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Resumo

As novas ferramentas de Inteligência Artificial (AI), Machine Learning (ML) e Predictive
Analysis (PA) estão a mudar a forma como olhamos para uma das áreas clássicas da gestão
das operações: a manutenção.

A aplicação de modernas técnicas de simulação e algoritmos, computacionalmente
poderosas, permitem trabalhar os dados de avarias (histórico) de forma a estimar os
parametros da fiabilidade e deste modo optimizar e melhorar a manutenção de equipa-
mentos/componentes.

Este trabalho de doutoramento, tem como objectivo a aplicação da simulação Monte
Carlo na fiabilidade de equipamentos e o desenvolvimento de novas metodologias e fer-
ramentas de simulação, com o uso de algoritmos desenvolvidos em duas linguagens de
programação: R e Python.

É apresentada uma metodologia para avaliar e testar os algoritmos de simulaçao de
fiabilidade, nomedamente de dados censurados. Foram desenvolvidos algoritmos de simu-
lação de dados censurados à direita, tipo I (fixo e aleatéorio) e dados censurados à direita
tipo II. A metodologia inclui um conjunto de testes de hipóteses que permitem avaliar se
os dados simulados são gerados de uma forma correta, robusta e não-enviesada .

Para avaliar e estimar os parâmetros dos dados históricos da manutenção (escassos
e censurados), desenvolveu-se analiticamente o método de máxima verosimilhança para a
distribuição de Weibull e toda a derivação do método EM- Expectation-Maximization para
a estimação dos parâmetros de distribuição Weibull com dados censurados.

Desenvolveu-se uma metodologia para para simular e calcular o indicador "importância
dos componentes" , bem como a aplicação da simulação e do conceito de sistemas lineares
consecutivos “k-out-of-n”.

Desta forma, pode-se melhorar a gestão da manutenção, principalmente com um planea-
mento dos intervalos de manutenção mais rigoroso e com o risco aceitável.

Foi desenvolvido um caso de estudo numa empresa química e com dados históricos. Os
resultados deste trabalho permitiram, por um lado, validar as metodologias e ferramentas
desenvolvidas, e por outro, comparar cenários e concluir que existe margem para o aumento
dos intervalos de manutenção em equipamentos/componentes sem dimuir a fiabilidade e/ou
aumentar o grau do risco.

Estas ferramentas, bem como as metodologias desenvolvidas, poderão ser aplicadas
noutras indústrias, mas também, podem ser usadas dentro dos algoritmos ou em simultâneo
com as novas ferramentas Inteligência Artificial (AI), Machine Learning (ML) e Predictive
Analysis (PA).
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Abstract

The new Artificial Intelligence (AI), Machine Learning (ML) and Predictive Analysis (PA)
tools are changing the way we look at one of the classic operations management areas:
maintenance.

Applying modern simulation techniques and algorithms, which are computationally
powerful, allows working the fault data (historical data) in order to estimate the parameters
of reliability and optimize and improve the maintenance of the equipment / components.

The objective of this PhD work is to apply the Monte Carlo simulation for equipment
reliability and develop new methodologies and simulation tools, using algorithms developed
in two programming languages: R and Python.

A methodology is presented to evaluate and test the reliability simulation algorithms,
namely censored data. Right type I (fixed and random) and right type II censored data
simulation algorithms were developed. The methodology includes a set of hypothesis tests
that allow evaluating if the simulated data are generated in a correct, solid and non-skewed
way.

In order to evaluate and estimate the parameters of the historical maintenance data
(scarce and censored), the maximum likelihood method for Weibull distribution and the
entire derivation of the EM-Expectation-Maximization method for the estimation of the
Weibull distribution parameters with censored data were developed analytically.

A methodology was developed to simulate and calculate the "component importance"
indicator, as well as for application of the simulation and of the concept of consecutive
"k-out-of-n" linear systems. With these tools, maintenance management can be improved,
especially through stricter maintenance interval planning and acceptable risk.

A case study was developed in a chemical company with historical data. The results of
this work allowed, on the one hand, validating the methodologies and tools developed and,
on the other hand, comparing scenarios and concluding that there is space to increase main-
tenance intervals of equipment/components without reducing reliability and/or increasing
the degree of risk.

These tools, as well as the methodologies developed, can be applied in other industries,
but can also be used within the algorithms or simultaneously with Artificial Intelligence
(AI), Machine Learning (ML) and Predictive Analysis (PA) tools.
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Chapter 1

Introduction

Reliability and maintainability analysis using simulation tools is the theme of this dis-
sertation. The area and application of simulation is very general and can be based on
computers, scale models, prototypes, etc. The maintenance field has to develop in order to
increase its scope and diversify intervention policies. This evolution must be accompanied
by the recognition of its importance in all business activities and by interpenetration with
other functional areas.

There are many reasons guiding the search for knowledge and the need to perceive what
surrounds us. Solving problems is part of human nature. The first method of learning about
nature was experimentation, and for thousands of years it was the only one available, and
remains to this day one of the main ways of solving problems. In experimentation, there
are two entities under evaluation: the object studied and the framework of the conditions
that defines how the experiment takes place.

Sometimes, the problems to be solved are so complex that experimentation may prove
to be an inadequate methodology due to ethical, risk or cost issues. In other cases, the
solution is simply impossible to put into practice. Science has been able to find ways to
address these issues, one of which is to abstract ourselves from the problem and think of it
using a model of a problem. Although different modelling techniques have been proposed
over the last few centuries, the formalism of Newton and Leibniz’s differential equations
has been one of the tools of choice for modelling and problem solving. These equations
provide a mathematical (analytical) way of studying the entity in question.

The techniques used in this type of problem solving are analytical in the sense that they
are symbolic and based on reasoning, providing generic solutions for the problems faced.
An abstraction of the entity is made and the resulting model is then used to evaluate
the system. This abstraction is made with loss of information (simplifications), but it
represents the behaviour of the entities, allows analysis and is sufficient to demonstrate
the properties of the suggested model. It is essential for the results of the model to be in
agreement with those observed in the entity, in which case they are consider as valid.

1
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In the case of models with a greater degree of complexity, it is necessary to use dif-
ferential equations and other numerical methods, approaching the equation through the
discretization of its behaviour (calculated at various points in time). Results will be less
accurate than analytical models, but will provide values with sufficient accuracy to study
the problem under analysis.

The process begins by obtaining experimental data from the entity under study, then
mathematically modelling the observed behaviour. However, due to the complexity in-
volved, the equations have to be solved by numerical approximation. With the massifica-
tion of the use of computers, this is achieved recursively, calculating the values of the state
variables at specific moments and using these values as the basis for the next iteration.

The model should provide a solution to the problem; however, this is an approximation
and implies a loss in precision when compared to analytical models.

It was noted that it is necessary to introduce a step to verify the accuracy of the results
obtained by numerical approximation. The results have to be compared with experimental
data, so that the model emulates reality as best as possible. For centuries, these approaches
have allowed for very important advances in the science and technology area.

The evolution of our knowledge and the invention of advanced devices (e.g. control
systems, intelligent manufacturing, traffic management and control) made it impossible to
continue to exclusively use analytical methods for problem solving. These are analytically
impossible and numerically dicult to evaluate without oversimplifying the models and can
result in solutions that are incoherent with reality.

Starting in the 1940’s, computers provided alternative ways of dealing with these issues,
since they are well equipped to apply approximation techniques, eliminate human errors,
and solve problems at a higher speed. Thus, since the advent of computing, the numerical
models have been converted into computational solutions (also called computational simu-
lations). A computational simulation cycle can also be characterized, the difference being
that the model is executed by specialized devices. Verification continues to be necessary,
as precision limitations can cause erroneous results and diverge from expected solutions.

Simulation enables experiments with virtual environments, advancing the level of anal-
ysis of natural and artificial applications to unprecedented levels in scientific history and
allowing the design and analysis of complex applications. Simulation also provides cost-
effective and risk-free training solutions when compared to experimentation. In sum, simu-
lation is a mature and economical problem solving approach, which will continue to develop
with the increase in available computational power.

1.1 Motivation

Simulation and its methods, such as the Monte Carlo method, are widely used in areas
such as operations management, logistics, engineering and economics. In this thesis, the
goal is to contribute to the development of the scientific field of maintenance in Portugal
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and also, if possible, to contribute, overall, with new ideas and solutions to the reliability
area.

Simulation and its methods, such as the Monte Carlo method, is widely used in vari-
ous scientific fields and in areas such as operations management, logistics and economics.
Applying simulation methods for reliability was developed mainly by mathematicians with
deductions and highly sophisticated demonstrations applied to very specific cases. These
models usually used advanced statistical and mathematical tools with excellent theoretical
results. However, it is precisely this intensive use of advanced and difficult to interpret
tools that require a long time to learn all the steps of the deductions, making their prac-
tical application difficult and creating a division from the real and industrial world. This
contributes to the lack of interest of the engineering researchers and, particularly, of the
maintenance/reliability technicians of the companies.

The study on the reliability of equipment and infrastructures has faced complex sys-
tems, that is, they are not reduced to a simple series-parallel system, usually with little
data on failures making statistical analysis difficult. On the other hand, much of the reli-
ability literature is centred on component testing where conditions are easily controllable
and the data obtained is reliable and organized.

Industrial managers and scientific reliability researchers find it very difficult to be useful
to each other. The maintenance sector needs expeditious conclusions and analysis and likes
practical tools that are not very complex.

A maintenance manager needs practical and direct tools and academics and researchers
need reliable and organized historical data and time for their analysis and conclusions. It
is difficult for a manager (other than engineering) to value reliable research or optimization
work within the maintenance area unless the cost reduction is significant.

In Portugal, there seems to be little use of simulation for reliability and the use of
simulation of scenarios for the planning and optimization of maintenance programs also
seems to be scarce.

This thesis intends to increase the use of advanced reliability techniques in Portugal,
namely using a methodology that proposes, in the end, using the various methods and
simulation software available in the market.

1.2 Objectives

As this work was carried out within the scope of a doctoral dissertation in mechanical
engineering (industrial maintenance), there was the constant care to fit the objectives and
methodologies used in this area of knowledge.

Being aware that the time available would be limited, efforts were made to delimit the
objectives to ensure a high degree of rigour and formalism in order to achieve effective
results. There were two purposes that guided the work and that were confused in many
situations: research and learning. First, the objectives that increase our knowledge and,
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second, the objectives that would carry out unprecedented research work, clearly valuable
for the maintenance management, information systems and simulation areas.

The maintenance area encompasses many fields of Science, from equipment manage-
ment to specific engineering fields, such as mechanic of fracture, corrosion, electronic de-
vices, among others. One of the main areas of maintenance is reliability in the operation
of the equipment and in development and testing.

The use of statistical models and computational algorithms has allowed for great devel-
opment of reliability over the last decades; however, there are still many fields of difficult
resolution, mainly the connection between the models developed academically and the
reality of the operation and maintenance of equipment within the companies.

More concretely, the objectives of the work can be detailed through the following topics:

• Develop knowledge of reliability with the use of modern engineering techniques ap-
plied to the maintenance of productive equipment;

• Develop and contribute to the use of simulation techniques in maintenance engineer-
ing;

• Understand the relationship between organizational concepts, maintenance manage-
ment models and information systems and data collection models for reliability and
simulation;

• Improve risk analysis (FMEA, RCM, etc.) through the use of better system reliability
models;

• Development of Monte Carlo simulation algorithms applied to reliability;

• In-depth study on the generation of censored data in order to be able to make better
reliability simulations: development of algorithms for random censor data;

• Development of simulation algorithms of consecutive k-out-of-n linear systems that
can be applied in the maintenance management of such systems or suitable preventive
systems;

• Development of algorithms to simulate the calculation the components importance
in complex systems;

• Development of the model and the algorithms for the use of the EM - Expectation
Maximization method for the estimation of Weibull distribution parameters in the
equipment reliability data;

• Application of the algorithms developed in a practical and real case;

• Development of a methodology that, using the company’s information systems, ap-
plied advanced simulation tools;
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• Contribute to an analysis that allows for better specification of the information sys-
tem for maintenance management;

• Identify new patterns in the use of information systems for maintenance management.

1.3 Thesis Structure

The topic of the thesis covers areas with a very broad scope. Thus, more emphasis is given
to the topics that are most relevant to achieve the objectives. Important concepts and
terms will be explained when they are introduced in the text. However, the document was
elaborated in a way that will allow any reader to understand the presented concepts and
results.

This first chapter presents the relevance of the subject, the objectives of the dissertation,
the influences and motivations and, finally, a description of the structure of the dissertation,
as well as a summary in diagram form in order to become more visible and understandable.

In Chapter 2, there is a theoretical approach to the basic concepts of statistics, random
variables and distribution functions used in the field of life time analysis. This chapter
introduces the terminology and symbols that will be used throughout the thesis and de-
fines the way in which the models and parameters are chosen from each of the statistical
distributions.

Chapter 1 Chapter 2 Chapter 3 Chapter 4

Objectives:

Introduction and explain

the work of PHD

Define objectives

Objectives:

Introduction concepts

Life time analisys

Objectives:

Introduction RNG

Intro Monte Carlo

Identification RNG test

Objectives:

Define type of data

Software simulation

Methodology simul

Results:
Strucuture of PHD
Framework of PHD
Resume of chapters

Results:
Terminology

Distribution models

Results:
Selection of RNG
Selection of test

Results:
Models of data censor

Algorith simul
Test Random

Figure 1.1: PhD structure - Chapters 1 to 4

Chapter 3 begins by providing a brief introduction to system simulation and modelling:
models are real-world approximations. Then, the Monte Carlo method is described and
explained as a technique, using random or pseudo-random numbers, for the solution of a
model. It is now the most powerful and commonly used technique for analysing complex
problems.
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A summary of the state of the art in the generation of random numbers is the building
block of a simulation study. The inverse transform technique used to sample, from the
exponential, uniform, Weibull and triangular distribution, is referred, as are the other
continuous distributions without a closed-form inverse transform technique. Additionally,
the rejection method, one of the classic for generating random variables, is explained.
Finally, the hypothesis test is provided below to identify whether the data obtained can
be considered as random. The desirable properties of random numbers – uniformity and
independence – need to be tested. The thesis will use the Kolmogorov-Smirnov test,
Turning point test, Runs test, Rank test and Bartels test.

In Chapter 4, the censored data type is explained. Censoring data can arise for many
sources and, depending on the sources, censoring may be of many different types. A
definition and a proposal structure are provided for complete, truncated and censor data. A
brief description of the three software programs used to develop and program the simulation
data: Matlab, Python and R software, are all integrated in a suite of software facilities for
data manipulation, calculation and graphical display. There is a sub-chapter to help define
how to construct the algorithm for studies with censored data from different statistical
distributions; at this point, a deep analysis and a huge number of simulations are carried
out to compare the results and draw very consistent conclusions. This sub-chapter is an
original proposal within the area of studies on reliability simulation. After this section, an
algorithm is developed that provides the simulation for fixed right type I censored data,
and like in the previous section, a deep study takes place. In this part and the next, an
analysis methodology is designed, explained and applied. The last section is a study with
the construction of an algorithm that carries out a simulation of type II censored data,
that is, data that was censored at the end of n events or malfunctions.

In Chapter 5, the general formulation of censored data using MLE - Maximum Likeli-
hood Estimation to achieve the unknown parameters of the statistical distributions include
the mathematical expression for five statistical distributions complete which result in the
estimation models for the various types of censored data (right, left, random, type I and
type II). Algorithms are developed to compute a simulation of right censored type I data
with Weibull distribution in Python software.

The next section describes the EM - Expectation Maximization algorithm. It is an iter-
ative process that can be used to calculate the maximum likelihood estimators in situations
with incomplete data. In this work, two software programs were used: R and python to
solve and simulate the EM method for right censored data.

Chapter 6 begins with reliability and simulation of coherent systems that consider the
structural relationship between a system and its components, that is, those relationships
that are deterministic. The RBD - Reliability Block Diagrams theory is exposed as a
success-oriented network describing the function of the system. It shows logical connections
of (functioning) components needed to fulfil a specified system function. The theory and the
reliability functions of the linear consecutive k-out-of-n systems:F and linear consecutive
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k-out-of-n systems:G are derived and sub-section algorithms and simulation are carried
out. Finally, the component importance measure is studied, and some of the indicators
most applied in simulation model examples are chosen: 2-out-of-5 ; Linear consecutive
2-out-of-5:G and Linear consecutive 2-out-of-5:F.

Chapter 5 Chapter 6 Chapter 7 Chapter 8

Objectives:

Estimation parameters

MLE Weibull

Method EM

Objectives:

Intro RBD

Realibility MC

Linear K-out-of-n

Importance component

Objectives:

Intro cases study

Model simul

Importance component

Objectives:

Conclusions PHD

Achieve goal

Future work

Results:

Formulas MLE

Formulas EM

Simul MLE, EM

Results:

Algorithms RBD

Algorithms Importance

Results:

Model Pump

Data analysis

Results simul.

Results:

Resume PHD

Resume conclusion

Future work

Figure 1.2: PhD structure - Chapters 5 to 8

The chapter 7 presents a case study on reliability analysis and simulation. Using the
theory, methods and tools explained and developed in the last chapters, the case study
is resolved and compared with simulation. The first part of the chapter begins to expose
the methodological framework for modelling the system and applying the simulation in a
real industrial company. After that, the equipment to be studied and its connections are
described: the centrifugal pump in the petrochemical industry. The sub-chapter which
follows is dedicated to data failure analysis of data reported for seven centrifugal pumps.
Finally, the simulations carried out and the results obtained are analysed and compared.
The end of the chapter presents the conclusions of the use of the methodology and how it
can be applied in practical cases.

Chapter 8 presents the main conclusions and the future perspectives of the work. A
new way of approaching simulation tools for maintenance management is proposed, with
the intent of emphasizing the importance and the complexity of simulation within the
industrial maintenance and in a complex and technological world.
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Chapter 2

Life time analysis

The chapter presents the basic concepts for life time analysis, based on classic authors like
Birolini (2017) and Ross (2017). It’s an essential background for some of the chapters of
the thesis. The focus is only on continuous distributions and have been chooses the most
relevant distributions in reliability; there are some examples with data for demonstration
of theory.

Life time analysis concerns to the life time of items or organic elements can both
be applied for industrial or biological or another environments. Industrial equipment or
product can’t be in operation forever and can’t always continue to operate in the original
state; the same happen to biological life being. The change in conditions or the breakdown
can be termed as a failure and in the world of biological life a disease or death of the life
organism.

The life time of the item, or organism life is the timespan from the beginning of op-
eration or birth, until the failure or death. The study of lifetime from items (industrial)
or products (domestic) is called reliability analysis and the lifetime of biological units is
termed as survival analysis.

A failure or breakdown of an item, equipment or product does not necessarily means
the end of the actual life time, they can be repaired or refurbished. Assuming the failure
of equipment when the item is not able to do the function that are required, for example,
a pump that can work but can’t give the necessary power to pump the liquid or give the
right pressure (or elevation) that is necessary to the fluid; the pump is not in breakdown
situation, but can’t do the function that is designed. Otherwise, for a biological unit a
death can be a failure or an occurrence of a certain disease.

The general definition of lifetime analysis considers that the time could be not either
real time or clock time. An example is the landing gear from air-plane when the lifetime
is defined by the number of landings. The lifetime data is a type of data that measures a
variable parameter , until the occurrence of an event that is in study, can be failure, death,
abnormal function, disease, etc... In general, a failure can be considered as an event.

9
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The lifetime analysis is very important in many areas of knowledge in the modern so-
ciety. In analysis, the first interest is to know how variable t fit the data to an underlying
distribution. We assume that the data are collected, organized and arranged, so the first
step is very important but is outside of the scope of the thesis. After choosing the appro-
priate distribution model that fits the data (using hypothesis test to select or confirm the
best model distribution), it’s possible to infer about the different characteristic of the data
of the item that is in study. For example, it can be estimated certain parameters related
of lifetime variable, such as MTBF - Mean Time Between Failure or the probability for
the item to be in operation in the future. There are two different models to the estimation
and inference: parametric and non-parametric. Both are used in practice and in research.

2.1 Basic concepts and terminology

Introduced by kolmogorov (2013), the probability space [Ω,F, Pr] is a mathematical model
of an experiment with random outcome. Ω is the sample space, F the event field, and Pr
the probability of each element of F. The sample space Ω is a set containing all possible
outcomes of the experiment in study.

Consider, for example, the sample space Ω = {1, 2, 3, 4, 5, 6} that represent the exper-
iment of a single throw of a die, and other one, Ω = [0,∞) in the case of failure time
of an equipment or component. The elements of Ω are called elementary events and are
represent by ω. The outcome of the experiment is a subset Γ of Ω; combinations of state-
ment become equivalent to operations with subsets of Ω. If the sample space Ω is finite
or countable, a probability can be assigned to every subset of Ω and, if Ω is continuous,
restrictions are necessary.

The event field F is thus a system of subsets of Ω which a probability can be assigned.
Such field has the following properties:

1. Ω is an element of F.

2. If A is an element of F, its complement Ā is also an element of F.

3. If A1, A2, ... are elements of F, the countable union A1 ∪A2 ∪ ... is also an element of
F.

2.1.1 Random variables

When performing an experience the objective is concerned about the value of a numer-
ical quantity determined by the output of experiment. These values of interest that are
determined by the output of the experience are known as random variables.
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The cumulative distribution function (CDF), or simply the distribution function, F of
the random variable X is defined for any real number x by:

F (x) = P{X ≤ x}

A random variable that can take a countable number of possible values is said to be
discrete. For a discrete random variable X we define its probability mass function p(x) by

p(x) = P{X = x}

If X is an discrete random variable that takes one of the possible values x1, x2, ..., then,
since X must take one of these values we have:

∞∑
i=1

p(xi) = 1

Example 2.1.1:
Suppose that X takes one of the values 0,1 or 2. If

p(0) =
1

3
, p(1) =

1

4

then, since p(0) + p(1) + p(2) = 1, it follows that p(2) = 5
12

A discrete random variable is a countable set of possible values and often have to
consider random variables whose set of possible values is an interval. The random variable
x is continuous random variable if there is a non-negative function f(x) defined for all real
number x and having the property that for any set D of real numbers

P{X ∈ D} =

∫
D
f(x)dx (2.1)

The function f is named the PDF - probability density function of the random variable
X. The PDF satisfies the following conditions:

1. f(x) ≥ 0 for all x in D.

2.
∫
D f(x)dx = 1.

3. f(x) = 0 if x is not in D.

For a continuous random variable X, the probability that is in the interval [a,b] is given
by

P (a ≤ X ≤ b) =

∫ b

a
f(x)dx (2.2)

The graphical interpretation of (2.2) is shown in figure 2.1. The shaded area represents
the probability that X is in the interval [0.5,2]
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0.5 2
x

f(x)

Figure 2.1: f(x) - probability density function of random variable x

The relationship between the CDF F (·) and the PDF f(·) is expressed by

F (a) = P{X ∈ (−∞, a)} =

∫ a

−∞
f(x)dx

Differentiating both sides of the equation:

d

da
F (a) = f(a)

The density function results as the derivative of cumulative distribution function. A
intuitive interpretation of the density function may be obtained from equation (2.1) as
follow:

P
{
a− ε

2
≤ X ≤ a+

ε

2

}
=

∫ a+ε/2

a−ε/2
f(x)dx ≈ ε · f(a)

When ε is small the probability that X will be in an interval of length ε around the
point a is approximately ε · f(a). With this result the conclusion is that f(a) is a measure
of how likely it is that the random variable will be near a.

The cumulative distribution function denoted by F(x), measures the probability that
the random variable X assume a value less than or equal to x, that is:

F (x) = P (X ≤ x).

If X is discrete, then

F (x) =
∑

all xi≤x
p(xi)

If X is continuous, then

F (x) =

∫ x

−∞
f(x)dx (2.3)
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Some properties of the CDF are:

1. F is a non-decreasing function. If a < b, then F (a) ≤ F (b).

2. limx→−∞ F (x) = 0.

3. limx→∞ F (x) = 1.

The probability analysis from X can be answered in terms of CFD, for example:

P (a < X ≤ b) = F (b)− F (a) for all a < b

−6 −4 −2 0 2 4 6

0

0.5

1

x

F
(x

)

Figure 2.2: F(x) - cumulative distribution function of random variable x

2.1.2 Expectation

In probability theory an important concept is that of the expectation of a random variable.
If X is a random variable, the expected value of X, denoted by E(x), for discrete and
continuous variable is defined as follows:

E(x) =
∑
all i

xip(xi) if X is discrete

and

E(x) =

∫ ∞
−∞

xf(x) if X is continuous

The expected value E(x) of a random variable X is also referred to as the mean µ, or
the first moment of X. The quantity E(Xn), n ≥ 1, is called the nth moment of X.

The variance of a random variable X, denoted by V(X) or Var (X) or σ2, is defined by

V (X) = E[(X − E[X])2].

A useful identity in computing V(X) is given by

V (X) = E(X2)− [E(X)]2.
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The mean E(X) is a measure of the central tendency of a random variable.
The variance of X measures the expected square of the random variable form its ex-

pected value. Thus, the variance, V(X), is a measure of the spread or variation of the
possible values of X around the mean E(X).

The standard deviation, σ, is defined to be the square root of the variance, σ2. The
mean, E(X), and the standard deviation, σ =

√
V (X), are expressed in the same units.

2.1.3 Reliability statistics

Let T1, T2, ..., Tn be a sample of size n of an continuous random variable T. For each
i = 1, 2, ..., n, the observation ti represents the lifetime of the individual i of the random
variable Ti. The sample is independent and identically distributed and defined on the
probability space (Ω,F;P ).

Let f(t) be the probability density function of T and because the equipment in relia-
bility theory implies t > 0, and t denotes the failure time (operation time free of failure)
of an item, distributed according to its cumulative distribution function F(t):

F (t) = Pr{T ≤ t} with F(0)=0

The reliability function R(t) gives the probability that the equipment or component
will operate without failure in (0, t); thus,

R(t) = Pr{T > t} = 1− F (t), t > 0,

or survival function usually adopted for lifetime analysis

S(t) = Pr{T > t} = 1− F (t), t > 0.

The survival function gives the probability that a subject or item survive past time t.
As t ranges from 0 to∞, the survival or reliability function has the following properties:

• It is non-increasing.

• At time t=0, S(t)=1. The probability of surviving at time 0 is 1.

• At time t = ∞, S(t) = S(∞) = 0. As time goes to infinity, the survival curve goes
to 0.

In theory the difference from the survival or reliability function is smooth. In practice,
it observes events on a discrete time scale (days, weeks, etc...). The failure rate λ(t) of an
item exhibiting a continuous time to failure T is defined as the conditional probability of
a failure in the interval t to t+ δt given that there was no previous failure until t

λ(t) = lim
∆t→0

1

δt
Pr{t < T 6 t+ ∆t | T > t}.
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If T and t are statistically independent, then through the following calculations we
obtain

λ(t) = lim
∆t→0

1

δt
∗ Pr{(t < T 6 t+ ∆t) ∩ (T > t)}

Pr{T > t}
= lim

∆t→0

1

δt
∗ Pr{t < T 6 t+ ∆t}

Pr{T > t}
,

and thus, assuming F (t) derivable,

λ(t) =
f(t)

1− F (t)
= −dR(t)/dt

R(t)
t > 0. (2.4)

and
−dR(t, x0)/dt

R(t, x0)
= λ(t, x0) = λ(t+ x0) (2.5)

The failure rate λ(t) is defined as conditional density for failure in (t, t+ δt) given that
the item was new at t=0 and has not failed in (0, t) and is distinguished from density f(t),
as unconditional density for failure in (t, t + δt) given only that the item was new at t=0
(assumed with F(0)=0 ).

The failure rate λ(t) applies in particular to non-repairable items. However, considering
equation 2.4, it can also be defined for repairable items which are as good-as-new after
repair (renewal), taking instead of t the variable x starting by x=0 at each renewal.

If a repairable item cannot be restored to be as-good-as-new after repair, it’s used
failure intensity z(t).

Considering the equation 2.5:

λ(t, x0) = −dR(t, x0)/dt

R(t, x0)

with the following development:

λ(t)dt = − 1

R(t)
dR(t)⇔

⇔
∫ t

0
− 1

R(t)
dR(t) =

∫ t

0
λ(t)dt⇔

⇔ [lnR(0)− lnR(t)] + c =

∫ t

0
λ(t)dt⇔

⇔ − lnR(t) + c =

∫ t

0
λ(t)dt⇔

⇔ R(t) = exp−
∫ t
0 λ(x)dx

and yields

Pr{T > t} = R(t) = e−
∫ t
0 λ(x)dx.
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Similarly, instead of failure rate the survival analysis considers the hazard function,
h(t), that is the instantaneous rate at which events occur, given no previous events.

h(t) = lim
∆t→0

Pr(t < T 6 t+ ∆t | T > t)

∆t
=
f(t)

S(t)
(2.6)

The cumulative hazard H(t) =
∫ t

0 h(u)du describes the accumulates risk up to time t
and S(t) as survival function. It’s possible derive the other two functions, if we know any
one of the function S(t), H(t), h(t):

h(t) = −∂ log(S(t))

∂t

H(t) = − log(S(t))

S(t) = exp(−H(t))

2.2 Life time distribution models

Not all statistical distributions are used as models for lifetime data. There are certain dis-
tributions, which are useful in depicting the lifetime data due to some desirable properties
that they have. Here, we briefly describe some statistical distributions that are commonly
used for modelling lifetime data. For more details on these distributions, one may refer to
O’Connor and Kleyner (2012), Bradley (2016).

2.2.1 Uniform distribution

A random variable X is said to be uniform distributed over the interval (a, b), a < b, if
its probability density function is given by:

f(x) =

 1
b−a if a < x < b,

0 otherwise

In other words, X is uniformly distributed over (a,b) if it have its mass on that interval
and it is equally likely to be "near" any point on that interval.

The mean and variance of a uniform (a,b) random variable are obtained as follows:

E[X] =
1

b− a

∫ b

a
xdx =

b2 − a2

2(b− a)
=
b+ a

2

σ2(X) =
1

b− a

∫ b

a
x2dx =

b3 − a3

3(b− a)
=
a2 + b2 + ab

3

V ar(X) =
1

3
(a2 + b2 + ab)− 1

4
(a2 + b2 + 2ab) =

1

12
(b− a)2
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Figure 2.3: f(x) - probability density function for Uniform distribution

The expected value is the midpoint of the interval (a,b). The distribution function of
X is given for a < x < b, by:

F (x) = P{X ≤ x} =

∫ b

a
(b− a)−1dx =

x− a
b− a

2.2.2 Exponential distribution

The exponential distribution is characterized when the hazard rate is constant. It is con-
sidered a homogeneous poisson process.

A continuous random variable having probability density function:

f(x|λ) =

0 (x ≤ 0),

λe−λx (x > 0),

for some λ > 0 is said to be an exponential random variable with parameter λ and
symbolically express, X ∼ Ex(λ).

Its cumulative distribution is given by:

F (x) =

∫ x

0
λe−λx = 1− e−λx, 0 < x <∞

It is easy to verify that the expected value and variance of such a random variable are
as follow:

E(X) =
1

λ
and V ar(X) =

1

λ2

This is an important distribution in reliability field, as it has the central limit theorem
relationship to statistics as the normal distribution has to non-life statistics. It describes
the constant hazard rate behaviour. As the hazard rate is often a function of time, we will
denote the independent variable by t instead of x. The constant hazard rate is denoted
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Figure 2.4: f(x) - probability density function for Exponential distribution

by λ. The exponential distribution show that the mean time of waiting (in a queue for
example) is proportional inverse from the frequency of the events; for example, if mean
have 60 events per hour, the mean time of waiting will be 1 minute.

The exponential distribution doesn’t have mode, because the density function is de-
creasing with x and the domain is open. The median is µe = (ln2)/λ.

The exponential distribution have an important property, that is called "memoryless
property" and can formalize in that way:

T ∼ Ex(λ)⇒ P (T > t+ h|T > t) = P (T > h). (2.7)

To understand this property let take T the variable that represents the lifetime of some
unit, thus equation (2.7) is a statement of fact that the distribution of the remaining life
of an item of age h does not depend on h. That is, it is not necessary to remember the age
of the unit to know its distribution of remaining life. Equation (2.7) is equivalent to

P{additional life of an item of age h exceeds t} = P{T > h+ t|T > h}

In this case, the item is not ageing, and if, for example, the item survives until ten years,
the survival distribution is the same that the item have in the beginning. In practical
applications, sometimes the exponential distribution is not used because don’t have in
account the ageing and wear-out.

Another useful property of exponential random variable is that they remain exponential
when multiplied by a positive constant. To see this suppose that T is exponential with
parameter λ, and let c be a positive number. Then

P{cT ≤ t} = P

{
T ≤ t

c

}
= 1− e−λ

t
c

which shows that cT is exponential with parameter λ/c.
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2.2.3 Gamma distribution

The gamma distribution represents the sum of n exponentially distributed random vari-
ables. The gamma distribution is a life distribution model that gives a good fit to some
applications of failure data, and it’s very flexible distribution and it describes the situation
when partial failure can exist.

For a random variable, X, and symbolically write, X ∼ G(α, λ), the probability density
function is given by,

f(x, α, λ) =
λα

Γ(α)
x(α−1)e−λx, x > 0 α, λ > 0

Where λ is the failure rate (complete failures) is calculate from λ(t) = f(t)/(1−F (t)).
λ(t) is constant (time-independent) for α = 1, monotonically decreasing for α < 1 and
monotonically increasing for α > 1. α is the number of partial failure per complete failure
or events to generate a failure.

Γ(α) is the gamma function:

Γ(a) =

∫ ∞
0

xα−1e−xdx

When (a-1) is a positive integer, Γ(a) = (a−1)! is a situation case of the partial failure.
The exponential distribution is a special case of the gamma distribution when α = 1,

that is,
f(x) = λe−λx

However, in contrast to the Weibull distribution, λ(t) always converges to λ for t→∞.
A gamma distribution with α < 1 mixed with a three-parameter Weibull distribution can
be used as an approximation to the distribution function for an item with failure rate as
the bathtub curve.

The mean and the variance are given by

E[X] =
α

λ
and V ar[X] =

α

λ2

It follows that the sum of two independent gamma-distributed random variables with
parameters λ, α1 and λ, α2 has a gamma distribution with parameters λ, α1 + α2

The figure 2.5 shows the density functions of the gamma distribution for different pa-
rameter values, which allows to verify that this distribution covers very different situations.

When the α parameter is integer, the gamma distribution is known as the Erlang
distribution, and, when α = 1, results in the particular case of the exponential distribution.

2.2.4 Weibull distribution

The Weibull distribution is the most popular statistical distribution used in reliability
engineering. It can be used to fit many life distributions and it has the great advantage in
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Figure 2.5: f(x) - probability density function for Gamma distribution

reliability field because adjusts well to the reliability data.

The density function is given by

f(x, η, β) =
β

ηβ
tβ−1e

−( t
η

)β with t ∈ R+

And the corresponding reliability function is

R(t) = e
−
(
t
η

)β

The hazard rate is

λ(t) =
β

ηβ
tβ−1

The shape parameter β is a non-dimensional parameter and reflect the type of failure
mode, such as infant mortality (β < 1), random or exponential (β = 1), or wear-out
(β > 1).

The scale parameter η has the same unit as t, or characteristic life - it is life at which
63.2% of the population will have failed and is a function of the MTTF – Mean Time To
Failure with a general relationship given by the following equation:

MTTF = E(T ) = µ = ηΓ(1 + 1/β)

The other statistical characteristic that should be calculated during a typical Weibull
analysis procedure being applied to analysis the failure data is the variance given by the
following equation:

V ar[t] = η2(Γ(1 + 2/β)− Γ2(1 + 1/β))
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An analytical expression for the Laplace transform of the Weibull distribution function
does not exist.
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Figure 2.6: f(x) - probability density function for Weibull distribution

2.2.5 Normal distribution

The most widely used statistical distribution in theory and practice is the function named
as the normal or Gaussian. From the point of view of practical experiences its has been
verified that a lot of observable variables of a certain population are represented by a
normal distribution.

The normal distribution has important properties that make it very attractive for
practical applications and for theoretical studies such as:

• Description of physical phenomena

• Biometric variables (weight, height, length, etc.)

• Variables linked to production and quality

• In many limit situations, the other distributions converge to the distribution Normal,
as the central limit theorem explains.

A random variable X has a standard distribution with parameters µ and σ2 with a
density function of the form:

f(x|µ, σ2) =
1

σ
√

2π
e−

1
2σ2 (x−µ)2

.

It is written symbolically, X ∼ N(µ, σ2)

The parameters of the normal distribution are represented by µ and σ2 because they
correspond, respectively, to the mean and variance of the random variable. Some authors
prefer to employ the σ (standard deviation) parameter.

The cumulative distribution function is defined by the integral

F (x|µ, σ2) =

∫ x

−∞

1

σ
√

2π
e

{
− 1

2σ2 (t−µ)2
}
dt,
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for which no analytical solution is known. The values of the distribution function must
be calculated using numerical analysis methods.

An important reason for the wide applicability of the normal distribution is the fact
that whenever several random variables are added together, the resulting sum tends to
normal regardless of the distribution of the variables being added. This is known as the
central limit theorem. It justifies the use of the normal distribution in many engineering
applications, including maintenance. The normal distribution is close fit to most quality
control applications and some reliability observations, such as the lives of items subject to
wear-out failures.

The N (0,1) distribution is usually referred to as standardized normal distribution.
This particular case, where µ = 0 and σ2 = 1, is very important and is especially useful
once that their values are tabulated.

If X ∼ N(µ, σ2) the variable Z = X−µ
σ has distribution N(0,1).

If we consider the change of variable defined by the standardized variable

Z =
X − µ
σ

the density function and the distribution function are, respectively:

φ(z) =
1√
2π
e−

z2

2 ,

Φ(z) =
1√
2π

∫ t

−∞
e−

z2

2 dt.

x

µ = 0 σ = 0.5
µ = 0 σ = 1

Figure 2.7: f(x) - probability density function for Normal distribution

The figure 2.7 represents the density functions of the normal distribution for some
values of µ and σ2. From the analysis of the expression f(x|µ, σ2) we can deduce that the
normal density function is symmetric with respect to the straight line x = µ.
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The normal distribution N(0,1) is largely tabulated. The first aspect to be taken
into account when referring to the tables is that they refer to Φ(z), and therefore allows
to calculate for each z the respective ordinate of the standardized normal distribution
function. For example, if z = 0.75, results Φ(0.75) = P (Z < 0.75) = P (Z ≤ 0.75) = 0.77.
The Normal table generally refers only to non-negative values of u.

However, the symmetry (with respect to 0) of the normal distribution ensures that
Φ(z) = 1 − Φ(−z), which allows to immediately determine values of Φ(z) to negative
values. For example, if z = −0.3, results Φ(−0.3) = 1− Φ(0.3) = 1− 0.617 = 0.382.

Example 2.2.1:
The annual precipitation (in mm) in the Viseu district is well modelled by a normal distri-
bution with µ = 900 mm and σ = 70 mm. Suppose that it was intended to calculate the
probability that the annual precipitation would be between 800 and 1000 mm.

P (800 < X < 1000) =

∫ 1000

800
f(x)dx = F (1000)− F (800) = Φ

(
1000− 900

70

)
− Φ

(
800− 900

70

)
= Φ(1.42)− Φ(−1.42) = 0.922− 0.078 = 0.83

Suppose now that it was intended to determine the probability that the annual precip-
itation would be less than 850 mm.

P (X < 850) = F (850) =

∫ 850

−∞
f(x)dx = Φ

(
850− 900

70

)
=

= Φ(−0.71) = 1− Φ(0.71) = 1− 0.76 = 0.24

2.2.6 Log-normal distribution

A random variable is log-normally distributed if the logarithm of the random variable
is normally distributed. The log-normal is a versatile distribution and often a better
fit to reliability data, such as for populations with wear-out characteristics. The log-
normal distribution have an advantage to the normal distribution in reliability applications
because it doesn’t extend below zero. It’s used to model usage data, such as repair time
of maintenance, pumps and motors in hours per year, mechanical devices, etc...

The log-normal PDF is:

f(x) =
1

xσ
√

2π
e−

1
2σ2 (lnx−µ)2

.

The log-normal is the normal distribution with ln x as the variable. The mean and the
variance of the log-normal distribution are given by:

E[X] = exp(µ+
σ2

2
)



24 Life time analysis

V ar[X] = [exp(2µ+ 2σ2)− exp(2µ+ σ2)]1/2

where µ and σ are the mean and the standard deviation of the ln data. When µ� σ,
the lognormal distribution approximates to the normal distribution.

The lognormal distribution describe reliability of items in which the hazard rate in-
creases from x=0 to a maximum and then decreases.

2.2.7 Triangular distribution

A random variable X has a triangular distribution if its pdf is given by

f(x) =


2(x−a)

(b−a)(c−a) a ≤ x ≤ b,
2(c−x)

(c−b)(c−a) b ≤ x ≤ c,

0, elsewhere

where a ≤ b ≤ c. The mode occurs at x=b. A triangular pdf is shown in figure 2.8.
The parameters (a,b,c) can be related to other measures, such as the mean and the mode,
as follows:

E(X) =
a+ b+ c

3
(2.8)

x

f(x)

b

2
c−a

a c

Figure 2.8: f(x) - probability density function for Triangular distribution

From equation (2.8) the mode can be determined as

Mode = b = 3E(x)− (a+ c).

Since a ≤ b ≤ c, it follows that

2a+ c

3
≤ E(X) ≤ a+ 2c

3
.
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The mode is used more often than the mean to characterize the triangular distribution.
As shown in figure (2.8) its height is 2/(c−a) above the x axis. The CDF for the triangular
distribution is given by:

F (x) =



0, x ≤ a
(x−a)2

(b−a)(c−a) a < x ≤ b,

1− (c−x)2

(c−b)(c−a) b < x ≤ c,

1, x > c.

2.3 Statistical confidence

Statistical confidence studies are used in making an assertion about a population given data
from a sample and to determined the confidence interval which includes the true value.
The confidence interval is the interval between the upper and lower confidence limits, if
the experiment is replicated many times. the higher the number of sample more will be
our intuitive confidence that the estimate of the population parameter will be close to the
true value.

Statistical confidence is different from engineering confidence; statistical confidence
takes no account of engineering or process knowledge. The confidence interval must always
be interpreted in the light of engineering knowledge, which might serve to increase or
decrease our engineering confidence.

If the population value x follows a normal distribution, it can be shown that the
means, x̄, of samples drawn from it are also normally distributed, with variance σ2/n. The
Standard variance of the sample mean is also called the standard error of the estimate.

If x is not normally distributed, provided that n is large (n > 30), x̄ will tend to a
normal distribution. If the distribution of x is not excessively skewed (and is unimodal)
the normal approximation for x̄ at values of n as small as 6 or 7 may be acceptable. These
results are derived from the central limit theorem. They are of great importance in deriving
confidence limits on population parameters, based on sample data. In reliability field, it
is not usually necessary to derive exact confidence limits and therefore the approximate
methods described are quite adequate.
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Chapter 3

Simulation, random number
generator and statistical test

The use of methodologies that help to eliminate uncertainty in the business decision-
making process is of enormous importance in modern business. The advent of modelling
and simulation provides itself as an innovative and useful support tool for improving process
and business management.

This chapter presents a brief theoretical introduction to the concepts of modelling and
simulation, followed by the description and explanation of RNG - random number gener-
ating and the last part, the introduction of statistical test of hypothesis for randomness.

There are many reasons guiding the search for knowledge and the need to understand
what surrounds us. One of the first method of learning about the nature was experimenta-
tion, and for thousands of years remains one of the main ways of solving problems. In the
experimentation there are two entities, the object studied and the framework of conditions
that defines how the experiment takes place.

However, sometimes the problems to be solved are so complex that experimentation
may prove to be an inadequate methodology due to ethical, risk or cost issues. In other
cases, the solution is simply impossible to put into practice. Science has been able to find
ways to address these obstacles, one of which is to make abstraction from the problem and
think of it using a conceptual model.

3.1 Simulation and modelation

Solving problems is in human nature. The techniques used in this type of problem solving
are analytical in the sense that they are symbolic and based on reasoning, providing generic
solutions to the problems faced. An abstraction of the entity is made and the resulting
model is then used to evaluate the system. This abstraction is made with loss of information
(simplifications), but it represents the behaviour of the entities, allows analysis and is
sufficient to demonstrate the properties of the proposed model. It is essential that the
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results of the model are in agreement with those observed in the entity, in which case they
can be considered valid.

Starting in the 1940s, computers provided alternative ways of dealing with these mat-
ters, since they are well equipped to apply approximation techniques, eliminate human
computation errors, and solve problems at a higher speed. Thus, since the advent of com-
puting, the numerical models have been converted into computational solutions (also called
computational simulations). A computational simulation cycle can also be developed with
the difference that the model is executed by specialized devices. Verification continues to
be necessary, as precision limitations can cause erroneous results and diverge from expected
solutions.

