 4.5.

Figure 4.5: Transform Process

3. L - This last process consists of, as its name implies, loading the treated tables into the

Azure SQL Database in order to populate the dimension tables, which are, consequently,

processed and printed, as .CSV files, into the "references" container. For this purpose, a

pipeline is created, whose initial activity is the beginning of the Logs, resorting again to

the Log SP, followed by a Copy activity, which distributes the data processed across the

corresponding tables, being terminated by the Logs, as can be seen in the diagram of the

following image 4.6

Figure 4.6: Load Process

All the extraction pipelines are controlled by a pipeline responsible for executing them, as

well as those of transformation and loading, as shown in the three diagrams of the following

figure 4.7.

50 Solution Implementation

Figure 4.7: Extract, Transform and Load Control Packages, Respectively

In turn, these pipelines are controlled by a "Master Pipeline", responsible for executing the

entire ETL, a phenomenon that is triggered when a new file is received by the container

designed to ingest new files, to ensure that the data is up to date. In order to ensure that

the load process only occurs after the transformation one and that the latest is only executed

after the extraction process, the "Wait on Completion" option is selected. In the diagram of

the following figure 4.8, this sequence is represented.

Figure 4.8: ETL Control Package

4.2 Data Model Implementation 51

As shown in Table 4.1, below, the total number of activities used in this resource’s implemen-

tation is 99.

Activity Quantity
Get Metadata 4

For Each 4
If Condition 4

Stored Procedure 40
Copy 22
Delete 8

Execute Pipeline 17
99

Table 4.1: Data Factory Used Activities

Once the Data Factory is implemented, the files corresponding to the dimension tables, located

in the "reference" container, are added as Stream Analytics inputs. Thus, the query that streams the

data from Stream Analytics to Power BI, which can be observed in appendix F, has, as inputs, the

stream data from the HTTP request and the dimension tables, which can now be crossed, ensuring

that the printed data corresponds to the reality.

4.2 Data Model Implementation

In order to implement the defined data model, which follows the structure of the scheme already

represented in figure 3.2 in chapter 3.2, the five dimension tables, corresponding to the dimensions

of time, transaction code, account, contracts and customers, as well as the Facts table, are created

in the Azure SQL Database.

4.3 Reporting Implementation

In this specific situation, of streaming data to the chosen reporting technology, data is received

in a single table, in the automatically created dataset, when linking Stream Analytics with Power

BI, being able to build, through Visuals, available on the platform, a series of Dashboards that

constitute the support for analysis and detection of trends.

4.4 Conclusions

Once the system is implemented, follows the results found on the Power BI reporting technology,

as well as a budget analysis, in order to ascertain the imposed costs on the proposed solution

implementation.

52 Solution Implementation

Chapter 5

Results

In this chapter, the results obtained are presented, which translate into the analyses built with

Power BI, with the implemented model, as well as the project budget, based on the already exposed

pricing as well as on the number of times the resources were used.

5.1 Results Analysis

In order to be able to carry out several analysis based on the data resulting from the execution

of the whole described project, it was used, as already described in chapter 2.6.3.4, Microsoft’s

reporting technology, Power BI, being possible the construction of dynamic, interactive and visu-

ally appealing Dashboards, easing the process of understanding them, as well as making informed

decisions, based on the reports.

The main purpose of using the mentioned tool is the creation of easy-to-handle reports and

quick access to fundamental information for making decisions with impact on the market in which

the company is located. In this way, the first tab created consists of an initial page, with connectors

for the various dashboard pages, defined defined with the "Action" option in the Visualisations

settings, allowing one click to immediately access the desired dashboard, as represented in the

image of the following figure 5.1

53

54 Results

Figure 5.1: Power BI Report Main Page

Accessing the first report, Location-Oriented Analysis, it is possible first to observe a set of

KPI, which are translated into the registered transactional volume, the total number of clients and

the total number of business locations. In the first Dashboard, it is possible to identify the client’s

segmentation by the different cities, where the circle that identifies them, is as large as the volume

transacted in the respective city, being easy to conclude, with the aid of the dashboard "Amount

Transacted vs. Number of Transactions per City ", that Madrid, although it is not the city with the

biggest number of customers, accomplishment that belongs to Porto, according to the dashboard

"Total Customers per City", is the one that presents the biggest transacted volume, followed by

Barcelona and Lisbon. The same effect occurs in the Dashboard "Amount Transacted vs. Number

of Transactions per City", where it can be observed that, as it had already been concluded, Madrid

is the city with the highest transacted volume, not being, however, the city where the largest

number of transactions occurs, as can be observed in the image of figure 5.2, below.

Figure 5.2: Power BI Report Location-Oriented Analysis

5.1 Results Analysis 55

Accessing the second report, Customer-Oriented Analysis, shown in figure 5.3, the presented

analysis is focused on customer behaviour and its characterisation through a series of dashboards,

such as "Customer’s Info", which consists of a table composed of a set of relevant information

about the customer, such as account number, gender, name or profession, the "Electronic Portal

Status", to identify the percentage of customers that activated the online services available, or the

"Email Statement Status", identifying the number of clients that want to be contacted, by email,

for commercial or marketing purposes.

Figure 5.3: Power BI Report Customer-Oriented Analysis

Accessing the third report, "Sand Dance Analysis", it is possible to do a series of different

analyses that, complement each other, through the Custom Visual "SandDance", which allows

to easily explore the data and present them in various graphical interfaces, which are displayed

during a defined time interval to, then, be skipped to the following one, producing a constantly

running slideshow-like effect, grouping them by granularity, colour and volume.

In the first analysis performed with this Visualisation, which can be observed in the image of

figure 5.4, it is possible to identify, in quantity, the professions occupied by city, the data being

coloured according to the customer’s nationality,

56 Results

Figure 5.4: Power BI Report SandDance Professions by City Analysis

In the second one, demonstrated in the image of figure 5.5, the transactional volume, by city,

can be identified, similarly to the "Location-Oriented Analysis" page, this time, also distributed

by gender, allowing to draw conclusions, such as the fact that, according to the presented data,

Madrid reveals itself as a more appealing place for the female audience, while Porto exposes a

greater male audience presence.

Figure 5.5: Power BI Report SandDance Amount Transacted by City Analysis

In the third analysis, presented in the image of figure 5.6, it is possible to observe the monthly

income distribution by city, coloured by professions, being concluded that the greatest wage dif-

ferences are found in Lisbon and Porto.

5.1 Results Analysis 57

Figure 5.6: Power BI Report SandDance Monthly Income by City Analysis

In the fourth analysis, shown in the image of figure 5.7, it is demonstrated the gender distribu-

tion by country, coloured by the customers’ marital status, being concluded that the most clients

are located in Portugal and are married.

Figure 5.7: Power BI Report SandDance Gender Distribution by Country Analysis

The last analysis, presented in the image of figure 5.8, seeks to expose the distribution of the

different professions by clients’ gender, being coloured by salary value.

58 Results

Figure 5.8: Power BI Report SandDance Professions by Country Analysis

5.2 Project Budget

In order to simplify the financial blueprint, which is intended to present the monthly expenses

associated with the project’s usage, it was assumed that an average of 5 transactions per second

is performed, which translates into 5 HTTP requests to be integrated by the system, per second,

and that it is operational during 24 hours a day, including weekends and holidays, and also that

said month has 31 days. It was also assumed that, at least, two reference files are sent to the Blob

Container "uniblobs", an average of 3 times a day. Therefore, its calculation was split, in order to

observe the budget for each resource and, finally, the total sum, concluding the final value for the

project budget.

