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Resumo

Esta dissertação pretende avaliar o desempenho de algortimos de aprendizagem computacional
aplicados à classificação de imagem quando aplicados em ambiente subaquático, após terem sido
treinados exclusivamente com informação adquirida em meio aéreo. Dois tipos de algoritmo de
aprendizagem computacional foram testados: métodos mais convencionais, tais como redes neu-
ronais e Support Vector Machines e métodos modernos, com redes neuronais convolucionais,
especificamente a arquitetura Inception-V3.

Um novo dataset, HEIMDACA, composto por 9600 imagens de 8 objectos em dois meios
distintos, aéreo e aquático é também apresentado.

Primeiramente foi estabelecido um patamar de comparação na fração aérea do dataset, re-
sultando num True Positive Rate (rácio de acerto) para os métodos convencionais de 63.1% e de
98.4% para a rede neuronal convolucional. Seguidamente, estes mesmos modelos foram validados
no meio aquático. Enquanto que o True Positive Rate das redes neuronais convolucionais sofreu
apenas uma queda de 15.54%, os métodos mais convencionais caíram em 40.86%. Para verificar
em quanto os modelos poderiam ser melhoras com o acréscimo de informação adquirida no meio
aquático, procedeu-se a um treino incremental desses modelos, o que resultou em um aumento
para 40.3% nos métodos convencionais e para 98.6% na rede neuronal convolucional.

Dos resultados pode-se concluir que as redes neuronais convolucionais, com as suas camadas
de aprendizagem da representação (Representation Learning), supera completamente os algorti-
mos mais tradicionais, tendo um decréscimo menor quando alterada do meio aéreo para o meio
aquático e um maior desempenho no geral.
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Abstract

This dissertation aims to evaluate the performance of machine learning image classification
techniques when applied on the aquatic domain, after being trained exclusively with images from
the aerial domain. Two types of machine learning algorithms are tested: Conventional Machine
Learning, which comprises Neural Networks and Support Vector Machines, and Convolutional
Networks, the Inception-V3 architecture, in specific.

A novel dataset, HEIMDACA, composed of 9600 images of 8 objects in two different domains,
aerial and aquatic, is also presented.

A baseline for both methods was first established for the aerial fraction of the dataset, resulting
in a best True Positive Rate of 63.1%, for the Conventional algorithms and 98.4% for the Con-
volutional Network. Those same models were then validated on the aquatic domain. While the
True Positive Rate of Convolutional Network decreased only 15.54%, the Conventional methods
suffered a drop of 40.86% in the True Positive Rate. To verify how much the models could im-
prove by adding information from the aquatic domain, the classifiers were incrementally trained
with images from the aquatic part of the dataset, increasing the True Positive Rate of Conventional
methods to 40.3% and the Convolutional Network to 98.6%.

From the results it can be concluded that the Convolutional Network, with its Representation
Learning layers, completely outperformed the more conventional machine learning algorithms,
having a smaller decrease in True Positive Rate from the aerial to the aquatic domain and a greater
accuracy overall.

ii



Agradecimentos

Ao meu Orientador, Andry Pinto

Aos meus pais

Aos meus avós

Ao meu irmão

Aos meus amigos

À Tuna de Engenharia da Universidade do Porto

Pedro

iii



“When you’re fundraising, it’s AI.
When you’re hiring, it’s ML.

When you’re implementing, it’s logistic regression.
When you’re debugging, it’s printf()”
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Chapter 1

Introduction

1.1 Motivation and context

In the past decade, machine learning has been seen by some as a panacea, a solution for all

problems, and by others as a curse, for fear of the increasing automation of jobs, rendering some

professions useless and unnecessary. What can be agreed on is that words such as "machine

learning" or "artificial intelligence" have been attracting more and more attention, being used by

businesses as their defining characteristic and differentiating factor, be it due to truly innovative

advances and applications or just as a marketing strategy to attract investors.

One branch of this more modern machine learning is its application for visual detection and

classification tasks, as seen on Tesla’s Autopilot1 or BMW’s Intelligent Vision 2, cars which detect

road signs and display them in a Heads-Up Display inside the car, available on products already

in commercialization. Another use of this technology is in the Amazon Go3 stores, a chain of par-

tially automated convenience stores operated by Amazon, where there are no cashiers or checkout

stations, the customer just grabs the needed items and their value is added to their virtual checkout

cart on a smart-phone application, which is then charged when the customer leaves the store.

Exploration of the seas would greatly benefit from an increased degree of autonomy. For ex-

ample, state-of-the-art marine gravity models [4] can be useful to analyze underwater geological

structures (fractures, rifts, abyssal hills) with a minimum of 6km of extension and, if a more de-

tailed analysis is required, a vessel with proper imaging equipment [5] has to be on site, involving

great cost and human effort. Also, marine life studies could be done in shorter time and with less

manpower. For example, Edgar and Stuart-Smith (2015) [6] present a reef fish population assess-

ment made all over the world. The data was collected through direct visual analysis and required

a team of over 100 scuba divers. A network of Autonomous Underwater Vehicles (UAV) network

would have made this study even more complete, due to the large area the vehicles could cover and

their allowed dive time, which would be higher than that of an human diver. However, the models

these UAV could use require some a priori knowledge of things to detect and classify, they need

1https://www.tesla.com/autopilot
2https://www.bmw.co.uk/bmw-ownership/connecteddrive/driver-assistance/intelligent-vision
3https://www.amazon.com/b?ie=UTF8&node=16008589011

1



Introduction 2

to know how the objects or animals look. Modern machine learning algorithms require a great

amount of data to be effective and robust, data which, in an underwater context, is costly and time-

consuming to collect. If classification models with an underwater purpose could be trained with

information collected on land, it would be advantageous both from a human effort and economic

point of view.

Thus, this dissertation aims to analyze and compare several visual object classification models

trained with images of objects collected on land and then evaluate their performance when applied

to object classification in an underwater environment.

1.2 Objectives

This work aims to:

• Present a novel dataset, composed of 4800 images of 8 different objects in two different

environments, in and out of water, suitable for the comparison of image classification tech-

niques when used in those two different environments. The dataset also includes segmen-

tation masks and bounding boxes of the objects contained in the images, amplifying the

dataset’s usefulness for object detection and segmentation tasks.

• Test both Neural Networks and Support Vector Machines (conventional machine learning

techniques) using images from the aerial part of the proposed dataset followed by a ver-

ification of how those same models behave in an underwater environment when trained

exclusively with images taken out of water.

• Measure the benefits of incrementally training the models with underwater images. By

adding images taken in the same environment, it is expected the models will improve consid-

erably, as the imaging conditions where the images were take are roughly the same regarding

lighting and blur amount (which is an important factor to take into account in underwater

imaging).

• Repeat this analysis using a Convolutional Neural Networks architecture from the state-of-

the-art in image classification.

• Make a comparison between the reliability of air-trained Conventional Machine Learning

techniques and Convolutional Neural Networks when applied to an underwater classification

task.

1.3 Scientific Contributions

On the context of this thesis, an abstract for a paper titled "Underwater Object Recognition: A

Domain-Adaption Methodology of Machine Learning Classifiers" was submitted to the OCEANS

4https://seattle19.oceansconference.org/
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2019 Seattle conference 4. As of June 2019, notice of acceptance is yet to be received, being

expected before the end of July.

1.4 Structure of this document

Chapter 2 gives some context on the particularities of imaging on the underwater environment,

highlighting some of the issues that might affect visibility and consequently image classification

methods. A theoretical overview is given on the techniques used, both Conventional Machine

Learning as well as Deep Learning and Convolutional Neural Networks.

Chapter 3 introduces the novel dataset collected, mentioning how its collection proceeded and

giving some information on the equipment used and its characteristics.

Chapter 4 explains the procedure taken for evaluation of the Conventional Machine Learning

techniques and the influence of the underwater environment on both Neural Networks and Support

Vector Machines is quantified

Chapter 5 explores a specific architecture of the state-of-the-art in image classification, evalu-

ating its performance in both aerial and aquatic environments.

Chapter 6 concludes this work, giving an overview of the work done and lessons learned.



Chapter 2

State of the Art

This chapter will give context to the problem, introducing some challenges that the under-

water environment poses. An overview of machine learning classification methods will be given,

which facilitate the comprehension of following chapters, focusing on both Conventional Machine

Learning (Neural Networks, Support Vector Machines) and Deep Learning (Convolutional Neu-

ral Networks) methods. The chapter ends with examples of Machine Learning applied in visual

classification tasks in the underwater environment and a critical analysis of the state-of-the-art.

2.1 Marine Vision Characteristics

2.1.1 Light propagation

Light propagation in water is affected by two physical phenomena (Figure 2.1): absorption

(loss of power, attenuating light and thus reducing the visibility at a distance) and scattering.

Absorption, according to the Lambert-Beer law [1], is different depending on the material through

which the light is propagating and increases exponentially with the distance to the light source,

causing objects to be less illuminated as distance is increased, limiting the illumination range.

Scattering can be divided into forward scattering (light component that is deviated on its way to

the camera, resulting in blurring of image features) and backward scattering (light component that

doesn’t reach the object and is reflected directly to the camera by water or undesired objects, thus

limiting contrast of images; this phenomenon can be seen when taking photos with flash of objects

too close to the camera, the foreground gets too bright and the background too dark).

Artificial lighting can increase visibility range, but can also aggravate scattering due to the

presence of floating particles called "marine snow"[1], causing bright spots on an image. Artificial

lighting also tends to illuminate the scene in a non uniform fashion, causing edges to be darker

than the center of the image.

Color also suffers an impact from water propagation [1]. Different wavelengths have different

absorption rates 2.2, resulting in some colors only being able to propagate up to a certain distance

1Image taken from http://thescientificfisherman.com/fish-senses-1-fish-sight/
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2.1 Marine Vision Characteristics 5

Figure 2.1: The three components of underwater optical imaging. Source [1]

Figure 2.2: Absorption coefficient of water throughout the visible spectrum.1
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[1]. From Figure 2.2 it can be seen blue has the lowest absorption coefficient, thus it is able to

propagate further than red, for example, which has a higher coefficient.

2.1.2 Improving Underwater Vision

To correct these defects, according to Schettini and Chorchs [1], research is divided in two

approaches: image restoration and image enhancement and color correction.

Image enhancement makes no use of a priori knowledge of the environment, not taking into

account any light propagation model or noise functions. Usually faster and simpler than image

restoration techniques.

One way of dealing with loss of contrast resulting from backscattering is by using Contrast

Limited Adaptive Histogram Equalization (CLAHE) [7], which divides the image into several

blocks, finds the optimal contrast for each region and avoids overamplification of contrast that

might result in excessive noise. However, it can’t correct losses in visual quality from the high

scattering component in high turbidity waters [8].

