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Abstract

Metadata provide useful information about any type of digital resource. Examples of metadata
are author and date of creation of a file. By extracting additional metadata from source code files,
through static analysis, one can collect additional information, besides the already existent, and
gather a better understanding of the resources and compare those resources with similar ones.

Static code analysis consists in examining code files without the need of executing them. This
type of analysis allows the creation of a representation of the code which can be used for obtaining
more metadata, in the form of software metrics (e.g. lines of code and code complexity). Software
metrics are the result of measurements performed over software.

The aim of this dissertation is to develop a metadata extraction solution for JavaScript appli-
cations, by leveraging the Node.js environment, and by statically analysing JavaScript code. This
analysis results in a group of software metrics that, in conjunction with other data such as libraries
in use and JavaScript constructions used, produce a valuable tool for the company that proposed
this dissertation and allow the comparison of files regarding their complexity/quality.

The solution is used to study the effect of obfuscation techniques upon the software metrics
and to reason about the general complexity of code which relies on a specific library.
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Resumo

Metadados são um tipo de dados que se encontram em qualquer tipo de recurso digital e que
fornecem informações pertinentes sobre estes, como data de criação e autor. Ao analisar estáti-
camente ficheiros de código, é possível extrair metadados adicionais, para além daqueles já exis-
tentes, possibilitando uma melhor compreensão sobre os recursos analisados e a comparação com
outros recursos da mesma espécie.

Análisar estaticamente um ficheiro de código consiste em examiná-lo sem ter que o executar.
Esta análise permite obter uma representação do código, a qual pode ser utilizada para obter mais
metdadados, na forma de métricas de software. Métricas de software são o resultado de medições
efetuadas sobre software, sendo exemplos o número de linhas de código de um ficheiro ou a sua
complexidade/qualidade.

O objetivo desta dissertação prende-se com a criação de uma solução de extração de metada-
dos de aplicações JavaScript, através da plataforma Node.js, e que analisa estáticamente código
JavaScript. Desta análise surgem um conjunto de métricas de software, que, em conjunto com
outros dados como bibliotecas em uso e construções de JavaScript utilizadas, permitem obter uma
ferramenta que traduz valor para a empresa proponente e comparar ficheiros quanto à sua com-
plexidade.

A solução é usada para estudar o efeito de técnicas de ofuscação sobre métricas de software e
analisar o impacto que uma biblioteca poderá ter na complexidade de determinado código.
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Chapter 1

Introduction

The following work presents the dissertation entitled RAVEN: A Node.js Static Metadata Extract-

ing Solution for JavaScript Applications. This dissertation was proposed by Jscrambler, S.A. 1, a

software company, based in Porto, specialized in the protection of web applications.

This chapter includes a contextualization of the work, where the subjects of metadata and

JavaScript programming are addressed. After the contextualization, the motivation and objectives

of the dissertation are presented, followed by a brief overview on how the dissertation is structured.

1.1 Context

Metadata is commonly described as “data which describes other data” [GR04] and serves several

purposes such as facilitating the search of resources, organizing file systems and providing digital

resource identification. The word metadata can carry different meanings: It can determine that an

information set is understandable by a machine or that it represents a description of a resource or

of a group of resources [GR04].

According to Guenther and Radebaugh [GR04], there are three distinct types of metadata:

descriptive, structural and administrative. The first type holds information about the resource like

name and author. The second indicates how a specific resource is structured. An example of this

type is the order of the pages that compose a document. The latter includes the rights of access to

a resource and preservation data. Preservation data encompasses information such as creation and

modification dates and the file extension.

Metadata resources are usually produced upon the resource creation and can be a part of the

resource itself or gathered separately. Their existence is key in ensuring the accessibility of a

resource remains intact [GR04].

Source code files, as any other type of digital material, contain metadata resources, which can

be extended through static analysis (i.e. by analysing the file contents without executing the code

1https://jscrambler.com
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[Wög05]). This type of analysis enables the construction of structures such as the Abstract Syntax

Tree (AST), which describes the composition of the code under analysis [Wil97]. Metadata can be

retrieved from this characterization of the code files and others (for instance, Control Flow Graphs

(CFG) [All70]) in the form of software metrics, which are measurements, calculated to evaluate

and provide an understanding of software [LC87]. Examples of commonly used software metrics

are lines of code (LOC) and cyclomatic complexity [McC76] [GCP12].

Although not directly related to metrics, information such as dependencies, libraries and the

ECMAScript standard (standardized specification of scripting languages, where JavaScript is in-

cluded [ecm]) in use are also relevant metadata resources within the scope of the dissertation work.

JavaScript is a high-level dynamic programming language that supports object-oriented (OO),

imperative and functional programming styles [Cro08]. It is one of the three core web program-

ming languages, alongside HTML and CSS [Fla11]. Since its beginning, JavaScript is used on the

client-side spectrum, where it is responsible by providing behaviour to web pages. It has since

then evolved to be used as a full stack programming language (i.e. to be used on the client-side

and server-side of web applications), mainly due to the node.js2 [nodd] server-side environment .

Within the scope of this dissertation, JavaScript presents an opportunity but also several chal-

lenges. An opportunity is presented because of JavaScript’s popularity. Since many organizations

are adopting JavaScript as their primary programming language [JI12], being proficient in coding

and understanding JavaScript can be a valuable asset.

On the other side, a challenge is presented due to the fact that the language has several quirks,

some of which are solely related to the way some features are implemented, or the lack of them,

and other which can pose a challenge when statically analysing JavaScript code [S+14] [MS13].

Also, since JavaScript is not, by nature, an OO programming language [Cro08], it restricts the set

of software metrics which can be retrieved. This is due to the fact that some metrics can only be

calculated when analysing fully-fledged OO programming languages. These OO metrics are re-

lated to features which only OO languages possess such as classes, polymorphism and inheritance

[CK94]. These challenges are further discussed on Sections 2.1 and 2.2 of the following chapter.

1.2 Motivation and Objectives

This dissertation serves two different purposes:

The first one is directly connected to the Jscrambler’s business needs. Jscrambler performs

services upon source code files, which can be submitted to the company’s servers either by using

their website or via an Application Programming Interface (API). By having a large quantity of

metadata present for each submission, it is possible to gather information such as what frameworks

are being used by the customers or what ECMAScript specification constructions are more widely

used (a more detailed explanation about this subject is given on Section 3.2.2). This information

2https://nodejs.org
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is a valuable asset as it can direct the Jscrambler’s future work. Knowing which libraries are more

popular or which ECMAScript standard is in use can direct efforts to adapt Jscrambler’s services

to the specific characteristics of the code, thus improving the quality of the service, for example.

Having this information collected automatically saves time and resources that would otherwise be

spent in surveying the customers or having someone manually reviewing the code.

The second one is related to the scientific scope of the dissertation. By studying and character-

izing software metrics around JavaScript, which translate complexity and/or quality, and analysing

different JavaScript code samples, it is possible to achieve two distinct objectives.

The first objective is to reason about how distinct, in terms of software metrics, two versions

of the same software/code are, where one is the original version and another is the result of per-

forming one of Jscrambler’s services upon the original. These services range from a series of

transformations made to the source code in order to obfuscate it, to anti-tampering measures and

code minification (removal of whitespaces and new line characters). The differences between both

version can lead to optimizations and further development of Jscrambler’s obfuscation algorithm.

The second objective is to study how similar JavaScript libraries impact the software metrics of

the code built upon them. By gathering data about projects built with different tools it is possible to

infer which libraries yield code more complex. Although the interests of many developers usually

favor the support, documentation and feature set of a library and over performance benefits and

metrics, interests usually reserved for academic research [GA13], being able to chose a library

which has a less impact on the code developed can present a benefit in terms of code organization,

readability and performance.

With this in mind, the following are the main research questions to be addressed by this dis-

sertation:

1. How do the retrieved software metrics behave when analysing code files in their original

state and with different levels of Jscrambler’s protection services? Can one identify the

same code sample before and after applying the service through the metrics?

2. Making use of Jscrambler’s dataset, when comparing the metadata of projects which use

similar frameworks or libraries, can one conclude that there is an inherent complexity asso-

ciated to the usage of a library by analysing the software metrics retrieved?

The main objective of this dissertation, besides addressing the previously mentioned ques-

tions, is the creation of a metadata extraction solution for JavaScript applications by leveraging

the node.js environment [nodd]. The metadata retrieved from the extraction process should be

anonymous, that is, there should not be any trace back to the original file from where it was ex-

tracted (business requirement). A high-level representation of the built solution is presented on

Figure 1.1.

3
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Figure 1.1: High-level representation of the Raven solution.

1.3 Structure of the Dissertation

This report consists of four additional chapters. Chapter 2 addresses the state of the art of the

topics that lie within the dissertation’s scope, those being static analysis and software metrics.

Chapter 3 presents an in depth perspective of the architecture, components and steps taken to build

the solution. Chapter 4 presents the detailed experimental results followed by the discussion and

conclusions gathered from them. The final chapter, Chapter 5, presents the concluding remarks of

the dissertation and future work perspectives.

4



Chapter 2

Literature Review

Considering the scope of this dissertation, the literature review addresses following topics: static

analysis and software metrics. Static analysis represents the mean of obtaining a representation of

code resources, which arises the possibility of extracting software metrics from them.

This chapter describes the state of the art in static analysis by introducing the topic, contextu-

alizing it in terms of JavaScript and its challenges [MS13] [JMT09] and presenting the methods

and evaluation authors applied to their static analysis tools. The chapter also presents the state

of the art in software metrics by describing the core metrics that translate code complexity and

quality while also addressing the state of JavaScript in regards to software metrics.

2.1 Static Analysis

Static analysis is the process of analyzing computer programs without executing them. For some-

one who develops software applications, static analysis allows for the optimization of code and is

responsible for enforcing code correctness. Static analysis is present in most integrated develop-

ment environments (IDE) [Wög05]. There are several methods available for statically analyzing

a program. According to Wogerer [Wög05], three of the most common are data flow analysis,

abstract interpretation and symbolic analysis.

Data flow analysis collects information about the flow of data across a specific program. This

analysis does not require a specification of the semantics in use as they are implicitly defined

in the algorithm. Data flow analysis divides the program into blocks of consecutive instructions

and constructs a control flow graph (CFG) [All70], which depicts the control flow of a program

across its basic blocks (blocks of sequential instructions). The analysis of the data flow allows the

detection of dead code (nodes in the CFG without an entry edge, which are not the start of the

program) and of duplicated computations (by verifying if some variable is defined in more than

one block) [Wög05]. Both of these use cases are examples of how data flow analysis allows for

the detection of errors in the source code.

5
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Figure 2.1: Example of a CFG of a Search function [Gol10].

Abstract interpretation relies on creating an abstract semantics which is a superset of the pro-

gram’s concrete semantics. By doing this, the interpretation ensures every state of the program

is represented by an interval of values, which requires a redefinition of boolean and arithmetic

expressions. Usually, abstract interpretation also demands for the creation of an abstract value

domain. An example of a domain is shown of Figure 2.2. Abstract interpretation facilitates the

detection of semantic errors, such as division by zero or variable overflow [Wög05].

Finally, symbolic analysis deduces mathematical expressions about the program’s expressions

and is used when the values of the program are not constant. Its main use involves program

optimization [Wög05].