5.2.1 Storage Account

This resource’s usage is subject to costs, as already verified in subchapter 3.3.2. Being that the

opted Storage Redundancy strategy is LRS, with Hot access tier, resorting to this feature is charged

by two factors:

1. Data Storage: The charged price varies depending on the occupied storage memory. As

already mentioned, it is assumed that, at least, two reference files are sent to the "uniblobs"

container, one with an average of 39.5 MB of required storage memory and the other one

with 17.8 MB, three times a day, occupying an average storage memory, per month, (ASM)

as demonstrated, in euros, in the following expression:

ASM = 17.5+0.002+(39.5+17.8)∗3∗3 = 5346.4MB/month = 5.3464GB/month (5.1)

5.2 Project Budget 59

Since the average storage memory occupied monthly does not exceed 50 TB, this resource’s

usage is charged, in euros, for Data Storage (DS) according to the following expression:

DS = 0.0166∗5.3464 = 0.08875 (5.2)

2. Operations and Data Transfer: The charged price, regarding Operations and Data Transfer

(ODT) varies depending on the number of Write Operations, List and Create Container Op-

erations and Read Operations. As already explained in chapter 4.1.2, When the "uniblobs"

container receives a file, due to the implemented architecture, it is considered that it is writ-

ten in the same container, read, to be able to be used, a copy of it is written in the success

or failure container, and information is written in Stream Analytics "references" input con-

tainer, and also deleted the original file. Therefore, every time a file arrives to "uniblobs"

container, a total of 3 Write operations are registered. The costs associated to the total write

operations, (WO) per month, is, in euros, as represented in the following expression:

WO = 0.0456∗ (2∗3∗3∗31)/10000 = 0.002544 (5.3)

According to the project’s architecture, there are 4 containers, which are never deleted and

no new ones are created. Therefore, the associated costs to List and Create Container Oper-

ations (LCCO), per month, in euros, is as demonstrated in the following expression:

LCCO = 0.0456∗ (4∗1)/10000 = 0.000018 (5.4)

As stated in the project’s architecture, the system accesses blobs for reading purposes in two

situations, whenever the "uniblobs" container receives a file and whenever an HTTP request

is received. Therefore, regarding Read Operations, (RO), the costs associated to this factor

are presented, in euros, in the following expression:

RO = 0.0037∗ (2∗3∗31+13392000)/10000 = 4.91811 (5.5)

In this way, the result of the Storage Account budget (SB) is calculated, in euros, as shown in

the following expression:

SB = DS+ODT = DS+WO+LCCO+RO = 5.00942 (5.6)

60 Results

5.2.2 Function App

As already mentioned in chapter 3.3.3, Microsoft offers the first million executions, as well as

the first 400,000GB/s of execution memory. Thus, initially, the total executions number (TE) is

defined by the following expression:

T E = (5∗86400∗31)−1000000 = 12392000exec/month (5.7)

Each execution takes, on average, 139ms, or 0.139s. Therefore, the total execution time (TEt),

per month, can be calculated resorting to the following equation:

T Et = T E ∗0.139 = 12392000∗0.139 = 1722488s/month (5.8)

Since the first million executions take up the execution memory represented in equation 5.9,

only the presented in equation 5.10 remains as offer by Microsoft.

FirstMillionExecutions : 128∗1000000 = 128000000MB/s = 128000GB/s (5.9)

RemainingO f f eredExecutionMemory : 400000−128000 = 272000GB/s (5.10)

Thus, the total execution memory (TEM) used is exposed in the following equation:

T EM = 128∗12392000−272000 = 1314176000MB/s = 1314176GB/s (5.11)

In this way, the Function App’s budget (FAB), in euros, is as follows:

FAB = 0.169∗12.392+0.000014∗1314176 = 20.493 (5.12)

5.2.3 Event Hubs

As is concluded by the information above, this resource receives 13.392 million events per month,

its use being charged by Throughput Units and by Ingress Events, as mentioned in chapter 3.3.4.

Thus, the cost associated with the use of this resource due to Throughput Units (TU) and Ingress

Events (IE) is, in euros, as shown in the following two expressions:

5.2 Project Budget 61

TU = 0.013∗24∗31 = 9.672 (5.13)

IE = 0.024∗13.392 = 0.321 (5.14)

For the chosen tier, this resource’s usage isn’t charged in any other way, therefore, the Event

Hubs budget (EHB) is, in euros, as represented in the following expression:

EHB = TU + IE = 9.672+0.321 = 9.993 (5.15)

5.2.4 Stream Analytics

The use of this feature, as previously mentioned, in Chapter 3.3.5, is only charged for the requested

Streaming Units. For the project in question, only a streaming unit has been defined, so the Stream

Analytics budget (SAB) is, in euros, established as shown in the following equation

SAB = 0.102∗24∗31 = 75.888 (5.16)

5.2.5 SQL Database

In order for the budget from resource to be properly performed, it is necessary to identify the

performance tier and the number of DTUS required. As already mentioned in chapter 3.3.6, the

Standard Performance Tier with 10 DTUS was chosen and, as the use of this resource is charged,

per hour, by Available Storage Memory and DTUS number, the SQL Database budget (DBB) is

calculated, in euros, as demonstrated in the following equation:

DBB = 1.0171∗24∗31 = 12.722 (5.17)

5.2.6 Data Factory

This resource’s usage is subject to costs related to Data Factory Orchestration, Execution and

Read/write operations. In this way, it is necessary to split its calculation into three steps:

1. Data Factory Orchestration: On average, the ETL runs 186 times a month, is composed

by 18 pipelines, consists of a total of 99 activities and "Copy" activities take an average of

11.4 seconds to execute, "Stored Procedure" activities last 3.5 seconds and the remaining

activities take an average of 4.3 seconds to run, running once for each file received in the

62 Results

"uniblobs" container. The calculations for the costs associated with Data Factory Orches-

tration (DFO) are presented, in euros, by the following expression:

DFO = 1.265∗ (186∗99)/1000 = 23.294 (5.18)

2. Data Factory Execution: The costs associated with data movement activities (AE), which

consist of Copy activities, pipeline (PE), which, in turn, consist of Get Metadata, ForEach

and If activities, and external activities’ (EA), which consist of Stored Procedure Activities,

execution times are demonstrated, in euros, in the following expressions:

AE = 0.211∗ (11.4∗186∗ (20))/3600 = 2.486 (5.19)

PE = 0.005∗ (4.3∗186∗ (29))/3600 = 0.032 (5.20)

EA = 0.000211∗ (3.5∗186∗40)/3600 = 0.0015 (5.21)

Therefore, the costs associated with Data Factory Execution (DFE) are demonstrated in the

following expression:

DFE = AE +PE +EA = 2.519 (5.22)

3. Data Factory Read/Write Operations: All Copy activities require a read and write action,

totalling n readings and writings. Therefore, the costs associated to this factor (RWO) are

demonstrated, in euros, in the following expression:

RWO = 0.422∗186∗ (3∗4+1+5+4)/50000 = 0.035 (5.23)

Therefore, the Data Factory Budget (DFB) is represented, in euros, in the following expres-

sion:

DFB = DFO+DFE +RWO = 25.848 (5.24)