Image restoration techniques try to recover the original scene from the captured image and take

advantage of explicit knowledge of noise and degradation functions, usually following the Jaffe-

McGlamery [9] image formation model. According to the model, the image can be formed by the

linear superposition of three components [1]: direct component, forward scattered component and

back scattered component.

It usually involves correcting images with empirical information as presented by Liu et al.

(2001)[10], for example, where the authors measure the Point Spread Functon (PSF) and Mod-

ulation Transfer Function (MTF) of salt water and use the measurements with a Wiener filter to

deblur images captured through water paths of different lengths. This method gives satisfactory

result, but the authors only tested it in images of simple geometry (rectangular slits) and a single

image of fish.

Garcia et al. (2002)[11] present a method to remove lighting inhomogeneities originated from

artificial light sources by estimating and then subtracting the illumination field. Their method

has been shown to work in a satisfactory way when simulating deep sea conditions (no natural

illumination) but solar rays common in shallow waters cause artifacts in the image that couldn’t

be corrected.

2.2 Conventional Machine Learning

2.2.1 Feature extractors

In theory, an image classifier can be created by using the raw pixel values of an image on a

Neural Network or other classifier. However, that wouldn’t be too effective or efficient, as there
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is a great amount of input data, and not all of it might be relevant to the training of the classifier.

The classifier models can also become prohibitively large, resulting in a time-consuming training

process. Feature extraction takes the initial set of data and transforms it so as to generate a smaller

set of non-redundant and more representative features.

When real (as opposed to synthetically generated) images are used, various aspects have to

be taken into account when processing the image since two pictures of the same object can have

variations in the lighting conditions, object pose or one of them be affected by noise, which will

influence the output of the feature extractor. The more robust the extractor is to these variations,

the best the performance of classification tasks will be. Many complex image feature detector have

as their basis simpler features such as edges (boundary between two image regions, a set of points

with a strong gradient), corners (point-like features) and blobs (wider regions).

Over the past years, different feature extractors have been proposed in the literature, such as

SIFT[12], SURF[13] and ORB[14], to name a few. Only SIFT will be presented, as the others

aren’t used in this thesis.

SIFT Created in 2004 by Lowe [12], SIFT is a feature extractor (Fig. 2.3) and descriptor that

was designed having in mind the need for features invariant to several conditions. SIFT features

are invariant to image scale and rotation, having robustness to affine distortion, changes in view-

point and illumination. At the time of its creation the state-of-the-art feature detector for image

classification tasks, it withstood the test of time up until 2012, when other feature descriptors took

its place, albeit at the cost of efficiency [15].

Despite being a great candidate for use in classification tasks, it’s unsuitable for real-time

operation, as it is composed of computationally heavy operations, one of them being the evaluation

of a single image for interest points at multiple scales, in a progressively blurrier state. Due to

that disadvantage, subsequently developed feature detectors, such as the ones mentioned above,

aimed at speeding up the feature detection and description process, while maintaining the same

performance as SIFT.

2.2.2 Bag-of-Visual-Words

Previous to the BoVW method, feature-based image classification/matching was made by

comparing each and every keypoint in an image with a database of keypoints, a computationally

expensive task, since images can have hundreds or even thousands of keypoints.

The Bag-of-Keypoints[16] or Bag-of-Visual-Words (BoVW) was inspired in the Bag-of-Words

method used in Natural Language Processing where a text is represented as an histogram of the

words it contains.

Applying the BoVW method requires a vocabulary to be generated. First, image keypoints

(Fig. 2.4) are extracted from a set of images using SIFT or other feature extractor. Using the

K-Means algorithm, features are then clustered, aggregating features according to their similarity.

The number of clusters, N, of the K-Means algorithm is predefined by the user, corresponding to

the number of "visual words" in the vocabulary. As the authors of the original BoVW method [16]
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Figure 2.3: Example of SIFT keypoints on the anchor class
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Figure 2.4: Simplified but intuitive visual explanation of BoVW 2

recommend the vocabulary size "should be large enough to distinguish relevant changes in image

parts, but not so large as to distinguish irrelevant variations such as noise". However, no further

guidelines are given on the choice of vocabulary size.

Next, for the example of image classification, in order to train features are extracted from

the training images using SIFT or a similar algorithm. Then, each keypoint is assigned a cluster

(word), creating a N-dimensional feature vector with the number of occurrences of each visual

word. This is done for every image in the training data, and the resulting feature vectors are used

as input data to train the classifiers.

The introduction of a fixed-size feature-vector makes possible the use of general purpose clas-

sifiers, as well as reducing the amount of data involved in the classification task. his step reduces

the dimensionality of the data at the input of the classifier, resulting in a fixed-sized input vector

and in a lesser computational complexity of the classification task, while at the same time bringing

some robustness to keypoints not favorable to the task (e.g, background clutter).

2.2.3 Neural Network

The concept of Neural Network had its origins in a 1958 paper by Frank Rosenblatt [17], where

he presents a simplified mathematical model of how neurons in the brain work. This neuron, the

Perceptron (Fig. 2.5), takes multiple inputs which are multiplied by a weight and sums them. If

2Image taken from https://towardsdatascience.com/bag-of-visual-words-in-a-nutshell-9ceea97ce0fb
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this sum is greater than a certain threshold, the output is 1 (neuron firing) and if it’s below the

threshold the output is 0 (neuron doesn’t fire).

Figure 2.5: Rosenblatt’s perceptron. x represent the inputs and w the weights3

While the Perceptron can mimic (or learn) some simples boolean functions, such as the AND

and OR, it is limited to patterns that are linearly separable, being incapable of learning the XOR

function, for example [18]. However, by combining several of these simple Perceptrons in a single

or multiple layers, it is possible to create what is known today as a Multilayer Perceptron or Neural

Network.

Fig. 2.6 shows examples of Fully Connected Neural Networks (NN) which means a NN where

neurons from a layer are connected to all nodes of the previous and the next layers, the exception

being the input and output layers, due to being the first and last layer, respectively.

Typical structure of a Neural Network

• Input Layer: Has a neuron (unit) for each input value to be used. E.g. If 1000 features are

being used for a certain task, the input layer will have 1000 units.

3Image taken from: cs231n.github.io/neural-networks-1/
4http://cs231n.github.io/neural-networks-1/

(a) 1 hidden layer with 4 neurons (units); 2
output units

(b) 2 hidden layers with 4 neurons (units) each; 1 output
unit

Figure 2.6: Examples of Neural Networks4

cs231n.github.io/neural-networks-1/
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Figure 2.7: Plot of two Activation Functions

• Hidden Layer: Layers that are situated between the input and output layers. A NN can have

0 hidden layers, making it a 1-layer Neural Network (output layer).

• Output Layer: Last layer of the NN which, in a classification problem, consists of a number

of neurons equal to the number of objects it has to identify, or a single neuron, in a binary

classification problem.

Activation Functions Associated with each neuron is a function that takes the result of the dot

product of the inputs and the neuron’s weights and applies a fixed mathematical operation, the

Activation Function (Fig. 2.7). Several activation functions have been used in the literature, each

having its advantages and disadvantages.

Sigmoid A special case of the logistic function, has seen frequent use as an abstraction of the

behaviour of a biological neuron due to its output having a limited range: from 0, representing a

neuron not firing, to 1, the neuron firing at its maximum rate.

f (x) =
1

1+ e−x (2.1)

However, it has one major drawbacks: the weight update (learning) process takes into account

the derivative of the output of the activation function in two sequential iterations [19]. If the

sigmoid saturates at either 1 or 0, the derivative will be very small, resulting in a minimal change

of the weights. That saturation effect can propagate to the whole network, which in turn will stop

the learning process. This is called the "Vanishing Gradient Problem".

ReLU Popularized by Krizhevsky et al. (2012)[20] in his image classification task using Con-

volutional Neural Networks, the non-saturating non-linearity in Equation 2.2 doesn’t involve ex-

pensive operations such as the exponential which in turn accelerates the network training process

up to a factor of 6 compared to the sigmoid activation function (Eq. 2.1). However, the rectifying

behavior of this function can bring the "death" of a neuron. If the learning rate is set too high, a
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large gradient can update the neuron weight in such a way that the neuron becomes irreversibly

unusable, it "dies". Neurons with this activation function are called Rectified Linear Units (ReLU).

f (x) = max(0,x) (2.2)

This activation function has several variations that try to correct this "dying ReLU" drawback,

namely the Leaky ReLU [21], in which there is a small slope in the negative input side of the ReLU

2.3 and the Parametric ReLU (PReLU) [22], where the coefficient of leakage (0.01 in the Leaky

ReLU) is also a parameter to be learned by the network 2.4.

f (x) =

x if x > 0

0.01x otherwise
(2.3)

f (x) =

x if x > 0

ax otherwise
(2.4)

Learning Process Two strategies used to train Neural Networks are Batch Learning and On-
line Learning [18]. In Batch Learning, weights are only updated after presenting the number

of samples that make a batch. For example, a batch size of 32 means that 32 samples of the

training data will be shown to the network and only after averaging the error of those 32 samples

the weights will be update. An Epoch has passed when all the training examples have been used

to train the network. The network is then trained for several epochs, shuffling the training data

between each iteration, for a maximum number of epochs or until the loss function doesn’t vary

more than a given tolerance. With On-line Learning, weights are updated after each given exam-

ple in the training data, making the parallelization of the training process impossible, resulting in

a slower method, comparing to batch learning.

The learning process of Neural Networks is constituted by the minimization of a loss function

through the successive calculation of gradients. The example given will be that of Supervised
Learning, when the true label of the training data is known. For a specific training occurrence, the

network calculates a prediction which is then used to calculate the value of the loss function, by

taking into account the predicted value and the real value. The resulting error is then propagated

through all the layers of the network, using Backpropagation, updating the weights of the network

through gradient optimization algorithms, such as Stochastic Gradient Descent and ADAM.

Stochastic Gradient Descent Equation 2.5 presents a simplification of the formula used by the

Stochastic Gradient Descent (SGD)[18] optimizer, where i is the number of the iteration, α the

learning rate and OJi the gradient of the loss function at iteration i. The learning rate is a tunable

parameter which determines how much to update the weights with respect to the gradient of the

loss function. If α is too small, the network will take a long time to converge to its point of

minimum gradient. If α is too high, the weights of the network might oscillate, not reaching
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convergence.

Wi+1 =Wi−αOJi (2.5)

ADAM In order to solve some of the convergence issues that result from a bad choice of learning

rate α , some adaptive algorithms have been proposed. ADAM (Adaptive Moment Estimation)[23]

combines the best of two other algorithms, having different learning rates for each weight (Ada-

Grad) instead of a single global learning rate like SGD and using the first and second moments of

gradient to adapt the learning rate (RMSProp).

