
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Administrative Profiles Unit and
Multi-Sessions Management Scheme for

IPBrick Private Cloud

Anwaar Hussain

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Internal Supervisor: Prof. João Neves

External Supervisor: Engr. Miguel Ramalhão

External Co-Supervisor: Mr. Helder Santos

July 29, 2016

c© Anwaar Hussain, 2016

Abstract

IPBrick solution in the form of a Private Cloud has been well-received by its customers since
its launch in the market. However, it has its own limitations in spite of having some distinct at-
tributes. As a result, it can be challenged by its alternatives in the market present at the moment.
Currently,the Private Cloud IPBrick is operated by a single user who manages every aspect of it by
using the given set of privileges in his/her profile. With the growing demand of IPBrick solution
in a circle of some mega-sized firms, it has become difficult for one administrator to handle the
management load. Thus, there is a need of distributing the cloud’s access among the multiple
administrators by allocating them a profile of their own which will simplify the administration
process significantly. Other prominent limitation of IPBrick Saas based solution is its less effec-
tiveness in an environment driven by the multi-sessions due to which any level of data conflict in
the database can not be mitigated during the concurrent execution of the two or more transactions.
For this purpose, a procedure should be implemented in the IPBrick system in-order to preserve
the integrity and the consistency of data stored in the database.

This thesis provides the detailed description of implementations that had been carried out for
the modules: Administrator Profiles Unit and Multi-Sessions Management Scheme. It also con-
tains the literature review which had been covered in the beginning to make sure that the develop-
ment phase could be conducted in a best possible fashion. The conceptualization stage along with
the applied techniques has been discussed in this thesis that led to the successful accomplishment
of all objectives. At the end, some limiting factors are also mentioned due to which the efficiency
of both features got constrained to some extent.

i

ii

Acknowledgements

Firstly, I would like to thank my thesis advisor Prof. João Neves of the Department of Electrical
and Computer Engineering at Faculty of Engineering, University of Porto. I had an affiliation
with Prof. Neves as a student even before performing my dissertation under his supervision and I
always found him truly inspirational. Throughout this thesis, he had allowed me to work on my
ideas and steered me in the right direction whenever it was required.

I would also like to thank my supervisor at IPBrick Engr. Miguel Ramalhão for trusting in
my abilities and letting me work on this thesis. His intuitive inputs were really useful in bringing
a more pragmatic approach to my research work. I am also grateful to co-supervisor Mr. Helder
Santos at IPBrick for his technical assistance during the implementation phase of the dissertation.

Finally, I must express my very profound gratitude to my family – especially, my father Engr.
Ashiq Hussain and my brother Dr. Bilal Hussain – and friends for supporting me relentlessly
throughout my years of studies. The accomplishment of writing this thesis would not have been
possible without their presence around me. Thank you all!

Anwaar Hussain

iii

iv

“Logic will get you from A to B.
Imagination will take you everywhere.”

Albert Einstein

v

vi

Contents

1 Introduction 1
1.1 Background Context . 1
1.2 Objectives . 2
1.3 Contribution . 3
1.4 Structure of the Thesis Report . 4

2 Literature Review 5
2.1 Web Languages and Technology . 5

2.1.1 Static Web Pages . 5
2.1.2 Dynamic Web Pages . 6
2.1.3 Comparison Between Static and Dynamic Pages 8

2.2 Concurrency Control Mechanisms in Databases 8
2.2.1 Pessimistic Concurrency Control . 11
2.2.2 Optimistic Concurrency Control . 12
2.2.3 No check Concurrency Control . 13
2.2.4 Hybrid Concurrency Control . 13
2.2.5 Comparison between Optimistic and Pessimistic Approach 14

2.3 Conclusion . 15

3 Refinement of IPBrick Solution 17
3.1 Introduction . 17
3.2 Administrative Profiles Unit . 17

3.2.1 Process of Profile Insertion . 18
3.2.2 Process of Profile Modification . 19
3.2.3 Process of Profile Deletion . 20
3.2.4 Process of Profile Allocation . 20
3.2.5 Process of Profile De-Allocation . 21
3.2.6 Process of Profile View . 21

3.3 Multi-Sessions Management . 22
3.3.1 Implications in Concurrency Control at Low Level 22
3.3.2 Solution in the form of Concurrency Control at High Level 23

3.4 Conclusion . 24

4 Implementation of Modules and Results 25
4.1 Introduction . 25
4.2 IPBrick System . 25

4.2.1 Database . 25
4.2.2 Web Interface . 26

vii

viii CONTENTS

4.3 Implementation of Administrative Profiles Unit 27
4.3.1 Inclusion of new Tables . 27
4.3.2 Inclusion of new Web Pages . 30
4.3.3 Modification of existing Web Pages . 38
4.3.4 Inventory of new Web Pages in database 43

4.4 Implementation of Multi-Sessions Management 44
4.4.1 Table sessao . 44
4.4.2 Table alteracao . 44
4.4.3 Table transaction . 45
4.4.4 Scheme as a Final Solution . 46

4.5 Extra Work . 48
4.5.1 Renaming of Web Pages’ Names in the Database 48
4.5.2 Run-Time Configurations . 49

4.6 Results . 53
4.6.1 Performance Analysis of Administrative Profiles Unit 53
4.6.2 Performance Analysis of Multi-Sessions Management Scheme 55

4.7 Conclusion . 56

5 Conclusion and Future Work 57
5.1 Accomplished Goals . 57
5.2 Future Work . 58

A Useful Code Snippets 61
A.1 Functions for Profile Insertion . 61
A.2 Function for the specification of Profile Permissions 62
A.3 Funtions for Profile’s Allocation . 68
A.4 Funtions for applying permission on a web page 69

B Relational Algebra 71
B.1 Administrative Profiles Unit . 71

B.1.1 Queries for the profile Table . 71
B.1.2 Queries for the profile_menu Table . 71
B.1.3 Queries for the profile_page Table . 72

B.2 Multi-Sessions Management Unit . 72
B.2.1 Queries for the transaction Table . 72
B.2.2 Queries for the sessao Table . 73

C Mock-ups of web pages 75

D Utility Stuff 79
D.1 Bash commands . 79
D.2 PHP Functions . 79
D.3 Structure of the SOAP Request/Response Message 79
D.4 Structure of WSDL . 80

References 83

List of Figures

2.1 Typical Architecture of a Static Website . 6
2.2 Typical Architecture of a Dynamic Website . 7
2.3 Centralized Database System . 11

3.1 Flow chart of the Profile Insertion Process . 18
3.2 Flow chart of the Profile Modification Process 19
3.3 Flow chart of the Profile Deletion Process . 20
3.4 Flow chart of the Profile Allocation Process . 21
3.5 Flow chart of the Process handling Multilple Transactions 24

4.1 Index web page of IPBrick Web Interface . 26
4.2 profile Table along with its fields and entries . 28
4.3 profile_menu Table along with its fields and rows 29
4.4 profile_page Table along with its fields and rows 29
4.5 Entries in valida Table along with a new addition of idprofile column 30
4.6 Web Page with a prompt for the Profile Definition 32
4.7 Web Page with the Collapsed view of Profile’s Permissions 32
4.8 Web Page with View of Profile’s Permissions 34
4.9 Web Page for the modification of an existing Profile 35
4.10 Web Page for the deletion of a Profile . 35
4.11 Web Page for the selection of a profile from the list 36
4.12 Web Page for the allocation of a user to an existing Profile 37
4.13 Web Page for the removal of a user from accessing an existing Profile 37
4.14 Page for viewing an existing Profile . 38
4.15 Web Page displaying the access details . 39
4.16 Possible access to the default web page before the modifications in corpo script 40
4.17 No access to the default web page after the modifications in corpo script 41
4.18 Default web page with All Menus and Sub Menus 42
4.19 Default web page with Few Menus and Sub Menus 42
4.20 Table pages entries along with the definition of its fields 43
4.21 Table links entries along with the definition of its fields 43
4.22 Table liga_pages_links entries along with the definition of its fields 44
4.23 Table sessao rows along with the definition of its fields 45
4.24 Table alteracao rows along with the definition of its fields 45
4.25 Table transaction entries for one session along with the definition of its attributes 46
4.26 Table transaction entries for two sessions along with the definition of its attributes 47
4.27 An alert for the second Admin if he wants to modify the same data as the first one 47
4.28 Table pages containing pages’ names based on a new nomenclature in page column 49

ix

x LIST OF FIGURES

4.29 Sitemap of Administrative Profiles Unit . 53

C.1 Mock-up of the default web page of Administrative Profiles Unit 75
C.2 Mock-up of the web page for Profile Insertion 76
C.3 Mock-up of the web page for the selection of Profile’s Permissions 76
C.4 Mock-up of the web page for the modification in the Profile’s Definitions 77
C.5 Mock-up of the web page for the modification in the Profile’s Permissions 77

List of Tables

2.1 Pros and Cons of Static and Dynamic Web Pages 8
2.2 Example of Pessimistic Concurrency Control 12
2.3 Example of Optimistic Concurrency Control . 13

3.1 Pros and Cons of Optimistic and Pessimistic Concurrency Controls 23

4.1 Facts about the databases Systemsoft and Systemconf 26
4.2 Privileges of Administrators having Profiles of the different types 40
4.3 Concurrency Control between N transactions related to the same entity’s data . . 48
4.4 Parameters of the function applyAddUserRuntime 50
4.5 Data Set of Test Scenario for Administrative Profiles Unit 54
4.6 Execution Time of the different Operations in the Administrative Profiles Unit . . 54
4.7 Data Set of Test Scenario for Multi-Sessions Management Scheme 55
4.8 Execution Time of the different Operations in the Multi-Sessions Management

Scheme . 56

xi

xii LIST OF TABLES

List of Abbreviations/Acronyms

2PL Two Phase Locking
Admin Administrator
BOCC Backward Oriented Concurrency Control
CMS Content Management System
CSS Cascading Style Sheets
DM Database Manager
DBMS Database Management System
DBS Database System
DHTML Dynamic HyperText Markup Language
FOCC Forward Oriented Concurrency Control
HTML HyperText Markup Language
PHP HyperText Preprocessor
Postgres PostgreSQL
RPC Remote Procedure Calls
SaaS Software as a Service
SOAP Simple Object Access Protocol
WSDL Web Services Description Language
XHTML Extensible Hyper-Text Markup Language

xiii

Chapter 1

Introduction

This chapter covers the background context of the given topic comprehensively to make the ob-

jectives of the thesis more understandable for the reader. It also exhibits the author’s motivation

behind choosing this thesis’ theme and his sincere intentions toward producing a solid contribution

in the field of Engineering along with some productive enhancements in IPBrick solution.

1.1 Background Context

“Science never solves a problem without creating ten more.”

George Bernard Shaw

Since the advent of the concept SaaS in the field of Telecommunication Engineering, IPBrick

has been one of few well-known firms to develop an efficient solution based on SaaS for the

unified Communication Services and it has received an overwhelming response right from the very

beginning [1]. IPBrick solution is quite unique because it does not require any special hardware

as the slogan of IPBrick says "XXI century Software in a XIX century Hardware". In spite of

having some distinctive attributes, it is never easy for any product of high quality pertaining to the

ever-changing sector of Information Technology to envelope all of its paradigm shifts effectively.

Such peculiar is the case of IPBrick solution in the form of Private Cloud that needs to overcome

its limitations on an immediate basis to maintain its reputation among the customers. From the

beginning till date, the administrative access to IPBrick Private Cloud is limited to only admin

who carried all privileges because when the idea of this solution was conceived, no one thought

that it will have a high demand among the customers base on some day. Today, IPBrick solution

has got a very strong word of mouth in the market, many big companies and firms are interested

in buying it with some definite enhancements. One of the improvements is an expansion in the

range of its administrative access from one admin to multiple admins which in other words means

that IPBrick solution should allow distributing a set of profiles among the multiple admins; so

that they can practice the privileges defined in their respective Profiles in the cloud to make its

1

2 Introduction

management process lot easier. IPBrick solution was under-estimated on one other front too and

that is its development for a single-session based mode of operation persistently. It had tackled

the challenges of the last decade but now it needs to be improved further and should be made

compatible with the multi-sessions based operations. Here, it should be noted that IPBrick clients

from the Hospital São João, Porto have already requested for this feature; but it’s not possible

in the current scenario because the existing solution is not fully ready for it. In an environment

driven by the multi-sessions, the consistency and the integrity of clients’ data stored in the database

should not be taken for granted. For this purpose, it is essential to develop a mitigation scheme

which can avoid any sort of data conflicts in the database without affecting much the operations

during the execution of concurrent transactions. So, it’s high time for IPBrick to address the issues

mentioned in this section in-order to prolong the viability of its solution

1.2 Objectives

“There is no achievement without goals.”

Robert J. McKaine

The main aim of this thesis is to improve IPBrick Private Cloud based solution by simplifying

its management process and also by making it highly compatible with the setup based on multi-

sessions. Those improvements can be achieved by the accomplishment of two main objectives

which are following:

• Develop a Profiles Management Unit that will allow the multiple admins to perform their

managerial operations on the IPBrick private cloud by using the set of permissions offered

in their respective profiles. Any admin with an access to IPBrick administrator will be able

to visit only those Web Pages and Menus/Sub-Menus which will lie inside the domain of

his/her profile and will not be permitted to perform any operation (Insert/Delete/Modify/All)

on any service other than the specified one. A profile will only be created by an administra-

tor assigned with such privileges and it will be available for the modification and deletion

operations for the same admin. Those operations on a profile should also be applicable by

any other admin with the same or higher level of permissions as its creator1.

• Implement a multi-sessions management 2 scheme which will ensure the concurrency con-

trol during the parallel execution of the multiple transactions. This scheme will mainly deal

with the Update or Delete operations performed on the data stored in IPBrick database while

the other operations such as Write and Read will be executed without any interruption/delay.

Not all of the concurrently generated transactions by the different admins will result into the

1An admin with customized set of privileges can also create, edit and delete some profile but that permission will be
subject to the definition of his/her profile

2In this thesis, multi-sessions management module only deals with the concurrency control in database accessed by
the multiple admins simultaneously.

1.3 Contribution 3

modification/deletion of the same entity’s data3. But if by any chance that possibility occurs

then the transaction with the first access to an entity’s data will be permitted to perform an

operation on it while rest of other transactions will be rejected and notified accordingly to

their respective admins.

1.3 Contribution

“It is the greatest of all mistakes to do nothing because you can only do little - do

what you can.”

Sydney Smith

This thesis contributes to the area of web services and databases in quite a pragmatic way. It

highlights two main points: Significance of the multiple administrators in a private cloud and the

assurance of data consistency in a multi-sessions based environment, There are many firms like

IPBrick all around the world providing their set of services in the form of a cloud. It is easy to

handle the administrative operations when the domain of a cloud is limited in size. Otherwise, it

gets cumbersome for one or two administrators to deal with all of the management related tasks and

such extra-ordinary situations demand for some extra-ordinary measures. IPBrick R&D team has

foreseen the managerial issues in their SaaS based solution which will appear more prominently

soon due to the growing range of services in IPBrick Cloud. That’s why Administrative Profiles

Unit was made part of this thesis to address many upcoming issues in advance. This module is not

only specific to IPBrick solution, can be used in any Cloud based solution because of the simplistic

approach that has been used for its implementation while keeping user’s ease of use in view.

The second objective of this thesis provides a mechanism through which the data’s consistency

and integrity can be assured in a setup handled by multi-sessions. Without its implementation,

the adverse effects are beyond one’s imagination especially when two or more users are using the

same program in their respective sessions. In a way, this particular goal has more significance than

the other one because it deals with the concept of concurrency control in database which is usually

discussed theoretically in the Databases’ courses without any intent of its actual implementation in

the real/non-realtime applications. This thesis provides a different approach that is to implement

the concurrency control mechanism at the abstract level. The conventional Concurrency Control at

the low level(Database Layer) was not easily applicable in the IPBrick database due to its large size

and formation. Within the given time frame, another approach was devised for the multi-sessions

management that has its limitations but still quite effective enough to avoid some level of data

conflicts in the database without any requirement of some intensive implementations. It is hoped

that the methodology for concurrency control discussed in this thesis will become a reference point

for some other research works dealing with the similar constraints and scenarios.

3A data belongs to a user or service of IPBrick.

4 Introduction

1.4 Structure of the Thesis Report

Besides the Introduction, this thesis contains 4 more chapters. The Chapter 2 presents the liter-

ature covered relevant to the given topic. The devised solution for each objective of this thesis

along with its limitations is discussed in the Chapter 3. The Chapter 4 explains the actual im-

plementations that had been performed along with the critical analysis of their results obtained

afterwards. Lastly, the Chapter 5 is the final conclusion of this thesis followed by some possible

future enhancements in its work.

Chapter 2

Literature Review

This chapter describes the modern day practices relevant to the goals of thesis that were specified

in the previous chapter. The Section 1 of this chapter presents the mechanisms used in the de-

velopment of web pages along with the involved languages such as: HTML, PHP, JavaScript and

jQuery. The Section 2 of this chapter exposes a set of mechanisms relevant to the development of

concurrency control scheme in database for avoiding data conflicts in it.

2.1 Web Languages and Technology

The web pages are filled with information through two mechanisms: statically and dynamically.

It is important to understand each of these mechanisms deeply in-order to use them according to

the requirements. And also each of those types of web pages require different set of skills without

which their implementation can not be carried out in a best possible way.

2.1.1 Static Web Pages

A static web page (sometimes called a oten/flat page/stationary page) is a web page that is de-

livered to the user exactly as stored, in contrast to the web pages which are generated by a web

application. HTML is the first tool used to develop web pages. It is a language to stylize the text,

create paragraphs and line breaks etc. But the most important aspect of HTML is its link creation

ability between the different documents and which are made by using the HTML tags [2, 3]. Web

pages created only with HTML are static pages because they remain same for all time to come

until and unless these are changed manually. The retrieval of web pages from web server is done

through Request and Response technique as shown in the Figure 2.1 [4]. During the static mode

of operation, all of the code (HTML, CSS and Javascript) and other resources are downloaded in

one go. Static web pages are suitable for the contents that never or rarely need to be updated.