2.1.1 Challenges of Analyzing JavaScript

Static analysis of JavaScript applications is no easy task since, like other scripting languages, it

has a weak, dynamic typing discipline, responsible for silent type conversions that resolves mis-

matches (i.e. converting between variable types, such as integer to boolean without any warning).

This is a powerful mechanism when developing applications since it grants a new level of freedom

in the code development process and for the inputs the developed application allows. Nonetheless,

it presents a challenge on the field of static analysis since the analyser may need to keep track of

the type of any object/value holds [JMT09] [KDK+14] [MLF13].

The tracking of the flow of data on JavaScript is also non-trivial since it supports objects, first-

class functions (passing functions as arguments to other functions) and native exceptions [JMT09].

6
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Figure 2.2: Abstract syntax of notJS, an intermediate representation that serves as the basis for the
abstract interpretation of Kashyap et al.’s work [KDK+14].

Jensen et al. [JMT09] present the following list of challenges when statically analyzing

JavaScript:

• JavaScript’s prototype objects are used to model inheritance since all the predefined opera-

tions are accessed through the prototype. It is then mandatory that the objects are modeled

precisely within the analysis because there are no class files which define the objects.

• Objects in JavaScript are mapped from strings to values and properties can be added, re-

moved and updated during execution. Also, the name of the properties can be dynamically

computed.

• When accessing a non-existing property of an object, the application may return the value

undefined. There is however a difference between a property having a value undefined or

the value being null.

• There are free value conversions between types, with little regulation. Some of the con-

versions can present a challenge since they’re not intuitive (for example, when converting

between boolean and numeric values, the boolean value before and after conversion can be

different).

7
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• JavaScript distinguishes primitive values from wrapped primitive values. Although these

types of values can appear to have the same behaviour, they can act differently under certain

circumstances.

• Object properties can contain attributes, like ReadOnly. These properties can not be changed

during program execution but must be taken into account if the analysis to be made is to be

sound and precise.

• Function creation and calling can be done with a variable number of parameters. Each

function receives an arguments parameter which behaves like an array but it is not one.

• Function objects can be constructors, methods or first-class functions. This versatility leads

to a different behaviour according to the type of function object.

• The eval function can interpret strings as pieces of code.

2.1.2 JavaScript Static Analysis

As previously mentioned, the main use of static analysis is to detect errors and optimize code.

Complying with this usage, although using different means, is Kashyap et al.’s [KDK+14] and

Jensen et al.’s [JMT09] work.

Jensen et al’s [JMT09] work was, to the best of our knowledge, the first to soundly analyze

JavaScript considering the previous described characteristics. Their analysis, entitled type analysis

for JavaScript (TAJS), is context sensitive, that is, it considers the function calling context when

analyzing the target of a function call and performs points-to analysis [BS09]. In simple terms,

points-to analysis allows the inference of object properties upon their access. The authors refer that

context sensitivity is a valuable feature as it presents a mechanism for dealing with JavaScript’s

dynamism [JMT09].

Jensen et al.’s [JMT09] analysis represents the JavaScript program as a flow graph. In this

graph, the first instruction of the global code of the program represents the program entry node.

The types of nodes the program contains are: operations for declaring and modifying a variable and

its properties, conditional statements, function calling and also throw and catch (for exceptions).

In regards to edges, the authors distinguish between ordinary edges, exception edges, function call

and return edges. The first type corresponds to intra-procedural control flow, the others correspond

to the programming constructions as stated by their names. All the nodes that may raise exceptions

contain an exception edge.

An abstract representation is created resorting to a lattice of abstract states (a lattice is a par-

tially ordered set, where every two elements have an unique upper bound and an unique lower

bound). There are lattices representative of every JavaScript native type, those being undefined,

null, boolean, numeric, string and the object properties (being strings, but needing a separation

from the primitive type). The abstraction level grows as object properties are modeled, then ab-

stract states (which are a partial map from object labels to abstract objects) along with an abstract

8
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stack, ending on the final form of the analysis lattice, that assigns a set of abstract states to each

node in the flow graph [JMT09].

The authors further developed their work by extending their analysis to include the document

object model (DOM) and the browser application programming interface (API). The reason behind

this extension is the fact that, in some web applications, the majority of the JavaScript code is

running on the client-side , where it is bound to events. Therefore, it is not only reasonable but

necessary to model the event system, which has dynamic properties, that include the registration

and removal of different events, the event capture and trigger mechanism and also the properties

that trigger the event. The modelling of the event system was done by creating flow graphs that

portrayed the way each event behaved. By doing this, the authors managed to maintain their

analysis objectives in the presence of a more dynamic environment [JMM11].

Not making use of flow graphs but also intending to soundly analyze JavaScript is Kashyap et

al’s tool, JavaScript Abstract Interpreter (JSAI) [KDK+14]. JSAI’s main objectives were formaliz-

ing a specification of the JavaScript semantics and to provide a customizable sensitivity setting on

their analysis by testing their semantics against commercial applications, for soundness purposes.

The design of JSAI has three main components: an intermediate representation (IR)(Figure

2.2) with its semantics, an abstract semantics for the specified IR (where the configurable sensi-

tivity lies) and the design of new abstract domains for the analysis. The authors rely on formal

specification to avoid JavaScript’s peculiar behaviours. Unlike other tools, JSAI’s intermediate

representation is based on an AST rather than on a CFG. Reasons for this decision were that some

of the core JavaScript distinctive features like high-order functions, implicit exceptions and type

conversions harden the task of creating and interpreting a CFG [KDK+14].

With the IR’s abstract syntax, the design of the formal concrete semantics was guided by

the desire of converting the semantics directly to a testable form, in order to test it versus real

JavaScript applications and also with the configurable sensitivity in mind. The semantics im-

plementation turns state definitions into data structures and transitions rules into functions that

transform a state into the next one [KDK+14].

Further work was developed within the scope of statically analysing JavaScript. This work

included the analysis of JavaScript in the presence of frameworks [MLF13] and extracting features

from web applications where JavaScript is included [MS13].

In summary, Madsen et al.’s analysis [BS09] works by combining points-to analysis and use

analysis . Points-to analysis allows for the gathering of an understanding of the flow from an actual

parameter to a formal parameters, the first type being the value a variable holds when entering a

function and the second one being the declaration (name) of the variable. An example of this

is when a function is called and one of the arguments is present in a statement other than the

input, flow can be inferred. Use analysis allows for the opposite to be done, as in that flowing

9
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obliges a compliance from formals to actuals, from the objects. This concludes in a more precise

determination of object properties, which strengthens the analysis. The analyzer constructs a call-

graph at runtime because of JavaScript’s high-order functions, which means the points-to analysis

and call graph relations are mutually dependent [MLF13].

Maras et al.’s [MS13] algorithm performs static and dynamic analysis to capture an event

trace of the application, in order to determine which features a combination of HTML, CSS and

JavaScript code translate (in this case, features mean actions performed, such as responding to a

click). The algorithm, in regards to JavaScript interpretation, proceeds as following: JavaScript

nodes are created and a JavaScript expression is evaluated (the program searches for nodes when

creating them, so no duplicate nodes are added). Depending on the control flow, control depen-

dencies are created. Tests are made to the expression to check if it is included in a loop/branch

statement, in a catch statement or if it is a function statement. Next, the events are handled. The

following checks involves verifying if the expression being considered is accessing identifiers or

reading an array object. Following this, the dynamic creation of code is analysed, checking for

JavaScript, CSS or HTML code creation from the JavaScript code. Lastly, the algorithm checks if

the expression is sending or responding a request.

In order to identify the features retrieved, Maras et al.’s [MS13] algorithm proceeds to a graph

marking process. In this process, there is a selector chosen and the dependency graph is trans-

versed in order to identify which pieces of code are responsible for what.

To tackle the use of external libraries, in concurrence with Madsen et al.’s [MLF13], the au-

thors used method stubs in order to simulate the desired behaviour of a piece of code when the

library code was not available within the scope of the application being analysed [MS13].

Both Jensen et al’s [MLF13] and Kashyap et al’s [KDK+14] made use of JavaScript bench-

marks to validate their analysis, such as the Sunspider 1 and Google V8 2 [goo] suites. Kashyap

et al. [KDK+14] also tested his analysis against real JavaScript applications, as well as Madsen et

al. [MLF13]. Maras et al. [MS13] considered another way of evaluating their tool by comparing

code before and after their feature extracting mechanism.

In regards to the static analysis of JavaScript, Table 2.1 displays an overview of the reviewed

literature. The table presents, for each work reviewed, the mains goals, means used to satisfy those

goals and evaluation methods used.

2.2 Software Metrics

The enhancement of a process can only occur if it is possible to measure some of its characteris-

tics. With the evolution of software development and the increasing need to improve the software

development processes, the demand for more and better software metrics arose . The necessity of

1https://webkit.org/perf/sunspider/sunspider.html
2https://developers.google.com/octane/
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Table 2.1: Static Analysis Overview

Reference Goals Means Evaluation
Jensen et
al. (TAJS)
[JMM11]

• Develop a sound
static analyser for
JavaScript which sup-
plies error detection
and auto-completion
mechanisms.

• Flow graph construc-
tion.

• Abstract representa-
tion via an analysis
lattice.

Google Benchmark
Suite [goo].

Maras et al.
[MS13] • Develop a method to

identify and extract
code and resources that
implement features.

• Dependency graph
construction.

• Graph marking.

Three set of exper-
iments comparing
the developed
tool’s extracted
code and the
original code.

Madsen et
al. [MLF13] • Provide a tool for API

surface discovery.

• Analyse JavaScript
code in the presence
of frameworks and
libraries.

• Call graph construc-
tion through pointer
analysis and use analy-
sis.

• Automatic stub cre-
ation.

25 JavaScript ap-
plications from the
Windows 8 store
[win]

Kashyap et
al. (JSAI)
[KDK+14]

• Provide a formally
specified static anal-
ysis platform for
JavaScript.

• Abstract interpretation
through the definition
of an intermediate rep-
resentation and an ab-
stract semantics.

Benchmark suites,
Mozzila Fire-
fox Addons
and Opensource
JavaScript frame-
works [KDK+14].

metrics is even higher when considering new technologies which do not have established practices

[CK94].

Measurement activities should have clear objectives. One must indicate what is going to be

measured and what attribute will come out of that measurement. To support this, one can make

use of the Goal-Question-Metric paradigm (GQM) [BR88], which indicates that, before yielding

any metrics, one must define the goals to be reached and following that, questions to be answered,

which drive the metric investigation.

Software metrics are a polemic subject and usually susceptible to criticism such as lack of the-

oretical backing (appropriate mathematical properties), absence of measurement properties and

being technology dependent [CK94]. Software measurement, like any kind of measurement, must
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heed to the science of measurement if it is to be accepted and valid. Complexity measurement

sometimes fails to do so, by presenting a single numeric value which characterizes distinct views

of complexity [Fen94]. This results in a metric translating attributes such as difficulty of program-

ming/testing/understanding/maintaining, which are susceptible to different kinds of interpretation

and are not theoretically supported [Wey88]. This concludes that, for transmitting a clearer notion

of code complexity, one must use not a single metric but a set of metrics.

2.2.1 Evaluating Software Complexity

It is natural, when understanding and developing software, to determine which characteristics of

the applications affect its cost and therefore its maintainability. Software complexity is one of the

measures responsible for doing so, by translating how difficult a program is to comprehend. A

software portrayed as complex should have objective and reliable metrics supporting it, and not

only an intuitive notion derived from its inspection [LC87].