2.2.4 Support Vector Machines

Support Vector Machines (SVM)[24] are a popular machine learning method, being used suc-

cessfully [25] in image classification applications on a large-scale (1000 classes), with a great

amount of data (over 1.2M data samples), as well as regression and other tasks. Originally a bi-

nary classifier, following the idea of mapping the input-vectors to a very high-dimension feature

space and then constructing a linear decision surface that separates the two classes while minimiz-

ing an error function (soft margins).

A variety of different classifiers can be obtained from SVMs by performing what is called a

"kernel trick" [26], changing the linear decision surface to a non-linear one, with the most common

kernels being the Polynomial Kernel and the Radial Basis Function (RBF), equations 2.6 and 2.7,

respectively, where x and y are vectors on the input space, c and γ tunable parameters and d the

polynomial order.

K(x,y) = (xT y+ c)d (2.6)

K(x,y) = e−γ‖x−y‖2
(2.7)

2.3 Deep Learning

Conventional machine learning techniques required considerable feature engineering [27] to

be effectively used, as using data in its raw form (pixels, in the image example) was inefficient and

brought unsatisfactory results and choosing the right kind of feature also required some expertise

and intuition in both the task and nature of the data.

Instead of hand-engineering features, researchers aimed at making feature creation the initial

step of the whole learning process, feeding a Neural Network, for example, with the raw data,

which would then learn in the first few layers the features to be used deeper into the network. This



State of the Art 14

Figure 2.8: Simplified representation of a ConvNets5

is called Representation Learning and was found to happen in (feedforward) Neural Networks

with many hidden layers, creating a so-called deep-learning architecture [27].

These deep neural networks, despite their ability to obtain good results in some tasks, due to

their fully-connected nature and great amount of trainable parameters, often overfitted the training

data, thus lacking generalization ability[28]. One particular type of deep feedforward network,

however, was found to be much easier to train due to its lack of full connectivity and had better

generalization capabilities, the Convolutional Neural Network (ConvNet) [28] (Fig. 2.8).

2.3.1 ConvNet layers

ConvNet architectures are composed of several types of building blocks, the three main ones

being:

Convolutional: Its parameters are a set of learnable filters, of number and size chosen by the

designer of the network. To generate the input for the following layer, each filter is convolved

across the width and height of the input image, with a predefined stride (separation between filter

applications), and along its depth (in the case of RGB images), creating an activation map of the

filter response. The activation maps for all filters responses are then stacked, creating a block of

data. The learned filters are the features, corresponding to the representation (feature) learning

part of deep-learning in ConvNets (Fig. 2.9).

Pooling: Pooling layers are commonly introduced between Convolutional Layers in order

to progressively reduce the size of the representation and consequently improve computational

efficiency. For example, in Fig. 2.10 a max pool layer with size 2x2 and stride 2 is applied to a

4x4 slice, resulting in a (4−2)/2+1 = 2 sided area. Pooling layers can perform other functions

such as average pooling or L2-norm pooling.

5Image taken from: https://medium.com/@RaghavPrabhu/understanding-of-convolutional-neural-network-cnn-
deep-learning-99760835f148

6Image taken from: https://anhvnn.wordpress.com/2018/02/01/deep-learning-computer-vision-and-convolutional-
neural-networks/
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Figure 2.9: Convolution between a layer and a filter6

Figure 2.10: Max Pooling layer with a 2x2 size and stride 27
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Fully-Connected (dense): Usually used in the deeper stages of networks, it’s identical to the

hidden layers used in Multilayer Perceptrons, connected to all nodes of the previous and following

layers.

2.3.2 Examples of Deep Architectures

All given examples will be of architectures used for the purpose of image classification, due

to the nature of this thesis. A good benchmark for this task was the annual ImageNet Large Scale

Visual Recognition Challenge (ILSVRC), where various research groups competed, presenting

their unique approach to image classification, with hopes of being the new state-of-the-art. The

last edition of the challenge was in 20178, having since 2016 scores surpassed human performance

on that specific dataset, consisting of images of different objects in varying contexts for a total of

1000 classes to be identified. There’s also an ever-increasing dataset from where images used in

this challenge were taken, called ImageNet, which will be introduced further ahead 3.1.1.

Up until 2012, winners of the challenge were approaches based on the state-of-the-art in image

classification of that time: classification with SVMs using SIFT features combined with different

means of representation such as Local Binary Pattern or Fisher Vectors [29]. The winner of the

2012 edition, however, with the use of a Convolutional Neural Network trained using 2 GPUs,

presented an architecture that greatly surpassed the state-of-the-art of that time, achieving a top-5

error of 15.3%, compared to the 26.3% of the second-best entry. Called AlexNet, the network

brought ConvNets to the computer vision research community’s attention, and winners of subse-

quent editions of the challenge (thus the state-of-the-art in image classification) were all ConvNets,

each iteration bringing new ways of making networks more efficient and with better performance.

A small historical overview of the evolution of Convolutional Neural Networks will be pre-

sented, not meant as an exhaustive analysis, but to give some context.

LeNet Historically, the first convolutional neural network for image an classification application

[28], used for numerical handwriting recognition. At the time it was published, in 1990, the

machine learning community had its skepticism regarding the capabilities of neural networks,

resulting in this network not receiving its due attention.

GoogLeNet/Inception-v1 Winner of the 2014 edition of ILSVRC, achieved a top-5 error rate of

6.67%, very close to the human performance of 5.1% 9. Consisting of 22 layers of operations, its

convolutional layers are of very small size, resulting in an architecture with 4 million parameters

to be learned, in comparison with AlexNet’s 60 million parameter. The authors also introduced

the concept of Inception module (Fig. 2.11a), and GoogLeNet and other iterations of this network

were based in it.
7https://machinelearningmastery.com/pooling-layers-for-convolutional-neural-networks/
8http://image-net.org/challenges/beyond_ilsvrc.php
9http://karpathy.github.io/2014/09/02/what-i-learned-from-competing-against-a-convnet-on-imagenet/
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(a) GoogLeNet (Inception-V1) inception module (b) Inception-V3 inception module with
layer factorization

Figure 2.11: One of the improvements of Inception-V3 over the original architecture. Source [2]

VGGNet The second-best entry of the 2014 editions of ILSVRC, brought attention to the com-

munity because of its uniform structure [30]. However, consisting of 138 million parameters,

took 2 to 3 weeks of constant training in 4 GPUs, making it a very computationally heavy and

unoptimized ConvNets. Other iterations have been studied by varying the number of layers, but

performance still falls short compared to GoogLeNet.

Inception-v3 The third iteration [2] of the GoogLeNet architecture. Despite scaling up a net-

work in computational cost and size brought immediate quality gains, efficiency and parameter

count were still an enabling factor for some applications like mobile vision and big data. While

the VGGNet can be considered a bruteforce solution (performance can be obtained by adding

more layers), the Inception-v3 followed the paradigm of efficiency. The authors introduced the

concept of layer factorization e.g., a 5x5 filter is 25/9 = 2.78 more computationally expensive

than a 3x3 filter so they replace a 5x5 convolutional layer with 2 3x3 layers in series, resulting in

a 28% reduction in complexity. This architecture didn’t compete in the ILSVRC but when tested

with the same dataset it achieved an error rate of 3.58%.

2.4 Machine Learning in Underwater Robotics

Autonomous and automatic systems can replace direct human intervention in underwater ap-

plications, reducing both costs and risks of sending humans to possibly hostile environments. They

also allow for cheaper and safer exploration of more extreme benthic zones of the ocean, where

pressures are too high for a scuba diver or a prolonged dive in atmospheric diving suits [31].

A skilled diver requires training, support equipment and personnel (boat plus crew) and for

safety reasons divers should never be sent alone, being 3 the recommended number of divers for

underwater missions [32]. Health is also another concern, from short-time conditions such as

decompression sickness (gases come out of solution in body fluid, forming bubbles that lodge
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themselves mainly in joints, causing pain; caused by uncontrolled ascent) and nitrogen narcosis

(decrement in mental functions resulting from increased concentration of nitrogen in body tis-

sues) to more permanent cognitive issues and hearing loss. When diving in contaminated water

there should also be increased precautions such as a decontamination process before removing

the diving suit due to the diver’s health. Divers also have to pay attention to their dive time at

certain depths, having to take breaks from time to time, and being each subsequent dive of shorter

duration.

Two categories of unmanned underwater robotic systems can be identified: Autonomous Un-

derwater Vehicles (AUV) and Remotely Operated (Underwater) vehicles (ROV). Although ROVs

are unmanned, they still rely on an human operator controlling the vehicle, usually from a support

boat on the sea surface. Being dependent on a communication cable, its range is limited by the

cable length, while also having some constraints regarding maneuverability and accessibility to

more remote locations, as the cable can get entangled in debris. On the other hand, due to being

untethered, AUVs have a higher degree of mobility, being able to navigate through more complex

locations and has the advantage of not needing an human operator controlling its movement, as

such, can perform tasks that would otherwise be too time-consuming or demanding for humans

[33].

Facilities in or associated with the sea (harbors, oil rigs) have to be inspected with some regu-

larity, be it to assess the damage a boat collision with a pier or wall might have caused or even a

routine assessment of corrosion [34]. An autonomous vehicle would be have to perform this task

routinely without the human effort these inspection tasks entail. An AUV is presented by Jacobi

in 2015[34] nicknamed "SeaCat" for this purpose. For general navigation and positioning it uses a

laser gyroscope combined with a Doppler Velocity Log, a navigation method that uses the reflec-

tions of an acoustic pulse directed at the bottom of the sea to estimate the vessel’s current position

in relation to a previous one (dead-reckoning)10. It also features a sensor for inspection on its bow

(front; aft - rear) with a pan-tilt unit, consisting of a video imaging system with laser illumination
11 and a multi beam echo sounder (MBES)12.

AUVs have great potential for Search and Rescue operations, for example, in the recovery

of black-boxes from crashed planes. An autonomous vehicle would have a longer operating time,

since it isn’t constrained by the the negative effects diving has on humans divers, being able to

sweep a wider area. It wouldn’t also need the same type of support boat and crew, the AUV could

be launched from any general purpose aquatic vehicle.

There are some works in the literature dedicated to this topic. For example, Bonin-Font et al.

(2015)[35] resort to a color-based algorithm to detect and track (using Histogram Back-Projection

[36]) a (bright orange) black-box in an underwater environment, claiming that objects which have

a dominant representative color significantly different from the background can be easily detected,

both during the day and night (resorting to external light sources). They also test a feature-based

10https://www.nortekgroup.com/insight/nortek-wiki/new-to-subsea-navigation
11https://www.stemmer-imaging.com/en-se/knowledge-base/laser-illumination/
12https://www3.mbari.org/data/mbsystem/sonarfunction/SeaBeamMultibeamTheoryOperation.pdf
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approach at object detection using the ORB feature detector [14], which has a lower detection

score, since the feature detector also detects some keypoints in the environment surrounding the

objects, due to the texture of the algae.