However, maintaining large numbers of static pages as files can be impractical without automated

tools.

5

6 Literature Review

Figure 2.1: Typical Architecture of a Static Website

In-order to add few interactive features in static web pages, some scripting languages like

JavaScript and Jquery can be used. These languages can add some dynamic elements in static

web pages. For example, with JavaScript it is possible to display a random number every time

a web page is reloaded in the browser, such pages are also called static pages. JavaScript is a

prototype-based, dynamic, object-oriented, imperative and functional language [5]. It is most

commonly used in web pages as a client-side scripting language1. To make the use of JavaScript

easier on web pages, jQuery can also be used. It is a lightweight, "write less, do more", JavaScript

library [6]. jQuery takes a lot of common tasks that require many lines of JavaScript code to

accomplish, and wraps them into methods that can be called with a single line of code. As a result,

HTML document’s traversal and manipulation become simple and more manageable. jQuery also

provides some of its applications in the event handling and animations [7].

2.1.2 Dynamic Web Pages

As the need of creating the interactive web pages arose, the relevant means were developed to

handle the demand. For instance, the product list in an on-line shopping website will be shown by

the web pages with dynamic implementation. Such dynamic pages have two main components:

Style of the web page and Information carried by the web page. As it is known that the style

of web page is created by using the languages like HTML, CSS and JavaScript etc but they can

not retrieve the content dynamically from the database. A dynamic mode of operation for web

1Languages such as DHTML, XHTML etc that are executed at Client-Side by the user’s web browser instead of
web Server are called Client-Side Scripting Languages

2.1 Web Languages and Technology 7

pages can be observed in the Figure 2.2 [4]2. When a web page loads in the browser, it makes a

request to the linked database for furnishing some information depending upon the user’s input(s).

In response, it receives the required data from the database and displays the resulting web page in

the browser after applying the styling on it. For example, on an online shopping website, if the

user wants to see only the mobile phones available in the store, the connected database will only

send the required information related to the cell phones.

Figure 2.2: Typical Architecture of a Dynamic Website

Due to the inclusion of database in web architecture, a long list of technologies that can be

used to make the web pages more dynamic in nature. Some of the important languages based on

Server-Side Scripts3 that can interact with database and build the web pages at backend are: PHP,

ASP, ASP.net, JSP, Perl,Python, etc. PHP was originally known as Personal Home Page and now,

it is known as "Hypertext Pre-Processor" which is a recursive acronym [8, 9]. It is a dynamically

typed programming language and usually used to create dynamic web pages but can also be used

to create standalone programs. Besides interfacing with a database, PHP can perform all types of

mathematical and scientific calculations for example: figuring out what day it is or what day of the

week March 18, 2046 will be, performing all different types of mathematical equations and many

others. It can also collect the user’s information by letting the user to interact with the developed

script directly. PHP provides many applications pertaining to graphics that allow creating simple

graphics on the fly [10].

2CMS is a computer application that supports the creation and modification of digital content using a common
user interface and thus usually supporting multiple users - also known as Contributors - working in a collaborative
environment.

3Scripts on a web server which produce a customized response for each user/client’s request to the website are called
Server-Side Scripts.

8 Literature Review

2.1.3 Comparison Between Static and Dynamic Pages

A brief comparison between Static and Dynamic Web Page in terms of their Pros and Cons is

listed in the Table 3.1.

Table 2.1: Pros and Cons of Static and Dynamic Web Pages

Web Page Architecture Pros Cons

Static • Quick to develop • Successful without resulting into
data conflict

• Cheap to develop • Much easier to update when a data
conflict occurs

• Cheap to host • New content brings users back to
the site and helps in the search en-
gines
• Can work as a system to allow staff
or users to collaborate

Dynamic • Provides a wide range of Interac-
tive Features

• Slower / more expensive to develop

• Content can get stagnant • Hosting costs a little more
• Requires web development exper-
tise to update site

2.2 Concurrency Control Mechanisms in Databases

A database consists of a set of named data items. Each data item has a value. The values of the

data items at any one time comprise the state of the database [11]. In practice, a data item could

be a word of main memory, a page of a disk, a record of a file, or a field of a record. The size of

the data contained in a data item is called the granularity of the data item [11]. In this work, it is

assumed that data items are atomic i.e. a whole data item is accessed as one unit.

A DBS is a collection of hardware and software modules that support commands to access the

database, called database operations (or simply operations) [11]. The most important operations

are Read and Write. Read[x] returns the value stored in data item x without changing the state of

x. Write[x] changes the value of x by overwriting the old value. Other operations have their own

significance and will be brought under use from time to time.

The DBS4 executes each operation atomically which means that the DBS behaves as it is

executing operations sequentially i.e. one at a time [12]. The DBS also supports transaction

operations: begin, commit, and abort. A transaction program reports the DBS that it is about

to begin executing a new transaction by issuing the operation begin. It marks the termination

of the transaction by issuing either the operation commit or the operation abort. By issuing a

commit, the transaction reports to the DBS that the transaction has terminated normally and all of
4The abbreviations DBS and DBMS are used interchangeably in this thesis.

2.2 Concurrency Control Mechanisms in Databases 9

its effects should be permanent but abort shows the abnormal termination of the transaction and

its effects should be destroyed. After the DBS executes a transaction’s commit /abort operation

the transaction is called committed/aborted [11]. A transaction that has issued its begin operation

but is not yet committed or aborted is called active. A transaction is uncommitted if it is aborted

or active. If the transaction is aborted, it can be restarted. It is assumed that each transaction is

self-contained, meaning that it performs its computation without any direct communication with

other transactions or users [13].

A major aim of developing a database system is to allow the several users to access the shared

data concurrently [13]. Concurrent access is easy if all users are only reading data because there

is no way for them to interfere with one another. However, when two or more users are accessing

the database concurrently and at least one is updating data, there may be interference that can

cause inconsistencies [14]. Although two transactions may be correct in themselves, the interleav-

ing operations may produce an incorrect result, thus risking the integrity and consistency of the

database [13, 14, 15]. The ACID properties of a transaction that all transactions should have are

[15]:

• Atomicity — A transaction’s changes to the state are atoms: either all happen or none

happen.

• Consistency — A transaction is a correct transformation of the state. The actions taken as

a group do not violate any of the integrity constraints associated with the state. The formal

transaction maintains the consistency.

• Isolation — Even though transactions execute concurrently, it appears to each transaction

T that other executed either before T or after T but not both.

• Durability — Results of the committed transaction are persistent until another committed

transaction possibly changes them.

The aim of concurrency control methods is to schedule transactions in such a way as to avoid

any interference [13]. One obvious solution would be to allow only one transaction to execute

at a time. However, the goal of a multi-user database system is also to maximize the degree of

concurrency or parallelism in the system, so that transactions can execute without interfering with

one another and can run simultaneously [14]. When two or more transactions executes concur-

rently, their database operation execute in an interleaved way [13]. Therefore, operations from one

transaction may execute between two operations from another transaction. This interleaving can

cause transactions to behave incorrectly. Hence, an interleaved transaction execution can lead to

an inconsistent database state. To avoid this and other problems the interleaving between trans-

actions must be controlled [14]. The order of some operations is of no importance for the final

result of executing the transactions, for example, it is possible to interchange the order of any two

read operations without changing the behavior of the transaction(s) doing the reads but it can re-

sult in conflict in another case. It is said that a conflict between two transactions occurs when two

10 Literature Review

transactions operate on the same data item and at least one of the operations is write. Execution

interleaving can be modeled using a history(a prefix of complete history).

One method to avoid interference problems is not to allow transactions to be interleaved at all.

An execution in which no two transactions are interleaved is called serial [13]. A serial history

represents an execution in which there is no interleaving of operations of different transactions.

Execution is serializable [13] if it produces the same output and has the same effect on the database

state as some serial execution of the same transactions. Because serial executions are correct

and each serializable execution has the same effect as a serial execution that is correct too [14].

Serialization isolation can force applications to repeat a lot of work if a big transaction aborts or if

some conflicts occur. It’s very useful for complex cases where attempting to use row locking might

just cause deadlocks, though [16]. To ensure correctness in the presence of failures, the execution

of transactions should not be only serializable but also recoverable, avoid cascading aborts, and

be strict [17]. An execution is recoverable if each transaction commits after the commitment of

all other transactions from which it reads. An execution avoids cascading aborts if the transaction

read only those values that are written by committed transactions or by the transaction itself.

An execution is strict if the transaction reads or overwrites a data item after the transaction that

previously wrote into it and terminates either by aborting or by committing [18].

In the study of concurrency control, a model of the internal structure of a DBS is shown in Fig-

ure 2.3. A transaction manager performs any required pre-processing on database or transaction

operations as demanded by the transactions. It is a program or collection of programs that controls

the concurrent execution of transactions and makes use of this control by restricting the order in

which data manager(operates directly on the database) executes the Reads, Writes, Commits and

Aborts of different transactions. The goal of scheduler is to organize these operations so that the

resulting execution is serializable and recoverable.

After receiving the operation, the scheduler can take one of three actions [19]:

• Execute — It can pass the operation to DM and wait for a result. When DM finishes the

executing the operation, it informs the scheduler.

• Reject — It can refuse to process the operation, in which case it tells the transaction that its

operation has been rejected. This causes the transaction to abort.

• Delay — It can delay the operation by placing it in a queue internal to the scheduler.

There are many ways in which the schedulers can be classified [16]. One obvious classification

criterion is the mode of database distribution. Some schedulers that have been proposed require a

fully replicated database, while others can operate on partially replicated or partitioned databases.

The schedulers can also be classified according to network topology. However, the most common

classification criterion is the synchronization primitive, i.e. those methods which are based on

mutually exclusive access to shared data and those that attempt to order the execution of the trans-

actions according to a set of rules [20, 21]. There are two possible views: the pessimistic view

(as explained in the coming section 2.2) in which many transactions will conflict with each other

2.2 Concurrency Control Mechanisms in Databases 11

Figure 2.3: Centralized Database System

or the optimistic view (as discussed in the coming section 2.2) that not too many transactions will

conflict with each other [22, 20, 23, 24]. Pessimistic methods synchronize the concurrent execu-

tion of transactions early in their execution and optimistic methods delay the synchronization of

transactions until their terminations.5

2.2.1 Pessimistic Concurrency Control

Pessimistic concurrency control is also known as “locking”. Locks allow multiple users to safely

share a database as long as all users are updating different data at the same time. When locks are

used, the locks are placed as soon as any piece of the row is updated and released afterwards. Thus,

it is impossible for two users to update a row at the same time. As soon as one user gets a lock,

no one else can process that row. This is a safe, conceptually simple approach. The disadvantage

is that it requires overhead for every operation, whether or not two or more users are actually

trying to access the same record. This overhead is small but adds up because every row that is

updated requires a lock. Furthermore, every time that a user tries to access a row, the system must

also check whether the requested row(s) are already been locked by another user (or connection).

Pessimistic concurrency control is called ”pessimistic” because the system assumes the worst – it

assumes that two users will want to update the same record at the same time, and then prevents

5Some additional concurrency control mechanisms are also discussed briefly in this chapter but for this thesis,
Optimistic and Pessimistic approaches will be considered and analyzed.

12 Literature Review

that possibility by locking the record, no matter how unlikely conflicts actually are [15, 25]. An

example of pessimistic concurrency control is presented in Table 2.2.

Table 2.2: Example of Pessimistic Concurrency Control

On T1, Entered the statements given below On T2, Entered the statements given below
create table t2(a int) engine=soliddb set autocommit = 0;
comment=’MODE=PESSIMISTIC’; update t2 set a = 7 where a = 1;
insert into t2 values (1),(2);
commit;
set autocommit = 0;
update t2 set a = 5 where a = 1; Note: This query waits for T1 to release

locks on table t2

Following are the different types of locking [25, 26]:

• Simple Object Locking — It locks each object before writing and unlocks when operation

finished.

• Two Phase Locking (2PL) — In a transaction, all lock requests precede the unlock requests.

• Strict Two Phase Locking — All locks are released when the transaction completes.

2.2.2 Optimistic Concurrency Control

An alternative approach to locking is called “optimistic” concurrency control. Optimistic con-

currency control assumes that although conflicts are possible, they will be very rare. Instead of

locking each record every time that it is used, the software merely looks for indications that two

users actually did try to update the same record at the same time [15, 25]. If that evidence is found,

then one user’s updates are discarded (and of course the user is informed).

When using an optimistic concurrency control, each time that the server reads a record to try

to update it, the server makes a copy of the ”version number” of the record and stores that copy for

later reference. When it’s time to write the updated data back to the disk drive, the server compares

the original version number with the version number that the disk drive currently contains. If the

version numbers are the same then no one else has changed the record and the updated value

can be written. However, if the new value and the current value on the disk are not the same

then it means that someone has changed the data since it was read, and whatever operation was

performed is probably out-of-date, so it discards the new version of the data and returns the user

an error message. Naturally, each time that updating a record also updates the version number. An

example of optimistic concurrency control operation as shown in Table 2.3.

Types of Optimistic Concurrency Control are mentioned below [25]:

• Backward Oriented Concurrency Control (BOCC) — This concurrency control mech-

anism corresponds to the validation of preceding commit while the full-scale execution of

the current one.

2.2 Concurrency Control Mechanisms in Databases 13

• Forward Oriented Concurrency Control (FOCC) — This mechanism checks whether its

write set conflicts with the read set of transactions in their read phase “the writesets are only

propagated if they do not conflict with current readsets of all other active transactions”.

Table 2.3: Example of Optimistic Concurrency Control

On T1, Entered the statements given below On T2, entered the statements given below
create table t2(a int) engine=soliddb set autocommit = 0;
comment=’MODE=OPTIMISTIC’; update t2 set a = 7 where a = 1;
insert into t2 values (1),(2);
commit;
set autocommit = 0;
update t2 set a = 5 where a = 1; ERROR 1213 (40001): Deadlock found

when trying to get lock; try restarting trans-
action

2.2.3 No check Concurrency Control

In this alternative approach, no concurrency control checking is done at all. However, normal con-

sistency checking is done, i.e. primary key, foreign key and check constraints are checked6 [7].In

this mode, table needs to be designed carefully along with it use afterwards because the concurrent

changes could cause unwanted results. When the application uses an update or an insert semantics

the data in this table does not need always remain consistent this table. Still, this mode of op-

eration provides a best possible concurrency between transactions and increases the performance

because no concurrency checks are performed in almost all phases of the transaction execution.

An example of creating no check concurrency is given below:

1

2 CREATE TABLE t 3 (a i n t) e n g i n e = s o l i d d b comment= ’MODE=NOCHECK’ ;

2.2.4 Hybrid Concurrency Control

Another approach that is quite semi-optimistic in nature, blocks the operations in some situations

where they might violate rules. In other cases, it does not block and the delaying rule keeps on

checking till the end of transaction [27, 17, 28]. An example of Hybrid Concurrency Control is

given below [16]:

Let’s assume that there are three tables A, B, and C. Furthermore, suppose the specification of

each of those which is the table A uses pessimistic concurrency control, B uses optimistic concur-

rency control and C has nocheck concurrency control. Now, transaction:

6Note: Before the implementation of this thesis, no check concurrency control was implemented in IPBrick database

14 Literature Review

1

2 BEGIN ;
3 UPDATE A SET A. B = A. B + 1 WHERE A. ID BETWEEN 21 AND 5 6 ;
4 UPDATE B SET B .A = B .A − 1 WHERE B . ID BETWEEN 33 AND 9 9 ;
5 UPDATE C SET C . C = C .A WHERE C . ID BETWEEN 77 AND 212 ;
6 COMMIT;

Now this transaction will use pessimistic locking when accessing rows in Table A, optimistic

method when accessing rows in the table B and no concurrency control while accessing rows in

the table C. Thus, the transaction might wait for locks to be granted during the access of rows in

the table A and the transaction might be rolled back at commit time if in the validation phase of

rows accessed in Table B are not serialized.

2.2.5 Comparison between Optimistic and Pessimistic Approach

When optimistic concurrency control is used, the user does not find out that there’s a conflict until

just before user writes the updated data. In pessimistic locking, the user finds out there’s a conflict

as soon as he/she tries to read the data [22, 12]. To use the analogy with banks, pessimistic locking

is like having a guard at the bank door who checks customer’s account number when the new user

tries to enter; if someone else (a spouse, or a merchant to whom user wrote a cheque) is already in

the bank accessing user’s account, then the new user can not enter until that other person finishes

his/her transaction and leaves. On other hand, optimistic concurrency control allows the user to

walk into the bank at any time and try to do business but at the risk that as user is walking out the

door the bank, the guard will tell that user’s transaction conflicted with someone else’s transaction.

As a result, it may require to do the transaction again.

Optimistic and Pessimistic concurrency controls differ in another important way besides the

time at which conflicts are detected and error messages are issued. Pessimistic locking allows

one user to not only block another user from updating the same record but even from reading that

record. If the user uses pessimistic locking and gets an exclusive lock then no other user can even

read that record. With optimistic locking, however, it is not required to check for conflicts except

at the time when it is important to write updated data to disk. If user1 updates a record and user2

only wants to read it, then user2 simply reads whatever data is on the disk and then proceeds,

without checking whether the data is locked. User2 might see slightly out-of-date information if

user1 has read the data and updated it but has not yet”committed” the transaction [22].

Pessimistic locking gives the user an option that optimistic locking does not offer.It is said

earlier that pessimistic locks fail immediately – that is, if the user tries to get an exclusive lock

on a record and another user already has a lock (shared or exclusive) on that record then it will

be informed to the new user that he/she can’t get a lock [29]. User might get notified to wait for

30 seconds; this means that if the user initially tries to get the lock and cannot, the server will

continue trying to get the lock until either it gets the lock or until the 30 seconds has elapsed. In

2.3 Conclusion 15

many cases, especially when transactions tend to be very short, the user may find that setting a

brief wait allows him/her to continue activities that otherwise would have been blocked by locks.