The simulation enables experiments with virtual environments, advancing the level of
analysis of natural and artificial applications to levels unprecedented in scientific history,
and allowing the design and analysis of complex applications. The simulation also provided
cost-effective and risk-free training solutions when compared to experimentation. The
simulation is a mature and economical problem-solving approach, which evolution fast
with increasing computational power available.

According to Banks et al. (2013), at the heart of the M&S - Modelling and Simulation
discipline is the notion that "models are real-world approximations". The first step inM&S
is the creation of a model that represents an event or system, which can then be modified
and the simulation allows observation of its behaviour. After performing simulations on
the model, the analysis takes place to draw conclusions, verify and validate the relevant
research and make recommendations. Visualization provides a way of interacting with the
models, and is a form of data representation. The foundations of M&S are based on these
four concepts:

1. Modeling

2. Simulation

3. Preview

4. Analysis

In M&S a system is a collection from different elements that together produce results
and is the subject or thing to be investigated, and the object of the model development. A
quantitative evaluation of the system is important to the modeller, noting how the system
reacts to multiple inputs in different environments using objective evaluation criteria.

A model is a physical, mathematical, or logical representation of a system, entity,
phenomenon or process. Its function is to give the best representation of real events
and/or things of a real system, mainly because these can be difficult, if not impossible,
to investigate. Essential systems that can not be removed from operation or theoretical
systems without physical parts where to conduct experiments have to developed models
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Figure 3.1: The Modelling and Simulation (M&S ) process (Sokolowski and Banks 2010)

and the study is carried out on them. The development of a model occurs by abstracting
from reality using a description of the system. Only the characteristics of the system that
affect its performance need to be represented in the model; the exhaustive inclusion of
all the characteristics of the real system would imply high costs, time consuming, and
excessive complexity being perhaps impossible. The model should be simple as possible,
but have to represents the system. It is a challenge for the modeller to decide which system
features should be included in the model.

A model can be physical or a set of mathematical equations or logical statements
that describe the behaviour of a system (theoretical/notional systems). Mathematical
models can result in analytical solutions (mathematical proof) if the complexity is low, or
numerical solutions in other cases (with associated degree of uncertainty). The process of
solving numerically a problem in this context is referred to as computer simulation, the
definition of simulation is more complex than the model definition.

Therefore, a simulation can be understood as a method that describes the behaviour of
a system using a mathematical or symbolic model, due to the fact that interaction with a
real system may not be possible due to inaccessibility, risk, cost or unacceptable interaction
with the system and even the possibility that the system does not even exist. A single
implementation of the simulation is referred to as a test; a series of simulation trials is an
exercise, and may occur as part of a learning process.

Another important concept is M&S it refers to the process of developing a model of
a system and then executing simulations on that model in order to collect data related
to its performance. The resulting data can serve as a basis for management, training
and technical decisions, and when systems of large size and complexity are concerned,
simulation may be the only viable tool for its analysis. M&S begins with the development
of a computer simulation model based on a real or theoretical system and then runs the
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model on a computer and analyses the resulting data.

According to Sokolowski and Banks (2010) the M&S development cycle through four
phases, each requiring a different set of associated technologies, as shown in figure 3.1. It
is only after a number of iterations that the process will reach its optimum efficiency. The
first iteration is useful for providing information and data for model optimization. Good
practices recommend repetition of the process until the members of the participating teams
are satisfied with the results obtained that produce a reliable representation of the system
studied.

3.2 Monte Carlo Simulation

The reliability of the system measures its ability to operate when a demand appears in
industrial or service environment. However, after a long development in reliability science
it still continues to be difficult to the maintenance manager to do some good work to
predict and optimize the best interval of time for maintenance and the time to failure
of equipment. That difficulty have contributed to make distant the relation between the
academic or scientific world of reliability and the professional staff of maintenance which
shows us that the actual models of reliability are not so good enough.

This section discusses the reliability methods and the use of mathematical methods, in
particular the Monte Carlo method, as tools that can support and improve the engineering
and reliability of systems. To study the characteristics, accuracy and related problems of
different Monte Carlo techniques some typical examples have been selected, analysed and
discussed.

Modern science uses the rules and methods to enable prediction. The predictions
calculated in physics are very accurate, but to other science like social sciences or reliability
the predictions are not so accurate and normally very difficult to calculate. Systems usually
operate according to coherent laws but they are affected by internal and external random
events and interactions. Their behaviour is inherently stochastic, not deterministic one in a
very controlled and defined situation, so, its necessary to use mathematical and statistical
methods, and, in particular, the Monte Carlo method in the prediction process to have
some accuracy.

One thing that defines some deep difference between our time and the ancient empires,
is the modern concept of reliability and availability. In the old empires the things were done
to work or serve like bridges, houses and utilities. The main problem was how to produced
or to developed the project, that some people had desired (in principle the King). Today
the productions of things are normal and effortlessly, the design of the product is done
taking into account how much time the product will work until the first failure or time of
life cycle of the product. Reliability is a concept that most of the occidental people have in
their mind, since the designer engineering until the consumer with low qualification. It’s



3.2 Monte Carlo Simulation 31

usual that people ask how much it costs the maintenance of the car by year or by a long
period of time, and how many years they can have that car with no problem.

The Monte Carlo method was considered to be a technique, using random numbers,
for solution of a model and is now the most powerful and commonly used technique for
analysing complex problems. It’s application can be found in many fields of the science.
Today it is recognized as playing an important role in system reliability and availability
assessment of large-scale complex networks. For over 40 years many efforts have been made
in developing efficient MC simulation methods and software for determining the confidence
interval on system reliability and availability. Classical statistical methods can easily find
point estimates of complex system reliability, but it’s very difficult and, sometimes, even
impossible to obtain confidence intervals of systems reliability and availability.

Simulation can be defined as a technique of performing random experiments on the
model that represents a system; it includes sampling stochastic simulation from probability
distributions, and involves certain types of mathematical and logical models that describe
the behaviour of business or economic system. Simulation is often viewed as to be employed
when everything else has failed. Recent advances in simulation methodologies, availability
of software, and technical developments have made simulation one of the most widely used
and accepted tools in system analysis and operation research.

The Monte Carlo method was used to resolve the Boltzmann equation in the beginning
of the XX century. In 1908 the famous statistician student (Gosset) used the Monte Carlo
method for estimating the correlation coefficient in t-distribution.

The term “Monte Carlo” was introduced by John von Neumann and Stanislaw Ulam
during World War II as referred by Eckhardt (1987); it was suggested by the gambling
casinos at the city of Monte Carlo in Monaco. The Monte Carlo method was then applied to
research properties of neutron travel through radiation shielding. The work involved direct
simulation of behaviour concerned with random neutron diffusion in fissionable material.
After that, Monte Carlo methods were used to complex multidimensional and infinitive
integrals and to solve integral equations that were not amenable to analytic solution.

The Monte Carlo method can be used also for solution of deterministic problems.
A deterministic problem can be solved by the Monte Carlo method if it has the same
formal expression as a stochastic process. There are some different techniques to develop
the simulation by Monte Carlo. The next section explains the Hit or Miss Monte Carlo
method because is the easiest method to understand (particularly if explained in the kind
of graphical language involving a curve in a rectangle).
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3.2.1 The Hit or Miss Monte Carlo method

To calculate the one dimensional integral, we must start to assume that the function g(x)
is bounded

0 ≤ g(x) ≤ c , a ≤ x ≤ b. (3.1)

Let Ω denote the area of rectangle in figure 3.2

Ω = {(x, y) : a ≤ x ≤ b , 0 ≤ y ≤ c} (3.2)

X0 1 2 3 4 5 6 7 8 9

Y
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Ω

Figure 3.2: Monte Carlo Method - function g(x) and area of Ω

Let (X,Y) be a pair that represents a random vector uniformly distributed over the
rectangle Ω with probability density function

fXY (x, y) =

 1
c(b−a) , if (x, y) ∈ Ω

0, Otherwise.
(3.3)

The probability p that the random vector (X,Y) falls within the area under the curve
g(x), denoting S = {(x, y) : y ≤ g(x)} and observing that the area under the curve g(x) is

Area under g(x) = area S= I =

∫ b

a
g(x)dx (3.4)

It’s result

p =
areaS

areaΩ
=

∫ b
a g(x)dx

c(b− a)
=

I

c(b− a)
(3.5)

Assume that N independent random vectors (X1, Y1), (X2, Y2), . . . , (Xn, Yn) are gener-
ated. The parameter p can be estimated by
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P̂ =
NH

N
(3.6)

Where NH is the number of occasions on which g(Xi) > Yi, i=1,2,. . . ,N, that is, the
number of “hits”, and N −NH is the number of “misses"; as depicted in figure 3.2, score a
miss if g(Xi) ≤ Yi, i=1,2,. . . ,N,

It follows from (3.5) and (3.6) that the integral I can be estimated by

I ≈ p = c(b− a)
NH

N
(3.7)
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Figure 3.3: Monte Carlo Method - Hit and Miss area

In resume, to estimate the integral I we take a sample N from the distribution (3.3),
count the number NH of hits (below the curve g(x)) and apply (3.7). This approach to
approximating integrals is called the Monte Carlo approach.

The algorithm to Hit or miss Monte Carlo method is:

Step 1: Generate a sequence {Uj}2Nj=1 of 2N random numbers.

Step 2: Arrange the random numbers into N pairs (U1, U
′
1), . . . , (Un, U

′
n) in any form such

that each random numbers U1 is used exactly once.

Step 3: Compute Xi = a+ Ui(b− a) and g(Xi), i=1,2,. . . ,N.

Step 4: Count the number of cases NH for which g(Xi) > cU
′
i .

Step 5: Estimate the integral I and normalized by

p = c(b− a)
NH

N
(3.8)
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The appendix A have as subject Monte Carlo methods simulation on reliability and
three method are presented and simulated: Kamat-Riley, Rice and Moore, KLMC. To cal-
culate availability of systems with independent components using Monte Carlo a proposal
by Dubi (2000) is introduced.

3.3 Random number generators

When a computer is being used to simulate the real world, random numbers are required
to make things realistic. Sometimes it’s impractical to examine all possible cases, but with
simulation and random sample number it’s possible to provide insight into what constitutes
the model behaviour. Randomness is also an essential part of optimal strategies in the
theory of games and emulate in some way, rolling dice, shuffling decks of cards, spinning
roulette wheels, etc., The heart of a simulation is the ability to generate random numbers,
where a random number represents the value of a random variable uniformly distributed
on (0,1).

The natural chaos that computer graphics schemes often seek to emulate, is itself fake
randomness; randomness is after all just a function of available information and not some
property of the universe.

Random number generators can be classified into three groups, according to the source
of their "randomness": - TRNGs true random number generators; - QRNGs quasi-random
number generators; - PRNGs pseudo-random number generators. The true random num-
ber generators (TRNGs) are hardware solutions such as the method that amplify noise
generated by a resistor or a semi-conductor diode and feed this to a comparator. True
random number generators can be used for research, cryptography, modelling, etc. The
quasi-random number generators (QRNGs) is defined as sequentially occupied an solu-
tion space. These generators avoids clusters and attempt to evenly fill an n-dimensional
space with points, without grouping of points in order to obtain as uniform as possible
coverage of the domain give up serial independence of subsequently generated values. The
pseudo-random number generators (PRNGs) are the modern approach using computer to
successively generate pseudo-random numbers. These pseudo-random numbers is a se-
quence of values having the appearances of being independent uniform (0,1). In the next
section a more deep study will be describe about generation of pseudo-random number
accordingly to some of the classic authors, Rubinstein and Kroese (2016), Ross (2012),
Vose (2008) and Gurubilli (2010).

3.3.1 Pseudo-random number generation

The generation of pseudo-random numbers starts with the algorithm with initial value x0,
called the seed, and then recursively computes successive values Xn, n ≥ 1 by letting

xn = axn−1 modulo m (3.9)
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where a and m are given positive integers, and where the expression modulo m means
that axn−1 is divide by m and the remainder is taken as the value of xn. Each Xn is either
0, 1, ...,m − 1 and the quantity xn/m- called a pseudo-random number - is taken as an
approximation to the value of a uniform (0,1) random variable.

The use of equation (3.9) to generate random numbers is called the multiplicative
congruential method. Each of the numbers is called the multiplicative congruential number,
it follows that after some finite number a value must repeat itself; and once this happen
the whole sequence will begin to repeat. To minimize the risk of repetition, its need to
choose the constants a and m, that, for any initial seed x0, the number of variables that
can be generated before this repetition occurs is large.

A guideline that appears to be of help in satisfying the above three conditions is that
m should be chosen to be a large prime number, that can be fitted to the computer world
size. For 32-bit word machine (where the first bit is a sign bit) it has been shown that the
choices of m = 231 − 1 and a = 75 = 16807 result in desirable properties.

Another generator of pseudo-random numbers uses recursions of the type

xn = (axn−1 + c) modulo m (3.10)

Such generators are called mixed congruential generators (as they involve both an
additive and a multiplicative term). When using generators of this type, often choose m to
equal the computer’s word length, since this makes the computation of the modulo m that
is, the division of axn−1 + c by m is quite efficient. Most computer languages already have
a built-in random number generator which can be called to generate random numbers.

The first objection to this method, common to all random number generators, is that
the succession of Xn values is not at all random. However, we will see later that if we
choose the convenient initial parameters, the sequence {un} can resemble a succession of
random numbers.

The second objection is that the values ui can only take the values 0, 1
m ,

2
m , ...,

m−1
m ,

so there is no possibility of generating a value between 2
m and 3

m . Choosing large enough
m ≥ 109, the set of possible values is sufficiently dense in [0,1] so that the sequence
resembles that of a uniform continuous variable in the chosen range.
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Example 3.3.1:
Let take the congruential generator xn = 5xn−1 + 1mod9 with x0 = 1

n

0 1 −
1 6 0.666

2 4 0.444

3 3 0.333

4 7 0.777

5 0 0

And the solution:
x1 = (5 ∗ 1 + 1)mod9 = 6mod9 = 60÷ 9 =6 with remainder 6

x2 = (5 ∗ 6 + 1)mod9 = 31mod9 = 31÷ 9 = 3 with remainder 4

x3 = (5 ∗ 4 + 1)mod9 = 21mod9 = 21÷ 9 = 2 with remainder 3

x4 = (5 ∗ 3 + 1)mod9 = 16mod9 = 16÷ 9= 1 with remainder 7

x5 = (5 ∗ 7 + 1)mod9 = 36mod9= 36÷ 9= 4 with remainder 0

x6 = (5 ∗ 0 + 1)mod9=1mod9= 1÷ 9= 1 with remainder 1

The cycle repeat at x6 = period of 6

In the computer simulation of systems it is assumed it generates a sequence of pseudo-
random numbers that can be taken as an approximation to the values of a sequence of
independent uniform (0,1) random variables.

3.3.1.1 The middle-square-method algorithm

The middle-square-method was one of the first methods that John Von Neumann (1946)
used to generate pseudo random numbers. The method is made in order to generate the
next number with squaring the current number and let the next number be the middle
part of the product.

Step 1: Set a seed number; random-number functions in computers often use dates and times
for this purpose.

Step 2: Square the seed.

Step 3: A 8 digit number (the length is 2n) is necessary, so if the result of square is less than
8 digits, add zeros to the front of the number.
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Step 4: Finally, fix the middle four digits; take away the first 2 and last 2 digits and retain
the remaining 4 digits and repeat the cycle with this number.

Example 3.3.2:

x0 = 4608⇒ x2
0 = 21|2336|64⇒ x1 = 2336⇒ u1 = 0.2336

x1 = 2336⇒ x2
1 = 5|4568|96⇒ x2 = 4568⇒ u2 = 0.4568

x2 = 4568⇒ x2
2 = 20|8666|24⇒ x3 = 8666⇒ u3 = 0.8666

x3 = 8666⇒ x2
3 = 75|0995|56⇒ x4 = 995⇒ u4 = 0.995

x4 = 995⇒ x2
4 = 0|995|56⇒ x5 = 0995⇒ u5 = 0.0995

x5 = 995⇒ x2
5 = 95|0100|00⇒ x6 = 9900⇒ u6 = 0.9900

x6 = 9900⇒ x2
6 = |100|00⇒ x7 = 100⇒ u7 = 0.100

Sometimes the generator ends up in a fairly short cycle. Convergence is a fact of im-
portance in randomness. Once zero is obtained all the following numbers are also zero.
Numbers produced pseudo-randomly over some range of values eventually settle down to-
ward a constant number, which is where the random sequence stops. Using a larger n
contribute to get a large number of pseudo random numbers before the generator degen-
erates.

3.3.1.2 Generating continuous random variables

The inverse transform technique can’t be used to sample all distributions but from
some of the most important like the exponential, uniform, Weibull and triangular distribu-
tion and the underlying principle for sampling from a wide variety of discrete distributions.
Is not the most efficient technique computationally, but the most straightforward.

Consider a continuous random variable having distribution function F. The inverse
transformation method for generating a random variable is based on the following propo-
sition:

Proposition 1 (Ross (2012)). Let U be a uniform (0,1) random variable. For any con-
tinuous distribution function F the random variable X defined by:

X = F−1(U)
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has distribution F.

F−1(u) is defined to be that value of x such that F (x) = u.

Proof. Let Fx denote the distribution function of X = F−1(U). Then

FX(x) = P{X ≤ x}

= P{F−1(U) ≤ x} (3.11)

F(x) is a distribution function with a monotone increasing function of x and the
inequality "a ≤ b" is equivalent to the inequality "F (a) ≤ F (c)". Hence, from equation
(3.11) yields,

FX(x) = P{F (F−1(U) ≤ F (x))}

= P{U ≤ F (x)} since F (F−1(U)) = U (3.12)

= F (x) since U is uniform(0,1) (3.13)

The proposition 1 shows that from the continuous distribution function F can generate
a random variable X by generating a random number U and then setting X = F−1(U).

Example 3.3.3:
Generate a random variable X having distribution function:

F (x) = xn, 0 < x < 1

And let x = F−1(u), then

u = F (x) = Xn or, equivalently, x = u1/n

Hence, the procedure can generate such a random variable X by generating a random
number U and then setting X = U1/n.

One of the most powerful use of the inverse transform method is the approach to
generating exponential random variables. If X is an exponential random variable with
rate 1, then it’s distribution function is given by

F (x) = 1− e−x

Let x = F−1(u), then
u = F (x) = 1− e−x
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or
1− u = e−x

or, taking logarithms,
x = −log(1− u)

Finally, generate an exponential with parameter 1 by generating a random number U
and then setting:

X = F−1(U) = −log(1− U)

Noting that 1 − U is also uniform on (0, 1) and thus − log(1 − U) has the same dis-
tribution as − logU , that is, the negative logarithm of a random number is exponential
distributed with rate 1 and small savings time can be obtained. In addition, if X is ex-
ponential with mean 1 then, for any positive c, cX is exponential with mean c. Hence, an
exponential random variable X with rate λ (mean 1/λ) can be generated by generating a
random number U and setting:

X = − 1

λ
logU

3.3.1.3 Continuous distributions without a closed-form inverse

The inverse transform technique for random-variate generation it not possible for a number
of useful continuous distributions include the normal, gamma and log-normal distributions
because they do not have a closed form expression for their CDF or its inverse. Notice that
even a closed-form inverse requires approximation in order to evaluate it on a computer.
For example, generating exponential distributed random variates by the inverse CDF X =

F−1(U) = − ln(1 − U)/λ requires a numerical approximation for the logarithm function.
Thus, there is no essential difference between using an approximate inverse CDF and
approximately evaluating a closed-form inverse. The problem with using an approximate
inverse CDF is that some of them are computationally slow to evaluate.

To illustrate the idea, suppose a generating a gamma (n, λ) random variable. Since the
distribution function F of such a random variable is given by

F (x) =

∫ x

0

λ exp−λy(λy)n−1

(n− 1)!
dy

It is not possible to give a closed form expression for its inverse. However, by using
the result that a gamma (n, λ) random variable X can be regarded as being the sum of
n independent exponentials, each with rate λ (see section 2.2.3 of chapter). Specifically,
generate numbers U1, ..., Un and then setting:
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X = − 1

λ
logU1 − · · · −

1

λ
logUn (3.14)

= − 1

λ
log(U1 . . . Un) (3.15)

where the use of the identity
∑n

i=1 log xi = log(x1, . . . , xn) is computation time saving
and it requires only one logarithm rather than n logarithms computations.

The last result can be used to provide an efficient way of generating a set of exponential
random variable by first generating their sum and, then, conditional on the value of that
sum, generating the individual values.

For example, to generate X and Y, a pair of independent and identically distributed
exponentials having mean 1, by first generating X+Y and then using the result that, given
X + Y = t, the conditional distribution of X is uniform on (0,t). The following algorithm
can thus be used to generate a pair of exponentials with mean 1.

Step 1: Generate random numbers U1 and U2.

Step 2: Set t = − log(U1U2).

Step 3: Generate a random number U3.

Step 4: X = tU̇3, Y = t−X.

Comparing the last algorithm with the direct approach of generating two random num-
bers U1 and U2 and then calculate

X = − logU1, Y = − logU2

shows that the above algorithm saves a logarithmic computation at the cost of two
multiplications and the generation of a random number.

3.3.1.4 The rejection method

The rejection method for generating a random variable having density function g(x) as the
basis for generating from the continuous distribution having density function f(x) by gen-
erating Y from g and then accepting this generated value with a probability proportional
to f(Y )/g(Y ).

Let c be a constant such that:

f(y)

g(y)
≤ c for all y

Accept the value if U ≤ c, otherwise reject.
The following algorithm for generating a random variable for the rejection method is:
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Step 1: Generate Y having density g

Step 2: Generate a random number U

Step 3: If U ≤ f(y)
g(y) , set X=Y. Otherwise, return to step 1.

Example 3.3.4 (Ross (2012)):
Let use the rejection method to generate a random variable having density function f(x):

f(x) = 20x(1− x)3, 0 < x < 1

since this random variable (which is beta with parameter 2.4 ) is concentrated in the
interval (0,1), let us consider the rejection method with:

g(x) = 1, 0 < x < 1

To determine the constant c such that F (x)/g(x) ≤ c, to determine the maximum
value of:

f(x)

g(x)
= 20x(1− x)3

Differentiation of this quantity yields:

d

dx

(
f(x)

g(x)

)
= 20[(1− x)3 − 3x(1− x)2]

Setting this equal to 0 shows that the maximum value is attained when x = 1/4 and
thus:

f(x)

g(x)
≤ 20

(
1

4

)(
3

4

)3

=
135

64
≡ c

Hence,

f(x)

g(x)
=

256

27
x(1− x)3

and thus the rejection procedure is as follows:

Step 1: Generate random numbers U1 and U2

Step 2: If U2 ≤ 256
27 U1(1− U1)3 stop and set X = U1. Otherwise, return to step1

The average number of times that Step 1 will be performed is c = 135
64 ≈ 2.11
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3.4 Test for random numbers

The design of RNG should involve a rigorous mathematical analysis of their successive
values that they produce over their entire period length instead of choose some arbitrary
algorithms. After having selected and implemented one RNG, must be tested empirically.
Statistical tests are also required for RNGs based on physical devices like TRNGs. The
desirable properties of random numbers – uniformity and independence – have to be tested.
A huge number of tests can be performed, see L’Ecuyer (2012) and Knuth (2011).

In the beginning the tests applied to RNGs were basic and then were followed by more
powerful ones to detect regularities in linear generators, for example the tests later proposed
by Marsaglia and Tsay (1985). Some of these tests and new ones have been studied more
extensively by L’Ecuyer and Simard (2007), Marsaglia et al. (2002) and others.

The number of random tests that can be defined is high and no one can guarantee that
a particular generator is fully reliable. Statistical tests can never prove that a RNG is
infallible and these several tests detect different problems with the RNGs. Random tests
can contribute to trust or not in the RNG.

The good and bad RNGs is when the bad RNG fail very simple tests, while the good
RNG fails only very complicated tests.

A brief description of different types of tests discussed in this chapter is as follows:

1. Frequency test. Uses the Kolmogorov-Smirnov or the chi-square test to compare
distribution of the set of numbers generated to a uniform distribution

2. Runs test. Tests the run up and down or the runs above and below the mean by
comparing the actual values to expected values. The statistic for comparison is the
chi-square.

3. Autocorrelation test. Test the correlation between numbers and compares the sample
correlation to the expected correlation of zero.

4. Counts the number of digits that appear between repetitions of a particular digit and
then uses the Kolmogorov-Smirnov test to compare with the expected size of gaps.

There is RNGs for all types of applications and they are designed so that, their output
sequence is a truly image of a sequence of independent uniform random variables, usually
over the real interval (0, 1).

In testing for uniformity, the hypothesis are as follows:

H0 : Ri ∼ U [0, 1]

H1 : Ri � U [0, 1]
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The null hypothesis, H0 is verified if the numbers are distributed uniformly on the
interval [0, 1]. Not reject the null hypothesis means that no evidence of non-uniformity
has been detected on the basis of this test. This does not imply that further testing of the
generator for uniformity is unnecessary.

Testing for independence, the hypothesis are as follows:

H0 : Ri ∼ independently

H1 : Ri � independently

This null hypothesis, H0, verified if the numbers are independent. Not reject the null
hypothesis means that no evidence of dependence has been detected on the basis of this
test.

For each test, a level of significance α must be stated. The level α is the probability of
rejecting the null hypothesis given that the null hypothesis is true, or

α = P (reject H0|H0 true)

The decision sets the value of α for any test. Frequently, α is set to 0.01 or 0.05.
If several tests are conducted on the same set of numbers, the probability of rejecting

the null hypothesis on at least one test [i.e., making a typeI (α) error], increases. If the
level of significance is α = 0.05 and five different tests are conducted on a sequence of
numbers; the probability of rejecting the null hypotheses on at least one test, by chance
alone, may be as large as 0.25%, L’Ecuyer and Simard (2007).

When applying a test of hypothesis, in classical statistics, it’s necessary to select be-
forehand a rejection area R whose probability under H0 equals the target test level (e.g.,
0.05 or 0.01 ), and reject H0 if and only if Y ∈ R. This procedure it’s the most appropri-
ate when have a fixed and small sample size, but is not the best approach in the field of
RNG. Indeed, the sample sizes of RNG are huge and can usually be increased at will. To
validate the test simply compute and report the p-value instead of selecting a test level
and a rejection area.

p = P [Y ≥ y|H0]

where y is the value taken by the test statistic Y. If Y has a continuous distribution,
then p is a U(0, 1) random variable under H0.

For randomness tests, the value of p if it is close to 1 can be seen as a measure of
uniformity and the generator is producing the values with excessive uniformity, and if the
value of p is close to 0, it can be understood also as a measure of uniformity.

The RNG fails the test, if the value of p is very close to 0 or 1, but this value is suspect
and does not clearly indicate the rejection (p = 0.003, for example), so it is better to
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repeat. The test can be replicated the number of times that is necessary. This approach is
possible because there is usually no limit (beyond computational processing time) on the
amount of data that can be produced by an algorithm to ensure that the developed RNG
is acceptable or not.

When a generator begins to fail decisively in a test, the p-value of the test usually
converges to 0 or 1 in an exponential way depending on the size of the test sample.
One way to address this trend will be to increase the sample size or review the generator
algorithm.

3.4.1 The Kolmogorov-Smirnov test

The Kolmogorov-Smirnov test measure the degree of agreement between the distribution of
a sample of generated random numbers and the theoretical uniform distribution. The test
is based on the null hypothesis of no significant difference between the sample distribution
and the theoretical distribution.

This test compares the continuous CDF of the Uniform distribution to the empirical
CDF, Un(x), of the sample of N observations.

If U1 ≤ U2 ≤ · · · ≤ UN are the N observations sorted by increasing order. As N
becomes larger, Un(x) should become a better approximation to F (x), provided that the
null hypothesis is true.

The Kolmogorov-Smirnov test is based on the largest absolute deviation between F (x)

and Un(x) over the range of the random variable. That is based on the statistic:

D = max|F (x)− Un(x)|

The sampling distribution of D is known and is tabulated as a function of N in table.
For testing against a uniform CDF, the test procedure follows these steps:

Step 1: Rank the data from smallest to largest, so that:

U1 ≤ U2 ≤ · · · ≤ UN

Step 2: Compute

D+ = max
1≤i≤N

{
i

N
− Ui

}

D− = max
1≤i≤N

{
Ui −

i− 1

N

}
Step 3: Compute D = max(D+, D−).

Step 4: Determine the critical value, Dα, from table for the specified significance level α and
the given sample size N.
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Step 5: If the sample statistic D is greater than the critical value Dα, the null hypothesis that
the data are a sample from uniform distribution is rejected. If D ≤ Dα, conclude
that no difference have been detected between the true distribution of U1, U2 · · ·UN
and the uniform distribution.

Example 3.4.1:
Suppose that the five numbers 0.76, 0.6, 0.9, 0.04, 0.2 were generated and it is desired to
perform a test for uniformity using the KS - test with a level of significance α of 0.05.

First, the numbers must be ranked from the smallest to largest. The calculations can
be facilitated by use the table 3.1; the top row lists the numbers from smallest U1 to largest
U5.

The computation for D+, namely i/N − U1 and for D−, namely Ui − (1 − i)/N are
easily accomplished using table 3.1.

The statistics are computed as D+ = 0.2 and D− = 0.2. Therefore,

D = max(0.2, 0.2) = 0.2

The critical value of Dα, obtained from tabulated values for α = 0.05 and N = 5, is
0.565. Since the computed value, D = 0.2, is less than the tabulated critical value, 0.565,
the hypothesis of no difference between the distribution of the generated numbers and the
uniform distribution is not rejected.

Ui 0.04 0.2 0.6 0.76 0.9
i/N 0.2 0.4 0.6 0.8 1.00
i/N − Ui 0.16 0.20 0 0.04 0.1
Ui − (i− 1)/N 0.04 0 0.2 0.16 0.1

Table 3.1: Kolmogorov-Smirnov Test - Matrix Example

3.4.2 Runs test - up and down

The runs test examines the arrangement of the numbers in a sequence to test the hypothesis
of independence.

A run is defined as succession of similar numbers preceded and followed by a different
number. The length of the run is the number of events that occur in the sample.

There are two parameters in a runs test. The first one is the number of runs and the
length of runs is the second parameter. The types of runs counted in the first case might be
runs up and runs downs. An up run is a sequence of numbers each of which is succeeded by
a larger number. Similarly, a down run is a sequence of numbers each of which is succeeded
by a smaller number.
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If a is the total number of runs in a truly random sequence, the mean and the variance
of a is given by

µa =
2N − 1

3
(3.16)

and

σ2
a =

16N − 29

90
(3.17)

For N > 20, the distribution of a is reasonably approximated by a normal distribution,
N(µa, σ

2
a). This approximation can be used to test the independence of numbers from a

generator. In that case the standardized normal test statistic is developed by subtracting
the mean from the observed number of runs, a, and dividing by the standard deviation.
That is, the test statistic is

Z0 =
a− µa
σa

Substituting equation 3.16 for µa and the square root of equation 3.17 for σa yields

Z0 =
a− [(2N − 1)/3]√

(16N − 29)/90

where Z0 ∼ N(0, 1). Failure to reject the hypothesis of independence occurs when
−Zα/2 ≤ Z0 ≤ Zα/2, where α is the level of significance.

3.4.3 Wald-Wolfowitz test

The Wald-Wolfowitz test, also called as the Runs test for randomness, is used to test the
hypothesis that a series of numbers is random. A run is a set of sequential values that
are either all above or below the mean. The data are first centred about their mean and
then the total number of runs is computed along with the number of positive and negative
values. A positive run is then a sequence of values greater than zero, and a negative run is
a sequence of values less than zero. After that, the test is performed to see if the number
of positive and negative runs are distributed equally in time.

Let n and m be the number of individual observations above and below the mean and
let b be the total number of runs. The maximum number of runs is N = n + m, and the
minimum number of runs is one. Given n and m, the mean and the variance of b for a
truly independent sequence are given by:

µb =
2nm

N
+

1

2
(3.18)

and

σ2
b =

2nm(2nm−N)

N2(N − 1)
(3.19)
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For either n or m greater than 20, b is approximately normally distributed. The test
statistic can be formed by subtracting the mean from the number of runs and dividing by
the standard deviation, or

Z0 =
b− (2nm/M)− 1/2[

2nm(2nm−N)
N2(N−1)

]1/2

Failure to reject the hypothesis of independence occurs when −Zα/2 ≤ Z0 ≤ Zα/2,
where α is the level of significance.

3.4.4 Mann-Kendall Test

The non-parametric Mann-Kendall test is used to detect monotonic trends in series of
data, like enviroment, biological, reliability, etc... The null hypothesis, H0, is that the data
come from a population with independent realizations and are identically distributed. The
alternative hypothesis, H1, is that the data follow a monotonic trend. The Mann-Kendall
test statistic is calculated according to:

S =

n−1∑
k=1

n∑
j=k+1

sgn(Xj −Xk)

With

sgnx =


1 if x > 0

0 if x = 0

−1 if x < 0

The mean of S is E[S] = 0 and the variance σ2 is

σ2 =

n(n− 1)(2n+ 5)−
P∑
j=1

tj(tj − 1)(2tj + 5)

 /18

where p is the number of the tied groups in the data set and tj is the number of data
points in the j th tied group. The statistic S is approximately normal distributed provided
that the following Z -transformation is employed:

Z =


S−1
σ if S > 0

0 if S = 0

S+1
σ if S < 0

The statistic S is closely related to Kendall’s τ as given by:

τ =
S

D
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where

D =

1

2
n(n− 1)− 1

2

P∑
j=1

tj(tj − 1)

1/2 [
1

2
n(n− 1)

]1/2

The Mann-Kendall trend test has very interesting features. The Mann-Kendall trend
test has 0.98 efficiency relative to the usual least squares method of testing β = 0. An
empirical simulation study of Hipel et al. (1986) showed that the Mann-Kendall test have a
good performance for detecting a variety of deterministic trends such as a step-intervention
or a linear trend.

In the case of no ties in the values of Zt, t = 1, · · · , n the Mann-Kendall rank corre-
lation coefficient τ has an interesting interpretation. In this case, the Mann-Kendall rank
correlation for a trend test can be written

τ =
S(
n
2

)
where

S = 2P −
(
n

2

)
where P is the number of times that Zt2 > Zt1 for all t1, t2, · · · , tn such that t2 >

t1. Thus τ = 2πc1, where πc is the relative frequency of positive concordance, i.e., the
proportion of time for which Zt2 > Zt1 when t2 > t1. The relative frequency of positive
concordance is given by πc = 0.5(τ + 1). The Mann-Kendall test is essentially limited to
testing the null hypothesis that the data are independent and identically distributed.

3.4.5 Turning Point Test

In statistical hypothesis testing, a turning point test is a statistical test of the independence
of a series of random variables. Maurice Kendall and Alan Stuart describe the test as
"reasonable for a test against cyclicity but poor as a test against trend". The test was first
published by Irénée-Jules Bienaymé in 1874. The turning point test for randomness is used
to determine if the peaks and troughs (or turning points) of a serial data set (time-series)
is independent of the order of the observations. This test requires that the sample size be
> 15 and that the measurements were obtained under similar conditions, Marsaglia and
Tsay (1985).

Let T be the number of turning points then for large n, T is approximately normally
distributed with mean (2n4)/3 and variance (16n29)/90.
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The test statistic,

Z =

∣∣∣∣ tp − xs
∣∣∣∣

Where,

tp = peaks+ troughs

x =
2

3
(n− 2)

s =
16n− 29

90

3.4.6 Bartels test

The rank version of Von Neumann’s ratio test for randomness is Bartels test.
Bartels test ranks all the samples from the smallest to the largest and compare the

magnitude of each observation with its preceding samples.
The corresponding sequential number of Xi: R(Xi) suppose rank arrangement from all

n! possibilities should be equip-probable.
The test statistic RVN is

RV N =

∑n−1
i=1 (Ri −Ri+1)2∑n

i=1(Ri − (n+ 1)/2)2

where, Ri = rank(Xi); i = 1. . . . n.

It is known that (RV N − 2)/σ is asymptotically standard normal, where,

σ2 =
4(n− 2)(5n2 − 2n− 9)

5n(n+ 1)(n− 1)2
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Chapter 4

Model data and simulation

In lifetime data analysis on reliability of equipment it’s impossible to follow all production
units until the end of their lifetimes. Censored data appears when there is some information
about the units, but don’t know the exact time of failure or death. The experimental
observation period is defined as the time elapsed, since the study or experiment begin
(t = 0) until it is terminated (time T0). However,sometimes appear the need to discontinue
the study before all the equipment in the study experience the failure.

The analyst stops collecting the data, and do the analyses with data that have been
observed. In such cases, the experiment has been "suspend", "censored" or "truncated".
For example, it is not feasible to follow a set of electric lamps till all of them fail. In this
point of the study, the data may be a mixture of two different types of observations. For
some items, failure may not have occurred, while for some others it may have. The items
which have not failed, when the study is stopped, are said to be censored. Censoring is a
property of the sample, and an practical constraint because of the experimenter is unable
to know the beginning of their lifetime or to follow the units till the end of their lifetimes.

4.1 Censoring and truncation

Censoring data can arise from many reasons, and depending on the reasons, censoring may
be of many different types. For detailed account of censored data, one may refer to Mitra
(2012). Some types of censoring are describe:

1. observed, truncated, or censored

2. left, right, or interval censored

3. Type I, Type II, or randomly censored

4. single or multiple censoring values

The data is considered complete when it is known the exact time of each system failure.
In many cases the data contain uncertainties, i.e., it is not known the exact moment when

51
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the failure occurred. The data containing such uncertainty when the event occurred are
regarded as incomplete or partial. Incomplete data can be classified into censored or
truncated as explained by Gijbels (2010).

Censoring, from the theoretical point of view, may not be the most efficient way to
conduct an experience, but, due to time, cost or practical aspects, it’s so frequent that
researchers had to find ways to deal with it.

A characterization of the censoring mechanisms it’s important to better analyse the
data and the phenomena in study. Such characterization can be based on several elements
as the status of the entity observed, the span of the study, the dynamic of the system in
study and the start time and the finish time of our observation. Censoring mechanisms
can also be characterized based on when and how is defined the time to finish the study.

Life time
data

Observed data
(complete) Truncated data Censored data

Type I Type II
Complete data

suspend data

Right

Left

Double

Right fixed or
singly

Left

Right Random
or multiple

Interval

Progessive

Right

Progressive

Figure 4.1: The structure and classification of type of data in reliability

Censoring can be informative or non-informative. The analysis methods discussed and
assumed in classic research, is that, censoring mechanism must be independent of the
survival mechanism or lifetime, because when the cause of censoring is not associated to
the lifetimes of the item or biologic unit, the censoring is said to be non-informative. The
normal analysis of censored data are based on the assumption that the censoring is non-
informative. When the censoring cause is related to the lifetimes, it is said to be informative
censoring.

For example, in reliability, when a experience observes that some component or equip-
ment are not operating properly and may fail shortly, then its better remove those com-
ponents from the experience. In this case, the cause of censoring is directly related to the
lifetimes of those items. The experimenter take out those units knowing if they were kept
during the test, those units may have failed. This is an example of informative censoring.

In medical study a patient may withdraw from an experience when choose another
treatment or stop that treatment for another clinical issues, this is informative censoring.
But, if the patient exits from the medical study due to some other reasons, for example,
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if moving to another region (i.e., the reason for withdrawal is not related to his lifetime),
then the censoring becomes non-informative.

4.1.1 Complete data or observed data

Complete data is defined when the event is observed and known exactly the value of each
sample unit that are in the study. For example, in reliability the event is the real time to
failure observed for all n units in our sample. If four units are tested, beginning in t = 0

and all fail during the test and record all time to failure, in that situation the study have
complete information and complete data (see figure 4.2).

Let the n lifetimes of the size-n sample be T1, ...Tn. Their order statistics are:

T(1) ≤ T(2) ≤ · · · ≤ T(n)

Beginning

Unit 1

Unit 2

Unit 3

Unit 4

Failed|

| Failed

XFailed

XFailed

Figure 4.2: Type of data: Complete Data

4.1.2 Type I or time censoring

Censoring schemes are referred to as time censoring, where the end of the observation
period is not determined by an event of interest (e.g., failure). Such type of censoring are
not event-driven and are known as type-I.

With respect to the status of the entity observed, censoring can occur at either extreme
(or at both ends) of the entity life. That is, the researchers don’t know exactly at what
time the life of the entity started or finished. The reason may be because the entity in
question may have already failed at the time the observation begin or the life may have
not yet finished (e.g., failed) by the time final observation period.

To better analyse this complex issue some figures will be used to illustrates the censoring
situation.

Incomplete data give only part of the information about the failure time of the units
under review. However, this information should not be ignored or treated as failure. In
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the absence of such data, it would not be possible to make good estimation parameters
and, after that, make a proper analysis.

4.1.3 Fixed Right Type I

This type of censoring occurs when a study is designed to end after C years/hours/units
of follow-up. In this case, all items who does not have an event observed during the course
of the study is censored at C years/hours/units.

One of the most common types of censored data, which may arise in real cases, is fixed
right type-I censored data. For fixed right type-I censored data, all units of a system are
observed up to the date of completion of the study. For this censorship scheme the time
each unit is under observation is fixed, while the number of units that fail (uncensored
observations) is random.

In these type of censoring, the experiment stopping time (T0) is pre-established and
the number of failures observed during the period of experimentation is random.

Putting an end to the experiment and stop monitoring all the entities, at some pre-
specified time T0, which is independent of the event of interest.

Beginning End=T0

Unit 1

Unit 2

Unit 3

Unit 4

Failed|

Running

XFailed

Running

Figure 4.3: Type of data: Fixed Right Type I

4.1.4 Random right Type I

The type of censoring known as right censoring can be observed in figure that shows an
entity that has been monitored since the beginning of life (i.e., at the start of the experience)
but which have ceased to observe before the experience end (time T0) or its failure.

Random right type I censoring is designed when the study finish after C years, but
censored subjects do not all have the same censoring time, or the entity is observed for
some time, after which the research is not able to monitor it any more. The reasons why
random right type I censoring might occur:

• a entity does not experience the event before the study ends;
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• a person is lost to follow-up during the study period;

• a person withdraws from the study

Beginning End=T0

Unit 1

Unit 2

Unit 3

Unit 4

Censored|

Running

XFailed

Censored

Figure 4.4: Type of data: Random Right Type I

The "x" symbols in figure 4.4 represent the time of start or finish monitoring the cen-
sored entities. The study have beginning (of entity life, at time zero) and end in the final
of the experimental observation period (time T0).

4.1.5 Left censored type I

In left censored data, a failure time is only known to be before a certain time. Like right
censoring, the censoring in time can come from left also. In this case, it is known that
a unit failed before some pre-specified time C or, in general, Ci, but the actual time of
failure of the left censored unit is unknown.

For example a certain unit failed before 100 hours but don’t know exactly when. In
other words, it could have failed any time between 0 and 100 hours. This is identical to
interval censored data in which the starting time for the interval is zero.

For left censoring, those are the same concept. The censoring time is the time started
to observe. For right censoring, that’s reversed, the censoring time is when stop observing.

In figure 4.5 the cases in unit 2 and 4 that shows an unit that has already been "op-
erating" for some unknown period of time, before start monitoring it.

4.1.6 Interval censored type I

Interval censoring type I happens when only the number of failures in specific intervals
are available, without any more specific information about the individual failure times. In
figure 4.6 is possible to see some examples of interval censored
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Unit 1

Unit 2

Unit 3

Unit 4

FailX

FailX |

XFailed

|FailX

Figure 4.5: Type of data: Left Type I

Interval censored data reflects uncertainty of the exact times the units fails within an
interval. This type of data frequently comes from tests or situations where the objects of
interest are not constantly monitored.

For example, a test in five units with inspection each 100 hours, the report is only a
unit failed or did not fail between inspections. The beginning and the end of the entity
life are now unknown, it’s only monitor for some intermediate part of its span "life". This
type of censored data is also called inspection data by some authors.

It’s recommended to avoid interval censored data because they are less informative
compared to complete data. However, there are cases when interval data have to be used
due to the nature of the product, the test and the test equipment. In those cases, caution
must be taken to set the inspection intervals to be short enough to observe the dispersion
of the failures. For example, if the inspection interval is too long, all the units in the test
may fail within that interval, and thus no failure distribution could be obtained.

Unit 1

Unit 2

Unit 3

Unit 4

Fail| |

Fail| |

Fail| |

Fail|

Figure 4.6: Type of data: Interval Type I

4.1.7 Type II or failure censoring

Type-II censoring in statistical literature is the type of censoring that have a number of
failures to be observed fixed at start of the experiment. For example, an experience starts
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with n units, and the research decides to continue the experience until the rth failure
occurs, i.e., until time Tr:n, which is the rth smallest statistic order among the lifetimes of
these n units. When the experiment stops, a pre-specified number of failures r is obtained,
and all that is known about the censored observations is that their lifetime T > Tr:n.

