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Abstract

Deep Brain Stimulation (DBS) has proven to be valuable in the treatment of severe forms of
Parkinson’s Disease. Intraoperative evaluation of the efficacy of stimulation includes evaluation
of the effect on rigidity. A subjective semi-quantitative scale is used, dependent on the examiner’s
perception and experience, through passive wrist flexion. So, the system proposed herein aims to
tackle this subjectivity, using quantitative data and providing real-time feedback of the computed
rigidity reduction, hence supporting the physician decision.

The system comprised of a gyroscope-based motion sensor embedded in a textile band is
placed on the patient’s hand, which communicates its measurements to a smartphone or a personal
computer. The latter computes a signal descriptor from the angular velocity of the hand during
wrist flexion in DBS surgery and applies a polynomial model to determine the rigidity reduction,
which is communicated to the physician. This model was trained using previously acquired signals
from patients during DBS surgery, for different stimulation settings.

To improve previous results (83.9% of accuracy), multiple models were designed according to
the baseline rigidity and cogwheel rigidity was considered. However, these did not allow increased
performance. Still, performance is consistently over 75% and mean error under 5% which sup-
ports the polynomial model-based approach. Furthermore, the usability of the system was further
enriched: the feedback may be provided by a smartphone and by a smartwatch to be worn by the
physician.

Additionally, this system in a small cohort proved to be reliable in distinguishing tremor and
bradykinesia states before and after DBS surgery which proves its applicability to a wider range
of motor symptoms (affecting other movement disorders other than Parkinson’s Disease).

To introduce this rigidity evaluating system into the growing market of Deep Brain Stimulation
for Parkinson’s Disease, partnering with established companies is pivotal for their expertise in the
procedures to be eligible for CE marking and also to reach a wider number of centers performing
Deep Brain Stimulation surgery. For that purpose, attention should be paid in terms of intellectual
property protection to secure the invention, which was already initiated with a patent application.
Still, a utility model application could be of interest to secure protection in case the patent is not
granted.

Keywords: Parkinson’s Disease, wrist rigidity, deep brain stimulation, kinematics, gyroscope,
medical device market
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Resumo

A Estimulação Cerebral Profunda (ECP) tem a sua eficácia já provada no tratamento de formas
severas da doença de Parkinson. A avaliação intra-operativa da eficácia da estimulação inclui a
avaliação do seu efeito na rigidez. Uma escala semi-quantitativa é usada, dependente da percepção
e da experiência do examinador, através da flexão passiva do pulso. O sistema proposto doravante
tem por objectivo abordar esta subjectividade, usando dados quantitativos e dando feedback em
tempo real da redução da rigidez calculada, apoiando deste modo a decisão do médico.

O sistema é composto por um sensor de movimento com giroscóscopio preso numa banda
elástica, colocada na mão do paciente, que comunica as suas medidas para um smartphone ou
computador. Este último calcula um descritor de sinal com base na velocidade angular da flexão
do pulso durante a cirurgia de ECP e aplica um modelo polinomial para determinar a reduçao de
rigidez, que é comunicada ao médico. Este modelo é treinado com base em sinais previamente
adquiridos de pacientes na cirurgia de ECP para diferentes parâmetros de estimulação.

Para melhorar os resultados anteriores (83.9% de precisão), múltiplos modelos foram desen-
hados com base na rigidez de base do paciente e a rigidez de roda dentada foi considerada. No
entanto, estes não permitiram melhoria da performance. Ainda assim, a precisão esteve consiste-
mente acima de 75% e erro médio abaixo de 5%, o que suporta o uso de uma abordagem baseada
em modelo polinomial. Ademais, a usabilidade do sistema foi ainda mais enriquecida: o feedback
pode ser dado tanto pelo smartphone como pelo smartwatch a ser usado pelo médico.

Adicionalmente, numa pequena amostra de pacientes, o sistema provou ser fidedigno em dis-
tinguir os estados de tremor e bradicinésia antes e depois da cirurgia de ECP, o que comprova a
aplicabilidade do sistema a uma maior variedade de sintomas motores (afectando outros doenças
do movimento para além da doença de Parkinson).

Para introduzir o sistema de avaliação de rigidez no mercado de ECP para a doença de Parkin-
son, a formação de uma parceria com empresas já estabelecidas é uma etapa essencial pela ex-
periência que têm nos procedimentos para receber a marca CE e também para alcançar um maior
número de centros que realizam cirurgia de ECP. Com esse objectivo, deve prestar-se atenção à
protecção de propriedade intelectual para assegurar a invenção, o que já foi iniciado com um pe-
dido prévio de patente. Apesar disso, uma candidatura a modelo de utilidade pode ser de interesse
caso a patente não seja atribuída.

Palavras-chave: Doença de Parkinson, rigidez do pulso, estimulação cerebral profunda, cin-
emática, giroscóspio, mercado de dispositivos médico
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If you think you are beaten, you are;
If you think you dare not, you don’t.

If you’d like to win, but you think you can’t,
It is almost a cinch that you won’t.

If you think you’ll lose, you’re lost;
For out of the world we find

Success begins with a fellow’s will
It’s all in the state of mind.

If you think you’re outclassed, you are;
You’ve got to think high to rise.

You’ve got to be sure of yourself before
You can ever win the prize.

Life’s battles don’t always go
To the stronger or faster man;

But sooner or later the man who wins
Is the one who thinks he can!

Walter D. Wintle
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Chapter 1

Introduction

1.1 Context

This project is being developed at the Biomedical Research and Innovation (BRAIN) group in the

Instituto de Engenharia de Sistemas e Computadores - Tecnologia e Ciência (INESC-TEC) under

the supervision of Eng. Dr. João Paulo Cunha. This project was first initiated by Eng. Pedro Costa

and has the collaboration of the Functional Surgery and Movement Disorders Unit of Hospital São

João, coordinated by Dra. Maria José Rosas and Dr. Rui Vaz.

The proposition presented herein is to improve the current solution to accurately evaluate

reduction in rigidity in intra-operative conditions. This could work as a support device during

Deep Brain Stimulation (DBS) surgery to assess motor improvements in real-time. Moreover, we

intend to extend the analysis to other cardinal parkinsonic symptoms, such as tremor.