Software complexity has several uses in the software development scope, those being: defin-

ing requirements for the software to build, verifying the application developed against functional

requirements and arranging trade-offs between maintenance and development budgets [LC87].

Li and Cheung [LC87] consider the following as the most popular and widely accepted com-

plexity metrics: Halstead’s metrics [Zus05], counts of statements (also known as logical lines of

code) , lines of code and comments (usually abbreviated to LO*), McCabe’s cyclomatic complex-

ity [McC76] and the Knot measurement, a control flow measure.

Halstead’s set of metrics is based on the number of operators and operands present in the

code. Operators include basic arithmetic and comparison operators (+, +=, etc.), keywords (while,

if, etc.) and names of subroutines/functions. Operands are the aggregation of all variables and

constants. A distinction is made between total number of distinct operators (n1), total number of

distinct operands (n2), total number of operators (N1) and total number of distinct operands (N2).

• n1: Number of distinct operators.

• n2: Number of distinct operands.

• N1: Total number of operators.

• N2: Total number of operands.

• n1*: Number of potential (minimum) operators.

• n2*: Number of potential (minimum) operands.

A series of other metrics are derived from these variables [LC87]:

Vocabulary o f a program (n) = n1+n2 (2.1)

Program length (N) = N1+N2 (2.2)

12



Literature Review

Calculated program length(N∗) = n1 Log2n1+n2 Log2n2 (2.3)

Program Volume (V ) = N Log2n (2.4)

Program potential (minimum) Volume (V∗) = (2+n2∗)Log2(2+n2∗) (2.5)

Program Level (L) =
V∗
V

(2.6)

Program Di f f iculty (D) =
1
L

(2.7)

Program Level estimation (L∗) = 2
n1

2
N2

(2.8)

Program Di f f iculty estimation (D∗) = 1
L∗

(2.9)

Programming E f f ort (E) =
V
L
=

n1 N2 NLog2n
2 n2

(2.10)

The program volume (V) describes the size of the implementation, an estimation of the number

of bits needed to encode the program. The programming effort (E) is often perceived as being a

measurement of the mental activity required to conceive the algorithm.

McCabe’s cyclomatic complexity is a standard metric in many applications. Its value is ob-

tained from a CFG by subtracting the number of nodes to the number of edges and adding the

double of the number of connected components in the program (these components being the num-

ber of subgraphs which are not connected between each other). In a strongly connected graph (in

a graph where each vertex is reachable from any other vertex), the cyclomatic complexity is the

number of independent circuits [LC87].

The knot metric measures the number of interconnected control structures. It’s also possible

to distinguish between the number of verified knots and the number of possible knots [LC87].

Different authors reviewed the metrics presented in regards to their downfalls and situations

were the metrics cannot correctly identify how complex the code is.

The Halstead family of metrics presented a plausible degree of consistence with very little

downfalls. The program’s length equation is dependent of the size of the program and that the num-

ber of distinct operands plays a great part in dominating the approximation of the values [LC87].

However, Halstead’s metric failed to comply with a property defined by Weyuker [Wey88], where

the author states that "for any two programs, their concatenation yields a equal or higher com-

plexity value than any of the two programs alone". This failure presents a serious drawback on the

Halstead set of metrics as it is hard to imagine that a part of a program can be more complex than

the whole program.

McCabe’s cyclomatic complexity has a fair degree of correlation with other control organiza-

tion metrics and serves as the connection between volume metrics and control organization metrics

[LC87]. Nonetheless, from Weyuker’s review [Wey88], it can be noticed that McCabe’s metric is
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not sensitive enough to yield a suitable range of complexity values (i.e. it produces the same

value too many times). The author also determined that Halstead’s and McCabe’s metrics are not

sensible to nested loops.

Traditional volume metrics such as number of statements (logical lines of code), number of

lines and comment count were also investigated. Li and Cheung [LC87] came to the conclusion

that the best volume metrics are the statement count and the number of lines without comments

count, mostly because they cannot be easily inflated and because they present a high degree of

correlation with other consistent metrics.

A metric not reviewed in either of the already cited sources is the maintainability index, which

aims to give a perception on how maintainable certain code is. The authors that proposed this

metric combined a series of already accepted metrics (lines of code (LOC), McCabe’s cyclomatic

complexity (CC) and Halstead’s volume metric (HV)) and performed a regression analysis to

obtain a formula for calculating maintainability [OH92]. One can obtain the maintainability index

of a program by calculating the following:

MI = 171−5.2∗ ln(HV )−0.25∗CC−16.2∗ ln(LOC) (2.11)

Although it is certainly useful to know how maintainable a system is, having a formula with

coefficients derived from regression analysis arises some concerns regarding its validity [min].

Besides the general software metrics described until now, there are some metrics which only

apply to certain programing paradigms. This is the case of metrics associated with object-oriented

(OO) design, which were the subject of study of Chidamber and Kemerer [CK94]. Designing a

software system by the OO paradigm relies on adapting real world objects and relationships to

classes of objects and their interactions. Following the concerns stated by Weyuker [Wey88], the

authors sought out to identify a set of metrics which would be theoretically backed (as presented

in their work in an extensive chapter defining properties and formulas which support them) and

endorsed by empirical evidence. The metrics proposed by their work are the following:

• Weighted methods per class (WMC): Sum of the complexity measurement of each method

of a class. The authors do not define the complexity metric in use to allow a more broad

approach to their proposed metrics. The WMC metric provides a general idea on how hard

(in terms of time) the class was to develop, the probable impact on child classes (since child

classes inherit all the methods of the parent) and the reuse potential, since classes with a

large WMC are usually application specific and therefore less reusable.
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• Depth of inheritance tree (DIT): Considering a class, its DIT is the maximum length from

the root parent class to the farthest child node. The bigger the DIT of a class the harder it is

to predict its behaviours and the more complex the class design is.

• Number of children (NOC): The NOC metric represents the number of direct descendants

some class has. A big NOC value usually means one of two things, either the class has a

great reuse potential, therefore the number of children, or the class is incorrectly abstracted

being the number of children a sign of erroneous subclassing. Also, the NOC value is

generally an indicator on how relevant for the global system design some class is.

• Coupling between objects (CBO): The coupling metric of a class is the number of classes

on which the class acts upon (coupled). A disproportionate amount of coupling is indicative

of a monolithic design and lack of reusability.

• Response for a class (RFC): The response for a class is the collection of methods which can

be executed in response to a received message. If several methods can respond to the same

message then the class gets harder to test and debug. It can be an indicator on how complex

a class is.

• Lack of cohesion in methods (LCOM): Two class methods are similar if they operate upon

the same instance variables. The LCOM metric is achieved by subtracting the count of the

methods of a class to the number of methods which possess a similar value of 0, that is,

methods which operate on strictly different instance variables. A class is more cohesive

the more similar methods it possesses, since this similarity suggests the design promotes

encapsulation, which is usually desirable. A lack of cohesion usually leads to errors and

implies that a class should be probably divided into subclasses.

Table 2.2 displays an overview of the software metrics reviewed. Each entry of the table

displays the name of the metric, the meaning of it and observations about it, subsequent to the

literature review.

2.2.2 JavaScript and Metrics

JavaScript, by not being a native fully-fledged OO programming language, misses out on inher-

ently supporting several metrics (without proper adaptation) for OO systems, as the ones detailed

in [CK94] and [BBM96]. The metrics described on these sources can characterize metrics related

to inheritance and similarity between classes, which are native OO aspects. However, all the met-

rics described in the previous section, which do not apply to the OO paradigm, can be calculated

from JavaScript code.

Riaz et al. [RMT09] presented a review of software maintainability metrics for the purpose of

predicting how maintainable a system is, since it can directly impact the costs of a software project.
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These metrics are usually associated with either quality or complexity since, as Fenton [Fen94]

states, maintainability is an high level external attribute, that is, an attribute that is computed from

the collection of other attributes that can be directly measured.

The review the authors made gathered 15 different studies and attempts to answer questions

that revolve around identifying software maintainability metrics and their validity. Other research

questions involved the determination of when should these metrics be gathered but that is out

of the scope of this investigation. Many of the studies investigated had algorithms determining

how maintainable a software would be, but four of the studies, that were proposed by the same

group of authors, included an assessment model based on software metrics, those being Halstead’s

programming effort and program volume, McCabe’s complexity, number of lines of code and

comments. Given the subjectiveness of software complexity, the authors of these studies also

included a possible subjective review of the software [RMT09]. This set of metrics overlaps with

the one Graziotin [GA13] refers as being one that correctly characterizes applications, including

ones built using JavaScript.

2.3 Summary

This chapter addressed the state of the art of the two main topics of the dissertation: Static analysis

and software metrics, in general and focused on JavaScript applications.

On the subject of static analysis, three types of static analysis were introduced: Data flow anal-

ysis, abstract interpretation and symbolic analysis. Afterwards, the static analysis of JavaScript

applications was discussed where several authors described different successful methods of per-

forming static analysis [JMT09] [KDK+14]. Furthermore, other authors were able to extend this

analysis in the presence of frameworks or in the web environment [MS13] [MLF13] [JMM11].

Regarding software metrics, a set of metrics were introduced and detailed, as being the most

commonly accepted software metrics since no complexity metric alone is viewed as being the

most correct [Wey88]. This set of metrics comprises the Halstead family of metrics [LC87], Mc-

Cabe’s cyclomatic complexity [McC76], the maintainability index [RMT09] and a series of counts

regarding lines of code. All of the mentioned metrics can be applied to JavaScript [RMT09].
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Table 2.2: Software Metrics Overview

Metric Information Observations
Lines of Code (LOC) Number of lines in the pro-

gram.
Susceptible to inflation. Can-
not provide meaningful con-
clusions by itself.

Statements (LLOC/STMT) Number of statements in the
program.

Same as LOC.

Comments (CMT) Number of comments in the
program.

Same as LOC.

McCabe’s cyclomatic com-
plexity (CC) [McC76]

Number of independent paths
a program has. Computed
from the program’s CFG

Low sensitivity, especially
when combining programs.
Does not account for nested
loops.

Cyclomatic complexity den-
sity (CC/LOC) [GK91]

Expresses CC as a percent-
age of the logical lines of
code.

Same as CC.

Halstead’s Metrics [Zus05] Derivation of program infor-
mation such as vocabulary,
volume, difficulty and effort
from the number of operators
and operands.

Same as CC.

Maintainability Index (MI)
[RMT09]

Combination of LOC, CC
and Halstead’s Volume. De-
picts how easy a program is
to maintain.

Formula is based on regres-
sion testing and averages val-
ues which can mask outliers.
Formula has not been update
since its proposal.

Weighted methods per class
(WMC) [CK94]

Sum of the complexity mea-
surement of each method of
a class

Can only be applied to OO
systems. Does not apply a
specific complexity measure.

Depth of inheritance tree
(DIT) [CK94]

Maximum length from the
root parent class to the far-
thest child.

Can only be applied to OO
systems.

Number of children (NOC)
[CK94]

Number of direct descen-
dants some class has.

Can only be applied to OO
systems. Needs a global
perspective of the system in
order to be correctly inter-
preted.

Coupling between objects
(CBO) [CK94]

Number of classes on which
a class acts upon.

Can only be applied to OO
systems.