Fatan et al. (2006)[37] present a new approach for detection of an underwater cable, giving

an AUV the capability of automatically tracking a cable. First, image edges were extracted using

Canny Edge Detection [38] on a grayscale image. Then, texture feature extraction was applied to

generate feature vectors to train two classifiers, a Multilayer Perceptron (Neural Network) and an

SVM, in order to classify the resulting edges as "cable" and "not cable", to filter the edges so as to

facilitate the next step, where the authors apply a Hough (Line) Transform [39] to detect the two

lines belonging to the cable. From this work it can be retained that, in spite of the SVM being an

efficient classification method, it doesn’t always outperform Neural Networks. The authors only

tested this method in a simulated environment, using images of the cable in a relatively regular

background to train the classifier. It is expected this approach wouldn’t hold up if tested in a real

situation/environment.

Lee et al. (2012) [40] evaluate vision-based navigation techniques in underwater environ-

ments, resorting to real-time detection and tracking of underwater artificial landmarks, designed

so as to have little view point change while still allowing the study of underwater color degradation.

two approaches are tested: a feature based approach using SIFT, which, as expected, was unsuc-

cessful, since the objects chosen were simple and featureless. The best approach was template-

based, using normalized cross-correlation template matching (NCC)[41]. Another purpose of the

experiment was to compare matching with templates obtained in-water against templates obtained

in-air. The authors concluded that better results can be achieved with a template generated from

images obtained in the actual underwater environment. However, in a practical situation in-air

templates are more easily obtainable. This approach would have questionable effectiveness in a

real tracking situation since NCC-based template matching isn’t robust to scale, rotation and large

perspective changes [41]. Robustness to changes on these factors could be improved by match-

ing with different templates taken in different conditions. That would increase the detection and

tracking complexity, and possibly not allowing the system to be used in real-time.

Kumar et al. (2018)[42] develop the concept of a AUV for Vision Based Tracking of marine

species. A feature-based approach is used, resorting to ORB, which is found to be more appropri-

ate for real-time applications since frame processing takes 19 times less than with a SIFT feature

detector (0.22 vs. 4.2 seconds), despite accuracy being lower (63% vs. 76 %). No comparison be-

tween multiple animal species is made nor the algorithms’ performance tested outside a controlled,

relatively clutter-free environment, where the features of the target are clearly identifiable.

Spampinato et al. (2016)[43] tackle the difficult problem of fine-grained classification of fish

species in low-quality visual data captured in real-life settings. While research of the last decades

on object recognition has been mainly focused in distinguishing very dissimilar classes, there are

many applications which require specialized domain knowledge that can benefit from automated

fine-grained classification, where classes have a much higher degree of similarity betweenn them,

such as bio-diversity studies both in the sea and on the ground. Their work contributes with two
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fine-grained classification approaches, for still images and video, the curation and release of a

dataset13 for the purpose of those tasks.

2.5 Critical Analysis

Robotic underwater applications found in the literature[35] which use visual classification

don’t have it as the main focus, dedicating a single section to the visual classification problem in

a research paper about an entire robotic platform, for example, reducing the depth at which the

authors could explore the problem.

A wide variety of oceanographic research works that use visual classification techniques fo-

cus on the detection and classification of fauna and flora, which gives a good indication of what

methods work in the underwater environment.

Very limited research has been found on quantifying the impact of the underwater environment

on image classification methods. An example found where the authors approach that topic is the

work by Lee et al. (2012)[40] but only as a side comparison.

Despite visual image classification being a vast field, with an ever-evolving state-of-the-art,

research on the influence of the aquatic domain on air-trained object classification techniques

remains unexplored, no research was found where the authors compared the same image classifi-

cation techniques to the same objects both in an aerial and aquatic domain.

13Available on: http://perceive.dieei.unict.it/datasets.php



Chapter 3

Dataset & Methodology

In this section several datasets for object recognition benchmarking are presented, although

they aren’t suitable for the environment comparison objective of this thesis, hence the need to

collect a new dataset.

The new dataset is then presented, starting with its construction workflow, where it is analyzed

in detail. The choice of objects is justified, followed by the image collection setup conditions

and camera specifications, concluding with the data augmentation techniques and post-processing

applied to the collected images.

3.1 Useful datasets in the literature

Parallel to the progress in the visual perception niche of the machine learning field there has

also been an increase of publicly available datasets, aiming to benchmark algorithms from pedes-

trian [44] and road sign [45] detection to human body pose estimation [46]. This thesis falls in the

object recognition category, thus some datasets for that purpose are analyzed in this section.

3.1.1 ImageNet

A on-going database of 14,197,122 labelled images1, following the semantic hierarchy of

WordNet [47] that can be useful for a variety of machine learning tasks such as object recognition,

fine-grained classification and automatic object clustering [48]. Composed of several subtrees,

each having higher degrees of specificity, for example, in Fig. 3.1 are represented the "mammal"

and "vehicle" subtrees, which have as leafs (the end of the subtree) a specific type of mammal and

vehicle.

Due to its enormous variety of types of objects and number of images, ImageNet is used to

pre-train Convolutional Neural Networks for several other visual-based applications which are

then fine-tuned for the task in specific [29], from colorectal cancer nymph node classification [49]

to plankton classification [50].

1http://image-net.org/

21
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Figure 3.1: ImageNet semantic hierarchy example with images from the database

3.1.2 Microsoft COCO

Microsoft COCO: Common Objects in Context [3] is another large-scale (over 330 thousand

labelled images) that, in contrast with ImageNet has fewer (91) categories but more instances of

those classes. In total, 2.5 million instances are labelled among those images. The dataset ad-

dresses three problems in scene understanding research: detection of non-canonical views (most

datasets present the objects in clear, non-obstructed view; this dataset aims to have some images

with partially occluded objects in a scene where they might be found), contextual reasoning be-

tween objects and precise 2D localization, being the labels a more or less precise segmentation

mask.

(a) Iconic views (b) Non-iconic views

Figure 3.2: Microsoft COCO image examples[3]

3.1.3 BENTHOZ-2015

This dataset [51] was collected as part of the Integrated Marine Observing System (IMOS), a

marine research program of the Australia Government and consist of thousands of expert-labelled

images of the seafloor around Australia’s coast. This dataset is of interest to researchers studying
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benthic habitats and organisms present there, while also being useful for the creation of 3D maps

and development or test of Visual SLAM algorithm since this data is georeferenced (each images

has associated the GPS coordinates where it was taken) as well as having other information from

sensors, such as depth, altitude, temperature and salinity. The dataset is freely available in the

Internet 2, and associated with it is an annotation tool useful for this kind of data, Squidle, a tool

for managing, exploring and annotating images, video and large-scale mosaics.

Figure 3.3: Example of annotated image from the BENTHOZ-2015 dataset

3.1.4 Marine Underwater Environment Database (MUED)

Figure 3.4: Object from the MUED dataset in different lighting conditions

Jian et al. (2019) [52] present a dataset with 8600 images of 430 different underwater objects,

each image with one or more objects in a complex background, with variations in object pose,

turbidity and illumination. The authors used this dataset exclusively to benchmark salient-object

2http://squidle.org/
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detection algorithms concluding that most state-of-the-art algorithms do not adapt well to complex

underwater environment. Unfortunately, this dataset cannot be used to compare performance in

an object classification task between two environments, since it doesn’t have image of the objects

out of water.

3.2 The proposed dataset: HEIMDACA

The purpose of this thesis is not to perform image classification at a large scale, since there is

already extensive work on the area, but to evaluate what is the difference in performance between

the same image classification method applied both underwater and above water, using in both

environments the same objects or classes. No dataset was found for this purpose, thus the need of

collecting images of several objects in two different conditions:

The custom dataset, HEIMDACA 3 consists of pictures of 8 objects (classes) in two different

environments: underwater (aquatic) and out of water (aerial).
The classes that compose the dataset are:

• anchor - small-sized anchor;

• chain - metal chain;

• box - square metal box;

• float - floater used in pool lane separators;

• lead - circular lead disk;

• mark - artificial marker presented by Figueiredo et al.; (2016)[53] for navigation and local-

ization of UAVs;

• weight - pill-shaped heavy object used as ballast in small water vehicles;

• ballast - round epoxy object with a ring on top, also used as ballast.

3Hybrid Environment Image Dataset for Classification Applications
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(a) Anchor (b) Box (c) Chain

(d) Float (e) Lead (f) Mark

(g) Ballast (h) Weight

Figure 3.5: Examples of objects collected in the aerial domain

The underwater part of this dataset was collected in a tank and the aerial images in a laboratory

of CRAS, both located in the Department of Electrical Engineering and Computers at Faculdade

de Engenharia da Universidade do Porto. All images were taken from a top-down perspective at

a fixed camera-object distance per set, resorting to an L-shaped structure (see Fig.3.7 and Table

3.1).

Two sets of images were taken on each environment (Fig. 3.6)

• Aerial: With Background (Fig. 3.5), images taken with a green piece of cardboard, which

facilitates the creation of segmentation masks [54] and Without background.

• Aquatic: Clear background, images were captured in a section of the tank with its bottom

relatively undamaged. Rough Background, images captured in a more textured part of the

tank.
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With background

Without background

Aerial
Dataset

Clear bottom

Rough bottom

Aquatic
Dataset

Dataset

Figure 3.6: Dataset division

Figure 3.7: Underwater image capture setup

A MAKO G-125C camera from Allied Vision 4 was used to collect both aerial and aquatic

datasets, the only difference being a plastic enclosure to make the camera waterproof, for safe

use in the underwater environment. The enclosure had a flat-pane window, which might have

introduced distortion due to the water-glass interface [55] but after inspection of the captured

frames, no significant distortion degradation was found.

Images were captured at a 1292 by 964 pixels resolution, with RGB8Packed pixel format.

Exposure, gain and white balance settings were auto-set using the camera’s inbuilt algorithm while

running the camera in the chosen environment, with no object in its field-of-view. After the desired

4https://www.alliedvision.com/en/products/cameras/detail/Mako 20G/G-125.html
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Table 3.1: Camera and environment characteristics

Aerial Aquatic
W/Background W/o Background Clear Rough

Distance to object 0.5 m 1.0 m 0.9 m 1.8m
Exposure 26.5 ms 18.0 ms 28.7 ms 25.5 ms

Gain 13 dB 9 dB 0 dB 0 dB

White Balance
Red: 1.60
Blue: 2.70

Red: 1.60
Blue: 2.70

Red: 3.0
Blue: 3.0

Red: 3.0
Blue: 3.0

values stabilized, they were kept constant for each set of conditions and are summarized in Table

3.1.