5.3 Conclusions 63

5.2.7 Power BI

Microsoft’s main reporting technology features three versions, one of them being trial, with no

costs associated, Power BI Pro, which provides collaboration and ad-hoc analytics services at a

cost of 8.40 C per month, per user, and a Power BI Premium version, providing advanced adminis-

tration and deployment controls, with an associated monthly cost of 4212.30 C per dedicate cloud

compute and storage resource. For the purpose of this dissertation, it was opted for the Power BI

Pro version. Thus, Power BI Budget is, in euros, as represented in the following expression:

PBIB = 8.40 (5.25)

5.2.8 Final Budget

Having calculated the utilisation costs associated to the use of each resource, the values of which

are shown in table 5.1 below, the total budget is presented on the expression 5.26 represented

below

Resource Budget
Storage Account (SB) 5.009

Function App (FAB) 20.493

Event Hubs (EHB) 9.993

Stream Analytics (SAB) 75.888

SQL Database (DBB) 12.722

Data Fatcory (DFB) 25.848

Power BI (PBIB) 8.40

158.353
Table 5.1: Project Budget

Budget = SB+FAB+EHB+SAB+DBB+DFB+PBIB = 158.353 (5.26)

5.3 Conclusions

Given the values presented throughout this chapter, specifically in chapter 5.2.8, it can be con-

cluded that using Cloud solutions, for data ingestion, processing and storage purposes, translates

into added value for companies, both organisationally as well as financially.

64 Results

Chapter 6

Conclusion

In this last chapter, the conclusions drawn as a result of the project’s development, as well as

suggestions for future work, are presented.

The present dissertation’s main purpose is to construct a system capable of receiving informa-

tion about transactions, in real time, interpreting data, received via HTTP requests in XML format,

according to the SOAP protocol, on a reporting platform, in a visually appealing way, in order for

the user to be able to perform various analyses. For that purpose, an architecture was built, serving

as the basis for the project, and several resources, made available by Microsoft’s Cloud Comput-

ing solution, Microsoft Azure, were used in order to implement it, having separated it into two

fundamental phases.

Firstly, the architecture’s section related to the integration of real-time information, and its

presentation in the reporting technology, was implemented. One obstacle found was the fact that

one of the designed architecture’s resources, the Event Hubs, wasn’t able to read a record in XML

format. In order to overcome this setback, a C# script was developed so that the record, in the

specified format and protocol, could be converted to JSON, allowing said resource to read it,

directing the obtained information to the reporting model.

Secondly, the architecture’s section related to data processing and storage, was implemented.

The fact that the HTTP request data, as well as the reference data received in the blob storage

designed for this purpose, were integrated into the system in data types that were not ideal for

cross-referencing or analysis, it was observed the need to convert them into convenient data types

for this purpose through SQL commands. Thus, the raw information that would go to the reporting

technology, from transactions occurrence, was collected by the database, converted to convenient

data types and, after comparison with the reference files, which go through the same data pro-

cessing, was stored in the database, in order to store a transaction history, and submitted to the

resource responsible for the data stream to the reporting tool, ensuring proper data visualisation.

Having based this project’s development on cloud infrastructures, conditions were created to

acquire and deepen knowledge in this regard, namely in programming languages, such as C# and

SQL, skills which are recognised as a valuable resource and sought by companies, in Cloud Com-

puting tools and their resources, concepts such as Big Data, Business Intelligence and Business

65

66 Conclusion

Analytics and, as a consequence of the opportunity to be developed in a business environment,

to acquire knowledge about "real world" companies’ operation and about the various business

models implemented by them.

6.1 Future Work

As future work, it is proposed that, based on the information that is integrated into the system in

real time, a self-adaptive predictive model is developed. It is also proposed that, adopting Artificial

Intelligence tools, such as Machine Learning, a system capable of identifying customer profiles,

as well as recognising transaction anomalies, is implemented, resorting to Microsoft Azure’s Ma-

chine Learning Studio. Within this resource, a series of Cognitive Services APIs can be found,

allowing said resource’s implementation, in that it avails itself of, in this particular case, Deci-

sion APIs, such as Anomaly Detector, and Language APIs, such as Translator Text and LUIS

(Language Understanding), thus, gathering the required conditions to develop a Natural Language

Processing model.

Appendix A

Example of Batch Layer Computation

Api.execute(Api.hfsSeqfile("/tmp/pageview-counts"),

new Subquery("?url", "?count")

.predicate(Api.hfsSeqfile("/data/pageviews"),

"?url", "?user", "?timestamp")

.predicate(new Count(), "?count");

67

68 Example of Batch Layer Computation

Appendix B

Example of an HTTP Request in XML
Format According to SOAP

<soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<ns3:notify xmlns:ns2="http://www.mastercard.com/wsdl"

xmlns:ns3="http://api.wsclient.notificationmodule.mastercard.com/">

<ns2:NotificationMessage>

<messageID>255e0100-350e-4e1f-a8e2-4c1fd8c99f43</messageID>

<fields>

<key>TRANS_ATTRIBUTES</key>

<value>,POS,TERM,TERM_CHIP,TERM_CHIP_CTLS,AUTHENTICATED,

AUTH_AGENT,TRANS_AUTH,PBT,PBT_ONLINE,PBT_CRYPTO,CARD,

CARDHOLDER,MERCH,CARD_CHIP,CHIP_SVC,READ_CHIP,

DATA_TRACK,DATA_CHIP,</value>

</fields>

<fields>

<key>SETTL_CURRENCY</key>

<value>EUR</value>

</fields>

<fields>

<key>DETAILS</key>

<value>CONTINENTE</value>

</fields>

<fields>

<key>TRANS_AMOUNT</key>

<value>6.24</value>

</fields>

69

70 Example of an HTTP Request in XML Format According to SOAP

<fields>

<key>MC_AUTH_CODE</key>

<value>839722</value>

</fields>

<fields>

<key>NIF</key>

<value>244211787</value>

</fields>

<fields>

<key>TERMINAL_ID</key>

<value>00000675</value>

</fields>

<fields>

<key>MCC</key>

<value>5411</value>

</fields>

<fields>

<key>RRN</key>

<value>910112182621</value>

</fields>

<fields>

<key>AUTH_ID</key>

<value>4716791310</value>

</fields>

<fields>

<key>TRANS_CONDITION</key>

<value>POS Chip PBT Full Grade</value>

</fields>

<fields>

<key>ACCOUNT</key>

<value>00150100000000133538</value>

</fields>

<fields>

<key>CITY</key>

<value>LISBOA</value>

</fields>

<fields>

<key>COUNTRY</key>

<value>PORTUGAL</value>

</fields>

Example of an HTTP Request in XML Format According to SOAP 71

<fields>

<key>REV_TRANS_ID</key>

<value>4716791310</value>

</fields>

<fields>

<key>TRANS_DATE</key>

<value>2019-04-11 12:19:26</value>

</fields>

<fields>

<key>TRANS_CODE</key>

<value>T.R1.Q</value>

</fields>

<fields>

<key>TRANS_CURR</key>

<value>EUR</value>

</fields>

<fields>

<key>DECL_REASON_CODE</key>

<value>0</value>

</fields>

<fields>

<key>OTB</key>

<value>113.52</value>

</fields>

<fields>

<key>SETTL_AMOUNT</key>

<value>6.24</value>

</fields>

<fields>

<key>KDI_INF</key>

<value>518224.001</value>

</fields>

<fields>

<key>MERCHANT_ID</key>

<value>0000346510</value>

</fields>

</ns2:NotificationMessage>

</ns3:notify>

</soap:Body>

</soap:Envelope>

72 Example of an HTTP Request in XML Format According to SOAP

Appendix C

Code Developed in C# to Transform
HTTP Requests in XML Format
According to SOAP into JSON Format