Response for a class (RFC)
[CK94]

Set of class methods which
can be executed in response
to a received message.

Can only be applied to OO
systems. A high RFC does
not always mean some class
is complex.

Lack of cohesion in methods
(LCOM) [CK94]

Number of class methods
whose similarity is null mi-
nus the total count of class
methods.

Can only be applied to OO
systems.

17



Literature Review

18



Chapter 3

Developing Raven

3.1 Solution Architecture

The first iteration of the solution was a monolithic application which was responsible for the whole

process from analysing the files to saving them to the database. The application was restructured

in order to increase the modularity and reusability of the code. Two modules were created from

the restructuring process, one responsible for the analysis of the projects and another, responsible

for compiling the results and interacting with the databases.

The final architecture of the raven solution is as follows: One module, from here on out re-

ferred to as raven-analyser is responsible for analysing a file or a directory and output the analysis

information. The other module, the raven-interface, is responsible for the interaction with the

databases (one is a MongoDB [mona] database, where the analysis results are stored, and another

is a PostgreSQL [pos], database, which holds the company’s data) and for the processing chain of

directories. A flow diagram representative of the solution is presented in Figure 3.1

The raven-analyser module is composed by 29 JavaScript files, with a combined size of 87kB

and comprising 2,933 lines of code. The raven-interface module is constituted by 5 JavaScript

files, with a combined size of 19kB and with a total of 544 lines of code.
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Figure 3.1: Flow diagram of the Raven solution.
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3.2 Raven-analyser

The raven-analyser is the core of the metadata extracting solution as it is the module responsible

for extracting the information from the source code.

3.2.1 Core Technologies

The following are the main packages used in the raven-analyser module. These are available via

npm (the main package manager for JavaScript) 1.

Espree

There are many JavaScript parsers which translate JavaScript code into a format (generally

an Abstract Syntax Tree (AST)) which can be used to collect information about the resource in

question. The first parser to be part of the solution was esprima [espb]. Esprima works for any

JavaScript code but lacks the features necessary to parse JSX code [jsx], which is an XML like

syntax that react [rea], a tool for developing the front-end of applications, uses. JSX usually

appears alongside JavaScript code and being unable to parse it would impede the analysis of

projects which make use of it.

Espree’s [espa] parsing is, by design, compatible with esprima and provides the same function-

ality which is parsing code and representing it in the JavaScript Object Notation (JSON) format.

Listing 3.2 holds the JSON representation of an AST, parsed from the code present in Listing 3.1.

1 function add(num1, num2) {

2 return num1 + num2;

3 }

Listing 3.1: Function which yields the AST representation of Listing 3.2.

1 {

2 "type": "Program",

3 "body": [

4 {

5 "type": "FunctionDeclaration",

6 "id": {

7 "type": "Identifier",

8 "name": "add"

9 },

10 "params": [

11 {

12 "type": "Identifier",

13 "name": "num1"

14 },

1https://www.npmjs.com/
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15 {

16 "type": "Identifier",

17 "name": "num2"

18 }

19 ],

20 "defaults": [],

21 "body": {

22 "type": "BlockStatement",

23 "body": [

24 {

25 "type": "ReturnStatement",

26 "argument": {

27 "type": "BinaryExpression",

28 "operator": "+",

29 "left": {

30 "type": "Identifier",

31 "name": "num1"

32 },

33 "right": {

34 "type": "Identifier",

35 "name": "num2"

36 }

37 }

38 }

39 ]

40 },

41 "generator": false,

42 "expression": false

43 }

44 ],

45 "sourceType": "script"

46 }

Listing 3.2: AST representation of the function in Listing 3.1. This representation corresponds to

the one yielded by the online parser in the esprima website [espb].

Escomplex

Escomplex [esca] is the library responsible for doing all the calculations regarding software

metrics. In order to do so it requires an AST representation of the code.

The main metrics calculated by escomplex are the following:

• Lines of code: The physical and logical count of lines of code. Physical lines of code are the

source code lines excluding comments and the logical lines of code represent the number of

executable statements.

• Cyclomatic complexity (CC): As defined by Thomas McCabe [McC76]. Counts the number

of distinct cycles in the control flow graph of the program.
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• Halstead’s Metrics: Indicate the program volume, programming effort, program difficulty,

time required to develop the program and probable number of bugs in the code from the

number of operators and operands present in the code [Zus05].

• Maintainability index: A logarithmic scale from negative infinity up to 171, calculated ac-

cording a formula (Equation 2.11) which takes into account the cyclomatic complexity,

logical lines of code and Halstead’s programming effort. The higher the index, better the

maintainability.

• First-order density: The percentage of internal dependencies which are in use in the project.

The lower, the better.

Escomplex calculates an aggregate of the metrics for the file or set of files submitted but it also

calculates the result individually for each function it encounters.

The metrics calculated by this package cover the set of metrics deemed as being indicative of

the general complexity/maintainability of code, while also providing some additional ones. For a

more in depth view about software metrics please refer to Chapter 2.

Bluebird

JavaScript code, running in the node.js environment [nodd], usually performs tasks in an asyn-

chronous way. This is mostly due to the fact that node is single threaded and performing tasks

synchronously would severely hurt performance. However, operations which involve resources

related to the file-system, such as reading from files, do not block the calling thread and allow the

code on the main thread to continue processing. The main thread is then notified when the result

of the asynchronous operation is available.

The primary way to deal with asynchronous tasks is by passing a callback to the calling func-

tion. Callbacks have a tendency to become a problem when there are a series of asynchronous

operations which need to be done in a sequence. By chaining callbacks together, sometimes de-

velopers end up with code like the one in Listing 3.3. This is commonly known as the "callback

hell" where the code grows not only vertically but also horizontally, which hurts the code’s read-

ability, maintainability and is considered to be a bad practice [Sim15].

There are many ways to solve this type of problem but one of the most accepted solutions

are JavaScript promises. Promises are an abstraction to deal with an operation which is yet to be

completed (asynchronous), to deal with a future value of an operation. Promises can be chained

thus providing a way of handling the sequential execution of asynchronous operations. Listing 3.4

shows the "promisification" of the code depict in 3.3.

1 function isUserTooYoung(id, callback) {

2 openDatabase(function(db) {

3 getCollection(db, ’users’, function(col) {

4 find(col, {’id’: id},function(result) {

5 result.filter(function(user) {
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6 callback(user.age < cutoffAge)

7 })

8 })

9 })

10 })

11 }

Listing 3.3: Code example of what is usually called in the JavaScript community as callback hell:

a series of chained callbacks which grow the code horizontally. Taken from [cal]

1 function isUserTooYoung(id) {

2 return openDatabase(db)

3 .then(getCollection)

4 .then(find.bind(null, {’id’: id}))

5 .then(function(user) {

6 return user.age < cutoffAge;

7 });

8 }

Listing 3.4: Implementation of the code used in Listing 3.3 using JavaScript promises. Taken from

[cal].

ECMAScript2015 (ES2015), the new JavaScript standard, introduced native JavaScript promises,

however, the native JavaScript implementation lacks features when compared to promise libraries

that have been available before the standard. With this in mind, the raven-analyser makes use of

the bluebird library [blu].

Escope

Before the ES2015 standard, there were only two constructions which created new scopes

in JavaScript: function and the catch block of a try/catch statement. Without the knowledge

of this behaviour, developers coming from an object oriented (OO) background are caught by

surprise when they realize that variables created inside for loops, or other types of constructions,

belong to the surrounding function or to the global scope. Lacking the knowledge of this feature

can originate unexpected behaviours such as accessing a wrong array element when a for loop

redeclares the iterator variable.

Prior to ES2015, it was a best practice to hoist variables at the top of the program and function

declarations [Cro08]. The new standard introduced block scoping for two new types of variables,

let and const. Variables of these types belong to the surrounding block, which is limited by curly

braces independently of the construction used [Sim14].

In order to retrieve all the constructions which create new scopes escope [escb] was used. The

usage of this tool allows the gathering of an understanding about the scope organization of the

code and which constructions are used to create it.
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3.2.2 ECMAScript2015

In its current state, JavaScript is a continuously evolving language. The creation of node.js [nodd]

made possible using an event-based language to build scalable applications without the troubles

arisen by multithreading [JI12]. The current JavaScript standard in vigor is the ECMAScript2015

[ecm]. This standard introduces new features such as the for of loop or arrow functions and

polishes already existing functionalities such as the importing of frameworks or libraries.

Since the standard is new, some browsers and the node.js ecosystem have still to implement

all the changes it imposes to the language. In order to start producing code which is compliant

with the standard, a tool (transpiler) needs to be used to pre-compile the code into something the

environment where it is executed can understand. The tool of choice used to perform this task

was babel [bab]. Figure 3.2 presents an example of functions written in the standard previous to

ES2015 and the arrow functions feature of ES2015.

Figure 3.2: Transpilation example of functions from their regular form to the ES2015 arrow func-
tion syntax. Taken from [tra].

The relevance of the new JavaScript standard in the project has two main factors. Firstly, since

Jscrambler mainly works in a JavaScript environment and provides services upon JavaScript code,

it is important to adopt, as soon as possible, the new standard, in order to be proficient in the

language as it evolves. And secondly because one of the main objectives of the dissertation is the

collection of metadata in order to help guiding Jscrambler’s software. As will soon be discussed,

there are situations where it is relevant to distinguish to which standard some type of data applies.

3.2.3 Architecture

The raven-analyser module, responsible for the collection of metadata from code resources, con-

sists of the following four key components, all of which were developed within the dissertation

period. The main tools utilized were escomplex for software metric retrieval and escope for listing

the existing scopes.

Examiner
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The examiner is one of the main components of the raven-analyser module. This component

is responsible for traversing the AST (or ASTs when processing multiple files) of a code file and

extract the following information:

• Tokens: Tokens are considered to be literals (JavaScript native types such as boolean, num-

ber, string and regular expressions) and operators (those being of different types such as

unary (+), logical (&&), binary, assignment and update.

• Objects: With the help of the Native Objects component, presented further ahead in this sec-

tion, the examiner indexes all the objects constructed, categorizing them by native JavaScript

objects, ES2015 objects (objects introduced in the standard) and custom objects. Custom

objects are objects of any type which do not belong to the native environment or to the new

standard and their origin can either be from the source code or from modules which it makes

use of.

• Native Object Methods: Besides identifying native objects, native object methods are also

identified. These are the methods which are present in any JavaScript environment since

they are part of the native language. Examples are String.substring() and Array.indexOf().

• NonTerminal Nodes: After investigating the output of the parsers such as espree [espa] and

esprima [espb] (as presented in Listing 3.2), one can identify which nodes are terminal in

the AST (in the case of these parsers Literal and Identifier nodes are the terminal nodes).

All the other nodes represent constructions inherent to the programming language and it

can be useful to the Jscrambler to compare the frequency of each construction and how

they evolved. A distinction is made between constructions in the ES2015 standard and the

previous ones.

• Scopes: A JSON object compiling a tree like object of all the existing scopes in the code

file is created with the help of the escope module [escb].

• Imports/Exports: JavaScript code files can either be a script or a module. Generally scripts

are run in a browser environment and modules in the node.js environment. JavaScript mod-

ules are files usually ran in node.js which import libraries and resources and can export

classes, objects or functions. In order to analyze which frameworks or libraries some code

utilizes it is necessary to compile the imports and exports. The examiner compiles an array

of imports and exports, their formats (because ES2015 introduced a new way of importing/-

exporting resources), and if the resource imported is a node.js native library.