This type of censoring is used in many reliability fields when there is a pre-specified
number of events.

Unit n

...

Unit r

...

Unit 2

Unit 1

Xi End of test

|

FailX

FailX

FailX

Figure 4.7: Type of data:right type II or failure censoring

In figure 4.7 is observed a sample of n entities until the time of occurrence of some
pre-specified event of interest, such as the time of the ith failure or death (i ≤ n) designated
by the Xi in figure 4.7. That is:

0 < x1 < x2 < ... < xn <∞

At the time of the ith failure (failure times Xi are denoted in the figure 4.7 by an X )
the observation of the ni sample elements remaining in operation. This other censoring
scheme is often referred to as "failure" or "event" truncation in these cases, the experiment
stopping time (Xi) is random and the number of failures i occurred during experimentation
is pre-established.

The number of failures or events of interest observed during the work of the equipment
or the experience is less than the total of entities in censoring scheme (type I or II). The
statistical distribution of failures of the equipment have to be estimated, and after that,
the probability "p" of occurrence of an event during the observation period (time t0), can
be calculated and the model of underlying life distribution and the parameters estimation
of interest such as MTTF - Mean Time To Failure , failure rate, etc.

In real life, in the production plant, the problem of modelling "life" is further compli-
cated and need different approach. For example, different situations are when components
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are replaced in the same time of occurrence or when the distribution of reliability is not ex-
ponential or Poisson homogeneous and, in such cases, the hazard function is time-dependent
and there are several additional parameters to estimate from the data. Other situation,
having more complex censoring mechanics creates many more theoretical difficulties.

Time censored experiments is a test which terminated at a pre-specified time t0 as
opposed to test that have defined the number of failures. In this test, time censored, the
total operating time T of all equipment in operation and the total number of failures K
are known but the individual failure times of equipment are not all known . Time cen-
sored estimation is approached in different ways, depending on operational or experimental
conditions and the nature of the data.

4.2 Simulation data and software

Simulation studies should be designed with rigour, similar to the study of real data, since
they should represent the results of real events. Simulating data sets requires an assumed
distribution for the data and full specification of the required parameters.

Actually, there is a very large number of tools and simulation software, for a huge variety
of applications, from the medical field, to FEA - finite elements analysis , hydraulics and
robotic simulations, etc.

In reliability there is a lot of simulation studies and specifically in censored data using
Weibull distribution. In these studies very few published sufficient details to assess the
integrity of the study design or to allow readers to fully understand all the processes
required and explain how they have developed the algorithm and the program of simulation
and how they generate the random numbers.

Random numbers are the essential basis of the simulation. Usually, all the random-
ness involved in the model is obtained from a random number generator that produces a
succession of values that are supposed to be realizations of a sequence of independent and
identically distributed (i.i.d.) random variables, L’Ecuyer and Simard (2007).

This section briefly describes the software used in the PhD. All of them can be con-
sidered a very productive tool in the area of programming and simulation, but the best to
work and have been most suitable for the models and simulation of the PhD research was
the software R.

4.2.1 Simulation with Program R

The software R is a language for statistical computing and graphics and is available as
free software under the terms of the Free Software Foundation’s the GNU General Public
License in source code form. Software R provides a wide variety of statistical (linear and
non-linear modelling, classical statistical tests, time-series analysis, classification, cluster-
ing, . . . ) and graphical techniques, and is highly extensible and is often the vehicle of
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choice for research in statistical methodology, and R provides an Open Source route to
participate in that activity

R is an integrated suite of software facilities for data manipulation, calculation and
graphical display. It includes:

• an effective data handling and storage facility;

• a suite of operators for calculations on arrays, in particular matrices;

• a large, coherent, integrated collection of intermediate tools for data analysis,

• a graphical facilities for data analysis and display, either on-screen or on hard-copy;

• a well-developed, simple and effective programming language which includes condi-
tionals, loops, user-defined recursive functions and input and output facilities.

The PhD used the Integrated Development Environment - IDE to program in R
called Rstudio, which is an open source and includes a console, syntax-highlighting ed-
itor that supports direct code execution, as well as tools for plotting, history, debugging
and workspace management.

4.2.2 Simulation with python and anaconda

Python is an interpreted, object-oriented, high-level programming language with dynamic
semantics. Its high-level, built in data structures, combined with dynamic typing and
dynamic binding, make it very attractive for Rapid Application Development, as well as
for use as a scripting or glue language to connect existing components together. Python’s
simple, easy to learn syntax emphasizes readability and therefore reduces the cost of pro-
gram maintenance. Python supports modules and packages, which encourages program
modularity and code reuse. The Python interpreter and the extensive standard library are
available in source or binary form without charge for all major platforms, and can be freely
distributed.

RODEO is an open source python IDE, is a development environment that is lightweight,
intuitive and yet customizable to its very core. It is an IDE that has been built especially
for data science/Machine Learning in Python and Rodeo and is also known as the RStudio
clone as uses the Ace Editor as its under lying layer, just the same as what powers RStudio.

Rodeo is a native Python IDE that can be of help to its users in quickly get some idea
about data structures without having to write any additional lines of code hence reducing
the time required and also has some basic package management and plotting views.
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4.2.3 Simulation with Matlab

MATLAB (matrix laboratory) is a multi-paradigm numerical computing environment and
proprietary programming language developed by MathWorks. MATLAB allows matrix
manipulations, plotting of functions and data, implementation of algorithms, creation of
user interfaces, and interfacing with programs written in other languages, including C,
C++, C, Java, Fortran and Python.

Although MATLAB is intended primarily for numerical computing, an optional toolbox
uses the MuPAD symbolic engine, allowing access to symbolic computing abilities. An
additional package, Simulink, adds graphical multi-domain simulation and model-based
design for dynamic and embedded systems.

MATLAB was first adopted by researchers and practitioners in control engineering, but
quickly spread to many other domains. It is now also used in education, in particular the
teaching of linear algebra, numerical analysis, and is popular amongst scientists involved
in image processing.

4.3 Simulation data censored with statistical distribution

The advances in technology have enable simulation studies to be more accessible. Perform-
ing simulations is not simple. Many decisions are required prior to the commencement of
simulations, but there is, generally, no one simple correct answer to the problem. A brief
search of published papers in reliability censor data area, suggested that the majority of
simulation studies reported in the literature are not providing sufficient details of simula-
tion random generator data. Modifications of the simulation process, such as altering the
number of simulations or collecting additional parameters or another parameters are possi-
ble, but can be time-consuming. Ideally, when testing a model in reliability for simulation,
the algorithm to generate random variables of practical interest can have a bad structure
interference between the RNG and the simulation model that will show up in the results.
Finally, is important to test the simulation algorithms and the influence of the change of
parameters.

Several methods and techniques have been proposed for analysing different types of
reliability data over the past decades. Most of them, refer to complete data. However,
evaluation of highly censored reliability data has not been widely studied. Nelson (1985)
presented an excellent work on this topic. In the beginning, few of the studies uses simu-
lation tools, but along the time the use of simulation in reliability field increase, most of
them to estimation parameters.

Olteanu and Freeman (2010) conducted a simulation study that compared the per-
formance of maximum likelihood (ML) and median-rank regression (MRR) methods in
estimating Weibull parameters for highly censored reliability data.
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In addition to the well-known large-sample optimal properties associated with ML
estimators, studies shown that ML estimators are generally hard to beat consistently even
in small samples, Genschel and Meeker (2010) and Somboonsavatdee et al. (2007).

Recently, the estimation of parameters from different lifetime distributions based on
progressive Type-II censored samples are studied by several authors including: - Childs
and Balakrishnan (2000), Balakrishnan and Kannan (2001), Mousa and Jaheen (2002) and
Soliman (2005).

Many article use %C - percentage of data censored to compare and analysed the model
and the results of study simulations, like in Balakrishnan and Mitra (2012), Birolini (2017)
and Ross (2012). The use and application of data censored in the field of reliability can
be see in Wang and Coit (2005) and Horst (2009).

Burton et al. (2006) proposed to generate a random non-informative right censoring
with specific proportion of censored observations in a similar manner to the uncensored
survival times by assuming a exponential distribution for the censoring times, but can be
Weibull or uniform without including any covariates. For Burton et al. (2006), it’s by
iteration that the parameters of censoring distribution will be achieved. Halabi and Singh
(2004) in other way, provide formulas for determining parameters for standard survival
and censoring distribution. The censoring mechanism can also be extended to incorporate
dependent informative censoring.

4.4 An algorithm to simulation right type I censored data

A fundamental part of any simulation is the algorithm used to generate the random num-
bers. The random number generation is the "Mersenne-Twister", from Matsumoto and
Nishimura (1998). A twisted GFSR with period 219937−1 and equidistribution in 623
consecutive dimensions (over the whole period). The "seed" is a 624-dimensional set of
32-bit integers plus a current position in set that use the Mersenne-twister RNG.

In the simulation studies it’s essential to define how the results will be stored after each
simulation, in order to avoid the risk to repeat the simulations. The estimate of interest in
this study will be the estimate tc - time censoring . the sample was 50 and 1000. The
routine is made M times (in this case 1000) and then calculate the mean:

µ =
m∑
i=1

tci
m

as a measure of the true estimate of interest.

It’s fundamental to measure the uncertainty in the estimate of the parameter tc which
represents the percentage of C% data censored. The empirical standard deviation σ is
calculated as the standard deviation of the estimates of interest from all simulations (in
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this case M=1000)

σ =

√∑m
i=1(tci − µ)2

m

The average of the estimated within study simulation, σ could be used. Increasing the
number of simulations will reduce the SE (σ) of the simulation process, i.e., σ(tc)/

√
m, but

this will be computational expensive and therefore variance reduction techniques could be
used.

After the simulation have been performed, it’s necessary to define the criteria for eval-
uating the results obtained from the different scenarios or statistical approach. The study
use the change of parameters of each distribution.

The simulated result is compared with the true values and provides a measure of the
performance and precision of the algorithm in study.

The estimates of simulations is the main reason and hence the average of estimates over
all simulation is used to calculate accuracy measures. different scenarios and models was
analysed. There is a trade-off between the amount of bias and the dispersion or variability.
Some authors argue that having less bias is more crucial than producing a valid estimate
of sampling variance. However, models or methods that result in a biased estimated with
little variability may be considered not so accuracy or conversely an unbiased estimate
with large variability.

To evaluate the performance of statistical methods and algorithms with different dis-
tribution parameters it’s used the indicators Mean SE(σ) (MSE ) and the Percentage Error
(PE ) - associated with the estimated of each time censoring tc. The PE use the estimate
tc and the theoretical TC computed by the following relation:

PETv = ξ =

∣∣tc − Tc(exact)∣∣
Tc(exact)

x100

The model optimize the simulation and give very good results. It’s necessary to calcu-
late the time of censoring from each statistical distribution; generically is to do the inverse
function of PDF function to calculate the time censoring tC and put this value in the
algorithm of simulation. This procedure reduces the time consumed in computation and
with a large sample is very precise and comes closest to the percentage of censored data
defined (theoretic).
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The algorithm to generate random censor data have these steps:

Step 1: Define initial parameters and values to simulation

Step 2: Calculate tc (with parameters of distribution and number C% of censored data and
the number of sample n)

Step 3: Calculate the order of ith number that begin the censor data of a sample (censoring-
order ic).

Step 4: Generate the vector Y that represent ti random times from distribution model

Step 5: Order the vector Y

Step 6: Find the time for censoring-order - Y (ic)

Step 7: Repeat M times from step 3 to 6 and save to vector Tcens

Step 8: From vector Tcens calculate the mean and standard deviation

Step 9: From step 8 calculate the error ξ = |Tc − µ|

Step 10: Plot the two function and save the results to table

An example (partial) of program with Weibull distribution is show in algorithm 1. The
other distribution is reuse and similar to calculate tC . The first part of the program in R
software is:

1 for (i in 1:length(cen)){
2 censoring_order <- n*(1-cen[i])# order in the vector censored
3 for (j in 1:length(beta)){
4 #Execute m=100 cycles to obtain
5 for (k in 1:m){
6 y <- rweibull(n,beta[j],wscale)
7 T_order <- sort(y) # sort by ascending
8 T_cens[k] <- T_order[censoring_order]
9 }

10 t <- wscale*(-log(cen[i]))^(1/beta[j]) # time censor
11 #obtain the mean and the standar deviation of sample
12 ysdt <- sd(T_cens) # standard deviation of sample
13 ymeant <- mean(T_cens) # mean of the sample
14 #obtain the mean and the standar deviation of sample
15 wsdt[j] <- sd(T_cens) # standard deviation of sample
16 wmean[j] <- mean(T_cens) # mean of the sample
17 werf[j] <- abs(t-wmean[j])/t*100
18 printgraf(n,wscale) #function to print the functions

Algorithm 1: Program in R from Weibull distribution (partial)
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The flow chart that resume the general proposal model can be like the figure 4.8.

Begin model,
load pakcages

Initialize simulation
(and variable),
Define C and M

Generate cen-
sor data ti

IF ti > Tc THEN
ncens = ncens + 1

nT = nT + 1

ncens
nT

< C

IF m = M

Collect results

Calculate Tc

y

y

n

n

Figure 4.8: Flowchart of the algorithm to simulation right type I censored data
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4.4.1 The reliability distribution

The probability of a value - random number generate - falling between a region (x,+∞)

is:

P (x1 > X) =

∫ ∞
x1

f(x)dx

Which can see as the same of the definition of the function R(t) - reliability

R(x) =

∫ ∞
x1

f(x)dx

All random number generates that fall in region (x,+∞) are the censored data; It’s
easy to achieve this relation between the reliability and the number C% of censored data
with the expression:

R(tc) =

∫ ∞
tc

f(t)dt = C (4.1)

In conclusion, define first the C% of censored data and then solve the equation 4.1 in
order to time tc and the result correspond to the value in which the function have C%
censored data. In the field of reliability there is some distribution that are more often
used. First of them the Weibull distribution, and then exponential, log-normal, gamma
and finally the normal distribution. For each of them, it’s derive the formulation from
specific PDF to determine Tc.

4.4.1.1 Weibull distribution

There are several authors that explain very well the Weibull distribution, as can see in
Horst (2009) and Murthy et al. (2004).

From the section 2.2.4, the Weibull density function is given by:

f(x, η, β) =
β

ηβ
tβ−1e

−( t
η

)β with t ∈ R+

And the corresponding reliability function is

R(t) = e
−
(
t
η

)β

The shape parameter β is a non-dimensional parameter and reflect the type of failure
mode.

To have C% of censored data, it’s the same to equal the expression of reliability:

R(tc) =

∫ ∞
tc

f(x)dx = e
−
(
t
η

)β
= C

and solve the equation in order of tc, results:
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tc = η ∗ (− log(C))
1
β

that give us the time censoring when we have the C% of censored data required.

4.4.1.2 Gamma distribution

The gamma distribution represents the sum of n exponentially distributed random vari-
ables as is explain in Birolini (2017).

For a random variable, X, and symbolically write, X ∼ G(α, λ) the probability density
function (see in section 2.2.3) is given by:

f(x, α, λ) =
λα

Γ(α)
x(α−1)e−λx, x > 0 α, λ > 0

Where λ is the failure rate (complete failures) is calculate from λ(t) = f(t)/(1−F (t)).
The number of survival items it’s the same to have C% of censored data and can be

achieve with the function of reliability:

R(t) = e
−
(
t
η

)β
= C

R(tc) =
λα

Γ(α)

∫ +∞

tc

t(α−1)e−αtdt = C

The expression don’t have analytic solution, it’s necessary to use a numerical resolution
method.

4.4.1.3 Log-normal distribution

The log-normal is a versatile distribution and often a better fit to reliability data, such as
for populations with wear-out characteristics.

The log-normal pdf is (see section 2.2.6):

f(x) =
1√

2πxσ2
e−

1
2σ2 (lnx−µ)2

.

where µ and σ are the mean and the standard deviation of the ln data.
The log-normal distribution describe reliability of items in which the hazard rate in-

creases from x=0 to a maximum and then decreases. In this case the reliability functions
is:

R(tc) =

∫ +∞

tc

1√
2πtσ2

e−
1

2σ2 (ln t−µ)2dt = C

The expression don’t have analytic resolution, it’s necessary to use a numerical resolu-
tion method.
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4.4.1.4 Exponential distribution

The exponential distribution is characterized for the hazard rate be constant. It is con-
sidered a homogeneous poisson process. A continuous random variable having probability
density function:

f(x|λ) =

0 (x ≤ 0),

λe−λx (x > 0),

for some λ > 0 is said to be an exponential random variable with parameter λ and
symbolically express, X ∼ Ex(λ). To have C% of censored data, it’s the same to equal
the expression of reliability:

R(tc) =

∫ ∞
tc

λe−λt = e−λtc = C

and solve the equation in order of tc, results:

tc = − ln(C)

λ

that give the time censoring with the C% of data censored required.

4.4.1.5 Normal distribution

A random variable X has a standard distribution with parameters µ and σ2 with a density
function of the form:

f(x|µ, σ2) =
1

σ
√

2π
e−

1
2σ2 (x−µ)2

.

It is written symbolically, X ∼ N(µ, σ2)

The parameters of the normal distribution are represented by µ and σ2 because they
correspond respectively to the mean and variance of the random variable.

To have C% of censored data, it’s the same to equal the expression of reliability, and
the reliability function is defined by the integral:

R(tc|µ, σ2) =

∫ +∞

tc

1

σ
√

2π
e

{
− 1

2σ2 (t−µ)2
}
dt = C

for which no analytical solution is known. The values of the tc time censoring must
then be calculated using numerical analysis methods.

4.4.2 The simulation study

For this study and analysis, the distributions used are the most suitable in reliability and
maintainability: Weibull, normal, gamma, log-normal and exponential. For each distribu-
tion it’s calculate the censorship time tc to different values. In great number of reliability
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studies they chose the same, or similar, range of values C% - percentages of censorship:
- 5%, 10%, 20% or 30%. The number of cycles simulations M is 1000 times and two
random sample size of n=50 and n=1000, to take care of medium and large data sets. The
algorithm and the program to made this simulation are refer in section 4.4

4.4.2.1 Results from Weibull distribution

The study fromWeibull distribution perform an analysis for the shape factor β with a range
from 0.5, 1, 1.5, 2, 3 and 5, which are very illustrative of the shape factor β influence; the
scale factor used is η = 1. The resume of the study are in two tables that summarize the
analysis. The first table is the simulation made with sample n = 50 and the second is with
sample n = 1000.

5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

β0.5 7.67 2.87 14.5 5.18 1.96 2.3 2.60 0.88 0.5 1.47 0.51 1.3
β1 2.64 0.51 11.8 2.23 0.42 3.2 1.58 0.28 1.6 1.22 0.22 0.9
β1.5 1.88 0.29 9.5 1.73 0.20 0.6 1.33 0.15 3.1 1.11 0.15 1.8
β2 1.61 0.17 6.9 1.51 0.13 0.8 1.24 0.11 2.4 1.09 0.09 0.8
β3 1.38 0.08 4.0 1.29 0.08 2.6 1.16 0.08 1.0 1.06 0.06 0.5
β5 1.20 0.05 3.3 1.17 0.04 0.9 1.09 0.04 0.7 1.03 0.03 0.6

Table 4.1: Simulation right type I , Weibull (β,C%), η = 1, n = 50

5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

β0.5 8.93 0.81 0.5 5.27 0.44 0.7 2.59 0.21 0.2 1.46 0.12 0.4
β1 2.99 0.14 0.2 2.30 0.10 0.2 1.61 0.06 0.1 1.20 0.05 0.2
β1.5 2.08 0.06 0.1 1.74 0.05 0.2 1.37 0.04 0.0 1.13 0.03 0.1
β2 1.73 0.04 0.3 1.52 0.03 0.1 1.27 0.02 0.2 1.10 0.02 0.2
β3 1.44 0.02 0.2 1.32 0.02 0.1 1.17 0.02 0.1 1.06 0.01 0.0
β5 1.24 0.01 0.1 1.18 0.01 0.0 1.10 0.01 0.1 1.04 0.01 0.1

Table 4.2: Simulation right type I, Weibull (β,C%), η = 1, n = 1000

The results of the Weibull distribution are very interesting. With a sample of n = 50

and a cycle of simulations M = 1000, the standard deviation is higher when β = 0.5 and
then slowly decrease until β = 5. The percentage error PE it’s much higher when the
C%=5% and then the value goes down when the shape factor increase. There is a different
behaviour in C%=20%, in this case the standard deviation and the percentage error PE
is higher when β = 1.5, this could have some explanation possible or relationship with the
transition from exponential shape to normal shape.

The table 4.2 show an simulation to a sample of 1000 and in this case the standard
deviation and PE is smaller than in the case when sample is 50 from table 4.1. There is
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Figure 4.9: Simulation right type I, Weibull - β = 1.5, C = 10%,
n = 50

a small decrease in dispersion and error as the shape factor increases. Finally, the Weibull
distribution, use well these algorithm, but it’s need to have caution and choose a correct
number of sampling in order to give more accuracy to the simulation study.

In figure 4.9 can see graphically the dispersion, the bias and the mean of simulation
and compare theoretical curve with the normal function from estimation data and the fixed
value tc calculated.

In annex B it’s possible to see an exhaust number of figures for all statistical distribution
and for different values of sampling, shape factor and %C percentage of data censored. To
all simulation it can be noted that the error is less than 1% , which is very small and even
the dispersion itself is very small, as can be graphically seen in all figures.

4.4.2.2 Results from gamma distribution

The results with the gamma distribution are quite similar to the Weibull function. In this
distribution the variation of the shape factor α don’t have so influenced like in Weibull
distribution. In this case, the values to the standard deviation from sampling 50 and
sampling 1000 is very similar. The standard deviation is sightly increase when the failure
rate increase but the absolute values is small. The percentage error are very different from
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sampling 50 and sampling 1000. In sampling 50 the PE is very high and in sampling 1000
is small and quite stable.

The algorithm develop to gamma distribution are very suitable, but it’s need to have
caution and choose a great number of sampling in order to give more accuracy to the
simulation study.

5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

α0.5 1.61 0.41 16.1 1.29 0.32 5.0 0.81 0.19 1.6 0.53 0.16 1.4
α1 2.56 0.47 14.6 2.18 0.41 5.5 1.56 0.26 2.8 1.19 0.22 1.4
α1.5 3.55 0.58 9.1 3.01 0.44 3.7 2.23 0.34 4.0 1.82 0.26 0.5
α2 4.27 0.61 10.0 3.79 0.54 2.5 2.88 0.37 3.8 2.43 0.29 0.5
α3 5.83 0.74 7.4 5.25 0.64 1.3 4.24 0.41 1.0 3.64 0.40 0.8
α5 8.64 0.88 5.6 7.88 0.62 1.5 6.67 0.51 0.7 5.82 0.50 1.1

Table 4.3: Simulation right type I, Gamma (α,C%), λ = 1, n = 50

5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

α0.5 1.91 0.11 0.4 1.35 0.08 0.3 0.82 0.05 0.2 0.54 0.03 0.3
α1 3.00 0.14 0.0 2.30 0.09 0.0 1.60 0.06 0.3 1.20 0.05 0.2
α1.5 3.90 0.16 0.1 3.12 0.11 0.3 2.32 0.08 0.1 1.83 0.06 0.3
α2 4.74 0.16 0.1 3.88 0.12 0.2 2.99 0.08 0.1 2.43 0.07 0.2
α3 6.28 0.19 0.3 5.32 0.14 0.1 4.28 0.10 0.0 3.61 0.08 0.0
α5 9.14 0.22 0.1 7.98 0.16 0.1 6.72 0.12 0.1 5.88 0.11 0.1

Table 4.4: Simulation right type I, Gamma (α,C%), λ = 1, n = 1000

4.4.2.3 Results from Log-normal distribution

The Log-normal distribution have an behaviour very interesting. When increase the σ
standard deviation the PE percentage error and the standard deviation increase. There
is some difference in the values from a simulation that have sample of 50 and a sample of
1000. The value is much higher and the bias and Percentage error is much higher in the
sample of 50.

In the case of the log-normal distribution standard deviation parameter have influence
when increase the value.
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5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

σ0.3 4.23 0.34 5.0 3.98 0.29 0.4 3.47 0.22 0.9 3.17 0.17 0.4

σ0.5 5.70 0.80 7.8 5.04 0.57 2.3 4.08 0.38 1.4 3.50 0.32 1.0

σ0.7 8.01 1.41 6.8 6.54 0.97 1.9 4.78 0.77 2.4 3.97 0.49 1.2

σ1 11.91 2.93 15.4 9.28 2.06 5.2 6.16 1.30 2.3 4.56 0.85 0.7

σ1.3 18.86 7.16 18.2 13.69 4.11 4.8 7.72 2.09 4.9 5.29 1.28 1.6

σ1.7 32.92 14.02 26.1 22.05 8.68 8.2 10.70 3.71 5.9 7.05 2.06 6.3

Table 4.5: Simulation right type I, Log-normal (σ,C%), µ = 1, n = 50

5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

σ0.3 4.45 0.09 0.1 3.99 0.06 0.0 3.50 0.05 0.0 3.18 0.04 0.0

σ0.5 6.17 0.21 0.3 5.15 0.15 0.1 4.14 0.09 0.0 3.53 0.07 0.0

σ0.7 8.58 0.41 0.2 6.67 0.24 0.0 4.90 0.15 0.1 3.92 0.11 0.1

σ1 14.06 0.98 0.1 9.77 0.52 0.3 6.30 0.28 0.2 4.58 0.20 0.2

σ1.3 22.98 2.02 0.4 14.39 1.00 0.0 8.10 0.47 0.2 5.37 0.29 0.0

σ1.7 44.16 4.94 0.8 23.93 2.16 0.4 11.43 0.89 0.5 6.61 0.47 0.3

Table 4.6: Simulation right type I, Log-normal (σ,C%), µ = 1, n = 1000

4.4.2.4 Results from exponential distribution

To simulation exponential distribution the hazard rate change from 0.5 to 5. The standard
deviation and the PE is much higher in the simulations with sample 50. After some analysis,
the conclusion is that the exponential distribution is stable and more robust when the
sampling is higher. The bias is reduced when the C% and the hazard rate increase.

5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

λ0.5 5.44 0.90 9.2 4.40 0.87 4.5 3.17 0.53 1.4 2.39 0.46 0.6
λ1 2.74 0.55 8.7 2.25 0.43 2.5 1.59 0.30 1.2 1.16 0.20 3.4
λ1.5 1.81 0.35 9.1 1.48 0.27 3.8 1.03 0.17 3.6 0.81 0.13 0.5
λ2 1.36 0.25 9.0 1.13 0.20 1.9 0.76 0.13 5.2 0.60 0.11 0.4
λ3 0.89 0.14 10.9 0.74 0.14 3.3 0.52 0.09 2.9 0.40 0.08 1.2
λ5 0.53 0.09 11.8 0.44 0.10 4.2 0.32 0.05 1.7 0.24 0.04 1.3
Table 4.7: Simulation right type I, Exponential (λ,C%), n = 50
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5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

λ0.5 5.96 0.27 0.6 4.59 0.20 0.3 3.21 0.13 0.3 2.40 0.10 0.2
λ1 2.99 0.13 0.2 2.30 0.09 0.0 1.61 0.06 0.1 1.20 0.05 0.2
λ1.5 1.99 0.09 0.2 1.53 0.06 0.0 1.07 0.04 0.2 0.80 0.03 0.1
λ2 1.49 0.07 0.3 1.15 0.05 0.4 0.81 0.03 0.1 0.60 0.02 0.1
λ3 1.00 0.05 0.1 0.77 0.03 0.3 0.54 0.02 0.1 0.40 0.02 0.1
λ5 0.60 0.03 0.1 0.46 0.02 0.1 0.32 0.01 0.2 0.24 0.01 0.0

Table 4.8: Simulation right type I, Exponential (λ,C%), n = 1000

The exponential distribution can be used in the algorithm developed, but it’s need to
be very carefully and choose a right number of sample in order to give more precision to
the simulation study.

4.4.2.5 Results from normal distribution

The simulations with normal distribution use the mean µ = 1 and the standard deviation
range from 0.5 to 5. Comparing the two table is quite easy to conclude that the bias and
the PE is much higher in the simulations with sample 50. The normal distribution, when
the sampling is higher have their values consistent, low bias and reliable results.

5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

σ0.5 1.74 0.14 4.7 1.61 0.12 2.2 1.40 0.11 1.7 1.24 0.10 1.6
σ1 2.46 0.26 7.0 2.19 0.24 3.8 1.82 0.21 1.3 1.49 0.20 2.4
σ1.5 3.14 0.41 9.5 2.77 0.35 5.1 2.21 0.29 2.5 1.69 0.27 5.5
σ2 3.85 0.50 10.3 3.48 0.49 2.3 2.64 0.40 1.8 1.90 0.31 7.2
σ3 5.34 0.72 10.0 4.60 0.69 5.0 3.42 0.59 3.1 2.52 0.53 2.0
σ5 8.55 1.40 7.3 7.22 1.03 2.5 5.09 1.04 2.2 3.56 0.95 1.8

Table 4.9: Simulation right type I, Normal (σ,C%), µ = 1, n = 50

5 10 20 30

µ σ ξ µ σ ξ µ σ ξ µ σ ξ

σ0.5 1.82 0.03 0.1 1.64 0.03 0.1 1.42 0.02 0.1 1.26 0.02 0.1
σ1 2.64 0.07 0.3 2.28 0.05 0.2 1.84 0.05 0.1 1.52 0.04 0.1
σ1.5 3.46 0.10 0.2 2.92 0.08 0.1 2.26 0.07 0.1 1.79 0.06 0.1
σ2 4.28 0.13 0.1 3.56 0.11 0.1 2.68 0.09 0.1 2.04 0.09 0.3
σ3 5.92 0.20 0.3 4.84 0.17 0.0 3.52 0.14 0.1 2.57 0.12 0.2
σ5 9.20 0.34 0.2 7.39 0.27 0.3 5.20 0.22 0.2 3.61 0.21 0.3

Table 4.10: Simulation right type I, Normal (σ,C%), µ = 1, n = 1000

The algorithm developed can be used with normal distribution, but need to be very
attention to the results and the behaviour of the random number generator in order to
have the results reliable and with accuracy.



4.5 Simulation and test randomness of data censored 73

4.5 Simulation and test randomness of data censored

This section intends to study in depth the construction of an algorithm that does the
simulation of the fixed right type I censored data. That is, the data censored at the end
of the study because the items continues to work or has survived at the defined time (see
section 4.1.3)

The definition of censorship time have been explained in the previous section. In this
section, the algorithms for simulating censoring data are developed and the methodology
to evaluate if the this algorithms produce data that can be considered random or not.

Begin model,
load pakcages

Initialize simulation
(and variable),
Define n and m

Generate censor data

The cycle
finish?

Random test n

All test
are done?

Evaluate Matrix

Collect results

Define the C%

y

y

n

n

Figure 4.10: Methodology of simulation and randomness test of data censored
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The methodology developed starts to generate random numbers based on the uniform
distribution and then converting to the chosen distribution, using the defined parameters.
A sample number n to generate ti random times for each simulation is chosen, then the
five random tests are made and for each test is calculated the p-value (for the chosen
significance level - α = 0.05 and α = 0.1).

The cycle of simulation is M=1000 times and an average is made for each cycle of
simulation. This routine is made for five parameters from Weibull, normal, gamma, log-
normal and exponential distribution.

For each cycle of different parameter and different censorship percentage, it’s give a
grade from 1 to 3 regarding the evaluation matrix see in table 4.11 and the scale have the
follow explanation:

- 3 points correspond to a percentage that (100-90)% tests are iid in the and the
algorithm can be considerer good/accepted,
- 2 points correspond to a percentage in the interval (90-75)% that the results of the tests
give iid and the algorithm can be consider admissible/accepted.
- 1 point correspond to a percentage (75-0)% and the algorithm is bad/not acceptable.

Interval % Description Grade Status
(100%-90%) good / accepted 3 OK
(90%-75%) reasonable / accepted 2 Adm
(75%-0%) bad / not acceptable 1 NOK

Table 4.11: Matrix Evaluation for Randomness

The study make an overall assessment that does the classification using the evaluation
matrix. This work is made for each distribution, comparing with the different parameters
and different censorship values.

This methodology can be a very good tool to use and classified the algorithms that
generate the censored data.

4.6 Simulation and test of censored data fixed right type I

The general algorithm to fixed right type-I censor data have these steps:

• STEP 1 Define initial parameters and values to simulation (=0)

• STEP 2 Calculate censoring-time - TC (with parameters of distribution and number
of data censor C%)

• STEP 3 Generate the vector Y that represent n random times ti from distribution
model (defining a function)
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• STEP 4 Defining the times censored and return the final times with vector Tcens

• STEP 5 Apply to vector Tcens the five random test and save to vector pvaltestx the
result

• STEP 6 From vector pvaltestx calculate the significance and the accept or rejection
sample from defining α and save the result in vector rtestx

• STEP 7 Repeat M times from step 3 to 6

• STEP 8 Calculate the number of samples that accept the hypothesis h0

• STEP 9 Calculate and classification from different shapes and samples if the model
is OK, Adm. or NOK, using the evaluation matrix

• STEP 10 Plot and save the results to table

The program made to Weibull distribution is then extrapolate to different distribution.
The first part of the code in R software is :

1 1. Generate function
2 # Right fixed type I weibull data censored.
3 censtypeI <- function(n,shape,scale,censnumber){
4 T <- rweibull(n, shape, scale) # generate the random number
5 # time theoretical censor from weibull
6 censoring_time <- scale*(-log(censnumber))^(1/shape)
7 for (j in 1:n)
8 {T_cens[j] <- min(censoring_time, T[j]) }
9 return(T_cens) }

Algorithm 2: Program in R from Weibull distribution - define generate function

The program made in R, in order to optimize and reuse, used functions that could
be invoked and integrated in the routine. This cycle/loop became the main nucleus of
the simulation: define the function of random number generation, the function of time of
censorship and also the function of final vector with the censored data. The structure of
the algorithm is the same for all distribution and only change the mathematical model of
each distribution.

The step 5 of the algorithm is to make the tests of randomness. To make the random-
ness test the package randtests developed by Caeiro and Mateus (2014) is used. There are
other packages available to do these tests; this one seemed to be the most adequate, robust
and simple for the purpose. Make the programs for each random test from the beginning
will be wasting time and will delay all research work.

Finally, step 9 define the routines to classification of results as well the overall grades
and then save and plot the results in tables and figures.
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1 2. Random test
2 ## ######## Funcão de teste de aleatoriedade #####
3 Randomtest <- function(m,n,shape,alpha,cen){
4 # Initial values form vector that colect the p-values
5 pval_Trun =0; pval_TRank=0;pval_Tbartels=0
6 pval_Tturning=0; pval_TKs=0
7 # beginning of the cycle (by m)
8 for (i in 1:m){
9 y <- censtypeI(n,shape,scale,cen)

10 # Run test
11 rt <- RunsTest(y)
12 pval_Trun[i] <- rt$p.value
13 if (pval_Trun[i]== "NaN") {pval_Trun[i]=0} else { }
14 # Rank test
15 rt <- rank.test(y)
16 pval_TRank[i] <- rt$p.value
17 #Turning point test
18 rt <- turning.point.test(y)
19 pval_Tturning[i] <- rt$p.value
20 # BartelsRank Test
21 rt <- BartelsRankTest(y, alternative="left.sided",
22 pvalue="normal")
23 pval_Tbartels[i] <- rt$p.value
24 #Komogorov-Smirnov Test
25 rt <- ks.test(y, "pweibull", shape,
26 scale,alternative = "l")
27 pval_TKs[i] <- rt$p.value
28 }
29 testresult <- data.frame(pval_Trun,pval_TRank,
30 pval_Tturning,pval_Tbartels,pval_TKs)
31 return(testresult) }

Algorithm 3: Program in R from Weibull distribution - Tests for randomness

To illustrate and compare the methods as described above, a random sample of different
sizes, n=10, 100, 500, 1000,10000 to take care of small, medium and large data sets.

The simulation complete cycle/loop make for each distribution and for each percentages
of censored data: 5%, 10%, 20% and 30% and for the level of significance α = 0.05 and
α = 0.01.

All the results are in the appendix C, here, only show the simulation and results made to
α = 0.05 and to Weibull, Gamma and Normal distribution. The rest of the simulations and
tables are in appendix C and permit to complete, refine and give strength and robustness
to the final conclusions.
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4.6.1 Results from Weibull distribution

The algorithm described in section 4.6 is applied for the Weibull distribution with the
variable parameters β and C%. And the β - shape factor range from 0.5, 1, 1.5, 2, 3 and
5 and censored data parameter from 5%, 10%, 20% and 30%. The fixed parameter are
n = 100, M = 1000 and scale factor µ = 1.

To the level of significance α = 0.05 and α = 0.01

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

β0.5 0.97 0 0 0.98 0.96 0.96 0.91 0.92 0.97 0.96 0.95 0.61 0.5 0.95 0.96 0.95 0.07 0.02 0.97 0.95
β1 0.97 0 0 0.98 0.96 0.95 0.93 0.92 0.95 0.95 0.95 0.6 0.52 0.94 0.94 0.95 0.1 0.02 0.96 0.95
β1.5 0.96 0 0 0.98 0.95 0.96 0.92 0.93 0.96 0.95 0.95 0.62 0.52 0.96 0.94 0.94 0.09 0 0.95 0.95
β2 0.97 0 0 0.98 0.94 0.95 0.93 0.92 0.96 0.95 0.96 0.63 0.51 0.96 0.96 0.96 0.09 0.02 0.95 0.95
β3 0.97 0 0 0.98 0.95 0.95 0.93 0.92 0.96 0.96 0.96 0.63 0.54 0.96 0.96 0.95 0.1 0.01 0.96 0.95
β5 0.96 0 0 0.96 0.93 0.94 0.92 0.91 0.95 0.94 0.95 0.63 0.54 0.95 0.94 0.96 0.09 0.02 0.96 0.95

Table 4.12: Test RNG, fixed right type I, Weibull (β,C%), α = 0.05, η = 1, n = 100

The simulation and the random test to data censored fixed right type I with Weibull
distribution give some interest results. There is no significant differences when the shape
factor β increase from 0.5 to 5 to all tests. There is a smooth decrease when the C% of
censored data increase from 5% to 30% and this is more evident to α = 0.01 (see annex
C). To each random test the behaviour is the same to α = 0.05 and α = 0.01 (see annex
C).

The Ru - run test accept in all situation the hypotheses of iid of the samples and the
same is to Bartels and Kolmogorov-Smirnov tests.

The Ra - rank test start to reject in all simulations in the first situation C5% but accept
partial the randomness when have C10% and C20% and completely reject to C30%. Probably
the algorithm will fail for complete data and when the sample are very censored.

The turning-point test have the same behaviour of the rank test. This exceptional
results are very difficult to interpret, but it’s fundamental to experiment and try to under-
stand what happens. In this case the results can suggest that probably in the first situation
C5% (near of complete data) the test indicate uniformity and in the second situation C30%

the iid of samples is reject.

4.6.2 Results from Gamma distribution

The study performed an analysis for Gamma distribution and the shape factor α ranging
from 0.5, 1, 1.5, 2, 3 and 5, which are very illustrative of the α variation.

The Gamma distribution have a similar simulation and results in random tests to
censored data fixed right type I as Weibull distribution. There is no significant change
when the shape factor α increase from 0.5 to 5 to all tests. There is a trend of decrease
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C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

α0.5 0.98 0 0 0.98 0.95 0.96 0.92 0.93 0.95 0.95 0.96 0.63 0.54 0.95 0.95 0.95 0.08 0.01 0.95 0.94
α1 0.97 0 0 0.97 0.94 0.96 0.92 0.92 0.96 0.95 0.94 0.62 0.52 0.96 0.96 0.94 0.09 0.02 0.95 0.95
α1.5 0.97 0 0 0.98 0.95 0.95 0.93 0.91 0.96 0.96 0.95 0.64 0.55 0.94 0.96 0.95 0.08 0.01 0.94 0.95
α2 0.98 0 0 0.98 0.95 0.95 0.92 0.92 0.95 0.96 0.95 0.61 0.54 0.95 0.95 0.96 0.11 0.02 0.96 0.94
α3 0.97 0 0 0.98 0.95 0.96 0.92 0.93 0.96 0.95 0.96 0.63 0.48 0.95 0.96 0.96 0.08 0.01 0.96 0.96
α5 0.97 0 0 0.97 0.94 0.95 0.92 0.94 0.94 0.96 0.96 0.63 0.52 0.95 0.96 0.96 0.09 0.01 0.96 0.95

Table 4.13: Test RNG, fixed right type I, Gamma (α,C%), α = 0.05, λ = 10, n = 100

when the C% of censored data increase from 5% to 30% and this is more evident to
α = 0.01 (see annex C).

The run test accept in all cases the hypotheses of iid of the samples and to Bartell and
Kolmogorov-Smirnov tests is the same.

The rank test begin to reject in all simulations in the first situation C5% but accept
partial the randomness in C10% and C20% and completely reject to C30%. Probably the
algorithm will fail for complete data and when the sample are very censored.

The turning-point test have the same behaviour of the rank test.

The evolution and the explanation is in line with the same conclusion made to Weibull
distribution.

4.6.3 Results from Normal distribution

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

σ0.5 0 0 0 0.98 0.94 0 0.92 0.92 0.95 0.94 0 0.62 0.55 0.96 0.96 0 0.09 0.02 0.94 0.94
σ1 0 0 0 0.98 0.94 0 0.93 0.92 0.96 0.95 0 0.66 0.55 0.97 0.96 0 0.08 0.01 0.97 0.95
σ1.5 0 0 0 0.97 0.94 0 0.92 0.92 0.95 0.94 0 0.63 0.5 0.95 0.96 0 0.09 0.02 0.95 0.96
σ2 0 0 0 0.97 0.95 0 0.93 0.93 0.94 0.94 0 0.64 0.49 0.94 0.95 0 0.1 0.01 0.94 0.95
σ3 0 0 0 0.97 0.95 0 0.94 0.92 0.96 0.96 0 0.61 0.51 0.95 0.95 0 0.08 0.02 0.95 0.96
σ5 0 0 0 0.98 0.94 0 0.94 0.93 0.96 0.94 0 0.65 0.54 0.96 0.95 0 0.1 0.01 0.96 0.93

Table 4.14: Test RNG, fixed right type I, Normal (σ,C%), α = 0.05, µ = 1, n = 100

The study with Normal distribution did a simulations for the standard deviations σ
parameter to varies between 0.5, 1, 1.5, 2, 3 and 5 values that are quite illustrative. The
other parameter of distribution is the mean µ and the value is 1.

The Normal distribution have the standard deviation that change but it’s not the same
as Weibull or Gamma function that use parameters that change the shape form of the
function.
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TheRa rank test and the Tu Turning point tests have the same behaviour as Weibull and
Gamma distribution. The most positive tests was the Bartels and Kolmogorov-Smirnov
tests that accept the iid of the sample in all situations. The Ru run test is the opposite
of the last two test and fails in all situations. Probably this behaviour have some relations
directly with the core of the hypotheses test and the use of the normal distribution to
calculate the variable of statistics test.

4.6.4 Global results of fixed right type I

The final result for the criteria that are define in the section 4.5 are resume in the table
4.15.

C(5%) C(10%) C(20%) C(30%)

α0.05 Adm OK Adm Adm
Weibull α0.1 NOK Adm NOK NOK

α0.05 NOK OK NOK NOK
normal α0.1 NOK NOK NOK NOK

α0.05 Adm OK Adm Adm
lognormal α0.1 NOK Adm NOK NOK

α0.05 Adm OK Adm Adm
gamma α0.1 NOK Adm NOK NOK

α0.05 NOK OK NOK NOK
exponencial α0.1 NOK NOK NOK NOK

Table 4.15: Global Results of Simulation Test - Right Fixed Type I - Shape Factor

The table 4.15 permit some conclusions about the random number generation of data
censored fixed right type I: - the most favourable and reliable distribution is the Weibull and
Gamma distribution, fortunately is the two most used distribution on reliability. The worst
distributions that failed almost in all criteria is the Normal and after that the Exponential
distribution; - in the middle there is one distribution - Log-normal.

This results show the importance of doing a set of random test to the algorithm of
generating random number with data censored. In some cases, will be necessary to change
the algorithm or the parameters or the statistical distribution.

In conclusion, when the researchers needs to generate random number with data cen-
sored, the simulation process need to have extra step to confirm and validate the random
number generation.
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4.7 Simulation and test of censored data right type-II

This section study in depth the construction of an algorithm that does the simulation of
right type II censored data, that is, when data is censored at the end of r failures or events.

The methodology starts with random number generation based on uniform distribution,
then converting to the chosen distribution, as well as the parameters defined. The analysis
will be only made in two distributions, leaving for future work, the other distributions.