#r "Microsoft.ServiceBus"

#r "Newtonsoft.Json"

#r "System.Xml.Linq"

#r "Microsoft.WindowsAzure.Storage"

using System.Collections.Generic;

using System.Linq;

using System.Net;

using System;

using System.Configuration;

using Newtonsoft.Json;

using System.Web;

using System.Text;

using System.Dynamic;

using Microsoft.ServiceBus;

using Microsoft.ServiceBus.Messaging;

public static async Task<HttpResponseMessage> Run(HttpRequestMessage req,

TraceWriter log) {

string data = await req.Content.ReadAsStringAsync();

List<List<string>> finalData = makeMain(data);

73

74
Code Developed in C# to Transform HTTP Requests in XML Format According to SOAP into

JSON Format

List<string> key = finalData[0];

List<string> value = finalData[1];

int count = 0;

foreach(string k in finalData[0]) {

count++;

}

//----STARTS JSON CONV--------//

List<dynamic> list = new List<dynamic>();

var item1 = new ExpandoObject() as IDictionary<string, Object>;

foreach (var item in key)

{

item1.Add(item, string.Empty);

}

var a = item1.Keys.ToArray();

for (int i = 0; i < a.Length; i++) {

var A = a[i];

item1[A] = value.ElementAt(i);

}

list.Add(item1);

var result = JsonConvert.SerializeObject(list);

log.Info(result);

//-----ENDS JSON CONV--------//

//-----SENDS TO EVENT HUB ------//

EventHubClient eventHubClient;

string EhConnectionString = ConfigurationManager.ConnectionStrings

["EhConnectionString"].ConnectionString;

string EhEntityPath = ConfigurationManager.ConnectionStrings

["entitypath"].ConnectionString;

var connectionStringBuilder =

new ServiceBusConnectionStringBuilder(EhConnectionString)

{

EntityPath = EhEntityPath

};

Code Developed in C# to Transform HTTP Requests in XML Format According to SOAP into
JSON Format 75

eventHubClient = EventHubClient.CreateFromConnectionString

(connectionStringBuilder.ToString());

await eventHubClient.SendAsync(new EventData(Encoding.UTF8.GetBytes(result)));

return finalData == null

? req.CreateResponse(HttpStatusCode.BadRequest, "Please pass

a name on the query string or in the request body")

: req.CreateResponse(HttpStatusCode.OK, result);

}

//----------------------------//

public static List<List<string>> makeMain(string data) {

string xml = data;

var fields = new List<string>();

var value = new List<string>();

var key = new List<string>();

int count = 0;

while(xml.Contains("<fields>")) {

fields.Add(getBetween(xml, "<fields>", "</fields>"));

if(getBetweenFields(xml, "<fields>", "</fields>") != "") {

xml = xml.Replace(getBetweenFields(xml, "<fields>", "</fields>"), "");

} else {

xml = "";

}

key.Add(getBetween(fields[count], "<key>", "</key>"));

value.Add(getBetween(fields[count], "<value>", "</value>"));

count++;

}

List<List<string>> finalList = new List<List<string>>();

finalList.Add(key);

finalList.Add(value);

return finalList;

}

public static string getBetween(string strSource, string strStart,

string strEnd)

{

int Start, End;

string returningString;

76
Code Developed in C# to Transform HTTP Requests in XML Format According to SOAP into

JSON Format

if (strSource.Contains(strStart) && strSource.Contains(strEnd))

{

Start = strSource.IndexOf(strStart, 0) + strStart.Length;

End = strSource.IndexOf(strEnd, Start);

returningString = strSource.Substring(Start, End - Start);

return returningString;

}

else

{

return "";

}

}

public static string getBetweenFields(string strSource, string strStart,

string strEnd)

{

int Start, End;

string returningString;

if (strSource.Contains(strStart) && strSource.Contains(strEnd))

{

Start = strSource.IndexOf(strStart, 0);

End = strSource.IndexOf(strEnd, Start) + strEnd.Length;

returningString = strSource.Substring(Start, End - Start);

return returningString;

}

else

{

return "";

}

}

Appendix D

Stored Procedure for Logs

SET ANSI_NULLS ON

GO

SET QUOTED_IDENTIFIER ON

GO

CREATE PROCEDURE [dbo].[Fill_Log_Registry]

(

@Process_Name nvarchar(255),

@Process_Type nvarchar(255),

@Process_Level int,

@File_Name nvarchar(255),

@Is_Success int,

@Process_RunID nvarchar(255),

@Is_Start int

)

AS

BEGIN

SET NOCOUNT ON

IF @Is_Start=1 BEGIN

INSERT INTO Log_Registry([Process_Name],

[Process_Type],

[Process_Level],

[File_Name],

[Start_Date],

[Process_RunID])

SELECT @Process_Name,

@Process_Type,

77

78 Stored Procedure for Logs

@Process_Level,

@File_Name,

GETDATE(),

@Process_RunID

END

ELSE IF @Is_Start=0 BEGIN

UPDATE Log_Registry

SET Is_Success=@Is_Success,

End_Date = GETDATE(),

Elapsed_Time = DATEDIFF(SECOND, [Start_Date], [End_Date])

WHERE [File_Name] = @File_Name

AND Process_RunID = @Process_RunID

END

END

GO

Appendix E

Example of Transformation Query

SELECT CAST(cont.[Account_key] as int) as [Account_key],

CASE WHEN cont.[Account_number] = ’NULL’ THEN NULL

ELSE CAST(cont.[Account_number] as bigint)

END AS [Account_number],

CAST(cont.[Account_type] as nvarchar(255)) as [Account_type],

CASE WHEN cont.Account_open_date=’NULL’ THEN NULL

ELSE CONVERT(date, cont.Account_open_date, 111)

END AS Account_open_date,

CASE WHEN cont.Account_closed_date=’NULL’ THEN NULL

ELSE CONVERT(date, cont.Account_closed_date, 111)

END AS Account_closed_date,

CAST(cont.[Account_currency] as nvarchar(255)) as [Account_currency],

CASE WHEN cont.[credit_limit_ammount] = ’NULL’ THEN NULL

ELSE CAST(cont.[credit_limit_ammount] as int)

END AS [credit_limit_ammount],

CASE WHEN cont.[extended_Credit_Limit] = ’NULL’ THEN NULL

ELSE CAST(cont.[extended_Credit_Limit] as int)

END AS [extended_Credit_Limit],

CASE WHEN cont.[IBAN_of_Prepaid_Account] = ’NULL’ THEN ’No Prepaid Account’

ELSE CAST(cont.[IBAN_of_Prepaid_Account] as nvarchar(255))

END AS [IBAN_of_Prepaid_Account],

CASE WHEN cont.[IBAN_of_Credit_Account] = ’NULL’ THEN ’No Credit Account’

ELSE CAST(cont.[IBAN_of_Credit_Account] as nvarchar(255))

END AS [IBAN_of_Credit_Account],

CASE WHEN cont.[ATM_payment_reference] = ’NULL’ THEN NULL

ELSE CAST(cont.[ATM_payment_reference] as bigint)