• Comments with annotations: Instead of retrieving all the comments existent in the code,

which could comprise unnecessary information, only comments with annotations are re-

trieved. A parser is used to break down, into an organized JSON object, each comment

block and the annotations it possesses.
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JavaScript Standard Objects

As stated in the previous subsection, the algorithm identifies objects and methods which are

native to JavaScript. In order to do so a module was created which organizes all this information.

The module contains a list of objects and their native methods, separated by specification, which

allows identifying the usage of properties and methods of the native JavaScript implementation.

All the information was compiled attending to Mozzila’s Developer Network [jso] and needs to be

updated as the language evolves.

One important aspect to note is that some JavaScript native objects share properties (prototype

and length are common shared properties) which is the effect of inheritance between object types.

For example, the length property, by default, is inherited from the native implementation of the

JavaScript Object type. With this in mind, when accessing the property length of an Array or

String, the algorithm will identify the property length of an Object being used, instead of Array or

String, in this case.

The property to object matching could be improved by performing some kind of type inference

upon finding statements which operate on certain objects, such as a new object creation or an

assignment operation. This possibility was not further explored since it requires a significant

amount of time and resources to perform, with no guarantee of it being completely sound, as static

type inference in JavaScript needs to cover a great amount of cases [HG12].

HTML Processor

For the algorithm to be able to analyse HTML files there is a need of extracting JavaScript

code from them. Usually, JavaScript code is present in HTML in two distinct forms. The first

and obvious one is inside script tags such as <script>var a = 1;</script>. The second is inside

some HTML attributes in the form of events (for example, <button onclick="modifyText()">Click

me</button>).

The functions of the HTML Processor module are:

• Extract code from event scripts: For each HTML element, the processor searches the ele-

ment’s attributes for events (attributes which start by on and are followed by the event name,

such as onclick). Then, it takes the code and wraps a function around it so that the statements

inside the events would not interfere with each other. This wrapping is necessary because,

when the code is being analysed, the events do not execute in the same scope because if two

events would employ the return key word, were they not wrapped inside functions, the AST

parser would yield an error.

• Extract code from script elements: For each script element, the contents are extracted and

combined without any modification.
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• Extract the src contents of script elements: For each script element, if it possesses the src

attribute, the contents of the attribute are gathered to power the framework identification

previously mentioned.

Analyser

The final main component is the analyser, which binds everything together and is responsible

for the whole process of analysing a project. The workflow of the analyser is as follows:

1. A recursive directory read compiles all the files existing in the directory, ignoring all of

which are not JavaScript nor HTML files.

2. For each file retrieved the analyser reads the file, retrieving the HTML src elements with url

attributes, if existent, and creates an AST from the file contents.

3. Before moving to the actual analysis, all the url src attributes are grouped because, as pre-

viously mentioned, one can not know for sure where certain framework was imported in

regards to JavaScript script files.

4. Having assembled all the ASTs, the escomplex [esca] analysis is called alongside with the

examiner analysis. At the same time, the package.json files, if existent, are parsed and the

dependencies retrieved.

5. The final results of each analysis and collection are grouped in a JSON object and returned.

3.2.4 Library Identification

One of the examiner module’s functions it to identify libraries in use by the code being analysed.

For JavaScript module files it is easy to identify which modules are imported since one only

needs to check which libraries are required, usually at the top of the file. When analysing JavaScript

script files, the ones which are run in a browser environment, statically identifying the libraries in

use can be a challenging task. If the files were to be executed (i.e. dynamically analyzed), one

would only need to check which components existed in the window object, which represents the

browser window, and where all global objects, functions and variables lie [jsw]. Since the exam-

iner is limited to static analysis, the following were the steps taken in order to identify frameworks

used in JavaScript script code files:

Firstly, when processing either a directory or a single file, the solution compiles all the src

attributes from the script tags existing in HTML files. This is necessary because, unlike in node.js,

the inclusion of a library can be done in a single file which can propagate to all the code executing

in the browser environment.

Secondly, when the examiner processes the AST, whenever a new object is created, a member

expression (for example Object.property) or a literal are employed, the algorithm tries to match

a substring of each HTML src to the name in use. This matching is necessary since many script
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elements contain a src attribute which is a link to a resource and not just the name as in a node.js

import. A practical example of this situation is the case when we have a src tag like this one

<script src="https://site.com/ajax/15.1.0/react.js"></script> and a construction in the code like

ReactDOM.render(). The algorithm would match these constructions as using the react framework

[rea], based on the fact that the member expression ReactDOM.render() uses the word "react" as

well as the src attribute in the HTML script tag.

This type of identification can yield false positives since there can be a construction which

is aligned with some other part of the url in the src attribute. The website part of the url is

removed by the algorithm, so the url displayed in the previous paragraph would become just

"ajax/15.1.0/react.js". Taking this in account, if a construction was found with the name ajax

then the algorithm would identify the code as utilizing ajax, which in that case would be a false

positive. Also, some libraries do not use constructions with the library’s name but rather some

other identifier (such as $ for many DOM utility libraries). For this type of scenario, framework

indicators need to be previously compiled before performing the analysis (as in names, identifiers

or constructions the library uses).

In addition to the compilation of the src attributes and the imports found, the algorithm

searches the project directory for any package.json files. These type of files are usually present

in node.js projects and compile a list of dependencies (frameworks/libraries) on which the project

depends on to properly function.

3.3 Raven-interface

The raven-interface is the module responsible for combining the raven-analyser with the infras-

tructure necessary to process the Jscrambler’s data and saving the analysis results. All of the

raven-interface components were developed within the dissertation period.

3.3.1 Core Technologies

The main JavaScript libraries which the raven-interface uses are the bluebird promise library [blu],

described in the previous section, and the two following database libraries:

Mongoose

In order to facilitate the interactions with the MongoDB database [mona], mongoose [monb]

was used. Mongoose allows the management of database connections, the creation of schemas

(which are the outline of the documents saved on the database) and a series of functions for insert-

ing, updating and deleting documents.
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Bookshelf

Providing the same utilities as mongoose, but to retrieve data from the company’s PostgreSQL

database [pos] and working upon relational data, not documents, bookshelf [boo] was used. Be-

sides the features indicated as being part of mongoose, bookshelf comes packaged with a query

builder which gives more power to the user when working with stand-alone queries.

3.3.2 Architecture

The raven-interface is a command-line interface application with two distinct modes of action.

The first mode is the regular one, where no company data needs to be retrieved and the op-

erations being invoked are only the raven-analyser analysis and the insertion of the result to the

MongoDB database.

The second mode attends to the structure of the Jscrambler’s database and resources and exe-

cutes a series of operations before calling the raven-analyser analysis.

The following is the workflow of the algorithm when analysing a directory which contain the

projects of a Jscrambler user.

1. Concurrent query to the PostgreSQL database retrieving the user information alongside with

reading the directory with the user’s projects.

2. Since node.js’ functions which read directories only return relative paths there is a process-

ing step which computes absolute paths.

3. For each user project, in sequence, and according to the executing parameters, call the raven-

analyser analysis on either the original code or the obfuscated version and save the result of

the analysis to the MongoDB database with the user data and the transformations executed

to transform the code if the folder processed was the obfuscated one.

A visual representation of the whole flow of raven-interface, also including the flow of the

raven-analyser, is presented on Figure 3.3.

3.4 Development Process

The development process was an iterative one, as it usually is for any software development project

where the software being developed is non-critical.

The first two to four weeks of development were dedicated to the investigation of the tools

being used and to learn more about JavaScript and its characteristics. The learning process of

JavaScript was motivated by the fact that, besides the peculiarities of JavaScript, stated in Chapter

2 and in the above sections, there are many others which confuse developers, especially those com-

ing from a object-oriented (OO) background. To address this knowledge deficiency, the learning

process was based upon Kyle Simpson’s You Don’t Know JavaScript book series [Sim14] [S+15]
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[S+14] [Sim15]. This book series provided not only a thorough understanding about good and

bad practices in JavaScript and which characteristics should be approached carefully (such as an

use of the this keyword as in OO languages) but also shed some light in aspects such as JavaScript

native types and promises which were of great use in the project.

The following stages of development were dedicated to creating a solution prototype which

would calculate the software metrics, via escomplex [esca], and save the results to the MongoDB

database [mona]. Once the prototype was finished the requirements for the examiner component

were elicited. Some time was dedicated to the study of the ES2015 standard and to the refactor of

the code from callbacks to promise based.

Once the examiner was coming to its final stages of development, the decision of separating

the analysis module and creating a separate project to interact with the databases and Jscrambler

data was made which caused another refactor of the codebase.

The last requirement to be fulfilled in regards to the examiner was the identification of li-

braries/frameworks, since the objectives of the literature reviewed, when considering the analysis

of JavaScript with the use of frameworks and libraries, did not completely align with the objectives

of this dissertation.

After this phase, it was time to develop the raven-interface. This part of the development

process was relatively quick when comparing to the raven-analyser since the interactions with the

MongoDB database were already made from the first prototype of the solution. The module suf-

fered from several versions since the first version had problems regarding concurrency (discussed

in the following section) but it eventually came to a point where a sequential directory analysis

would allow to process Jscrambler’s data.

At this stage the solution was close to final and there were no significant development stages

beyond it, only correction of bugs and addition of minor features caused by running the tool against

real company data.

3.5 Overcoming Challenges

The following were the main challenges faced in the development process:

The first real challenge felt when developing the solution was the usage of promises. Promises

are a concept that is not so easy to grasp and can pose a serious challenge when not presented

with the right information [Sim15]. Many promise tutorials fail to go further beyond the basic

concept which is that promises are a good alternative to callbacks and can be used in succession/are

composable. Besides this, promise chains always need to return some value for the chain not to be

broken and are not easy to debug. If an argument is missing the whole program can silently fail

and the catch clause will not throw an error because no error was thrown along the chain.

After extensive reading and discussing the subject of promises with Jscrambler’s employees, a
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better understanding of the concept was grasped which culminated in a much cleaner, understand-

able and better performing software.

In the midst of testing and working with promises, the solution presented was not in a sat-

isfactory state as it would concurrently analyse multiple directories causing for the algorithm to

quickly run out of memory. To avoid this issue a series of refactoring sessions were done in order

to ensure that the solution would analyse each project sequentially, minimizing the possibilities

of running out of memory. The process was complicated as it once again asked for further inves-

tigation about promises. The challenge was overcome when realizing that promise code begins

executing the moment the promise is created and not only when reaching a piece of code which

awaits for the promise completion. This means that when an array of promises is constructed, the

asynchronous code is already being executed, so looping the array, in sequence, waiting for the

promise completion, does not enforce the synchronous execution of the promises. The promises

need to be created and handled inside a sequential construction to ensure synchronous execution.

The final major challenged faced was to process all of Jscrambler’s data. The company pos-

sesses a large amount of data which is impossible to copy/store on a single PC. For each user,

data needs to be retrieved across the network, saved, analysed and then disposed of. Running the

program from the command line would pose a problem since non-core operating system functions

would be used to copy files around and also the program would fail when any directory failed to

be processed. This challenge was overcome by utilizing a bash script, made to handle this process,

which to ensures any processing error would not disallow the remaining directories to be handled.