To guarantee camera settings were kept constant between frames, images were captured with

the help of the avt-vimba-camera 5 plugin for the Robot Operating System (ROS). Cameras were

calibrated using a 9 by 11 checkerboard pattern and Zhang’s algorithm[56].

For the aerial and aquatic images, after the capture of several images, 10 frames were selected

per object. The images chosen tried to show the object from multiple perspectives. Then, black

and white segmentation masks were generated using Fiji [57], a software that allows for quick

prototyping and test of image processing tools. The masks for the aerial images were created

resorting to color segmentation due to their uniform background. First, image were underseg-

mented (Fig. 3.9b) and then morphological dilation was applied (Fig. 3.9c), generating a mask

than encompassed the entire object. Masks for the aquatic images were created manually, using a

"Polygonal Select" tool.

Data augmentation was performed by applying random combination of horizontal and vertical

mirroring, scale variations (from 50% to 100% of the original image size) and rotations, 450

images were created per object from the 10 chosen frames. This technique was used to create

diversity in the training sets while saving time in the data acquisition process as well as avoid

overfitting and lack of generalization of the models [58]. Perspective transformation was applied

to Aquatic images to simulate changes in the camera viewpoint and test the models’ robustness to

that variation (Table 3.2).

Table 3.2: Dataset summary

Aerial Aquatic
W/Background W/o Background Clear Rough

# of images per class 400 200 400 200
Bounding Box X X X X
Segmentation

Mask
X X X X

Data Augmentation
Type

Vert./Hor. Mirror
Rotation

Scale (0.5-1)
None

Vert./Hor. Mirror
Perspective

Vert./ Hor. Mirror
Perspective

5https://wiki.ros.org/avt_vimba_camera



Dataset & Methodology 28

(a) Anchor (b) Box (c) Chain

(d) Float (e) Lead (f) Mark

(g) Ballast (h) Weight

Figure 3.8: Examples of objects collected in the aquatic domain, Rough Background

(a) Original Image

(b) Undersegmented Image (c) Image after morphological dilation

Figure 3.9: Aerial With Background mask creation
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3.3 Conclusion

This chapter presented a custom dataset purposely made for this thesis. Composed of 8 objects,

in two different environments, its aim isn’t large scale classification, but rather to help evaluate

and measure the effect of the underwater environment on the performance of image classification

techniques. Data augmentation was performed in a subset of the images to introduce more variety

in the data.

The following chapters will present the evaluation of machine learning techniques applied for

image classification and some remarks about this dataset will be made in the end of this document.



Chapter 4

Conventional Machine Learning

This chapter aims to evaluate how conventional machine learning methods adapt from the

aerial to the aquatic domain on an image classification task.

Neural Networks and Support Vector Machines will be used, combining feature extraction

with a Bag-of-Words approach for generation of the input data. First, the classifiers will be trained

and evaluated on the aerial domain, establishing a baseline for further comparison and discus-

sion. Then, those air-trained classifiers will be evaluated on the aquatic dataset, measuring the loss

those methods suffer from changing the domain. Finally, the air-trained models will be incremen-

tally trained with images acquired in the aquatic domain, followed by an evaluation on that same

domain.

All tests will be performed with an increasing number of classes. An initial prediction is that,

due to the intermediate Bag-of-Visual-Words step, performance will decrease with the increase

in the number of objects. The BoVW approach resorts to K-Means, an unsupervised learning

algorithm, as the vocabulary forming method, which might cluster different "visual words" from

different objects in the same cluster, losing descriptiveness in the process.

4.1 Evaluation Metrics

Before a comparison can be made, it is first necessary to define the metrics being evaluated.

Fawcett (2006)[59] present an introduction to a set of metrics that has seen increased use in ma-

chine learning and data mining research: ROC1 graphs, which represent visually some metrics

extracted from the Confusion Matrix.

The Confusion Matrix (Fig. 4.1) summarizes the four possible outcomes of a binary classifier:

a classifier can predict an instance as positive, and if its true value is positive it counts as True

Positive (TP) or, if negative a False Positive (FP). If the classifier predict the instance as negative

and its true value is negative, it’s a True Negative (TN) or if it’s positive, False Negative (FN).

From this matrix some commonly used metrics can be derived, such as Precision or specificity,

but the ones relevant for this thesis are the True Positive Rate (TPR), also known as Recall, and the

1Receiver Operating Characteristics

30
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Figure 4.1: Confusion Matrix

False Positive Rate (FPR), or Miss Rate, Equations 4.1 and 4.2, respectively. A perfect classifier

would have 100% TPR and 0% FPR.

T PR =
T P

T P+FN
(4.1)

FPR =
FP

FP+T N
(4.2)

A ROC graph, Fig. 4.2a, is a two-dimensional plot where the TPR is plotted on the Y axis

and the FPR on the X axis. The classifiers used in this thesis will be discrete[59], producing a

single point on the ROC graph. The diagonal y = x line represents the behaviour of a classifier

with no discrimination capacity, meaning the result of the classifier can be considered random.

A classifier in the lower triangle (classifier B) is worse than random guessing and in the upper

triangle the opposite (classifier A). The (0,1) point represents perfect classification and (0,0) means

the classifier only predicts occurrences as negative.



Conventional Machine Learning 32

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

at
e

A

B

C

(a) ROC graph

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

A

B

(b) AUC of classifier A and B

Figure 4.2: ROC graph and curve formed

Two different classifiers can be compared using a single value derived from ROC graph, the

Area under the ROC curve (AUC) which, since the graph is a unit square, will always be between

0 and 1. On a discrete classifier, the AUC is the area of the trapezoid of vertex the points (0,0),

(1,1), (1,0) and (FPR,TPR). Fig. 4.2b shows examples of two AUC, classifier A has AUC = 0.7

while B has AUC = 0.4. A random classifier would have AUC = 0.5.

Multiclass classifiers can be composed of multiple binary classifiers. In this case, the AUC

is also a means of comparison between multiclass classifiers. Assuming a multiclass classifier

composed of N binary classifiers, each of the (sub-)classifiers has its own AUC and if the number

of occurrences in each class is the same, all the AUC can be averaged, resulting in the total AUC

of the multiclass classifier.

AUCtotal =
N

∑
i=1

AUCi ·
1
N

(4.3)

4.2 Procedure

Figure 4.3 shows the intermediate steps taken to validate the image classification models.

Figure 4.4 details the sub-stages in the training and validation operations. Those stages will be

analyzed, mentioning the algorithms used at each stage. The example given will be that of the

air-trained models, the combined training models followed the same principles.

2Using the SIFT implementation of OpenCV 4.1
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Figure 4.3: Training and validation procedure

4.2.1 Feature Extraction and Bag-of-Words

Before extracting features, images were converted to grayscale, as (regular) SIFT [12] takes a

single image channel as input. Then, keypoint detection and description was performed on each

of the aerial images2 with the SIFT parameters suggested by Lowe in the SIFT paper [12], as the

measure of the influence of those parameters on classification accuracy was decided to be out of

the scope of this thesis. The choice of the feature extractor was made taking into account the

influence the underwater environment can have on the imaging process (See Section 2.1), thus the

need of a keypoint descriptor that is robust and invariant to those changes. Despite SIFT being

rather computationally heavy in comparison to other feature extractors, its robustness should bring

some advantages regarding classification accuracy.

After extracting features from the aerial images for all classes, the Bag-of-Words vocabulary

was generated, using the method described by Csurka et al. (2004) [16]. Considering all features,

the K-Means clustering algorithms is used to generate a vocabulary, aggregating similar features in

clusters and forming "visual words". Three different vocabularies were generated, with 100, 500
and 1000 visual words. As mentioned before, and as claimed by the authors, this step reduces the

dimensionality of the data at the input of the classifier, resulting in a fixed-sized input vector and

a lesser computational complexity of the classification task, while at the same time bringing some

robustness to keypoints not favorable to the task (e.g, background clutter), which might prove to

be beneficial on the underwater environment, due to marine snow, for example.

4.2.2 Training strategy

Exclusively One-Vs-All (OVA) classifiers will be presented on this chapter, being this choice

backed up by the literature[60] and preliminary testing. OVA classifiers are composed of multiple

Extract
Features

Generate 
Vocabulary

Training
Images

Training
Images

Train
Classifier

Validation
Images

Results

Dataset

Results

SIFT Bag-of-Words NN
SVM

TPR
FPR
AUC

Figure 4.4: Sub-stages of the training and validation process
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independent binary classifiers that identify an occurrence (image) as belonging to a class (positive)

or not class. For example, in a task with 8 classes, there will be 8 binary classifiers. The TPR of

the entire classifier can be calculated by averaging the TPR of the different binary (sub-)classifiers

Rifkin and Klautau present [60] a fair comparison between OVA and other more complex multi-

class classifiers that are claimed to outperform OVA. Disagreeing with a large body of published

work on multiclass classification, they conclude when the binary classifiers are properly tuned,

OVA performance matches that of the other classifiers. However, one great disadvantage of OVA

is that, assuming a classification task with N classes, each image is tested by N binary classifiers.

Aerial Training was performed in two stages:

1. Following a wide range of parameters (to be presented further ahead), each classifiers was

first trained with 400 images from the With Background part of the dataset, followed by an

evaluation in 50 images from the Without Background part. The model with the highest

AUCtotal (Equation 4.3) was then taken to stage 2.

2. A tighter range of parameters is searched around the best result of the previous stage, also

training the classifiers with 400 images from the With Background, but now evaluating 200

images per class, from the Without Background part. The best classifier is chosen as the set

of parameters with the highest AUCtotal .

4.2.3 Machine Learning Classifiers

Neural Network On neural networks, the choice of the number of hidden layers and their size

is usually done empirically, not following any rule, being problem specific and depending to some

extent on the training data amount and quality [61]. However, some guidelines should be followed;

the number of hidden layers and neurons should be sufficiently low to ensure generalization, as

a high number can encourage over-fitting of the network to the training data. Three depths were

tested: 1, 2 and 3 hidden layers, with two activation functions, ReLu and Sigmoid. Two different

optimization algorithms were tested, ADAM and SGD, with multiple values for their learning rate.

SVM Similarly to neural networks, the SVM parameters are also chosen empirically, taking into

account their mathematical meaning. Intuitively[26], C can be thought as the complexity of the

surface that separates the positive from the negative decisions. Low C makes the decision surface

smooth, possibly leading to misclassifications while a high C might result in a perfect classification

of the training data, but lead to lack of generalization due to over-fitting. γ determines the influence

of each training example on the decision boundary. A high γ can lead to "islands" on the decision

boundary while a too low γ results in a not complex enough surface. Table A.1 summarizes the

parameters and the values initially used for each classifier.

All classifier were tested with an increasing number of classes. The objects used in each

iteration can be seen on Table 4.1, their order chosen at random.