END AS [ATM_payment_reference],

CASE WHEN cont.[Direct_Debit_Reference] = ’NULL’ THEN NULL

79

80 Example of Transformation Query

ELSE CAST(cont.[Direct_Debit_Reference] as bigint)

END AS [Direct_Debit_Reference],

CAST(cont.[Type_of_amortization] as nvarchar(255)) as [Type_of_amortization],

CASE WHEN cont.[PCT_of_amortization_revolving] = ’NULL’ THEN NULL

ELSE CAST(cont.[PCT_of_amortization_revolving] as int)

END AS [PCT_of_amortization_revolving],

CASE WHEN contr.SA_DIM_ContratosID IS NULL THEN NULL

ELSE CAST(contr.SA_DIM_ContratosID as int)

END as SA_DIM_ContratosID,

CASE WHEN cont.[Contract_ID] = ’NULL’ THEN NULL

ELSE CAST(cont.[Contract_ID] as int)

END AS [Contract_ID],

CASE WHEN cont.[contract_key] = ’NULL’ THEN NULL

ELSE CAST(cont.[contract_key] as int)

END AS [contract_key],

CASE WHEN cont.[Revolving_Nominal_Interest_Rate] = ’NULL’ THEN NULL

ELSE CAST(cont.[Revolving_Nominal_Interest_Rate] as decimal(6,5))

END AS [Revolving_Nominal_Interest_Rate],

CASE WHEN cont.[Installments_Nominal_Interest_Rate] = ’NULL’ THEN NULL

ELSE CAST(cont.[Installments_Nominal_Interest_Rate] as decimal(6,5))

END AS [Installments_Nominal_Interest_Rate],

CASE WHEN cont.[Card_Global_Efective_Interest_Rate] = ’NULL’ THEN NULL

ELSE CAST(cont.[Card_Global_Efective_Interest_Rate] as decimal(6,5))

END AS [Card_Global_Efective_Interest_Rate],

CASE WHEN cont.[Status_of_Credit_account] = ’NULL’ THEN NULL

ELSE CAST(cont.[Status_of_Credit_account] as int)

END AS [Status_of_Credit_account],

CAST(cont.[Status_of_Credit_account_description] as nvarchar(255))

as [Status_of_Credit_account_description],

CASE WHEN cont.Account_Last_Change=’NULL’ THEN NULL

ELSE CONVERT(date, cont.Account_Last_Change, 111)

END AS Account_Last_Change,

CASE WHEN cont.sfs_account_open_date=’NULL’ THEN NULL

ELSE CONVERT(date, cont.sfs_account_open_date, 111)

END AS sfs_account_open_date,

CAST(cont.[institution_name] as nvarchar(255)) as [institution_name],

CAST(cont.[sfs_status_credit_account_description]

as nvarchar(255)) as [sfs_status_credit_account_description],

CAST(cont.[last_change_officer] as nvarchar(255)) as [last_change_officer],

CAST(cont.[sfs_iban] as nvarchar(255)) as [sfs_iban]

Example of Transformation Query 81

FROM SA_Contas AS cont

LEFT JOIN SA_DIM_Contas AS DIM ON DIM.Account_key =

(CASE WHEN cont.Account_key=’NULL’

THEN NULL

ELSE CAST(cont.Account_key as int) END)

LEFT JOIN SA_DIM_Contratos as contr ON contr.contract_id =

(CASE WHEN cont.Contract_ID = ’NULL’

THEN NULL ELSE CAST(cont.Contract_ID as int) END)

AND contr.contract_key = (CASE WHEN cont.contract_key = ’NULL’

THEN NULL ELSE CAST(cont.contract_key as int) END)

WHERE DIM.Account_key IS NULL AND

DIM.Contract_ID IS NULL AND

DIM.contract_key IS NULL

82 Example of Transformation Query

Appendix F

Stream Analytics Output Query

SELECT CAST(TRANS_ATTRIBUTES as nvarchar(MAX)) as TRANS_ATTRIBUTES,

CAST(SETTL_CURRENCY as nvarchar(MAX)) as SETTL_CURRENCY,

CAST(DETAILS as nvarchar(MAX)) as DETAILS,

CAST(TRANS_AMOUNT as float) as TRANS_AMOUNT,

CAST(MC_AUTH_CODE as bigint) as MC_AUTH_CODE,

CAST(NIF as bigint) as NIF,

CAST(TERMINAL_ID as bigint) as TERMINAL_ID,

CAST(MCC as bigint) as MCC,

CAST(RRN as bigint) as RRN,

CAST(AUTH_ID as bigint) as AUTH_ID,

CAST(TRANS_CONDITION as nvarchar(MAX)) as TRANS_CONDITION,

CAST(ACCOUNT as nvarchar(MAX)) as ACCOUNT,

CAST(CITY as nvarchar(MAX)) as CITY,

CAST(COUNTRY as nvarchar(MAX)) as COUNTRY,

CAST(REV_TRANS_ID as bigint) as REV_TRANS_ID,

CAST(TRANS_DATE as datetime) as TRANS_DATE,

CAST(TRANS_CODE as nvarchar(MAX)) as TRANS_CODE,

CAST(TRANS_CURR as nvarchar(MAX)) as TRANS_CURR,

CAST(DECL_REASON_CODE as bigint) as DECL_REASON_CODE,

CAST(OTB as bigint) as OTB,

CAST(SETTL_AMOUNT as float) as SETTL_AMOUNT,

CAST(KDI_INF as float) as KDI_INF,

CAST(MERCHANT_ID as bigint) as MERCHANT_ID

INTO

[TransactionOutput]

FROM

[unievhub]

83

84 Stream Analytics Output Query

SELECT CAST(uniev.TRANS_ATTRIBUTES as nvarchar(MAX)) as TRANS_ATTRIBUTES,

CAST(uniev.SETTL_CURRENCY as nvarchar(MAX)) as SETTL_CURRENCY,

CAST(uniev.DETAILS as nvarchar(MAX)) as DETAILS,

CAST(uniev.TRANS_AMOUNT as float) as TRANS_AMOUNT,

CAST(uniev.MC_AUTH_CODE as bigint) as MC_AUTH_CODE,

CAST(cliref.DIM_ClientesID AS bigint) as DIM_ClientesID,

CAST(cliref.client_first_name as nvarchar(MAX)) as client_first_name,

CAST(cliref.client_last_name as nvarchar(MAX)) as client_last_name,

CAST(cliref.client_full_name as nvarchar(MAX)) as client_full_name,

CAST(cliref.client_title as nvarchar(MAX)) as client_title,

CAST(cliref.client_gender as nvarchar(MAX)) as client_gender,

CASE WHEN cliref.client_birthdate IS NULL THEN ’9999-01-01’