3.6 Summary

This chapter presented a general and an in depth view of the main components of the Raven so-

lution those being the raven-analyser and the raven-interface. The raven-analyser is the analysis

module responsible for calculating the software metrics relative to the code being inspected, via

the escomplex library [esca], and to retrieve the information deemed useful by Jscrambler, made

possible by the examiner component. To make sure everything interacted smoothly with Jscram-

bler’s data, another module, the raven-interface was created, which is responsible for interacting

with the databases and to process all the company data.

The development process was an iterative one where the main steps were a dedicated learn-

ing phase, emphasizing on JavaScript, a prototype creation alongside the elicitation of the re-

quirements for the examiner component, the coming together of the raven-analyser and the many

iterations to reach a final version of the raven-interface.

Many challenges were faced when developing the solution but the main ones were concerning

promises, refactoring processes and processing large quantities of data.
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Figure 3.3: Workflow of the Raven solution.
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Chapter 4

Experimental Results

In regards to the dissertation’s objectives, the performed experiments, detailed in this chapter,

looked to address the following research questions:

1. How does the retrieved metadata behave when analysing code files in their original state

and after performing Jscrambler’s services? Are there any software metrics which endure

through the changes made to the code?

2. Taking Jscrambler’s data into account, when comparing the metadata of projects which use

similar frameworks or libraries, can conclusions be made in regards to the average complex-

ity of a project that uses a certain a library, by analysing the metrics retrieved? That is, can

it be said that a project using certain library is, for example, two times more complex than

another using other library for the same purpose?

The following sections present the experiments realized in order to address the research ques-

tions and a discussion of the results obtained. First, an explanation on how the results were gath-

ered is presented followed by the results themselves. The consecutive section focus on discussing

the results, guided by the research questions.

4.1 Gathering results

4.1.1 Picking the dataset

To test the metrics resiliency to the services Jscrambler offers, a controlled dataset was compiled,

in order to study the impact of different operations on the same set of data. This dataset included

four JavaScript libraries for front-end development, four of the most popular npm packages 1 and

a JavaScript benchmark suite.

1https://www.npmjs.com/browse/star
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The front-end libraries chosen are usually executed in a browser environment and provide

DOM (document object model) manipulation functions, animations and facilitate event-based

scripting. The libraries used were jquery [jqu], dojo [doj], mootools [moo] and prototype [pro].

Jquery and dojo were analysed considering the production version of the code (minified) and the

development one.

The npm packages utilised were express [expa], cheerio [che], commander [com] and q [q].

Express is a framework for building JavaScript applications and is usually used to build APIs (Ap-

plication Programming Interfaces) or applications based on the MVC (Model View Controller)

pattern. Cheerio is an implementation of the features delivered by jquery for the server environ-

ment (i.e. for back-end development instead of front-end). Commander is a library for developing

command-line interfaces. And finally, Q is a promise library with features closely related to blue-

bird, as described in Section 3.2.

The benchmark used was the new form of Google’s V8 benchmark suite [goo] Octane.

4.1.2 Gathering controlled results

For each test set, the following transformations were applied. These transformation originate from

a set of predefined templates, available in the Jscrambler’s web application.

The templates used define a set of specific transformations and each transformation could be

applied in a stand-alone fashion. The following were the templates applied:

• Obfuscation - Applies the following transformations: remove comments, whitespace re-

moval, rename local variables, duplicate literals, function reordering, dot notation trans-

formations and function outlining.

• Self-defending - Applies the following transformations: remove comments and Jscrambler’s

proprietary self-defending transformation.

• Minification - Applies the following transformations: remove comments, whitespace re-

moval and rename local variables

• Compression - Applies all the transformations of the minifcation template as well as a dic-

tionary compression transformation.

It is important to note that there are many obfuscation algorithms available for JavaScript

besides the one Jscrambler provides. The goal of the software metric comparison is to address

Jscrambler’s obfuscation process and not others available.
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The compression and minification datasets were submitted to the Jscrambler’s website 2 and

then downloaded. The self-defending and obfuscation datasets were retrieved by using the com-

pany’s API. The transformation processes used Jscrambler’s software in version 3.8.

The following is an explanation of the results of each transformation. For a more in depth

overview on the results of each transformation with code examples consult Appendix A or JSCram-

bler’s documentation 3.

• Remove comments: Removes all the comments for the source code.

• Whitespace removal: Removes all the whitespace and newline characters from the source

code.

• Rename local variables: Replaces all identifiers which are not in the global scope of the

code for ones without any meaning. Identifiers which are not in the global scope are the

ones inside function declarations and catch blocks of code.

• Duplicate literals: Replaces all duplicate literals used in the code, such as static strings, for

identifiers which are used to replace the duplicate usage of the literal.

• Function reordering: Reorders all the function in the source code, in no particular order, but

considering the declaration hoisting, that is, no function shall be used before it is declared.

• Dot notation transformation: Transforms all the usages of the dot notation into the array

subscript notation.

• Function outlining: Transforms statements into new function declarations. These new func-

tions wrap around the statements altering the flow of the code, difficulting its comprehen-

siveness.

• Self-defending: Obfuscates functions and objects by concealing their logic and frustrates

attempts of debugging the code. Proprietary to the company so no further information is

provided on the documentation page.

• Compression: Performs a lossless compression by applying the LZ77 algorithm [WP02].

The algorithm allows the compression of data by replacing repeated occurrences of data

with a reference for its previous occurrence in the data stream.

Table 4.1 presents the size of each element of the dataset in its original form and after each

transformation.

2https://jscrambler.com
3https://docs.jscrambler.com/transformations
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Table 4.1: Controlled dataset sizes by transformation applied. Sizes are in kB.

Element Original Obfuscation Self-defending Minification Compression
dojo 1.11.2 prod 164.8 200.9 367.7 135.0 98.5
dojo 1.11.2 dev 630.6 200.9 416.8 134.9 98.6

jquery 3.0.0 prod 86.3 119.4 198.2 87.7 64.8
jquery 3.0.0 dev 263.3 131.4 297.3 92.4 67.3
moo tools 1.6.0 162.0 143.5 727.0 93.2 62.0
prototype 1.7.3 199.8 159.4 794.0 103.2 67.0
cheerio 0.20.0 111.6 97.6 905.1 85.7 79.3

commander 2.9.0 44.8 34.7 378.7 29.7 26.6
express 4.14.0 207.1 170.3 1100 153.6 147.3

q 1.4.1 123.6 80.4 129.2 77.1 70.7
octane-master 10500 14100 39500 8200 3700

After this process, the raven-analysis was run for each transformed dataset and for the original

version, which originated the results displayed on Tables 4.2 to 4.6, all of which were rounded to

two decimal places.

Each of the software metrics present in the tables represent the average value per-function (in

the case o the maintainability it is per module, that is, per code file), and not an absolute value. By

comparing average values per-function, comparisons can be made between datasets of different

sizes. If the comparison relied on absolute values, the results would be largely influenced by the

size of the dataset. It is easy to understand that, for a large codebase, a non-normalized count of

lines of code (LOC) would be significantly higher than the one of a smaller codebase.

To facilitate the comparison between the different transformations, Figures 4.1 to 4.4 present

column charts of each metric, contemplating original values and all the transformations, for ex-

press, Q and the development version of jquery.

4.1.3 Gathering company data

A total of 54,227 projects were analysed. These projects are stored by the company and originated

from their API client. The main objective of this data gathering process, in terms of address-

ing the dissertation objectives, is to identify frameworks/libraries in use and possibly withdraw

conclusions from the software metrics of the projects using them.

2,978 projects identified depended on node.js [nodd] libraries. Since only the newer version

of the company’s software deals with code compliant with the new standard (ECMAScript2015

or ES2015), it is safe to assume that all these projects were built to perform in the node.js envi-

ronment. This is because ES2015 will allow the usage of import and export keywords in the web

environment [S+15] and is by analysing the imports that raven identifies the libraries in use.

Of all the 2,978 projects, 267 distinct libraries were identified. This value is apparently low as

one would expect more diversity out of almost 3,000 projects. The cause of this lack of diversity
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Table 4.2: Metadata results for the original versions of the dataset.

Element Logical LOC Cyclomatic
Complexity Halstead’s effort Maint. Index

dojo 1.11.2 prod 6.98 2.90 3952.20 110.95
dojo 1.11.2 dev 6.99 2.90 4099.27 110.82

jquery 3.0.0 prod 4.92 3.09 5848.37 115.27
jquery 3.0.0 dev 7.84 3.60 5863.63 107.67
moo tools 1.6.0 6.21 2.59 2961.43 113.87
prototype 1.7.3 6.54 2.71 3002.51 112.96
cheerio 0.20.0 6.02 2.81 3214.66 118.29

commander 2.9.0 6.73 2.89 3409.28 112.04
express 4.14.0 6.60 2.58 2445.36 116.65

q 1.4.1 4.14 1.36 1102.08 124.40
octane-master 19.72 2.20 19460.88 111.75

is the fact that a user can submit the same projects, with minor alterations, several times, resulting

in an inflation of the number of projects and a low diversity of libraries used. This means that,

when considering the comparison between the metrics of the projects, similar metrics of a series

of projects of the same user, which use the same libraries, need to be normalized, in order to count

as a single project. The software metrics from projects from the same user, submitted in the same

day, were normalized and considered to be a single set of metrics.

Another concern, when regarding the comparison of libraries, is the fact that the comparison

must be made, not only between libraries which are used for the same purpose, but also with

libraries meaningful enough to affect the code’s metrics. For example, a JavaScript application

framework, such as express [expa], has a much more meaningful impact in the code’s structure

and organization, because it enforces a certain type of constructions to be used, which are then

translated in the value of the metrics, than a library such as the node.js filesystem library, which

is normally used only at specific times in the program and has, in general, less impact on the

code’s structure. Also, most software projects have multiple dependencies, which means that the

metrics retrieved are not influenced by a single dependency but rather by their aggregation, which

strengthens the argument of the library needing to be meaningful enough.

With these concerns in mind, and after the revision of the node.js libraries found in the analysed

projects, the following list of libraries susceptible to be compared was compiled. This list attends

to the fact that the libraries used need to provide a lot of functionality in order to influence the

code’s metrics:

• Frameworks to model the view component of an application: react [rea] and backbone [bac].

• Login/registration libraries: passport [pas] and express-session [expb].

• Relational databases: mysql [noda] and sqlite3 [nodc].

• Non-relational database tools: mongoose [monb] and nedb [ned].
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Table 4.3: Metadata results for the obfuscated versions of the dataset.

Element LogicalLOC Cyclomatic
Complexity Halstead’s effort Maint. Index

dojo 1.11.2 prod 4.33 1.81 1842.96 121.42
dojo 1.11.2 dev 4.33 1.81 1841.33 121.39

jquery 3.0.0 prod 4.06 2.00 3051.44 120.69
jquery 3.0.0 dev 4.60 1.93 2093.92 119.96
moo tools 1.6.0 4.68 1.79 2075.58 119.73
prototype 1.7.3 4.51 1.80 1868.57 120.69
cheerio 0.20.0 5.52 1.93 2021.34 118.66

commander 2.9.0 4.95 1.93 2614.95 118.03
express 4.14.0 6.00 1.80 1804.48 117.68

q 1.4.1 3.99 1.23 757.35 126.24
octane-master 8.57 1.36 3850.97 120.45

• Asynchronous code handling: q [q] and async [asy].