4.3 Results 35

Table 4.1: Objects used at each iteration

# objects Objects
4 anchor, chain, lead, box
5 anchor, chain, lead, box, weight
6 anchor, chain, lead, box, weight, float
7 anchor, chain, lead, box, weight, float, mark
8 anchor, chain, lead, box, weight, float, mark, ballast

4.3 Results

Air-trained model

Aerial Validation

Table 4.2a shows the best results obtained by the Neural Network classifier after the second

training stage. As expected, the TPR of the classifier decreases inversely to the number of objects,

while the FPR has a much smaller variation, meaning the classifier is identifying more objects as

not class as the number of objects increases. The SVM (Table 4.2b), however, despite having a

similar behaviour with respect to the number of objects, is only better than the NN with 7 objects,

having a 2.1% lower average TPR.

Aquatic Validation

It can be seen from Table 4.3a that the best air-trained NN suffers a great performance hit

when applied in the underwater environment. On average, TPR decreased 40.86%, 10 times the

increase in FPR, 4.5%, meaning that the network (and its sub-classifier) is more biased towards

classifying an image negatively. By changing the environment, the imaging conditions will also

vary, altering the SIFT description of the keypoints which might be the cause for the great drop in

TPR, in other words, when the air-trained classifier tries to classify an image of the class anchor,

if the keypoint description changes (and consequently the BOW vocabulary), the classifier won’t

know that an anchor can be described that way.

Table 4.2: Best results of the second training stage, validation on the Aerial dataset

(a) NN

# objects TPR FPR AUCtotal
4 93.8 4.9 0.94
5 92.3 5.7 0.93
6 82.5 2.7 0.90
7 68.2 4.1 0.82
8 63.1 3.0 0.80

(b) SVM

# objects TPR FPR AUCtotal
4 90.6 3.5 0.94
5 87.2 3.6 0.92
6 76.8 6.5 0.85
7 76.4 4.4 0.86
8 58.5 2.6 0.78
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Table 4.3: Performance on the aquatic Rough Background dataset of the best air-trained model obtained
after the second stage.

(a) NN

# objects TPR FPR AUCtotal
4 66.4 6.6 0.80
5 47.5 11.1 0.68
6 35.6 9.5 0.63
7 27.9 6.0 0.61
8 14.3 5.2 0.55

(b) SVM

# objects TPR FPR AUCtotal
4 66.6 9.7 0.79
5 51.6 12.3 0.70
6 31.7 3.6 0.64
7 24.6 8.6 0.58
8 16.7 2.1 0.57

Air-trained model incremental training

Generate 
Vocabulary
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Classifier

Aquatic
Validation

AquaticAerial

Aerial Results

Dataset

Results

NN
SVMBag-of-Words

Figure 4.5: Incremental training approach 1: Reusing vocabulary
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Figure 4.6: Incremental training approach 2: Retrain vocabulary

The best model obtained in the aerial evaluation step will be incrementally trained with aquatic

images, in order to evaluate how the air-trained model improves with the addition of those images.

Two approaches will be compared:

1. Reuse the vocabulary of the two previous tests, which only contains "visual words" extracted

from aerial images, aerial vocabulary. The model is then trained using both the aerial and

aquatic datasets, using the hyperparameters of the best model obtained in the grid-search.

Evaluation is then performed on the aquatic dataset (Fig. 4.5).

2. Create a new vocabulary, with "visual words" generated from the combination of the aerial

and aquatic datasets, combined vocabulary. The model is then trained and evaluated simi-

larly to the first approach (Fig. 4.6).
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Table 4.5: Incremental training performance, combined vocabulary

(a) NN

# objects TPR FPR AUCtotal
4 44.7 4.0 0.70
5 58.0 8.9 0.75
6 27.2 6.5 0.70
7 45.5 1.4 0.72
8 40.3 7.9 0.66

(b) SVM

# objects TPR FPR AUCtotal
4 69.1 7.0 0.81
5 56.3 5.2 0.76
6 36.4 2.6 0.67
7 42.6 7.3 0.68
8 26.6 1.0 0.63

Table 4.4: Performance in the aquatic Rough Bottom, training with both aerial and aquatic images, aerial
vocabulary

(a) NN

# objects TPR FPR AUCtotal

4 74.1 4.5 0.85

5 52.6 5.1 0.74

6 39.3 5.7 0.68

7 39.8 2.8 0.69

8 33.3 3.1 0.65

(b) SVM

# objects TPR FPR AUCtotal

4 73.5 6.6 0.83

5 56.5 7.3 0.75

6 40.8 5.1 0.68

7 45.5 6.8 0.69

8 29.2 2.6 0.63

On the first approach (Table 4.4), both classifiers show improvement from being trained with

the aquatic images, with TPR almost doubling when evaluating 8 objects, with the NN surpassing

the SVM on that specific case. Difference in AUCtotal between the classifiers is minimal. However,

an anomaly occurs on the test with 6 objects, as it was predicted that TPR would decrease with the

increase in the number of objects, but TPR is higher in the test with 7 than with 6 objects.

The second approach presents an even more erratic behaviour, especially with the 4 object test

of the NN, which demonstrates an unusually low TPR, comparing with the other tests performed.

Since model parameters were kept the same in both the aerial evaluation, aerial vocabulary and

combined vocabulary tests, it can be speculated that the cause of this drop is the use of both the

aerial and aquatic images in the vocabulary creation process, the unsupervised K-Means clustering

created a vocabulary with visual words unable to uniquely characterize the different classes, thus

the bad performance.

Again, similarly to the first approach, TPR from both classifiers has a sudden drop on the

test with 6 objects. This non-monotonic behavior of the TPR regarding the number of objects in

both the tests with the aerial and combined vocabularies might be indicative that float, the class

added from the 5 object to the 6 object test, might not have the same classification potential as

the other classes, i.e., float cannot be properly classified with the approach used in this part of the

thesis: feature extraction combined with Bag-of-Words. To get more insight on this hypothesis, it

is necessary to look at the individual performance of each binary (sub-)classifier.

From Fig. 4.8, which shows the ROC graph for each individual binary classifier used when

evaluating a NN with 5 and 6 objects, it can be deduced that the hypothesis of the float class being
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Figure 4.7: NN combined vocabulary, individual object performance, 4 objects

the cause of the drop in performance is false. In fact, it’s only second to the chain class, with over

80% TPR and under 40% FPR.

Figs. 4.8 and 4.9 also show a very neutral behaviour of the weight binary classifier, the majority

of its predictions being negative, as belonging to the not weight class. Analyzing the ROC graphs

of the combined training, aerial vocabulary tests, not inserted in this document, the same behaviour

can be observed, which raises a similar hypothesis as posed regarding class float, the existence of

a weaker class.

The answer to the new hypothesis can be found if a single example against it is encountered.

If a model that outperforms the ones seen before can be found, then the problem lies in the model

parameters, not in the class. Thus, a smaller variation of the parameter grid on Table A.1 is

sweeped with both classifiers, considering only the 8 objects case.

As seen from Figs. 4.10 and 4.11, a binary classifier for the weight class that clearly outper-

forms the ones already known wasn’t found. The best TPR found was 9.5% on a Neural Network

classifier. On the other hand, an SVM was found with AUCtotal = 0.752, T PR = 75.0% and

FPR = 24.5%. This result is significant as it confirms that the parameters of the best model in the

aerial dataset do not correspond to those of the best model in the aquatic dataset, the model has to

be adapted to the environment, not only by adding new images but by changing the parameters.

4.4 Conclusion

In the previous chapter two distinct classifiers, Neural Networks and Support Vector Machines,

were compared regarding their ability to classify images from different environments. They were

first trained exclusively with images taken in a controlled aerial environment and then validated

with aerial images taken with different imaging conditions. When testing with 8 objects the NN
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Figure 4.8: Neural network combined vocabulary, 5 and 6 objects performance

achieved a True Positive Rate of 63.1% and the SVM 58.5%.

Then, the best model of each classifier was used to classify images of the same objects, but

taken in a completely different environment, underwater, to verify how the change in environment

would affect the classification accuracy. Directly testing the models, without any change in their

parameters, resulted in a TPR of 14.3% for the NN and 16.7% for the SVM, a drop of 40.86% and

41.86%, respectively. With this result it can be concluded that exclusively air-trained models used

for image classification do not translate well to tasks in an underwater environment.

After incrementally training those best models with aquatic images, a maximum increase of

26.0% was achieved with the NN, for a TPR of 40.3%. Although the SVM did also improve, the

increase in TPR wasn’t as significant as seen in the NN, with 29.2% TPR.

Figure 4.9 shows that certain objects suffered a great drop in TPR when being classified in the

underwater environment. There is a necessary condition for feature-based methods to work: the

feature detector (SIFT) has to be able to detect keypoints, points of interest. Despite SIFT having

some robustness to different conditions, it is possible that for some objects the blurring and loss

of detail characteristic of light propagation in water lead to the feature detector not being able to

find robust enough keypoints to guarantee a good classification, thus the weak results.

Summing up, it can be concluded that the best aerial model obtained with the parameter search

technique used does not translate directly to the best model in the aquatic environment. Using

these classifiers, Neural Network and SVM, incrementally training the model with images from

the aquatic dataset improves the metrics, but does not bring top performance. A new parameter

search technique could be employed, but some knowledge of the environment is needed to validate

the model.
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Figure 4.9: Neural network combined vocabulary, 7 and 8 objects performance
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Figure 4.10: Neural network grid sweep, evaluation with aerial dataset and combined vocabulary, 8 objects
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Figure 4.11: SVM grid sweep, evaluation with aerial dataset and combined vocabulary, 8 objects



Chapter 5

Deep Learning

This section will present an evaluation of the performance of a Convolutional Neural Network

from the state-of-the-art in image classification by following a similar approach as adopted on

Chapter 4. First, the network will be exclusively trained using images from the aerial domain and

evaluated on that same environment, establishing an accuracy baseline for the next experiments.

The model will then be validated on the aquatic dataset, measuring the impact on performance of

the change in environment. Finally, a second stage of training will be performed, where images

taken on the aquatic environment will be used to retrain the network, and their influence on the

accuracy will be evaluated. An overview on the tools used can be read on Appendix B.

5.1 Network training procedure

The network architecture chosen was Inception-V3 (Section 2.3.2) due to having the best bal-

ance between accuracy on the ImageNet dataset and model complexity of the image classification

models analysed by Canziani (2016)[62].