ELSE cliref.client_birthdate

END AS client_birthdate,

CAST(cliref.client_nationality as nvarchar(MAX)) as client_nationality,

CAST(cliref.customer_marital_status as nvarchar(MAX))

as customer_marital_status,

CAST(cliref.client_number_dependents as bigint) as client_number_dependents,

CAST(cliref.profession as nvarchar(MAX)) as profession,

CAST(cliref.monthly_net_salary as bigint) as monthly_net_salary ,

CAST(cliref.document_type as nvarchar(MAX)) as document_type,

CAST(cliref.document_number as nvarchar(MAX)) as document_number,

CAST(cliref.client_address as nvarchar(MAX)) as client_address ,

CAST(cliref.client_tax_address as nvarchar(MAX)) as client_tax_address,

CAST(cliref.client_zip_code as nvarchar(MAX)) as client_zip_code,

CAST(cliref.tax_zip_code as nvarchar(MAX)) as tax_zip_code,

CAST(cliref.client_local_village_name as nvarchar(MAX))

as client_local_village_name,

CAST(cliref.tax_local_village_name as nvarchar(MAX))

as tax_local_village_name,

CAST(cliref.client_fix_line_phone_number as bigint)

as client_fix_line_phone_number ,

CAST(cliref.client_mobile_phone_number as bigint)

as client_mobile_phone_number ,

CAST(cliref.client_email as nvarchar(MAX)) as client_email,

CAST(uniev.NIF as bigint) as NIF,

CAST(uniev.TERMINAL_ID as bigint) as TERMINAL_ID,

CAST(uniev.MCC as bigint) as MCC,

CAST(uniev.RRN as bigint) as RRN,

CAST(uniev.AUTH_ID as bigint) as AUTH_ID,

Stream Analytics Output Query 85

CAST(uniev.TRANS_CONDITION as nvarchar(MAX)) as TRANS_CONDITION,

CAST(uniev.ACCOUNT as nvarchar(MAX)) as ACCOUNT,

CASE WHEN contref.Account_open_date IS NULL THEN ’9999-01-01’

ELSE contref.Account_open_date

END AS Account_open_date,

CASE WHEN contref.Account_closed_date IS NULL THEN ’9999-01-01’

ELSE contref.Account_closed_date

END AS Account_closed_date,

CAST(contref.credit_limit_ammount as bigint) as credit_limit_ammount,

CAST(contref.IBAN_of_Credit_Account as nvarchar(MAX))

as IBAN_of_Credit_Account,

CAST(contref.DIM_ContratosID as bigint) as DIM_ContratosID,

CAST(contref.Revolving_Nominal_Interest_Rate as nvarchar(MAX))

as Revolving_Nominal_Interest_Rate,

CAST(contref.Installments_Nominal_Interest_Rate as nvarchar(MAX))

as Installments_Nominal_Interest_Rate,

CAST(contref.Card_Global_Efective_Interest_Rate as nvarchar(MAX))

as Card_Global_Efective_Interest_Rate,

CAST(contref.institution_name as nvarchar(MAX)) as institution_name,

CAST(contref.sfs_status_credit_account_description as nvarchar(MAX))

as sfs_status_credit_account_description,

CAST(uniev.CITY as nvarchar(MAX)) as CITY,

CAST(uniev.COUNTRY as nvarchar(MAX)) as COUNTRY,

CAST(uniev.REV_TRANS_ID as bigint) as REV_TRANS_ID,

CASE WHEN uniev.TRANS_DATE IS NULL THEN ’9999-01-01’

ELSE uniev.TRANS_DATE

END AS TRANS_DATE,

CAST(uniev.TRANS_CODE as nvarchar(MAX)) as TRANS_CODE,

CAST(tcref.transaction_details as nvarchar(MAX))

as transaction_details ,

CAST(contratref.contract_type as nvarchar(MAX)) as contract_type,

CAST(contratref.sfs_contract_status as nvarchar(MAX))

as sfs_contract_status,

CASE WHEN contratref.contract_signature_date IS NULL THEN ’9999-01-01’

ELSE contratref.contract_signature_date

END AS contract_signature_date,

CASE WHEN contratref.contract_validation_date IS NULL THEN ’9999-01-01’

ELSE contratref.contract_validation_date

END AS contract_validation_date,

CAST(contratref.card_insurance as nvarchar(MAX)) as card_insurance,

86 Stream Analytics Output Query

CAST(contratref.sfs_insurance_type as nvarchar(MAX))

as sfs_insurance_type,

CAST(contratref.email_statement as nvarchar(MAX)) as email_statement,

CAST(contratref.eportal_status as nvarchar(MAX)) as eportal_status,

CASE WHEN contratref.eportal_registration_date IS NULL THEN ’9999-01-01’

ELSE contratref.eportal_registration_date

END AS eportal_registration_date,

CAST(uniev.TRANS_CURR as nvarchar(MAX)) as TRANS_CURR,

CAST(uniev.DECL_REASON_CODE as bigint) as DECL_REASON_CODE,

CAST(uniev.OTB as bigint) as OTB,

CAST(uniev.SETTL_AMOUNT as float) as SETTL_AMOUNT,

CAST(uniev.KDI_INF as nvarchar(MAX)) as KDI_INF,

CAST(uniev.MERCHANT_ID as bigint) as MERCHANT_ID

INTO

[PowerBI]

FROM

[unievhub] as uniev

LEFT JOIN TransactionCodeRefBlob as tcref ON CAST (uniev.TRANS_CODE as

nvarchar(MAX))=CAST(tcref.transaction_code as nvarchar(MAX))

LEFT JOIN ContasRefBlob as contref ON CAST(contref.account_number

as nvarchar(MAX)) = CAST(uniev.ACCOUNT as nvarchar(MAX))

INNER JOIN ContratosRefBlob as contratref ON contratref.client_id=uniev.NIF

AND contratref.DIM_ContratosID= contref.DIM_ContratosID

LEFT JOIN ClientesRefBlob as cliref ON cliref.client_id = uniev.NIF

AND contratref.DIM_ClientesID=cliref.DIM_ClientesID

References

[1] Rita Sallam, James Richardson, Cindi Howson, and Austin Kronz. Magic Quadrant for
Analytics and Business Intelligence Platforms, 2019. URL: https://www.gartner.
com/en/documents/3900992.

[2] Data Never Sleeps 6 | Domo. 2019. URL: https://www.domo.com/learn/
data-never-sleeps-6.

[3] What is IaaS? Infrastructure as a Service | Microsoft Azure. URL: https://azure.
microsoft.com/en-us/overview/what-is-iaas/.

[4] What is PaaS? Platform as a Service | Microsoft Azure. URL: https://azure.
microsoft.com/en-us/overview/what-is-paas/.

[5] What is SaaS? Software as a Service | Microsoft Azure. URL: https://azure.
microsoft.com/en-us/overview/what-is-saas/.

[6] Lydia Leong, Raj Bala, and Dennis Smith. Magic Quadrant for Cloud Infrastructure as
a Service, Worldwide, 2018. URL: https://www.gartner.com/en/documents/
3875999.

[7] Nathan Marz and James Warren. Big Data, Principles and best practices of scalable real-
time data systems. Manning, 2015. URL: www.manning.com.

[8] Justin Heinze. The History of Business Intelligence, 2014. URL: https://www.
betterbuys.com/bi/history-of-business-intelligence/.

[9] Richard Miller Devens. CYCLOPAEDIA of COMMERCIAL AND BUSINESS ANECDOTES.
New York, London, D. Appleton and company, 1865.

[10] H. P. Luhn. A Business Intelligence System. IBM Journal of Research and Development,
2(4):314–319, 1958. URL: http://ieeexplore.ieee.org/document/5392644/,
doi:10.1147/rd.24.0314.

[11] Cebotarean Elena and Titu Maiorescu University. Business intelligence. Technical report.
URL: http://www.scientificpapers.org.

[12] Swain Scheps. Business Intelligence for DUMMIES. Wiley Publishing, Inc, 2008.