• Templating: handlebars [han], mustache [mus] and swig [swi].

• General frameworks/application: soap [nodb], express [expa] and connect [con].

The analysis result considering each group of libraries is displayed on Table 4.7. The total and

normalized numbers of projects are displayed although the metrics following only correspond to

the normalized results.

4.2 Discussion

4.2.1 Controlled dataset

The following section presents the discussion of the results obtained for the controlled dataset.

Data sizes

It is important, before discussing the transformations applied, the effects of the transformations

applied on the size of the projects (Table 4.1):

In terms of obfuscation, all the front-end libraries yielded smaller sizes for the obfuscation

transformation except the production versions of jquery [jqu] and dojo [doj]. Most of the npm

packages did not suffer a significant impact, except for Q [q] and the octane [goo] benchmarks

was heavily affected by the transformation.

This type of behaviour is as expected because, although the duplicate literals, dot notation and

function outlining transformations generate more code than the one previously existent, comments

and whitespaces are removed. The outlying of the production versions of jquery and dojo can be

explained by the fact that they are minified and do not contain comments or whitespaces, so their
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Table 4.4: Metadata results for the self-defended versions of the dataset.

Element Logical LOC Cyclomatic
Complexity Halstead’s effort Maint. Index

dojo 1.11.2 prod 9.72 4.05 28145.40 98.79
dojo 1.11.2 dev 10.89 4.52 30709.93 96.63

jquery 3.0.0 prod 10.89 4.52 31078.67 96.59
jquery 3.0.0 dev 10.89 4.52 30226.58 96.68
moo tools 1.6.0 9.54 3.97 28171.43 99.10
prototype 1.7.3 9.41 3.92 27951.50 99.35
cheerio 0.20.0 9.07 3.79 25886.58 102.95

commander 2.9.0 9.27 3.86 27633.02 99.65
express 4.14.0 9.16 3.83 26276.71 102.70

q 1.4.1 10.89 4.53 30840.42 96.61
octane-master 9.19 3.86 26913.35 102.00

size increased. Regarding the octane benchmarks, it was predictable that the size would increase

since the code being tested is used to test performance and not for development purposes, therefore

not containing a large amount of comments and more constructions susceptible to be bloated.

Upon inspection of the self-defended code files it is observed that there are a series of eval

statements being used on a very large string. Since the algorithm being used to encode the code

into the strings is proprietary, it is hard to predict the result, in terms of size, of applying the

transformation, so sound conclusions can not be made as why some data samples increased more

than others. This being said, all the samples displayed an increase in size. The least amount

of increase was of observed on the jquery development version, which was of about 30 kB. As

expected, the largest increase was of the octane benchmarks.

As expected, all minified versions of the dataset were smaller than the original except for the

jquery production library, which was already minified. Jscrambler’s process of variable renaming

probably generated literals of bigger size than the process to minify the original version of jquery.

All data samples presented a smaller size value when compressed, as expected.

Original metrics

Table 4.2 presents the metrics gathered from the original versions of the data samples.

It can be verified that for the front-end libraries and npm projects, the values of the logical LOC

is between 4 and 8, which indicates that on average, each function executes 6 statements. Having

modular functions is a JavaScript best practice [Cro08], which means each function is responsible

for executing only one task, so a low average value was expected from production grade tools. For

octane [goo] a higher logical LOC count was expected, since, as already stated, it focus on heavily

testing JavaScript.

The cyclomatic complexity (CC) lies between 1 and 4 for all data samples, which indicates

that each function has, on average, between 2 or 3 control flow paths, which again is a strong

indicative of modular code.
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Table 4.5: Metadata results for the minified versions of the dataset.

Element Logical LOC Cyclomatic
Complexity Halstead’s effort Maint. Index

dojo 1.11.2 prod 6.98 2.90 3893.52 111.00
dojo 1.11.2 dev 6.99 2.90 3894.38 111.00

jquery 3.0.0 prod 4.92 3.09 5848.37 115.27
jquery 3.0.0 dev 7.84 3.60 5689.04 107.77
moo tools 1.6.0 6.21 2.59 2845.18 114.00
prototype 1.7.3 6.54 2.71 2832.61 113.16
cheerio 0.20.0 6.02 2.81 3109.26 118.38

commander 2.9.0 6.73 2.89 3320.91 112.13
express 4.14.0 6.60 2.58 2314.00 116.83

q 1.4.1 4.14 1.36 997.98 124.67
octane-master 19.72 2.20 19214.94 111.83

Halstead’s effort (HE) (2.10) behaviour is more difficult to predict as it relies on a number of

different factors. The main contributors for a bigger HE value are the number of distinct operators,

number of distinct operands and total number of operators. These counts are not only affected by

the purpose of the library but also the code style and programming standards.

The Q [q] package, by providing abstractions to deal with asynchronous code and not having

to perform many computations, presents a lower HE value than most of the other data samples.

Octane, as expected, presents a much larger average HE per function than any other sample. It

is also important to notice that there is a minor difference between the HE value between the

production and development versions of jquery and dojo. Since HE is based on the counts of

operators, and since minification does not affect its number, they present similar values.

The maintainability index (MI) (Equation 2.11) ranges between 107 and 125 for the whole

dataset. Since the MI is mostly affected by the LOC count, the similarity between the LOC values

proves to influence the MI values.

Obfuscation

Upon comparing the original metrics (Table 4.2) with the obfuscated ones (Table 4.3), the

following is observed:

• The logical LOC count is on average 2 lines less for each data sample.

• The average CC now lies close to 2 instead of 3.

• The HE is, on average, half the original value.

• The MI of each sample increased by 8 points on average.

There was no single metric which remained unchanged after the combination of transforma-

tions which comprise the obfuscation process.

42



Experimental Results

Table 4.6: Metadata results for the compressed versions of the dataset.

Element Logical LOC Cyclomatic
Complexity Halstead’s effort Maint. Index

dojo 1.11.2 prod 11.5 3.5 7148.07 100.79
dojo 1.11.2 dev 11.5 3.5 7148.07 100.79

jquery 3.0.0 prod 11.5 3.5 7148.07 100.79
jquery 3.0.0 dev 11.5 3.5 7148.07 100.79
moo tools 1.6.0 11.5 3.5 7148.07 100.79
prototype 1.7.3 11.5 3.5 7148.07 100.79
cheerio 0.20.0 8.51 2.98 5011.33 112.14

commander 2.9.0 11.5 3.5 7148.07 100.79
express 4.14.0 9.71 3.13 5535.94 107.86

q 1.4.1 8.05 2.35 3878.64 112.55
octane-master 11.34 3.46 7039.78 101.13

The decrease of the logical LOC count and the average CC can be explained by the function

outlining transformation which, by encapsulating statements inside functions, reduces the mean

value of both the logical LOC and CC.

The decrease of HE is explained by two of the transformations. First, the duplicate literals

transformation attributes a variable for each literal which is repeated in the code. This decreases

the total number of operands, which is a main contributor for an increase in effort (2.10). And

second, the fact that the dot notation transformation is applied, creates a number of variables in

order to mask the access to a property. By creating new variables, the number of distinct operands

increases. This increase has an inverse effect on the HE value.

It is possible to conclude that the duplicate literal transformation had a great impact on the

octane benchmarks since the HE value was reduced by about 15000 units. This means that the

benchmarks probably have the same literal being retyped frequently.

As stated before, the major factor of the MI index is the LOC count. By decreasing the LOC

count but also the program volume (2.5), due to the duplicate literal transformation, the MI was

increased on average.

Self-defense

The results displayed on Table 4.4 are respective to the self-defending transformation, which,

as already stated, is proprietary. This transformation removes comments, so that should also be

taken into consideration.

Upon observing the self-defended code it is noted that the code relies on a series of eval

constructions, inside loops, executed on very large strings, which are presumably encoding the

contents of the code. This pattern is reproduced across each file which means that the metrics

results gathered are from the structure used to reproduce the code and not the code itself. This

ultimately leads to a very high degree of similarity between the metrics, which is observed. The

only metric which could vary from this is HE, since the string which encodes the code could
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Table 4.7: Metadata results for the set of libraries identified in the Jscrambler’s dataset. The total
and normalized numbers of projects are displayed although the metrics following only correspond
to the normalized results.

Element Total
Projects

Normalized
Projects Logical LOC Cyclomatic

Complexity
Halstead’s
effort

Maint. Index

react 58 13 23.88 3.23 106788.09 86.86
backbone 35 4 6.13 2.66 8689.60 113.08
passport 107 35 6.01 2.09 3655.69 123.32
express-
session

7 2 3.81 1.19 612.68 127.65

mysql 7 2 9.88 2.26 5545.17 110.55
sqlite3 12 1 13.82 3.95 12133.56 96.01
mongoose 2 1 9.85 1.96 2703.95 110.70
nedb 237 33 6.75 2.10 3983.91 111.97
q 12 2 3.65 1.73 389.52 133.47
async 878 85 31.45 2.15 33205.01 116.47
handlebars 6 2 10.08 3.70 42799.73 96.81
mustache 63 2 19.31 2.57 6208.52 108.81
swig 229 31 6.59 2.08 4026.23 111.91
soap 546 17 131.58 2.32 150521.31 111.48
express 755 48 50.97 2.15 55808.96 113.17
connect 1 1 3.56 1.09 407.85 130.24

increase or decrease in size depending on the magnitude of the data sample, but no correlation

could be found between the sizes of the data samples and the HE value for the self-defense.

Minification

The minification process removes all whitespaces and comments and replaces the names of

the variables for meaningless names. As it would be expected, this has no impact in the software

metrics, being the impact felt only on the size of the file.

Compression

The compression algorithm presented curious results. Each of the front-end libraries used as

sample scored exactly the same value on every metric. This is due to the fact the the LZ77 com-

pression algorithm [WP02] creates a vocabulary from the code files. This vocabulary has a fixed

size so the compression resulting always yields the same values for the number of operands and

operators, which results in the HE being the same. The compressed files present a similar struc-

ture to the ones resulting from the self-defending transformations, since eval statements alongside

loops are used to decompress the file contents. Being the structure equal for every file, the metrics

also are. The discrepancy viewed in the npm projects and the octane benchmarks is due to the fact
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that the compression algorithm has a size threshold in order to operate so very reduced files will

not be compressed hence the discrepancy.

4.2.2 Company dataset

As stated in the previous subsection 54,227 projects were analysed. Of those, only 2 was the

analysis able to identify libraries present in web applications. On the other hand, 2978 projects

had node.js libraries identified. Chapter 3 details the framework identification process. For the

identification of libraries in applications designed to be executed by a browser, the raven-analyser

gathers all the included urls from script elements in the HTML files. These urls then serve as the

basis for matching the usage of library constructions, by matching keywords.

It is a common practice to use JavaScript outside of HTML files by not having the code inside

script tags. Being the JavaScript code separated from the HTML files which include it, case that

represents the majority of use cases of the company’s tool, the raven-analyser is unable to identify

libraries being used in JavaScript files ran in the browser, resulting in the low number of web

applications projects where libraries were identified. A brief paragraph with ideas for improving

this process is presented in Section 5.2.

From observing Table 4.7 it is possible to conclude that only the soap [nodb] and express

[expa] frameworks are susceptible to be compared in terms of software metrics. All other groups

of libraries do not present a sufficient number of projects analysed in order to soundly gather

conclusions in regards to software metrics.