Similarly to other works in the literature [63, 50], a transfer learning approach will be taken,

which consists in using a pre-trained model and fine tuning it for the desired purpose, i.e., a model

created for a specific classification task serves as a starting point for another task. It is especially

useful in applications with limited dataset sizes [63], which is the case in an underwater or medical

context. For example, transfer learning can be applied for plankton classification [50], as well as

soft tissue sarcoma [63] or cardiovascular tissue classification [64] and both applications use the

same initial starting point: the ImageNet dataset, presented in Section 3.1.1, which due to its great

image variety and low dataset bias [65] is commonly used to pre-train classification networks,

avoiding overfitting of features to a specific shape.

Following this transfer learning approach, the weights of the last 3 fully-connected layers of

the fully-trained Inception-V3 network are replaced with uninitialized (random) parameters. The

number of nodes in the last layer, the Softmax layer, will be changed to the desired number of

classes, instead of the 1000 nodes (classes) for the ImageNet task. Unlike the neural networks

used in the Conventional Machine Learning (Chapter 4), this will be a Multi-Class network.
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Softmax layer

The softmax layer, usually the last layer of a CNN, consists of a number of nodes equal to the

classes to identify. Its output is the probability of a certain image belonging to a certain class, and

the sum of the output of all neurons of the softmax layer is 100%. This thesis will only consider

Top-1 accuracy, that is, the class identified by the network is the class with the highest probability

in the softmax layer.

Object anchor chain lead box weight float mark ballast
Probability 0.13 0.2 0.15 0.09 0.11 0.05 0.19 0.08
Output 0 1 0 0 0 0 0 0

Table 5.1: Example of a classification with Top-1 accuracy

Two transfer learning approaches were tested:

1. Only the weights of the 3 replaced layers will be updated, all other layers will remain un-

trained by the new data, their weights won’t be updated in the training process. Thus, the

network will only be using features generated with the ImageNet dataset, and the last 3

layers will recombine them to generate a prediction. A set of 2.1 million parameters are

trained, roughly one tenth of the total number of parameters that consist the Inception-V3

architecture (23.9 million). This will be named the Coarse training approach.

2. While training the weights of the 3 replaced layers, the 2 last Inception modules will also

be retrained. Training the later representation learning stages will force the network to learn

and recombine new features which better reflect the nature of the data used in this work.

A total of 13.2 million parameters will be trained. This will be named the Fine training
approach.

For the first set of experiments, training and validation using the aerial dataset, two gradi-

ent optimization algorithms, ADAM[23] and Stochastic Gradient Descent (SGD)[18], will be

compared in both approaches. The best optimization algorithm will then be validated against the

aquatic dataset, measuring the performance loss caused by the environment. The network with

the highest TPR on the aerial validation will then be trained with aquatic training data and the

performance change in the aquatic environment will be evaluated.

The Keras framework 1 provides weights that were trained on the ImageNet dataset, with 299

per 299 resolution images. The network could be adapted to process images in the 1292 per 964

resolution, however, after some preliminary tests, the network complexity and processing time per

image would be prohibitively large. This, in turn, required a pre-processing step where all images

were resized to a resolution of 299 per 299. For this particular architecture no segmentation masks

or bounding boxes are needed on the training data.

Each epoch consists of training the network with 400 images per class, with a batch size of 32

images and all training images are randomly shuffled between each epoch, in order not to bias the

1keras.io
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weight update to a specific class. Validation consists of evaluating 200 images per class. TPR is

calculated by averaging the TPR for each of the classes to be identified.

5.1.1 ADAM aerial validation
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Figure 5.1: Coarse and Fine approaches compared using the ADAM optimizer, aerial dataset 8 objects

From Figure 5.1 it can be seen that there’s a difference in the True Positive Rate between the

Fine and Coarse training approaches.

The Coarse approach starts from Epoch 0 with a TPR of 78.2%, higher than the values obtained

in the Conventional Machine Learning methods. However, that value doesn’t improve, as it would

be expected to with the increase in training epochs. The network performance peaks on Epoch 1,

with 83.7% with an average of 78.0% for 80 epochs.

On the other hand, the Fine approach is more inconstant, having big performance jumps, but

as a whole it obtains better results, with an average of 85.6% and a peak of 98.0%. It appears

to have plateaued in epoch 60, as it stays over 90% TPR for more than 20 epochs. However, its

instability raises some doubts regarding its usability, there isn’t a concrete relationship between its

performance and the number of epochs.
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Figure 5.2: TPR evolution per epoch obtained with the Coarse approach (using) ADAM in the aerial dataset
with 8 objects

Fig. 5.2 gives a deeper insight on how the network behaves with each of the objects when

trained with ADAM and the Coarse approach. Analyzing the general trend of the graph, 2 objects

stand out negatively due to their TPR being significantly below average in all epochs: box and lead.

The box being the worst, there is only one iteration where its TPR is higher than 20%, staying most

iterations close to 0%. Despite its higher TPR, the lead class has an oscillatory behaviour over the

epochs, with a highest TPR of 53%.

Looking into the ImageNet classes that were used to pre-train the network2 it can be seen that

there is a much higher number of classes with complex, natural shapes (animals, for example)

than there are of (perfectly) regular geometrically shaped, which in turn will bias those features

towards more complex objects since the features created in the Representation Learning part of

Convolutional Neural Networks are based on the shape of objects [66].

The shape of the box and lead might be indicative about the reason of the decreased perfor-

mance of those two classes.
2https://gist.github.com/xkumiyu/dd200f3f51986888c9151df4f2a9ef30
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(a) Box class (b) Lead class

Figure 5.3: The two classes with lowest performance: box and lead

It can be seen from Fig. 5.3 that both classes have a (rough) geometric shape, a square and a

circle, which can be the reason for this lack of performance. This theory can be corroborated if the

TPR of the box and lead classes increases after retraining the feature creation part of CNN, which

is done in the Fine approach.
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Figure 5.4: Top 20 epochs using the Fine approach and ADAM with 8 objects

Figure 5.4 shows the 20 iterations with the highest average TPR, using the Fine approach and

ADAM. A generalized increase in performance is to be noted, where individual object TPR is

over 50% in 19 of the top 20 epochs. It can be seen that the TPR of classes box and lead has

improved considerably, their lowest TPR being 21% and 65%, respectively, reaching 98% and

100% in some iterations. This supports the hypothesis that ImageNet features aren’t adequate for

regular, geometric shape, as a better performance was obtained by retraining the network features.
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5.1.2 SGD aerial validation

Following this evaluation of both Coarse and Fine training approaches with the ADAM opti-

mizer, the same comparison can be performed using Stochastic Gradient Descent.
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Figure 5.5: Comparison between the Coarse and Fine approaches using the SGD optimizer in the aerial
dataset and 8 objects.

It can be seen from Fig. 5.5 that the SGD optimizer has a much more constant and predictable

behaviour.

The Coarse approach, despite having a lower average TPR (77%) than with the ADAM op-

timizer, could be seen as more stable, as it doesn’t have any significant variations in its value.

Still, the value of TPR seems to be stagnated, there’s no improvement with the increase in epochs,

meaning that, as happened with the ADAM Coarse approach, there are some objects the network

has difficulties classifying.
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Figure 5.6: Performance per object with the Coarse approach, SGD and aerial dataset: 8 classes
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As expected, global average TPR is being reduced by the same objects as in the ADAM eval-

uation: box and lead.

On the other hand, Fig. 5.7 shows that the Fine approach brings a very significant improve-

ment, with an average TPR of 98.8%, the highest of the 4 experiments performed. Still, it can be

seen from the same figure that the model has a lower TPR in the lead class, with a TPR of 88.5%

which, despite being the class with the lowest TPR, achieves a higher performance than in all other

approaches.
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Figure 5.7: Top 20 epochs using the Fine approach and SGD with 8 objects
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Object Aerial Aquatic Difference
anchor 1.000 0.990 0.010
chain 1.000 1.000 0.000
lead 0.905 0.680 0.225
box 0.995 0.985 0.010
weight 1.000 1.000 0.000
float 1.000 0.000 1.000
mark 1.000 1.000 0.000
ballast 1.000 1.000 0.000

Total 98.7 83.18 15.54
Table 5.2: TPR drop per object from aerial to aquatic dataset on epoch 98

5.1.3 Validation on the Aquatic Dataset

The air-trained model with the Fine approach and SGD as optimizer was then validated on

the aquatic dataset. Fig. 5.9 shows the underwater performance of the air-trained models with

the increase in training epochs, reaching a peak TPR of 83.1% on epoch 98 and an average of

81.6%. As reference, that same epoch obtained 98.8% TPR on the aerial dataset, resulting in a

performance drop of 15.7%.

From Fig. 5.9 and Table 5.2 it can be seen that 4 classes were minimally affected by the

change in environment: ballast, mark, weight and chain. Class box, despite having a very high

TPR, shows some oscillation, although smaller than 4% peak-to-peak. The anchor also shows a

small difference on that specific epoch, but the improvement of that object’s with the epochs is

visible. On the other hand, the lead class decreases with epochs, leading to a drop of 22.5% in

TPR. Contrary to all other objects, the float class isn’t even detected in a single image, with a

0% TPR. The behaviour of the float class can be can be explained by comparing the images that

constitute the float class in the aerial and the aquatic dataset.

(a) Aerial float (b) Aquatic float

Figure 5.8: Class with the lowest detection rate in the underwater environment: float

As it can be seen from Figure 5.8 despite the same object being in both images, the underwater
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Figure 5.9: Air-Trained Fine SGD network evaluated on the aquatic dataset

picture has the addition of more elements which might be associated to the shape of the object and

thus negatively influencing the classification. In the collection of images of the float object in the

underwater environment, due to its floating nature, it was necessary to attach several heavy objects

to weight it down and prevent it from floating, resulting in the object in Fig. 5.8b.

5.1.4 Training with the Aquatic Dataset

For the aquatic training and evaluation tests, the air-trained model with the highest TPR in the

aquatic validation was chosen. The network was trained maintaining its parameters, namely the

optimizer, SGD, and following the Fine approach, which allowed the network to train its features.

Fig. 5.10 shows the results of training that network during 50 epochs. As it can be seen, the

value of TPR of the model trained with SGD and aquatic images is quite similar to the TPR of

the air-trained on the same aquatic dataset, with an average of 83.9% and 83.1% respectively and,

although there is an improvement of TPR with epochs, it is very reduced, around 1% in 40 epochs.

However, when using different optimizers, the network behaves differently. With ADAM it can

seen that, similarly to when the model was being trained with aerial images, it has an unpredictable

oscillatory behaviour, seemingly stabilizing at a certain value and suddenly dropping. Nonetheless,

it reached a higher TPR than SGD, peaking at 92.2%.

RMSProp, another optimization algorithm of which ADAM is based on, was also tested ex-

clusively for the aquatic training part, achieving the highest TPR on this test, 98.6%. This value,

the highest obtained in the aquatic dataset, is important as it shows that all classes in this dataset

are identifiable.
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Figure 5.10: Optimizer comparison: Incremental training with aquatic images

5.2 Conclusion

On this chapter a ConvNet architecture, Inception-V3, from the state-of-the-art in image clas-

sification was tested on the custom dataset collected for this thesis.