1.2 Background: Parkinson’s Disease

The Parkinson’s Disease (PD) is a neurodegenerative disorder, first described in 1817 by James

Parkinson in “An essay on the shaking palsy”[1]. It is characterized by the loss of dopaminergic

cells in the substantia nigra. Usually, signals are propagated from the substantia nigra to the

striatum and, from here, to the motor cortex. With a decrease of dopamine release, the ability to

effectively control movement is lost and abnormal neurofiring patterns occur. This leads to the

most known motor symptoms of PD: tremor at rest, rigidity and akinesia (or bradykinesia, which

is the slowness of movement). The prevalence of this condition shows increase with age across all

regions of the world and higher in males in the 50 to 59-years age group [2]. The costs associated

to PD are direct (e. g. drugs, home visits by general practitioners, nursing homes) and indirect

(loss of productivity, lost of leisure time, career replacement). In the UK, it is predicted that at

least £449 Million are spent because of PD and costs ranges from about £4-9 thousand per year

and per patient [3].

1



2 Introduction

1.2.1 Pathophysiology

PD, as already mentioned, results from the degeneration of the substantia nigra pars compacta,

whose dopaminergic nerve fibers connect to the caudate nucleus and putamen. The causes are un-

known. The dopamine secreted by the substantia nigra to the caudate nucleus and putamen works

as a inhibitory transmitter. By having a decreased release, the latter would become over active

and continuous excitation of the motor cortex would occur and, consequently, continuous muscle

contractions. This would explain the usual rigidity. Also, by not having inhibitory signals, the

control mechanisms would cause an oscillation between “on” and “off” in the excitatory signals,

leading to tremor. There is no formulated cause for the difficulty of performing movements in

patients with PD and for their rigidity and discontinuity, i. e., akinesia [4].

1.2.2 Diagnosis and Assessment

The diagnosis of PD is based on the presence of the aforementioned motor features (tremor, rigid-

ity, bradykinesia, loss of balance, shuffling gait) which are also present in other neurogenerative

disorders. The progression of the latter combined with the response to levodopa [5] are necessary

to distinguish PD from others (Essential Tremor, Multiple System Atrophy, Progressive Supranu-

clear Palsy). Suboptimal methods are still used because there is lack of validated biomarkers

specific for this disease with adequate sensitivity and specificity. Furthermore, common medical

imaging is unable to easily and clearly identify disease symptoms[6].

1.2.2.1 PD motor symptoms

Tremor may be classified as:

• Rest tremor: occurs when body is fully supported and there is no voluntary activation

• Action tremor

– Postural: occurs while voluntarily sustaining a position against gravity

– Kinetic: occurs in any voluntary movement

Rest tremors occur at 3 and 6 Hz [7] and is prominent in the distal part of an extremity and has

been shown to be present in over 70% of the PD patients [6]. Patients with PD often have postural

tremors, which are stronger and, therefore, more disabling than rest tremors [8]. Kinetic tremor

may be:

• simple, when volitional movement is not target-directed

• intentional, whose amplitude increases in visually-guided movements (e.g., finger-to-nose

test)

• task-specific, which only appear or becomes exaggerated in specific task, such as writing

• isometric, occurs during voluntary contraction against a rigid stationary object (e.g. squeez-

ing examiner’s hand)
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Bradykinesia is defined as slowness in movement and is related to a higher difficulty in plan-

ning, initiating and executing movements and in performing sequential and simultaneous tasks.

That results in micrographia, lessened finger manual dexterity and shuffling walk, for example

[6]. This feature is the one which shows best correlation to the degree of dopamine deficiency [9].

Rigidity, present in almost all PD patients [6], is the resistance of a limb to passive movement

(flexion, extension or rotation about a joint). One considers a joint rigid when more force than

expected is needed to move it. During examination, cogwheel rigidity in the movement may be

identified, which is similar to the ratchet pattern of a gear [6, 8], caused by episodic bursts of

muscle potential which lead to increment of resistance [10].

Other than motor symptoms, PD is associated to behavioral changes, sensory symptoms as

chronic pain and sleep disorders [8].

To classify the severity of these symptoms, the most used scale is the Unified Parkinson Dis-

ease Rating Scale (UPDRS), which was first introduced in 1987. The different parts of this evalu-

ation tool are in Table 1.1. Parts I, II and III contain 44 questions and the fourth part 11 questions.

However, the latter is included only when adjunct therapy is being used. To answer each ques-

tion, a 5-point scale is used, ranging from 0 to 4 where 0 is “not affected” and 4 “most severely

affected”. This assessment is qualitative and subjective and depends on the doctor clinical experi-

ence and perception.

Table 1.1: Total UPDRS parts. Adapted from [11].

I Mentation, behavior and mood intellectual impairment, thought disorder, motivation/initiative,
depression

II Activities of daily living
speech, salivation, swallowing, handwriting, cutting food,
dressing, hygiene, turning in bed, falling, freezing, walking,
tremor, sensory complaints

III Motor examination

speech, facial expression, tremor at rest, action tremor, rigidity,
finger taps, hand movements, hand pronation and supination,
leg agility, arising from chair, posture gait, postural stability,
body bradykinesia

IV Complications of therapy

dyskinesia-duration, dyskinesia-disability, dyskinesia-pain, early
morning dystonia, "offs"-predictable, "offs"-unpredictable,
"offs"-sudden, "offs"-duration, anorexia-nausea-vomiting,
sleep disturbance, symptomatic orthostasis

1.2.3 Treatment of Parkinson’s Disease

So far, there are no methods to cure the PD, only to control its symptoms. With that purpose,

existent approaches tackle the dopamine deficit or the unbalance of dopamine and other neuro-

transmitters [6, 9]. The gold-standard is levodopa (L-dopa), which was introduced in 1961 in an

injectable form and, a decade afterward, orally. It is believed that L-dopa is converted to dopamine
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in the brain, therefore, restoring balance between inhibition and excitation in the caudate nucleus

and putamen [4].