This wait mechanism is applied only to pessimistic locking, not to optimistic concurrency

control. There is no such thing as "waiting for an optimistic lock" [30]. If someone else changed

the data since the time that other user read it, no amount of waiting will prevent a conflict that

has already occurred. In fact, since optimistic concurrency methods do not place locks, there

is literally no "optimistic lock” to wait on. Neither pessimistic nor optimistic concurrency con-

trol is”right” or”wrong”. When properly implemented, both approaches ensure that user’s data is

properly updated. In most scenarios, optimistic concurrency control is more efficient and offers

higher performance, but in some scenarios pessimistic locking is more appropriate. In situations

where there are a lot of updates and relatively high chances of users trying to update data at the

same time, the user probably wants to use pessimistic locking. If the odds of conflict are very low

(many records and relatively few users, or very few updates and mostly”read” operations) then

optimistic concurrency control is usually the best choice. The decision will also be affected by

how many records each user updates at a time [9].

2.3 Conclusion

The features of Static and Dynamic Web Pages were deeply analyzed in the chapter and it was

concluded that the performance of both of the mechanisms depend on the applications in which

they are used. So it is hard to single out one mechanism better than the other. For the web

environment with the basics of coding, PHP is probably the right choice to use with the help

of a good PHP editor to avoid the Exact Phrasing Problem7 (a feature in Perl) and also it has a

simpler syntax. With the strong foundations of coding language opens up many options of using

complex languages with prototyping. In that case Python is recommended. For this thesis, the

author had not this luxury of choosing any of the Server-Side Scripting Language because it was a

requirement to use PHP. The appropriate choice of concurrency control procedure depends on the

scalability requirements of a given database and how easy it is to write retry loops to re-run failed

transactions, etc. So, there is no single right way of achieving concurrency control. However, a

definitely wrong way is to ignore concurrency issues and expects that the database takes care of it

for the users.

7An exact phrase/string is search in another long phrase/string.

16 Literature Review

Chapter 3

Refinement of IPBrick Solution

For each objective of this thesis, a given solution was adopted from a set of possible ones. This

chapter explains why each one was selected, from the ones discussed in the last chapter. The

chapter also concludes the presentation of conceptualization facets of the thesis. This makes easier

the understanding of the implementation, which is explained in the next chapter.

3.1 Introduction

Literature review in any research work provides a platform to initiate the conceptualization process

for a solution. But it stays incomplete if it does not consider the constraints which will be involved

in the implementation of it. As this thesis was developed by using the facilities provided at IPBrick,

it was important to recognize the factors which can affect the results in a given scenario. All of

those factors are considered while modelling the solution for each of the goal of this thesis. The

impact of such constraints on the results was predicted in advance so that more outcome should

not be expected after the completion of the development phase.

3.2 Administrative Profiles Unit

This section displays the flow charts of the processes which enable an admin of IPBrick pri-

vate cloud to apply operations on a profile such as: Insert, Delete, View, Modify, Allocate, and

Del-Allocate. These flow diagrams led to the development of the mock-ups for the Web Pages

pertaining to the Profiles Management Module (See some of the mock-ups in appendix C) and

afterward, to their actual ultimate implementations.

Each Profile has two components: Profile Definition and Profile Permissions. The definition

facet stores the profile’s name and description while the other one manages the information related

to a profile’s access to various web pages and menus/sub-menus chosen by its creator.

17

18 Refinement of IPBrick Solution

3.2.1 Process of Profile Insertion

Keeping the basic units of a Profile in view mentioned above, the operation of profile insertion

will be similar to the one shown in Figure 3.1. At the beginning of Profile Insertion process,

Figure 3.1: Flow chart of the Profile Insertion Process

Profile’s name and its description are obtained from the Admin through a user prompt. After these

two conditions are applied strictly on the Profile’s name must be a valid name(not carrying any

non-printable characters) and does not exist in the database. If so, it is stored in database along

with the description of the profile. In the proceeding step, Admin is required to specify the list of

Menus/Sub-Menus that should be made accessible to this profile by choosing the options given in

another prompt. If the Admin does not specify this particular piece of information, then it will not

affect the insertion process of the profile. In such case, the user of this Profile will not be able to

see any web page or menu of web interface after successfully logging in.

3.2 Administrative Profiles Unit 19

3.2.2 Process of Profile Modification

This process is quite similar to Profile Insertion as it can be seen in the flow diagram as shown

in the figure 3.2. In this case, the system has an existing profile data that the admin wants to

modify. In the first step, a prompt is shown with the existing definition of the Profile, it is up to

the Admin modify it or not. After that the profile’s name is validated according to the conditions

mentioned in the previous section. This procedure is performed regardless of the fact that it has

been modified or not and the process proceeds or terminates beyond this point depends on the

validity of the profile’s name. If the name is found valid then all of the previous allocation of web

pages and menus to this profile will be deleted in the next step. Like the profile insertion process,

It is the job of the Admin to specify the new list of web pages and menus/sub-menus should be

made accessible to the profile under the operation of modification. If not then the admin of this

profile will see a blank Web Page with some alert after logging into the system.

Figure 3.2: Flow chart of the Profile Modification Process

20 Refinement of IPBrick Solution

3.2.3 Process of Profile Deletion

In comparison to the previous two processes, this one is quite simple in operation as show in the

figure 3.3

Figure 3.3: Flow chart of the Profile Deletion Process

When this process initiates, it seeks for the administrator’s confirmation that he/she is willing

to delete this Profile. If the response is no then process terminates without affecting the state of

profile at all. Otherwise, all of the profile related information including its definition and permis-

sions will be deleted permanently from the database and system.

3.2.4 Process of Profile Allocation

This process begins with a prompt to get a profile of administrator’s choice which he/she wants to

assign to some other system user as shown in the initial stage of the flow chart in figure 3.4. In

the next step, the admin needs to respond to another prompt through which a user will be selected

from the list of system users and subsequently, a profile is assigned to the selected user. If the

selected user already contains a profile then the admin needs to confirm whether this user should

have a new profile or not. Depending on the its response by the Admin, a corresponding action

will be performed as shown in Figure 3.4.

3.2 Administrative Profiles Unit 21

Figure 3.4: Flow chart of the Profile Allocation Process

3.2.5 Process of Profile De-Allocation

This process is a lot more simple than the one for profile assignment, it just cancels the access of a

given user to a particular profile. After the completion of this process, profile’s list of the allocated

users gets updated, along with the one for system users’ without any assigned profile.

3.2.6 Process of Profile View

This process is just for displaying the data of any profile stored in the database which can comprise

of the basic profile’s definition and the list of the users allocated to it. It should be noted that users

shown in a view of a given profile have an access to the web interface.

22 Refinement of IPBrick Solution

3.3 Multi-Sessions Management

IPBrick cloud-based solution will become operable in the multiple simultaneous sessions very

soon. It can give rise to some problems and one of them is the concurrency control in the database

of IPBrick. Because operations like update and delete can result into the data conflict and can pose

a serious threat to the integrity and the consistency of data in the database. This section discusses

the feasibility of various conventional concurrency control schemes in IPBrick database. It also

presents the critical analysis which was performed to decide whether any orthodox approach can

provide a possible solution for multi-sessions management in a given scenario or not. In the second

section, an unconventional approach is also discussed. It became the adopted solution.

3.3.1 Implications in Concurrency Control at Low Level

Concurrency Control is one of the main issues in the database systems as it can result into some

severe adverse effects. Due to the strict consistency requirement defined by serializability [15], it

can not be considered a viable option in the given system. That’s why most of the concurrency

control schemes considered in the literature are based on either Optimistic or Pessimistic Con-

currency Control. All of those mechanisms have their own pros and cons while considering the

formation of IPBrick Database.

2PL with a pessimistic approach has some inherent problems such as the possibility of dead-

locks as well as long and unpredictable blocking times. These problems appear too serious in

transaction processing, in addition to consistency requirements [28].

Optimistic Concurrency Control methods [18, 30] are especially attractive for the consis-

tency of the data in database systems because they are non-blocking and deadlock-free. There-

fore, in recent years, numerous optimistic concurrency control methods have been proposed for

databases [16, 18, 30]. Although optimistic approaches such as Time Stamping and Counter Track-

ing etc have shown to be better than locking methods for database systems in spite of their problem

of unnecessary restarts 1 and heavy restart overhead 2. However, because the conflict resolution

between the transactions is delayed until a transaction is near its completion, there will be more

information available in making the conflict resolution.

The model of IPBrick database is not very suitable for the implementation of any orthodox

concurrency control scheme. Other database systems provide storage for the fully committed data

in the front and back ends of their databases, user first modifies the data at the front end and then

the updates are passed to the back/server end if it satisfies all of the constraints. In this manner,

the integrity and consistency of data is protected in those systems. IPBrick database system does

not possess user-end and server-end due to which the user always modifies the original copy of

the data stored in hard disks. To develop the user-end and server-end IPBrick database now will

require lots of time and other resources because it is quite massive in size. Considering all of

1It occurs when a transaction fails its validation phase is restarted even when history is serializable. Transaction is
restarted only if has enough time remaining for meeting its deadline. Otherwise, all transactions are rolled back.

2It is due to the late conflict detection that increases the restart overhead since some near-to-complete transactions
have to be restarted because of failed validation

3.3 Multi-Sessions Management 23

the limitations of IPBrick Database, Table 3.1 shows some new pros and cons of Optimistic and

Pessimistic concurrency control along with their inherited ones.

Table 3.1: Pros and Cons of Optimistic and Pessimistic Concurrency Controls

Mechanism Pros Cons

Optimistic Concurrency Control • Confirms concurrency control • Modification of All Tables
• Does not affect the Read oper-
ation

Pessimistic Concurrency Control • Confirms concurrency control • Modification of All Tables
• Blocks Read Operation too
• Affects the relationship be-
tween entities in Schema

3.3.2 Solution in the form of Concurrency Control at High Level

Conventional concurrency control mechanisms can not provide a simple solution for Multi-Sessions

Management required in the IPBrick system. As a result, an unconventional approach was devised

for the accomplishment of this goal. This Multi-Sessions Management scheme works for the up-

date and the delete operations only, which are applied on the data stored in IPBrick database dur-

ing many concurrent transactions. The process shown in Figure 3.5 begins with the update/delete

transaction on the existing data related to an entity stored in the database. This particular trans-

action makes its entry in another table (Newly created for storing records of the transactions) if

there is no other transaction(s) recorded for the same entity or the user with the same session ID

as the current one who is willing to make a transaction on a given entity. Otherwise, the user will

receive a warning for informing him/her that the desired entity’s data is not available for any of

the operations except read and it will stay unavailable as long as the other user does not release

the hold of it. If the condition is satisfied, the changes will be applied to the database and also the

configuration logs of IPBrick updated, for future reference.

This approach is quite simplistic by nature and does not require too complex implementation.

It is quite similar to the hybrid technique as it locks the entity’s data (already in the middle of some

transaction) for other transactions, to ensure its integrity and consistency. Yet, it enables the other

users to read the most recently updated entity’s data on which some modification operation is also

under process simultaneously applied by another user. Not many techniques related to locking

provides this option of reading data that is also involved in a write operation except exclusive

locking (Complex procedure as it requires to keep a track of all Read and Write Locks along with

their management). This newly devised approach can not be compared with the orthodox concur-

rency control mechanisms in terms of performance because its efficiency has got a limitation and

beyond which the performance should not be expected as it requires to store every transaction in

the datbase. But it should not be discarded as it gives instant results without any serious changes

in the existing formation of IPBrick database model. Write operation is not considered in this

24 Refinement of IPBrick Solution

solution because it is not a threat to the data’s consistency and integrity and can be carried without

much of the trouble in a multi-sessions based environment.

Figure 3.5: Flow chart of the Process handling Multilple Transactions

3.4 Conclusion

In this chapter, the operations related to the Administrative Profiles Unit were discussed in detail

with the aid of flowcharts. It had also provided a set of reasons based on which it was concluded

that optimistic and pessimistic concurrency control mechanisms are not suitable for multi-sessions

management in IPBrick database. An alternative approach was mentioned at the end of this chapter

along with the performance detail that can be expected from its efficient implementation.

Chapter 4

Implementation of Modules and Results

In this chapter, author has explained the implementation of the objectives of this thesis which were

conceptualized in the previous chapter. It also contains the details of problems faced by the author

during the development of each of the goals. Various figures are inserted along with the text to

ease the understanding process for the reader. At the end, it concludes with a discussion on the

results obtained after the completion of the development phase.

4.1 Introduction

This chapter fully covers the details about the implementations done for the accomplishment of all

objectives of the thesis. It explains why and how the solutions were modified during the course of

implementation from the ones which were conceptualized in the previous chapter. The web devel-

opment was mainly performed in PHP language along with some other languages like JavaScript,

Jquery and HTML for the addition of interactive features. The software Netbeans was chosen for

web development part because of its user-friendly interface. Database related implementation was

performed in Postgres. Besides that some bash commands were also used for working in the IP-

Brick linux-based environment(See the important bash commands in Section D.1 of appendix D).

4.2 IPBrick System

The system of IPBrick operates in a linux-based environment. It is comprised of an overlay of

virtual machines associated with various servers which in turn connected to each other via an

intranet. Each VM has a web access fully supported by the Postgres-based databases working at

the back end of it. The brief details about IPBrick Web Interface and Database are given in the

subsequent sections.

4.2.1 Database

The IPBrick DBS contains various databases and the most relevant to this thesis are systemsoft

and systemconf. Some of the important facts related to these two schemas are listed in Table 4.1.

25

26 Implementation of Modules and Results

Figure 4.1: Index web page of IPBrick Web Interface

Systemsoft is used to store the data about the web pages and menus related to the IPBrick Web

Interface that really helps in navigation between menus to web pages as well from web pages

to web pages. Systemconf contains the core data of IPBrick relevant to services and different

entities, it also stores the information about the defined relationship between the different entities

and services such as: allotment of SIP phones to the specific users, the list of the users with email

services, etc.

Table 4.1: Facts about the databases Systemsoft and Systemconf

Names of Databases Size of Database (MB) Number of Tables
systemsoft 7.6 161
systemconf 21.5 480

4.2.2 Web Interface

The web interface of IPBrick is comprised of the number of PHP based web pages that allows the

admin to manage and utilize the services provided by IPBrick. class_init is the one of the most

important PHP scripts in IPBrick system, as it can be considered ingress of IPBrick web interface.

Important tasks like the inclusion of all PHP classes along with the initialization of their object

are performed in the file class_init. Other PHP script with a pivotal significance in IPBrick web

interface is corpo that is helpful in navigating from one web page to other by satisfying all of

the conditions specified by the developer(s). menu is a PHP script used to display in the IPBrick

Web Interface with the menus and sub-menus of all type of services as shown on the left side of

Figure 4.1.

4.3 Implementation of Administrative Profiles Unit 27

4.3 Implementation of Administrative Profiles Unit

The implementation of this objective has been carried out by using the relevant concepts discussed

in the chapter 2. This goal had required to make some developments on two fronts of IPBrick:

Database and Web Interface. Details for each of them are provided in the following sections.

4.3.1 Inclusion of new Tables

The information related to the following three facets of a profile should be stored in database:

• Profile Definition (Name and Description)

• Profile’s access to Menus and their respective Sub-Menus

• Profile’s access to Web Pages

As per the categorization of the profile’s data, it was considered appropriate to create three tables

for each of these parts instead of a single one to store all information in it. It was turned out at the

end that in this way, information related to profiles is easily managed.

4.3.1.1 Table to record Profile’s Definition

Keeping the operations of Database in view, a profile data should have more fields other than just

name and description which can be found in a relational schema mentioned below:

profile(idprofile, profile_name, description, profile_type)

There is an ID field to serialize the data in the profile schema and it also acts as a primary

key to avoid the duplication of data stored in Table rows. Attribute profile_type is used to easily

characterize a profile among types: Read Only, Full Access and Custom. As it was told earlier that

IPBrick core data is stored in the database systemconf. So Table for profile’s definition was made

part of systemconf as it is shown in figure 4.2.

Some of the important queries applied on this table are shown in Table B.1.1 of appendix B

in the form of Relational Algebra.

4.3.1.2 Table to record Profile’s Access to Menus

IPBrick provides a variety of the services. For each service there is a menu/sub-menu on the

IPBrick web interface and their information is stored in the database systemsoft. In order to provide

the access of those menus to a profile, a following relational schema made of various fields is

needed.

profile_menu(idprofile_menu, idprofile → profile, id_menu,

menu_level)

28 Implementation of Modules and Results

Figure 4.2: profile Table along with its fields and entries

Table profile_menu shown in Figure 4.3 is based on the relational schema mentioned above.

The field idprofile_menu is used to serialize the data entries and also to avoid their duplicate copies

in this table, similar to the role of idprofile in profile table. The attribute id_menu as its name tells,

represents the ID of the particular menu. The last field in Table profile_menu is menu_level which

gives the information about any menu in the menu’s hierarchy tree for example, if the sub-menu

User Policies comes under User Aborts which in turns has a parent menu named Directory, so

the menu levels of the two sub-menus and one menu are denoted as 1.1.1, 1.1 and 1 respectively.

As it was discussed earlier that the data related to menus of IPBrick web interface are stored in a

table named menu of the database systemsoft that comprises of the fields id_menu and menu_level.

It is important to note that for the default admin’s profile of IPBrick system, this table (stored in

systemconf) was filled manually and afterwards, it was done automatically for the new profiles.

There is another field called idprofile acting as a foreign key in Table profile_menu, which is used

to bring synchronization with the profile table. The rows particular to some profile will remain

stored in Table as long as the profile will exist in the profile table. Otherwise, they will get deleted

automatically as CASCADE parameter is specified in the definition of idprofile.

Few relevant queries applied on this table are shown in Table B.1.2 of appendix B in the form

of Relational Algebra.