With a transfer learning approach, a pre-trained Inception-V3 architecture was fine-tuned, first

with aerial images from the dataset and its performance was evaluated on images also taken in the

aerial environment. Two optimizers were compared: Stochastic Gradient Descent and ADAM

combined with 2 training approaches: Fine and Coarse. In Coarse approach, only the last 3

layers of the network were trained, accounting for 2.1 million parameters of the 23.9 million of the

Inception-v3 architecture. In the Fine approach, 13.2 million parameters were trained, training the

last 3 layers of the network and 2 of its 11 Inception modules. Despite training more parameters,

the Fine approach had a better performance. In combination with the SGD optimizer, the best

TPR obtained in the aerial dataset was 98.7% .

When the model with the best performance in the aerial domain was tested on images taken

underwater, its TPR dropped to 83.18%. This drop in accuracy was due to some specific classes,

lead and float, as the other classes were almost always correctly classified. As a means of im-

proving performance in the aquatic domain, that model was then trained with images from the

aquatic dataset. Keeping the model in the same conditions (SGD optimizer and Fine approach)

there was no improvement in the network, with an average TPR of 83.9%. However, better results

Table 5.3: Best result obtained on the aquatic dataset, RMSProp optimizer

Objects anchor chain lead box weight float mark ballast
TPR 1.00 1.00 0.94 0.97 1.00 0.98 1.00 1.0
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were obtained when changing the optimization algorithm. ADAM, despite having an oscillatory

behaviour obtained a TPR of 92.3% and RMSProp, an algorithm not used in the aerial validation

attained the top TPR of 98.6% on the aquatic dataset.

Conclusion points:

• When using a transfer learning approach, it is imperative to also train the representation

(feature) learning layers of the network, it is not guaranteed that the existing features are

representative of the new classes to identify, as seen on the objects with regular geometric

shapes, which had lower classification rates.

• Stochastic Gradient Descent has a very stable classification rate with the increase in training

epochs. While that was positive in the aerial dataset, as it reached almost maximum TPR

in few iterations, that stability was detrimental in the aquatic training since the network’s

accuracy stagnated in a sub-optimal value. On the other hand, ADAM (and RMSProp) had

a less predictable behavior with the increase in training epochs, not demonstrating a pro-

portional relationship between accuracy and number of epochs, reaching high classification

rates in some epochs but with a highly oscillatory behaviour.



Chapter 6

Conclusion

The main objective of this thesis was to compare the effects of changing from the aerial to

the aquatic domain on the performance of both Conventional (neural networks and support vector

machines) and Deep Machine Learning techniques applied to a visual classification task. No

dataset was available for this purpose, thus the need to curate one.

This thesis presented HEIMDACA, a novel dataset composed of 8 objects in two different

domains: aerial (images taken above water) and aquatic (images taken underwater). After the

collection of the dataset it was possible to proceed to the evaluation of the image classification

techniques.

Starting with Conventional Machine Learning, two classifiers were tested: Neural Networks

and Support Vector Machines. A feature-based approach using SIFT as the feature extractor was

used along with a Bag-of-Visual-Words approach as a means of reducing dimensionality and pro-

viding robustness to the input data. The models were first trained and evaluated using aerial
images. The model with the highest TPR was then evaluated on aquatic images, measuring the

impact of the change in domain on the accuracy of the model. Models were then retrained with

images from the aquatic environment, with hopes of increasing their performance on that same

domain. When testing with 8 objects, the best air-trained models tested on the aerial domain

achieved a TPR of 63.1% for the Neural Networks and 58.5% for the Support Vector Machines.

Testing those same models on the aquatic domain resulted in a tremendous drop in performance,

with a TPR of 14.3% for the Neural Network and 16.7% on the Support Vector Machine, a drop

of 48.8% and 41.8%, respectively. Retraining that model with aquatic images increased the TPR

in that domain to 40.3% and 29.2%, for the NN and SVM respectively. With this result it can be

concluded that, with Conventional machine learning methods and the approach taken, models
can’t be directly adapted from the aerial to the aquatic domain. These Conventional Machine

Learning classifiers leave much to be desired, as most of their performance is lost from changing

the environment. It can be speculated that this result was negatively influenced by the imaging

conditions introduced by the aquatic environment. Due to the scattering effect and other phenom-

ena related to light propagation in water, images take underwater can become blurred and, since a

feature-based approach was used, if the feature detector can’t detect those keypoints or if they are
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altered, the classifiers will fail.

A Deep Learning architecture, Inception-V3, from the state-of-the-art in image classification

was also tested on this dataset. Two fine-tuning approaches were compared on a network with pre-

trained weights: Coarse, where the representation learning layers of the network weren’t trained,

only combining the already existing features of the network; and Fine where new features were

trained. Two gradient optimization algorithms were also compared, Stochastic Gradient Descent

and ADAM. A significant conclusion could be taken by comparing the two approaches. Using the

SGD as optimizer, the Coarse approach managed an average of 77.0% TPR on the aerial dataset,

while the Fine had an average of 98.4% TPR. The difference between the two approaches was

found to happen in the classes with a regular, geometric shape: box and lead, a square and a

disk, respectively. The same result was seen with the ADAM optimizer. From this results it can be

speculated that the pre-trained ImageNet weights are not prepared to classify objects with this type

of shape, as that dataset is more focused on organic shapes, such as those of animals. Between the

two gradient optimizers, ADAM was found to be too unstable, seemingly converging to a specific

value of TPR, but suddenly dropping in performance. SGD is a better choice, for the aerial dataset.

When an air-trained network (following the Fine approach and with SGD) was evaluated on

the aquatic dataset, it managed a TPR of 83.1%, a drop of 15.54%. That same type of network was

then incrementally trained with aquatic images, but no improvement on accuracy was recorded. It

can be hypothesized that the optimizer stagnated in a local minimum of the loss function, not being

able to evolve past that point due to the learning rate being too small. However, when changing

the gradient optimizer to either ADAM or RMSProp, the maximum TPR recorded was 92.3% and

98.6%, respectively, on the aquatic environment. While the TPR remained constant when training

with SGD, ADAM, although unpredictably oscillatory, managed to take the network out of a local

minimum.

Concluding, the Deep Learning network completely outperformed the Conventional Machine

Learning methods on this specific dataset. With a drop of only 15.54% when translating an air-

trained network to an aquatic domain, the Inception-V3 seems the best choice for visual classifi-

cation tasks.

6.1 Future work and remarks

Adding more objects to the dataset would result in a more complete study. For example, a

"black-box" similar to the one used by Bonin-Font (2015)[35] can be an addition to the dataset.

Additionally, it would be interesting to add more images in different conditions, for example, by

incrementally varying the turbidity conditions, the image classification models could be tested for

robustness.

If collecting images from new or the same objects isn’t possible, the dataset can be virtu-

ally augmented by data augmentation techniques such as the ones presented by Huang et al.

(2019)[67]. The authors augment a small publicly available dataset for marine wildlife recognition

by simulating some effects of the aquatic environment on imaging conditions, such as turbulence,
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lighting intensity and different camera shooting angles.

During this work, it was observed that objects with light hotspots tended to generate features

(keypoints) in those same hotspots resulting in image classification models that had false or incor-

rect information, reducing their robustness. It is recommended that additional care should be taken

when collecting images from objects with reflective surfaces, for example, by manipulating light

sources so as to have a more uniform lighting. A misdirected light source can also contribute to

shadows in the image which are also a source of irrelevant points of interest, that don’t contribute

to the robustness of the model.
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Conventional Machine Learning
classifiers parameter grid

Table A.1: Classifiers and hyperparameter values sweeped

Classifier
NN SVM

Hyperparameter Value Hyperparameter Value

Layer
Sizes

100
500

100, 20
100, 50

100, 50, 10
500, 100, 10

C

0.1
0.316
1.0

3.16
10

Learning
Rate

0.001
0.01
0.1
1

Gamma

0.1
0.316
1.0

3.16
10

Activation
Function

ReLu
Logistic

Optimizer
Adam
SGD
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Overview of the Deep Learning
framework used

The increased interest in deep neural network architectures has given rise to a whole ecosys-

tem dedicated to the optimization and development of these networks. Since deep neural networks

have a number of parameters in the order of the millions, an efficient use of computational power is

a must. Luckily, the basis of CNN, the convolutional layer is an embarrassingly parallel 1 task (e.g.

all operations involved in convolving a filter with an image can be executed in parallel) which, in

combination with GPU processing, makes the foundation of modern machine learning. Graphics

Processing Units (GPU), also known as graphic cards, were originally created to accelerate the

output to a display device and have a highly parallel structure. Modern GPUs can have thousands

of processing units (cores)2, making them the ideal candidate for parallel tasks. Some vendors,

particularly NVIDIA, provide a great amount of support to developers interested in general com-

puting on GPUs, having released and actively developing their own GPU parallel computing and

programming model, CUDA34, which powers many deep learning libraries. However, CUDA pro-

gramming has a high learning curve, requiring some specialized knowledge in the inner workings

of GPU for maximum code efficiency, which has lead to the creation of some open-source libraries

that offer a more high-level API 5 for deep learning tasks.

Tensorflow 6 is an open-source library developed by Google for general numerical compu-

tation tasks, as well as machine learning. It was first used exclusively in-house and then made

available to the general public in 2015, supporting both CPU and GPU execution, with an inter-

face to CUDA. In spite of being one level of abstraction above CUDA, its focus is customizability,

not convenience, being a very complete API, but not the first choice for someone starting in the

machine/deep learning field.

1https://en.wikipedia.org/wiki/Embarrassingly_parallel
2https://www.nvidia.com/en-us/geforce/products/10series/compare/
3https://developer.nvidia.com/cuda-zone
4Compute Unified Device Architecture
5Application Programming Interface
6https://www.tensorflow.org/
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Having convenience and fast experimentation in mind, Keras7 was created, an even higher

layer of abstraction on top of TensorFlow and other similar machine learning APIs such as Theano8

or CNTK9. Table B.1 shows software installed and their version. Python 3 was used in the entirety

of the work presented in this section. Networks were trained and evaluated in a computer with an

Intel Core i5-8600k @ 3.6GHz CPU and an NVIDIA GeForce GT 1030, with 2GB of VRAM.

Table B.1: Software versions used

Tool Version
NVIDIA driver 418.43

cuDNN 7.1.4

CUDA 9.0

TensorFlow 1.12.0

Keras 2.2.4

NumPy 1.16.3

7https://keras.io/
8http://www.deeplearning.net/software/theano/; Montreal Institute for Learning Algorithms
9Microsoft Cognitive Toolkit; https://github.com/microsoft/CNTK
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