In this section, a preliminary study have been done in order to conclude, if it would
be interesting to applied the random tests, because the final result of the algorithm of
random number generation censored data right type II are a set of number grouped and
sorted, and this retired all randomness and efficiency to the random tests. But, after a
deep analysis and some experiences with different algorithms and random test, its verified
is real important to test the random of the original data, i.e., data without sorting and
after removing the censored values, or by other words, data that remain with the value
above Tc (n of chosen failure).

The five randomness tests are applied and for each of them found the p-value (for
the significance level chosen - α = 0.05 and α = 0.01), then made M= 1000 simulation
and average the p-values of each distribution. This routine is made for different shape
parameters (five) of two distribution and for six sample sizes.

For each cycle of different α and different censorship percentage C%, evaluation is made
according to the matrix 4.11 in order to classified the results regarding the overall results:
3 if is OK, 2 if it is Adm - admissible or 1 if is not acceptable - NOK.

The study did an overall assessment of the evaluation for two distribution, comparing
with the different level of significance α and different C% of censored data .

This methodology pretends to examine and conclude in a reasonable way the validation
of the use of the algorithms to generate the right type II censored data.

The general algorithm to right type-II censored data have these steps:

• STEP 1 Define initial parameters and values to simulation (=0)

• STEP 2 Calculate censoring-time - TC (with parameters of distribution and number
of data censor C)

• STEP 3 Generate the vector Y that represent n random times ti from distribution
model (defining a function)

• STEP 4 Defining the times censored and return the final times with vector Tcens

• STEP 5 Apply to vector Tcens the five random test and save to vector pvaltestx the
result

• STEP 6 From vector pvaltestx calculate the significance and the accept or rejection
sample from defining α and save the result in vector rtestx
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• STEP 7 Repeat M times from step 3 to 6

• STEP 8 Calculate the number of accept percentage of samples

• STEP 9 Calculate and classification from different shapes and samples if the model
is OK, Adm. or NOK

• STEP 10 Plot and save the results to table

An example of program from Weibull distribution, made in R software:

1 censtypeII <- function(n,shape,scale,cens_failure){
2 # generation ti and define parameters
3 r <- n*(1-cens_failure)
4 failure_number <- round(r,0)
5 T <- rweibull(n, shape, scale)
6 #calculate the vectors of data censored
7 T_order <- sort(T) #vector sort ascending numbers
8 T_cens <- T_order[1:failure_number]
9 T_max <- T_order[failure_number]

10 T_rnd <- T[T<=T_max]
11 return(T_rnd)
12 }
13 y <- censtypeII(100,0.5,10,0.05)

Algorithm 4: Program in R from Weibull distribution - define generate function

The simulation was made in the two distributions for the following percentages of
censored data: 5%, 10%, 20% and 30% and for the level of significance α with values of
0.05 and 0.01.

4.7.1 Results from Weibull distribution

Using the methodology described for the Weibull distribution, the analysis is for the shape
factor range from 0.5, 1, 1.5, 2, 3 and 5, which are very illustrative of the β variation and
used as scale factor µ the value 1.

The simulation and the random test to right type II censored data with Weibull distri-
bution give some interest results. To the level of significance α = 0.05 and α = 0.01 there
is some little difference, but not change the rejection or acceptance overall of the test.

When the shape factor β increase from 0.5 to 5 the values decrease to Rank and Bartels
test. When the C% of censored data is 5% the results are very difficult to understand,
because the Run test give accept iid to all shapes factor β with the value 1, and the Turning
point and Kolmogorov-Smirnov tests reject the hypotheses of iid.

This situation can appoint to a conclusion that the algorithm of complete data or cen-
sored type II with 5% is probably, in most the cases, not random with a strong uniformity
of data.
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C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

β0.5 1 0.1 0 0.09 0 1 0.96 0.85 0.96 0.94 1 0.94 0.17 0.94 0.9 1 0.83 0 0.89 0.56
β1 1 0.08 0 0.08 0 1 0.95 0.87 0.95 0.94 1 0.95 0.16 0.94 0.9 1 0.83 0 0.89 0.56

β1.5 1 0.07 0 0.09 0 1 0.95 0.86 0.95 0.95 1 0.95 0.17 0.95 0.89 1 0.85 0 0.88 0.56
β2 1 0.09 0 0.08 0 1 0.95 0.86 0.95 0.96 1 0.95 0.16 0.94 0.88 1 0.83 0 0.89 0.54

β3 1 0.08 0 0.08 0 1 0.96 0.86 0.96 0.96 1 0.93 0.16 0.96 0.89 1 0.83 0 0.9 0.58
β5 1 0.07 0 0.08 0 1 0.96 0.86 0.96 0.95 1 0.94 0.18 0.95 0.9 1 0.85 0 0.88 0.56

Table 4.16: Test RNG, right type II, Weibull (β,C%), α = 0.05, η = 1, n = 100

The run test in all cases accept the hypotheses of iid of the samples. Exception to
the case of 5% of censored data in which all the tests accept the hypotheses of random
numbers and iid of the RNG.

4.7.2 Results from Gamma distribution

The study performed an analysis for the shape factor α from 0.5, 1, 1.5, 2, 3 and 5, which
are very illustrative of the α variation. The failure factor λ have a value of 1.

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

α0.5 1 0.08 0 0.08 0 1 0.94 0.88 0.95 0.95 1 0.95 0.18 0.96 0.9 1 0.83 0 0.88 0.57
α1 1 0.09 0 0.08 0 1 0.95 0.86 0.95 0.96 1 0.94 0.16 0.95 0.89 1 0.84 0 0.88 0.55

α1.5 1 0.07 0 0.09 0 1 0.95 0.87 0.95 0.95 1 0.93 0.18 0.94 0.9 1 0.84 0 0.9 0.55
α2 1 0.09 0 0.08 0 1 0.95 0.88 0.95 0.94 1 0.94 0.17 0.94 0.9 1 0.84 0 0.9 0.56

α3 1 0.08 0 0.08 0 1 0.94 0.87 0.95 0.95 1 0.94 0.18 0.95 0.89 1 0.85 0 0.9 0.54
α5 1 0.09 0 0.08 0 1 0.96 0.86 0.95 0.95 1 0.95 0.17 0.95 0.9 1 0.85 0 0.89 0.56

Table 4.17: Test RNG, right type II, Gamma (α,C%), α = 0.05, λ = 1, n = 100

The Gamma distribution have the same behaviour of the Weibull distribution data
censored right type II.

To all cases the run test accept the hypotheses of iid of the sample.
When the shape factor α increase from 0.5 to 5 the values maintains stable to all tests

except run test. The interpretation when the C% of censored data is 5% can be that the
algorithm of complete data or censored type II with 5% is probably not random and have
uniformity of data.

The Turning point test don’t have linear results, because, with 5% of censored data
the value is 0, then increase to up 0.7 when are 10% of censored data and then decrease
until arrive at value 0 when censored data is 30%.
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4.7.3 Global results of right type II

The final result for the criteria that are define in the section 4.5 is shown in the following
resume table:

C(5%) C(10%) C(20%) C(30%)

α0.05 OK OK OK OK
weibull α0.1 OK OK OK OK

α0.05 OK OK OK OK
gamma α0.1 OK OK OK OK

Table 4.18: Global Results of Simulation Test - Right Type II - Shape Factor

To simplify the research work in this section the most favourable and used distribution
have been chosen: the Weibull and Gamma distribution. To the level of significance
α = 0.05 and the level of α = 0.01 and to all different C% of censored data the algorithm
give a very positive results.

The importance of doing a set of random tests to the algorithm of random number
generation of right type II censored data, is very useful and give information that confirm
if it’s necessary change the algorithm, the parameters or the statistical distribution.

This results show the importance of doing a set of random test to the algorithm of
generating random number with censored data.

In conclusion, when the researchers needs to generate random number with data cen-
sored, the simulation process need to have extra steps to confirm and validate the random
number generation.
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Chapter 5

Estimation parameters and the
method EM

The estimation of parameters of survival functions is one of the most important task in
the field of reliability. There is a lot of statistical and mathematical tools and one of the
most used is MLE - Maximum Likelihood Estimation. Another tool is the Expectation
Maximization method (EM) that is an iterative process that can be used to calculate the
maximum likelihood estimators when we are in presence of incomplete data or censored
data. The EM algorithm is used in a wide range of statistical applications because its
formulation reduces the complexity of the estimation problem.

In this chapter the general formulation of censored data using MLE - Maximum Like-
lihood Estimation and EM method was described and some algorithms are developed to
compute a simulation using: MLE - Maximum Likelihood Estimation to complete data
and to right type I censored data with Weibull distribution in Python and R software; and
Expectation Maximization method to right type I censored data with Weibull distribution
in Python and R software.

5.1 General formulation of censored data

For estimating parameters of survival functions there is a lot of statistical and mathematical
tools. One of the classic is the Kaplan-Meier estimator, but sometimes, it’s necessary to
make more assumptions that allow us to model the data in more detail. Specifying a
parametric form for the functions of survival analysis enable to:

• easily compute quantiles of the distribution;

• estimate the expected failure time;

• derive a concise equation for estimating survival functions.

85
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When data is complete the classical MLE - Maximum Likelihood Estimation is enough,
but when data are censored it’s necessary to assume another conditions, information and
parameters.

The likelihood function for right censored has the following form:

L(θ;x, δ) =
∏
d∈D

f(xd)
∏
r∈R

S(xr) (5.1)

where D is the set of failures times, R is the set of right censored times. For a failure
time xd, f(xd) is proportional to the probability of observing a failure at time xd.

For a right censored observed xr, the only thing that is known is that the real survival
time Tr is greater than xr. Hence, having P [Tr > xr] = S(xr), the probability that the
real survival time Tr is greater than xr, for a right censored observation.

The above likelihood can be generalized to the case where there might be any kind of
censoring:

L(θ;x, δ) =
∏
d∈D

f(xd)
∏
r∈R

S(xr)
∏
l∈L

S(xr)[1− S(xl)]
∏
i∈I

[S(Ui)− S(Vi)] (5.2)

where L is the set of left censored observations, I is the set of interval censored obser-
vations with the only knowledge that the real survival time Ti is in the interval [Ui, Vi].
Note that S(Ui) − S(Vi) = P [Ui ≤ Ti ≤ Vi] is the probability that the real survival time
Ti is in [Ui, Vi].

To simplify, some authors express the data censor modelation like this:
- If Yi is uncensored, the ith subject contributes f(Yi) to the likelihood
- If Yi is censored, the ith subject contributes Pr(y > Yi) to the likelihood.
The likelihood for all n subjects is:

L =
n∏

i=1:δi=1

f(Yi)
n∏

i=1:δi=0

S(Yi). (5.3)

The log-likelihood can be written as:

logL =
n∑

i=1:δi=1

log h(Yi)−
n∑

i=1:δi=0

H(Yi). (5.4)

5.2 Fixed Right Type I

Fixed right type I censoring occurs when the experiments are run only for a fixed duration
- L and the lifetimes are known for those individuals whose lifetimes are Ti ≤ L.

More precisely, consider a population of n individuals subjected to periods of know and
predetermined observation L1, ..., Ln, and with lifetimes T1, ..., Tn. The ith individual’s
lifetime is observed only if Ti ≤ Li.
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For instance, the study stopped on a specified date, but different individuals start at
different specified times.

The difference between type I and type II is that in type I censoring the number of
observed lifetimes is a random variable and in type II censoring, the random is lifetimes.

Notation for type I censoring:

• n=number of individuals.

• Li= censoring time for the ith individual.

• Ti= lifetime for the ith individual.

Not necessarily observe Ti. What observe is ti:

ti = min(Ti, Li)

δi =

1 Ti ≤ Li
0 Ti > Li

Assumption: The Tis are i.i.d. with PDF f(t) and survivor function S(t)

The joint pdf for ti and δi is:

Prob (ti, δi) = f(ti)
δiS(Li)

1−δi (5.5)

Explanation:

Prob (ti, δi) = Prob (δi = 0)

= Prob (Ti > Li)

= S(Li)

For ti < Li

Prob (ti | δi = 1) = Prob (ti | Ti < Li)

=
f(ti)

1− S(Li)

From the definition of conditional probability: P (A | B) = P (A∩B)
P (B)

Thus:

Prob (ti = Li, δi = 0) = Prob (δi = 0) = S(Li) (5.6)
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and

Prob (ti, δi = 1) = Prob (ti | δi = 1)︸ ︷︷ ︸
f(ti)

1−δ(Li)

1−δ(Li)︷ ︸︸ ︷
Prob (δi = 1) (5.7)

= f(ti) (5.8)

combining equations 5.6 and 5.7 gives eq. 5.5

Now given n independent pairs (ti, δi), i = 1, ..., n, the joint pdf is:

fn(t1, δ1, ..., tn, δn) =

n∏
i=1

f(ti)
δiS(Li)

1−δi

This is the likelihood function, L(λ).

5.3 Random Right type I

In type I censoring its assume the censoring times L1, . . . , Ln are known and predetermined;
In random censoring the individuals start at random times and both the lifetimes and the
censoring times are random.

Denote by C the censoring process and by C1, C2, ..., Cn the (potential) censoring times.
The observed data are the minimum of the survival time and censoring time for each subject
in the sample and the indication whether or not the subject is censored.

Statistically, the observed data (Xi, δi), i = 1, 2, ...n, where, Xi = min(Ti, Ci),:

δi = I(Ti ≤ Ci) =

1 Ti ≤ Ci (observed failure)

0 Ti > Ci (observed censoring)

The potential data are (T1, C1), (T2, C2), ..., (Tn, Cn), but the actual observed data are
(X1, δ1), (X2, δ2), ..., (Xn, δn).

The interested are in making inference on the random variable T, i.e., any one of
following functions

f(t) = density function

F (t) = distribution function

S(t) = survival function

λ(t) = hazard function
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Usually, the density function f(t) of T may be governed by some parameters θ and g(t)
or by some other parameters. In these case, our interested is in making inference on θ. 1

In order to derive the density of (X,∆), assume independent censoring, i.e., random
variables T and C are independent. The density function of (X,∆) is defined as:

f(x, δ) = lim
h→0

P [x ≤ X < x+ h,∆ = δ]

h
, x ≥ 0, δ = {0, 1}

1. Case 1. δ = 1, i.e., T ≤ C,X = min(T,C) = T , result:

P [x ≤ X < x+ h,∆ = 1] (5.9)

= P [x ≤ T < x+ h,C ≥ T ]

≈ P [x ≤ T < x+ h,C ≥ x] (Note: x is a fixed number)

= P [x ≤ T < x+ h] ∗ P [C ≥ x] (by independence of T and C)

= f(ξ)h ∗H(x), ξ ∈ [x, x+ h), (Note: H(x) is the survival fucntion of C).

Therefore:

f(x, δ = 1) = lim
h→0

P [x ≤ X < x+ h,∆ = 1]

h
(5.10)

= lim
h→0

f(ξ)h ∗H(x)

h

= fT (x)HC(x).

2. Case 2. δ = 0, i.e., T > C, X = min(T,C) = C, result:

P [x ≤ X < x+ h,∆ = 0] (5.11)

= P [x ≤ C < x+ h, T ≥ C]

≈ P [x ≤ C < x+ h, T ≥ x] (Note: x is a fixed number)

= P [x ≤ C < x+ h] ∗ P [T ≥ x] (by independence of T and C)

= gc(ξ)h ∗ S(x), ξ ∈ [x, x+ h).

1 Notation: The density expression f(t) of T is different from f(x, δ) of f(x,∆). The formal and
complete expression is use fT (t) for T and fX,∆(X, δ) for (X,∆). But when there is no ambiguity, in the
future suppress the subscripts.
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Therefore

f(x, δ = 0) = lim
h→0

P [x ≤ X < x+ h,∆ = 0]

h
(5.12)

= lim
h→0

gC(ξ)h ∗ S(x)

h

= gC(x)S(x).

Combining these two cases, the density function of (X,∆):

f(x, δ) = [fT (x)HC(x)]δ[gC(x)S(x)]1−δ (5.13)

= {[fT (x)]δ[S(x)]1−δ}{[gC(x)]1−δ[HC(x)]δ}

Sometimes it may be useful to use hazard functions. Recalling that the hazard function

λT (x) =
fT (x)

ST (x)
, or fT (x) = λT (x) ∗ ST (x)

we can write [fT (x)]δ[S(x)]1−δ as

[fT (x)]δ[S(x)]1−δ = [λT (x) ∗ ST (x)]δ ∗ [S(x)]1−δ = [λT (x)]δ ∗ [S(x)]

The likelihood function for a parametric model given our observed data (xi, δi) (under
independence of T and C ): i = 1, 2,..., n.

L(θ, φ;x, δ) =

n∏
i=1

{[f(xi; θ)]
δi [S(xi; θ)]

1−δi}{[g(xi;φ)]1−δi [H(xi; θ)]
δi

The mainly interested is in making inference on the parameters characterizing the
distribution of T. So if θ and φ have no common parameters, can be used the following
likelihood function to make inference on θ:

L(θ;x, δ) =

n∏
i=1

[f(xi; θ)]
δi [S(xi; θ)]

1−δi . (5.14)

or equivalent,

L(θ;x, δ) =

n∏
i=1

[λ(xi; θ)]
δi [S(xi; θ)] (5.15)
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Another form to express the random censor data, consider:
Ti = lifetime of the ith individual.
Li = censoring time of ith individual.

Assume:
Ti and Li are independent random variable.
T1, . . . , Tn are iid with pdf f(t) and survivor function S(t).
L1, . . . , Ln are iid with pdf g(t) and survivor function G(t).

That is:

Prob (T ) = f(t)

Prob (T > t) = S(t)

Prob (L) = g(t)

Prob (L > l) = G(t)

Define as before:

ti = min(Ti, Li)

δi =

1 Ti ≤ Li
0 Ti > Li

The pdf for (ti, δi) is:

Prob (ti = t, δi = 0) = Prob (Li = t, Ti > Li)

= g(s)S(t)

Prob (ti = t, δi = 1) = Prob (Li = t, Ti ≤ Li)

= f(s)G(t)

Combining the two equations, result:

Prob (ti = t, δi) = [f(t)G(t)]δi [g(t)S(t)]1−δi (5.16)
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So, for n individuals with observations (t1, δ1), ..., (tnδn) the likelihood functions is:

L(δ) =
n∏
i=1

[f(ti)G(ti)]
δi [g(ti)S(ti)]

1−δi

=

(
n∏
i=1

G(ti)
δig(ti)

1−δi

)
︸ ︷︷ ︸
Dependes on censored r.v.s

(
n∏
i=1

f(ti)
δiS(t)1−δi

)
︸ ︷︷ ︸
Dependes on lifetime r.v.s

It may happens that G and g, which express the censoring random variables, do not
depend on parameters of interest. In that case, the likelihood function is effectively the
same as the likelihood function for fixed right type I censoring.

5.4 Type II censor data

A type II censored sample is one for which:

1. Only the r smallest observation in a sample of size n are observed, 1� r � n;

2. r is determined before the data are collected.

Let the n lifetimes of the size-n sample be T1, ...Tn. Their order statistics are:

T(1) ≤ T(2) ≤ · · · ≤ T(n)

In type II censoring we know only the values: T(1) . . . T(r)

Let f(t) be the pdf of the lifetime:

f(t)dt = probability of end-of-life T ∈ [t, t+ dt] (5.17)

The "survivor function" or "probabilistic reliability" is:

S(t) = Prob (T ≥ t)

=

∫ ∞
t

f(s)ds

If T1 . . . Tn are iid (independent and identically distributed) with lifetime pdf f(t) and
survivor function S(t), then the joint pdf of T(1), . . . , T(r) is:

fn(t(1), . . . , t(r)) =
n!

(n− r)!
f(t(1)) . . . f(t(r))[S(tr)]

n−r (5.18)
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Explanation:

1. n!
(n−r)! = number of ways of choosing n-r out of n items, without regard to the order
in which the items are chosen.

2. For instance, n=3 and n − r = 2 : 3!
2! = 3. Let the items be A,B, C. The following

three couples can be found: {A,B}; {A,C}; {B,C}.

3. S(T(r)) = probability that a specific item will live at least T(r).

4. Thus [S(tr)]
n−r = probability that n-r specific items will have lifetimes ≥ T(r).

5. Thus n!
(n−r)! [S(tr)]

n−r= probability that n-r items, from a population of size n, will
have lifetimes ≥ T(r).

6. f(t(1)) . . . f(t(r)) = the joint probability density for the r specific independent items
whose lifetimes are known.

Example 5.4.1:
Exponential distribution

Suppose, as before that t is exponentially distributed:

f(t) = λe−λt, t ≥ 0 (5.19)

S(t) = e−λt (5.20)

The likelihood function becomes:

L(λ) =
n∏
i=1

(λe−λt)δie−λt(1−δi) (5.21)

= λr exp

(
−

n∑
i=1

ti

)
(5.22)

(5.23)

where r =
∑n

i=1 δi is number of observed "deaths" or failures. What is the MLE of λ?
Let T =

∑n
i=1 ti, so L(λ) = λre−λt. Thus:

0 =
dL

dλ
= e−λt[rer−1 − λrT ]⇒ λ̂ =

r

T
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Compare the likelihood functions for types I and II censoring:

LII =
n!

(n− r)!
f(t(1)) . . . f(t(r))[S(tr)]

n−r

LI =
n∏
i=1

f(ti)
δiS(Li)

1−δi

For L1:
Each observed lifetime (δi = 1) contributed a factor f(ti).
Each observed lifetime (δi = 0) contributed a factorS(Li).
Thus LI is similar in form to LII , though different in origin and precise structure.

5.5 Complete data MLE Weibull

For complete data and Weibull distribution, the scale and shape parameters are η and β
respectively, given the followed equation:

L(η, β) =

(
β

ηβ

)n n∏
i=1

[
tβ−1
i exp

(
−
(
ti
η

)β)]
(5.24)

The log-likelihood is obtained by:

lnL(η, β) =

n∑
i=1

{
ln

[
β

η

(
ti
η

)β−1

exp

(
−
(
ti
η

)β)]}

=

n∑
i=1

{
ln

(
β

η

)
+ (β − 1) ln

(
ti
η

)
+

(
− ti
η

)β}

=
n∑
i=1

{
lnβ − ln η + (β − 1) ln ti − (β − 1) ln η −

(
ti
η

)β}

=
n∑
i=1

{
lnβ − ln η + (β − 1) ln ti − β ln η + ln η −

(
ti
η

)β}

=

n∑
i=1

{
lnβ − β ln η + (β − 1) ln ti −

(
ti
η

)β}

and result finally after some simplification:

lnL(η, β) = n lnβ − nβ ln η + (β − 1)
n∑
i=1

ln ti −
n∑
i=1

(
ti
η

)β
(5.25)
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Differentiating 5.25 with respect to η we have:

∂l(η, β)

∂η
= 0− nβ(

1

η
) + 0− β

n∑
i=1

{(
ti
η

)β−1(
− ti
η2

)}

= −nβ
η

+ β

n∑
i=1

(
tβ−1
i ti
ηβ−1+2

)

= −nβ
η

+ β

n∑
i=1

(
tβ−1+1
i

ηβ+1

)

= −nβ
η

+
β

η

n∑
i=1

(
ti
η

)β
(5.26)

Differentiating 5.46 with respect to β we have:

∂l(η, β)

∂β
=
n

β
− n ln η +

n∑
i=1

ln ti −
n∑
i=1

{(
ti
η

)β
ln

(
ti
η

)}
(5.27)

The second derivative in order to η

∂2l(η, β)

∂η2
=
nβ

η2
− β

η2

n∑
i=1

(
ti
η

)β
+
β

η
β

n∑
i=1

{(
ti
η

)(β−1)(
− ti
η2

)}

=
nβ

η2
− β

η2

n∑
i=1

(
ti
η

)β
− β

η2
β

n∑
i=1

(
ti
η

)(β)

=
nβ

η2
− β

η2

n∑
i=1

(
ti
η

)β
(1 + β)

=
β

η2

[
n− (β + 1)

n∑
i=1

(
ti
η

)β]

and the second derivative in order to β

∂2l(η, β)

∂β2
= − n

β2
+ 0 + 0−

n∑
i=1

[(
ti
η

)β
ln

(
ti
η

)
ln

(
ti
η

)]

= − n

β2
−

n∑
i=1

[(
ti
η

)β (
ln

(
ti
η

))2
]
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finally differentiation both η and β, we have:

∂2l(η, β)

∂η∂β
= 0− n

η
+ 0−

n∑
i=1

β( ti
η

)(β−1)(
− ti
η2

)
ln

(
ti
η

)
+

(
ti
η

)β (− ti
η2

)
(
ti
η

)


= −n
η

+
β

η

n∑
i=1

[(
ti
η

)(β)

ln

(
ti
η

)]
+

1

η

n∑
1

(
ti
η

)β
= −1

η

[
n− β

n∑
i=1

[(
ti
η

)(β)

ln

(
ti
η

)]
−

n∑
1

(
ti
η

)β]

now equalizing to zero the expression 5.26:

−nβ
η

+
β

η

n∑
i=1

(
ti
η

)β
= 0

1

η

[
−nβ + β

n∑
i=1

(
ti
η

)β]
= 0

−nβ + β
1

ηβ

n∑
i=1

ti
β = 0

and simplify:

ηβ = −
β
∑n

i=1 t
β
i

nβ
(5.28)

η =
β

√∑n
i=1 t

β
i

n

η =

(
1

n

n∑
i=1

ti
β

) 1
β
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Substituting 5.29 into 5.27 we have:

n

β
− n ln η +

n∑
i=1

ln ti −
n∑
i=1

[(
ti
η

)β
(ln ti − ln η)

]
= 0

n

β
− n ln η +

n∑
i=1

ln ti −
n∑
i=1

tβi
ηβ

ln ti +

n∑
i=1

tβi
ηβ

ln η = 0

1

β
− ln η +

1

n

n∑
i=1

ln ti −
1

n

n∑
i=1

tβi
ηβ

+
1

n

n∑
i=1

tβi
ηβ

ln η = 0 and
1

n

n∑
i=1

tβi = ηβ

1

β
− ln η +

1

n

n∑
i=1

ln ti −
1

n

n∑
i=1

tβi
ηβ

ln ti +
ηβ

ηβ
ln η = 0

1

β
− ln η +

1

n

n∑
i=1

ln ti −
1

n

∑n
i=1 t

β
i ln ti∑n

i=1 ln tβi
n

+ ln η = 0

1

β
+

1

n

n∑
i=1

ln ti −
∑n

i=1 t
β
i ln ti∑n

i=1 t
β
i

= 0 (5.29)

5.5.1 Simulation complete data MLE Weibull

To compute a simulation of MLE for data complete using Weibull distribution the follow-
ing algorithm is developed:

Step 1: Define the parameters of distribution and initialize the variable to use

Step 2: Define the inverse function in order to Uniform random number Ui that give our
random time ti

Step 3: Generate Ui random uniform (0,1)

Step 4: Generate ti from step (1) and step (4), or directly from random distribution function
and repeat for n times (the dimension of the sample)

Step 5: Calculate the MLE using the equation 5.27 and 5.39 and a solver optimization algo-
rithm (nsolver from numpy)

Step 6: Repeat step (3) to step (5)

Step 7: Compare each ti with tc and calculate the erf
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And the program has been written in python:

1 for i in range(0,len(beta)):

2 sh=beta[i]

3 solsh=[]; solsc=[]

4 for f in range(0,m):

5 Xi = sc*np.random.weibull(sh,n)

6 Xilog=np.log(Xi)

7 Xis=np.sum(Xilog)

8 lti1=(x/r)**b

9 f1=-n*b/r+b/r*sum([lti1.subs(x,i) for i in Xi])

10 lti2=(x/r)**b*sp.log(x/r)

11 f2=n/b-n*sp.log(r)+Xis- sum([lti2.subs(x,i) for i in Xi])

12 rr=beta[i]-0.4

13 res=nsolve((f1,f2), (b,r), (rr, 7),solver=’bisect’,

14 verify=False)

15 solsh.append(res[0])

16 solsc.append(res[1])

Algorithm 5: MLE for complete data with python (partial)

β µβ σ ξ µη σ ξ

β0.5 0.50 0.08 0 10.60 4.36 0.1
β1 1.05 0.14 0.05 10.00 1.65 0

β1.5 1.69 0.36 0.13 10.10 0.90 0
β2 2.01 0.36 0 9.91 1.16 0

Table 5.1: Simulation Complete Data, Weibull, (β), η = 10, n = 100

The simulation was made for different shape factor β - 0.5 to 2 and the scale parameter
η is equal to 10 ; The number of sample is n = 100 and the number of cycle simulation
is M = 1000; some of the results are show in table 5.1. The algorithm gives a good
precision in estimate the shape factor β and low standard deviation; the largest deviation
corresponds to the β = 1.5. To the estimation of the scale factor the standard deviation
is greater than shape factor, but, the percentage error is very small. To final conclusion
the algorithm is precise, faster and easy to program. This algorithm validate the routines,
functions and packages (numpy) used in python language program.
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5.6 Right censored type I MLE Weibull

Suppose that t1 ≤ ... ≤ tr is know to have failed during the study and the remaining
tn− tr = tq censored but the censored units do not have all the same censoring time, then
the likelihood function of the 2-parameter Weibull distribution is:

L(η, β) =
n∏
i=1

{
β

η

(
ti
η

)β−1

exp

(
−
(
ti
η

)β)}δi {
exp

((
− ti
η

)β)}1−δi

(5.30)

And the log-likelihood is:

lnL(η, β) =
n∑
i=1

ln

[
β

η

(
ti
η

)β−1

exp

(
−
(
ti
η

)β)]δi+
n∑
i=1

ln

[
exp

(
− ti
η

)β]1−δi


=

n∑
i=1

{
δi

[
ln

(
β

η

)
+ (β − 1) ln

(
ti
η

)
+

(
− ti
η

)β]}
+

n∑
i=1

{
(1− δi)

[(
− ti
η

)β]}

=

n∑
i=1

{
δi

[
lnβ − ln η + (β − 1) ln ti − (β − 1) ln η −

(
ti
η

)β]}
+

n∑
i=1

{
(1− δi)

[(
− ti
η

)β]}

=
n∑
i=1

{
δi

[
lnβ − ln η + β ln ti − ln ti − β ln η + ln η −

(
ti
η

)β]
−
(
ti
η

)β
+ δi

(
ti
η

)β}

=
n∑
i=1

{
δi lnβ + δiβ ln ti − δi ln ti − δiβ ln η − δi

(
ti
η

)β
−
(
ti
η

)β
+ δi

(
ti
η

)β}

and
n∑
i=1

δi = r

which became:

lnL(η, β) = r lnβ − rβ ln η + (β − 1)
n∑
i=1

(δi ln ti)−
n∑
i=1

(
ti
η

)β
(5.31)
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Differentiating 5.31 with respect to η give the following:

∂l(η, β)

∂η
= 0− rβ

η
+ 0− β

n∑
i=1

[(
ti
η

)β−1(
− ti
η2

)]
(5.32)

= −rβ
η

+ β
n∑
i=1

(
ti
β

ηβ+1

)

= −rβ
η

+
β

ηβ+1

n∑
i=1

(ti)
β

Differentiating 5.31 with respect to β give the following:

∂l(η, β)

∂β
=
r

β
− r ln η +

n∑
i=1

(δi ln ti)−
n∑
i=1

[(
ti
η

)β
ln

(
ti
η

)]
(5.33)

it’s yields:

∂l(η, β)

∂β
=
r

β
− r ln η + r

n∑
i=1

(ln ti)−
1

ηβ

n∑
i=1

ti ln ti +
ln η

ηβ

n∑
i=1

ti ln ti (5.34)

The second derivative in order to η

∂2l(η, β)

∂η2
=
rβ

η2
− β

η2

n∑
i=1

(
ti
η

)β
+
β

η
β

n∑
i=1

[(
ti
η

)β−1(
− ti
η2

)]

=
rβ

η2
− β

η2

n∑
i=1

(
ti
η

)β
(1 + β)

=
β

η2

[
r − (β + 1)

n∑
i=1

(
ti
η

)β]

The second derivative in order to β

∂2l(η, β)

∂β2
= − r

β2
+ 0 + 0−

n∑
i=1

[(
ti
η

)β
ln

(
ti
η

)
ln

(
ti
η

)]

= − r

β2
−

n∑
i=1

[(
ti
η

)β (
ln

(
ti
η

))2
]
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finally differentiating both η and β results:

∂2l(η, β)

∂η∂β
= 0− r

η
+ 0−

n∑
i=1

[
β

(
ti
η

)β−1

ln

(
− ti
η2

)
ln

(
ti
η

)
+

(
ti
η

)β − ti
η2

ti
η

]

= − r
η

+
β

η

n∑
i=1

[
β

(
ti
η

)β
ln

(
ti
η

)]
+

1

η

n∑
i=1

(
ti
η

)β
= −1

η

[
r − β

n∑
i=1

[(
ti
η

)β
ln

(
ti
η

)]
−

n∑
i=1

(
ti
η

)β]

equating 5.34 to zero

−nδiβ
η

+
β

η

n∑
i=1

(
ti
η

)β
= 0

−rβ + β
1

ηβ

n∑
i=1

(ti)
β = 0

−rβηβ + β

n∑
i=1

(ti)
β = 0

ηβ =
β
∑n

i=1 (ti)
β

rβ

η = β

√√√√1

r

n∑
i=1

(ti)
β

η =

(
1

r

n∑
i=1

(ti)
β

) 1
β

(5.35)
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Substituting 5.35 into 5.33 we have:

r

β
+ r ln η +

n∑
i=1

δi ln ti −
n∑
i=1

(
ti
η

)β
[ln ti − ln η] = 0

r

β
+ r ln η +

n∑
i=1

δi ln ti −
n∑
i=1

tβi
ηβ

ln ti +
n∑
i=1

tβi
ηβ

ln η = 0

r

β
+ r ln η +

n∑
i=1

δi ln ti −
n∑
i=1

tβi
ηβ

ln ti +

n∑
i=1

tβi
ηβ

ln η = 0

r

β
+ r ln η +

n∑
i=1

δi ln ti −
n∑
i=1

tβi
ηβ

ln ti +
n∑
i=1

tβi
ηβ

ln η = 0

r

β
+ r ln η +

n∑
i=1

δi ln ti −
∑n

i=1 t
β
i∑n

i=1 t
β
i

δin

+ ln η = 0

r

β
+ (1− r) ln η +

n∑
i=1

δi ln ti −
∑n

i=1 t
β
i ln ti∑n

i=1 t
β
i

= 0 (5.36)

5.6.1 Simulation right censored type I MLE Weibull

To compute a simulation of MLE for right censored type I MLE Weibull distribution we
will use the following algorithm,

Step 1: Define the parameters of distribution and initialize the variable to use;

Step 2: Define the inverse function in order to Uniform random number Ui that give our
random time ti;

Step 3: Generate Ui random uniform (0,1);

Step 4: Generate ti from step (1) and step (4), or directly from random distribution function
and repeat for n times (the dimension of the sample);

Step 5: Calculate the MLE using the equation 5.27 and 5.39 and a solver optimization algo-
rithm (nsolver from numpy);

Step 6: Repeat step (3) to step (5);

Step 7: Compare each ti with tc and calculate the erf.

The program has been written in python as can see in the algorithm 6.
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1 for i in range(0,len(beta)):

2 sh=beta[i]

3 solsh=[]; solsc=[]

4 for p in range(0,m):

5 #generation data

6 Xi = sc*np.random.weibull(sh,n) # generate the random number

7 T_cens=[None]*n;cr1=0;

8 # time theoretical censor from weibull

9 censoring_time = sc*(-np.log(censnumber))**(1/sh)

10 #simulation times

11 for j in range(0,n):

12 T_cens[j] = min(censoring_time, Xi[j])

13 #Count the number of complete data - r

14 for j in range(0,n):

15 if T_cens[j] < censoring_time:

16 cr1 = cr1+1

17 else:

18 cr1=cr1

19 #Vector with only complete data

20 r=cr1

21 Si= sorted(T_cens)

22 Silog=np.log(Si)

23 Si_sum=sum(Silog)

24 #resolution of numerical equation

25 lsum=x**b

26 lsumlog=Si_sum

27 f1=-r*b/e+b/(e**(b+1))*sum([lsum.subs(x,i) for i in Si])

28 #define the members of eauation - shape

29 lti2=sympy.log(x)

30 f2=r/b-r*sympy.log(e)+r*lsumlog-1/(e**b)*sum([lsum.subs(x,i)

31 for i in Si])*sum([lti2.subs(x,i) for i in Si])

32 +sympy.log(e)/(e**b)*sum([lsum.subs(x,i) for i in Si])

33 #Resolve numerical equations f1 e f2

34 rr=sh-0.3

35 res=nsolve((f1,f2), (b,e), (rr, 8),solver=’bisect’,

36 verify=False) #

37 solsh.append(res[0])

38 solsc.append(res[1])

Algorithm 6: MLE for censored data right type I and II program with python (partial)
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The simulation analysis made two type of simulations:

- the first simulation is the estimate by MLE of the parameter shape factor β with
change of the shape factor β and percentage of censored data C%. The scale factor have
value η = 1. The results gives average from the number of simulation cycle M = 1000, the
standard deviation and the relative error from the original shape factor.

- The second simulations is the estimate by MLE of the scale factor with value η = 10

with change of the shape factor β and percentage of censored data %C. The results give
average from the number of simulation cycle M = 1000, the standard deviation and the
relative error from the original shape factor.

C5% C10% C20% C30%

β µ σ ξ µ σ ξ µ σ ξ µ σ ξ

β0.5 1.5 0.8 2.1 1.5 1 2 0.96 0.78 0.92 1.2 1.1 1.5
β1 1.2 0.84 0.18 0.88 0.62 0.12 0.64 0.46 0.36 0.44 0.33 0.56

β1.5 1.1 0.62 0.29 0.96 0.7 0.36 0.38 0.25 0.75 0.77 0.41 0.49
β2 1.4 0.86 0.29 1.1 0.79 0.47 1 0.59 0.49 1.1 0.53 0.43

Table 5.2: Simulation Right Type I, Weibull (β,%C), η = 1, n = 100

In the simulation of shape factor can see very well that when C% percentage of censored
data increase the precision decrease. The percentage error is great when β = 0.5 and
reduced when shape factor growth up.

C5% C10% C20% C30%

β µ σ ξ µ σ ξ µ σ ξ µ σ ξ

β0.5 610 2,900 60 380 1,200 37 14 7.2 0.35 890 4,300 88
β1 11 3.2 0.06 10 2.8 0.01 10 2.5 0.02 13 7.5 0.31

β1.5 9 2 0.1 9.3 1.4 0.07 11 3.8 0.12 11 1.9 0.06
β2 9.5 1.3 0.05 9.5 0.96 0.05 11 1.8 0.06 11 1.6 0.06

Table 5.3: Simulation Right Type I, Weibull (β,%C), η = 10, n = 100

In simulation of the scale factor the greatest deviation is when β = 0.5 and with the
high numbers. The algorithm to shape factor β = 0.5 and scale factor η = 10 not work or
fit well, but to the other values of scale factor β the simulation works fine and the results
are very good.

To final conclusion the algorithm is precise, faster and easy to program (the exception is
the value β = 0.5). This algorithm validate the routines, functions and packages (numpy)
used in python language program.
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5.7 Left censored MLE Weibull

Left censoring is when the event of interest has already occurred before the study or
analysis. This is very rarely encountered. A left censoring scheme is, such as, the random
variable of interest, X, is observed if it is greater than, or equal, to a left censoring variable
L, otherwise, L is observed.

The analysis is then based on the pair of random variables (U, δ) where U = max(L,X)

and δ = 1 {L ≤ X}. The problem concerns the estimation of the survival function
SX(t) = Pr{X > t} from a left censored sample where X is assumed to be independent of
L then the likelihood function of the two parameter Weibull distribution is:

L(η, β) =

n∏
i=1

{
β

η

(
ti
η

)β−1

exp

(
−
(
ti
η

)β)}δi {
1− exp

(
−
(
ti
η

)β)}1−δi

(5.37)

And the log-likelihood is:

lnL(η, β) =

n∑
i=1

{
ln

[
β

η

(
ti
η

)β−1

exp

(
−
(
ti
η

)β)]}δi
+

n∑
i=1

{
ln

[
1− exp

(
−
(
ti
η

)β)]}1−δi

=

n∑
i=1

{
δi

[
ln

(
β

η

)
+ (β − 1) ln

ti
η
−
(
ti
η

)β]}
+

n∑
i=1

{
(1− δi)

[
ln 1− ln . exp

(
−
(
ti
η

)β)]}

=
n∑
i=1

{
δi

[
lnβ − ln η + (β − 1) ln ti − (β − 1) ln η −

(
ti
η

)β]}
+

n∑
i=1

{
(1− δi)

(
ti
η

)β}

=
n∑
i=1

{
δi

[
lnβ − ln η + β ln ti − ln ti − β ln η + ln η −

(
ti
η

)β]
+

(
ti
η

)β
− δi

(
ti
η

)β}

=
n∑
i=1

{
δi lnβ + δiβ ln ti − δi ln ti − δiβ ln η − δi

(
ti
η

)β
+

(
ti
η

)β
− δi

(
ti
η

)β}

which becomes:

lnL(η, β) = r lnβ − rβ ln η + (β − 1)
n∑
i=1

(δi ln ti)− (2r − 1)
n∑
i=1

(
ti
η

)β
(5.38)
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Differentiating 5.38 with respect to η give the following:

∂l(η, β)

∂η
= 0− rβ

η
+ 0− (2r − 1)β

n∑
i=1

[(
ti
η

)β−1(
− ti
η2

)]

= −rβ
η

+ (2r − 1)β
n∑
i=1

(
ti
β

ηβ+1

)

= −rβ
η

+ (2r − 1)
β

η

n∑
i=1

(
ti
η

)β
(5.39)

Differentiating 5.38 with respect to β give the following:

∂l(η, β)

∂β
=
r

β
− r ln η +

n∑
i=1

(δi ln ti)− (2r − 1)
n∑
i=1

[(
ti
η

)β
ln

(
ti
η

)]
(5.40)

equating 5.39 to zero

−rβ
η

+ (2r − 1)
β

η

n∑
i=1

(
ti
η

)β
= 0

rβ + (2r − 1)β
1

ηβ

n∑
i=1

(ti)
β = 0

−rβηβ + (2r − 1)β
n∑
i=1

(ti)
β = 0

ηβ =
(2r − 1)β

∑n
i=1 (ti)

β

rβ

η = β

√√√√(2r − 1)

r

n∑
i=1

(ti)
β

η =

(
(2r − 1)

r

n∑
i=1

(ti)
β

) 1
β

(5.41)
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Substituting 5.41 into 5.40 we have:

r

β
− r ln η +

n∑
i=1

δi ln ti − (2r − 1)

n∑
i=1

(
ti
η

)β
[ln ti − ln η] = 0

r

β
− r ln η +

n∑
i=1

δi ln ti − (2r − 1)
n∑
i=1

tβi
ηβ

ln ti + (2r − 1)
n∑
i=1

tβi
ηβ

ln η = 0

r

β
− r ln η +

n∑
i=1

δi ln ti − (2r − 1)

n∑
i=1

tβi
ηβ

ln ti + (2r − 1)

n∑
i=1

tβi
ηβ

ln η = 0 Substituting ηβ

r

β
− r ln η +

n∑
i=1

δi ln ti − (2ri − 1)
n∑
i=1

tβi
ηβ

ln ti + (2r − 1)
n∑
i=1

tβi
ηβ

ln η = 0

r

β
− r ln η +

n∑
i=1

δi ln ti − (2r − 1)

∑n
i=1 t

β
i∑n

i=1 t
β
i

r

+ (2r − 1) ln η = 0

r

β
+ (3r − 1) ln η +

n∑
i=1

δi ln ti − (2r − 1)

∑n
i=1 t

β
i ln ti∑n

i=1 t
β
i

= 0

The second derivative in order to η

∂2l(η, β)

∂η2
=
rβ

η2
− (2r − 1)

β

η2

n∑
i=1

(
ti
η

)β
+ (2r − 1)

β

η
β

n∑
i=1

[(
ti
η

)β−1(
− ti
η2

)]

=
rβ

η2
− β

η2

n∑
i=1

(
ti
η

)β
(1 + β)(2r − 1)

=
β

η2

[
r − (2r − 1)(β + 1)

n∑
i=1

(
ti
η

)β]

The second derivative in order to β

∂2l(η, β)

∂β2
= − r

β2
+ 0 + 0− (2r − 1)

n∑
i=1

[(
ti
η

)β
ln

(
ti
η

)
ln

(
ti
η

)]

= − r

β2
− (2r − 1)

n∑
i=1

[(
ti
η

)β
ln

(
ti
η

)2
]
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5.8 The estimation parametric method Expectation Maxi-
mization - EM

The Expectation Maximization method (EM) is an iterative process that can be used
to calculate the maximum likelihood estimators when the study have incomplete data or
censored data. The designation was given by Dempster, Laird and Rubin in Dempster
et al. (1977), although the underlying idea was outlined in 1972 by Orchard and Woodbury.