When the efficacy of L-dopa decreases and incidence and severity of side-effects increases, a

different approach is needed [9]. Deep brain stimulation (DBS) is based on the electrical stim-

ulation with a tetrapolar electrode at high frequencies (130 Hz) with pulse length at 60 µs in a

given target of the brain. Firstly, relying on pre-operative imaging (representation in Figure 1.1),

the surgery of electrode implantation is planned and orientation of the implantation device de-

fined. After correctly aligning the device, the patient’s skull is drilled and exploration electrodes

are inserted at a given deepness (usually 30 mm superior to the target). Then electrophysiological

exploration is performed to determine anatomical structures location and to determine where is

the region of interest. This is a required step because after opening the skull and consequent de-

pressurization, the brain shifts, invalidating the imaging previously acquired and the planning. At

this newly defined location, the 4 electrodes are used to stimulate the brain structures, varying the

intensity from 0 onwards and, simultaneously, the severity of the symptoms of PD may be evalu-

ated (except for gait). Most often, the improvement in rigidity is evaluated in a semi-quantitative

manner by a clinician [12], by imposing passive flexion of the wrist, which is easier to maneuver

and most accessible. For his evaluation, he compares the difference in the assessed rigidity to the

patient’s baseline rigidity state. Moreover, the physician assesses whether there are side-effects of

the stimulation such as dyskinesias (involuntary movements) and muscle contractions. Usually,

side-effects start to appear at 3.5 V and improvements at 2.0 V. The scale used for rigidity change

is based on the subjective assessment of the doctor involved in this process. Therefore, the classi-

fication given depends only on the experience of the medical doctor and his own perception. After

surgery, the patient’s drug doses are reduced and set at a compromise level: low enough to prevent

side-effects and high enough to prevent apathy and hypophonia.

The working principle of DBS is still unclear, although this surgical procedure has shown up

21 years ago. With an electrical stimulation approach, rather than ablation of functional targets,

as it has been done, DBS is able to promote their inhibition, as dopamine does. Most often,

the anatomical target is the subthalamic nucleus (STN) or globus pallidus internus (GPi). It is

theorized that their inhibition may be due to jamming of the neuronal pathways, inhibition of

neuronal firing with stimulation or inhibition of production of neurotransmitters [13].
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Figure 1.1: With the incidence of Parkinson’s Disease, the balance between the several structures
of brain is broken leading to the cardinal symptoms of the disease. A way to reduce them is through
Deep Brain Stimulation. In this case, a tetrapolar electrode is targeting the subthalamic nucleus
(STN). As the voltage of stimulation increases, a larger volume of the structure is stimulated. GPi
stands for globus pallidus internus, GPe for globus pallidus externus, SN for substantia nigra and
Th for thalamus.
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1.3 Motivation and Goals

In the DBS surgery procedure, the evaluation of the rigidity reduction by passive joint flexion

is performed by a physician, hence it is subjective and dependent on his experience and percep-

tion and relies in no quantitative information. In opposition to other DBS-specialized centers,

where they implant the electrode in the pre-defined target (without any other test), the Functional

Surgery and Movement Disorders Unit of Hospital S. João resorts to the blind agreement between

two physicians, using passive wrist flexion to evaluate rigidity, for being accessible and easy to

maneuver. Therefore, the goal of the project was to add to the subjectivity of the experts’ agree-

ment a quantitative procedure to determine the improvement in wrist rigidity by using a system

adequate for intra-operatory conditions and providing precise real-time feedback. Such setup has

been developed and tested in Hospital São João and showed an accuracy of 83.9% [14]. This will

be further presented in Chapter 3. Even though it proved to be reliable, some shortcomings may

be pointed out: the classification method used for evaluation of rigidity reduction with stimula-

tion does not consider either the patient limb baseline rigidity and the occurrence and severity of

cogwheel rigidity (which is an important parameter in the medical assessment of improvement).

Based on previous work, the goals for this thesis are to:

1. improve current model for rigidity evaluation namely by considering cogwheel rigidity

2. interface current mobile application with a smartwatch to improve usability in the operating

room

3. assess the feasibility of using other relevant features in the current system such as tremor

It is an implicit goal to perform signal acquisition during DBS surgeries related to rigidity

as well as before and after the surgical intervention. Patient monitoring was authorized by the

Hospitals Ethic Committee (Appendix A) and all patients signed an Informed Consent form.

1.4 Contributions

Over the course of this thesis project, the reliable detection of cogwheel rigidity artifacts was

achieved, even though its inclusion into the model did not improve the performance of the system.

Still, this information was incorporated in the previous mobile application to enrich the feedback

provided to the physician.

Furthermore, a multi-model approach where polynomial models designed specifically for dif-

ferent initial rigidity status (according to the assessment of the physician in the UPDRS scale)

were tested in intra-operatory conditions (leading to no significant improvement in performance).

These results were submitted as a 4-pages paper in the 38th Annual International Conference of

the IEEE Engineering in Medicine and Biology Society [15], which was accepted (Appendix B).

Another goal of this thesis’ work was to further enhance the system’s usability by having the

display of the computed rigidity reduction in a smartwatch to be worn by the physician who is per-
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forming the assessment. This communication was achieved and used in intra-operatory conditions,

as in Appendix F.

Also preliminary results related to tremor and bradykinesia assessment showed the system

ability to identify differences namely before and after DBS surgery.

Out of the scope of the initial goals, an analysis of the system in a commercial viewpoint

was performed, covering the industry landscape, the procedures for CE marking and intellectual

property protection.

1.5 Dissertation structure

This dissertation is organized as follows: Chapter 1 encompasses a contextualization of the thesis;

Chapter 2 presents current approaches to assess cardinal symptoms of PD, Chapter 3 introduces

the status of the system and its performance when the thesis work initiated; Chapter 4 presents

developments and results of the rigidity reduction model; Chapter 5 is related to cogwheel rigidity,

where its detection and inclusion into the system is explored; Chapter 6 introduces final features

of the mobile application and other possible uses for the proposed system; Chapter 7 studies the

system as a commercial product and Chapter 9 revisits all the work developed and conclusions

taken from it.





Chapter 2

State of Art

Herein, the traditional methods for assessment of some motor symptoms will be presented, fol-

lowed by an introduction and analysis to market and research solutions for their quantification,

approaching not only the hardware, but the processing techniques as well.

2.1 Semiology for PD

As aforementioned in Chapter 1, the Unified Parkison Disease Rating Scale (UPDRS) is a standard

scale which evaluates namely rigidity, tremor and bradykinesia.

2.1.1 Rigidity

For rigidity assessment, the clinician imposes passive joint flexion in the neck and in the left

and right upper and lower extremities. The passive flexion of the wrist or elbow is represented

in Figure 2.1. Based on the perceived resistance to flexion, he attributes a score, translating the

severity of the muscle rigidity. In particular, during Deep Brain Surgery (DBS) surgery, there

is preference to assess rigidity using the wrist joint because it is easier to maneuver and easily

accessible. Additionally, contrary to the wrist, the elbow does not have cogwheel rigidity, which

features only on the wrist.