[13] Carlo Vercellis. Business Intelligence, Data Mining and Optimiza-
tion for Decision Making. John Wiley and Sons, Ltd, 2009. URL:
http://www.biomedicahelp.altervista.org/Magistrale/
Clinics/BIC{_}PrimoAnno/IdentificazioneModelliDataMining/
BusinessIntelligence-CarloVercellis.pdf.

87

https://www.gartner.com/en/documents/3900992
https://www.gartner.com/en/documents/3900992
https://www.domo.com/learn/data-never-sleeps-6
https://www.domo.com/learn/data-never-sleeps-6
https://azure.microsoft.com/en-us/overview/what-is-iaas/
https://azure.microsoft.com/en-us/overview/what-is-iaas/
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://azure.microsoft.com/en-us/overview/what-is-paas/
https://azure.microsoft.com/en-us/overview/what-is-saas/
https://azure.microsoft.com/en-us/overview/what-is-saas/
https://www.gartner.com/en/documents/3875999
https://www.gartner.com/en/documents/3875999
www.manning.com.
https://www.betterbuys.com/bi/history-of-business-intelligence/
https://www.betterbuys.com/bi/history-of-business-intelligence/
http://ieeexplore.ieee.org/document/5392644/
http://dx.doi.org/10.1147/rd.24.0314
http://www.scientificpapers.org
http://www.biomedicahelp.altervista.org/Magistrale/Clinics/BIC{_}PrimoAnno/IdentificazioneModelliDataMining/Business Intelligence - Carlo Vercellis.pdf
http://www.biomedicahelp.altervista.org/Magistrale/Clinics/BIC{_}PrimoAnno/IdentificazioneModelliDataMining/Business Intelligence - Carlo Vercellis.pdf
http://www.biomedicahelp.altervista.org/Magistrale/Clinics/BIC{_}PrimoAnno/IdentificazioneModelliDataMining/Business Intelligence - Carlo Vercellis.pdf

88 REFERENCES

[14] Extract, transform, and load (ETL) | Microsoft Docs. URL: https://docs.microsoft.
com/en-us/azure/architecture/data-guide/relational-data/
etl{#}extract-load-and-transform-elt.

[15] Ralph Kimball and Margy Ross. The Data Warehouse Toolkit: The Definitive Guide to
Dimensional Modeling. John Wiley and Sons, Ltd, 2013.

[16] W. H. Inmon. Building the Data Warehouse. John Wiley & Sons, Inc, 2002.

[17] Paulraj Ponniah. Data Warehousing Fundamentals: a Comprehensive Guide for IT Profes-
sionals. Wiley-Interscience, first edition, 2001.

[18] Power BI vs Tableau vs Qlik | 9 Most Amazing Comparisons To Learn. URL: https:
//www.educba.com/power-bi-vs-tableau-vs-qlik/.

[19] Alainia Conrad. Tableau vs Qlikview | Tableau vs Power BI | Power BI vs
Qlikview - 2019. URL: https://selecthub.com/business-intelligence/
tableau-vs-qlikview-vs-microsoft-power-bi/.

[20] Bernard Marr. How Much Data Do We Create Every Day? The
Mind-Blowing Stats Everyone Should Read. Technical report, 2018.
URL: https://www.forbes.com/sites/bernardmarr/2018/05/21/
how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/
{#}20487aca60ba.

[21] Oscar Herencia. The five V’s of big data. Bbva, (May 2017):1–13, 2017. URL: https:
//www.bbva.com/en/five-vs-big-data/.

[22] Y. Demchenko, P. Grosso, C. de Laat, and P. Membrey. Addressing big data issues in sci-
entific data infrastructure. In 2013 International Conference on Collaboration Technologies
and Systems (CTS), pages 48–55, May 2013. doi:10.1109/CTS.2013.6567203.

[23] R. Patgiri and A. Ahmed. Big data: The v’s of the game changer paradigm. In 2016 IEEE
18th International Conference on High Performance Computing and Communications; IEEE
14th International Conference on Smart City; IEEE 2nd International Conference on Data
Science and Systems (HPCC/SmartCity/DSS), pages 17–24, Dec 2016. doi:10.1109/
HPCC-SmartCity-DSS.2016.0014.

[24] Kamalika Dutta and Manasi Jayapal. Big Data Analytics for
Real Time Systems. (June):13, 2015. URL: https://www.
researchgate.net/profile/Kamalika{_}Dutta2/publication/
304078196{_}Big{_}Data{_}Analytics{_}for{_}Real{_}Time{_}Systems/
links/576594e408aedbc345f38226/Big-Data-Analytics-for-Real-Time-Systems.
pdf.

[25] Nader Mohamed and Jameela Al-Jaroodi. Real-time big data analytics: Applications and
challenges. 07 2014. doi:10.1109/HPCSim.2014.6903700.

[26] Jay Kreps. Questioning the Lambda Architecture - O’Reilly Media, 2014. URL: https:
//www.oreilly.com/ideas/questioning-the-lambda-architecture.

[27] Michael Verrilli. From Lambda to Kappa: A Guide on Real-time Big Data Ar-
chitectures, 2017. URL: https://www.talend.com/blog/2017/08/28/
lambda-kappa-real-time-big-data-architectures/.

https://docs.microsoft.com/en-us/azure/architecture/data-guide/relational-data/etl{#}extract-load-and-transform-elt
https://docs.microsoft.com/en-us/azure/architecture/data-guide/relational-data/etl{#}extract-load-and-transform-elt
https://docs.microsoft.com/en-us/azure/architecture/data-guide/relational-data/etl{#}extract-load-and-transform-elt
https://www.educba.com/power-bi-vs-tableau-vs-qlik/
https://www.educba.com/power-bi-vs-tableau-vs-qlik/
https://selecthub.com/business-intelligence/tableau-vs-qlikview-vs-microsoft-power-bi/
https://selecthub.com/business-intelligence/tableau-vs-qlikview-vs-microsoft-power-bi/
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/{#}20487aca60ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/{#}20487aca60ba
https://www.forbes.com/sites/bernardmarr/2018/05/21/how-much-data-do-we-create-every-day-the-mind-blowing-stats-everyone-should-read/{#}20487aca60ba
https://www.bbva.com/en/five-vs-big-data/
https://www.bbva.com/en/five-vs-big-data/
http://dx.doi.org/10.1109/CTS.2013.6567203
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2016.0014
http://dx.doi.org/10.1109/HPCC-SmartCity-DSS.2016.0014
https://www.researchgate.net/profile/Kamalika{_}Dutta2/publication/304078196{_}Big{_}Data{_}Analytics{_}for{_}Real{_}Time{_}Systems/links/576594e408aedbc345f38226/Big-Data-Analytics-for-Real-Time-Systems.pdf
https://www.researchgate.net/profile/Kamalika{_}Dutta2/publication/304078196{_}Big{_}Data{_}Analytics{_}for{_}Real{_}Time{_}Systems/links/576594e408aedbc345f38226/Big-Data-Analytics-for-Real-Time-Systems.pdf
https://www.researchgate.net/profile/Kamalika{_}Dutta2/publication/304078196{_}Big{_}Data{_}Analytics{_}for{_}Real{_}Time{_}Systems/links/576594e408aedbc345f38226/Big-Data-Analytics-for-Real-Time-Systems.pdf
https://www.researchgate.net/profile/Kamalika{_}Dutta2/publication/304078196{_}Big{_}Data{_}Analytics{_}for{_}Real{_}Time{_}Systems/links/576594e408aedbc345f38226/Big-Data-Analytics-for-Real-Time-Systems.pdf
https://www.researchgate.net/profile/Kamalika{_}Dutta2/publication/304078196{_}Big{_}Data{_}Analytics{_}for{_}Real{_}Time{_}Systems/links/576594e408aedbc345f38226/Big-Data-Analytics-for-Real-Time-Systems.pdf
http://dx.doi.org/10.1109/HPCSim.2014.6903700
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.oreilly.com/ideas/questioning-the-lambda-architecture
https://www.talend.com/blog/2017/08/28/lambda-kappa-real-time-big-data-architectures/
https://www.talend.com/blog/2017/08/28/lambda-kappa-real-time-big-data-architectures/

REFERENCES 89

[28] Jouni Mäenpää. Cloud computing with the Azure platform. Technology, pages 1–5, 2009.