The algorithm consists of two steps performed repeatedly until a convergence criteria
is met. The EM algorithm is used in a wide range of statistical applications because its
formulation, which reduces the complexity of the estimation problem. One of the applica-
tions of the algorithm is when the maximum likelihood estimator has to be calculated in
the presence of incomplete data. The aim of the algorithm is basically to simplify an in-
complete data problem to a complete data problem, which is often easier to solve, creating
a connection between the two conditions.

The EM algorithm is a process that converges to the maximum likelihood estimator
and is based on the substitution of a difficult maximization of likelihood by a sequence of
easier maximizations whose limit is the response to the original problem.

The likelihood function for complete data is usually less complex compared to the
function for incomplete data, Balakrishnan and Mitra (2012).

One of the negative aspects of the EM algorithm is its slow convergence. However,
other algorithms based on the EM algorithm have been proposed to increase the speed of
convergence and preserve its simplicity, namely the Incremental EM algorithm (EMI) and
the Sparse EM algorithm (SPEM).

Let X be the set of data complete with the probability density function fc(x, θ) and θ
the parameters that characterize the distribution. The log-likelihood function correspond-
ing to the complete sample is represented by,

lnLc(x, θ) = lc(x, θ) (5.42)

In the presence of incomplete data some events are not observed. Let Y be the set of
observed data and Z be the set of unknown data, X can be represented as a function of
(y, z), so that:

Each iteration of the EM algorithm involves two steps, step E (expectation) and step
M (maximization), defined by Mclachlan (2008),
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Step E: Calculate Q(θ | θ(K)) where,

Q(θ | θ(K)) = E(K)

[
lc(x, θ), δθ

(K−1)
]

(5.43)

Step M: Finding θ(K+1)that maximizes Q(θ | θ(K)) this is,

θ(K+1)=argmaxQ(θ|θ(K))(5.44)

Q(θ(K+1), θ(K)) ≥ Q(θ, θ(K)) (5.45)

The procedure is performed until the difference between iteration k and iteration k +
1, decreases to an acceptable value, ε > 0.

Step E of the algorithm calculates the conditional expected value of the log of the
likelihood function for complete data given the observed sample and step M finds its
maximum.

This algorithm requires an initial solution for the values of the distribution parameters,
called θ(0). The choice of this initial solution requires particular attention as the speed of
convergence of the algorithm can become extremely slow due to poor choice. Another
aspect to consider is that the maximum likelihood equation can have multiple solutions
corresponding to local maxima, so the choice of the initial solution becomes important.

5.8.1 The method EM to right censored

The data vector, Zi, can be considered as the not observed data. The observed data (Yi, δi)

in Yi = min(Ti, Ci), where Ci corresponds to observation time, δi = 1 where (Ti ≤ Ci) and
uncensored data correspond δi = 0 where (Ti > Yi).

Step E of the algorithm requires the calculation of the conditional expected value of
log-likelihood for complete data given the observed sample. In this case the log-likelihood
function for complete data and the logarithm equation to the MLE for complete is given
by:

lnL(η, β) = n lnβ − nβ ln η + (β − 1)
n∑
i=1

(ln ti)−
n∑
i=1

(
ti
η

)β
(5.46)

The distribution parameters, δi = (δ1, δ2, ..., δn) or censorship indicator vector yi =

(y1, y2, ..., yn) or vector are considered the observed data θ = (η, β).
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First Step: Expectation

Q(θ; θk) = Eθk
[
lc(x; θ) | y, δ, θk−1

]
= n lnβ − nβ ln η + (β − 1)

n∑
i=1

A
(s)
i −

1

ηβ

n∑
i=1

B
(s)
i (5.47)

where:

A
(s)
i = Eθk [ln ti | y, δ] = δi ln yi + (1− δi)Eθk [ln ti | ti > yi] (5.48)

B
(s)
i = Eθk

[
tβi | y, δ

]
= δiη

β
i + (1− δi)Eθk

[
tβi | y, ti > yi

]
(5.49)

The conditional probability is:

f(y|y′) = f(ti|yi) =
f(ti)

1− F (yi)
; ti > yi right censor (5.50)

Making use of Weibull PDF function the expression became:

f(y | y′) =

β
η

(
ti
η

)β−1
exp

[
−
(
ti
η

)β]
1−

[
1− exp−

(
yi
η

)β]

=

β
η

(
ti
η

)β−1
exp

[
−
(
ti
η

)β]
exp

[
−
(
yi
η

)β]
=
β

η

(
ti
η

)β−1

exp

[
−
(
ti
η

)β]
exp

[(
yi
η

)β]

=
β

η

(
ti
η

)β−1

exp

[(
yi
η

)β
−
(
ti
η

)β]
(5.51)

To obtain the Expectation to Ai need to solve the following equation:

Eθ(k) [ln ti | ti > yi] =

∫ ∞
yi

{
ln ti

β(k)

η(k)

(
ti

η(k)

)β(k)−1

exp

[(
yi

η(k)

)β(k)

−
(

ti

η(k)

)β(k)
]}

dti

= exp

(
yi

η(k)

)β(k) ∫ ∞
yi

{
ln tiη

(k)β
(k)

β(k)tβ
(k)−1
i exp

[
−
(

ti

η(k)

)β(k)
]}

dti
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Make the substitution:

(
ti
η

)β
= Z ⇔ tβi = ηβZ

ti = ηz
1
β

dti = η
1

β
z

1
β
−1

can establish this result in a non-rigorous form, by using the fact that:

y →∞⇒ Z →∞

Zi = yi ⇒ Z =

(
ti
η

)β
And simplifying the following expressions (omitting the term K)

Eθ(k) [ln ti | ti > yi] = exp

(
yi
η

)β ∫ ∞(
yi
η

)β ln(ηZ
1
β )η−ββ

(
ηZ

1
β

)β−1
exp(−Z)η

1

β
Z

( 1
β
−1)

dZ

= exp

(
yi
η

)β ∫ ∞(
yi
η

)β ln(ηZ
1
β )η−βηβ−1Z

(1− 1
β

)
exp(−Z)ηZ

( 1
β
−1)

dZ

= exp

(
yi
η

)β ∫ ∞(
yi
η

)β ln(ηZ
1
β )

1

η
Z

(1− 1
β

)
exp(−Z)ηZ

( 1
β
−1)

dZ

= exp

(
yi
η

)β ∫ ∞(
yi
η

)β ln(ηZ
1
β ) exp(−Z)dZ

= exp

(
yi
η

)β ∫ ∞(
yi
η

)β
(

ln η +
1

β
lnZ

)
exp(−Z)dZ
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And solve the integral:

Eθ(k)(Ai) = exp

(
yi
η

)β {∫ ∞(
yi
η

)β e−Z ln ηdZ +

∫ ∞(
yi
η

)β e−Z 1

β
lnZdZ

}

= exp

(
yi
η

)β {
− ln η

∫ ∞(
yi
η

)β − exp(−Z)dZ +
1

β

∫ ∞(
yi
η

)β exp(−Z) lnZdZ

}

= exp

(
yi
η

)β {
− ln η

[
e−Z

]∞(
yi
η

)β +
1

β

([
−e−Z lnZ

]∞(
yi
η

)β − ∫ ∞(
yi
η

)β −e−Z 1

Z
dZ

)}

= exp

(
yi
η

)β {
ln η exp

(
−yi
η

)β
+

1

β

[
exp

(
−yi
η

)β
ln

(
yi
η

)β
+

∫ ∞(
yi
η

)β Z−1 exp(−Z)dZ

]}

= exp

(
yi
η

)β {
ln η exp

(
−yi
η

)β
+

1

β

[
exp

(
−yi
η

)β
ln

(
yi
η

)β
+ Γ

(
0;

(
yi
η

)β)]}

= exp

(
yi
η

)β
ln η exp

(
−yi
η

)β
+

1

β
exp

(
yi
η

)β
exp

(
−yi
η

)β
ln

(
yi
η

)β
+

exp

(
yi
η

)β 1

β
Γ

(
0;

(
yi
η

)β)

= ln η +
1

β
exp

(
yi
η

)β
+ exp

(
yi
η

)β 1

β
Γ

(
0;

(
yi
η

)β)

= ln η + ln yi − ln η +
1

β
exp

(
yi
η

)β
Γ

(
0;

(
yi
η

)β)

= ln yi +
1

β
exp

(
yi
η

)β
Γ

(
0;

(
yi
η

)β)
(5.52)

To obtain the Expectation to Bi need to solve the following equation:

Eθ(k)

[
tβi |ti > yi

]
=

∫ ∞
yi

{
tβ

(k)

i

β(k)

η(k)

(
ti

η(k)

)β(k)−1

exp

[(
yi

η(k)

)β(k)

−
(

ti

η(k)

)β(k)
]}

dti

= exp

(
yi

η(k)

)β(k) ∫ ∞
yi

{
tβ

(k)

i η(k)−β
(k)

β(k)tβ
(k)−1
i exp

[
−
(

ti

η(k)

)β(k)
]}

dti
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Making the substitution

(
ti
η

)β
= Z ⇔ tβi = ηβZ

ti = ηz
1
β

dti = η
1

β
z

1
β
−1

And simplifying the following expressions (omitting the term K)

Eθ(k)

[
tβi |ti > yi

]
= exp

(
yi
η

)β ∫ ∞(
yi
η

)β ηβZη−ββ
(
ηZ

1
β

)β−1
exp(−Z)η

1

β
Z

( 1
β
−1)

dZ

= exp

(
yi
η

)β ∫ ∞(
yi
η

)β Zβηβ−1Z
(1− 1

β
)
exp(−Z)η

1

β
Z

( 1
β
−1)

dZ

= exp

(
yi
η

)β ∫ ∞(
yi
η

)β Zηβ−1 exp(−Z)ηdZ

= exp

(
yi
η

)β
ηβ
∫ ∞(

yi
η

)β exp(−Z)ZdZ

And solve the integral:

Eθ(k)

[
tβi |ti > yi

]
= exp

(
yi
η

)β
ηβ

{[
−e−Z .Z

]∞(
yi
η

)β − ∫ ∞(
yi
η

)β −e−ZdZ
}

= exp

(
yi
η

)β
ηβ

{
0 + e

−
(
yi
η

)β (
yi
η

)β
−
[
e−Z

]∞(
yi
η

)β
}

= exp

(
yi
η

)β
ηβ

{
e
−
(
yi
η

)β (
yi
η

)β
+ e
−
(
yi
η

)β}

= exp

(
yi
η

)β
ηβ

[
e
−
(
yi
η

)β ((
yi
η

)β
+ 1

)]

= ηβ
(yi)

β

ηβ
+ ηβ

= yβi + ηβ (5.53)



114 Estimation parameters and the method EM

Substituting 5.52 and 5.53 into 5.47 give the final result:

Q(θ; θk) = n lnβ − nβ ln η + (β − 1)
n∑
i=1

[
δi ln yi + (1− δi)

(
ln yi +

1

β
exp

(
yi
η

)β
Γ

(
0;

(
yi
η

)β)]

− 1

ηβ

n∑
i=1

[
δiy

β
i + (1− δi)

(
yβi + ηβ

)]
(5.54)

Derived in order to η:

∂Q

∂η
= 0− nβ

η
+ 0−

(
−βη−β−1

) n∑
i=1

[
δiy

β
i + (1− δi)Bi

]
= −nβ

η
+

β

ηβ+1

n∑
i=1

[
δiy

β
i + (1− δi)Bi

]
(5.55)

Derived in order to β:

∂Q

∂β
=
n

β
− n ln η +

n∑
i=1

[δi ln yi + (1− δi)Ai]−
(
− ln η

ηβ

) n∑
i=1

[
δiy

β
i + (1 + δi)Bi

]
− 1

ηβ

n∑
i=1

[
δiy

β
i ln yi

]
=
n

β
− n ln η +

n∑
i=1

[δi ln yi + (1− δi)Ai] +

n∑
i=1

{
ln η

ηβ

[
δiy

β
i + (1 + δi)Bi

]
− 1

ηβ
δiy

β
i ln yi

}

And simplifying

−nβ
η

+
β

ηβ+1
A = 0

−ηβnβ + βA = 0

ηβnβ = βA

η =

[
βA

βn

] 1
β

η =

(
A

n

) 1
β
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Calculate second derivative:

Derived in order to η

∂2Q

∂η2
=
nβ

η2
− β(β + 1)

ηβ+2

n∑
i=1

[
δiy

β
i + (1− δi)Bi

]
Derived in order to β

∂2Q

∂β2
= − n

β2
+ 0 + 0 +

n∑
i=1

{
ln η

(
− ln η

ηβ

)[
δiy

β
i + (1− δi)Bi

]
+

ln η

ηβ

[
δiy

β
i ln yi

]}

−
n∑
i=1

{(
− ln η

ηβ

)
δiy

β
i ln yi +

1

ηβ
δi(y

β
i ln yi) ln yi

}

= − n

β2
− (ln η)2

ηβ

n∑
i=1

[
δiy

β
i + (1− δi)Bi

]
+

ln η

ηβ

n∑
i=1

[
δiy

β
i ln yi

]
+

ln η

ηβ

n∑
i=1

[
δiy

β
i ln yi

]
− 1

ηβ

n∑
i=1

[
δiy

β
i (ln yi)

2
]

= − n

β2
− (ln η)2

ηβ

n∑
i=1

[
δiy

β
i + (1− δi)Bi

]
+

2 ln η

ηβ

n∑
i=1

[
δiy

β
i ln yi

]
− 1

ηβ

n∑
i=1

[
δiy

β
i (ln yi)

2
]

Derived in order to β and η

∂2Q

∂η∂β
= −n

η
+

1

ηβ+1

n∑
i=1

[
δiy

β
i + (1− δi)Bi

]
+

(
− ln η

ηβ+1

)
β

n∑
i=1

[
δiy

β
i + (1− δi)Bi

]
+

β

ηβ+1

n∑
i=1

(
δiy

β
i ln yi

)
= −n

η
− 1− β ln η

ηβ+1

n∑
i=1

[
δiy

β
i + (1− δi)Bi

]
+

β

ηβ+1

n∑
i=1

[
δiy

β
i ln yi

]

Variance and covariance:
From the equation:

f(ti|yi) =
β

η

(
ti
η

)β−1

exp

[(
yi
η

)β
−
(
ti
η

)β]
; ti ≥ yi
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and the logarithm

ln f(ti|yi) = ln

(
β

η

)
+ ln

(
ti
η

)β−1

ln exp

[(
yi
η

)β
−
(
ti
η

)β]

= ln

(
β

η

)
+ ln

(
ti
η

)β−1

+

(
yi
η

)β
−
(
ti
η

)β

Derived in order to η

∂ ln f(ti|yi)
∂η

= −1

η
− 1

ηβ−1
(β − 1)ηβ−1−1 + β

(
yi
η

)β−1(
− yi
η2

)
− β

(
ti
η

)β−1(
− ti
η2

)
= −1

η
− (β − 1)

ηβ−1η−1

ηβ−1
+ β

(
yi
η

)β (
−1

η

)
− β

(
ti
η

)β (
−1

η

)
= −1

η
− β − 1

η
+
β

η

(
yi
η

)β
+
β

η

(
ti
η

)β

Derived in order to β

∂ ln f(ti|yi)
∂β

=
1

β
+

(
ti
η

)β−1
ln
(
ti
η

)
(
ti
η

)β−1
+

(
yi
η

)β
ln

(
yi
η

)
−
(
ti
η

)β
ln

(
ti
η

)

=
1

β
+ ln

(
ti
η

)
+

(
yi
η

)β
ln

(
yi
η

)
−
(
ti
η

)β
ln

(
ti
η

)

second derived in order to η

∂2 ln f(ti|yi)
∂η2

=
1

η2
+
β − 1

η2
+
β

η2

(
yi
η

)β
− β

η
β

(
yi
η

)β−1(
− yi
η2

)
− β

η2

(
ti
η

)β
+
β

η
β

(
ti
η

)β−1(
− ti
η2

)
=

1

η2
+
β − 1

η2
+
β

η2

(
yi
η

)β
+
β2

η

(
yi
η

)β (1

η

)
− β

η2

(
ti
η

)β
− β2

η

(
ti
η

)β (1

η

)
=

1

η2
+
β − 1

η2
+
β

η2

(
yi
η

)β
+
β2

η2

(
yi
η

)β
− β

η2

(
ti
η

)β
− β2

η2

(
ti
η

)β
=

1

η2
+
β − 1

η2
+
β

η2

[(
yi
η

)β
−
(
ti
η

)β]
+
β2

η2

[(
yi
η

)β
−
(
ti
η

)β]
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second derived in order to β

∂2 ln f(ti|yi)
∂β2

= − 1

β2
+ 0 +

(
yi
η

)β
ln

(
yi
η

)
ln

(
yi
η

)
−
(
ti
η

)β
ln

(
ti
η

)
ln

(
ti
η

)
= − 1

β2
+

(
yi
η

)β (
ln

(
yi
η

))2

−
(
ti
η

)β (
ln

(
ti
η

))2

second derived in order to β and η

∂2 ln f(ti|yi)
∂β∂η

= −1

η
− 1

η

(
yi
η

)β
− β

η

(
yi
η

)β
ln

(
yi
η

)
+

1

η

(
ti
η

)β
+
β

η

(
ti
η

)β
ln

(
ti
η

)
=

1

η

[
−1−

(
yi
η

)β
+

(
ti
η

)β]
+
β

η

[
−
(
yi
η

)β
ln

(
yi
η

)
+

(
ti
η

)β
ln

(
ti
η

)]

And the expected value

E

[
∂2 ln f(ti|yi)

∂η2
| ti > yi

]
= E

[
1

η2
+
β − 1

η2
+
β

η2

(
yi
η

)β
+
β2

η2

(
yi
η

)β
− β

η2

(
ti
η

)β
− β2

η2

(
ti
η

)β]

5.8.2 Simulation EM to right censored

To simulate the method EM to right type I censored data with Weibull distribution the
next algorithm have been developed:

Step 1: Define and model the firs step of method EM: Step E (expectation) as can see in 5.47

Step 2: Find and development the formulas to Step M (maximization)of method EM that
result in equation 5.54

Step 3: Generate Ui random uniform (0,1)

Step 4: Generate ti and δi from step 3 and repeat for n times (the dimension of the sample)

Step 5: Define the initial values θk that will begin the algorithm iteration

Step 6: Using the equations from step 2 find θk+1

Step 7: Compare ε = L(θk+1)−L(θk+1) and stop if the value ε > 0 are acceptable, otherwise
repeat Step 6.
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Two different algorithms have been made: the first one was made in python and the
second was made in R.

The algorithm in python have two principals routines: the first is the definition of the
two functions (algorithm 7), and the second is the cycle that use the numerical solution of
the equation 5.54 by the function nsolve from the package system - Sympy.

The algorithm in R have also two principals routine: the functions that represents
symbolically the formulas from 5.54 (algorithm 8) and the routine optimize and solve the
equation 5.54 using the function optim from R software.

1

2 def funs (y):
3 b,ni=y
4 for i in range(0,n):
5 xx=Vr[i]*Yi[i]**b+(1-Vr[i])*(Yi[i]**(bk)+(nk)**(bk))
6 lti1.append(xx)
7 f1=-n*b/ni+b/(ni**(b+1))*sum(lti1)
8 for i in range(0,n):
9 tt=mp.gammainc(0,(Yi[i]/nk)**bk)

10 rr=float(tt)
11 xx=Vr[i]*sp.log(Yi[i])+(1-Vr[i])*(sp.log(Yi[i])
12 +1/(bk)*sp.exp((Yi[i]/nk)**bk)*rr)
13 lti2.append(xx)
14 for i in range(0,n):
15 xx=sp.log(ni)/ni**b*(Vr[i]*Yi[i]**b
16 +(1-Vr[i])*(Yi[i]**(bk)+(nk)**(bk)))-1/ni**b*Vr[i]*Yi[i]**b
17 *sp.log(Yi[i])
18 lti3.append(xx)
19 f2=n/b-n*sp.log(ni)+sum(lti2)+sum(lti3)

Algorithm 7: EM to right censored with python - define function (partial)
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1 # function that define calculate the two parameters

2 ols.lf<-function(theta,dx,Vr){

3 b<-theta[1]

4 ni<-theta[2]

5 ss <- Vr*log(dx)-(1-Vr)*(log(dx)+1/(bk)

6 *exp(dx/nk)^bk*gamma_inc(0,((dx/nk)^bk)))

7 tt <- Vr*dx^b+(1-Vr)*(dx^bk+nk^bk)

8 logl<- n*log(b)-n*b*log(ni)+(b-1)*sum(ss)-1/(ni^b)*sum(tt)

Algorithm 8: EM to right censored with R - define function (partial)

1 for (i in 1:m){

2 # Formula to calculate the n(th) shape and scale estimated

3 dx <- rweibull(n,sh,sc)

4 Vr <- rbinom(n, 1, cen)

5 cr=0; zz=bk

6 condition = 10

7

8 while (condition == 10) {

9 p<-optim(c(bk,nk),ols.lf,method="BFGS",dx=dx,Vr=Vr)

10

11 #retrive values to loop

12 tbk=abs(bk- p$par[1])

13 bk <-p$par[1]; nk <- p$par[2]

14 cr=cr+1; zz[cr]=bk

15 if (tbk<0.01 ) {condition =0} else { }

16 if (cr==15 ) {condition =0} else { }

17 }

18 f1data <- cbind(f1data,zz)

Algorithm 9: EM to right censored with R - cycle (partial)
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A huge number of simulations was made, but to summarize how the algorithm work,
only the results of R software is present. The algorithms made in python have found
very difficult to tuning the initial values and, in a great number of times, the value of
convergence was to far from the theoretical value.

The results from R software are more precise, and the time and consuming of the
computer processor is much lesser than with python software.

β= 1 η= 10 N. Iterations

1.1992 11.0837 8
1.0283 11.9851 4

1.1214 8.6873 2
1.0966 11.2708 2

1.0959 13.6491 1
1.0195 11.2788 3

1.4692 14.0542 12
1.1658 13.1808 8

0.9013 10.8018 4
1.0311 10.8472 4

Table 5.4: Simulation EM Method, Right type I, Weibull, β = 1, η = 10, n = 100

The basic procedure of the EM algorithm was applied to determine the solutions of the
equation that derives from the maximum likelihood method, in particular in the case of
right censored data. The EM algorithm has several properties and advantages that stand
out from other iterative algorithms, such as: - the required analytical work is simpler than
with other methods, since it is only necessary to maximize the conditional expected value
of the log-likelihood and is relatively easy to program and implement.

The table 5.4 present the result from one of the multiple simulations,that have been
done, with different shapes factor and censoring time.

In the analysis of the table for beta = 1 e η = 10 the number of iterations is low and
the evolution can be better see in the figure 5.1. The estimation is much more precise to
the shape factor β than to the scale factor η.
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Figure 5.1: Iterations and evolution EM method

The figure 5.1 show the results and the evolution of convergence of the algorithm from
ten cycles with minimum of ten iterations.

The simulation show the algorithms developed converged quickly but in other situations
the EM algorithm may converge slowly, even in some seemingly simple problems, and in
problems in which there is a lot of incomplete information. However the EM algorithm,
like other methods, does not guarantee the convergence to the global maximum when there
are several local maximum. The estimate obtained depends on the initial solution.

In this section, it was possible to verify the development of the EM algorithm with
a numerical method to determine the solutions of the equations that derives from the
maximum likelihood method, in particular in the case of the presence of right censored
data.
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Chapter 6

Reliability and simulation of systems

The subject of reliability and simulation of systems and the structural relationship between
a system and its components is very important in the field of reliability. A comprehensive
discussion of reliability theory can be found in Barlow and Proschan (1975) and in Kauf-
mann et al. (1977). Reliability Block Diagrams - RBD can be defined as network of blocks
describing the function of the system with logical connections of components needed to
produce a specified system function.

The theory and the reliability functions of the linear consecutive systems are derived
and algorithms and simulation are carried out with a new and original approach.

The component importance measure can be a very important tool to help to optimize
maintenance resources, inspection plans or improve better preventive maintenance tasks.

6.1 Systems and Reliability Block Diagrams

To model the system (equipment, line production, etc...) there is a lots of tools, two of
them is RBD and FT - fault tree. Sometimes, the two tools give the same result and can
convert the fault tree to reliability block diagram, and vice-versa, this could happen when
fault tree is only OR-gates, or AND-gates and in RBD is only series-parallel, not complex
system. Barlow and Proschan (1975) present an exhaustive description of the theory of
RBD and more recently Rausand and Høyland (2004). If the system has more than one
function, each function must be considered individually, and different diagram need to be
made for each system function. The system is fixed in one moment of time; the present
state of the system is assumed to depend only on the present states of the components.

The connection through a block, in RBD means that the component is functioning.
The series structure is equivalent to a fault tree where all the events are connected through
an OR-gate. The TOP event occurs if either component 1 or component 2 or component 3
or .... component n fails. The parallel structure can be represented as a fault tree where all
the basic event are connected through an AND-gate. The TOP event occurs if component
1 and component 2 and component 3 ... and component n fail.

123
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In the construction of the fault tree there is a search for all potential causes of a specified
system failure. The FT - fault tree will give to the analyst a better understanding of the
causes of failure and this potential and risks. If the analysis is done in the design or
development phase, the researcher may redesign the operation of the system and take
actions to improve and eliminate potential hazard.

A Reliability Block Diagram is developed in terms of functions. Normally not have in
account safety and auxiliary functions and components used to protect equipment, people
or the environment. Reliability Block Diagrams can be used for repairable systems and for
non repairable systems or components.

A Fault Tree will be converted in Reliability Block Diagram for qualitative and quanti-
tative analyses. For further evaluations is often more natural to base analysis on a reliability
block diagram and this is the main reason to chosen the focus on reliability block diagram
in the rest of chapter.

6.1.1 System of components

A system that is composed with n components will be classified a system of order n. The
component are to be numbered consecutively from 1 to n.

Let C = {c1, c2, ..., cn} be the set of all components, where ci is the ith component, and
n is the number of components in the system.

Let xi be the state of component ci the system can be in one and only one of two states,
that is either functioning or failed.

In chapter 6 there is only two states to systems and to components: a functioning state
and a failed state.

To indicate the state of the ith component a binary indicator variable xi to component
i is assigned:

xi =

1 if component i is functioning,

0 if component i is failed.

for i=1,...,n, where n is the number of the components in the system.
The number of components n in the system is called the order of the system.
The joint performance of all components in the system can be indicated by vector

X = (x1, x2, ..., xn) called a state vector.
Similarly, the binary variable φ indicates the state of the system:

φ =

1 if system i is functioning,

0 if system i is failed.

The term binary variable will refer to a variable taking on the values 0 or 1.
The state of system is determined completely by the states of the components, so that

may write
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φ = φ(x), where x = (x1, ..., xn).

The function φ(x) is called the structure function of the system. A knowledge of the
structure function is equivalent to a knowledge of the structure of the system.

6.1.2 Series structure

A system that is functioning if and only if all of its n components are functioning is called
a series structures. The corresponding reliability block diagram is shown in figure 6.1.

1 2 3 n...

Figure 6.1: Series structure diagram

A series structure functions if and only if each component functions. The structure
function is given by

φ(X) =
n∏
i=1

xi = min(xi, ..., xn).

6.1.3 Parallel structure

A system that is functioning if at least one of its n components is functioning is called a
parallel structure. The corresponding reliability block diagrams is shown in figure 6.2.

1

2

3

n

Figure 6.2: Parallel structure diagram



126 Reliability and simulation of systems

A parallel structure functions if and only if at least one component works. The structure
function is given by

φ(X) =

n∐
i=1

xi = max(xi, ..., xn).1

6.1.4 The definition k-out-of-n structure

A system that is functioning if and only if at least k of the n components functioning is
called a k-out-of-n structure functions

The structure function k-out-of-n structure can be written

φ(x) =

1 if
∑n

i=1 xi ≥ k,

0 if
∑n

i=1 xi ≤ k.

or equivalently,

φ(x) =

n∏
i=1

xi for k = n,

while

φ = (x1...xk)

π(x1...xk−1xk+1) π... π(xn−k+1...xn)

≡ max {(x1...xk)

π(x1...xk−1xk+1) π... π(xn−k+1...xn)}

for 1 ≤ k ≤ n, where every choice of k out of the n x’s appears exactly.

A parallel structure is a 1-out-of-n structure and a series structure is an n-out-of-n
structure.

The system have component irrelevant when, if the state of that component change
but the change the state of the system doesn’t, for all possible states of all components in
the system.

When a system structure has irrelevant components, it may be possible to simplify it by
omitting those components irrelevant to its performance. This structure is called reducible

The structure is called irreducible when all components are relevant. Coherent structure
is an irreducible structure with monotone structure function.

A monotone structure is a structure function φ, is called monotone if φ(y) ≥ φ(x) for
all Y ⊇ X, where Y ⊇ X ⇔ yi ≥ xi for all i

1 Notation:
n∐
i=1

xi = 1 −
n∏
i=1

(1 − xi), and x1

πx2 = 1 − (1 − x1)(1 − x2)
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6.1.5 Coherent structures

The system with a monotone structure function is called semi-coherent. A semi-coherent
system having relevant components is then called a coherent system,

There are only two semi-coherent structures that are not coherent: is φ(0) = 0, which
fails for every state of its components, and the structure φ(1) = 1, which performs for
every state of its components.

Examples of typical coherent systems are:

1. Series system of order n with structure function φ(x) =
∏n
i=1 xi,

2. A parallel system of order n with structure function φ(x) =
∐n
i=1(1−)xi),

3. A k-out-of-n system with structure function φ(X) = 1 if s(X) > k and 0 other-
wise, and

4. A parallel-series (series-parallel) system: the system consisting of a parallel (series)
arrangement of series (parallel) subsystem.

A physical system would be poorly designed if improving the performance of a compo-
nent (that is, replacing a failed component by a functioning component) caused the system
to deteriorate.

Assume that, the system will not run worse than before if we replace a component in a
failed state with one that is functioning. This is obviously the same as requiring that the
structure function shall be non-decreasing in each of its arguments.

A system of components is said to be coherent if all its components are relevant and
the structure function is non-decreasing.

6.1.6 Structures represented by paths and cuts

A structure of order n consists of n components numbered from 1 to n. The set of
components is denoted by

c = {1, 2, ...n}

A path set P is a set of component in C which by functioning ensures that the system
is functioning. A path set is said to be minimal if it cannot be reduced without loosing its
status as a path set.

A critical path vector for components i is a state vector (1i, x) such that

φ(1i, x) = 1 while φ(0i, x) = 0

This is equivalent to requiring that

φ(1i, x)− φ(0i, x) = 1
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In other words, given the states of the other components (·i, x), the system is functioning
if and only if component i is functioning. It is therefore natural to call (1i, x) a critical
path vector for component i.

A critical path set C(1i, x) corresponding to the critical path vector (1i, x) for compo-
nent i is defined by:

C(1i, x) = {i} ∪ {j;xj = 1, j 6= i}

The total numbers of critical path sets (path vectors) for component i is

ηφ(i) =
∑
(·i,x)

[φ(1i, x)− φ(0i, x)]

Since the x′js are binary variables and thus can take only two possible values, 0 and 1, the
total number of state vectors (·, x) = (x1, · · · , xi−1, ·, xi+1, · · · , xn) is 2n−1.

A cut set K is a set of components in C which by failing causes the system to fail. A
cut set is said to be minimal if it cannot be reduced without loosing its status as a cut set.

1
2

3

Figure 6.3: Reliability block diagram

Example 6.1.1:
Consider the reliability block diagram in fig. 6.3. The component set is c = {1, 2, 3}.
In this case the minimal path sets are

P1 = {1, 2} and P2 = {1, 3}

while the minimal cut sets are

K1 = {1} and K2 = {2, 3}

The association of a binary function with the arguments xi and i ∈ Pj with the jth

minimal path set Pj of a coherent structure φ is represent by:

ρj(x) =
∏
i∈Pj

xi, (6.1)

if all components in the jth minimal path set function takes the value 1 , and 0 otherwise.

The structure ρj as the jth minimal path series structure, (J=1,...,p) where p is the
number of minimal path sets of φ and ρj is the structure function of a series arrangement
of the components of the jth path set.
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The structure are working if and only if at least one of the minimal path structures
is work, follow identity is true representing the structure as a parallel arrangement of the
minimal path series structures:

φ(x) ≡
P∐
j=1

ρj(x) ≡
P∏
j=1

[1− ρj(x)] , (6.2)

The structure may be interpreted as a parallel structure of the minimal path series
structures. Combining equation 6.2 with equation 6.1 we get:

φ(x) =
P∐
j=1

∏
i∈Pj

xi (6.3)

The association of a a binary function with arguments xi, i ∈ Kj with the jth minimal
cut set Kj of a coherent structure φ, is represent by:

κj(x) =
∐
i∈Kj

xi, (6.4)

if all the components in the jth minimal cut set fail,which takes the value 0 and 1
otherwise. The structure κj as the jth minimal parallel cut structure, (J=1,...,K) where
K is the number of minimal cut sets of φ and κj is the structure function of a parallel
arrangement of the components of the jth cut set.

The structure fails if and only if at least one of the minimal cut structures fails, the
follow identity is true:

φ(x) =
K∏
j=1

κj(x) (6.5)

representing the structure as a series arrangement of the minimal cut parallel structures.
The structure may be interpreted as a series structure of the minimal cut parallel

structure. By combining eq. 6.4 and 6.5 we get

φ(x) =

K∏
j=1

∐
i∈Kj

xi (6.6)

Example 6.1.2 (The Bridge Structure):
Consider a bridge structure such as that given by the physical network in figure 6.4
The minimal path sets are

P1 = {1, 4}, P2 = {2, 5}, P3 = {1, 3, 5}, P4 = {2, 3, 4}

The minimal cut sets are:

K1 = {1, 2}, K2 = {4, 5}, K3 = {1, 3, 5}, K4 = {2, 3, 4}
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Using the equation 6.2 and the minimal path sets, the bridge structure may be represent
as a parallel-series diagram.

1

2 5

4

3

Figure 6.4: Bridge Structure Diagram

ρ1 = x1 · x3 · x5

ρ2 = x2 · x3 · x4

ρ3 = x1 · x4 (6.7)

ρ4 = x2 · x5

accordingly, the structure function may be written:

φ(x) =
4∐
j=1

ρj(x) = 1−
4∏
j=1

(1− ρ(x))

= 1− (1− ρ1(x))(1− ρ2(x))(1− ρ3(x))(1− ρ4(x))

= 1− (1− x1x4)(1− x2x5)(1− x1x3x5)(1− x2x3x4) (6.8)

= x1x4 + x2x5 + x1x3x5 + x2x3x4 − x1x3x4x5 − x1x2x3x5

− x1x2x3x4 − x2x3x4x5 − x1x2x4x5 + 2x1x2x3x4x5

Similarly, using equation 6.5 and the minimal cut sets, we may represent the bridge as
a series-parallel structure:

κ1 = 1− (1− x1)(1− x2)

κ2 = 1− (1− x4)(1− x5)

κ3 = 1− (1− x1)(1− x3)(1− x5)

κ4 = 1− (1− x2)(1− x3)(1− x4)
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Given the minimal cut (or minimal path) sets, any coherent system can be represented
as in the above "circuit" diagrams.

6.1.7 Pivotal decomposition

The following pivotal decomposition of the structure function, fundamental tool in carrying
through inductive proofs, is made:

The following identity holds for any structure function φ of order n

φ(x) = xiφ(1i, x) + (1− xi)φ(0i, x) for all x(i = 1, ..., n) (6.9)

The equation 6.9 permit us to express a structure function of order n in terms of
structure functions of order n-1. By repeat the formulations, we obtain the representation:

φ(x) =
∑
y

n∏
j=1

x
yj
j (1− xj)1−yjφ(y), (6.10)

where the sum is extended over all binary vectors y of order n, and 00 ≡ 1.

A structure function φ(X) of a system of order n has a property that it can be ex-
pressed in terms of the structure functions of systems of order n-1, which is called a pivotal
decomposition and is written as

φ(x) = xiφ(1i, x) + (1− xi)φ(0i, x)

for all (·i, x) and i = 1, ..., n

The structure function φ of a coherent system can therefore be written in the form

φ(x) = xi [φ(1i, x)− φ(0i, x)] + φ(0i, x) = xiδi(x) + µi(x)

where δi(x) = φ(1i, x)−φ(0i, x) = ∂φ(x)/∂xi and δi(x) as well as µi(x) do not depend
on the state xi of component ci.

Repeated application of this method will permit us to explicitly express the structure
function φ(X) in terms of the state of its components. This application can be written as
follow:
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φ(X) = xiφ(1i, x) + (1− xi)φ(0i, x)

= x1φ(1, x2, x3, ..., xn) + (1− x1)φ(0, x2, x3, ..., xn)

= x1 [x2φ(1, 1, x3, ..., xn) + (1− x2)φ(1, 0, x3, ..., xn)]

+ (1− x1) [x2φ(0, , 1, x3, ..., xn) + (1− x2)φ(0, 0, x3, ..., xn)]

· · ·

=
∑
y

n∏
j=1

x
yj
j (1− xj)1−yjφ(y), (6.11)

where the summation is taken over some possible values of vector y such that φ(y) = 1.
Equation 6.11 is called Barlow-Proschan representation of the structures.

The representation of a structure function using pivotal decomposition is a basic way
of expressing the structure in terms of the states of system component, but for coherent
systems, this formula gives too many terms that, in fact, can be cancelled out in the process
of simplification.

6.1.8 Reliability function in coherent structures

Let the component state Xi be a Bernoulli random variable ( P (Xi = 1) = pi and P (Xi =

0) = qi, where qi = 1 − pi. Then P (Xi = 1) = pi is called the reliability of component ci
and i = 1, 2, ..., n. The corresponding system reliability is given by:

Rφ(P ) = P{φ(X) = 1|p} = E[φ(X)|p], p = p1, p2, ..., pn (6.12)

Rφ is called the reliability based on the structure function φ. By using the assumption of
component independence, the reliability Rφ is whole determined by component reliabilities
(p1, p2, ..., pn).

Rφ can be written as Rφ(P ) and in case of (p1 = p2 = ... = pn = p), the reliability
function can be written as Rφ(p) from a common component reliability p.

When component ci is functioning, the reliability function of a system is:

Rφ(1i, p) = P{φ(1i, X) = 1|p}; (6.13)

and the reliability function of a system given component ci fails is:

Rφ(0i, p) = P{φ(0i, X) = 1|p}; (6.14)

where p = (p1, ..., pi−1, pi+1, ..., pn).
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The reliability Rφ(P ) can also be expressed in the pivotal decomposition, This is written
as:

Rφ(P ) = piRφ(1i, p) + (1− pi)Rφ(0i, p). (6.15)

Exact system reliability can be computed using the structure function φ(X).

= E(

t∐
i=1

∐
{j:zij=0}

Xj) = E(

r∏
i=1

∐
{j:wij=0}

Xj), (6.16)

where zij is the jth element of minimal-path vector zi; and where wij is the jth element
of minimal-cut vector wi. And assume independent components.

For structure function in "reduced" form, that is, a structure function having no power
of xi greater than 1, the reliability function is simply the structure function φ evaluated
on p.

Rφ(X) =
∑
x

n∏
i=1

pxii (qi)
1−xiφ(X), (6.17)

where xi is the value of the ith elements in path vectors X.

If a system has a common component reliability p, <φ(P ) can be computed by

Rφ(X) =
n∑
i=1

Pip
iqn−i, (6.18)

where Pi denotes the number of path vectors X of size i. For example, the reliability
function of k-out-of-n systems having a common component reliability p is

Rφ(p, n, k) =
n∑
i=k

(
n

i

)
piqn−i, (6.19)

6.1.9 Reliability function with life distribution

Finally, let us consider the expression of reliability function when a system, as well its
components, has life distribution.

Let Fi(t) be a life distribution of component ci and let

Xi(t) =

1 if ci is functioning until time t

0 if ci is failed before time t.

Then, the reliability of component ci at time t is

P [Xi(t) = 1] = E[Xi(t)] = Si(t) = 1− Fi(t), (6.20)
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and the system reliability at time t is

Rφ[S(t) = 1] = P{φ[X(t)] = 1} = Eφ[Xi(t)]. (6.21)

6.2 Simulation for coherent system: k-out-of-n

To made a simulation Monte Carlo of complex systems k-out-of-n, using Weibull distribu-
tion the follow algorithm have been developed:

Step 1: Define the function of the structure of k-out-of-n system

Step 2: Calculate the time to censoring - tc with the parameters of distribution chosen

Step 3: Generate ti from random distribution function

Step 4: Compare the time ti with Tc to each component and give xi = 0 if are above or
xi = 1 below the tc

Step 5: With xi and structure function calculate if the system are working or not

Step 6: Repeat forM times (the dimension of the cycle simulation)

Step 7: Calculate the reliability: the number of times that the system are working for the
number of samples M

The program has been written in R software, and in the beginning is define the function
structure and the rest of parameters (number of simulations, etc...). After that, is applied
the loop "for" to make the cycle where reliability is calculated- it’s the Monte Carlo
simulation core. The difference between 2-out-of-3 and the bridge example 2-out-of-5 is
the structure function of the system. This is define in the program by a function with the
name str fun.

1 str_fun<-function(x1,x2,x3,x4,x5){
2 res=x1*x4+x2*x5+x1*x3*x5+x2*x3*x4-x1*x3*x4*x5-x1*x2*x3*x5
3 -x1*x2*x3*x4-x2*x3*x4*x5-x1*x2*x4*x5+2*x1*x2*x3*x4*x5
4

5 return(res)
6 }
7

8 simul_fun<-function(m){
9 cr=0

Algorithm 10: Simulation for k-out-of-n function str fun
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6.2.1 Simulation of coherent system: 2-out-of-3

To all components it’s used the same Weibull parameters: the shape parameter β have the
values 0,5;1;1,5 and 2 ; the scale parameter is η = 10, for all components and simulations.
The simulation is made for different number of samples to verified the impact of the number
of samples for each simulation. Another interest characteristic is to simulate reliability with
different censored data, in this case it’s used 5%,10%, 20% and 30%.

C5% C10% C20% C30%

Sample β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2

10 1 0.7 0.8 0.6 1 1 0.7 0.8 1 1 1 0.7 1 1 0.9 0.7
100 0.94 0.94 0.82 0.69 0.99 0.99 0.93 0.76 1 1 0.96 0.81 1 1 0.99 0.88

500 0.91 0.88 0.82 0.73 1 0.98 0.93 0.76 1 0.99 0.95 0.86 1 1 0.98 0.9
1000 0.93 0.88 0.81 0.74 0.99 0.97 0.89 0.78 1 1 0.96 0.82 1 1 0.98 0.86

2000 0.94 0.89 0.8 0.75 0.99 0.98 0.9 0.78 1 1 0.95 0.82 1 1 0.99 0.86
Table 6.1: Simulation 2-out-of-3, Weibull (β,%C, n), η = 10

The results are explicit in the table 6.1. From the analysis of the table, it’s possible
to see that with the increase of the sample number the value of reliability stabilized at
a certain value. The increase of the shape factor β, the value of reliability decreases,
however the most unexpected evolution data , is the growth of reliability with the increase
of censored data, when it was expected to decrease. One possible explanation is that with
the increase of censorship, the system itself ends up better, vanish the faults and therefore
give a globally less damage.

Test with other parameters and also make a comparative test with different parameters
for each component will be recommend.

6.2.2 Simulation for 2-out-of-5 Bridge structure

To all components and similar with 2-out-of-3 it’s used the same Weibull parameters: the
shape parameter β have the values 0,5;1;1,5 and 2 and the the scale parameter is η = 10.
The simulation is made for different number of samples to verified the impact of the number
of samples for each simulation.

The results are explicit in the table 6.2 and compare with the simulation of reliability
2-out-of-3 system, the evolution and the pattern are the same. The absolute values of
reliability for each simulation is very close. Although, this structure is more complex and
have almost the same redundancy as the simple 2-out-of-3 system.
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C5% C10% C20% C30%

Sample β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2

10 0.9 0.9 0.7 0.7 1 1 0.8 0.6 1 1 1 0.8 1 1 1 0.9
100 0.92 0.89 0.79 0.71 1 0.95 0.88 0.81 1 0.99 0.97 0.88 1 1 1 0.83

500 0.94 0.9 0.82 0.74 0.99 0.98 0.91 0.82 1 1 0.96 0.85 1 1 0.98 0.89
1000 0.93 0.9 0.83 0.77 0.99 0.97 0.91 0.8 1 1 0.95 0.86 1 1 0.99 0.91

2000 0.93 0.9 0.83 0.76 1 0.98 0.91 0.8 1 1 0.97 0.84 1 1 0.99 0.88
Table 6.2: Simulation 2-out-of-5, Weibull (β,%C, n), η = 10

6.3 Linear Consecutive k-out-of-n systems

Consecutive K-out-of-n systems can be categorized into consecutive k-out-of-n:G and con-
secutive k-out-of-n:F systems.