Figure 2.1: Clinician method to assess (left) wrist and (right) elbow rigidity.
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Figure 2.2: Tasks for assessment of, from left to right, rest tremor, postural tremor and action
tremor. From [17].

2.1.2 Tremor

Tremor, as described in Chapter 1, is a motor symptom transverse to several neurological diseases

as dystonia, multiple sclerosis, PD and essential tremor (ET). It may be categorized as rest, postural

or kinetic/dynamic tremor and may be assessed in the extremities, namely in the hand [11]. In

Figure 2.2, tasks to assess each of these are represented: rest tremor while body is fully supported;

postural tremor while arms are lifted and dynamic tremor when patient taps his nose with his finger,

from extended arm position. Its amplitude (in centimeter) has been shown to be logarithmically

related to the UPDRS rating given by a clinician [16].

2.1.3 Bradykinesia

Bradykinesia, defined as slowness in movement, is assessed by having the patient performing left-

and right-hand finger-taps, opening and closing of hands, pronation/supination of hands (Figure

2.3), and heel taps. The speed, amplitude and halts may be analyzed by the clinician [8].

2.2 Commercial and research methods of assessment

2.2.1 Rigidity

At the moment, there are no devices in the market available for parkinsonian rigidity quantification

in the wrist or elbow because there is no device which is cheap to produce nor to sell, and also

(a) Hand Grasp. (b) Finger Tapping. (c) Hand supination/pronation

Figure 2.3: Tasks for bradykinesia clinical assessment.
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providing evaluation and classification presented in a meaningful away for the clinical centers.

However, researchers have proposed several approaches with that purpose. These usually rely on

the passive movement of the elbow [18, 19, 20, 21] or wrist [19, 22, 23, 24], but it has been also

attempted to analyze trunk rigidity [25]. These systems require passive joint movement, imposed

by a torque motor [18, 25, 26] or by an examiner [19, 20, 21, 22, 23, 24]. In Table 2.1, an

assessment of the features related to the setup (size, wireless), processing and feedback provided

is presented, which summarizes the analysis done over the different proposals.

Table 2.1: Summary of methods for rigidity assessment. Z stands for mechanical impedance, DB
for difference of Bias, V for viscous damping, K for elastic stiffness and EMG for electromyogra-
phy. The amount of ’+’ represents the level of performance.

Author and
Year Method Focus Body

Region Parameters Signal
Process Size Motorized Real-time

feedback Wireless

Patrick et al.,
2001

EMG,
torque-angle

Elbow,
Wrist

Z + ++ No No No

Shapiro et al.,
2007

EMG,
torque-angle

Elbow EMG, Work + + Yes No No

Mak et al.,
2007

Torque-angle Trunk Peak Torque +++ + Yes No No

Endo et al.,
2009

EMG,
torque-angle

Elbow V, K, DB + +++ No No No

Levin et al.,
2009

EMG and
goniometer

Elbow EMG ++ ++ No No No

Park et al.,
2011

Torque-angle Wrist
V, K, work,

impulse
+ ++ No No No

Kwon et al.,
2014

Torque-angle Wrist V, K, work + ++ No No No

Costa et al.,
2015

Angular velocity Wrist
Average and peak
angular velocity

+++ +++ No Yes Yes

Patrick et al. (2001) [19] reported having developed a custom made device which comprises

two pads placed where the physician will force the joint flexion, which measured the resultant

force applied on them, and a gyroscope mounted in one of the pads (Figure 2.4), which measured

the angular velocity and used to compute the angular displacement. The force pads would allow

us to determine an angular velocity normalized by the applied force, which decreases the influence

of the variability of how the physician imposes joint passive flexion.

They modeled the wrist joint as a viscoelastic system following the Equation 2.1:

T = Kx+V v+C (2.1)

where T stands for torque measured, x and v for angular displacement and angular velocity, re-

spectively, K for elastic stiffness, V for viscosity and C for constant offset of the sensors. These

parameters were obtained with the performed measurements and using a least-squares parametric
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Figure 2.4: Patrick et al. setup for rigidity quantification consisting of two-force pads and a
gyroscope. From [19].

method. As to quantify rigidity, they determine the mechanical impedance (Z) which is given by

vector sum of K and V ω (where ω is 2π× the mean frequency of the cyclical displacement by the

clinician). Z was related to the elbow and wrist rigidity subscore in UPDRS scale assigned by the

clinicians using an exponential relation. The sensors used in this work are relatively small; still

these are connected to a data acquisition box which then communicates to a computer the data.

Along with this, it requires calibration in each use.

Shapiro et al. (2007), contrary to the Patrick et al. (2001), imposed flexion to the elbow by

having a torque motor (Figure 2.5), instead of having a physician. This allowed to measure the

force applied by the motor to achieve a controlled angular velocity. In this case, over several cy-

cles of oscillation, they obtained the average work done by the motor (W ), which was obtained by

integrating the resistive torque over the angular displacement and then dividing by the number of

these cycles. Both angle and torque channels are low-pass filtered in order to remove the tremor

associated to parkinsonic tremor (4-8 Hz). W proved to distinguish healthy and PD patients. Addi-

tionally, the EMG signal from the biceps and triceps brachii was acquired, which further supported

that performing facilitation maneuvers increases muscle resistance to passive movement.

Regarding the setup, predictably, because it relies on a motor to impose movement, it is quite

bulky. Also, each cycle lasted 60 seconds and twenty repetitions were done, thus being a lengthy

procedure.

Another example of complex structure for quantitative assessment of rigidity is the component

of Cybex R©Norm Isokinetic dynamometer (Lumex, Inc., Ronkonkoma, NY) used by Mak et al.

(2007) [25], shown in Figure 2.6. Yet it targeted trunk rigidity and their goal was to assess the

influence of movement speed on rigidity, evaluated in relation to the work and peak torque. They

concluded that higher movement speed increased these measures. This serves as example as an

unpractical system to be used, even in medical appointments, requiring the positioning of the

patient in this large device.

Another system that overall is similar to Patrick et al. setup, is from Endo et al. (2009), pre-

sented in Figure 2.7. It also presented two force sensors, in the wrist and a gyroscope in-between.
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( )

Figure 2.5: Shapiro et al. (2007) setup for rigidity quantification in the elbow joint, comprised of
a motor imposing its flexion/extension. From [18].