4.3.1.3 Table to record Profile’s Access to Web Pages

Web pages in IPBrick are associated with the menus/sub-menus (menu_levels to be precise). So

there was a need of the following schema with a right combination of fields that can merge the

information related to profile, menu levels and web pages into one body.

profile_page(idprofile_page, idprofile → profile, id_page,

menu_level, page_permission)

4.3 Implementation of Administrative Profiles Unit 29

Figure 4.3: profile_menu Table along with its fields and rows

Figure 4.4 shows a table derived from the schema mentioned above. Similar to the formation

of tables profile and profile_menu, Table profile_page has a field idprofile_page which serializes

the data entries without any duplication. The second field idprofile acting as a foreign key syn-

chronizes this table with profile. It is a mean of deleting the rows related to a specific profile

automatically, if it is removed from the profile table. Third attribute id_page is for storing the

web-pages’ IDs defined in the system. The attribute menu_level is used to show menu levels

respective to the pages specified in the column id_page. The field page_permission is for the

specification of operation which will be applicable to a particular page from a set of permissions1:

insert, delete, modify, view (read all) and all(gives every possible permission on a web page).

Figure 4.4: profile_page Table along with its fields and rows

1Few of the page permissions are stored in the form of acronyms in profile_page table which are insert as ’ins’,
modify as ’mod’, and delete as ’del’ while permissions all and view stay as they are

30 Implementation of Modules and Results

Figure 4.5: Entries in valida Table along with a new addition of idprofile column

Some of the important queries applied on this table are shown in Table B.1.3 of appendix B

in the form of Relational Algebra.

4.3.1.4 Table to record an Administrator’s Access to a Profile

Table valida as shown in Figure 4.5 existed before the implementation of this thesis. The pur-

pose of this table was to store the credentials of the valid administrators having an access to the

web interface of IPBrick. The fields login and pass are for storing the login-name and password

(in the encrypted form) respectively of the users given access to the web interface. The rows in

this table are organized on the basis of login column as it acts the primary key. Third column type

maintains the record related the type of access user is having to web interface and at the moment,

there are two types of access remote and local represented as 1 and 2 respectively in the database.

Usually, only the default admin falls in the remote domain of access to the web interface. Fourth

attribute iduser stores the users’ IDs associated with the corresponding login-name entry of Table.

The column idprofile representing as a foreign key of profile table was a newly added in Table

valida that enables an administrator to use the IPBrick web interface according to the permissions

defined in the profile assigned to him/her.

4.3.2 Inclusion of new Web Pages

In the previous section, we have covered the modifications made in the IPBrick database for the

Administrative Profiles unit. This section will discuss the updates made in the web interface of

4.3 Implementation of Administrative Profiles Unit 31

IPBrick by adding new web pages and modifying the existing ones that are supported by the

database at the back-end.

4.3.2.1 Creation of a profile

There are two stages of this process. In the first phase, profile’s definition (name and description)

are specified while in the second one profile’s permissions in terms of its access to menus/sub-

menus and web pages are provided.

In Figure 4.6, a HTML element form is shown which requires profile’s name in input tag and

profile’s description in textarea tag2 from the administrator. Following actions can take place when

the submit button is clicked:

• Reloads to the same web page with empty fields if the profile’s name is not specified by the

admin (the function reload_all performs this task and its code is given in Section A.1 of

appendix A)

• Stays on the same web pages with the filled fields if the profile’s name specified by the

admin is not valid (the function CheckSubmit performs this task and its code is given in

Section A.1 of appendix A)

• Loads to the subsequent action web page after receiving the confirmation of profile’s cre-

ation from the admin and if the response is negative from the user, action web page is not

loaded (the function CheckSubmit performs this task and its code is given in Section A.1 of

appendix A)

As a result of successful specification of the profile’s definition by the admin, an action web

page runs without appearing in front of the admin. The script in this web page verifies that the new

profile’s name does not exist in the profile table and also does not contain any unwanted character

in it. When the name of the profile is found valid, then the fields profile_name and description are

inserted in Table profile along with the auto-increment of B-Tree based idprofile. The insert query

used for this purpose is "INSERT INTO profile (profile_name, description) VALUES (’NAME’,

’TEXT’);".

In the second stage, the admin needs to specify the profile’s permissions that are its access

to menus, sub-menus and web pages. In Figure 4.7, a web page view is shown containing two

HTML tables. Table at the top has the static data of profile’s definition which was set in the first

stage. Table underneath the first one is for the admin to specify the new profile’s permissions.

As it can be seen in Figure 4.8, there are two columns of Table. The first column contains the

instructions for the admin along with some checkboxes which make it easy for him/her to select all

of the menus and also to choose view or all permission option for every single web page. In such

case, if the user does not want to provide the customized permissions. The selected radio button

2textarea is used to get the profile’s description, so that it enables the administrator to write a very lengthy text in it

32 Implementation of Modules and Results

Figure 4.6: Web Page with a prompt for the Profile Definition

Figure 4.7: Web Page with the Collapsed view of Profile’s Permissions

from the given set ultimately ends up as a type of the profile. So, it should be noted that when an

admin does not select one of the top two radio buttons given in first column, then the profile type

will be set as custom, regardless of the fact whether he/she has selected the third radio button in

the same column or not (See Section A.2 of appendix A to understand a Javascript based function

Update implemented for this task). Second column comprises of a tree of menus and sub-menus

placing their respective web pages’ names underneath them (See Section A.2 of appendix A for

understanding the PHP based functions plotTree and printPages created for this feature.

In the permissions tree, web pages’ names are followed by a set of options for operations

specified as radio buttons:

4.3 Implementation of Administrative Profiles Unit 33

• View — Acts as a Read-only mode which does not allow to change any aspect of a given

web page

• Insert — Permits to the use of insert option on a particular web page

• Modify — Allows to the use of modify option on a given web page

• Delete — Enables to the use of delete option on a particular web page

• All — Permits to the use of every possible option like insert, delete, modify and more on a

given web page

The admin submits the new profile’s permissions after selecting the appropriate options spec-

ified in both columns of the second HTML table of Figure 4.8. Then the web system runs another

PHP based action script, to make few changes in the relevant tables of the systemconf database.

Those modifications are mentioned below in the form of queries:

• The update query follows as "UPDATE profile SET profile_type=’TYPE’ WHERE idpro-

file=ID;" sets the type of an existing profile to 1(view) or 2(all) or 3(custom) depending on

what an admin has specified at the time of form submission

• This query "INSERT INTO profile_menu (idprofile, id_menu, menu_level) VALUES (ID_PROFILE,

ID_MENU, ’X.Y.Z’);" inserts the details of the menus and sub-menus, made accessible to a

particular as specified by the creator of it

• In-order to insert the data of the selected web pages with respect to their menu levels for a

profile is achieved by a query follows as "INSERT INTO profile_page (idprofile, id_page,

menu_level,page_permission) VALUES (ID_PROFILE, ID_PAGE, ’X.Y.Z’,’PERMISSION’);".

In order to ensure that any selected menu/sub-menu without the selection of its corresponding

web page(s) or vice versa can not make an entry in the respective table stored in systemconf

database, an appropriate condition was applied in the code.

It is recommended to go through the Jquery based code snippet specified in Section A.2 of

appendix A which helps to comprehend the interactive features developed for making the permis-

sions selection process more user-friendly.

4.3.2.2 Modification of a profile

This process is very much similar to one for the profile insertion. The only exception is that a

profile already exist in the system and it needs to be modified unlike the case in which a pro-

file is created from the scratch. The starting point of profile’s modification procedure is shown

in Figure 4.9. It is up to the admin to modify the existing definition of the profile or not. If

the name of the profile is modified. Then it will be validated just like the way it was done at

the time of creation of this profile. As a result of successful validation, its existing entry along

34 Implementation of Modules and Results

Figure 4.8: Web Page with View of Profile’s Permissions

with the description field in the profile table gets updated by a query "UPDATE profile SET pro-

file_name=’NAME’,description=’TEXT’ WHERE idprofile=ID;".

An existing profile owns an access to a set of menus and sub-menus, along with their respective

web pages assigned to it previously. So that piece of information needs to be deleted before storing

the new one, the following two queries are used to perform this task:

• This query "DELETE FROM profile_menu WHERE idprofile=ID" deletes all of the records

from Table profile_menu for a particular ID of profile

• In-order to delete all of the records from Table profile_page for a particular profile ID is

achieved by using the query: "DELETE FROM profile_page WHERE idprofile=ID"

Rest of the permissions’ specification procedure for the profile’s modification is to as the one

for its insertion. It should also be noted that the same input prompt as shown in Figures 4.7 and 4.8

is used for both profile’s insert and update processes.

4.3 Implementation of Administrative Profiles Unit 35

Figure 4.9: Web Page for the modification of an existing Profile

4.3.2.3 Deletion of a profile

Figure 4.10 shows an HTML table containing a profile’s data pertaining to its definition. When

the Delete button is clicked by the Admin, then a javascript based alert appears on the screen. It is

for confirmation that the profile’s deletion process should execute normally, as the admin does not

want to abort. As a result, this query "DELETE PROFILE WHERE idprofile=ID;" gets into action

and deletes a row from Table profile for a particular ID. This change also results into the cascaded

deletion of rows specific to the profile ID from Tables profile_menu and profile_menus.

Figure 4.10: Web Page for the deletion of a Profile

4.3.2.4 Allocation and De-allocation of a profile

The first step of the process for allocating a profile to the user is the selection of the profile it-

self. As shown in Figure 4.11, the profiles’ names along with number of the users assigned to

each are listed in a drop-down menu. The query "SELECT COUNT(*) FROM valida WHERE

idprofile=ID;" is used to get the number of users for a particular profile ID from the valida table.

When the admin selects one of the profile from the given list and clicks on the submit button,

then the web interface crawls to another web page, as can be seen in Figure 4.12.

There are two multi-sized input boxes with two transfer buttons in-between them. The input

box on the left hand side contains the list of the users having an access of the selected profile.

36 Implementation of Modules and Results

Figure 4.11: Web Page for the selection of a profile from the list

Other one on the right hand side holds the list of user without an access to any profile or having

a profile assigned other than the currently selected one. If a user belonging to the list shown

at the right side input box already holds a profile then his name is followed by his/her assigned

profile name inside the parenthesis. A click on the button with double less-than sign («) moves

the user’s name from the right side input box to the left side input box, as a result of which a user

gets access of the chosen profile. The query used for this purpose is "INSERT INTO valida(login,

pass, type, iduser, idprofile) VALUES(’LOGIN’,’\random’, TYPE, ID_USER, ID_PROFILE);". As

user can not hold multiple profiles, so if it already holds one profile then it will be unassigned for

the old one and gets allotted a new one. In this particular case, the query "UPDATE valida SET

idprofile=ID_PROFILE WHERE login=LOGIN:".

The button with double greater-than sign (») works the opposite way in comparison to other

button, as it removes the profile’s access for some user without assigning any of others. This step

can be done by using the query "DELETE FROM valida WHERE iduser=ID;". The Javascript-

based functions AddGrpUser and DeleteGrpUser are working at the back end of these two buttons

can be found in Section A.3 of appendix A.

4.3.2.5 De-Allocation of any profile

Previously, it was discussed the removal of the user’s access to a specific profile. Now in this

section, it will be shown how to do the same for any user with any profile. As it is shown in

Figure 4.13, there are two multi-sized boxes with a button in the middle.

When the user with a profile is selected from the right side box, shown in Figure and also

the button with a sign "»" is clicked then that user’s name is transferred to input box on the

right side. Due to this, the user has not longer an access to any profile and can not use the web

interface thereafter. The deletion query used for this purpose is "DELETE FROM valida WHERE

iduser=ID;".

4.3 Implementation of Administrative Profiles Unit 37

Figure 4.12: Web Page for the allocation of a user to an existing Profile

Figure 4.13: Web Page for the removal of a user from accessing an existing Profile

4.3.2.6 View of a profile

Figure 4.14 displays the information pertaining to the definition of a profile in a table element.

It also presents the list of users’ logins who are provided with its access only if there are any;

otherwise, it shows none. The required data for this web page is obtained from the database by

using the following queries:

• The query "SELECT profile_name, description FROM profile WHERE idprofile=ID;" re-

turns the profile name and description corresponding to profile ID

• For a profile of some specific ID, the list of assigned users’ logins is obtained by a query

"SELECT login FROM valida WHERE idprofile=ID"

38 Implementation of Modules and Results

Figure 4.14: Page for viewing an existing Profile

Figure 4.14, there is a set of options: Back, Modify and Delete above Profile’s Definition table.

Profile’s definitions and permissions are modified and deleted by navigating in the web pages

referenced by the options Modify and Delete respectively.

4.3.3 Modification of existing Web Pages

Besides the addition of new web pages in IPBrick web interface, some modifications in few of the

old PHP scripts were required to be made in-order to successfully integrate the new PHP scripts

with the existing system. Details of those changes are given below:

4.3.3.1 systemDefinition_view

This web page can be considered as a default web page of Administrative Profiles Unit. This page

can be seen in Figure 4.15 which shows three HTML tables: the first for Access Definition. second

for User with Access, the second one for Profile Management. There are few other tables which

were not considered to be relevant for this thesis.

The following modifications were performed on the HTML tables 2 and 3:

• Previously, the HTML table 2 had two fields: Login and Type of Access (can be local and

remote). In the context of Administrative Profile Unit, the field Type of Access was found

irrelevant. Consequently, it was removed and replaced by another column named Profile,

which shows the profile’s name with respect to Login of any user. The query used to obtain

the name of profile assigned to a user of some particular login is "SELECT profile_name

FROM profile WHERE idprofile=(SELECT idprofile FROM valida WHERE login = LO-

GIN);". On top of HTML table 2, there are two text buttons Modify and Delete which

are acting as references to the web pages used for profile modify and delete discussed in

Sections 4.3.2.2 and 4.3.2.3.

• Third table shown in Figure 4.15 is used to list the number of profiles by specifying their

names and descriptions stored in the database. Such information is obtained by using a

query "SELECT profile_name, description FROM profile;". Like the second HTML table,

4.3 Implementation of Administrative Profiles Unit 39

Figure 4.15: Web Page displaying the access details

this one also has one text button Insert at its top which navigates to the profile insertion

procedure as discussed in Section 4.3.2.1.

It should be noted that all of the data content which is retrieved from database by using simple

queries discussed as above does not get displayed in the HTML tables 2 and 3. Because, all admins

are not allowed to view, modify and delete the profiles created by other admins. In order to show

the filtered data in Tables 2 and 3 of Figure 4.15, some conditions were applied in the PHP script

of systemDefinition_view based on the information provided in Table 4.2.

4.3.3.2 corpo

As discussed in Section 4.2.2, all of the web pages in IPBrick interface are accessed through a

PHP script named corpo. So, applying some conditions in this script was the best possible way

of assuring that an Admin can only visit those web pages, which are specified in his/her profile.

Beyond that scope, any access to a requested web page is not permitted and receives an alert

in response saying that "You are not allowed to access this page!". Important query to achieve

this task is "SELECT id_page FROM profile_page WHERE idprofile=ID_PROFILE;". The access

40 Implementation of Modules and Results

Table 4.2: Privileges of Administrators having Profiles of the different types

Profile Types Own Profile(s) Other Profile(s)

Full Access Can create, view, edit, delete his/her
own profile(s)

Can view, edit, delete his/her own pro-
files created by other Admins except
the one belonging to a default admin

Custom Can create, view, edit, delete his/her
own profile(s) if he/she has all permis-
sion specified for the web page sys-
temDefinition_view in his/her profile

Can view, edit, delete his/her own pro-
files created by other Admin having a
profile of type Custom or Read Only

Read Only Can not create his/her own profile Can only view profiles created by other
Admin having the profile types Read
Only

Figure 4.16: Possible access to the default web page before the modifications in corpo script

of the default web page was denied after the changes had been applied in corpo as shown in

Figure 4.17 unlike the case presented in Figure 4.16.

4.3.3.3 menu

This script displays the menus of services along with the sub-menus for sub-services on IPBrick

web interface, as discussed in Section 4.2.2. Previously, it used to retrieve the data of all menus

from the database systemsoft, which is now changed to obtaining the menus allowed for the profile

of some user. A query "SELECT id_menu FROM profile_menu WHERE idprofile=ID_PROFILE;"

on a table of systemconf that returns the menus’ IDs particular to a profile ID. The difference in

the number of menus can be on the left side of Figures 4.18 and 4.19, which happened due to

modifications in the menu script.

4.3 Implementation of Administrative Profiles Unit 41

Figure 4.17: No access to the default web page after the modifications in corpo script

4.3.3.4 default_header

An idea was established in Section 4.3.2.1 which was that during the creation/modification of a

profile, every chosen web page should be specified with a permission from a set of View, Insert,

Modify, Delete, and All. Once that information is stored in the database then the next job is to

ensure that an admin should strictly practice only those operations pertaining to his/her defined

permission for a web page. This specification is implemented in Jquery by using the function

hide() and wildcard on selector href. After the successful testing of the code snippet given in

sectionA.4 of appendixA, it was placed inside the script named default_header. So now this script

has two functions: display of a header on top of every web page and show only those operation

options on a web page which are related to its specified permission.

4.3.3.5 class_init

This script works as a heart of IPBrick web interface because it includes all important classes and

also initializes their instances as discussed, in Section 4.2.2. Two PHP classes were also created

for this thesis: one for profile and another for transaction (will be discussed in Section of Multi-

Sessions Management). The inclusion of those classes along with their instantiations were done

in class_init, so that their applications can be propagated throughout the system. The lines of code

added in the class_init can be seen in the snippet given below:

1

2 <?php
3

4

5
6

7 i n c l u d e _ o n c e ($_ pa th . "PHP / I f D B P r o f i l e . p h p c l a s s ") ; / / I f D B P r o f i l e c l a s s
8 i n c l u d e _ o n c e ($_ pa th . "PHP / I f D B T r a n s a c t i o n . p h p c l a s s ") ; / / I f D B T r a n s a c t i o n c l a s s
9

42 Implementation of Modules and Results

Figure 4.18: Default web page with All Menus and Sub Menus

Figure 4.19: Default web page with Few Menus and Sub Menus

10
11

12 $ d b p r o f i l e = new I f D B P r o f i l e ($bd−>conn) ; / / I n s t a n t i a t i o n o f I f D B P r o f i l e c l a s s
o b j e c t

13 $ d b t r a n s a c t i o n = new I f D B T r a n s a c t i o n ($bd−>conn) ; / / I n s t a n t i a t i o n o f
I f D B T r a n s a c t i o n c l a s s o b j e c t

14

15
16

17

18 ?>

4.3 Implementation of Administrative Profiles Unit 43

Figure 4.20: Table pages entries along with the definition of its fields

Figure 4.21: Table links entries along with the definition of its fields

4.3.4 Inventory of new Web Pages in database

Every new web page, along with its link in the file system is stored in systemsoft database. Without

this record, it is not possible to access a web page in IPBrick web interface. For the implementation

of Administrative Profile Unit, eleven new web pages were created and their names were registered

in Table pages as shown in Figure 4.20.