A Consecutive k-out-of-n:G system is an n component system that functions when-
ever at least k consecutive components are functioning.

A consecutive k-out-of-n:F is an n component system that fails whenever at least k
consecutive component are failed.

Such system can either be a linear system, where all components are arranged linearly,
or be a circular system, where all components are arranged circularly.

The consecutive K-out-of-n:F system was introduced by Kontoleon (1980), Chiang and
Niu (1981) and explain the relevance of such a system to telecommunication and oil pipeline
systems. The application to street light systems and microwave tower systems are discussed
by Bollinger and Salvia (1982).

The structure and reliability functions for both systems follow the notion and develop-
ment made by Zakaria (1989).

6.3.1 Structure of linear consecutive k-out-of-n:G systems

The minimal-path representation is used to find the structure function of the linear con-
secutive k-out-of-n:G system, where 2 5 k 5 n. The number of minimal-path vectors for
this system is equal to n−k+1 possibilities for placing the K consecutive 1’s on n possible
locations. So, the set of minimal-path vectors for linear consecutive k-out-of-n:G systems
is:

Z = {Zi}n−k+1
i=1 = {(1k, 0n−k), (0, 1k, 0n−k−1), ..., (0n−k, 1k)}. (6.22)

where 0j is the j -dimensional zero vector (0,0,...,0) and 1j is the j -dimensional unit
vector (1,1,...,1).
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Based on the minimal-path vector representation the structure function for the linear
consecutive k-out-of-n:G systems is then:

φ(x, n, k) = 1−
n−k+1∏
i=1

(1−
∏

{j:zij=1}

xj)

= 1−
n−k+1∏
i=1

(1−
i+k−1∏
j=i

xj).

(6.23)

The structure function φ(x, n, k), for n=k, is simply
∏k
j=1 xj , which is the structure

function of the well-known series system. For n greater than k, the structure function
φ(x, n, k) satisfied a recursion relationship, as follow:

Lemma 1 (Zakaria (1989)). The structure function φ(x, n, k) of linear consecutive K-out-
of-n:G systems, for n > k, satisfies

φ(x, n, k) = φ(x, n− 1, k) + (1− φ(x, n− 1, k))
n∏

j=n−k+1

xj (6.24)

Proof. The minimal-path vector representation (6.23 ) can be written as:

φ(x, n, k) = 1−
n−k∏
i=1

(1−
i+k−1∏
j=i

xj)(1−
n∏

j=n−k+1

xj) (6.25)

= 1− (1− (1−
n−k∏
i=1

(1−
i+k−1∏
j=i

xj)))(1−
n∏

j=n−k+1

xj) (6.26)

= 1− (1− (1−
n−k∏
i=1

(1−
i+k−1∏
j=i

xj)))(1−
n∏

j=n−k+1

xj) (6.27)

= 1− (1− φ(x, n− 1, k))(1−
n∏

j=n−k+1

xj) (6.28)

= φ(x, n− 1, k) + (1− φ(x, n− 1, k))

n∏
j=n−k+1

xj , (6.29)

where equation 6.28 is due to the fact that, according to 6.23 is the structure function
of a linear consecutive k-out-of-(n-1):G system.

The reliability of a system is achieve as its structure function φ with x replaced by p,
under the restriction that φ is "reduced" form containing no power of any xi greater than
the first.
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Theorem 6.3.1 (Zakaria (1989)). The structure function of a linear consecutive k-out-of-
n:G system for n > k, can be obtained recursively by using

φ(x, n, k) = φ(x, n− 1, k)+

(1− φ(x, n− k − 1, k))(1− xn−k)
n∏

j=n−k+1

xj .
(6.30)

Proof. Equation 6.24 can also be written as

φ(x, r, k) = φ(x, r − 1, k)(1−
r∏

j=r−k+1

xj) +
r∏

j=r−k+1

xj . (6.31)

Equation 6.30 will be proved by repeated application of equation 6.24 to the second
term of recursion formula 6.24.

Substituting 6.31, for r=n-1, into 6.24, the result obtain of the first application as
follows:

φ(x, n, k) = φ(x, n− 1, k)+

(1− φ(x, n− 2, k)(1−
n−1∏
j=n−k

xj)−
n−1∏
j=n−k

)

n∏
j=n−k+1

xj

= φ(x, n− 1, k)+

(1− φ(x, n− 2, k)(1− xn−k)− xn−k)
n∏

j=n−k+1

xj (6.32)

= φ(x, n− 1, k)+

(1− φ(x, n− 2, k)(1− xn−k)
n∏

j=n−k+1

xj (6.33)

where the second equation is due to the fact

n−1∏
j=n−k

xj

n∏
j=n−k+1

xj =
n∏

j=n−k
xj = xn−k

n∏
j=n−k+1

xj . (6.34)

Substituting 6.31, for r=n-2, into the second term of equation 6.34, we obtain the result
of the second application as follows:
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φ(x, n, k) = φ(x, n− 1, k)+

(1− φ(x, n− 3, k)(1−
n−2∏

j=n−K−1

xj)−
n−2∏

j=n−k−1

xj)

(1− xn−k)
n∏

j=n−k+1

xj (6.35)

= φ(x, n− 1, k)+

(1− φ(x, n− 3, k)(1−
n−k∏

j=n−K−1

xj)−
n−k∏

j=n−k−1

xj)

(1− xn−k)
n∏

j=n−k+1

xj (6.36)

= φ(x, n− 1, k)+

(1− φ(x, n− 3, k)(1−
n−k∏

j=n−K−1

xj)

(1− xn−k)
n∏

j=n−k+1

xj (6.37)

= φ(x, n− 1, k)+

(1− φ(x, n− 3, k))(1− xn−k)
n∏

j=n−k+1

xj (6.38)

where the second equation (6.35) is due the fact that

n−2∏
j=n−k

xj

n∏
j=n−k+1

xj =

n∏
j=n−k−1

xj =

n−k∏
j=n−k−1

xj

n∏
j=n−k+1

xj .

and the last equation 6.38 is due to the fact that:

(1−
n−k∏

j=n−k−1

xj)(1− xn−k) = (1− xn−k)

From equation 6.33 and 6.38 obtain the result of the (k − 1)th application as

φ(x, n, k) = φ(x, n− 1, k)+

(1− φ(x, n− k, k))(1− xn−k)
n∏

j=n−k+1

xj (6.39)
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Finally, substituting (6.31), for r = n− k, into the second term of equation 6.39 result
the kth application as follows:

φ(x, n, k) = φ(x, n− 1, k)+

(1− φ(x, n−−1k, k)(1−
n−k∏

j=n−2k−1

xj)−
n−k∏

j=n−2k−1

xj)

(1− xn−k)
n∏

j=n−k+1

xj (6.40)

= φ(x, n− 1, k)+

(1− φ(x, n− k − 1, k)(1−
n−k∏

j=n−2K−1

xj)

(1− xn−k)
n∏

j=n−k+1

xj (6.41)

= φ(x, n− 1, k)+

(1− φ(x, n− k − 1, k))(1− xn−k)
n∏

j=n−k+1

xj (6.42)

where the last equation, which is due to the fact that:

(1−
n−k∏

j=n−2k+1

xj)(1− xn−k) = (1− xn−k)

is the "reduced" structure function as stated in this theorem

Corollary 1 (Zakaria (1989)). For k ≤ n ≤ 2k, the structure function of a linear consec-
utive k-out-of-n:G system can be written as

φ(x, n, k) =
k∏
j=1

xj +
n−k∑
i=1

(1− xi)
i+k∏
j=i+1

xj (6.43)

Proof. When k ≤ n ≤ 2k, the value of the structure function φ(x, n− k − 1, k) is equal to
0, so that, by using (6.30),

φ(x, n, k) = φ(x, n− 1, k) + (1− xn−k)
n∏

j=n−k+1

xj (6.44)

Equation (6.43) is then verified recursively as follows:
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φ(x, k, k) =
k∏
j=1

xj

φ(x, k + 1, k) =
k∏
j=1

xj + (1− x1)
k+1∏
j=2

xj

φ(x, k + 2, k) =
k∏
j=1

xj + (1− x1)
k+1∏
j=2

xj + (1− x2)
k+2∏
j=3

xj

Finally

φ(x, n, k) =
k∏
j=1

xj + (1− x1)
k+1∏
j=2

xj + (1− x2)
k+2∏
j=3

xj+

· · ·+ (1− xn−k)
n∏

j=n−k+1

xj

=

k∏
j=1

xj +

n−k∑
i=1

(1− xi)
i+k∏
j=i+1

xj

Example 6.3.1:
Consider the linear consecutive 2-out-of-5:G system. This system is working when at least
two consecutive components are functioning. Here k = 2 and n = 5. Using the equation
6.23 the structure function of this system is:

φ(x, 5, 2) = 1 +

4∏
i=1

(1−
i+1∏
j=i

xj) (6.45)

= 1− (1− x1x2)(1− x2x3)(1− x3x4)(1− x4x5)

= x1x2 + x2x3 + x3x4 + x4x5 − x1x2x3 − x2x3x4

− x3x4x5 − x1x2x4x5 + x1x2x3x4x5. (6.46)

This simplification of this function from equation 6.45 to 6.46 becomes very tedious
when n is large. Using the recursion relationship 6.24 the structure function of this system
became:
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φ(x, 2, 2) = x1x2

φ(x, 3, 2) = φ(x, 2, 2) + (1− φ(x, 2, 2))
3∏
j=2

xj

= x1x2 + (1− x1x2)x2x3

= x1x2 + x2x3 − x1x2x3. (6.47)

φ(x, 4, 2) = φ(x, 3, 2) + (1− φ(x, 3, 2))

4∏
j=3

xj (6.48)

= x1x2 + x2x3 − x1x2x3 + (1− (x1x2 + x2x3 − x1x2x3))x3x4 (6.49)

= x1x2 + x2x3 + x3x4 − x1x2x3 − x2x3x4

(6.50)

Therefore, the structure function of a linear consecutive 2-out-of-5:G system is:

φ(x, 5, 2) = φ(x, 4, 2) + (1− φ(x, 4, 2))
5∏
j=4

xj

= x1x2 + x2x3 + x3x4 − x1x2x3 − x2x3x4+

(1− (x1x2 + x2x3 + x3x4 − x1x2x3 − x2x3x4))x4x5 (6.51)

= x1x2 + x2x3 + x3x4 + x4x5 − x1x2x3 − x2x3x4

− x3x4x5 − x1x2x4x5 + x1x2x3x4x5. (6.52)

Using 6.30 and 6.43, the structure function of this system became as follows:

φ(x, 2, 2) = x1x2

φ(x, 3, 2) = φ(x, 2, 2) + (1− x1)
3∏
j=2

xj

= x1x2 + (1− x1)x2x3

φ(x, 4, 2) = φ(x, 3, 2) + (1− x2)

4∏
j=3

xj

= x1x2 + (1− x1)x2x3 + (1− x2)x3x4.

Therefore, the structure function of a linear consecutive 2-out-of-5:G system is:
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φ(x, 5, 2) = φ(x, 4, 2) + (1− φ(x, 2, 2))(1− x3)

5∏
j=4

xj

= x1x2 + (1− x1)x2x3 + (1− x2)x3x4 + (1− x1x2)(1− x3)x4x5

(1− x1x2 + x2x3 + x3x4 − x1x2x3 − x2x3x4)x4x5 (6.53)

= x1x2 + x2x3 + x3x4 + x4x5 − x1x2x3 − x2x3x4

− x3x4x5 − x1x2x4x5 + x1x2x3x4x5. (6.54)

6.3.2 Reliability functions of linear consecutive k-out-of-n:G systems

The reliability of a system is the probability that is structure function φ(x, n, k) equals 1,
which, since φ is an indicator variable, equals its expectation:

R(P, n, k) = P (φ(x, n, k) = 1) = E(φ(x, n, k)). (6.55)

For a system with independent components, R may be found, simply, by replacing x
by p in the "reduced" structure function φ.

The reliability function of linear consecutive k-out-of-n:G systems when all components
are independent and n ≥ k is obtainable recursively by:

RG(p, n, k) = RG(p, n− 1, k) + (1−RG(p, n− k − 1, k))qn−k

n∏
j=n−k+1

pj (6.56)

if p1 = p2 = · · · = pn = p, the reliability function becomes

RG(p, n, k) = RG(p, n− 1, k) + (1−RG(p, n− k − 1, k))qn−kp
k (6.57)

if k ≤ n ≤ 2k, the reliability function is obtainable by

RG(p, n, k) =

k∏
j=1

pj +

n−k∑
i=1

qi

i+k∏
j=i+1

pj (6.58)

if k ≤ n ≤ 2k and p1 = p2 = · · · = pn = p the reliability function is obtainable by

RG(p, n, k) = ((n− k)(1− p) + 1)pk. (6.59)

To compute system reliability, especially for a large system, equation 6.56 can be used
directly to produce algorithm. The algorithm should begin with reading and checking the
input n, k and pj such that 1 ≤ k ≤ n and 0 ≤ pj ≤ 1. The next step is to compute
RG(p, k, k) =

∏k
j=1 pj , and the last step is to compute RG(p, n, k) using 6.56 or using 6.58

for a system with k ≤ n ≤ 2k.
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6.3.3 Structure of linear consecutive k-out-of-n:F systems

The set of minimal-cut vectors of linear consecutive K-out-of-n:F systems is:

W = {Wi}n−k+1
i=1 = {(0k, 1n−k), (1, 0k, 1n−k−1), ..., (1n−k, 0k)}. (6.60)

where 0j is the j -dimensional zero vector (0,0,...,0) and 1j is the j -dimensional unit
vector (1,1,...,1). There are n − k + 1 minimal-cut vectors since there are n − k + 1

possibilities of placing the k consecutive zeroes out of n locations. Using the minimal-cut
vector representation the structure function for the linear consecutive K-out-of-n:F systems
is then

ψ(x, n, k) = 1−
n−k+1∏
i=1

(1−
∏

{j:wij=0}

(1− xj))

=

n−k+1∏
i=1

(1−
i+k−1∏
j=i

(1− xj)).

(6.61)

The structure function of this system ψ(x, n, k) can also be represented in a recursion
relationship, as shown in the next lemma:

Lemma 2 (Zakaria (1989)). The structure function ψ(x, n, k) of linear consecutive K-out-
of-n:F systems, for n > k, can be expressed as

ψ(x, n, k) = ψ(x, n− 1, k)− ψ(x, n− 1, k))
n∏

j=n−k+1

(1− xj) (6.62)

Proof. The minimal-cut vector representation can be written as

ψ(x, n, k) =
n−k∏
i=1

(1−
i+k−1∏
j=i

(1− xj))(1−
n∏

j=n−k+1

(1− xj)) (6.63)

= ψ(x, n− 1, k))(1−
n∏

j=n−k+1

(1− xj)) (6.64)

= ψ(x, n− 1, k)− ψ(x, n− 1, k)

n∏
j=n−k+1

(1− xj), (6.65)

As in the "G" systems, this recursion doesn’t directly produce a "reduced" form of
structure function. The following theorem gives a recursion relationship that directly
produce a structure function of linear consecutive K-out-of-n:F system in "reduced" form.
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Theorem 6.3.2 (Zakaria (1989)). The structure function of a linear consecutive k-out-of-
n:F system for n > k, can be obtained recursively by using

ψ(x, n, k) = ψ(x, n− 1, k)+

ψ(x, n− k − 1, k)xn−k

n∏
j=n−k+1

(1− xj).
(6.66)

Proof. A linear consecutive k-out-of-n:F system can be regarded as the dual of consecutive
k-out-of-n:G system since wi = 1−zi. Using the duality definition of Barlow and Proschan
(1981), the structure function of a linear consecutive k-out-of-n:F system can be write as:

ψ(x, n, k) = 1− φ(1− x, n, k). (6.67)

where φ(1−x, n, k) is the structure function of a linear consecutive k-out-of-n:F in the
context of failure. Replacing x by 1-x in 6.30, and using 6.67, it’s result:

ψ(x, n, k) = (1− φ(1− x, n− 1, k))−

(1− φ(1− x, n− k − 1, k)xn−k

n∏
j=n−k+1

(1− xj)

= ψ(x, n− 1, k)−

ψ(x, n− k − 1, k)xn−k

n∏
j=n−k+1

(1− xj) (6.68)

which verifies equation 6.66

Corollary 2 (Zakaria (1989)). For k ≤ n ≤ 2k, the structure function of a linear consec-
utive k-out-of-n:F system can be written as

ψ(x, n, k) = 1−
k∏
j=1

(1− xj)−
n−k∑
i=1

(1− xi)
i+k∏
j=i+1

(1− xj). (6.69)

Proof. When k ≤ n ≤ 2k, the value of the structure function ψ(x, n− k− 1, k) is equal to
1, so that, by using (6.66),

ψ(x, n, k) = ψ(x, n− 1, k) + xn−k)
n∏

j=n−k+1

(1− xj). (6.70)

Equation (6.69) is then obtainable and hence verified using the similar procedure em-
ployed in corollary 1
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Example 6.3.2:
Consider the linear consecutive 2-out-of-5:F system. This system is failed when at least
two consecutive components are failed. Here k = 2 and n = 5. Using the equation 6.61 we
can write the structure function of this system as

ψ(x, 5, 2) =
4∏
i=1

(1−
i+1∏
j=i

(1− xj))

= (1− (1− x1)(1− x2))(1− (1− x2)(1− x3)

(1− (1− x3)(1− x4))(1− (1− x4)(1− x5)

= x2x4 + x1x3x4 + x1x3x5 + x2x3x5 − x1x2x3x4−

x1x3x4x5 − x1x2x3x5 − x2x3x4x5 − x1x2x3x4x5.

Using the recursion relationship 6.62, we can write the structure function of this system
as

ψ(x, 2, 2) = x1 + x2 − x1x2

ψ(x, 3, 2) = ψ(x, 2, 2)− ψ(x, 2, 2)(1− x2)(1− x3)

= x2 + x1x3 − x1x2x3

ψ(x, 4, 2) = ψ(x, 3, 2)− ψ(x, 3, 2)(1− x3)(1− x4)

= x1x3 + x2x3 + x2x4 − x1x2x3 − x2x3x4

ψ(x, 5, 2) = ψ(x, 4, 2)− ψ(x, 4, 2)(1− x4)(1− x5)

= x2x4 + x1x3x4 + x1x3x5 + x2x3x5 − x1x2x3x4−

x1x3x4x5 − x1x2x3x5 − x2x3x4x5 − x2x3x4x5 − x1x2x3x4x5.

(6.71)

Using 6.66, we obtain:
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ψ(x, 2, 2) = x1 + x2 − x1x2

ψ(x, 3, 2) = ψ(x, 2, 2)− x1(1− x2)(1− x3)

= x2 + x1x3 − x1x2x3

ψ(x, 4, 2) = ψ(x, 3, 2) + x2(1− x3)(1− x4)

= x1x3 + x2x3 + x2x4 − x1x2x3 − x2x3x4

ψ(x, 5, 2) = ψ(x, 4, 2)− x3(1− x4)(1− x5)

= x2x4 + x1x3x4 + x1x3x5 + x2x3x5 − x1x2x3x4−

x1x3x4x5 − x1x2x3x5 − x2x3x4x5 − x2x3x4x5 − x1x2x3x4x5 (6.72)

6.3.4 Reliability functions of linear consecutive k-out-of-n:F systems

The reliability functions of linear consecutive K-out-of-n:F systems are stated as follows:

The reliability function of linear consecutive K-out-of-n:F systems when all components
are independent and n ≥ k is obtainable recursively through:

RF (p, n, k) = RF (p, n− 1, k)−RF (p, n− k − 1, k)pn−k

n∏
j=n−k+1

qj (6.73)

if p1 = p2 = · · · = pn = p, the reliability function becomes

RF (p, n, k) = RF (p, n− 1, k)−RF (p, n− k − 1, k)pqk (6.74)

if k ≤ n ≤ 2k, the reliability function is

RF (p, n, k) = 1−
k∏
j=1

qj −
n−k∑
i=1

pi

i+k∏
j=i+1

qj (6.75)

if k ≤ n ≤ 2k and p1 = p2 = · · · = pn = p the reliability function is

RF (p, n, k) = 1− ((n− k)p+ 1)qk. (6.76)

Using 6.73 and 6.75, an algorithm can be produced to compute the reliability of this
system. This can easily be done by modifying the algorithm for the "G" systems. In this
case, use input qj instead of pj to obtain system unreliability. Then subtract this quantity
from 1 to obtain system reliability.

6.3.5 Simulation of linear consecutive k-out-of-n

To compute a simulation of Monte Carlo linear consecutive k-out-of-n, using Weibull dis-
tribution the follow algorithm is developed:
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Step 1: Define the function of the structure of linear consecutive k-out-of-n system

Step 2: Calculate the time to censoring - tc with the parameters of distribution choose

Step 3: Generate ti from random distribution function

Step 4: Compare the time ti with Tc to each component and give xi = 0 if are above or
xi = 1 below the tc

Step 5: With xi and structure function calculate if the system are working or not

Step 6: Repeat for M times (the dimension of the cycle simulation)

Step 7: Calculate the reliability: the number of times that the system are working for the
number of samples M

The program has been written in R software, and in the beginning it’s define the
function structure and simulations and then applied the loop "for" to made the cycle and
the reliability calculation. The difference between linear consecutive k-out-of-n:F system
and the linear consecutive k-out-of-n system:G is the structure function of the system, that
in the program is define by a function with the name str fun.

1 bet=beta[j]
2 tcm=0;fiab=0;tcm1=0
3 for (k in 1:4){
4 cen <- ceni[k]
5 tc <- scx1*(-log(cen))^(1/shx1)
6 for (i in 1:length(mi)){
7 m=mi[i]
8 rest=simul_fun(m)
9 fiab[i]=rest/m

10 }
11 tcm=cbind(tcm,fiab)
12 cens=censtr[k]
13 bi=bstr[k]
14 }
15 tcm1=tcm[,-1]
16 bi=bstr[j]

Algorithm 11: Simulation of linear consecutive k-out-of-n

6.3.6 Simulation of linear consecutive 2-out-of-5:G

The simulation of linear consecutive 2-out-of-5:G to all components used the same Weibull
parameters; the shape parameter β have the values 0,5;1;1,5 and 2 ; the scale parameter is
η = 10, for all components and simulations. The simulation is made for different number
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of samples to verified the impact of the number of samples for each simulation. Another
interest characteristic is to simulate reliability with different censored data, in this case it’s
used 5%,10%, 20% and 30%.

C5% C10% C20% C30%

Sample β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2

10 1 1 0.9 0.7 1 1 0.9 0.8 1 1 0.9 0.9 1 1 1 1
100 0.95 0.95 0.83 0.83 0.99 0.99 0.93 0.86 1 1 0.97 0.87 1 1 0.98 0.88

500 0.96 0.91 0.9 0.81 1 0.98 0.94 0.88 1 1 0.97 0.9 1 1 0.99 0.92
1000 0.96 0.92 0.89 0.84 1 0.99 0.94 0.85 1 1 0.98 0.88 1 1 1 0.92

2000 0.95 0.93 0.88 0.82 1 0.99 0.94 0.87 1 1 0.98 0.9 1 1 1 0.92
Table 6.3: Simulation 2-out-of-5:G, Weibull (β,%C, n), η = 10 M = 100

The results are explicit in the table 6.3. From the analysis of the table, it’s possible
to see that with the increase of the sample number the value of reliability stabilized at a
certain value. With the increase of the shape factor β, the value of reliability decreases,
not so much, but can appoint the exponential shape as the most favourable state to have a
higher value of reliability. The reliability decreases smoothly with the increase of censored
data. One possible explanation is that with the increase of censorship, the system is not
so stable and the faults are a little more and have more impact on reliability.

Test with other parameters and also make a comparative test with different parameters
for each component will be recommend.

6.3.7 Simulation of linear consecutive 2-out-of-5:F

The simulation of linear consecutive 2-out-of-5:F are similar with 2-out-of-5:G and used
the same Weibull parameters; the shape parameter β have the values 0,5;1;1,5 and 2 and
the the scale parameter is η = 10. The simulation is made for different number of samples
to verified the impact of the number of samples for each simulation.

C5% C10% C20% C30%

Sample β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2 β0.5 β1 β1.5 β2

10 1 0.8 0.7 0.5 1 1 0.7 0.5 1 1 1 0.8 1 1 1 1
100 0.89 0.8 0.79 0.63 0.98 0.98 0.86 0.71 1 0.99 0.97 0.78 1 1 1 0.81

500 0.91 0.87 0.74 0.65 0.98 0.98 0.87 0.71 1 1 0.95 0.77 1 1 0.99 0.8
1000 0.88 0.85 0.76 0.67 0.99 0.96 0.86 0.74 1 1 0.94 0.77 1 1 0.98 0.83

2000 0.9 0.84 0.75 0.68 0.99 0.96 0.88 0.7 1 0.99 0.94 0.79 1 1 0.98 0.82
Table 6.4: Simulations 2-out-of-5:F, Weibull (β,%C, n), η = 10

The results are explicit in the table 6.4 and compare with the simulation of reliability
2-out-of-5:G system the evolution and the pattern are the same and the absolute values of
reliability for each simulation is very close.
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Test with other parameters and also make a comparative test with different parameters
for each component will be recommend.

6.4 Importance components

6.4.1 Structural importance of components

In a system some components are more important for the system reliability than other
components.

The importance measure may be used to arrange the components in order of increasing
or decreasing importance. In the process system functions, a component may be very
important for the essential safety function but may have little importance for the other
system functions.

A components in series in the system is a cut set of order 1 and is generally more
important than a component in parallel or member of a cut set of higher order.

The reliability of an equipment or system may be improved by introducing redundant
component or by using a higher quality component or another operational parameter like
production and environmental conditions or type of maintenance.

The objective of the component importance measure is to help to allocate inspection
and maintenance resources to the most important components or improve better preventive
maintenance tasks.

6.4.2 Birnbaum’s measure

Birnbaum (1969) proposed the following measure of importance of component i at time t
is:

IB(i|t) =
∂h(p(t))

∂pi(t)
for i = 1, 2, ..., n. (6.77)

And can be expresses as:

IB(i|t) =
∂h(p(t))

∂pi(t)
= h(1i, p(t))− h(0i, p(t)) (6.78)

Remember that h(·i, p(t)) = E[φ(·i, X(t))], such that 6.78 can be written:

IB(i|t) = E[φ(1i, X(t))]− E[φ(0i, X(t))]

= E[φ(1i, X(t))− φ(0i, X(t))]

When φ(X(t)) is a coherent structure, φ(1i, X(t))−φ(0i, X(t)) can only take on the values
0 and 1. Birnbaums measure can therefore be written as

IB(i|t) = Pr(φ(1i, X(t))− φ(0i, X(t)) = 1) (6.79)
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This is to say that IB(i|t) is equal to the probability that (1i, X(t)) is a critical path vector
for component i at time t.

6.4.3 Improvement potential

When component i is replaced by a perfect component, that is, a component such that
pi(t) = 1, the difference between h(1i, p(t)) and h(p(t)) is called the improvement potential
(IP) with respect to component i and denoted by IIP (i|t).

The improvement potential with respect to component i at time t is

IIP (i|t) = h(1i, p(t))− h(p(t)) for i = 1, 2, ..., n. (6.80)

or, simplify with Birnbaum measure

IIP (i|t) = IB(i|t)(̇1− p(t)) (6.81)

or, by using the fault tree notation

IIP (i|t) = IB(i|t)qi(t) (6.82)

6.4.4 Risk Achievement Worth

The Risk Achievement Worth (RAW) has been introduced as a risk importance measure
in probabilistic safety assessments of nuclear power stations EPRI (1995).

The importance measure Risk Achievement Worth with respect to component i at time
t is

IRAW (i|t) =
1− h(0i, p(t))

1− h(p(t))
for i = 1, 2, ..., n. (6.83)

The RAW presents a measure of the importance (worth) of component i in the actual
system reliability and is the ratio of the(conditional) system unreliability if component i
is always failed with the actual system unreliability.

6.4.5 Risk Reduction Worth

The Risk Reduction Worth (RRW), IRRW (i|t), is the ratio of the actual system unrelia-
bility with the (conditional) system unreliability if component i is replaced by a perfect
component with pi(t) ≡ 1.

The importance measure Risk reduction worth (RRW) with respect to component i at
time t is

IRRW (i|t) =
1− h(p(t))

1− h(1i, p(t))
for i = 1, 2, ..., n. (6.84)
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If IRRW (i|t) ≥ 1 it’s possible to write:

IRRW (i|t) =

(
1− IIP (i|t)

1− h(p(t))

)−1

By fault tree notation and 6.82 RRW stated as follows:

IRRW (i|t) =

(
1− IIP (i|t)

Q0(t)

)−1

=

(
1− IB(i|t)q̇i(t)

Q0(t)

)−1

(6.85)

6.4.6 Criticality Importance

The criticality importance ICR(i|t) of component i at time t is the probability that com-
ponent i is failed at time t and the system is failed at time t.

ICR(i|t) =
IB(i|t) · (1− pi(t))

1− h(p(t))
(6.86)

By using the fault tree notation, ICR(i|t) may be written

ICR(i|t) =
IB(i|t) · (1− qi(t))

Q0(t)
(6.87)

Criticality importance criteria is related to Birnbaum’s measure and is particularly
suitable for prioritizing maintenance actions.

From equation 6.85 the Risk Reduction Worth (RRW) can be expressed as a function
of criticality importance (CI):

IRRW (i|t) = (1− ICR(i|t))−1 =
1

1− ICR(i|t)
(6.88)

6.4.7 Simulation Importance components

To program a simulation of Monte Carlo importance components to coherent systems and
linear consecutive k-out-of-n:F and G, using Weibull distribution the following algorithm
is developed:

Step 1: Define the parameters of distribution and initialize the variables to use

Step 2: Define the function of the structure of the system

Step 3: Generate Ui random uniform (0,1)

Step 4: Generate ti from step (1) and step (4), or directly from random distribution function

Step 5: Generate de xi from the probability of ti for each component to Weibull distribution

Step 6: With xi and structure function calculate the importance components
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Step 7: Repeat step (3) to step (6) for M times (the dimension of the simulation cycles)

Step 8: Calculate the mean of importance component

The program has been written in R software, and in the beginning it’s define the
function structure and simulations and then applied the loop "for" to made the cycle
and calculate the indicators of importance components. The difference from: 1. coherent
system; 2. linear consecutive k-out-of-n:F system and 3. linear consecutive k-out-of-n
system:G is the structure function of the system, that in the program is defined by a
function with the name str fun.

1 shx5=1;scx5=10
2 bet=1;
3
4 IB1i=0;IB2i=0;IB3i=0;IB4i=0;IB5i=0
5 IP1i=0;IP2i=0;IP3i=0;IP4i=0;IP5i=0
6 RW1i=0;RW2i=0;RW3i=0;RW4i=0;RW5i=0
7 IC1i=0;IC2i=0;IC3i=0;IC4i=0;IC5i=0
8 IBMN=0;IPMN= 0;RWMN=0;ICMN=0
9 mi <- c(10,100,500,1000,2000)

10
11
12 for (j in 1:length(mi)){
13
14 m=mi[j]
15
16 for(i in 1:m) {
17
18 #simul_fun<-function(){
19 t1 <- rweibull(1,bet,scx1)
20 t2 <- rweibull(1,bet,scx2)
21 t3 <- rweibull(1,bet,scx3)

Algorithm 12: Program for simulation importance components (partial)

6.4.8 Simulation complex system: 2-out-of-5 - bridge structure

In this simulation all component have the same Weibull parameters. The shape parameter
β = 1 and the scale parameter is η = 10, for all components.

The structure function 2-out-of-5 - bridge structure may be written:

φ(x) = x1x4 + x2x5 + x1x3x5 + x2x3x4 − x1x3x4x5 − x1x2x3x5

− x1x2x3x4 − x2x3x4x5 − x1x2x4x5 + 2x1x2x3x4x5 (6.89)

From equation 6.89 it’s possible to achieve and measure the importance components
beginning to express the Birnbaum’s measure IB(i|t) to all components:

IB1 =
∂φ(x)

∂x1
= x4 + 0 + x3x5 + 0− x3x4x5 − x2x3x5

− x2x3x4 − 0− x2x4x5 − 2x2x3x4x5
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IB2 =
∂φ(x)

∂x2
= 0 + x5 + 0 + x3x4 − 0− x1x3x5 − x1x3x4

− x3x4x5 − x1x4x5 + 2x1x3x4x5

IB3 =
∂φ(x)

∂x3
= 0 + 0 + x1x5 + x2x4 − x1x4x5 − x1x2x5

− x1x2x4 − x2x4x5 − 0 + 2x1x2x4x5

IB4 =
∂φ(x)

∂x4
= x1 + 0 + 0 + x2x3 − x1x3x5 − 0

− x1x2x3 − x2x3x5 − x1x2x5 + 2x1x2x3x5

IB5 =
∂φ(x)

∂x5
= 0 + x2 + x1x3 + 0− x1x3x4 − x1x2x3

− 0− x2x3x4 − x1x2x4 + 2x1x2x3x4

Import.Birbaum Improvement Potential Risk redution Worth Criticality Import.

Sample C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

10 0.46 0.43 0.12 0.27 0.38 0.24 0.21 0.05 0.12 0.14 2.3 2 1.2 1.5 2.1 0.44 0.68 0.12 0.23 0.7
100 0.37 0.37 0.12 0.39 0.37 0.18 0.18 0.06 0.18 0.18 2 2 1.2 2.1 2.1 0.37 0.61 0.14 0.36 0.55

500 0.37 0.38 0.13 0.36 0.38 0.18 0.18 0.06 0.18 0.18 2 2.3 1.2 2 2.1 0.4 0.68 0.15 0.34 0.55
1000 0.37 0.37 0.13 0.37 0.38 0.19 0.18 0.06 0.19 0.19 2.1 2.1 1.2 2.2 2.3 0.39 0.61 0.15 0.34 0.52

2000 0.37 0.38 0.12 0.38 0.37 0.19 0.19 0.06 0.19 0.18 2.2 2.2 1.2 2.2 2 0.4 0.62 0.15 0.35 0.49
Table 6.5: Simulation Component Importance, 2-out-of-5, Weib. (n), β = 1, η = 10

The results are explicit in the table 6.5. From the analysis of the table the increment
of the sample number stabilize the criticality of each component for different criteria. The
results show that the components C3 and C2 (lower values) are the most importance
component to the various criteria. The values of reliability is low from all situations and
this is an important information to know the need to do more study or implement some
actions to increment the reliability of components and the system.

6.4.9 Simulation Linear consecutive 2-out-of-5:G

The structure function of a linear consecutive 2-out-of-5:G system is:
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φ(x, 5, 2) = x1x2 + x2x3 + x3x4 + x4x5 − x1x2x3 − x2x3x4

− x3x4x5 − x1x2x4x5 + x1x2x3x4x5. (6.90)

From equation 6.90 it’s possible to achieve and measure the importance components
beginning to express the Birnbaum’s measure IB(i|t) to all components::

IB1 =
∂φ(x)

∂x1
= x2 + 0 + 0 + 0− x2x3 − 0− 0

− x2x4x5 + x2x3x4x5

IB2 =
∂φ(x)

∂x2
= x1 + x3 + 0 + 0− x1x3 − x3x4

− 0− x1x4x5 + x1x3x4x5

IB3 =
∂φ(x)

∂x3
= 0 + x2 + x4 + 0− x1x2 − x2x4

− x4x5 − 0 + x1x2x4x5

IB4 =
∂φ(x)

∂x4
= 0 + 0 + x3 + x5 − 0− x2x3

− x3x5 − x1x2x5 + x1x2x3x5

IB5 =
∂φ(x)

∂x5
= 0 + 0 + 0 + x4 − 0− 0− x3x4

− x1x2x4 + x1x2x3x4
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Import.Birbaum Improvement Potential Risk redution Worth Criticality Import.

Sample C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

10 0.17 0.48 0.46 0.37 0.21 0.08 0.21 0.2 0.18 0.1 1.2 2.9 2.1 2.2 1.3 0.28 0.82 0.85 0.47 0.25

100 0.19 0.43 0.32 0.4 0.19 0.08 0.18 0.13 0.18 0.09 1.5 2.7 1.8 2.7 1.4 0.28 0.74 0.85 0.62 0.3

500 0.18 0.42 0.32 0.43 0.2 0.08 0.19 0.13 0.19 0.08 1.3 2.3 1.8 2.6 1.4 0.26 0.57 0.64 0.79 0.36

1000 0.19 0.43 0.32 0.4 0.19 0.09 0.19 0.14 0.18 0.08 1.4 2.7 1.7 2.5 1.4 0.27 0.6 0.72 0.79 0.37

2000 0.18 0.44 0.31 0.41 0.19 0.08 0.2 0.13 0.19 0.08 1.3 2.7 1.6 2.5 1.4 0.27 0.6 0.66 0.75 0.36

Table 6.6: Simulation Component Importance, 2-out-of-5:G, Weib. (n), β = 1, η = 10

The results are explicit in the table (6.6). From the analysis of the table can see that
when increment the number of sample the values of importance components stabilize for
each component. The components C1 and C5 (lower values) are the "critical components",
that give the most important for the majority of criteria. This results is understood if
looking at the structure of the function and understand that they are the beginner and the
final components of the series system.

6.4.9.1 Simulation Linear consecutive 2-out-of-5:F

The structure function of system Linear consecutive 2-out-of-5:F can be written:

ψ(x, 5, 2) = x2x4 + x1x3x4 + x1x3x5 + x2x3x5 − x1x2x3x4−

x1x3x4x5 − x1x2x3x5 − x2x3x4x5 − x2x3x4x5 − x1x2x3x4x5. (6.91)

From equation 6.91 it’s possible to achieve and measure the importance components
beginning to express the Birnbaum’s measure IB(i|t) to all components::

IB1 =
∂φ(x)

∂x1
= 0 + x3x4 + x3x5 + 0− x2x3x4

− x3x4x5 − x2x3x5 − 0− x2x3x4x5

IB2 =
∂φ(x)

∂x2
= x4 + 0 + 0 + x3x5 − x1x3x4 − 0

− x1x3x5 − x3x4x5 − x1x3x4x5
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IB3 =
∂φ(x)

∂x3
= 0 + x1x4 + x1x5 + x2x5 − x1x2x4

− x1x4x5 − x1x2x5 − x2x4x5 − x1x2x4x5

IB4 =
∂φ(x)

∂x4
= x2 + x1x3 + 0 + 0− x1x2x3 − x1x3x5

− 0− x2x3x5 − x1x2x3x5

IB5 =
∂φ(x)

∂x5
= 0 + 0 + x1x3 + x2x3 − 0− x1x3x4

− x1x2x3 − x2x3x4 − x1x2x3x4

Import.Birbaum Improvement Potential Risk redution Worth Criticality Import.

Sample C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

10 -0.08 0.28 0.14 0.36 0.12 -0.03 0.12 0.08 0.21 0.08 0.96 2 1.5 2.3 1.3 -0.16 0.68 0.12 0.64 0.1
100 0.05 0.29 0.17 0.31 0.06 0.04 0.18 0.13 0.19 0.05 1.2 1.7 1.4 2.1 1.2 0.03 0.31 0.1 0.27 0.05

500 0.07 0.31 0.19 0.33 0.08 0.06 0.2 0.13 0.21 0.06 1.2 2.1 1.4 2 1.2 0.01 0.38 0.13 0.29 0.06
1000 0.05 0.32 0.18 0.31 0.06 0.04 0.2 0.13 0.2 0.05 1.1 2.2 1.4 2.1 1.2 0 0.41 0.11 0.32 0.05

2000 0.06 0.3 0.19 0.32 0.06 0.05 0.19 0.13 0.2 0.05 1.2 2.3 1.4 2.2 1.2 0.01 0.39 0.11 0.33 0.04
Table 6.7: Simulation Component Importance, 2-out-of-5:F, Weib. (n), β = 1, η = 10

The results are explicit in the table 6.7. From the analysis of the table the compo-
nentsC1 (lowest value) is the most important for the various criteria, followed by com-
ponents C3 and C5. The explanation can be obtained by analysing the structure of the
function and understanding that it is the initial component that is most present in the
structural function.

Test with other parameters and also make a comparative test with different parameters
for each component will be recommend.
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Chapter 7

Reliability analysis and simulation -
case study

Learning about the existing maintenance procedures for equipment and the statistical
analysis of the field data is an essential step toward developing an optimal maintenance
plan. Maintenance defines the set of activities performed on an item to retain it in or to
restore it to a specific state.

Unexpected failures usually have adverse effects and may result in major accidents.
There is a strong relationship between maintenance practices and the occurrence of major
accidents. Productivity is closely related to the availability and reliability of the equipment.
The major challenge for a maintenance engineer is to implement a maintenance strategy,
which maximizes the availability and efficiency of the equipment, controls the rate of
equipment deterioration, ensures its safe operation, and minimizes the total cost of the
operation. This can only be achieved by adopting a structured approach to the study of
equipment degradation and failure and designing an optimum strategy for inspection and
maintenance.

Due to the increasing complexity of modern control systems and the growing demand
for quality, cost eciency, availability, reliability, and safety, the analysis of failure systems
in complex industries is gaining more and more importance.

Centrifugal pumps are widely used in the petrochemical industry and, in some in-
stances, the number of pumps used could easily amount to hundreds of pumps in a typical
petrochemical plant. Consequently, the reliability of these pumps essentially translates
into stable and reliable plant operation as the pumps performances are critical to ensure
continuous plant productivity. Repairable systems, such as centrifugal pumps, consist of a
large number of interacting components that perform the system’s required functions.

This chapter describes a methodology that allows identifying the most critical compo-
nents of the system and also helps as a tool to analyse maintenance performance work. The
aim is to obtain the best inspection intervals and to optimize cost, reliability and risk with
the use of simulation and calculation tools. This approach also intends to contribute to the
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fact that the classical reliability analysis performed in industrial companies can evolve to
adopt new models of reliability, as in the case of the consecutive k-out-of-n linear models
applied in the petrochemical industry.

The approach is original and enables, above all, showing the hypotheses of using it
in an operational context and taking it into account to define the maintenance policy for
critical company equipment.

The chapter begins by describing the equipment that is object of study and its connec-
tions, in this case, the centrifugal pump in the petrochemical industry and its components.
Next, it explains the methodology proposed, its schematic flowchart, as well as some of the
most relevant aspects. In this case, the centrifugal pump and its components are decom-
posed and regrouped, as necessary and taking into account the maintenance practices of
the company under study, the international standards, and other work done in this area,
in order to reduce the model to a simple serial system.

The data analysis, from exhaustive fieldwork, will allow us to extract data that serves to
illustrate and exemplify our methodology. This section explains how the data was collected
and organized, as well as the encountered difficulties and problems. It should be pointed
out that our objective was not to make a rigorous estimation of reliability parameters, but
rather to obtain data in order to mark and scale the component systems in order to feed
our models and simulate and validate our methodology.

It should be noted that the systems were considered in the adult phase of life and,
consequently, with a constant average failure rate.

In this chapter the data was analysed and are applied it in the models simulated in
the previous chapters and the components are classified by degrees of importance for three
types of intervals: semester, semi-annually and annually. The scenarios are compared, the
results criticized and finally, various conclusions are reached.

7.1 Information systems and methodological framework

Information in modern society has become so important that we can say that are living
in the information age. All human life revolves around information that can be used for
the most diverse purposes: to generate knowledge, value, wealth, power. In organizations,
information is ubiquitous and has become a critical success factor.

In this sense, information management is crucial for both individuals and organiza-
tions. Computational capacity have brought a revolution in this field, being, nowadays,
not only a tool for management assistance, but also, in many cases, an integral part of the
organizations operational process.

The enormous amount of information that must be managed in maintenance field is,
therefore, of vital importance for a better knowledge of equipment behaviour during its
life-cycle. In most cases introducing technical modifications with the aim of eliminating
breakdowns or reducing their consequences. Quick changes within the market, technology,
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etc., have created tensions in the existing organizational forms. Traditional structures are
highly bureaucratic and experience shows that they cannot respond quickly enough to an
ever-changing environment. Thus, the use of simulation tools allows top management or
other management structure to be highly dynamic and to respond quickly to situations
developed within or outside the company.

The function of a computer is to help people perform their work. There will certainly be
many and diverse views as to the value and impact of information systems and simulation
in people’s lives, which clearly makes how they are developed and used, critical.

Conceptual modelling and simulation is fundamental for creating a model that is as
close as possible to a real system. Without a correct definition of the whole system,
from the representation of the intervening entities and processes to the definition of the
relations between them, it is not possible to even consider the possibility of designing a
reliable model.

Companies, and especially maintenance managers, are very open minded to jobs of
this nature that help them think about the organization and indicate valid answers to the
problems that exist in the company.