Figure 2.6: Mak et al. (2007) setup for rigidity quantification in the trunk. From [25].
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Figure 2.7: Endo et al. (2009) setup for rigidity quantification in the elbow. From [20].

In their case, they determined the elastic coefficient for flexion and extension separately by esti-

mating the slope of the regression line for both movements, based on torque-angle data. They also

defined a new feature: difference of bias (DB). To determine the DB, for flexion and extension

the torque values at a given angle are averaged, subtracted and then there is the summation of the

differences. Both features were shown to be correlated with the rigidity severity, such that higher

perceived rigidity by the examiner translated into higher DB and elastic coefficients [20]. Still,

in this case, no significant different between flexion and extension was found. Their work was

further enriched with EMG signal (in biceps and triceps brachii), which they used to compute an

index by first rectifying and smoothing the signal, then integrating the signal over a second during

maximal extension and flexion stances and finally computing the ratio between them. This index

was able to better distinguish all different levels of rigidity when considering the biceps brachii

muscle, while the EMG-index from triceps brachii only indicated rigidity for medical assessments

of high severity rigidity[20]. Such conclusion is also supported by the work by Levin et al. (2009)

[21].

Apart from the EMG signal acquisition elements, this is a compact system but still wired to an

analog-to-digital converter. Comparing their processing methodology of the torque-angle data to

Patrick et al. (2011), it is equally complex because it requires the determination of a regression line

for both flexion and extension to estimate its slope, even though there are overall less parameters

to be determined.

Park et al. (2011) and Kwon et al. use the same device for rigidity evaluation, designed for

the imposition of wrist flexion by a clinician. This consisted of a potentiometer to measure the

joint angle, a load cell and an accelerometer to measure inertia (Figure 2.8). Kwon et al. (2014)

in particular used the device during DBS surgery.

They modeled the wrist joint as a viscoelastic system in the following form:

Iα = τ−V ω−Kθ +C (2.2)

where τ is the torque applied to move the joint, θ the joint angle, ω and α are the angular velocity

and acceleration, I the total inertia of the moving part, K is the spring constant (elastic stiffness),

V is the damping constant (viscosity) and C is an offset torque [22, 23]. These are obtained by
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Figure 2.8: Park et al. (2011) and Kwon et al. (2014) setup for rigidity quantification in the wrist.
From [22, 23].

fitting the experimental data to the spring-damper model.

Between V and K, viscosity has shown better capability in distinguishing different degrees of

rigidity [22, 23]. They proposed that the wrist joint can be modeled as a two dampers and one

spring system, by having a damping constant for flexion and another for extension [22]. This

could be related to an asymmetric contribution to rigidity of the flexor and extensor muscles, more

pronounced in imposed extension of the wrist [27].

Also, they computed work (W ) and impulse (I, torque integration with respect to time) for flex-

ion and for extension. It was assessed that work was phase-dependent and allowed distinguishing

healthy from parkinsonian patients. Nevertheless, better discriminative power was identified when

computing total W , i. e., throughout flexion and extension [22]. In the case of I, it proved to be

also phase-dependent and showed moderate performance when comparing between the baseline

rigidity and with the optimal setting of DBS [23]. Because both work and impulse are resultant

of resistive torque, and are susceptible to the movement range and speed, normalization by the

range and excursion time, respectively, was done. This improved the correlation of both to the

improvement in surgery. Still, their velocity-dependent nature prevails [23].

This device was used during DBS surgery which supports its usability. However, it required

connection to a computer through wires. Also, as all other proposals, no real-time feedback was

provided. To emphasize, the computation of the viscous damping and elastic coefficient would

hinder the latter implementation in a smartphone, for example, for local processing.

The only proposal so far for rigidity evaluation during DBS surgery and providing real-time

feedback to the clinician is the work done by Costa et al. (2015) [14]. This dissertation will

describe this system in more detail in the Chapter 3.
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Table 2.2: Summary of methods for bradykinesia and tremor assessment. A stands for accelerom-
eter, G for gyroscope, IMU for Inertial Measurement Unit and NA for not applicable. The amount
of ’+’ represents the level of performance.

Author and Year Device Type of Device Focus Body
Region

Signal
Process Size Real-time

feedback Wireless

Motus Bioeng.
Inc., 1993

Motus G Hand + +++ Yes No

Spyers-Ahby et al., 1999
O’Suilleabhain et al., 2001

3Space Fastrack
Electromagnetic
Tracking Device

Hand ++ +++ No No

Salarian et al., 2007 ASUR G Wrist + +++ No No

Lorincz et al., 2007
Patel et al., 2009

SHIMMER A Body + +++ No No

Heldman et al., 2011
Mera et al., 2011

Kinesia A , G Hand + +++ No No

Joundi et al., 2011 iPhone (iSeismo) A Hand +++ +++ Yes Yes

Synnot et al., 2012 Nintendo Wii remote A Upper Limbs ++ + No Yes

Dai et al., 2015 - IMU Finger ++ +++ Yes No

GyroGear, 2015 GyroGlove G Hand NA +++ NA Yes

2.2.2 Tremor and bradykinesia

For the quantification of both symptoms, the apparatuses mainly involve the use of accelerometers

and gyroscopes placed in the hand, as evidenced in Table 2.2. As for parameters, in the time-

domain, the root mean square (RMS) of their signals has been used to translate the magnitude of

the tremor [17, 28, 29, 30]; also several parameters in the frequency domain have been used from

center frequency, frequency dispersion (related to the consistency of the tremor) and crest factor

[30, 31, 32].

MOTUS is an example of a commercial gyroscope-based system (Figure 2.9) that was pro-

posed to be used for tremor assessment during DBS surgery and also for bradykinesia. The gy-

roscope is placed in the back of the hand, attached to a glove, and data processing is PC-based,

which includes fast-fourrier transform, computation of sharpness of resonance, root mean square

of angular velocity and position [33]. So, even though the sensor communication to the PC is

wireless, relatively heavy computation is performed. Additionally, the parameters by themselves

do not give any intuitive interpretation and with no meaning by themselves in the clinical context.

Using as well a gyroscope to assess tremor and bradykinesia, Arash Salarian et al. (2007) [28]

have produced a custom-made sensor, ASUR (Figure 2.10). However, they aimed at having their

sensor used during daily activities of a patient (such as lying in bed, sitting, eating and drinking).