Figure 4.21 shows a table links containing the file paths of new web pages. It can be seen in

the all paths that each of the new web pages was stored in the common folder named profile.

44 Implementation of Modules and Results

Figure 4.22: Table liga_pages_links entries along with the definition of its fields

First, the data related to the names of web pages and their file paths were stored in the re-

spective tables of the database. Then, there was a need for forming the connection between the

entries of these two table that was achieved by using the liga_pages_links. It can be seen in

Figure 4.22, a web page of ID "1376" is linked with a file path "1384".

4.4 Implementation of Multi-Sessions Management

The suggested scheme for Multi-Sessions Management is based on the existing tables: sessao

and alteracao in the database systemconf. It is important to note that no change has been made

in those tables for the implementation of this solution. For its better understanding, the formation

of tables sessao and alteracao should be learnt.

4.4.1 Table sessao

Figure 4.23 shows the definition of sessao attributes. The field id serializes the sessao table

and acts as a primary key. As this table deals with sessions, so the session ID is stored in the

columns sessid. The representation of the user who has initiated a particular session is done by the

field utilizador. The important statistics about a session are recorded in the columns inicio

and expira.

4.4.2 Table alteracao

As a result of some changes made by an admin in the IPBrick web interface, two actions take

place. One is the modification in database tables pertaining to the tweaking has been performed at

the front end.

The second action is linked with the first one that is updating the configurations logs about

the modifications have been done in the database. This step has a preliminary action too and that

4.4 Implementation of Multi-Sessions Management 45

Figure 4.23: Table sessao rows along with the definition of its fields

Figure 4.24: Table alteracao rows along with the definition of its fields

is turning the flag(s) to true for the service(s) in alteracao table for which the database has

been updated. It can be seen in Figure 4.24, alteracao table has two columns: servico and

alterada. The former is for keeping the track of services that are modified in a session and the

latter is for maintaining the values between ’t’(true) and ’f ’(false). Services with a true flag in

alterado column are considered to be changed during the session and their respective logs will

get overwritten when the configurations update process will start. Once the detail of those services

is stored in the configuration logs, their values in the alterado will become ’f ’ again.

4.4.3 Table transaction

As it is discussed in the previous sections that Table transaction is going to rely on Tables sessao

and alteracao. In Figure 4.25, the columns id and sessid are the foreign keys of sessao and

46 Implementation of Modules and Results

Figure 4.25: Table transaction entries for one session along with the definition of its attributes

alteracao, respectively. The field idtransaction in Table transaction acts as a primary and also

it serialize the data entries without any sort of duplications. Table transaction is based on the

schema given below:

transaction(id_transaction, id → sessao, servico → alteracao,

id_entity, entity

In order to approach concurrency control in a more deeply fashion, let’s begin with the column

id_entity which is used to store the actual ID of the entity provided from its respective table.

This table also contains an attribute named entity which helps to differentiate between the IDs

of two entities. Let’s consider an example in which there are two transactions: one is related

to machine group with id_entity equals to 101 and another one belongs to the user group with

the same id_entity. Now in this scenario, if the column entity is not present then it is difficult to

differentiate between the two transactions which can lead to problems such as interference between

the operations belonging to user and machine categories and errors in the final configuration logs.

In most cases, the information stored in the column entity will not be required for the normal

execution of multiple transactions but still there is a good possibility that it will resolve an awkward

situation if it occurs.

4.4.4 Scheme as a Final Solution

This section established a connection between Tables – discussed above – to make easy to under-

stand the working prototype of devised scheme3 used for Multi-Sessions Management. It should

be recalled from section 3.3.2 of the Chapter 3 that the concurrency control in this thesis is only

applied for the update and the delete operations.

3This solution has been developed for "User Management" service of IPBrick.

4.4 Implementation of Multi-Sessions Management 47

Figure 4.26: Table transaction entries for two sessions along with the definition of its attributes

Figure 4.27: An alert for the second Admin if he wants to modify the same data as the first one

Let’s proceed with the understanding of Multi-Sessions Management Scheme. Consider a sce-

nario in which two admins are trying to modify two different user’s data stored in the database. In

this case, the admins’ respective transactions will get committed smoothly without any problem

as can be seen in Figure 4.26. For this purpose, the query "INSERT INTO TRANSACTION(id,

servico, id_entity, entity) VALUES(ID, ’TEXT’, ID_ENTITY, ’TEXT’);" is used for all inventories

made in the transaction table. One more point relevant to this scenario should be considered that

a transaction related to a particular user in transaction table can only be recorded once. If another

transaction is created for the same user in a session then it will be not be stored in Table transaction

twice or more although, Table pertaining to that user will always carry its latest entry.

Another case shown in Figure 4.25, in which the data of user with ID equal to "10003" are

being updated by an admin. Now, if another admin wants to modify the data of the same user then

he/she will not be allowed to do so and will receive a notification shown in Figure 4.27.

To generalize the case in which more than one transactions are trying to modify the data of

the same entity and how each of the transaction terminates ultimately – without affecting the data

consistency and integrity – can be observed in Table 4.3.

48 Implementation of Modules and Results

Table 4.3: Concurrency Control between N transactions related to the same entity’s data

Transaction 1 Transactions 2 to N+1
T1→ update(A)

T2→ update(A)
Aborts
T3→ delete(A)
Aborts
...
TN → update(A)
Aborts

Commits
TN+1→ delete(A)
Commits
...

A simple query "SELECT id, id_entity, entity WHERE servico= ’TEXT’;" is used to get the

transaction data for a particular servico. A new transaction will always get rejected for the

different values of column id if its id_entity and entity are equal to other transaction(s) that had

already been stored in Table transaction.

When an admin holding a session applies the configurations in his/her system for updating the

logs with some new changes then all rows related to that session will be deleted from transaction

table by using a query "DELETE FROM transaction WHERE id=ID;". Another action will also

be performed simultaneously which is alterado flag will be changed from ’t’ to ’f ’ for the

servico involved in the deleted transactions only if they are not used in any other entry of

transaction table. Otherwise, no changes will be made in alteracao table. Finally, the column

alterado of Table alteracao will become ’f ’ for all values of servico when transaction

table will run out of its every single row.

4.5 Extra Work

In the initial phase of this thesis, some extra objectives were also set besides the actual ones. Their

implementation was completely dependent on the availability of time at the end. Luckily, some

extra development work was also performed due to the early accomplishment of main goals.

4.5.1 Renaming of Web Pages’ Names in the Database

Over the years, hundreds of web pages were added in IPBrick system without having a proper

nomenclature for their names. Due to this reason, web pages’ names are full of inconsistencies

such as the existence of names in various languages, the use of meaningless abbreviations in

names, etc. That makes difficult for developers and especially for customers to understand the

IPBrick sitemap easily.

4.5 Extra Work 49

Figure 4.28: Table pages containing pages’ names based on a new nomenclature in page column

In order to bring uniformity in the web pages’ names, a new nomenclature was defined in

English language as "FullPageName[_TypeOfPage][_Action]" based on which more than 850

out of 1385 web pages were renamed. Few of those can be seen in the column page of pages

table show in Figure 4.28. Previously, the web pages’ names were so out of order that it was very

difficult to build a script which can rename the web pages easily. As a result, it was done manually

one by one. Although, this task is not very technical in nature besides the use of some SELECT

and UPDATE queries but it will prove to be fruitful for IPBrick in a long-term.

4.5.2 Run-Time Configurations

The existing IPBrick solution does not immediately put the changes made by an admin into effect

until another admin having some sort of priority does not update the configuration logs with his/her

changes. The second admin and rest of others accessing the system after him/her are made to wait

in a queue because of the complicated way of operation. To address this problem, IPBrick has

developed an external module for an older version of its solution to allow the configurations to be

applied on a run-time basis. It was set as an additional goal to implement this feature similar to

the previous with some improvements for the latest version of IPBrick solution.

Previously implemented web service was based on SOAP that allowed to develop it in an

interoperable fashion by defining some rules for sending and receiving RPC such as the-XML

based structure of the request and response (See Section D.3 of appendix D). Those RPCs were

exchanged between a SOAP Client and a SOAP Server according to specifications defined in

the WSDL Document Style Model(Message-Oriented style). WDSL is a XML document that

provides meta-data for a SOAP service (See the structure of WSDL in Section D.4 of appendix D).

They contain information about the functions or methods the application makes available and what

arguments to use [31]. By making WSDL available to the clients of web service, gives them

the definitions they need to send valid requests precisely how it is required to be. SOAP can

work properly without WSDL but it can offer a lot if used. WSDL tells how to connect with

50 Implementation of Modules and Results

Table 4.4: Parameters of the function applyAddUserRuntime

Parameter Required Value
<apiAccessLogin> Valid Login of the admin who is trying to use the web ser-

vice
<apiAccessPass> Valid Password of the admin who is trying to use the web

service
<name> Name of the new user
<login> Login of the new user (will be stored in lowercase only)
<quota> Email Quota of the new user
<area> 1 for home1, 2 for home2
<server> 0 for local, 2 for remote
<password> Password for user authentication
<employeenumber> any number
<departmentnumber> any number
<roomnumber> any number
<pager> any number
<employeetype> any number or text
<businesscategory> any number or text

communication server and SOAP provides the communication messages.

In this thesis, it was attempted to add the user to IPBrick System on run-time basis by using SOAP

along with WSDL. For this purpose, the entities like client and server were created and they

communicated with each other through Request and Response mechanism. The main function

of this service is applyAddUserRuntime which adds the user on run-time and does not need the

admin’s intercession in applying configurations. An aspect of authentication was also introduced

in this web service which requires the credentials: apiAccessLogin and apiAccessPass in the form

given below:

1

2 <?php
3

4 $ a p i A c c e s s L o g i n = " 969 b14b217e2d91ad075a6 " ;
5 $ a p i A c c e s s P a s s = " adaeaa7x3a5400c195e499 " ;
6

7 ?>

In the context of IPBrick solution, the function applyAddUserRuntime requires the parameters

in the order as presented in Table 4.4.

The binding of WSDL with SOAP can be quite cumbersome, as it requires to write the specific

tags – quite long in length – by hand.. This task was simplified by using NuSOAP4 which created

a WSDL file automatically.

The code of server script is mentioned below:

4NuSOAP is a set of PHP classes – no PHP extensions required – that allow developers to create and consume web
services based on SOAP 1.1, WSDL 1.1 and HTTP 1.0/1.1

4.5 Extra Work 51

1 <?php
2

3 r e q u i r e _ o n c e " nusoap . php " ;
4

5 f u n c t i o n applyAddUserRunt ime ($ap iAccessLog in , a p i A c c e s s P a s s , $name ,) {
6
7
8 }
9

10 $ s e r v e r = new s o a p _ s e r v e r () ;
11 $ s e r v e r −>configureWSDL (" applyAddUserRunt ime " , " u rn : applyAddUserRunt ime ") ;
12

13 $ s e r v e r −> r e g i s t e r (’ applyAddUserRunt ime ’ ,
14 a r r a y (’ a p i A c c e s s L o g i n ’ => ’ xsd : s t r i n g ’ ,
15 ’ a p i A c c e s s P a s s ’ => ’ xsd : s t r i n g ’ ,
16 ’ name ’ => ’ xsd : s t r i n g ’ ,
17 ’ l o g i n ’ => ’ xsd : s t r i n g ’ ,
18 ’ q u o t a ’ => ’ xsd : i n t ’ ,
19 ’ a r e a ’ => ’ xsd : i n t ’ ,
20 ’ password ’ => ’ xsd : s t r i n g ’ ,
21 ’ employeenumber ’ => ’ xsd : s t r i n g ’ ,
22 ’ depa r tmen tnumber ’ => ’ xsd : s t r i n g ’ ,
23 ’ roomnumber ’ => ’ xsd : s t r i n g ’ ,
24 ’ p a g e r ’ => ’ xsd : s t r i n g ’ ,
25 ’ employee type ’ => ’ xsd : s t r i n g ’ ,
26 ’ b u s i n e s s c a t e g o r y ’ => ’ xsd : s t r i n g ’) ,
27 a r r a y (’ r e s u l t ’ => ’ t n s : S t d R e s u l t ’) ,
28 ’ u r i : ’ . NUSOAP_NAME_SPACE,
29 ’ u r i : ’ . NUSOAP_NAME_SPACE .
30 ’ / applyAddUserRunt ime ’ , ’ r p c ’ ,
31 ’ encoded ’ ,
32 ’ I n s e r t Use r s on Run−Time ’) ;
33

34 $ s e r v e r −> s e r v i c e ($HTTP_RAW_POST_DATA) ;
35

36 ?>

As it can be seen in the code, a new instance of the soap_server class is instantiated which calls

to configureWSDL() so that WSDL file can be created. This function has two arguments, former

is for the name of the service and later belongs to the namespace of the web service. The object

of soap_server class calls another function register which builds the content of WSDL file. It has

following argument [32]:

• First argument of this function is the name of function (applyAddUserRuntime) called by

the client of this web service

• Second argument is an array which contains all of the input parameter acquired by function

52 Implementation of Modules and Results

• Third argument is also an array which defines the return value along with its datatype

• rpc defines the type of call (this could be either rpc or document)

• encoded defines the value for the use attribute(Either encoded or literal can be used)

• The last parameter is a documentation string that describes what the applyAddUserRuntime

function does

A file with the name server.wsdl was create automatically when the URL5 was pointed in the

brower. At the client side, this file is accessed through the constructor of SOAPClient class. Inside

the client file, a call for the function applyAddUserRuntime is made. The return value should be a

positive number in the case of its successful operation or -1 if some error occurs. Some portion of

the script that was created for the client is given below:

1

2 <?php
3

4 $name = $argv [1] ;
5 $ l o g i n = $argv [2] ;
6 $q uo t a = $argv [3] ;
7 $ a r e a = $argv [4] ;
8 $ s e r v e r = $a rgv [5] ;
9 $password = $argv [6] ;

10 $employeenumber = $argv [7] ;
11 $depar tmen tnumber = $argv [8] ;
12 $roomnumber = $a rgv [9] ;
13 $ pa ge r = $argv [1 0] ;
14 $employee t y p e = $argv [1 1] ;
15 $ b u s i n e s s c a t e g o r y = $argv [1 2] ;
16

17 $ u r i = " urn : " . $ c l a s s ;
18 $wsd lUr l = ’ h t t p s : / / 1 7 2 . 3 1 . 3 . 6 0 / r u n t i m e / s e r v e r . php ? module= ’ . $ c l a s s . ’&wsdl ’ ;
19 $ l o c a t i o n = ’ h t t p s : / / 1 7 2 . 3 1 . 3 . 6 0 / r u n t i m e / s e r v e r . php ? module= ’ . $ c l a s s ;
20

21 $ c l i e n t = new SOAPClient ($wsd lUr l ,
22 $ c l i e n t −>applyAddUserRunt ime ($ap iAccessLog in , $ a p i A c c e s s P a s s , $name , $ l o g i n ,

$quota , $a rea , $ s e r v e r , $password , $employeenumber , $depar tmentnumber ,
$roomnumber , $pager , $employee type , $ b u s i n e s s c a t e g o r y) ;

23

24 ?>

Due to the incomplete implementation of the run-time module, none of the expected value is

obtained. But this work can be carried forward and can lead to the resolution of the problem at

hand.

5https://172.31.3.60/runtime/server.php?&wsdl

4.6 Results 53

Figure 4.29: Sitemap of Administrative Profiles Unit

4.6 Results

The performance of implementation performed for this thesis can be judged at two ends. On front

end, it can be validated whether all of newly developed web pages are well-connected with the

existing IPBrick Web Interface or not. While at back end, it can be tested how quickly database

responds to the designed queries.

4.6.1 Performance Analysis of Administrative Profiles Unit

Figure 4.29 shows how Administrative Profiles Unit is integrated with the web interface of IP-

Brick. Regardless of the operation performed on profile by navigating through a designed set of

web pages, the whole system is capable enough to crawl back to the web access page without

straying to a dead end [33, 34, 35].

54 Implementation of Modules and Results

Table 4.5: Data Set of Test Scenario for Administrative Profiles Unit

Given Data Quantity
Number of Profiles in profile table 5
Number of valid Admins in valida table 7
Number of Menus and Sub-Menus in profile_menu table 56
Number of Web Pages in profile_menu table 58
Number of Menus and Sub-Menus in a Small-Sized Profile 9
Number of Menus and Sub-Menus in a Medium–Sized Profile 17
Number of Menus and Sub-Menus in a Large-Sized Profile 35
Number of Web Pages in a Small-Sized Profile 8
Number of Web Pages in a Medium-Sized Profile 16
Number of Web Pages in a Large-Sized Profile 33

Table 4.6: Execution Time of the different Operations in the Administrative Profiles Unit

Applied Operations
on a Profile

Time for a Small-
Sized Profile (ms)

Time for a Medium-
Sized Profile(ms)

Time for a Large-
Sized Profile(ms)

Insert 5.37 9.63 18.15
Modify 6.49 10.51 19.29
View 1.37 2.58 4.33
Delete 1.39 1.44 1.57
Allocation 101.51 101.51 101.51
De-Allocation .84 .84 .84

A website or any set web pages’ seamless property becomes more prominent if its operations

related to the database are performed quickly at its back-end. A very simple group of queries

was used in order to make all aspects of Administrative Profiles Unit fully functional without

consuming much time. But when Tables start getting populated with a large bulk of data then those

simple queries take more execution time for the same tables because of search time overhead. As

a result, the user of a website or its unit starts to experience the delays between the loading of

different web pages. There could be other reasons too for those hold ups such as the use of some

powerful interactive elements in web scripts and few more. But, still, the heavy database procedure

is the main cause of introducing some jitters in the flow of the website.