7.1.1 System and methodology

We are surrounded by systems. Our bodies are made up of various systems, such as the
digestive system, the nervous system, etc. We form groups with other people in a social,
political and economic way. At first glance, the various systems seem to have little in
common. However, a closer look enables realizing that these phenomena are a collection
of entities that are interconnected through defined relationships.

Elementary systems thinking emerged from the work of Gestalt psychologists, who
emphasized the study of the mind as a whole rather than a collection of psychological
units.

The idea of using the concept of system to understand phenomena is usually attributed
to the work conducted in the 1930s by Ludwig von Bertalany, a German biologist. The
general theory of systems is the name given to the discipline that formulates the principles
applied to all systems. Following the pioneering works of Bertalany, systems thinking
began to be applied to numerous fields and the Society for General Systems Research was
created, including a group with Bertalany, Rapaport, Boulding, and Gerard.

It is consensual, nowadays, that the idea of system had a profound influence on the
computer science field. The term “system” is part of the scientific basis of the area and is
already part of the traditional view of the discipline. The disciplines of systems analysis
and engineering contributed to develop the modern technological system, influencing the
creation of the equipment that today we call computers. These disciplines also influenced
the communications revolution we now call the Internet or "communication highways." The
ability to integrate the organization into the system idea prevailed within the computer
world.



162 Reliability analysis and simulation - case study

The analysis of systems by "hard" methodology is concerned with determining the best
way to achieve a certain objective, while the "soft" methodology system analysis intends
to determine the objectives that are to be achieved.

Information systems use information technology and exist in a context of human activ-
ities. Work in the computer area is compatible with the "hard" and "soft" methodology.
With regard to information technology, it is necessary to solve or improve the performance
of the system and information technology (IT), which is a problem of "hard" systems. On
the other hand, one must also solve or improve everything that concerns the effective use
of the technological system and the issues related to human activities, which change with
the application of a certain technology, this being a problem of the "soft" systems.

7.1.2 Methodologies in information systems

The term methodology does not have a clear definition, either in specific literature or
among the professionals of the organizations. Moreover, there is very little consensus on its
general meaning. The term is used in a very extensive way and with many interpretations,
making it dicult to reach a consensus. Poor use of the term does not mean that there are
no definitions; there are simply no universally recognized definitions. The methodology is
generally defined as a series of steps and recommended procedures to be followed in the
course of developing an information system.

The issues that appear are numerous and critical to the area of information systems.
The scientific community of information systems regularly discusses the term methodology
in the context of information systems, and so far it has not agreed on a universal definition.

The British Computer Society (BCS) developed one of the most commonly used defini-
tions in 1983: "An information system methodology is a collection of philosophies, phases,
procedures, rules, techniques, tools, documentation and training for information system
workers ( ...) " referenced in Maddison (1983). Using this definition suggests that the
methodology has a number of elements that should answer such questions as:

• How should the project be phased in?

• What tasks should be carried out at each stage?

• What are the outputs produced? When and under what circumstances should they
be produced?

• What constraints should be applied?

• How should the project be managed and controlled?

• What support tools should be used?

In addition, the methodology should specify the training needs for its users and explain
their philosophical foundations. This sometimes identifies unwritten aspects and reasons
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that make the methodology an effective approach to the development of information sys-
tems from the author’s point of view. The definition of a methodology should include
a specific reference to its philosophy, in some cases, fundamental to understand a cer-
tain methodology. A methodology for information systems is much more than a series of
techniques aided by software tools.

In practice, many methodologies, particularly commercial ones, are compact products
that may include:

• Manuals

• Training and coaching (including videos)

• Consulting

• Pro forma documents

• Templates built-in in Templates, etc ...

Flynn and Diaz (1996) argues that the term methodology is not applied only in the
context of information systems and that the term method is perfectly suitable to cover all
that we mean by methodology. However, the same author states that "the term method-
ology was popular in the 1980s, but now it is no longer." The term methodology contains
certain characteristics that the term method does not have, for example, the inclusion of
"philosophy". Methodology is a broader concept than method.

7.1.3 The application model

The methodology starts by modelling the systems, applying some concepts discussed in
Chapter 3 on simulation and system modelling. In this phase, it is fundamental to know
the equipment well, as well as the processes that the company applies for its maintenance,
the information system used, etc.

The application model is defined as an information collection system based on global
models. It should be noted that companies often assume information collection systems,
without first having defined and validated their maintenance model for a group of equip-
ment, production line, etc. Then, the data is processed and analysed. This data is the
source of the data for the simulation models to be tested. Scenarios are defined and then
tested and compared. After that, it is decided if the model is correct or not. If is need to
change the model, need to go back to the beginning. After the model is validated, the next
step is to calculate the degree of importance of each component of the equipment, through
several indicators. If this degree of importance has already been taken into account in
maintenance management, then the methodology ends. Otherwise, it will be necessary to
redefine the model and go back to the initial stage.
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Figure 7.1: Methodological framework to apply component importance
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7.2 Model the system

The work was carried out on a group of centrifugal pumps from a refinery that began oper-
ating in 1969. It is a hydro-skimming refinery with a distillation capacity of approximately
110 kbpd. The industrial complex also have an aromatic plant, a base oils plant, and a
lubricants plant.

The annual output of the refinery aromatics plant is currently 440 kton. Employing
advanced technological systems, it excels in terms of reliability, economy of operation, and
quality. The treatment capacity of the base oils plant is 1.18 mtpa of crude oil. The
lubricants plant has a production capacity of 80 kton per year. Figure 7.2 shows the
refining process and its output.

Figure 7.2: Oil refining system (Galp Corp. 2019)

The centrifugal pump is one of the most used electro-mechanical machines in the petro-
chemical industry. This type of pump is most used in the transport of fluids. It is estimated
that among all pumps installed in the petrochemical industry, between 80% and 90%, are
centrifugal pumps, Bloch and Budris (2004). Due to its excellent characteristics, the cen-
trifugal pump is used for many applications, from water pumping to the transport of
flammable fluids at high pressures and temperatures, Bloch and Budris (2004).
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The centrifugal pump is very important equipment in the industrial process. It can
be installed with a reserve pump in order to guarantee operational continuity in case of
a failure of the main pump. Industrial hydraulic pumps have several characteristics that
allow them to be differentiated and classified under different aspects. The most common
classification divides hydraulic pumps into two large groups: dynamic pumps or turbo-
pumps and positive displacement or volumetric pumps, Bloch and Budris (2004), Palgrave
(2003). Centrifugal pumps are part of the first group. In turbo pumps, also referred to as
dynamic pumps, acceleration is transmitted to the fluid so that it acquires kinetic energy
from the transformation of the mechanical energy by means of the movement of the rotor
inserted in the pump body.

The standard ISO 14224:2016 provides a comprehensive basis for the collection of Re-
liability and Maintenance (RM ) data in a standard format for equipment in all facilities
and operations within the petroleum, natural gas and petrochemical industries during the
operational life cycle of equipment. It describes data collection principles and associated
terms and definitions that constitute a "reliability language" that can be useful for com-
municating operational experience. The failure modes defined in the normative part of this
International Standard can be used as a "reliability thesaurus" for various quantitative as
well as qualitative applications.

The standard ISO 14224:2016 also defines the frontier of a pump within the petroleum,
natural gas and petrochemical industries.

Figure 7.3: Frontiers of a pump (ISO 14224:2016)

The centrifugal pump is widely used because it has a simple operating principle, which
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is materialized with constructive aspects that are easy to execute, has a high efficiency and
is easy to operate and, if well applied, allows obtaining stable and good quality systems.
Pumps are machines that transfer energy to the fluid for the purpose of transporting it
according to process conditions. They receive energy from an external source, in this par-
ticular study, an electric motor, and give that energy to the fluid in the form of pressure,
kinetic energy, or both, i.e., increase the pressure and/or velocity of the fluid. The move-
ment of the fluid occurs by means of forces acting through the rotation of an axis coupled
to the wheel (impeller, impeller) provided with blades in which it receives the fluid and
conducts it through the periphery under the action of the centrifugal force.

Figure 7.4: Centrifugal pump scheme (KSB corp. 2019)

Refinery pumps transport petroleum and its derived products in refineries, petrochem-
ical plants and the chemical industry. They are used in temperature ranges from −120oC

to +450oC at pressures of about 65 bar. As the fluids handled are often highly volatile
and flammable, the pump components in contact with the fluid handled are always made
of ductile materials, such as unalloyed steel, chrome steel and, less frequently, nodular cast
iron. The required Net Positive Suction Head - NPSHR value is particularly important
and governs the selection of the drive speed and type of pump. Refinery pumps are most
commonly single-stage horizontal volute casing pumps in back pull-out design.

There are many ways of describing, classifying and systematizing a centrifugal pump in
the literature; this depends on the type of pump, its application, type of industry, liquid,
etc. The classification adapted was Silva (2016), which defines the pump in the following
scheme:



168 Reliability analysis and simulation - case study

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Centrifugal pump Centrifugal pump 
 

Base frame 

Casing Casing 

Casing cover 

Casing ring 

Cap screw 

Impeller Impeller 

Insert 

Lock nut 

Shaft Shaft 

Balance disk 

Wear ring 

Shaft nut 

Bearings Bearing 

Lubrification housing 

Seal 

Snap ring 

Split ring 

Seal Rotating seal part 

Stationary seal part 

O-ring 

Spring 

Coupling 

Pipes 

Figure 7.5: Schematic function - centrifugal pump ( Silva 2016)
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Analysing the different ways of representing and defining the block diagram of a cen-
trifugal pump, and taking into account the type of maintenance that the company carries
out and the grouping of faults/maintenance interventions, it has been defined for a five-
block serial system with the following type of components:

Component Description
C1 Main housing
C2 Impeller
C3 Shaft
C4 Bearings
C5 Seals

Table 7.1: Component descriptions of pump

A diagram block that represents a simplified model of the equipment under study is:

C1 C2 C3 C4 C5

Figure 7.6: RBD structure diagram of a centrifugal pump

7.3 Data Failure analysis

The survey included data reported for seven centrifugal pumps, collected from 2001 to
2011. The failure data were collected only on centrifugal pumps in critical process. The
reliability of these pumps is of great importance to the industry. The survey has limited
the age of the pumps to no more than 10 years. The pumps move oil and diesel with
different densities.

Many researchers use OREDA (Offshore Reliability Data Handbook) as a source of fail-
ure rate data to perform safety verification calculations. It remains an excellent reference
for all who carry out data analysis.

Although the centrifugal pump populations in the two surveys are from different ap-
plications, it is possible to find many aspects of the OREDA report which helps our study.
There are differences in the two studies, which makes a direct comparison of the results
very difficult.

The pumps system is composed by two centrifugal pumps disposed in parallel. One
pump is operating and the other pump is waiting to be demanded. The system for reliability
analysis is called “Stand-by redundancy”: just one pump is in operating mode and the other
pump is waiting for failure of the first pump.

7.3.1 Inspection procedures for centrifugal pumps

Planned periodic inspections are performed to verify the system safety and performance by
detecting potential and hidden failures and taking appropriate actions. If any problem is
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Pump no. ID Number Type of Liquid
P1 1201 heavy liquid
P2 2015 heavy liquid
P3 2301 heavy liquid
P4 3701 aromatic
P5 3009 aromatic
P6 3011 aromatic
P7 3301 aromatic

Table 7.2: Type of liquid from pump

found during inspection, corrective actions are taken to restore the equipment to an accept-
able level. In addition, a set of failure prevention actions may be taken to prevent future
failures and restore equipment function. These include part replacement, re-tightening,
lubrication, etc

Visual and operational checks of the centrifugal pumps safety and functionality are
typically performed 6 times a day. This routine includes an inspection checklist for this
particular class of equipment. The checklist contains, for example, actions to check a pump
leaking and dripping through the seal, and unusual levels or types of noise. Vibration tests
are performed once a month. Therefore, the time between the occurrence of the real failure
and its detection is very short. Ignoring this time delay, we assume that the time between
failures are complete data.

7.3.2 Proposals for the analysis data

The failure data analysis is carried out for different reasons: to identify weak areas in
components, actions in maintenance and provide input for maintenance decisions. There
is an important distinction to be made between components, that can only fail once and
equipment and systems, that are repairable. Consequently, the analysis of failure data from
populations of components or equipment can involve significantly different techniques.

The time interval between two consecutive failures is treated as complete data since
assume that it is know the exact failure times. When the results of the last failures don’t
match with the end of the test, this is consider as right censored data.

As a first step it is always worthwhile calculating some parameters to summarize failure
data. We measure the location of the observations and their dispersion around the mean
value. For component failure data the measure of location is the mean life - Mean Time
Between Failures (MTBF). The analysis of component failure data is too often undertaken
before considering the pattern of failure exhibited by the dataset. Summary statistics
provide some indication of the properties of individual data samples but on their own have
this limitations.

The preliminary analysis data discussed here can provide a better understanding of the
likely failure patterns, the symmetry, range and modality of a dataset. Any one of these
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analyses will be an improvement on summary statistics and will probably indicate where
further investigation is likely to be worthwhile. In data collection, it is possible to see some
asymmetry. All data have some considerable standard deviation. This is because the range
of data for all the pumps is quite large and the number of events for each pump is few.

In the seven pumps, one had very little data and was not representative of the normal
"failure" pattern of the other pumps, so it was decided to remove the data from the study
and at a later stage analyse the reason why its behaviour was totally different from other
pumps. For our study, their inclusion would greatly bias the analysis and there is probably
a reason for this anomalous behaviour.

Therefore, because of its flexibility, the exponential model will be used to analyse
the typical industrial failure data. It is particularly useful for small data when there is
uncertainty regarding the fit to other distributions.

7.3.3 Results - data analysis

The first result that was obtained was the MTBF by equipment and, then, the overall
MTBF, not forgetting that there are two groups of pumps with different maintenance due
to the density of the fluid which they operate. The maintenance costs are significantly
different from one group of pumps to another (heavy and light), as can be seen in table
7.3. In this analysis, and clearly in a real analysis, there are many factors that influence
reliability, productivity and costs. From table 7.4 and table 7.3 it is possible to conclude
that the relation of the cost of maintenance with the MTBF is not linear. The heavy
pumps have a lower average cost and are those which have lower MTBF. This is because
the cost is more diluted by a greater number of failures than is included in the group of
light pumps.

Pumps no. MTBF (u) Mean Cost ($)
1201 1638 2829,17
2015 842,94 1383,98
2301 1884,23 1604,90
3009 1456 96,27
3011 2016 878,029
3301 3573,81 18,75
Table 7.3: MTBF and pump cost

Pump Group Mean Cost ($)
B1 1939,35
B2 331,02

Table 7.4: Mean cost of the two groups of pumps
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With the survey performed, it is possible to have a reasonable number of data that
makes the mean values obtained meaningful. Thus, the failure rates per component, ac-
cording to the following block diagram representation, are:

Pump n0.
Comp 1201 2015 2301 3009 3011 3301 MTBF (u) Hazard Rate (1/u)
c1 15724,8 16016 96096 14560 39312 78624 43388,8 0,000023
c2 13104 6864 7392 0 26208 26208 13296 0,000075
c3 78624 6406,4 24024 0 78624 39312 37831,73 0,000026
c4 6048 1656,82 6406,4 2569,41 4624,941 11232 5422,93 0,000184
c5 3418,4 4576 5338,66 4368 4914 8736 5225,1 0,000191

Table 7.5: MTBF and hazard rate for each components

7.4 Simulation - results

The simulation developed three scenarios: the first scenario is the simple case of a series
system designed by 5-out-of-5. In the second and third scenarios, the faults are provided
in consecutive blocks and, therefore, consider the case in the system have two consecutive
components fails and the system fail, that is the scenario 2-out-of-5:F or, have only two
components working to the system continues to functions, the 2-out-of-5:G scenario.

Sample Quarter Semi-Annual Annual

10 0.4 0.2 0
100 0.35 0.07 0.01

500 0.352 0.114 0.012
1000 0.346 0.12 0.015

2000 0.362 0.112 0.011

Table 7.6: Simulation reliability of 5-out-of-5

The results of the simulation show that the reliability for a time interval that has a
range from 3 months to one year decreases in all cases. And when the sample number
increases, the values stabilize around a value that will be the closest to the reliability of
that model.

Clearly can be concluded that the reliability of the consecutive F and G series systems
are much higher than the simple series system. In practice, what happens is that there is
usually not a single repair, but a set of two or three repairs (to simplify the system, the
study approach two consecutive systems). The results are in the table 7.8 and are quite
elucidative.

After this analysis, a simulation was developed to calculate costs based on the reliability
of each system. In this case, considering an acceptable reliability, given that the system is
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Sample Quarter Semi-Annual Annual

10 0.8 0.6 0.4
100 0.85 0.68 0.22

500 0.86 0.616 0.232
1000 0.869 0.607 0.248

2000 0.864 0.6245 0.293

Table 7.7: Simulation reliability of a consecutive 2-out-of-5:F system

Sample Quarter Semi-Annual Anual

10 1 0.8 0.6
100 0.97 0.92 0.56

500 0.944 0.846 0.566
1000 0.954 0.842 0.575

2000 0.941 0.838 0.572

Table 7.8: Simulation reliability of a consecutive 2-out-of-5:G system

redundant, of no lower than 90%, our calculation provided that for scenario 1 of the simple
serial system it would be necessary to carry out two maintenance actions per quarter and
for, the other two scenarios, a single intervention is sufficient. If one compares the annual
cost of each option, it will necessarily have different maintenance policies and different
budgets.

Annual Cost
B1 B2

5-out-5 11636.13 1986.12
2-out-5:F 5818.06 993.06
2-out-5:G 5818.06 993.06
Table 7.9: Simulation Costs Scenarios

Reliability analysis is easier when done early on in the project and the tests are per-
formed in the laboratory under controlled conditions. When equipment goes to the field
and it is necessary to take into account diverse variables that influence reliability, it is no
longer as easy to use or choose the model and, many times, the data itself is not as reliable.
Actually, modelling in a laboratory or project is much simpler and easier to do. That’s
why our methodology aims to help those who want to analyse and improve the reliability
of their equipment that is in operation.
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7.4.1 Results - component importance

The case study also developed the component importance calculation, for different time
horizons: quarterly, semi-annual and annual. Four criteria have been chosen, which have
provided very interesting results. The action and use of this information depends on
the organization and its planning and definition of the maintenance policy and strategy.
The components that are most important need, of course, more preventive maintenance,
inspection routines, etc.

Import.Birbaum Improvement Potential Risk Reduction Worth Criticality Import.

Time C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

T 0.001 0 0.001 0 0 0.001 0 0.001 0 0 1.001 1 1.001 1 1 0.001 0 0.001 0 0
S 0.0090.0030.0080.0020.0020.0090.0030.0080.0020.0021.0091.0031.0081.0021.0020.0080.0030.0070.0010.001

A 0.0620.0230.0550.0140.0140.0610.0230.0550.0140.0141.0661.0241.0591.0141.0140.0510.0190.0460.0120.011
Table 7.10: Component importance Simulations - 5-out-of-5

In this case, for the three proposed scenarios, there are differences in the criteria,
which can also help us to better understand which components are really important or
not. In all the scenarios, componentsC4 and C5 appear the most important, although
their importance is differences from scenario to scenario and time horizon.

Import.Birbaum Improvement Potential Risk Reduction Worth Criticality Import.

Time C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

T 0.024 0.3380.0550.148 0.007 0.023 0.3210.052 0.14 0.006 1.0251.5111.0581.1741.0070.024 0.34 0.0550.149 0.007
S 0.044 0.5610.109 0.26 0.014 0.036 0.4690.0910.218 0.011 1.0452.2781.1221.3521.0140.0470.6070.1180.282 0.015

A -0.0220.7480.0590.375-0.004-0.0140.4550.0360.228-0.0020.9783.9641.062 1.6 0.996 -0.03 1.0070.0790.505-0.006
Table 7.11: Component importance Simulation - 2-out-of-5:F

Import.Birbaum Improvement Potential Risk Reduction Worth Criticality Import.

Time C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

T 0.1260.0770.3110.3640.3080.1090.0670.2690.3150.2661.1441.0841.4521.5711.4450.1380.0850.342 0.4 0.338
S 0.1710.1060.3470.5650.4770.1090.0680.221 0.36 0.3041.2061.1191.5322.2991.9130.2430.1510.4940.8030.678

A 0.1360.0920.2190.6920.5810.0380.0260.0620.1950.1641.1571.1021.281 3.25 2.3880.3950.2690.6382.013 1.69
Table 7.12: Component importance Simulation - 2-out-of-5:G
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7.4.2 Conclusion

The final goal of the case study under analysis is not a classical approach to reliability,
with estimation and adjustment of data, but to validate a simulation methodology that
can contribute to a reliability analysis and that can be a tool for the definition of mainte-
nance policies, defining resources, and promoting maintenance management with the use
of simulation techniques.

For a complete, accurate and thorough analysis of reliability, another type of data and
collection procedure is required. In fact, data is used for reliability, but they serve to
illustrate the models and methodologies, as simulation proposals. The data was collected
for sufficient number of years and from a reasonable number of almost identical centrifugal
pumps but, in the future, to carry out a better reliability analysis, more accurate data will
be necessary.

The work identifies the advantages of simulation in the field of reliability, and demon-
strates that its application is possible and useful.

For this, it is necessary to master a set of techniques and knowledge in the technical
area (in this case, pumps), as well as predictive maintenance techniques (vibration analysis,
etc.), statistics (data analysis and estimation of parameters), modelling of systems and
processes, and simulation (GRN, software, etc.).

For the case study, the data collect and analysed are good enough, because they fit
into average values that, together, can have very reasonable and acceptable average values
for the simulation.

The time to failure of the most critical pumps were gathered from computer mainte-
nance systems. The accuracy of the results depends on the total number of failures and
their completeness or censoring status. The results are better and more consistent with
more failure data and, mainly, with complete failure data.

The analysis of the data from of an oil refinery pumps with great period of working
time is not simple because of the amount of censored and missing information and of the
relative equipment ageing process.

The results of the statistical analysis could be used to develop the optimum inspection
interval for each pump. Different trends and values have been obtained for different pumps
and a model should take into account the failure trend and life pattern. The analysis should
be performed carefully, since the same equipment in the same refinery may exhibit different
failure patterns depending on the operating and the environmental conditions, namely the
viscosity of the fluid and the age. With this analysis, operations management can make
the right decision in advanced to avoid any critical failures and plants downtime.
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Chapter 8

Conclusions and future work

Today, in our companies we have connected all equipment, which becomes intelligent,
even autonomous, which allows to be informed at any time and guided in our choices to
give power of decision to the equipment. The evolution of technology, has enabled the
development of new tools and methods to promote condition monitoring or preventive
maintenance and avoid failures and accidents.

Simulation studies use computer intensive procedures to assess the performance of a
variety of statistical methods in relation to a known truth. Designing high-quality sim-
ulations that reflect the real situations and complex equipment seen in practice, is not a
simple process. All simulation studies involve the generation of several independent sim-
ulated data sets. These generated data sets must also be completely independent for the
different scenarios considered, such as in the presence of censored data.

The thesis intend to contribute in the design and programming algorithms that gen-
erate correctly, robust and non-skewed censored data and are a useful tool in the field of
simulation on reliability.

The dissertation begins, in chapter 2, by theoretically approaching the concepts and de-
scribing the basic concepts of reliability analysis in engineering and maintenance. Chapter
3 starts by providing a brief introduction to system simulation and modelling. A summary
of the state of the art in the generation of random numbers, as well as the hypothesis test
are then provided to identify whether the data obtained could be considered as random.
In Chapter 4, the censored data type is defined and the algorithms to simulate the dif-
ferent censored data are provided, as is a simulation and comparison of the five statistical
distributions. In Chapter 5, the estimation models for the various types of censored data
are developed; the EM method is also developed to right type I censor data with Weibull
distribution.

Chapter 6 begins with the revised theory about reliability of complex and coherent
systems, RBD and FTA. Then, simulation studies are presented for the various cases.
Several Monte Carlo simulation methods are explained and simulated. The last part of
the chapter presents the reliability of linear consecutive k-out-of-n, component importance
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and simulations studies.
Chapter 7 starts off with the methodology for the use of the simulation tools in

the reliability of equipment, in order to manage the maintenance of a company (or its
improvement and optimization), and proceeds with an investigation case carried out on a
set of critical equipment.

Finally, this last chapter presents a summary of the work developed and of the main
conclusions, as well as the future perspectives within the thematic area in which we develop
the dissertation.

8.1 Conclusions and goal achieved

The objectives that were defined at the beginning of the dissertation were carried out
through bibliographical research of the state of the art, by the adaptation of simulation
tools to support maintenance management using the information systems of the companies.

In a transition from an academic environment to the working world, a subject was
chosen: simulation on reliability, that only started to have more prominence in the last
decade. As a result of this development, the simulation has also been supported by increas-
ingly versatile and comprehensive information systems, fully embracing today’s computer
development. On the other hand, we also see, more recently, that maintenance has an
increasingly prominent role in organizations, leaving the traditional view of generating
costs.

Finally, and particularizing a type of industry, a refinery plant served as a case study.
Maintenance contributes very actively in a sector recognized for the high quality and
safety requirements of the product. These were the themes combined - simulation and
maintenance - developed throughout the work, supported by their theoretical bases, and
put into practice. The possibility of analysing real maintenance data was the perfect
scenario for the thesis project, and the fulfilment of the expectations about the work.

Throughout the work and in the main chapters (4 to 7), the results were analysed and
the appropriate conclusions were reached. Therefore, a more global summary is present in
line with the proposed objectives:

1. The thesis was used to develop reliability model simulation algorithms for complex
equipment/systems and when data collection is faced with censored data;

2. The algorithms are innovative and their development was carried out using three
different software programs: - Python, Matlab and R; which allowed verifying and
comparing some characteristics, such as: performance, ease of programming and
debugging, versatility and available functions, etc.;

3. The document proposes a methodology and approach for data analysis and applica-
tion of simulation tools in industry companies;
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4. The method of maximum likelihood and also the EMmethod were developed, in order
to analyse censored data and have more precision and confidence in the results;

5. A methodology of analysis (hypothesis tests) and validation with an evaluation ma-
trix is proposed to test i.i.d. data of the RNG of censored data;

6. A sequence of preventive interventions could be similar to k-out-of-n consecutive
linear reliability models by analogy and mathematical modelling;

7. The methodology developed is a mixture of several academic models, tools and sim-
ulation methods, as well as of the organizational structure of the companies;

8. There are authors - few in our view - who mention the importance of aspects of
simulation in maintenance; hence, in maintenance, there is a very diffuse notion of
management and information systems;

9. Reliability analysis enables a reflection on the current system of company equipment
and together with simulation tools contributes to show, in a very positive way, the
actions of change that significantly improve an organization’s maintenance service;

10. The work for the modelling of an equipment or system should involve a multidisci-
plinary team, that will accompany the development of all the work;

11. The results of the simulation are quite positive, but can be boosted with the in-
troduction of new approaches in the industry, such as, machine learning, artificial
intelligence, etc.;

12. The execution and application time of modelling and simulation is usually long (this
is one of the disadvantages of this methodology) because it requires the involvement
of a good number of an organization’s employees, the availability of their time, data
collection and validation of results;

13. Investment in training, in technical areas of maintenance, together with simulation
work, is profitable and can bring many benefits to the productive sector and lead to
a good organizational environment;

14. It is important, within academic work in the engineering, management and infor-
mation systems areas, to establish or to take into account the definitions that are
assumed regarding the concepts of modelling, simulation and reliability;

15. In Portugal, there is not much work on maintenance management, much less on
maintenance simulation;

16. For analysis and simulation work on reliability or maintenance, as well as for the
implementation of an information system with integrated simulation, it is necessary
to define a methodology.
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8.2 Future work

After working within the scope of the project, it was possible to identify some improvement
areas, thus, making it possible to provide a proposal for future work:

1. Apply the methodology proposed in Chapter 7 to other equipment and in other
organizations;

2. Extend simulation methodology and tools to the maintenance logistics sector;

3. Introduce new parameters and analysis with the use of machine learning tools and
algorithms;

4. Improve and automate the data collection process by developing a routine or even a
software module that provides automatic reporting. Although ambitious, this inten-
sive and possibly high-investment programming software, shall undoubtedly provide
an added value to the entire information management system of enterprise;

5. For further analysis, it would also be very interesting to link the data collected with
production, quality and logistic data;

6. Comparative and benchmarking studies of the algorithms applied in the different
software;

7. Adapt the simulation models for integration in DES (discrete event system) and
ABM (agent based modelling) simulation models;

8. Integrate simulation models into the most current models of risk analysis;

9. Compare the methodology proposed with other methodologies and tools for the im-
plementation of information systems in industrial maintenance;

10. Study the importance of simulation models in maintenance management;

11. Study the impact of integrating production and maintenance information systems in
the automation systems for the future of maintenance management;

12. Further develop the modelling theory for simulation in maintenance.
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Monte Carlo methods simulation on
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In reliability the use of Monte Carlo methods - MCm began at least with Orkand
(1960). Can be divided in two major groups: the methods to repairable systems and the
methods to non-repairable subsystems.

Two methods to non-repairable sub-systems and one method to repairable systems
were select and develop in matlab the algorithms of each method to simulate. Not all of
algorithms have the same results and precision that have the results made in the original
works and this can be, because was used different and modern tools to generate random
numbers and resolve numerically the calculus.

The first method is named Kamat-Riley method - K-R, from Kamat and Riley (1975)
and assume that individually the subsystem is independent of each other, and life distri-
bution is known for each subsystem and distribution parameters have been estimated. In
the beginning of the method it’s necessary to determine all minimal tie-sets. The K-R
method using the normal approximation to the binomial distribution will result in some
error. The s-confidence intervals obtained by K-R method can be shrink by increasing num-
ber of simulation cycles. he K-R method can be accepted in large number of engineering
applications.

The second method is named Rice-Moore method - R-M from Rice and Moore (1983)
that used the technique fail-pass failure. The R-M method can be applied to any complex
system structure but the subsystem failures have to follow binomial distributions. The
method is applied especially to the system with zero-failure subsystem. The R-M simula-
tion method is also based on the normal approximation to the binomial distribution. The
LCLs obtained by the R-M algorithm are larger than the exact LCLs.

The third method named Kim-Lee Monte Carlo method - KLMC from Kim and Lee
(1992) use the relationship between the system MTBF and the component failure processes,
to predict the exact value of MTBF. It’s necessary to know all the sample paths of the
component failure processes. The KLMC algorithm can be applied to any binary coherent
system with known component lifetime distributions.

A.1 The method Kamat-Riley

This Monte Carlo procedure, developed by Kamat and Riley (1975), can be applied to most
systems with arbitrary system reliability structure and subsystem with different failure
distribution. In this method, individual subsystem are assumed to be independent of each
other and repair of failed subsystem are not allowed; the underlying life distribution is
known for each subsystem and statistical distribution parameters have been estimated.

According to Kamat and Riley (1975) the procedure has several steps that are:

(a) Find out all minimal tie-sets form system Reliability Block Diagrams (RBD).
Assume that we need to obtain system reliability interval estimates at some
point t.
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(b) From the life distribution of each subsystem, a random failure time ti, is gener-
ated where I represents the ith subsystem, 0<i<n.

(c) Compare ti, with t for all subsystem. If ti > t, this indicates that at time t
subsystem I functions properly; if ti ≤ t, then subsystem I has failed.

(d) Determine whether the whole system is functioning or down according to the
states of its subsystem at t from step (c). Check all subsystem in a minimal
tie set. If all of them are operational, then the system operates properly as t.
If one or more of them fail, then the tie–set is broken (failure) at t. Further,
check next minimal tie-set until an unbroken one appears, which means that the
system is a operational at t. If all minimal tie-sets are broken, then the system
fails at t.

(e) Repeat steps (b), (c), (d) for, say, n times. Count failure and success numbers
of the system respectively: ns(t) and nf(t). Note that n = ns(t) + nf(t)

(f) The system reliability point estimation corresponding to t is given by

R(t) =
ns(t)

ns(t) + nf (t)
(A.1)

Note that the simulation results are of binomial type. Based on the normal approxima-
tion to the binomial distribution, the 100(1−α)% confidence intervals of system reliability
at time t are given by

[Rl(t), Ru(t)] = R(t)± Zy
R(t)(1−R(t))

[ns(t) + nf (t)]
1
2

(A.2)

Where Zy is the double side 100(1−α)% percentile of the standard Normal distribution
with mean zero and variance 1.

Example A.1.1 (Example method Kamat-Riley):
An application example is given by Kamat and Riley (1975). The system reliability struc-
ture diagram in this example is show in figure (A.1) and lifetimes of all nine subsystem:
a,b,c,d,e,f,g,h,i are assumed to follow the two-parameter Weibull distribution with survival
function

sf (t;Ki,Mi) = e

[
− Ki
Mi+1

tMi+1
]
and t,Ki > 0, Mi > −1 (A.3)

From figure (A.1), can see that it is difficult to determine the reliability interval es-
timates of this system by using classical statistical. Per system reliability theory, the
system’s minimal tie-sets can be found to be: adg,bdg,adhi,bdhi,aefi,befi,cfi.

The scale parameter Ki and shape parameter Mi values for all nine subsystems are
listed in (A.1). Using the K-R Monte Carlo algorithm, 1000 simulation replications are
performed; the table (A.2) show the results of system reliability point estimates at certain
time points.
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Figure A.1: Reliability structure diagram

Component Scale Shape
no. parameter K parameter M
A 2.8 1.8
B 2.7 1.7
B 2.6 1.6
D 2.5 1.5
E 2.4 1.4
F 2.2 1.2
G 2.3 1.3
H 2.1 1.1
I 2 1

Table A.1: Weibull parameters for each component

Only a part of the program made in Matlab is show, and to illustrate the most important
part of the main routine. The program obtain directly the results that are in the table
(A.2).

1 % step that compare if the system have a failure or not
2 % create the vector that if the sum is equal 53 represents that
3 % the equipement not failure
4 tabela = t*trec;
5 sumato = sum(tabela);
6 if sumato == 53;
7 ns = ns +1;
8 else
9 nf = nf +1;

10 end
11 end
12 rt(j)= ns/(ns+nf);
13 %confidence interval
14 Rl(j)=rt(j)-1.645*((rt(j)*(1-rt(j)))/sqrt(ns+nf))
15 Ru(j)=rt(j)+1.645*((rt(j)*(1-rt(j)))/sqrt(ns+nf))
16 end

Algorithm 13: Program Kamat and Riley (partial)

Kamat and Riley (1975) do not derive exact 95% confidence intervals for this system
by classic statistical methods and not discuss the accuracy of their simulation result. The
K-R method using the normal approximation to the binomial distribution will result in
some error. From (A.2) can see that the confidence intervals are generally very narrow and
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the point estimates are at the middle of them.

Lower Reliability Upper
Time 2.5% limit point estimate 2.5% limit
0 1 1 1
0.1 0,988964 0,990099 0,991234
0.2 0,93889 0,943894 0,948899
0.3 0,880513 0,888614 0,896715
0.4 0,800701 0,811881 0,823061
0.5 0,714482 0,727723 0,740963
0.6 0,646665 0,660537 0,67441
0.7 0,578853 0,592822 0,606791
0.8 0,517766 0,531353 0,54494
0.9 0,471231 0,484158 0,497086
1 0,427983 0,440144 0,452305

Table A.2: Reliability simulation results - 95% confidence intervals

Figure A.2: Example from Kamat and Riley

A.1.1 Development and explanation of Kamat Riley algorithm

Start by defining the matrix (tie in the algorithm) that defines the critical path: - if it is
only in series equipment (let’s assume 4 components) the matrix stays:

M =
[
1 2 3 4

]
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The ncc (number of critical paths is 1) which is equal to m representing the number
of rows in the array, and ccc (maximum number of components in all cc) that is equal to
the number of columns in the array.

If it is two parallel lines with 3 components each the array looks like this:

M =

[
1 2 3

4 5 6

]
In the second step of the cycle is generated the vector with the times of each component:

vector Ti

Ti =



Componente tempo

1 0.9

2 1.5

3 .5

4 3


From this two matrices will be generated another matrix F by comparison with the

simulation time - t that will be incremented each time depending on the for statement:
for(t in seq(0, 0.1, by = 0.01) )

The matrix F is constructed with the comparison ti < t where if true Fi, j takes the
value of zero and if False takes the value 1. Below the construction of the matrix and an
example for the case of equipment with two parallel branches with three components each.

M =

[
1 2 3

4 5 6

]
Ti =



Component time

1 0.9

2 1.5

3 .5

4 3

5 7

6 2


Ci =

[
0.9 1.5 .5

3 7 2

]

Another way of doing the algorithm starts by constructing another matrix in which it
replaces the number of the component in the matrix tie by the value of the failure time.
From there it would be to compare for each element of the matrix whether the value is <
or > that the t (simulation time).

Fi,j =

0 se Ti{Mi,j} < t (failure component),

1 se Ti{Mi,j} ≥ t (component working).
Fi,j =

[
1 0 0

1 1 1

]
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From the matrix F we can construct the vector g that informs us for each critical path
if it is stopped or to function, through the following function:

Gi =

0 se
∑m

i=1 Fm = 0CC it’s working,

1 se
∑m

i=1 Fm ≥ 1CC it’s stopped.
Gi =

0

1

1


Finally, the vector r is constructed through the matrix G. If the

∑
G = m is equal to

the total number of critical paths, that is the value m, it means that all critical paths are
stopped and therefore the equipment has failed or takes value 0 if

∑
G 6= m some critical

path is working and soon the machine is working.

Ri =

0 se
∑m

i=1Gm = m Equipament stopped

1 se
∑m

i=1Gm 6= mEquipament working.
Gi =



0

1

1

. . .

. . .

1


A.2 The method Rice and Moore

The Rice and Moore (R-M ) simulation method is also based on the normal approximation
to the binomial distribution and have the follow parameters: the success probability of a
binomial or the reliability of component is p, failure probability q, number of components
n, failure number fi, then this binomial failure follows the normal distribution with mean
p and a variance (pq/n).

If a component has zero failure, that is, fi = 0, then fi can be replaced by the equivalent
failure number fi given by Gatliffe (1976).

The Key steps of the R-M process are:

1. Define the system and its Reliability Block Diagram (RBD). Develop the algorithm
to compute system reliability from its subsystem reliabilities, i.e., system reliability
structure function.

2. For each subsystem, determine its failure fi or equivalent failure number fi’. To
simplify, they are both represented by fi *.

3. Calculate estimates:
pi = 1− f∗i

ni
qi = 1− pi
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Asymptotic variance =
piqi
ni

4. For each subsystem, generate a random variable form N(0,1), where N(0,1) is the
normal distribution with mean zero and variance 1.

5. Find the second estimate p ∼ (pi,
piqi
ni

) by drawing an r.v. from N(0,1). Multiply by
asymptotic standard variance and add it to pi

6. Calculate system reliability R, from subsystem reliability according to the algorithm
created in step (a).

7. Implement steps (d)-(f) many times for, say, 999 times.

8. List these values in order of no n-decreasing magnitude.

9. Determine the 100(1- α)% percentile to obtain 100(1- α)% LCLs of Rs

Here we will show the programming code made in Matlab. From this program we
directly obtain the results that is show in the figure (A.3).

Figure A.3: Example from Rice and Moore with f1=1 and f2=2

A.3 The method KLMC

The MTBF is often used as a measure of repairable-system reliability.
Prediction of MTBF is an important aspect of the phase design of systems. The MTBF

is used as a measure of repairable-system reliability. The MTBF of a system can be pre-
dict before the equipment is made but its necessary to know the relationships between
the system MTBF and the component failure processes. The MTBF is defined by ET,
where T is the time to failure of the equipment, but this definition assume independent
and identically distributed random failures.

Kim studied the relationship between the system MTBF and the component failure
processes. The KLMC algorithm is applied to any binary coherent system with known
component lifetime distributions.

As stated by Kim and Lee (1992), to KLMC method. it’s necessary to do some as-
sumptions:

1. The system has n components. Each component is either operating or failed, and so
is the system.

2. Each component lifetime distribution is known.
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1

2 %variis
3 n= 10 %numero de amostras
4 k = 2 % numero de componentes
5 mu = 0; % the mean
6 sigma = 1; % the standard deviation
7 %rt = 1
8 f(1) = 1
9 f(2) = 3

10

11 for v=1:10
12 for j = 1:1:1000
13

14 for i = 1:k;
15

16 p(i) = 1- f(i)/n
17 q(i) = 1-p(i)
18 AV (i) = p(i)*q(i)/n
19

20 z = unifrnd( mu , sigma);
21 pf (i) = p(i) + z*(AV(i).^(0.5));
22

23

24 end
25

26 rt (j) = pf (1)* pf (2)
27

28 end
29

30 X= sort(rt,’ascend’);
31

32 rc(v) = X(50)
33 end
34

35 hold on
36

37 plot (rc)

Algorithm 14: Program Rice and Moore

3. The state of the system is determined solely by the states of the components by
means of a binary s-coherent structure function.

4. The states of the components are s-independent.

5. Failed components are replaced (with new ones) at system failure.

6. If an MPS (minimal path set) fails, components therein (which are not included in
any other MPS) cease to operate until repair of the system.

7. Replacement time for any component is negligible. Replacement/repair does no
damage the system.

Assumption 6 is more realistic that to separate maintenance where an operating com-
ponent can still fail even though it is in a failed MPS.
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Notation
i index for components; i = 1,2, ..., n
j index for MPSs; j = 1,2, ..., mi
k index for inter-failure times; k = 1,2, ...
mi number of MPSs that contain component i
Pi,j MPS j which contains component i
qk inter-failure time (of system) k; q0 = 0

tki residual lifetime of component i at system failure k - 1
Lki,j inter-failure time k of Pi,j
Ski maxj{Lki,j}

Remarks

1. Since Pi,j is a series system, then Lki,j = mintki over all s ∈ Pi,j for fixed k

2. Since the system fails when the last MPS fails, qk = maxi,j{Lki,j} over all j for each
i, over all i for fixed k.

3. If tki ≤ Ski , then component i has failed during [qk−1 − qk].

4. If tki ≥ Ski then component i is used for Ski during the interval qk−1 − qk] and has
residual life tk+1

i = tki − Ski

KLMC Algorithm

1. Find Pi,j for all i j.

2. Initialize: k=l. Generate tki for all i; k is fixed (MTBF = “Undefined”).

3. Lki,j = mins{tks} over all s ∈ Pi,j for fixed k.

4. qk = maxi,j{Lki,j} over all j for each i, over all i for fixed k.

5. Ski = maxj{Lki,j} over all j for each i, for fixed k.

6. If tki ≤ Ski then generate tk+1
i else tk+1

i = tki − Ski .

7. If
∑k

i=1 q
i ≤ t then set k = k + l , and go to step 3.

8. If k > 1, then MTBF = t/(k-1).

For a given time t, the algorithm produces the MTBF estimate by dividing t by the
number of failures in [0,t] under the condition that separated maintenance is not consid-
ered.

A part of the programming code made in Matlab is show. This program obtain directly
the results that is show in the figure (A.5).
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1

2 % i - index for components
3 % j - index for MPS
4 % k - index for inter failure times
5 % mi - numero of mps que contem a componente i
6 % pij - MPS j que contem a componente i
7 % qk - inter failure time do sistema k; qk(0)= 0
8 %tik - residual life of compoenente i at system failure k-1
9 %lij - inter-failure time K of pij

10 % Sik - max(lij)
11

12 clear all
13

14 %Step 1 - Find pij for all i&j
15 %Definir a matriz que contem a minimal path sets
16 pij = [1 1 0;1 0 0;0 1 0 ;0 1 0 ; 0 0 1 ];
17 dist= [1 0.1 0;2 10 2;3 2 2;1 0.1 0;4 2 2]; % fun distribui
18 [n,ff]=size(dist);
19 re=10 % replicas
20 f=1
21 t=200
22

23 for t=10:10:200
24

25 for s=1:1:re
26

27 h=0
28 q=0
29 k=1 % initialize K
30

31 %Step 2 - Generate life times
32 for i=1:n
33 tgi = gertempo (dist, i)
34 tg(i)=tgi
35 end
36 %Matriz MPS por colunas
37 for i=1:n
38 for j =1:ff
39 pji(i,j) = pij(i,j)*tg(i)

Algorithm 15: Program KLMC (partial)

Figure A.4: A 5 s-independent component coherent system

Example A.3.1 (The method KLMC):
A system has 5 s-independent components with minimal path sets {1, 2}, {1, 3, 4}, {5} as
in A.4. The lifetime CDF’s for each component are given. Calculate MTBF (5O).

The components have the following lifetime CDF’s:
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1. expf (0. 1t) - exponential

2. gaufl ( t-10) /2] - Gaussian

3. weif(2t; 2) - Weibull

4. expf(0. 1t) - exponential

5. gamf(2t; 2) - Gamma

Algorithm Steps
11. P1,1 = {1, 2}, P1,2 = {1, 3, 4}
P2,1 = {1, 2}
P3,1 = {1, 3, 4}
P4,1 = {1, 3, 4}
P5 = {5}

2. Generate the lifetimes for each components
t11 = 10, t12 = 15, t13 = 35, t14 = 45, t5]1=15

31. L1
1,1 = L1

2,1 = min{10, 15} = 10

L1
1,2 = L1

3,1 = L1
4,1 = min{10, 35, 45} = 10

L1
5,1 = 15.