To achieve that, tremor was detected and a bandpass filter to the angular velocity signal applied,

with cutoff frequencies of 3.5 and 7.5 Hz, then integrated; finally, the root mean square value was

computed (translating the amplitude of the tremors). Regarding bradykinesia, a low-pass filter was
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Figure 2.9: Motus system for quantification of movement [33].

applied to remove the tremor effect (3.5 Hz cutoff frequency) and a Hilbert transform was applied.

Then, three features were evaluated: the root mean square of the resultant angular velocity signal

(hand mobility), percentage of time where extremity was moving during the task (hand activity)

and, by integration, the range of rotation of the hand. These measures were successfully related to

the severity of symptoms. Still, significant processing was required.

Contrary to the previous approaches, SHIMMER [29, 34] used an accelerometer-based sys-

tem, comprised of sensors placed over the whole body (see Figure 2.11), which allowed measuring

the both tremor (amplitude and frequency) and bradykinesia and relate them to the correspond-

ing severity score with reduced error, after optimizing the window size for features computation,

parameters and kernels to be used in SVM classification. They used as features for tremor the

root mean square of the sensors signal, the range of the covariance, the dominant frequency and

periodicity (ratio between energy of the dominant frequency and the total spectral energy). For

bradykinesia, they evaluated body coordination by examining the correlation of the signal magni-

tude over all body, the delay and similarity. The sensors are wireless and the output is related to

an existent scale of severity of the symptom, which make this system attractive. However, it could

pose a computational burden to devices with less processing capabilities.

By combining both gyroscope and accelerometer data in the KinesiaTM (CleveMed) device,

Heldman et al. (2011) were also able to detect, discriminate and quantify different types of tremor

during the simulation of patient’s daily activities, using the peak power of both gyroscope and

Figure 2.10: An ASUR unit developed by [28], which includes a gyroscope.
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(a) One of the units of SHIMMER system (b) Placement of the sensors

Figure 2.11: SHIMMER System for quantification of bradykinesia and tremor. From [34].

accelerometer [35].

Moreover, the same device was used to develop a tuning map for DBS programming (Fig-

ure 2.13, system is patent pending [37]) which would represent visually the tremor and also the

bradykinesia severity for different stimulation intensities to facilitate the decision about the op-

timal settings of DBS [38]. To represent the severity of each symptom, the peak power of the

angular velocity (tremor and bradykinesia) and of its integration were determined (bradykinesia).

The concept of a tuning map is quite intuitive, yet the tremor reduction assessment is an easy task

to assess visually so it is not a pressing need.

Similarly, by combining different motion sensors, Dai et al. (2004) have built a device com-

prised of a wrist band connected to an IMU placed in the finger, shown in Figure 2.14 (patent

pending [39]) to relate quantified tremor (rest and postural) to the clinician rating. The tasks per-

formed are shown in Figure 2.2. As signal features, alike other authors previously, the peak power

of the three-axis accelerometer and gyroscope was determined and used to build a linear regression

model which related those measures with the UPDRS tremor subscore. The assessment of action

tremor was not achieved [17]. The greatest disadvantage is the USB communication needed to the

Figure 2.12: KinesiaTM from CleveMed [36].
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Figure 2.13: Example of a tuning map considering during DBS programming. From [38].

PC, where the computation of the features occurs.

Another recent effort was the GyroGlove (patent pending) which is a glove capable of coun-

tering the hand tremor in PD patients, comprising of a dynamically adjustable gyroscope. Yet, a

similar concept has already been patented in 1991: a hand-held gyroscopic device [41] to eliminate

the effect of naturally occurring tremors such as essential tremor or other tremor.

Other approaches relying on day-to-day devices have been proposed. One example used the

iPhone application, iSeismo, to determine the dominant tremor frequency, whose validity was

confirmed by comparing to the frequency calculated from an EMG-based system [43]. Another

case was the use of Nintendo Wii to monitor motor performance of PD patients, depending on

games and on the remote’s accelerometer from which metrics related tremor and bradykinesia

severity were computed [44].

Another system type is an electromagnetic tracking device (3Space Fastrak R©) [45, 46], which

showed potential to be used as a screening tool and even as a diagnostic aid. The root mean square

of the hand displacement was computed, which proved to significantly distinguish healthy and

patients and, additionally, people with different neurological diseases (PD, Essential Tremor and

Multiple Sclerosis).
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(a) Setup comprising of an IMU in the finger an a
wristband.

(b) The flowchart of the signal processing for
tremor quantification.

Figure 2.14: System proposed by Dai et al. (2013). From [40].

Figure 2.15: GyroGlove by GyroGear. From [42].



Chapter 3

Existing System

As seen in Chapter 2, some systems for PD symptoms evaluations were bulky or required connec-

tion to a PC for processing; others relied on relatively heavy processing which may lead to delays

in the output and, therefore, increase patient exposure time; also some provided values of features

could hamper the intuitive understanding of the physician about the rigidity severity. Addition-

ally, it was clear the availability of commercial products tackling both tremor and bradykinesia

but, as for rigidity, a system to evaluate it in a prompt manner is lacking, besides being suitable

for intra-operative conditions. Therefore, Costa et al. (2015) have developed such a system, to

evaluate decrease in muscle rigidity in the wrist joint during DBS surgery, to meet the needs in

the Functional Surgery and Movement Disorders Unit of Hospital São João. This system will be

further improved during the course of the thesis and respective range of application broaden. For

now, in this section, their approach will be introduced in detail.

3.1 System architecture

The architecture of the system is summarized in Figure 3.1. This comprises of an Motion Mote

(MoMo), a Bluetooth-enabled Inertial Measurement Units (IMU) developed at the Institute of

Electronics and Informatics Engineering of Aveiro (IEETA), attached to a textile band, which

communicates via Bluetooth with an external device. When this sensor was introduced for wrist

rigidity evaluation [14], this was communicating with a personal computer which allowed data

visualization and computation of the reduction in rigidity during DBS surgery, through LabView.

In later work, an Android mobile application was developed to fulfill that role, in order to improve

usability in intra-operatory conditions. This approach, contrary to all others presented in Chapter

2, uses only kinematic information. From the signal of angular velocity acquired, a signal de-

scriptor was computed and related to a percentage of rigidity reduction through a second-degree

polynomial function. Currently, the system is patent pending.