Table 4.5, a test case is prepared to see the database response time for each process involved

in Administrative Profiles Unit. In order to create a realistic scenario, Tables profile, profile_menu

and profile_page were provided with a number of rows just to involve searching process when

some query is applied on them. In this test case, three profiles of three different scopes: Small,

medium and large were created and each of those profiles composed of different number menus

and web pages from others.

The possible operations which can be performed on a profile are listed in the column "Applied

Operations on a Profile" of Table 4.6. Each operation involves the number of queries from a set

INSERT, SELECT, UPDATE and DELETE depending on its functionality. The values in millisec-

onds were obtained by adding the calculated execution time for all individual queries involved in a

4.6 Results 55

Table 4.7: Data Set of Test Scenario for Multi-Sessions Management Scheme

Given Data Quantity
Number of rows in sessao table 2
Number of rows in alteracao table 174
Number of transactions in transaction table 5
Number of transactions to be inserted in transaction table 2
Number of transactions to be deleted in transaction table 2

process of some profile. Run-time for any type query can be determined in milliseconds by using

the Postgres command "EXPLAIN ANALYZE query;".

As it can be seen in Table 4.6, the execution time of processes: Insert, Modify, View and Delete

is directly proportional to the size of a profile. Insertion and Modification of a Profile are quite

similar operations but latter takes more time than former because it involves the search time over-

head. The process "Profile Allocation" consumes more time than any of other processes because

it involves the encryption of password assigned to the user. A noticeable fact about Allocation and

De-allocation of a profile is that the size of profile does not matter as the execution time remains

the same for all.

4.6.2 Performance Analysis of Multi-Sessions Management Scheme

The efficiency of the scheme developed for Multi-Sessions Management is heavily dependent on

the response time of queries made on the database. For the purpose of testing, a scenario was

created by keeping a pragmatic approach in view that is to provide a set of rows in the given tables

of the database as it can be seen in Table 4.7.

In this test case, two transactions will be inserted into Table transaction and then the two will

be deleted from the same table. The transaction insertion and deletion processes do not involve

only one query on transaction table for each process, but they also execute few more queries

related to alteracao along with sessao before going for the execution of final one. Runtime

in milliseconds for each applied operation on transactions is calculated by adding the execution

time of all queries involved in it. The command used to determine the execution time of any query

is "EXPLAIN ANALYZE query;".

It can be observed in Table 4.6 that the time taken for the successful insertion of transactions

in transaction is greater than the unsuccessful ones. Because once the transactions satisfy the

specified criteria then they can make their entries in Table transaction which affects the final sum

of time in milliseconds. For the process of transactions deletion, it is checked that the transactions

to be deleted from transaction table do not contain any servico involved in other pending trans-

actions. If there are no remaining transactions in transaction table besides the ones involved in the

process of deletion then the execution time will be less as there will be no search time involved in

it. Otherwise, it will be greater in value. Both cases related to the deletion process were tested and

can be found in Table 4.6.

56 Implementation of Modules and Results

Table 4.8: Execution Time of the different Operations in the Multi-Sessions Management Scheme

Applied Operations on Transactions Run
Time

Remark

Insertion 2.134ms Successful without resulting into Data Con-
flict

1.084ms Not Successful as a result Data Conflict oc-
curs

Deletion 4.538ms Successful while having some pending
transactions in the queue

3.48ms Successful while having no pending trans-
actions in the queue

4.7 Conclusion

In this chapter, the front and back end implementations performed for Administrative Profiles Unit

were discussed in detail with the support of relevant diagrams. It had also explained how the multi-

sessions management scheme was developed for "User Management" service and highlighted its

bright prospect of getting it implemented for all services of IPBrick. At the end of the chapter,

some test cases relevant to the implementations were presented in order to discuss their efficiency.

Chapter 5

Conclusion and Future Work

This chapter contains the concluding remarks of the author related to the thesis’ topic and the

research performed by him during its development. It specifies the extents up to which the goals

of dissertation were achieved. At the end, it also discusses how further improvements can be

brought in the results obtained.

5.1 Accomplished Goals

“If you follow reason far enough it always leads to conclusion that are contrary to

reason.”

Samuel Butler

The main aim of this thesis was to enhance IPBrick solution in a way that it can meet the

modern-day requirements of its customers without making any drastic changes in it. For this pur-

pose, few objectives were set initially, conceptualized during the course of thesis and accomplished

later. Now, IPBrick Administrators can create new profiles and assign those to other new Admins

of IPBrick Private Cloud. These profiles can be viewed by all of the admins with an access to

IPBrick web interface but few of them can modify and delete them based on the specifications of

their profiles. By virtue of Administrative Profiles Unit, the user’s access to profiles can also be

revoked anytime by a default administrator(s) of IPBrick system. Besides applying the essential

operations on the profiles, some procedures were also developed to ensure that an admin of some

particular profile could not use any menus and sub-menus along with their respective web pages

beyond the scope of his/her profile’s definition. Web pages’ permissions were successfully applied

on each web page which helped to control the admins’ actions such as no access to the web pages

not belonging to the domain of their profiles.

The second major objective of this thesis was to develop an efficient scheme for multi-sessions

management which can offer some sort of concurrency control between the multiple transactions

in IPBrick database. After a thorough analysis of the various conventional concurrency mecha-

nisms and their incompatibility with the existing formation of IPBrick databases, it was concluded

57

58 Conclusion and Future Work

that none of those mechanisms can produce any noticeable results in a short span of time. Con-

sequently, an alternative approach was devised to provide the concurrency control at the abstract

level for the multiple transactions of update and delete operations in an interactive environment.

This scheme was developed solely for IPBrick service "User Management" as a proof of concept

that was found quite efficient at the end because it was able to avoid possible data conflict in a

multi-sessions based environment.

Renaming of the web pages in database was one the additional goals performed during the

implementation of this thesis. Around 850 web pages were renamed in English by using a well-

defined nomenclature which was helpful in overcoming the inconsistencies occurred in the names

before. In spite of non-technical nature of this task, there is no denying its importance that it

can be extremely helpful for customers as well as for developers too to understand the currently

deployed IPBrick system. The inclusion of Run-Time Configurations module in the latest version

of IPBrick solution was another extra goal that was attempted to be implemented for the "User

Insert" service. Unfortunately due to the lack of time, it was not tested properly. But, even the

attempt of its development was fully worth it because it was really very useful in understanding

the practical applications of SOAP and WSDL.

Finally, all of the main goals were achieved with some decent results, as discussed in the

Chapter 4, accompanied by some significantly positive ones obtained for the additional objectives.

As it is said in the beginning that the refinement of the existing IPBrick solution was the main goal

and that was accomplished to a very great extent at the end.

5.2 Future Work

“The only certain means of success is to render more and better service than is

expected of you, no matter what your task may be.”

Og Mandino

Administrative Profiles Unit was developed with the mindset that it should be user-friendly

by minimizing the required number of clicks for each operation applied on the profiles. Still, all

facets of this module can be improved a little bit for a better user experience. The one of them

is the further simplification of Profile Permissions Prompt. It can have an option of Select/un-

Select some particular menu along with its subsequent sub-menus and pages. Other enhancement

in it can be to show the previously selected Menus and Sub-Menus along with their adjacent

selected web pages and also allow to select the new ones when an admin is trying to modify

some profile’s permissions. At the moment, the admins are allowed to select only one of the page

permissions – View, Insert, Delete, Modify and all – for a web page but it can be extended further

by enabling the admins to choose a combination of privileges for a web page such as Insert and

Delete combination of permissions and few other possible ones. Providing another option like

5.2 Future Work 59

select Insert/Delete/Modify option for all web pages will not be a bad facility to give, so it can

considered and implemented in future.

Ideally, Optimistic or Pessimistic or Hybrid Concurrency Control mechanisms should be used

for the multi-sessions management along with building of client and server ends of IPBrick Database.

This improvement will require the large investment of time along with various other resources. For

the time being, the alternative of conventional Concurrency Control discussed in this thesis can

be adopted and further implemented for all IPBrick entities and services which is done for User

Management only at the moment.

Besides the actual objectives of this thesis, some additional tasks were also developed to a

limited extent, their implementations can be carried forward at full scale in future. Around 850

web pages were renamed in English by using a well-defined nomenclature, the same can also be

done for the rest web pages along with the appropriate changes in their system files. Such uni-

formity in the web pages’ names can provide a better understanding of IPBrick Web Interface to

its users. Run-Time Configuration unit was not fully implemented due to the shortage of time

but it can be implemented in the IPBrick System by using its solution partially developed in this

thesis. Full implementation of this feature will really boost up the execution speed of users’ op-

erations performed on IPBrick web interface. For enhancement in the error handling aspect of

this feature, it is recommended that a procedure should be developed that can generate a response

message with more explicit meaning – pointing towards the cause of some error/fault due to which

it occurs during the execution – instead of returning a negative value. It will be helpful in aligning

the admins’ actions according to the operational requirements of Run-Time Configuration module.

60 Conclusion and Future Work

Appendix A

Useful Code Snippets

In this chapter, author has mentioned some of the utility functions and code snippets which were

found useful during the development process of thesis.

A.1 Functions for Profile Insertion

The function reload_all() is used to reload the given web page if the profile’s name is not specified.

Second function CheckSubmit validates the profile’s name inserted by the user and then confirms

the creation of profile from user by showing a JavaScript based alert. After that, it performs an

action appropriate to user’s response.

1

2 < s c r i p t l a n g u a g e =" J a v a S c r i p t ">
3

4 f u n c t i o n r e l o a d _ a l l ()
5 {
6 document . f o r m _ p r o f i l e . p a g i n a . v a l u e =" p r o f i l e _ i n s " ;
7 document . f o r m _ p r o f i l e . s ubmi t () ;
8 }
9

10 f u n c t i o n CheckSubmit ()
11 {
12 / / TESTE ao name
13 i f (document . f o r m _ p r o f i l e . name . v a l u e ==" ") {
14 window . a l e r t (" <? echo _ (" P l e a s e S p e c i f y t h e Name ! ") ;? > ") ;
15 r e t u r n f a l s e ;
16 }
17 i f (document . f o r m _ p r o f i l e . name . v a l u e ==" . ")
18 {
19 window . a l e r t (" <? echo _ (" I n v a l i d Name ! ") ;? > ") ;
20 r e t u r n f a l s e ;
21 }
22 s a i r = window . c o n f i r m ("
23 <? echo _ ("Do you r e a l l y want t o c r e a t e t h i s P r o f i l e ? ") ;? > ") ;
24 r e t u r n s a i r ;

61

62 Useful Code Snippets

25 }
26 </ s c r i p t >

A.2 Function for the specification of Profile Permissions

The function plotTree explodes a single-dimensional array of menus and sub-menus into a fully

blown tree structure based on the delimiter "." found in it’s key. The argument counter is for

maintaining the values of the higher nodes(parents). Within the scope of this function another

function printPages is called that prints the web page(s) along with its permissions(view, insert,

modify, delete and all) under their respective menus or sub-menus..

1

2 <?
3 f u n c t i o n p l o t T r e e ($ a r r , $ c o u n t e r =0) {
4 g l o b a l $menu_permiss ion , $menuNames ;
5 $menu_ leve l = ’ ’ ;
6 i f (i s _ a r r a y ($ a r r) && key ($ a r r) ==" _ _ b a s e _ v a l ") {
7 f o r e a c h ($ a r r a s $k=>$v) {
8 $show_val = (i s _ a r r a y ($v) ? $v [" _ _ b a s e _ v a l "] : $v) ;
9 $menu_ leve l = a r r a y _ s e a r c h ($show_val , $menuNames) ;

10

11 i f ($k == " _ _ b a s e _ v a l ") {
12 i f ($ c o u n t e r ==0) {
13 echo ’< f i e l d s e t c l a s s =" expUnexp">< legend ><a c l a s s =" t i t u l o s ">Menu ’ .

$show_val . ’ </ a > </ legend > ’ ;
14 echo ’< d i v c l a s s =" h i d e r s "> ’ ;
15 echo ’< l i >< i n p u t c l a s s =" checkbox " t y p e =" checkbox " i d ="

menu_permiss ion_ ’ . $menu_ leve l . ’ " name=" menu_permiss ion [’ . $menu_ leve l . ’] "
v a l u e =" ’ . $menu_ leve l . ’ "><a c l a s s =" t i t u l o s b "> ’ ;

16 $ c o u n t e r ++;
17 }
18 e l s e {
19 echo ’< d i v c l a s s =" h i d e r s "> ’ ;
20 echo ’< l i >< i n p u t c l a s s =" checkbox " t y p e =" checkbox " i d ="

menu_permiss ion_ ’ . $menu_ leve l . ’ " name=" menu_permiss ion [’ . $menu_ leve l . ’] "
v a l u e =" ’ . $menu_ leve l . ’ "><a c l a s s =" t i t u l o s "> ’ ;

21 }
22 echo $show_val . ’ </ a > </ l i > ’ ;
23 p r i n t P a g e s ($show_val) ;
24 echo ’ ’ ;
25 c o n t i n u e ;
26 }
27 / / d e t e r m i n e t h e r e a l v a l u e o f t h i s node .
28 i f (i s _ a r r a y ($v)) {
29 / / t h i s i s what makes i t r e c u r s i v e , r e t u r n f o r c h i l d s
30 p l o t T r e e ($v , $ c o u n t e r ++) ;
31 } e l s e {

A.2 Function for the specification of Profile Permissions 63

32 echo ’< l i >< i n p u t c l a s s =" checkbox " t y p e =" checkbox " i d ="
menu_permiss ion_ ’ . $menu_ leve l . ’ " name=" menu_permiss ion [’ . $menu_ leve l . ’] "
v a l u e =" ’ . $menu_ leve l . ’ "><a c l a s s =" t i t u l o s "> ’ . $show_val . ’ </ a > </ l i > ’ ;

33 p r i n t P a g e s ($show_val) ;
34 }
35 }
36 echo ’ </ ul > ’ ;
37 }
38 e l s e {
39 $menu_ leve l = a r r a y _ s e a r c h ($ a r r , $menuNames) ;
40 echo ’< f i e l d s e t c l a s s =" expUnexp">< legend ><a c l a s s =" t i t u l o s ">Menu ’ . $ a r r . ’

</ a > </ legend > ’ ;
41 echo ’< d i v c l a s s =" h i d e r s "> ’ ;
42 echo ’< l i >< i n p u t c l a s s =" checkbox " t y p e =" checkbox " i d =" menu_permiss ion_ ’ .

$menu_ leve l . ’ " name=" menu_permiss ion [’ . $menu_ leve l . ’] " v a l u e =" ’ . $menu_ leve l
. ’ "><a c l a s s =" t i t u l o s b "> ’ . $ a r r . ’ </ a > </ l i > ’ ;

43 p r i n t P a g e s ($ a r r) ;
44

45 }
46 }
47

48 /∗ F u n c t i o n t o s u b s e q u e n t l y P r i n t t h e Web Pages Names c o r r e s p o d i n g t o Menus and
Sub−Menus a l o n g wi th Page P e r m i s s i o n s ∗ /

49

50 f u n c t i o n p r i n t P a g e s ($ t i t l e) {
51 g l o b a l $ d b s o f t , $menuNames , $ p a g e _ p e r m i s s i o n ;
52 $menu_ leve l = a r r a y _ s e a r c h ($ t i t l e , $menuNames) ;
53 $menusRec = $ d b s o f t−>getPagesByMenu ($menu_ leve l) ;
54 $check = a r r a y () ;
55 f o r ($k =0; $k< c o u n t ($menusRec) ; $k ++) {
56

57 $page= $ d b s o f t−>ge tPageByPageId ($menusRec [$k]−> i d _ p a g e) ;
58

59 i f ($k==0 | | ! i n _ a r r a y ($page [0]−> page , $check)) {
60 echo ’+ <a c l a s s =" dados "> ’ . $page [0]−> page ;
61 a r r a y _ p u s h ($check , $page [0]−> page) ;
62 echo ’< d i v s t y l e =" d i s p l a y : i n l i n e ; " i d =" a u t o U p d a t e " c l a s s =" a u t o U p d a t e ">

’ ;
63 echo ’< i n p u t c l a s s =" rad ioView " i d =" rad ioView " t y p e =" r a d i o " name="

p a g e _ p e r m i s s i o n [’ . $menusRec [$k]−>id_menu . ’] " v a l u e =" view "> ’ . ’< l a b e l >View </
l a b e l > ’ ;

64 echo ’ ; ’ ;
65 echo ’< i n p u t c l a s s =" r a d i o " i d =" r a d i o " t y p e =" r a d i o " name="

p a g e _ p e r m i s s i o n [’ . $menusRec [$k]−>id_menu . ’] " v a l u e =" i n s "> ’ . ’< l a b e l > I n s e r t < /
l a b e l > ’ ;

66 echo ’ ; ’ ;
67 echo ’< i n p u t c l a s s =" r a d i o " i d =" r a d i o " t y p e =" r a d i o " name="

p a g e _ p e r m i s s i o n [’ . $menusRec [$k]−>id_menu . ’] " v a l u e ="mod"> ’ . ’< l a b e l >Modify
< / l a b e l > ’ ;

64 Useful Code Snippets

68 echo ’ ; ’ ;
69 echo ’< i n p u t c l a s s =" r a d i o " i d =" r a d i o " t y p e =" r a d i o "
70 name=" p a g e _ p e r m i s s i o n [’ . $menusRec [$k]−>id_menu . ’] "
71 v a l u e =" d e l "> ’ . ’< l a b e l > De le t e < / l a b e l > ’ ;
72 echo ’ ; ’ ;
73 echo ’< i n p u t c l a s s =" r a d i o A l l " i d =" r a d i o A l l " t y p e =" r a d i o " name="

p a g e _ p e r m i s s i o n [’ . $menusRec [$k]−>id_menu . ’] " v a l u e =" a l l "> ’ . ’< l a b e l >All < /
l a b e l > ’ ;

74 / / echo ’ </ a>
 ’ ;
75 echo ’ </ div > </ a>
 ’ ;
76 }
77

78 }
79 }
80

81 ?>

Jquery’s functions were used for adding the following interactive features in Profile Permis-

sions’ Prompt:

• A text based click option which can easily expand/collapse the Menus tree

• All web pages are selected with View or All option if the respective radio button is clicked

• All Menus and Sub-Menus get selected or un-selected if the corresponding check-box is

checked or un-checked respectively

• Only a single radio button can be selected from the set of radio buttons specified for all,

view, and custom options

The code of these features are commented in the snippet given below:

1

2 < s c r i p t t y p e =" t e x t / j a v a s c r i p t ">
3

4 $ (document) . r e a d y (f u n c t i o n () {
5

6 / / For Expanding / C o l l a p s i n g Menu
7 $ (’ . expUnexp ’) . c l i c k (f u n c t i o n () {
8 $ (t h i s) . f i n d (’ . h i d e r s ’) . t o g g l e (t r u e) ;
9 }) ;

10

11 / / $ (" . expUnexp ") . f i n d (" . h i d e r s ") . t o g g l e () ;
12 $ (" . expUnexp ") . f i n d (" . h i d e r s ") . s l i d e T o g g l e () ;
13

14 / / For t h e S e l e c t i o n o f A l l Menus
15 $ (’ # s e l e c t _ a l l ’) . on (’ c l i c k ’ , f u n c t i o n () {
16 i f (t h i s . checked) {
17 $ (’ . checkbox ’) . each (f u n c t i o n () {
18 t h i s . checked = t r u e ;

A.2 Function for the specification of Profile Permissions 65

19 }) ;
20 / / $ (’ . r a d i o ’) . a t t r (" d i s a b l e d " , f a l s e) ;
21 } e l s e {
22 $ (’ . checkbox ’) . each (f u n c t i o n () {
23 t h i s . checked = f a l s e ;
24 }) ;
25 / / $ (’ . r a d i o ’) . a t t r (" d i s a b l e d " , t r u e) ;
26 }
27 }) ;
28

29 $ (’ . checkbox ’) . on (’ c l i c k ’ , f u n c t i o n () {
30 i f ($ (’ . checkbox : checked ’) . l e n g t h == $ (’ . checkbox ’) . l e n g t h) {
31 $ (’ # s e l e c t _ a l l ’) . p rop (’ checked ’ , t r u e) ;
32 } e l s e {
33 $ (’ # s e l e c t _ a l l ’) . p rop (’ checked ’ , f a l s e) ;
34 }
35 }) ;
36

37 / / For S e l e c t i o n o f A l l o p t i o n
38 $ (" # r a d i o _ A l l ") . c l i c k (f u n c t i o n () {
39 i f ($ (t h i s) . i s (’ : checked ’)) {
40 <? $ p r o _ t y p e =2?>
41 $ (" i n p u t : r a d i o . r a d i o A l l ") . a t t r (" checked " , " checked ") ;
42 }
43 e l s e {
44 / / $ (" i n p u t : r a d i o . r ad ioView ") . a t t r (" checked " , " checked ") ;
45 $ (" i n p u t : r a d i o . r a d i o A l l ") . r e m o v e A t t r (" checked ") ; }
46 }) ;
47

48 $ (" # r a d i o _ A l l ") . c l i c k (f u n c t i o n () {
49 i f ($ (t h i s) . i s (’ : checked ’)) {
50 <? $ p r o _ t y p e =2?>
51 $ (" . r a d i o A l l ") . a t t r (" checked " , " checked ") ;
52 }
53 e l s e {
54 / / $ (" . r ad ioView ") . a t t r (" checked " , " checked ") ;
55 $ (" . r a d i o A l l ") . r e m o v e A t t r (" checked ") ;
56 }
57 }) ;
58

59 $ (’ . r a d i o A l l ’) . on (’ c l i c k ’ , f u n c t i o n () {
60 i f ($ (’ . r a d i o A l l : checked ’) . l e n g t h == $ (’ . r a d i o A l l ’) . l e n g t h) {
61 <? $ p r o _ t y p e =2?>
62 $ (’ # r a d i o _ A l l ’) . p rop (’ checked ’ , t r u e) ;
63 } e l s e {
64 $ (’ # r a d i o _ A l l ’) . p rop (’ checked ’ , f a l s e) ;
65 $ (’ # rad io_Cus tom ’) . p rop (’ checked ’ , t r u e) ;
66 }
67 }) ;

66 Useful Code Snippets

68

69 / / For S e l e c t i o n o f View o p t i o n
70 $ (" # rad io_View ") . c l i c k (f u n c t i o n () {
71 i f ($ (t h i s) . i s (’ : checked ’)) {
72 <? $ p r o _ t y p e =1?>
73 $ (" i n p u t : r a d i o . r ad ioView ") . a t t r (" checked " , " checked ") ;
74 }
75 e l s e {
76 / / $ (" i n p u t : r a d i o . r ad ioView ") . a t t r (" checked " , " checked ") ;
77 $ (" i n p u t : r a d i o . r ad ioView ") . r e m o v e A t t r (" checked ") ;
78 }
79 }) ;
80

81 $ (" # rad io_View ") . c l i c k (f u n c t i o n () {
82 i f ($ (t h i s) . i s (’ : checked ’)) {
83 <? $ p r o _ t y p e =1?>
84 $ (" . r ad ioView ") . a t t r (" checked " , " checked ") ;
85 }
86 e l s e {
87 / / $ (" . r ad ioView ") . a t t r (" checked " , " checked ") ;
88 $ (" . r ad ioView ") . r e m o v e A t t r (" checked ") ; }
89 }) ;
90

91 $ (’ . r ad ioView ’) . on (’ c l i c k ’ , f u n c t i o n () {
92 i f ($ (’ . r ad ioView : checked ’) . l e n g t h == $ (’ . r ad ioView ’) . l e n g t h) {
93 <? $ p r o _ t y p e =1?>
94 $ (’ # rad io_View ’) . p rop (’ checked ’ , t r u e) ;
95 } e l s e {
96 $ (’ # rad io_View ’) . p rop (’ checked ’ , f a l s e) ;
97 $ (’ # rad io_Cus tom ’) . p rop (’ checked ’ , t r u e) ;
98 }
99 }) ;

100

101 / / For S e l e c t i o n o f Custom Opt ion
102 $ (" # rad io_Cus tom ") . c l i c k (f u n c t i o n () {
103 i f ($ (t h i s) . i s (’ : checked ’)) {
104 $ (" . r ad ioView ") . r e m o v e A t t r (" checked ") ;
105 $ (" . r a d i o A l l ") . r e m o v e A t t r (" checked ") ;
106 }
107 }) ;
108 $ (’ . r ad ioCus tom ’) . on (’ c l i c k ’ , f u n c t i o n () {
109 $ (’ # r a d i o _ A l l ’) . p rop (’ checked ’ , f a l s e) ;
110 $ (’ # rad io_View ’) . p rop (’ checked ’ , f a l s e) ;
111 }) ;
112 / / For S e l e c t i o n o f one o p t i o n
113 $ (" . r ad io_View ") . change (f u n c t i o n () {
114 <? $ p r o _ t y p e =1?>
115 $ (’ . r a d i o _ A l l ’) . n o t (t h i s) . p rop (’ checked ’ , f a l s e) ;
116 $ (’ . r ad io_Cus tom ’) . n o t (t h i s) . p rop (’ checked ’ , f a l s e) ;

A.2 Function for the specification of Profile Permissions 67

117 }) ;
118

119 $ (" . r a d i o _ A l l ") . change (f u n c t i o n () {
120 <? $ p r o _ t y p e =2?>
121 $ (’ . r ad io_View ’) . n o t (t h i s) . p rop (’ checked ’ , f a l s e) ;
122 $ (’ . r ad io_Cus tom ’) . n o t (t h i s) . p rop (’ checked ’ , f a l s e) ;
123 }) ;
124 $ (" . r ad io_Cus tom ") . change (f u n c t i o n () {
125 <? $ p r o _ t y p e =3?>
126 $ (’ . r a d i o _ A l l ’) . n o t (t h i s) . p rop (’ checked ’ , f a l s e) ;
127 $ (’ . r ad io_View ’) . n o t (t h i s) . p rop (’ checked ’ , f a l s e) ;
128 }) ;
129

130 / / unchecked h i d e
131 $ (’ . checkbox ’) . change (f u n c t i o n () {
132 i f (t h i s . checked)
133 $ (’ # a u t o U p d a t e ’) . f a d e I n (’ s low ’) ;
134 e l s e
135 $ (’ # a u t o U p d a t e ’) . f adeOu t (’ s low ’) ;
136

137 }) ;
138

139 }) ;
140

141 / / F u n t i o n f o r Expanding / C o l l a p s i n g a l l Menus
142 f u n c t i o n e x p a n d C o l l a p s e () {
143 i f ($ (" . h i d e r s ") . c s s (’ d i s p l a y ’) == ’ none ’) {
144 $ (" # expand−c o l l a p s e ") . h tml (" C o l l a p s e A l l ") ;
145 $ (" . h i d e r s ") . show (" slow ") ;
146 } e l s e {
147 $ (" # expand−c o l l a p s e ") . h tml (" Expand A l l ") ;
148 $ (" . h i d e r s ") . h i d e (" s low ") ;
149 }
150 }
151

152 </ s c r i p t >

The function Update is used to check the radio button checked by the admin from the ones

designated for all, view and custom options. If none of them are found selected then the custom

option will be used and set as a defualt value of the profile type.

1

2 < s c r i p t l a n g u a g e =" j a v a s c r i p t ">
3 f u n c t i o n Update ()
4 {
5 i f (document . ge tE lemen tById (’ rad io_View ’) . checked)
6 document . f o r m _ p r o f i l e _ p e r m i s s i o n s . p r o _ t y p e . v a l u e =1;
7 e l s e i f (document . ge tE lemen tById (’ r a d i o _ A l l ’) . checked)
8 document . f o r m _ p r o f i l e _ p e r m i s s i o n s . p r o _ t y p e . v a l u e =2;
9 e l s e i f (document . ge tE lemen tById (’ rad io_Cus tom ’) . checked)

68 Useful Code Snippets

10 document . f o r m _ p r o f i l e _ p e r m i s s i o n s . p r o _ t y p e . v a l u e =3;
11 e l s e
12 document . f o r m _ p r o f i l e _ p e r m i s s i o n s . p r o _ t y p e . v a l u e =3;
13 }
14

15 </ s c r i p t >

A.3 Funtions for Profile’s Allocation

First funtion AddUserGrp adds a user’s login into an array f_utilizador2 while the second one

deletes a user’s login from an array named f_utilizador1.

1

2 < s c r i p t l a n g u a g e =" J a v a S c r i p t ">
3

4 f u n c t i o n AddUserGrp ()
5 {
6

7 f o r (i =document . fo rm_grupo_ve r . f _ u t i l i z a d o r 2 . l e n g t h −1; i >=0; i−−)
8 {
9 i f (document . fo rm_grupo_ve r . f _ u t i l i z a d o r 2 . o p t i o n s [i] . s e l e c t e d) {

10 document . fo rm_grupo_ve r . f _ u t i l i z a d o r 1 . o p t i o n s
11 [document . fo rm_grupo_ve r . f _ u t i l i z a d o r 1 . o p t i o n s . l e n g t h] =
12 new Opt ion (document . fo rm_grupo_ve r . f _ u t i l i z a d o r 2 .
13 o p t i o n s [i] . t e x t , document . fo rm_grupo_ve r
14 . f _ u t i l i z a d o r 2 . o p t i o n s [i] . va lue , f a l s e , f a l s e) ;
15 document . fo rm_grupo_ve r
16 . f _ u s e r s _ i n s e r . v a l u e = document . fo rm_grupo_ve r . f _ u s e r s _ i n s e r . v a l u e + ’ : ’
17 +document . fo rm_grupo_ve r . f _ u t i l i z a d o r 2 . o p t i o n s [i] . v a l u e ;
18 document . fo rm_grupo_ve r . f _ u t i l i z a d o r 2 . o p t i o n s [i] = n u l l ;
19 }
20 }
21 document . fo rm_grupo_ve r . f _ s u b m i t _ a c t i o n . v a l u e = " 11 " ;
22 document . fo rm_grupo_ve r . s ubmi t () ;
23 r e t u r n ;
24 }
25

26 f u n c t i o n DelUserGrp ()
27 {
28 f o r (i =document . fo rm_grupo_ve r . f _ u t i l i z a d o r 1 . l e n g t h −1; i >=0; i−−)
29 {
30 i f (document . fo rm_grupo_ve r . f _ u t i l i z a d o r 1 . o p t i o n s [i] . s e l e c t e d) {
31 document . fo rm_grupo_ve r . f _ u t i l i z a d o r 2 . o p t i o n s
32 [document . fo rm_grupo_ve r . f _ u t i l i z a d o r 2 . o p t i o n s . l e n g t h] =
33 new Opt ion (document . fo rm_grupo_ve r . f _ u t i l i z a d o r 1 .
34 o p t i o n s [i] . t e x t , document
35 . f o rm_grupo_ve r . f _ u t i l i z a d o r 1 .
36 o p t i o n s [i] . va lue , f a l s e , f a l s e) ;

A.4 Funtions for applying permission on a web page 69

37 document . fo rm_grupo_ve r . f _ u s e r s _ a p a g a . v a l u e = document . fo rm_grupo_ve r .
38 f _ u s e r s _ a p a g a . v a l u e
39 + ’ : ’+document . fo rm_grupo_ve r . f _ u t i l i z a d o r 1 .
40 o p t i o n s [i] . v a l u e ; document . fo rm_grupo_ve r . f _ u t i l i z a d o r 1 .
41 o p t i o n s [i] = n u l l ;
42 }
43 }
44 document . fo rm_grupo_ve r . f _ s u b m i t _ a c t i o n . v a l u e = " 22 " ;
45 document . fo rm_grupo_ve r . s ubm i t () ;
46 r e t u r n ;
47 }
48

49 </ s c r i p t >

A.4 Funtions for applying permission on a web page

This code checks the value of input tag named page_permission for a given web page then hides

some anchor tags from its display based on the wildcard IDs of their href attributes.

1

2 < s c r i p t t y p e =" t e x t / j a v a s c r i p t ">
3

4 $ (document) . r e a d y (f u n c t i o n () {
5

6 i f ($ (" # p a g e _ p e r m i s s i o n ") . v a l () ==" i n s ") {
7 $ (’ a [h r e f ∗=" _ i n s "] ’) . h i d e () ; / / i n s : i n s e r t
8 $ (’ a [h r e f ∗=" _ l i c "] ’) . h i d e () ; / / l i c : l i c e n s e
9 $ (’ a [h r e f ∗=" _ a c t v "] ’) . h i d e () ; / / a c t v : a c t i v a t e

10 $ (’ a [h r e f ∗=" _exp "] ’) . h i d e () ; / / exp : e x p o r t
11 }
12 e l s e i f ($ (" # p a g e _ p e r m i s s i o n ") . v a l () ==" d e l ") {
13 $ (’ a [h r e f ∗=" _ d e l "] ’) . h i d e () ;
14 $ (’ a [h r e f ∗=" _ d e l A l l "] ’) . h i d e () ;
15 }
16 e l s e i f ($ (" # p a g e _ p e r m i s s i o n ") . v a l () =="mod") {
17 $ (’ a [h r e f ∗=" _ i n s "] ’) . h i d e () ;
18 $ (’ a [h r e f ∗=" _ d e l "] ’) . h i d e () ; / / d e l : d e l e t e
19 $ (’ a [h r e f ∗=" _ d e l A l l "] ’) . h i d e () ; / / d e l A l l : d e l e t e a l l
20 $ (’ a [h r e f ∗=" _ l i c "] ’) . h i d e () ;
21 $ (’ a [h r e f ∗=" _ a c t v "] ’) . h i d e () ;
22 $ (’ a [h r e f ∗=" _ord "] ’) . h i d e () ; / / o rd : o r d e r
23 $ (’ a [h r e f ∗=" _mbr "] ’) . h i d e () ; / / mbr : member
24 $ (’ a [h r e f ∗=" _excep "] ’) . h i d e () ; / / excep : e x c e p t i o n
25 $ (’ a [h r e f ∗=" _exp "] ’) . h i d e () ;
26 $ (’ a [h r e f ∗=" _gen "] ’) . h i d e () ; / / gen : g e n e r a t e
27 $ (’ a [h r e f ∗=" _b lk "] ’) . h i d e () ; / / b l k : b l o c k
28 }
29 e l s e i f ($ (" # p a g e _ p e r m i s s i o n ") . v a l () ==" view ") {

70 Useful Code Snippets

30 $ (’ a [h r e f ∗=" _ i n s "] ’) . h i d e () ;
31 $ (’ a [h r e f ∗="_mod "] ’) . h i d e () ;
32 $ (’ a [h r e f ∗=" _ d e l "] ’) . h i d e () ;
33 $ (’ a [h r e f ∗=" _ d e l A l l "] ’) . h i d e () ;
34 $ (’ a [h r e f ∗=" _ l i c "] ’) . h i d e () ;
35 $ (’ a [h r e f ∗=" _ a c t v "] ’) . h i d e () ;
36 $ (’ a [h r e f ∗=" _ord "] ’) . h i d e () ;
37 $ (’ a [h r e f ∗=" _mbr "] ’) . h i d e () ;
38 $ (’ a [h r e f ∗=" _excep "] ’) . h i d e () ;
39 $ (’ a [h r e f ∗=" _exp "] ’) . h i d e () ;
40 $ (’ a [h r e f ∗=" _gen "] ’) . h i d e () ;
41 $ (’ a [h r e f ∗=" _b lk "] ’) . h i d e () ;
42 }
43 e l s e
44 {}
45 }) ;
46

47 </ s c r i p t >

Appendix B

Relational Algebra

B.1 Administrative Profiles Unit

B.1.1 Queries for the profile Table

Get IDs column of the

valid user with ’X’

Πid pro f ile(σiduser=′X ′(valida))

Get all columns of the

profile with ID ’X’

Πid pro f ile,pro f ile_name,description,pro f ile_type(σid pro f ile=′X ′(pro f ile))

Get all columns of the

profile with name ’XYZ’