[29] H. Erdogmus. Cloud computing: Does nirvana hide behind the nebula? IEEE Software,
26(2):4–6, March 2009. doi:10.1109/MS.2009.31.

[30] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz, Andy
Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. A
view of cloud computing. Commun. ACM, 53:50–58, 04 2010. doi:10.1145/1721654.
1721672.

[31] Peter Mell and Timothy Grance. The NIST Definition of Cloud Comput-
ing: Recommendations of the National Institute of Standards and Technology.
Technical report. URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication800-145.pdf, doi:10.6028/NIST.SP.800-145.

[32] Sushil Bhardwaj, Leena Jain, and Sandeep Jain. Cloud Computing: A Study of Infrastruc-
ture as a Service (IaaS). International Journal of Engineering and Information Technology,
2(1):60–63, 2010. doi:10.4018/978-1-4666-2187-9.ch002.

[33] S.R. Smoot and N.K. Tan. Private Cloud Computing. 01 2012. doi:10.1016/
C2010-0-65560-X.

[34] Tom Laszewski and Prakash Nauduri. Migrating to the Cloud: Oracle Client/Server
Modernization. 2012. URL: https://www.oracle.com/technetwork/articles/
cloudcomp/migrating-to-the-cloud-chap-3-495856.pdf.

[35] Rajkumar Buyya, Christian Vecchiola, and S Thamarai Selvi. Mastering Cloud Computing:
Foundations and Applications Programming. Technical report, 2013. URL: https://
ramslaw.files.wordpress.com/2016/07/0124114547cloud.pdf.

[36] Dinkar Sitaram and Geetha Manjunath. Moving to the Cloud: Developing Apps in the New
World of Cloud Computing. Technical report, 2012. URL: http://www.asecib.ase.
ro/cc/carti/MovingtotheCloud[2012].pdf.

[37] John Savill. Azure Resource Groups, 2014. URL: https://www.itprotoday.com/
iaaspaas/azure-resource-groups.

[38] Azure storage account overview | Microsoft Docs. URL: https://docs.microsoft.
com/en-us/azure/storage/common/storage-account-overview.

[39] Azure Functions Overview | Microsoft Docs. URL: https://docs.microsoft.com/
en-us/azure/azure-functions/functions-overview.

[40] Azure Event Hubs? - a Big Data Streaming Platform and Event Ingestion Service | Mi-
crosoft Docs. URL: https://docs.microsoft.com/en-us/azure/event-hubs/
event-hubs-about.

[41] Azure Stream Analytics | Microsoft Docs. URL: https://docs.microsoft.com/
en-us/azure/stream-analytics/stream-analytics-introduction.

[42] Azure Data Factory | Microsoft Docs. URL: https://docs.microsoft.com/en-us/
azure/data-factory/introduction.

http://dx.doi.org/10.1109/MS.2009.31
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1145/1721654.1721672
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
http://dx.doi.org/10.6028/NIST.SP.800-145
http://dx.doi.org/10.4018/978-1-4666-2187-9.ch002
http://dx.doi.org/10.1016/C2010-0-65560-X
http://dx.doi.org/10.1016/C2010-0-65560-X
https://www.oracle.com/technetwork/articles/cloudcomp/migrating-to-the-cloud-chap-3-495856.pdf
https://www.oracle.com/technetwork/articles/cloudcomp/migrating-to-the-cloud-chap-3-495856.pdf
https://ramslaw.files.wordpress.com/2016/07/0124114547cloud.pdf
https://ramslaw.files.wordpress.com/2016/07/0124114547cloud.pdf
http://www.asecib.ase.ro/cc/carti/Moving to the Cloud [2012].pdf
http://www.asecib.ase.ro/cc/carti/Moving to the Cloud [2012].pdf
https://www.itprotoday.com/iaaspaas/azure-resource-groups
https://www.itprotoday.com/iaaspaas/azure-resource-groups
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/azure-functions/functions-overview
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/stream-analytics/stream-analytics-introduction
https://docs.microsoft.com/en-us/azure/data-factory/introduction
https://docs.microsoft.com/en-us/azure/data-factory/introduction

90 REFERENCES

[43] Cynthia Harvey and Andy Patrizio. AWS vs. Azure vs. Google: Cloud Comparison.
Technical report, 2019. URL: https://www.datamation.com/cloud-computing/
aws-vs-azure-vs-google-cloud-comparison.html.

https://www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-comparison.html
https://www.datamation.com/cloud-computing/aws-vs-azure-vs-google-cloud-comparison.html

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Context and Motivation
	1.2 Objectives
	1.3 Problem Explanation
	1.4 Structure of the Dissertation

	2 Bibliographic Review
	2.1 Data Definition
	2.2 Business Intelligence
	2.2.1 Extraction, Transformation, Load
	2.2.2 Data Warehouse vs. Data Mart
	2.2.3 Dimensional Modeling
	2.2.4 Analysis Technologies

	2.3 DW/BI System Requirements
	2.4 Concept of Big Data
	2.4.1 The Five V's

	2.5 Concept of Real Time Processing
	2.5.1 Lambda Architecture
	2.5.2 Kappa Architecture
	2.5.3 Lambda Architecture vs. Kappa Architecture

	2.6 Cloud Computing
	2.6.1 Service Models
	2.6.2 Deployment Models
	2.6.3 Cloud Computing Technologies

	2.7 Conclusions

	3 Proposed Solution
	3.1 Solution Architecture
	3.2 Data Model
	3.3 Pricing
	3.3.1 Resource Group
	3.3.2 Storage Account
	3.3.3 Function App
	3.3.4 Event Hubs
	3.3.5 Stream Analytics
	3.3.6 SQL Database
	3.3.7 Data Factory

	3.4 Conclusions

	4 Solution Implementation
	4.1 Proposed Architecture Implementation
	4.1.1 Resource Creation
	4.1.2 Resource Implementation

	4.2 Data Model Implementation
	4.3 Reporting Implementation
	4.4 Conclusions

	5 Results
	5.1 Results Analysis
	5.2 Project Budget
	5.2.1 Storage Account
	5.2.2 Function App
	5.2.3 Event Hubs
	5.2.4 Stream Analytics
	5.2.5 SQL Database
	5.2.6 Data Factory
	5.2.7 Power BI
	5.2.8 Final Budget

	5.3 Conclusions

	6 Conclusion
	6.1 Future Work

	A Example of Batch Layer Computation
	B Example of an HTTP Request in XML Format According to SOAP
	C Code Developed in C# to Transform HTTP Requests in XML Format According to SOAP into JSON Format
	D Stored Procedure for Logs
	E Example of Transformation Query
	F Stream Analytics Output Query
	References