21
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Gyroscope
Y-axis
Gyroscope
Y-axis

Figure 3.1: System architecture: IMU communicates with a personal computer or to a smartphone.

3.1.1 Measuring device

The MoMo is relatively small which allows its use in the hand for assessment of rigidity (see

Figure 3.2). This comprises of:

• an Invensense’s ITG-3200 gyroscope (range of ±2000◦/s)

• an accelerometer KXTF9-1026 by Kionix (ranges of 2g, 4g and 8g)

• a Honeywell’s magnetometer, HMC5883L (minimum range of ±1,0× 10−4 T and maxi-

mum of ±8,0×10−4 T )

• a battery, allowing the MoMo to stream data continuously up to a full day on single charge

• a microcontroller, transmits the data at about 42 Hz from these sensors to a synced device.

Each of the sensors has its own axis orientation, represented in Figure 3.3.

3.1.1.1 MoMo Workflow

Once the MoMo is turned on through a switch, it becomes visible to other bluetooth-enabled

devices. Upon request for connection, if they have never connected previously, these have to be

paired using the code ’0000’. MoMo may work on three different operation mode and one should

be selected at start-off by the paired device. Those are for streaming data, either in quaternion,

sensor raw data plus quaternion and quaternion plus euler angles (send ’q’, ’r’ and ’e’ respectively).

3.1.1.2 Data Packages and value conversion

Regarding the raw data from the MoMos, this is structured in such a way that the data correspon-

dent to each sensoris preceded by a characteristic identifier and, then, the measurement for each

axis is sent successively. This is shown in Table 3.1, where the second and third row represent the

number of bits used to represent each value and the range of each sensor, respectively.

The data for each sensor needs to be set in physical units, based on the following equations,

where x is the raw data value and g is the gravity acceleration:

a =
(x−127)

64
g(m · s−2) (3.1)



3.1 System architecture 23

Figure 3.2: Representation of MoMo’s architecture

switch

(a) MoMo orientation.
z+

x+

y+

ωy+

ωxz+

ωx+

(b) Accelerometer and Gyroscope axes.

z+
y+

(c) Magnetometer axes.

Figure 3.3: Orientation of MoMo axes.

Table 3.1: Structure of raw data package (identifier in hexadecimal) and sensors’ bit resolution
and range.

240300 x y z 240301 x y z 240302 x y z

Accelerometer 8 bit Gyroscope 16 bit Magnetometer 12 bit
±2000 ◦/s −2.000 g to +1.984 g ±1,0×10−4 T



24 Existing System

Figure 3.4: MoMo Activity Diagram

ω =
x

32767
2000(◦s−1) (3.2)

B =
x

2047
10−4(T ) (3.3)

The firmware of the MoMo normalizes the gyroscope values using the other sensors, to ensure

that the measurements are given considering the reference axis as the MoMo rather than “world

coordinates”. This allows great flexibility in its use by a physician when handling the patient’s

hand. Furthermore, no calibration is required.

In present work, only gyroscope data from the y-axis (correspondent to the direction of hand

flexion/extension) is being used. Additionally, the MoMo is attached to a textile band to be worn

by the patient.

3.1.1.3 Frequency assessment

To determine the rate at which the MoMo was broadcasting data to the computer, acquisition of

data was performed for a minute with Realterm. 20 trials were made and the frequency found was
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of 50.07±0.14 Hz. Thus, higher than indicated in other sources [14, 47].

3.1.2 Receiving device

Both LabView and Android requested, at kick-off, similar information: a patient identifier, stim-

ulation electrode (anterior, medial, lateral and central) and voltage of stimulation (0 to 4 V). In

particular the activity diagram of the mobile application when initiating is in Figure 3.5. A screen-

shot is presented in Figure 3.6)

After device pairing, raw data broadcasting by the MoMo and its reception from an external

device, only the part of interest is extracted (later detailed). When a significant amount of samples

has been collected, they are used to compute and provide the user with the calculated percentage

of rigidity improvement. While the device is acquiring and classifying, it is also saving the data

into a text file that can be parsed by a custom-made script.

3.2 Acquisition, processing and classification

3.2.1 Acquisition Protocol

The system was used during the bilateral DBS surgery (both to the STN and GPi) of parkinsonian

patients, while an examiner was assessing the improvement in rigidity for different stimulation

settings. The subjects had their medication withdrawn 12h prior to the procedure and were under

local anaesthesia during the surgical intervention. A stereotactic target for stimulation and a tra-

jectory for the electrode were defined beforehand based on medical imagery. Electrophysiological

exploration was done during surgery in order to define the best electrode placement. The stimula-

tion frequency was set at 130 Hz; voltage and placement were varied while rigidity was assessed,

by imposition of passive wrist flexion. Definite conditions of stimulation were agreed by two ex-

perienced physicians. The textile band (with the attached sensor) was worn in the hand by the

patient while optimal settings were being searched. The MoMo was synced with an external de-

vice (initially a computer, later, a smartphone), which received the raw data and decoded it. From

then on, the physician expressed the improvements in rigidity as percentage of rigidity reduction,

in a decimal scale between 0% and 80%. For each signal acquired (length of 300 samples), this

medical label was registered.

There were two evaluation phases prior to this thesis work. In the first, where a computer was

used as a receiver, a total of 48 (from 12 limbs) signals were used to train a model, whereas 156

(from 8 limbs) to test it; while later, for the mobile application validation, 97 were used to train

(from 16 limbs) and 83 (from 10 limbs) for testing.

Initially, the medical label assigned to each signal (correspondent to the decrease of rigidity

with DBS) ranged from 0% to 80%, where 80% was considered the optimal reduction with DBS.

For a later rigidity reduction model, only labels from 40% onwards were considered to build it

because (1) slight improvements are harder to be assessed by an examiner, and (2) such reductions
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Figure 3.5: Activity Diagram for the initialization of the acquisition.

Figure 3.6: Interface of mobile application while acquiring and classifying data.
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have no clinical relevance, therefore, the correct classification of more significant improvement is

pivotal.

This procedure of acquisition was kept constant from previous work and over the course of

this thesis work.

3.2.2 Signal processing

0

20

0
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0
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Baseline Rigidity

50%

80%

Time (s)

ω
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Figure 3.7: Example of angular velocity signals correspondent to when baseline rigidity was being
assessed (UPDRS score of 3), to 50% and 80% improvement in rigidity. Each arcade corresponds
to a wrist flexion. With reduction of rigidity, it is clear that the signal becomes smoother and
higher peak values are achieved.