41. q0 = max{10, 10, 15} = 15

51. S1
1 = max{10, 10} = 10, S1

2 = 10.

S1
3 = 10, S1

4 = 10, S1
5 = 15

61. Since t11 = 10 = S1
1 then component 1 has failed;

t21 = 37 is the generated lifetime.
Since t12 = 15 > 10 = S1

2 = t22 = 15− 10 = 5

Since t13 = 35 > 10 = S1
3 = t23 = 35− 10 = 25

Since t14 = 45 > 10 = S1
2 = t24 = 45− 10 = 35

Since t15 = 15 = S1
5 then component 5 has failed;

t25 = 20 is the generated lifetime.

71. q1 = 15 < t = 50; set k = 1 + 1 = 2; go to step 3

32. L2
1,1 = min{37, 5} = 5 = L2

2,1

L2
1,2 = min{37, 25, 35} = 25 = L2

3,1 = L2
4,1

L2
5,1 = 20.
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42. q2 = max{5, 25, 20} = 25

52. S2
1 = max{5, 25} = 25.

S2
2 = 5, S2

3 = 25, S2
4 = 25, S52 = 20.

62. Since t21 = 37 > 25 = S2
1 , then t31 = 37− 25 = 12.

Since t22 = 5 = S2
2 , then component 2 has failed;

t32 = 18 is the generated lifetime
Since t23 = 25 = S2

3 then component 3 has failed;
t33 = 22 is the generated lifetime.
Since t24 = 35 > 25 = S2

4 then = t34 = 35− 25 = 10

Since t25 = 20 = S2
5 then component 5 has failed;

t35 = 11 is the generated lifetime.

72. q1 + q2 = 15 + 25 < t = 50; setk = 2 + 1 = 3; go to step 3

33. L3
1,1 = min{12, 18} = 12 = L3

2,1

L3
1,2 = min{12, 22, 10} = 10 = L3

3,1 = L3
4,1

L3
5,1 = 11.

43. q3 = max{12, 18} = 12.

53 and 63. [not needed].

73. q1 + q2 + q3 = 15 + 25 + 12 > t = 50.

83. MTBF(50) = 50/(3-1) = 25.

Blank periods appear at 10 ≤ t ≤ 15 for components 2, 3, 4, since (by assumption 6)
these components go into “suspended animation” after the failure of component 1 at t =
10. Figure A.5 is the result of the simulated MTBF (5000 simulations) for t = 10 to 200
for this example 5-component system.

The validity of this simulation can be checked by comparing the simulation results with
the theoretical ones. Figure (A.5) shows that the simulated MTBF converges to a limit.
This limit should agree with the analytic MTBF for t goes to infinity, or at least lie above
the lower bound for r > 0, if the KLMC algorithm is correct.
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Figure A.5: MTBF for complex system

A.4 The Monte Carlo method to availability of systems

The availability of systems with independent components, proposed from Dubi (2000)
can be obtained by normalized system function. It is desired to have a general solution
by which, for any non-normalized S(

−→
B ), a general solution can be obtained. For large

systems, the derivation of normalized system function can become very difficult, and a
non-normalized system function is relatively easy to obtained.

A general algorithm is obtained based on a non-normalized system function, with the
following consideration: the sate space contains 2n different state vectors of the form
−→
B j = (bj1, b

j
2, . . . , b

j
n) with j = 1, . . . , 2n ; bi can take the values 1 and 0 and pi = Pr[bi = 1].

Denoting

βi =

if bi=1

if bi=0

the probability that the state vector is
−→
B = (b1, b2, . . . , bn) at time t (since pi may be

time dependent), is given by

Pr(
−→
B, t) =

n∏
i=1

βi (A.4)

Let φs denote the set of state vectors {
−→
B} for which the system is operational, i.e.

φs = {
−→
B : S(

−→
B ) > 0}. The complementary of φs,φf , is defined as φf = {

−→
B : S(

−→
B ) = 0}.

Since the state vectors are mutually exclusive, the probability of the event φf is the sum of
the probabilities of the state vectors included in it. Thus, the unavailability can be express
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in the form:

U(t) = 1−A(t) = Pr

[−→
B, (t) = 0

]
= Pr[Γf ] =

2n∑
j=1
−→
B i∈Γf

Pr(
−→
B, t) =

2n∑
j=1

S(
−→
B i)=0

(
n∏
i=1

βji (t)

)

(A.5)

Equation (A.5) lead us to a very simple algorithm for the calculation of the unavail-
ability, namely:

1. Scan through all 2n state vectors.

1.1 For each state vector
−→
B j ,check if S(

−→
B j) = 0.

1.2 If condition 1.1 is fulfilled, calculate the state probability according to expression
(A.4) and add it to the unavailability, otherwise proceed to the next state vector.

This procedure is realized in the program Matlab. The algorithm requires a scan over
all 2n vector states. Table A.3 shows the results of calculations for a serial system with n
components, where n varies from 15 to 21. The availability of each component is pi = p =

0.998, i=1,...,n. Indeed, this is a trivial case. This could be calculated as U = 1− pn, but
the algorithm is intended for any system function. The number of different state vectors,
and therefore the calculation time, depended only upon n (the dimension of the problem),
and is independent of the particular system function used.

Number of Unavailability Number of
components vector states

15 0.029583 32768
16 0.031523 65536
17 0.03346 131072
18 0.03539 262144
19 0.03732 524288
20 0.03924 1048576
21 0.04116 2097152

Table A.3: Calculation of the unavailability

A.4.1 Solution by Monte Carlo

As stated by Dubi (2000) the phase space is defined by the vectors
−→
B j = (bj1, b

j
2, . . . , b

j
n).

Define the estimator as the random variable:
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η(
−→
B j) =

1, S(
−→
B j) = 0

0, otherwise.

The mean value of η(
−→
B j) is given b

E(η) =
2n∑
j=1

Pr(
−→
B j , t)η(

−→
B j) =

2n∑
j=1

S(
−→
B j)=0

Pr(
−→
B, t) = U(t). (A.6)

Thus η(
−→
B j) is an unbiased estimator of U(t). To sample a state vector, discrete sam-

pling is used. For i=1,...,n, a random number ξi is compared to pi. If ξi ≤ pi(t), thenbi = 0.
The estimation of U(t) using N histories takes the form:

1.Use N histories, J=1,...,N.

1.1 In each history sample a state vector
−→
B j .

1.2 If S(
−→
B j) = 0) set η(

−→
B j) = 1, otherwise set η(

−→
B j) = 0.

2.Upon completion of N histories, the estimate of the unavailability is

U =
1

N

N∑
j=1

η(
−→
B j) (A.7)

with the PRSD given by

ξ = 100×
√

1− U
N × U

(A.8)

In table A.4 results for the same problem as that describes in table A.3 are displayed for
system with up to 300 components. In this particular problem the unavailability increases
with the number of components, therefore the Percentage Relative Standard Deviation -
PRSD, decrease.

A.4.2 Variance reduction for the availability

The reason for the high variance systems, is because the event of interest is rarely sampled
in this case a state vector for which the system is failed. Variance reduction methods are
based on seeking a different set of probabilities for the occurrence of the events, the process
is also referred to as "biasing".

Consider expression (A.6) for the unavailability

E(η) =

2n∑
j=1

Pr(
−→
B j , t)η(

−→
B j)
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Number of Unavailability Exact result U PRSD (%)
components estimate U

5 0.00983 0.00996 3.13
15 0.0291 0.0295 1.82
30 0.0581 0.0582 1.27
40 0.0774 0.0769 1.1
50 0.0946 0.0952 0.98
70 0.1297 0.1307 0.82
90 0.1655 0.1648 0.71
100 0.1821 0.1814 0.67
300 0.3293 0.3229 0.45

Table A.4: Results of Monte Carlo calculations on a serial system

Let K denote the number of zeros in the vector
−→
B , i.e. K is the number of failed

components. Let Λk be the subset of all state vectors with exactly k failed components.
The number of state vectors in Λk is (kn). The averaging of expression (A.6) can be written
as

E(η) =

2n∑
j=1

η(
−→
B j)Pr(

−→
B j , t) =

n∑
k=0

∑
−→
B∈Λk

η(
−→
B j)Pr(

−→
B j , t) (A.9)

The second moment, S2(η) = E(η), because η(
−→
B ) is a binomial estimator. Biasing is

applied by changing the state probabilities using a new set of probabilities, P ∗r (
−→
B j , t),

instead of Pr(
−→
B j , t). To keep the estimator (the first moment) unchanged (unbiased), the

expression is written as

E(η) =
n∑
k=0

∑
−→
B∈Λk

(
η(
−→
B j)

Pr(
−→
B j , t)

P ∗r (
−→
B j , t)

)
P ∗r (
−→
B j , t) =

n∑
k=0

∑
−→
B∈Λk

(η(
−→
B j)W (

−→
B j))P

∗
r (
−→
B j , t) =

=

n∑
k=0

∑
−→
B∈Λk

(η∗(
−→
B j)P

∗
r (
−→
B j , t)) (A.10)

This can be compared to the multiplication and division by a new PDF done for
integrals estimations.

W (
−→
B j , t) =

Pr(
−→
B j , t)

P ∗r (
−→
B j , t)

(A.11)

is called a weight. In the above process, the analogue probabilities are replaced by the
biased probabilities. To maintain the estimator unbiased the analogue estimator η(

−→
B j) is

multiplied by a weight W (
−→
B j) yielding a new estimator η∗(

−→
B j). While maintaining the

first moment unchanged, it is desired to change the second moment so that it is smaller
then analogue second moment, leading to a reduction of the variance. The second moment
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takes the form

S∗2(η) =
n∑
k=0

∑
−→
B∈Λk

(
{η(
−→
B j)

Pr(
−→
B j , t)

P ∗r (
−→
B j , t)

)2

P ∗r (
−→
B j , t) =

n∑
k=0

∑
−→
B∈Λk

(η(
−→
B j)

(
Pr(
−→
B j , t)

P ∗r (
−→
B j , t)

)
Pr(
−→
B j , t)

(A.12)
Optimum values for the biased probability set can be obtained using Lagrange multipliers
similar to the method used for integration with piecewise constant distributions. Taking
the derivative of the second moment with the constraint of the normalization of the biased
probabilities yields

S∗2(η)

dP ∗r (
−→
B j , t)

=
d

dP ∗r (
−→
B j , t)


2∑
j=1

nη(
−→
B j)

(
P 2
r (
−→
B j , t)

P ∗r (
−→
B j , t)

)
+ λ

 2n∑
j=1

P ∗r (
−→
B j , t)− 1

 = 0

(A.13)
yielding

−η(
−→
B j)

(
P 2
r (
−→
B j , t)

P ∗r (
−→
B j , t)

)
+ λ = 0 or P ∗r (

−→
B j , t) =

√
η(
−→
B j)Pr(

−→
B j , t)

λ
(A.14)

Upon substitution to the normalization condition, and using the fact that η(
−→
B j) is a

binomial estimator, one obtain the optimal probabilities in the form

P ∗r (
−→
B k)opt =

η(
−→
B k)Pr(

−→
B k, t∑2n

j=1 η(
−→
B j)Pr(

−→
B j , t)

(A.15)

Optimal biasing is obtained when the probabilities are proportional to the true impor-
tance for each point in the space.

Substituting the optimal probabilities back in (A.12) have the same effect as in the
case of optimal biasing of integrals.

To apply biasing and improve the efficiency (FOM) of the calculation, some approxi-
mation assumptions must be used.

A.4.3 Single parameter biasing

Assuming that the components have identical availabilities, namely pi(t) = p ∀ i = 1, ..., n

the probability of any state
−→
B ∈ Λk is pk = (1 − p)kpn−k. The probability depends only

upon the number of failed components in the state. Expression (A.11) then takes the form

E(η) =

n∑
k=0

(1− p)kpn−k
 ∑
−→
B∈Λk

η(
−→
B j)

 =

n∑
k=0

(1− p)kpn−kAk (A.16)
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where
Ak =

∑
−→
B∈Λk

η(
−→
B j)

is the number of states in Λk which results in a failed system. Let p∗ = with α ≤ 1.
Reducing the availability of each component will increase the probability of subsets Λk of
higher K to appear, thereby increasing the probability of sampling a failed state vector
with the above formulation P ∗r (

−→
B ) = (1− p)kp∗(n−k).

Substituting in (A.10) and (A.12) yields:

E(η) =
n∑
k=0

(1− p)kpn−k
 ∑
−→
B∈Λk

(1− p)kp(n−k)

(1− p∗)kp∗(n−k)
η(
−→
B j

 (A.17)

and

S2∗(η) =
∑n

k=0

∑
−→
B∈Λk

η(
−→
B j

(
(1− p)kp(n−k)

(1− p∗)kp∗(n−k)

)
(1− p)kp(n−k) =

=
n∑
k=0

(1− p)2kp(n−k)

(1− αp)kα(n−k)
Λk (A.18)

To realize this biasing technique, sampling of components states is done with a prob-
ability p∗ = αp. The estimator η(

−→
B j) is multiplied, for each component, by (1-p)/(1-p*)

if the state is failed, or by p/p* if the state is not failed. The accumulated weight will
become

W (
−→
B j) =

(1− p)kp(n−k)

(1− p∗)kp∗(n−k)
(A.19)

in accordance with equation (A.17). By estimating Λk the second moment can be
calculated as function of α, and an optimal value of α can be estimated. For the serial
case discussed above, A0 = 0 and for k > 0 Ak = (nk). Since all vector states with at least
one failed component are failed states, the second moment takes the form

S∗2 =
n∑
k=1

(nk)
(1− p)2kp(n−k)

(1− αp)kα(n−k)
=

(
α− 2αp+ p

(1− αp)α

)n
−
( p
α

)n
(A.20)

P Unavail α Optimal S∗2(η) biased σ0 unbiased σ∗0 Be =

U value 2nd moment
√
U(1− U) √

S∗2(η)− U2 σ2
0τ�σ∗20 τ

0.9 0.40951 0.87 0.2884 0.4917 0.3475 1.99
0.99 0.04901 0.81 0.005637 0.2158 0.05687 13.7
0.999 0.00499 0.8 6.055E-05 0.0704 0.00597 139
0.9999 0.0004999 0.8 6.098E-07 0.0223 0.00059 1387
0.99999 4,999E-0.5 0.8 6.10E-09 0.0070 6,002E-05 13683

Table A.5: Expected benefit at optimal single parameter biasing
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The optimal results for the five components serial case with p=0.9, 0.99, 0.999, 0.9999
and 0.99999 are summarized in table A.5. The benefit ratio βe is defined as the ratio of
the FOMs (Figure of Merits) of the biased and unbiased (analog) cases. It indicates the
time ratio of the two methods in achieving any given PRSD.
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B.1 Figures from Weibull distribution
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Figure B.1: Simulation right type I, Weibull (β), C = 10%, n = 50

0 2 4 6 8 10 12

0
1

2
3

4

x

pd
f −

 f(
x)

 

Weibull Theoric
Estimation Normal data
Time censor

β0.5

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

pd
f −

 f(
x)

 

Weibull Theoric
Estimation Normal data
Time censor

β1

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

x

pd
f −

 f(
x)

 

Weibull Theoric
Estimation Normal data
Time censor

β1.5

0 1 2 3

0.
0

0.
2

0.
4

0.
6

0.
8

x

pd
f −

 f(
x)

 

Weibull Theoric
Estimation Normal data
Time censor

β2

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

x

pd
f −

 f(
x)

 

Weibull Theoric
Estimation Normal data
Time censor

β3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
5

1.
0

1.
5

x

pd
f −

 f(
x)

 

Weibull Theoric
Estimation Normal data
Time censor

β5

Figure B.2: Simulation right type I, Weibull(β), C = 10%, n = 1000
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B.2 Figures from Gamma distribution
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Figure B.3: Simulation right type I, Gamma (α), C = 20%, n = 50
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Figure B.4: Simulation right type I, Gamma (α), C = 20%, n = 1000
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B.3 Figures from Log-normal distribution
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Figure B.5: Simulation right type I, Log-Normal (σ), C = 30%, n = 50
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Figure B.6: Simulation right type I, Log-Normal (σ), C = 30%, n = 1000
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B.4 Figures from Exponential distribution
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Figure B.7: Simulation right type I, Exponential (λ), C = 20%, n = 50
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Figure B.8: Simulation right type I, Exponential (λ), C = 20%, n = 1000
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B.5 Figures from Normal distribution
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Figure B.9: Simulation right type I, Normal (σ), C = 20%, n = 50
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Figure B.10: Simulation right type I, Normal (σ), C = 20%, n = 1000
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C.1 Weibull distribution

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

β0.5 0.97 0 0 0.98 0.96 0.96 0.91 0.92 0.97 0.96 0.95 0.61 0.5 0.95 0.96 0.95 0.07 0.02 0.97 0.95
β1 0.97 0 0 0.98 0.96 0.95 0.93 0.92 0.95 0.95 0.95 0.6 0.52 0.94 0.94 0.95 0.1 0.02 0.96 0.95

β1.5 0.96 0 0 0.98 0.95 0.96 0.92 0.93 0.96 0.95 0.95 0.62 0.52 0.96 0.94 0.94 0.09 0 0.95 0.95
β2 0.97 0 0 0.98 0.94 0.95 0.93 0.92 0.96 0.95 0.96 0.63 0.51 0.96 0.96 0.96 0.09 0.02 0.95 0.95

β3 0.97 0 0 0.98 0.95 0.95 0.93 0.92 0.96 0.96 0.96 0.63 0.54 0.96 0.96 0.95 0.1 0.01 0.96 0.95
β5 0.96 0 0 0.96 0.93 0.94 0.92 0.91 0.95 0.94 0.95 0.63 0.54 0.95 0.94 0.96 0.09 0.02 0.96 0.95

Table C.1: Test RNG, fixed right type I, Weibull (β,C%), α = 0.05, η = 1, n = 100

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

β0.5 0.93 0 0 0.95 0.89 0.91 0.88 0.87 0.9 0.9 0.91 0.49 0.39 0.91 0.9 0.9 0.05 0 0.89 0.88
β1 0.94 0 0 0.96 0.91 0.9 0.87 0.87 0.89 0.89 0.92 0.5 0.39 0.9 0.9 0.9 0.04 0.01 0.91 0.89

β1.5 0.95 0 0 0.96 0.92 0.89 0.85 0.83 0.91 0.91 0.92 0.48 0.39 0.91 0.88 0.92 0.03 0.01 0.92 0.91
β2 0.93 0 0 0.94 0.89 0.9 0.87 0.86 0.92 0.9 0.91 0.5 0.39 0.91 0.9 0.92 0.05 0.01 0.88 0.88

β3 0.93 0 0 0.95 0.91 0.92 0.86 0.84 0.9 0.91 0.91 0.53 0.42 0.92 0.9 0.9 0.04 0 0.91 0.92
β5 0.95 0 0 0.95 0.9 0.91 0.84 0.86 0.9 0.9 0.9 0.49 0.38 0.9 0.91 0.91 0.05 0.01 0.92 0.9

Table C.2: Test RNG, fixed right type I, Weibull (β,C%), α = 0.01, η = 1, n = 100

C5% C10% C20% C30%

N Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

50 1.9 1.4 0.4 1.9 1.8 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.8 1.7 1.9 1.9
100 0.95 0.42 0.05 0.97 0.93 0.94 0.97 0.94 0.99 0.98 0.95 0.94 0.88 0.97 0.97 0.96 0.88 0.66 0.98 0.92

500 0.2 0 0 0.2 0.19 0.19 0.18 0.19 0.2 0.2 0.2 0.17 0.15 0.19 0.19 0.18 0.08 0.03 0.18 0.19
1000 0.1 0 0 0.1 0.1 0.1 0.09 0.09 0.1 0.09 0.1 0.06 0.06 0.1 0.1 0.1 0.01 0 0.1 0.1

5000 0.02 0 0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0 0 0.02 0.02 0.02 0 0 0.02 0.02
10000 0.01 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0 0 0.01 0.01

Table C.3: Test RNG, fixed right type I, Weibull (n,C%), α = 0.05, η = 1, β = 1
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C.2 Gamma distribution

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

α0.5 0.98 0 0 0.98 0.95 0.96 0.92 0.93 0.95 0.95 0.96 0.63 0.54 0.95 0.95 0.95 0.08 0.01 0.95 0.94
α1 0.97 0 0 0.97 0.94 0.96 0.92 0.92 0.96 0.95 0.94 0.62 0.52 0.96 0.96 0.94 0.09 0.02 0.95 0.95

α1.5 0.97 0 0 0.98 0.95 0.95 0.93 0.91 0.96 0.96 0.95 0.64 0.55 0.94 0.96 0.95 0.08 0.01 0.94 0.95
α2 0.98 0 0 0.98 0.95 0.95 0.92 0.92 0.95 0.96 0.95 0.61 0.54 0.95 0.95 0.96 0.11 0.02 0.96 0.94

α3 0.97 0 0 0.98 0.95 0.96 0.92 0.93 0.96 0.95 0.96 0.63 0.48 0.95 0.96 0.96 0.08 0.01 0.96 0.96
α5 0.97 0 0 0.97 0.94 0.95 0.92 0.94 0.94 0.96 0.96 0.63 0.52 0.95 0.96 0.96 0.09 0.01 0.96 0.95

Table C.4: Test RNG, fixed right type I, Gamma (α,C%), α = 0.05, λ = 10, n = 100

C5% C10% C20% C30%

α0.10 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

α0.5 0.93 0 0 0.95 0.91 0.9 0.85 0.86 0.93 0.9 0.89 0.52 0.41 0.9 0.91 0.92 0.06 0.01 0.92 0.91
α1 0.94 0 0 0.96 0.89 0.9 0.86 0.85 0.89 0.88 0.91 0.54 0.4 0.9 0.9 0.91 0.05 0.01 0.91 0.91

α1.5 0.94 0 0 0.96 0.9 0.9 0.87 0.88 0.9 0.9 0.9 0.49 0.42 0.91 0.91 0.92 0.04 0.01 0.92 0.89
α2 0.93 0 0 0.95 0.9 0.9 0.86 0.86 0.91 0.9 0.89 0.51 0.42 0.92 0.91 0.91 0.05 0 0.92 0.89

α3 0.94 0 0 0.94 0.9 0.9 0.87 0.86 0.93 0.91 0.9 0.49 0.4 0.91 0.91 0.9 0.06 0.01 0.91 0.9
α5 0.93 0 0 0.95 0.89 0.9 0.88 0.85 0.9 0.9 0.9 0.5 0.43 0.89 0.9 0.91 0.06 0 0.89 0.88

Table C.5: Test RNG, fixed right type I, Gamma (α,C%), α = 0.01, λ = 10, n = 100

C5% C10% C20% C30%

N Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

50 2 1.2 0.62 2 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 2 1.9 1.9 1.7 1.6 1.9 1.9
100 0.97 0.39 0.04 1 0.96 0.97 0.93 0.91 0.98 0.95 0.96 0.96 0.89 1 0.99 0.94 0.84 0.77 0.96 0.94

500 0.18 0 0 0.2 0.19 0.19 0.19 0.19 0.18 0.19 0.18 0.15 0.15 0.18 0.19 0.19 0.08 0.03 0.19 0.19
1000 0.1 0 0 0.1 0.1 0.1 0.09 0.09 0.1 0.1 0.1 0.05 0.06 0.1 0.09 0.1 0.01 0 0.09 0.09

5000 0.02 0 0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0 0 0.02 0.02 0.02 0 0 0.02 0.02
10000 0.01 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0 0 0.01 0.01

Table C.6: Test RNG, fixed right type I, Gamma (n,C%), αl = 0.05, λ = 10, α = 1
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C.3 Normal distribution

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

σ0.5 0 0 0 0.98 0.94 0 0.92 0.92 0.95 0.94 0 0.62 0.55 0.96 0.96 0 0.09 0.02 0.94 0.94
σ1 0 0 0 0.98 0.94 0 0.93 0.92 0.96 0.95 0 0.66 0.55 0.97 0.96 0 0.08 0.01 0.97 0.95

σ1.5 0 0 0 0.97 0.94 0 0.92 0.92 0.95 0.94 0 0.63 0.5 0.95 0.96 0 0.09 0.02 0.95 0.96
σ2 0 0 0 0.97 0.95 0 0.93 0.93 0.94 0.94 0 0.64 0.49 0.94 0.95 0 0.1 0.01 0.94 0.95

σ3 0 0 0 0.97 0.95 0 0.94 0.92 0.96 0.96 0 0.61 0.51 0.95 0.95 0 0.08 0.02 0.95 0.96
σ5 0 0 0 0.98 0.94 0 0.94 0.93 0.96 0.94 0 0.65 0.54 0.96 0.95 0 0.1 0.01 0.96 0.93

Table C.7: Test RNG, fixed right type I, Normal (σ,C%), α = 0.05, µ = 1, n = 100

C5% C10% C20% C30%

α0.10 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

σ0.5 0 0 0 0.96 0.9 0 0.86 0.87 0.9 0.9 0 0.52 0.39 0.9 0.91 0 0.05 0.01 0.92 0.92
σ1 0 0 0 0.94 0.9 0 0.86 0.86 0.91 0.89 0 0.51 0.4 0.9 0.9 0 0.04 0.01 0.91 0.91

σ1.5 0 0 0 0.94 0.91 0 0.86 0.86 0.92 0.9 0 0.49 0.39 0.92 0.89 0 0.05 0 0.9 0.9
σ2 0 0 0 0.95 0.91 0 0.87 0.85 0.9 0.9 0 0.48 0.42 0.91 0.9 0 0.05 0.01 0.9 0.9

σ3 0 0 0 0.96 0.91 0 0.86 0.87 0.91 0.9 0 0.5 0.41 0.92 0.9 0 0.05 0 0.91 0.9
σ5 0 0 0 0.97 0.91 0 0.87 0.86 0.89 0.9 0 0.49 0.4 0.91 0.91 0 0.04 0.01 0.91 0.9

Table C.8: Test RNG, fixed right type I, Normal (σ,C%), α = 0.01, µ = 1, n = 100

C5% C10% C20% C30%

N Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

50 1 1.3 0.58 1.9 1.9 0.96 1.9 1.9 1.9 1.9 0.98 1.9 1.9 2 1.9 1.1 1.9 1.6 2 2
100 0.19 0.43 0.07 1 0.96 0.21 0.93 0.96 0.99 0.96 0.14 0.96 0.92 0.94 0.98 0.18 0.8 0.75 0.97 0.94

500 0 0 0 0.2 0.2 0 0.19 0.18 0.19 0.2 0 0.15 0.15 0.19 0.19 0 0.08 0.03 0.18 0.18
1000 0 0 0 0.1 0.1 0 0.09 0.09 0.09 0.09 0 0.06 0.06 0.1 0.1 0 0.01 0 0.09 0.09

5000 0 0 0 0.02 0.02 0 0.02 0.02 0.02 0.02 0 0 0 0.02 0.02 0 0 0 0.02 0.02
10000 0 0 0 0.01 0.01 0 0.01 0.01 0.01 0.01 0 0 0 0.01 0.01 0 0 0 0.01 0.01

Table C.9: Test RNG, fixed right type I, Normal (n,C%), α = 0.05, µ = 1, σ = 1
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C.4 Log-normal distribution

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

σ0.3 0.96 0 0 0.98 0.94 0.94 0.92 0.93 0.94 0.94 0.96 0.6 0.54 0.94 0.94 0.95 0.09 0.02 0.95 0.95
σ0.5 0.98 0 0 0.97 0.94 0.95 0.93 0.93 0.96 0.95 0.94 0.62 0.52 0.96 0.95 0.96 0.09 0.02 0.94 0.94

σ0.7 0.98 0 0 0.97 0.95 0.95 0.92 0.92 0.94 0.93 0.95 0.64 0.55 0.96 0.94 0.96 0.09 0.02 0.95 0.95
σ1 0.96 0 0 0.98 0.96 0.96 0.93 0.92 0.95 0.95 0.97 0.63 0.5 0.96 0.95 0.96 0.1 0.02 0.96 0.95

σ1.3 0.96 0 0 0.98 0.95 0.95 0.93 0.92 0.95 0.95 0.95 0.62 0.52 0.94 0.94 0.95 0.09 0.02 0.94 0.94
σ1.7 0.97 0 0 0.98 0.96 0.96 0.93 0.93 0.96 0.96 0.96 0.63 0.52 0.96 0.95 0.95 0.1 0.02 0.95 0.94

Table C.10: Test RNG, fixed right type I, Log-Nor. (σ,C%), α = 0.05, µ = 10, n = 100

C5% C10% C20% C30%

N Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

50 1.9 1.3 0.44 2 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.9 1.8 2 1.8 1.6 2 1.9
100 1 0.31 0.07 0.97 0.95 0.93 0.96 0.96 0.99 0.98 0.97 0.92 0.9 0.97 0.98 0.94 0.87 0.72 0.94 0.95

500 0.2 0 0 0.2 0.19 0.19 0.18 0.19 0.18 0.18 0.18 0.15 0.15 0.2 0.19 0.19 0.08 0.04 0.2 0.19
1000 0.1 0 0 0.1 0.1 0.1 0.09 0.09 0.1 0.1 0.09 0.07 0.05 0.1 0.1 0.1 0.01 0 0.1 0.1

5000 0.02 0 0 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0 0 0.02 0.02 0.02 0 0 0.02 0.02
10000 0.01 0 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0 0 0.01 0.01 0.01 0 0 0.01 0.01

Table C.11: Test RNG, fixed right type I, Log-Nor. (σ,C%), α = 0.01, µ = 10, n = 100

C5% C10% C20% C30%

α0.10 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

σ0.3 0.92 0 0 0.94 0.89 0.9 0.87 0.85 0.91 0.88 0.9 0.51 0.41 0.9 0.89 0.9 0.04 0 0.9 0.89
σ0.5 0.93 0 0 0.96 0.91 0.9 0.86 0.85 0.9 0.91 0.9 0.5 0.38 0.92 0.91 0.91 0.05 0.01 0.9 0.9

σ0.7 0.94 0 0 0.96 0.9 0.9 0.87 0.87 0.91 0.92 0.92 0.5 0.4 0.91 0.88 0.92 0.05 0.01 0.91 0.89
σ1 0.94 0 0 0.95 0.9 0.91 0.86 0.88 0.89 0.89 0.88 0.5 0.42 0.92 0.89 0.92 0.05 0.01 0.91 0.9

σ1.3 0.95 0 0 0.95 0.89 0.91 0.86 0.87 0.91 0.9 0.92 0.52 0.4 0.9 0.89 0.92 0.05 0.01 0.91 0.91
σ1.7 0.94 0 0 0.96 0.91 0.91 0.87 0.86 0.92 0.91 0.91 0.53 0.39 0.92 0.9 0.9 0.04 0.01 0.92 0.9

Table C.12: Test RNG, fixed right type I, Log-Nor. (n,C%), α = 0.05, µ = 10, σ = 10
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C.5 Exponential distribution

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

λ0.5 0 0 0 0.98 0.96 0 0.91 0.92 0.96 0.95 0 0.62 0.52 0.96 0.96 0 0.09 0.01 0.95 0.95
λ1 0 0 0 0.98 0.95 0 0.92 0.93 0.95 0.95 0 0.64 0.55 0.96 0.96 0 0.08 0.01 0.96 0.95

λ1.5 0 0 0 0.98 0.94 0 0.93 0.91 0.95 0.95 0 0.6 0.52 0.94 0.95 0 0.09 0.01 0.96 0.96
λ2 0 0 0 0.98 0.95 0 0.93 0.93 0.94 0.95 0 0.65 0.5 0.94 0.96 0 0.08 0.01 0.94 0.95

λ3 0 0 0 0.98 0.94 0 0.93 0.92 0.95 0.95 0 0.64 0.54 0.96 0.94 0 0.09 0.02 0.95 0.94
λ5 0 0 0 0.97 0.94 0 0.93 0.94 0.94 0.95 0 0.65 0.5 0.96 0.95 0 0.1 0.02 0.96 0.97

Table C.13: Test RNG, fixed right type I, Exponential (λ,C%), α = 0.05, n = 100

C5% C10% C20% C30%

α0.10 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

λ0.5 0 0 0 0.95 0.9 0 0.87 0.85 0.92 0.9 0 0.52 0.37 0.9 0.9 0 0.05 0.01 0.91 0.9
λ1 0 0 0 0.95 0.9 0 0.89 0.86 0.89 0.89 0 0.48 0.4 0.9 0.89 0 0.04 0.01 0.91 0.9

λ1.5 0 0 0 0.95 0.89 0 0.86 0.86 0.92 0.9 0 0.53 0.41 0.91 0.9 0 0.05 0 0.91 0.9
λ2 0 0 0 0.95 0.89 0 0.86 0.84 0.9 0.9 0 0.47 0.42 0.9 0.91 0 0.04 0 0.92 0.9

λ3 0 0 0 0.97 0.91 0 0.86 0.87 0.9 0.9 0 0.5 0.42 0.9 0.89 0 0.05 0.01 0.9 0.9
λ5 0 0 0 0.95 0.91 0 0.85 0.9 0.9 0.89 0 0.5 0.42 0.92 0.91 0 0.04 0.01 0.91 0.92

Table C.14: Test RNG, fixed right type I, Exponential (λ,C%), α = 0.01, n = 100

C5% C10% C20% C30%

N Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

50 0 1.3 0.52 2 1.9 1.9 1.9 1.9 1.9 1.9 0 1.9 1.9 1.9 1.9 0 1.8 1.7 2 1.9
100 0 0.35 0.03 0.98 0.94 0.95 0.96 0.94 0.98 0.97 0 0.95 0.93 0.97 0.9 0 0.8 0.74 0.95 0.95

500 0 0 0 0.2 0.19 0 0.19 0.19 0.19 0.19 0 0.15 0.15 0.19 0.19 0 0.08 0.04 0.19 0.19
1000 0 0 0 0.1 0.09 0 0.09 0.08 0.1 0.1 0 0.06 0.04 0.09 0.1 0 0.01 0 0.09 0.1

5000 0 0 0 0.02 0.02 0 0.02 0.02 0.02 0.02 0 0 0 0.02 0.02 0 0 0 0.02 0.02
10000 0 0 0 0.01 0.01 0 0.01 0.01 0.01 0.01 0 0 0 0.01 0.01 0 0 0 0.01 0.01

Table C.15: Test RNG, fixed right type I, Exponential (n,C%), α = 0.05, λ = 1
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C.6 Global results

C(5%) C(10%) C(20%) C(30%)

α0.05 Adm OK Adm Adm
Weibull α0.1 NOK Adm NOK NOK

α0.05 NOK OK NOK NOK
normal α0.1 NOK NOK NOK NOK

α0.05 Adm OK Adm Adm
lognormal α0.1 NOK Adm NOK NOK

α0.05 Adm OK Adm Adm
gamma α0.1 NOK Adm NOK NOK

α0.05 NOK OK NOK NOK
exponencial α0.1 NOK NOK NOK NOK

Table C.16: Global Results of Simulation Test - Right Fixed Type I - Shape Factor

C(5%) C(10%) C(20%) C(30%)

α0.05 NOK NOK NOK NOK
Weibull α0.1 NOK NOK NOK NOK

α0.05 NOK NOK NOK NOK
normal α0.1 NOK NOK NOK NOK

α0.05 NOK NOK NOK NOK
lognormal α0.1 NOK NOK NOK NOK

α0.05 NOK NOK NOK NOK
gamma α0.1 NOK NOK NOK NOK

α0.05 NOK NOK NOK NOK
exponencial α0.1 NOK NOK NOK NOK

Table C.17: Global Results of Simulation Test - Right Fixed Type I - Sample n
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C(5%) C(10%) C(20%) C(30%)

α0.05 11.15 12.58 12.3 11.98
Weibull α0.1 11.03 12.48 12.35 11.98

α0.05 10.88 12.08 11.92 11.63
normal α0.1 10.78 12.08 11.9 11.63

α0.05 10.93 12.25 12.05 11.75
lognormal α0.1 10.83 12.25 12.05 11.75

α0.05 10.85 12.12 11.95 11.67
gamma α0.1 10.82 12.13 11.95 11.67

α0.05 11.15 12.58 12.3 11.98
exponencial α0.1 11.03 12.48 12.35 11.98

Table C.18: Global table of time in simulation to different shape factors (minutes)

C(5%) C(10%) C(20%) C(30%)

α0.05 13.58 14.53 14.4 14.18
Weibull α0.1 13.57 14.65 14.5 14.28

α0.05 13.73 14.77 14.57 14.37
normal α0.1 13.68 14.68 14.55 14.37

α0.05 13.43 14.42 14.23 14
lognormal α0.1 13.28 14.37 14.18 14.03

α0.05 13.5 14.47 14.35 14.13
gamma α0.1 13.45 14.48 14.32 14.12

α0.05 13.73 14.71 14.55 14.41
exponencial α0.1 13.64 14.72 14.56 0.01

Table C.19: Global table of time in simulation to different number of samples (minutes)
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D.1 Weibull distribution

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

β0.5 1 0.1 0 0.09 0 1 0.96 0.85 0.96 0.94 1 0.94 0.17 0.94 0.9 1 0.83 0 0.89 0.56
β1 1 0.08 0 0.08 0 1 0.95 0.87 0.95 0.94 1 0.95 0.16 0.94 0.9 1 0.83 0 0.89 0.56

β1.5 1 0.07 0 0.09 0 1 0.95 0.86 0.95 0.95 1 0.95 0.17 0.95 0.89 1 0.85 0 0.88 0.56
β2 1 0.09 0 0.08 0 1 0.95 0.86 0.95 0.96 1 0.95 0.16 0.94 0.88 1 0.83 0 0.89 0.54

β3 1 0.08 0 0.08 0 1 0.96 0.86 0.96 0.96 1 0.93 0.16 0.96 0.89 1 0.83 0 0.9 0.58
β5 1 0.07 0 0.08 0 1 0.96 0.86 0.96 0.95 1 0.94 0.18 0.95 0.9 1 0.85 0 0.88 0.56

Table D.1: Test RNG, right type II, Weibull (β,C%), α = 0.05, η = 1, n = 100

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

β0.5 1 0.04 0 0.06 0 1 0.88 0.78 0.9 0.9 1 0.88 0.11 0.89 0.8 1 0.73 0 0.84 0.47
β1 1 0.04 0 0.05 0 1 0.91 0.76 0.9 0.88 1 0.89 0.1 0.9 0.82 1 0.76 0 0.84 0.45

β1.5 1 0.04 0 0.05 0 1 0.89 0.78 0.92 0.9 1 0.89 0.1 0.91 0.81 1 0.76 0 0.82 0.44
β2 1 0.03 0 0.04 0 1 0.91 0.8 0.93 0.92 1 0.88 0.1 0.9 0.83 1 0.77 0 0.8 0.42

β3 1 0.03 0 0.05 0 1 0.89 0.78 0.9 0.9 1 0.91 0.1 0.91 0.85 1 0.76 0 0.82 0.45
β5 1 0.04 0 0.05 0 1 0.9 0.76 0.89 0.89 1 0.9 0.11 0.9 0.82 1 0.76 0 0.8 0.43

Table D.2: Test RNG, right type II, Weibull (β,C%), α = 0.01, η = 1, n = 100

C5% C10% C20% C30%

N Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

50 2 1.9 1.9 2 1.9 2 1.9 1.9 2 1.9 2 1.9 1.9 1.9 1.8 2 1.9 1.9 1.9 1.9
100 1 0.91 0.94 0.96 0.93 1 0.98 0.98 0.98 0.96 1 0.92 0.93 0.96 0.95 1 0.88 0.93 0.93 0.91

500 0.2 0.19 0.19 0.19 0.19 0.2 0.2 0.19 0.19 0.2 0.2 0.19 0.19 0.19 0.19 0.2 0.19 0.19 0.19 0.19
1000 0.1 0.09 0.1 0.09 0.09 0.1 0.09 0.09 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.09 0.1 0.09 0.09

5000 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
10000 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Table D.3: Test RNG, right type II, Weibull (n,C%), α = 0.05, η = 1, β = 1
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D.2 Gamma distribution

C5% C10% C20% C30%

α0.05 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

α0.5 1 0.08 0 0.08 0 1 0.94 0.88 0.95 0.95 1 0.95 0.18 0.96 0.9 1 0.83 0 0.88 0.57
α1 1 0.09 0 0.08 0 1 0.95 0.86 0.95 0.96 1 0.94 0.16 0.95 0.89 1 0.84 0 0.88 0.55

α1.5 1 0.07 0 0.09 0 1 0.95 0.87 0.95 0.95 1 0.93 0.18 0.94 0.9 1 0.84 0 0.9 0.55
α2 1 0.09 0 0.08 0 1 0.95 0.88 0.95 0.94 1 0.94 0.17 0.94 0.9 1 0.84 0 0.9 0.56

α3 1 0.08 0 0.08 0 1 0.94 0.87 0.95 0.95 1 0.94 0.18 0.95 0.89 1 0.85 0 0.9 0.54
α5 1 0.09 0 0.08 0 1 0.96 0.86 0.95 0.95 1 0.95 0.17 0.95 0.9 1 0.85 0 0.89 0.56

Table D.4: Test RNG, right type II, Gamma (α,C%), α = 0.05, λ = 1, n = 100

C5% C10% C20% C30%

α0.10 Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

α0.5 1 0.04 0 0.04 0 1 0.91 0.77 0.91 0.9 1 0.88 0.12 0.89 0.82 1 0.75 0 0.81 0.44
α1 1 0.04 0 0.05 0 1 0.92 0.76 0.91 0.9 1 0.89 0.09 0.9 0.82 1 0.78 0 0.78 0.4

α1.5 1 0.04 0 0.06 0 1 0.9 0.75 0.93 0.91 1 0.88 0.08 0.9 0.83 1 0.75 0 0.81 0.44
α2 1 0.04 0 0.05 0 1 0.89 0.77 0.91 0.9 1 0.88 0.1 0.89 0.8 1 0.75 0 0.82 0.44

α3 1 0.03 0 0.05 0 1 0.9 0.78 0.89 0.89 1 0.88 0.1 0.9 0.83 1 0.75 0 0.81 0.45
α5 1 0.03 0 0.06 0 1 0.92 0.75 0.9 0.89 1 0.88 0.1 0.89 0.83 1 0.74 0 0.8 0.45

Table D.5: Test RNG, right type II, Gamma (α,C%), α = 0.01, λ = 1, n = 100

C5% C10% C20% C30%

N Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks Ru Ra Tu Ba Ks

50 2 2 1.8 1.9 1.8 2 1.9 1.9 2 1.9 2 1.9 1.9 1.9 1.9 2 1.9 1.8 1.9 1.9
100 1 0.96 0.93 0.91 0.98 1 0.97 0.92 0.94 0.94 1 0.94 0.94 0.92 0.91 1 0.93 0.96 0.98 0.95

500 0.2 0.19 0.19 0.19 0.19 0.2 0.18 0.19 0.19 0.19 0.2 0.19 0.19 0.2 0.2 0.2 0.18 0.19 0.19 0.2
1000 0.1 0.09 0.09 0.09 0.1 0.1 0.1 0.09 0.1 0.1 0.1 0.09 0.1 0.09 0.09 0.1 0.09 0.09 0.09 0.1

5000 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
10000 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Table D.6: Test RNG, right type II, Gamma (n,C%), α = 0.05, λ = 1, α = 1
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D.3 Global results

The final result for the variation of distribution parameters is shown in the following table:

C(5%) C(10%) C(20%) C(30%)

α0.05 OK OK OK OK
weibull α0.1 OK OK OK OK

α0.05 OK OK OK OK
gamma α0.1 OK OK OK OK

Table D.7: Global Results of Simulation Test - Right Type II - Shape Factor

C(5%) C(10%) C(20%) C(30%)

α0.05 NOK NOK NOK NOK
weibull α0.1 NOK NOK NOK NOK

α0.05 NOK NOK NOK NOK
gamma α0.1 NOK NOK NOK NOK

Table D.8: Global Results of Simulation Test - Right Type II - Sample n

And in the study also possible to measure the simulation times, with a computer with
a processor Pentium 4, 8GB of ram.

C(5%) C(10%) C(20%) C(30%)

α0.05 0 0 0 0
weibull α0.1 0 0 0 0

α0.05 0.02 0.02 0.02 0.02
gamma α0.1 0.02 0.02 0.02 0.02

Table D.9: Global table of time in simulation to different shape factors (minutes)

C(5%) C(10%) C(20%) C(30%)

α0.05 0.38 1.07 0.85 0.68
weibull α0.1 0.38 1.07 0.87 0.68

α0.05 0.38 1.07 0.87 0.7
gamma α0.1 0.38 1.08 0.88 0.68

Table D.10: Global table of time in simulation to different number of samples (minutes)
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