Πid pro f ile,pro f ile_name,description,pro f ile_type(σpro f ile_name=′XY Z′(pro f ile))

Get the IDs of the unas-

signed profiles

Πid pro f ile(pro f ile)−Πid pro f ile(valida)

B.1.2 Queries for the profile_menu Table

Get all columns of pro-

file_menu for the profile

ID ’X’

Πid pro f ile_menu,id pro f ile,id_menu,menu_level(σid pro f ile=′X ′(pro f ile_menu))

Get menu_level column

of profile_menu for the

profile ID ’X’

Πmenu_level(σid pro f ile=′X ′(pro f ile_menu))

71

72 Relational Algebra

B.1.3 Queries for the profile_page Table

Get all columns of pro-

file_page for the profile

ID ’X’

Πid pro f ile_page,id pro f ile,id_page,menu_level,pagepermission(σid pro f ile=′X ′(pro f ile_page))

Get all columns of pro-

file_page for the page

ID ’X’

Πid pro f ile_page,id pro f ile,id_page,menu_level,page_permission(σid_page=′X ′(pro f ile_page))

Get all column of

profile_page for the

menu_level ’X.Y’

Πid pro f ile_page,id pro f ile,id_page,menu_level,page_permission(σmenu_level=′X .Y ′(pro f ile_page))

Get page_permission

columns of profile_page

for the profile ID ’X’

and menu_level ’Y.Z’

Πpage_permission(σid pro f ile=′X ′∧menu_level=′Y.Z′(pro f ile_page))

B.2 Multi-Sessions Management Unit

B.2.1 Queries for the transaction Table

Get all columns of the

transaction

Πid_transaction,id,servico,id_entity,entity(transaction)

Get servico column

of the transaction

Πservico(transaction)

Get servico column

of the transaction for the

session ID ’X’

Πservico(σid=′X ′(transaction))

Get columns id,id_entity

and entity of the trans-

action for the service

’XYZ’

Πid,id_entity,entity(σservico=′XY Z′(transaction))

Get all columns of the

transaction for the ses-

sion ID ’X’ and ’XYZ’

Πservico(σid=′X ′∧servico=′XY Z′(transaction))

B.2 Multi-Sessions Management Unit 73

B.2.2 Queries for the sessao Table

Get all columns of ses-

sao

Πid,sessid,utilizador,inicio,expira(sessao)

Get all columns of ses-

sao for the user ’XYZ’

Πid,sessid,utilizador,inicio,expira(σutilizador=′XY Z′(sessao))

74 Relational Algebra

Appendix C

Mock-ups of web pages

It should be noted that Mock-ups of few web pages – related to Administrative Profiles Unit –

are shown in this appendix which were created during the preparatory phase of this thesis. These

designs were not strictly followed during the actual implementation of their respective web pages

and some changes were made in them where it was considered necessary.

Figure C.1: Mock-up of the default web page of Administrative Profiles Unit

75

76 Mock-ups of web pages

Figure C.2: Mock-up of the web page for Profile Insertion

Figure C.3: Mock-up of the web page for the selection of Profile’s Permissions

Mock-ups of web pages 77

Figure C.4: Mock-up of the web page for the modification in the Profile’s Definitions

Figure C.5: Mock-up of the web page for the modification in the Profile’s Permissions

78 Mock-ups of web pages

Appendix D

Utility Stuff

D.1 Bash commands

ls -la directory
Lists all of the files and folders along with their

permissions stored in a particular directory

chmod permissions filename Changes the permissions of some specific file

chown owner filename Changes ownership of some specific file

scp username@remotehost.edu:filename directory Copy the file from a remote host to the localhost

php -l filename Checks the syntax errors in the file

ssh remotehost Connects to a remote system

tail -f filename Displays the last 10 lines of the file and appends

new lines to the display as new lines are added to

the file

D.2 PHP Functions

basename
Returns trailing name component of path

print_r Prints human-readable information about an ar-

ray

var_dump Dumps information about an array

error_log Sends an error message to the defined error han-

dling routines

D.3 Structure of the SOAP Request/Response Message

Specific elements of a SOAP Request/Response message without any payload is given below:

1 <? xml v e r s i o n =" 1 . 0 " ?>

79

80 Utility Stuff

2

3 < s o a p : E n v e l o p e
4 x m l n s : s o a p =" h t t p : / / 1 7 2 . 3 1 . 3 . 6 0 / run−t ime / s e r v e r / soap−e n v e l o p e "
5 s o a p : e n c o d i n g S t y l e =" h t t p : / / 1 7 2 . 3 1 . 3 . 6 0 / run−t ime / s e r v e r / soap−e n c o d i n g ">
6 < s o a p : H e a d e r >
7 . . .
8 < / s o a p : H e a d e r >
9 <soap:Body >

10 . . .
11 < s o a p : F a u l t >
12 . . .
13 < / s o a p : F a u l t >
14 < / soap:Body >
15 < / s o a p : E n v e l o p e >

A SOAP message has a root element Envelope with the namespace soap as http://172.31.3.60/run-

time/server/soap-envelope. The soap:encodingStyle attribute determines the data types used in the

file, but SOAP itself does not have a default encoding.

soap:Envelope is a mandatory element, but the next element soap:Header, is optional and

usually contains information relevant to authentication and session handling. Here it should be

noted that SOAP protocol does not offer any built-in authentication. Then, there is another required

element soap:Body which contains the actual RPC message including method names and in the

case of a response, the return values of the method. Last attribute soap:Fault element(child of

soap:Body) is optional; if it is present then it holds any error messages or status information for

the SOAP message.

D.4 Structure of WSDL

Similar to SOAP messages, WSDL has a specific schema to adhere and specific elements that

must be in place to be valid

1

2 < d e f i n i t i o n s >
3 < t y p e s >
4
5 < / t y p e s >
6 <message>
7 < p a r t >< / p a r t >
8 < / message>
9 < p o r t T y p e >

10
11 < / p o r t T y p e >
12 < b i n d i n g >
13
14 < / b i n d i n g >
15 < s e r v i c e >
16

D.4 Structure of WSDL 81

17 < / s e r v i c e >
18 < / d e f i n i t i o n s >

The root element of the WSDL is the definitions element which provides the definition of the

web service. The types element describes the type of data used and in the case of WSDL, XML

schema is used. Within the messages element, is the definition of the data elements for the service.

Each messages element can contain one or more part elements. The portType element defines the

operations that can be performed with a web service and that are request and response messages.

Within the binding element, contains the protocol and data format specifications for a particular

portType. Finally, the service element which defines a collection of service element containing the

URI (location) of a web service.

82 Utility Stuff

References

[1] IPBRICK <support@ipbrick.com>. Ipbrick eshop. http://eshop.IPBrick.com/
eshop/software.php?cPath=7_74, [Accessed: 05- Nov- 2015].

[2] N.A. HTML reference. http://www.w3schools.com/tags/, [Accessed: 21- Feb-
2016].

[3] A.Restivo. HTML5. https://paginas.fe.up.pt/~arestivo/presentation/
html5/#1, [Accessed: 24- Mar- 2016].

[4] N.A. Techwelkin. http://techwelkin.com/
difference-between-static-and-dynamic-web-pages, [Accessed: 10-
Dec- 2015].

[5] A.Restivo. JavaScript. https://paginas.fe.up.pt/~arestivo/presentation/
javascript/#1, [Accessed: 17- Apr- 2016].

[6] A.Restivo. jQuery. https://paginas.fe.up.pt/~arestivo/presentation/
jquery/#1, [Accessed: 13- Apr- 2016].

[7] N.A. jquery. https://jquery.com/, [Accessed: 12- Dec- 2015].

[8] N.A. Get smarty. http://www.smarty.net/crash_course, [Accessed: 13- Dec-
2015].

[9] A.Restivo. PHP5. https://paginas.fe.up.pt/~arestivo/presentation/
php/#1, [Accessed: 11- Apr- 2016].

[10] N.A. Top ten reviews. http://php-editor-review.toptenreviews.com/
php-perl-or-python-which-should-you-use-.html, [Accessed: 20- Dec-
2015].

[11] J.Linstrom. Optimistic concurrency control for real-time database systems. Technical report,
University of Helsinki, Finland, January 2003.

[12] J.Linstorm. Efficient Optimistic Concurrency Control for mobile real-time transactions in a
wireless data broadcast environment. https://www.cs.helsinki.fi/u/jplindst/
papers/icicca2010.pdf, [Accessed: 15- Jan- 2016].

[13] V.Hadzilacos P.A.Bernstein and N.Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, N.A. edition, 1987.

[14] C.Papadimitriou. The Theory of Database Concurrency Control. Computer Science Press,
Inc. New York, NY, USA, N.A. edition, 1986.

83

http://eshop.IPBrick.com/eshop/software.php?cPath=7_74
http://eshop.IPBrick.com/eshop/software.php?cPath=7_74
http://www.w3schools.com/tags/
https://paginas.fe.up.pt/~arestivo/presentation/html5/#1
https://paginas.fe.up.pt/~arestivo/presentation/html5/#1
http://techwelkin.com/difference-between-static-and-dynamic-web-pages
http://techwelkin.com/difference-between-static-and-dynamic-web-pages
https://paginas.fe.up.pt/~arestivo/presentation/javascript/#1
https://paginas.fe.up.pt/~arestivo/presentation/javascript/#1
https://paginas.fe.up.pt/~arestivo/presentation/jquery/#1
https://paginas.fe.up.pt/~arestivo/presentation/jquery/#1
https://jquery.com/
http://www.smarty.net/crash_course
https://paginas.fe.up.pt/~arestivo/presentation/php/#1
https://paginas.fe.up.pt/~arestivo/presentation/php/#1
http://php-editor-review.toptenreviews.com/php-perl-or-python-which-should-you-use-.html
http://php-editor-review.toptenreviews.com/php-perl-or-python-which-should-you-use-.html
https://www.cs.helsinki.fi/u/jplindst/papers/icicca2010.pdf
https://www.cs.helsinki.fi/u/jplindst/papers/icicca2010.pdf

84 REFERENCES

[15] J.Gray and A.Reuter. Transaction Processing: Concepts and Techniques. N.A., First edition,
1993.

[16] A.Thomasian. Database Concurrency Control. Kluwer Academic Publishers, n.a. edition,
1996.

[17] K.Ramamritham B.Purimetla, R.M.Sivasankaran and J.A.Stankovic. Real-time Databases:
Issues and Applications. Prentice Hall, n.a. edition, 1996.

[18] P.Konana I.Viguier A.Datta, S.Mukherjee and A.Bajaj. Multiclass Transaction Scheduling
and Overload Management in firm real-time database systems. N.A., pages 29–54, March
1996.

[19] B.Yang G.Li and J.Chen. Efficient Optimistic Concurrency Control for mobile real-time
transactions in a wireless data broadcast environment. 11th IEEE International Conference
on Embedded and Real-Time Computing Systems and Applications, pages 443–446, Septem-
ber 2005.

[20] M.T.Ozsu and P.Valduriez. Principles of Distributed Database System. Prentince Hall, Sec-
ond edition, 1999.

[21] G.Sreedhar. Design Solutions for Improving Website Quality and Effectiveness. N.A., n.a.
edition, 2016.

[22] N.A. 15 Concurrency control. http://www.inf.fu-berlin.de/lehre/SS05/
19517-V/FolienEtc/dbs04-19-ConCtrl-1-2.pdf, [Accessed: 14- Jan- 2016].

[23] Rasmus Pagh. Lecture 7: Concurrency control. http://www.itu.dk/people/pagh/
DBT07/concurrency-control.pdf, [Accessed: 25- Jan- 2016].

[24] K.Y.Lam K.W.Lam and S.Hung. Real-time Optimistic Concurrency Control Protocol with
dynamic adjustment of serialization order. In Proceedings of the IEEE Real-Time Technology
and Application Symposium, pages 174–179, May 1995.

[25] R.A.Lorie K.P.Eswaran, J.N.Gray and I.L.Traiger. The notions of Consistency and Predicate
Locks in a database system. Communications of the ADM, pages 624–633, November 1976.

[26] H.T.Kung and J.T.Robinson. On Optimistic methods for Concurrency Control. ACM Trans-
actions on Database Systems, pages 213–226, June 1981.

[27] R.Bouaziz A.Makni and F.Gargouri. Performance evaluation of an Optimistic Concurrency
Control algorithm ensuring strong consistency for transaction time relations. In Enterprise
Information Systems and Web Technologies, pages 258–265, January 2007.

[28] S.L.Hung K.W.Lam, V.Lee and K.Y.Lam. An augmented priority ceiling protocol for hard
real-time systems. journal of computing and information. Proceedings of Eighth Interna-
tional Conference of Computing and Information, pages 894–866, June 1996.

[29] N.A. Postgresql anti-patterns: Read-Modify-Write cycles. http://blog.
2ndquadrant.com/postgresql-anti-patterns-read-modify-write-cycles/,
[Accessed: 22- Mar- 2016].

[30] G.Thornton. N.a. http://www.orafaq.com/papers/locking.pdf, [Accessed: 07-
Apr- 2016].

http://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs04-19-ConCtrl-1-2.pdf
http://www.inf.fu-berlin.de/lehre/SS05/19517-V/FolienEtc/dbs04-19-ConCtrl-1-2.pdf
http://www.itu.dk/people/pagh/DBT07/concurrency-control.pdf
http://www.itu.dk/people/pagh/DBT07/concurrency-control.pdf
http://blog.2ndquadrant.com/postgresql-anti-patterns-read-modify-write-cycles/
http://blog.2ndquadrant.com/postgresql-anti-patterns-read-modify-write-cycles/
http://www.orafaq.com/papers/locking.pdf

REFERENCES 85

[31] S.Thorpe. RSS. https://www.sitepoint.com/
web-services-with-php-and-soap-1/, [Accessed: 10- May- 2016].

[32] S.Thorpe. RSS. https://www.sitepoint.com/
web-services-with-php-and-soap-2/, [Accessed: 10- May- 2016].

[33] N.A. Chapter 1 – fundamentals of web application performance testing. https://msdn.
microsoft.com/en-us/library/bb924356.aspx, [Accessed: 25- Jan- 2016].

[34] N.A. Chapter 2 – fundamentals of web application performance testing. https://msdn.
microsoft.com/en-us/library/bb924356.aspx, [Accessed: 23- Jan- 2016].

[35] N.A. Chapter 14 – fundamentals of web application performance testing. https://msdn.
microsoft.com/en-us/library/bb924356.aspx, [Accessed: 23- Jan- 2016].

https://www.sitepoint.com/web-services-with-php-and-soap-1/
https://www.sitepoint.com/web-services-with-php-and-soap-1/
https://www.sitepoint.com/web-services-with-php-and-soap-2/
https://www.sitepoint.com/web-services-with-php-and-soap-2/
https://msdn.microsoft.com/en-us/library/bb924356.aspx
https://msdn.microsoft.com/en-us/library/bb924356.aspx
https://msdn.microsoft.com/en-us/library/bb924356.aspx
https://msdn.microsoft.com/en-us/library/bb924356.aspx
https://msdn.microsoft.com/en-us/library/bb924356.aspx
https://msdn.microsoft.com/en-us/library/bb924356.aspx

	Front Page
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Background Context
	1.2 Objectives
	1.3 Contribution
	1.4 Structure of the Thesis Report

	2 Literature Review
	2.1 Web Languages and Technology
	2.1.1 Static Web Pages
	2.1.2 Dynamic Web Pages
	2.1.3 Comparison Between Static and Dynamic Pages

	2.2 Concurrency Control Mechanisms in Databases
	2.2.1 Pessimistic Concurrency Control
	2.2.2 Optimistic Concurrency Control
	2.2.3 No check Concurrency Control
	2.2.4 Hybrid Concurrency Control
	2.2.5 Comparison between Optimistic and Pessimistic Approach

	2.3 Conclusion

	3 Refinement of IPBrick Solution
	3.1 Introduction
	3.2 Administrative Profiles Unit
	3.2.1 Process of Profile Insertion
	3.2.2 Process of Profile Modification
	3.2.3 Process of Profile Deletion
	3.2.4 Process of Profile Allocation
	3.2.5 Process of Profile De-Allocation
	3.2.6 Process of Profile View

	3.3 Multi-Sessions Management
	3.3.1 Implications in Concurrency Control at Low Level
	3.3.2 Solution in the form of Concurrency Control at High Level

	3.4 Conclusion

	4 Implementation of Modules and Results
	4.1 Introduction
	4.2 IPBrick System
	4.2.1 Database
	4.2.2 Web Interface

	4.3 Implementation of Administrative Profiles Unit
	4.3.1 Inclusion of new Tables
	4.3.2 Inclusion of new Web Pages
	4.3.3 Modification of existing Web Pages
	4.3.4 Inventory of new Web Pages in database

	4.4 Implementation of Multi-Sessions Management
	4.4.1 Table sessao
	4.4.2 Table alteracao
	4.4.3 Table transaction
	4.4.4 Scheme as a Final Solution

	4.5 Extra Work
	4.5.1 Renaming of Web Pages' Names in the Database
	4.5.2 Run-Time Configurations

	4.6 Results
	4.6.1 Performance Analysis of Administrative Profiles Unit
	4.6.2 Performance Analysis of Multi-Sessions Management Scheme

	4.7 Conclusion

	5 Conclusion and Future Work
	5.1 Accomplished Goals
	5.2 Future Work

	A Useful Code Snippets
	A.1 Functions for Profile Insertion
	A.2 Function for the specification of Profile Permissions
	A.3 Funtions for Profile's Allocation
	A.4 Funtions for applying permission on a web page

	B Relational Algebra
	B.1 Administrative Profiles Unit
	B.1.1 Queries for the profile Table
	B.1.2 Queries for the profile_menu Table
	B.1.3 Queries for the profile_page Table

	B.2 Multi-Sessions Management Unit
	B.2.1 Queries for the transaction Table
	B.2.2 Queries for the sessao Table

	C Mock-ups of web pages
	D Utility Stuff
	D.1 Bash commands
	D.2 PHP Functions
	D.3 Structure of the SOAP Request/Response Message
	D.4 Structure of WSDL

	References