From comparing express and soap it is not possible to conclude which one enforces higher

complexity. Although express applications present a significant high degree of logical LOC, this is

easily attributed to the fact the applications which rely on express can be big monolithic functions.

Their cyclomatic complexity, which could be the main indicator on which is the most complex, is

similar. Express also presents a high number of the same operands being used, hence the high HE

value. But although the high HE value for express, both frameworks present the same MI, which

is again a strong argument on why the results gathered do not mean one is more complex than the

other.

With this being said, in terms of quality, the soap framework should be more human readable

as it presents a lower degree of sequential logic, as the logical LOC value displays.

4.3 Summary

This chapter firstly presented the process of gathering the analysis results for raven to analyse.

The first dataset compiled consisted in 9 distinct samples, 4 being front-end JavaScript libraries,

45



Experimental Results

other 4 npm packages and the latter being a JavaScript benchmark suite.

Secondly, the discussion of the results were made. The sizes of the data samples used generally

increased for the obfuscation and self-defending transformations and decreased for the compres-

sion and minification transformations, which were applied by using the JScrabler’s software.

No software metric endured the obfuscation transformation although the obfuscation results

obtained were predictable by the conjunction of applied transformations. The self-defending and

compression transformations both rely on encoding the code in a large string and then decoding it

using the eval statement. These transformations completely mask the code’s metric footprint.

Since minification only removes and renames properties of the code, the software metrics

gathered remained the same.

The data gathered from analysing Jscrambler’s projects did not yield sufficient results in order

to take significant conclusions from them, mostly because there was not a great amount of data to

compare but also because comparisons need to be made between libraries being used for the same

purpose.

Figure 4.1: Chart representative of the Logical Lines of Code for each transformation of express,
Q and the development version of jquery.
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Figure 4.2: Chart representative of the Cyclomatic Complexity for each transformation of express,
Q and the development version of jquery.

Figure 4.3: Chart representative of Halstead’s effort for each transformation of express, Q and the
development version of jquery.

47



Experimental Results

Figure 4.4: Chart representative of the Maintainability Index for each transformation of express,
Q and the development version of jquery.
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Chapter 5

Conclusion

Static analysis of code resources allows the construction of data structures which represent their

form in a way that can be programmatically interpreted. These structures allow the execution of

analyses which can yield information about them. The information retrieved can be in the form

of software metrics. There is not a single metric that comprises a global understanding on how

complex or good (in terms of quality) some piece of code is so one must rely in a set of metrics to

properly distinguish code resources and gather an understanding about their aspects [Fen94].

5.1 Contributions

The tool developed in the scope of this dissertation proved to be capable of successfully extracting

metadata from several JavaScript applications and compiling information from different sources,

thus being an asset for future use by Jscrambler.

Having retrieved a set of metrics from a controlled dataset it be can concluded that software

metrics retrieved can be a good indicator on how the transformations impact the code and how

Jscrambler’s obfuscation is enough to mask the metric footprint of code resources. Although

one can compare the metrics before and after obfuscation and infer what has been performed, the

general software metrics do not endure the process. The metric footprints of code resources are

completely masked when Jscrambler’s proprietary self-defending or compression is applied.

The identification of libraries in a large dataset of JavaScript applications is not an easy task

unless the applications are designed for the node.js environment [nodd]. Upon analysing a series

of different projects and comparing the software metrics of similar frameworks being used, sound

conclusions could not be made since the data sample was not big enough and because the software

metrics are mostly influenced by the programmer than by the tool being employed.
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5.2 Future Work

The Raven solution proved to be capable of fulfilling the objectives it was proposed to. As any

other type of software there are improvements which, if implemented, would be of great value for

the solution. Following are some ideas for future development.

5.2.1 Optimizing storage space

When analysing large projects the size of the metadata retrieved sometimes exceeds the size al-

lowed for a single document in MongoDB [mona]. To solve this issue one of two measures can be

taken: Increase the storage space, by implementing a MongoDB solution using GridFS 1, which

allows saving large documents since they are chunked and then saved alongside metadata which

allows for the reconstruction of the whole document; or reevaluate the importance of some types of

data being saved, specially the results of the examiner component of the raven-analyser (detailed

in Chapter 3).

5.2.2 Web Interface

Using database graphical-user-interface (GUI) clients suffices for easily navigating through the

analysed results, since most matured database solutions provide one. However, for a user which

is unfamiliar with the tool, navigating and organizing the results would benefit from a dedicated

user interface, which would automatically connect to the data sources needed and could allow the

user the selection of which types of data he wants to retrieve from the code being analysed.

5.2.3 Improving library identification

The library identification process on the subject of statically analysing JavaScript module files (i.e.

files executed in the node.js environment) relies on identifying the imports made as it is necessary

to, in each file, import the frameworks/libraries in use. This process is reliable and could only be

improved by checking if the the project being analysed possesses a pacakage.json file, which was

accomplished.

The process of identifying frameworks for JavaScript script files (i.e. files ran in the browser),

in a static fashion, presents some complications and can be improved in several ways. Here are

some suggestions which could strengthen the process and make it more reliable:

• Gather framework indicators, through machine learning, which reveal the usage of certain

frameworks. The solution would gather data from publicly available repositories and pack-

age managers and compile a series of categorized indicators which would then be used for

the identification process. For example, when analysing HTML files, if HTML elements

1https://docs.mongodb.com/manual/core/gridfs/
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were found with attributes named as ng-*, where * is a set of keywords, and a script el-

ement included a link containing the word angular then it is almost certain that the code

being analysed uses angular2.

• Allow for the dynamic analysis of HTML files (this would imply an alteration to Jscram-

bler’s terms of service). By executing HTML files one can inspect the window variable for

libraries in use which would greatly improve the identification process.

• The easiest alternative would be to let the JavaScript community mature. Since the upbring-

ing of react [rea] there’s been an increased use of npm [quo] in the web environment. With

the new standard (ECMAScript2015 or ES2015), the import/export notation is to be adopted

in the web, which would facilitate the identification process.

5.2.4 Implementing new software metrics

The new ECMAScript standard (ECMAScript2015 or ES2015) introduces the syntax necessary to

create classes in JavaScript, a highly anticipated and requested feature. Although most JavaScript

implementations rely on the language native object type to model classes, if the feature is success-

ful in gaining some traction then the object-oriented metrics referred in Chapter 2 can be made

part of the solution, by an extension of the escomplex library [esca].

By implementing new metrics and testing them against Jscrambler’s services, specially the

obfuscation process, one can guide the way the services are developed. If some metric is resilient

enough to a set of transformations then it presents a risk and the services development should

address its masking in order to minimize the risk of reverse-engineering.

5.2.5 Guide the company’s obfuscation process

By having the software metrics retrieved from the original code, the company’s obfuscation can be

enhanced in two ways, if deemed suitable. Firstly, an interval can be established as to how much

the metrics can change after the process. The user might want the number of new variables created

to remain within certain bounds, for example. Secondly, there recommendations can be provided

based on the metrics retrieved. If the cyclomatic complexity of a code is high then the tool can

suggest the application of control flow masking measures.

2https://angularjs.org/
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Appendix A

JScrambler Transformations

In this appendix, the transformations used from JScrambler’s website 1 are described as per the

help page 2 found on the site.

The following is the list of transformations used in the project. The list does not comprise all

the transformations the company offers but only the ones which were used to obtain experimental

results for the project.

• Comment Removal

• Dictionary Compression

• Dot notation obfuscation

• Duplicate literals elimination

• Function outlining

• Function reordering

• Rename (local)

• Self-defending

• Whitespace removal

A.1 Description

A.1.1 Comment Removal

Removes all the comments in the code since they are unnecessary for its execution.

1https://jscrambler.com
2https://jscrambler.com/en/help
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A.1.2 Dictionary Compression

Uses a lossless data compression algorithm (LZ77 [WP02]). The algorithm creates a dictionary of

the JavaScript source code which is then used to replace duplicates with a reference to the existing

match, thus achieving the compression.

A.1.3 Dot notation obfuscation

Transforms JavaScript’s dot notation into array subscript notation.

An example of this transformation can be found on Listing A.1.

1 //source code

2 navigator.plugins.length

3
4 //transformed code

5 var a = navigator, b = ’plugins’, c = ’length’; a[b][c];

Listing A.1: An example of the dot notation obfuscation transformation.

A.1.4 Duplicate literals elimination

Replaces duplicate literals by a variable, which will replace repeated usages. When minifying

JavaScript, the transformation only occurs if the replacements yield a smaller code size.

The variable declaration is added to the first private scope accessible by all the usages of the

variables. If a private scope is not found then it is added to the global one. To avoid polluting the

global scope the variables are added to an object literal.

An example of this transformation can be found on Listing A.2.

1 //source code

2 variable1 = "http://jscrambler.com";

3 function1("http://jscrambler.com");

4
5 //minified code

6 var a = "http://jscrambler.com";

7 variable1 = a;

8 function1(a);

Listing A.2: An example of the duplicate literals elimination transformation.

A.1.5 Function outlining

Creates new function declarations from a single or group of statements. The resulting code has an

altered structure and is, therefore, harder to read/follow.

An example of this transformation can be found on Listing A.3.
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1 //source code

2 function doesSomething() {

3 // more code

4 if(predicate) {

5 // more code

6 variable = statement;

7 // more code

8 }

9 // more code

10 }

11
12
13 //minified code

14 O = {

15 ’functionOutline1’ : function (argumentN) {

16 variable = argumentN;

17 },

18
19 ’functionOutline2’ : function(argumentN) {

20 return argumentN;

21 }

22 }

23
24 function doesSomething() {

25 // more code

26 if(O.functionOutline2(predicate)) {

27 // more code

28 O.functionOutline1(statement);

29 // more code

30 }

31 // more code

32 }

Listing A.3: An example of the function outline transformation.

A.1.6 Function reordering

Reorders the declaration of functions in a random fashion but taking into account the declaration

hoisting.

A.1.7 Local rename

Renaming transformations are responsible for replacing identifiers present in the code for ones

without meaning. By making identifiers smaller and removing their meaning it is harder to reason

about the code without affecting the way the program is executed.

Local names are those which are private, that is, those that are hidden from the global scope

namespace. Any name which can be publicly called is not replaced by this transformation.
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An example of this transformation can be found on Listing A.4

1 //source code

2 function doesSomething(argument1) {

3 var variable1 = "alert";

4 window.alert(argument1+variable1);

5 }

6
7 //minified code

8 function doesSomething(a) {

9 var b = "alert";

10 window.alert(a+b);

11 }

Listing A.4: An example of the local renaming transformation.

A.1.8 Self-defending

Obfuscates functions and objects by concealing their logic. Frustrates code tampering attempts by

using anti-tampering and anti-debugging techniques.

Trying to tamper the code will break its functionality and using JavaScript debuggers will

trigger defenses to hinder the analysis.

A.1.9 Whitespace removal

Removes all white spaces and newlines from the code.

An example of this transformation can be found on Listing A.5

1 //source code

2 function doesSomething(argument) {

3 if (argument > 2) {

4 return argument

5 } else {

6 return 0

7 }

8 }

9
10 //minified code:

11 function doesSomething(argument){if(argument>2){return argument}else{return 0}}

Listing A.5: An example of the whitespace removal transformation.
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