The signal acquired (rotation over the y-axis of the gyroscope) is invariant to the hand supina-

tion/pronation and position and is converted to angular velocity using Equation 3.2. Only the part

of the signal relative to wrist flexion was considered (i. e. only the negative arcades of the signal).

The remainder was set to zero.

As stated before, rigidity is the resistive force to imposed movement, which affects the ampli-

tude, range and smoothness of the angular velocity signal of the wrist flexion, as shown in Figure

3.7. The less rigid is the wrist joint, higher is the velocity achieved by the hand. Moreover, the

cogwheel rigidity is easily identified in the baseline conditions as the sudden breaks in the flexion

movements.

So, two features may be computed: average angular velocity, µω , and average peak angular

velocity, µp(Figure 3.8). The peaks considered are the highest values separated by a valley, over a

margin of 0.2◦/s. These features are expected to have higher value when the joint is less rigid.

In [14], because these features are highly susceptible to the signal’s shape (few peaks, flat

signal, elongated arches), the signal descriptor φ was proposed, combining both features which

was expected to lead to a higher discriminative power. This is defined in Equation 3.4.

φ =
√

µω ·µp (3.4)
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Figure 3.8: Representation of the average velocity and average peak velocity. From [14].

The descriptive power of the aforementioned features were evaluated through statistical anal-

ysis using the two-tailed t-test (the normal distribution was checked beforehand by performing

Jarque-Bera hypothesis test [48]). Two data clusters were considered: low rigidity reduction, with

those signals labeled with 40% and 50% and high rigidity reduction, considering reductions of

70% and 80%. The t-test was performed by assessing whether both followed the same normal

distribution.

3.2.3 Model for rigidity improvement

Each signal has its own category, correspondent to the examiner assessment of rigidity decrease

with DBS (from 0-80% in steps of 10%). Thus, we can perceive its quantitative assessment as a

machine learning problem, where we use a classification approach (the output of the model is a

numerical category as those assigned to training data) or a regression one (the model considers the

numerical value of the labeling and considers a continuous function to represent the improvement).

The choice for this system was the latter, since it allows to indicate sub-scale rigidity states and a

continuous evaluation scale. This can be particularly advantageous to distinguish between similar

rigidity profiles which are, in reality, correspondent to different physiological conditions.

The training set was used to obtain a second degree polynomial mathematical model that

would better relate the perceived improvement in rigidity with the mean value of signal descriptor.

The polynomial fitting considered the average value of φ for each of the assigned labels by the

physician. A higher-degree polynomium could lead to over-fitting to the training data. Other

methodologies, such as Support Vector Machine (SVM), k-Nearest Neighbor (kNN), Decision

Trees (DT) and k-Means, to model the relationship between the signal descriptor were discarded

because they aimed to implement it in a mobile application for in situ classification, so light-

computing methodologies were privileged.

To test the obtained model, during rigidity assessment in DBS surgery, the percentage of rigid-

ity reduction was compared to the clinical assessment of the physicians: the classification was

accepted if it was within a range of ± 5% away from their evaluation (because doctors use a scale

with steps of 10% and we are using a continuous scale). The overall procedure for training and

testing is represented in Figure 3.9.
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Training Data
Clinician assessment 

Decimal Scale

Test Model
Continuous function

Clinician Assessment

±5% margin

Signal Acquisition
during DBS surgery

Average Signal μω
Average Peak μp

Signal descriptor
Φ

Create second-degree
polynomial model
Rigidity Label = f(Φ)

f1(Φ) f2(Φ)

Figure 3.9: Methodology to create and test the model for rigidity reduction based on the signal
descriptor φ . f1(φ) is considered a wrong classification by the model, contrary to f2(φ) since it is
within the ± 5% margin.

3.3 Results

The first results were presented at the 37th Annual International Conference of the IEEE Engi-

neering in Medicine and Biology Society [14]. Here, the system presented relied on a personal

computer running LabView to apply the model obtained. After this proposal, the same authors de-

veloped a mobile application to classify in situ, during the surgery, the input signal and to provide

real-time feedback, by having an assistant holding the smartphone in the operating room.

In both cases, the discriminative power of φ , µω and µp was assessed, whose results are

presented in Table 3.2. This shows that, indeed, the use of the signal descriptor was slightly more

able to distinguish low and high severity rigidity by revealing a smaller p-value; however, with a

larger dataset, all of the aforementioned features show a statistically significant difference, with

p < 0.001. So, a good prognosis can be made that a good correlation will be found between the

signal descriptor and the rigidity label, which indeed happens in the presented model. As expected,

greater values of the descriptor are associated to a more significant reduction in rigidity: such

decrease would allow higher velocities to be achieved during the wrist flexion and consequently

both µω and µp are higher.

In Figure 3.10, the polynomial function achieved for both situations are presented. In the later

approach, only improvements of ≥ 40% were considered to build the model: low reductions in

rigidity are harder to be assessed by the examiner, and, in common practice, lower values do not

satisfy the the least improvement expected, so have no clinical relevance and, thus, it is more

important to assess correctly more significant improvements. By removing the lower rigidity
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Table 3.2: Summary of results for features descriptive power, considering 48 and 97 signals for the
implementation in Labview (Evaluation Phase 1) and in the mobile application (Evaluation Phase
2), respectively. HR and LR stand for high and low rigidity, respectively.

Evaluation Phase 1 2

Rigidity Severity HR LR HR LR

µω

Mean 3.33 12.9 4.59 7.76

Std 0.58 3.13 0.89 1.42

p 0.034 <0.001

µp

Mean 12.9 29.9 12.91 22.87

Std 3.13 6.60 3.89 5.14

p 0.029 <0.001

φ

Mean 6.55 11.3 7.76 13.03

Std 1.22 3.07 1.19 2.55

p 0.027 <0.001

values, we allow the fitting function to adapt better to the data that is more clinically relevant. A

good fitting in this higher range is actually achieved as seen in the functions representation.
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(a) Adapted from [14].
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(b) Used in Evaluation Phase 2 (with a smart-
phone).

Figure 3.10: The polynomial functions that best correlate the wrist rigidity and the average value
of the signal descriptor φ for a given percentage of rigidity reduction (i. e., rigidity label).

In published work (using LabView and a smaller dataset), an accuracy of 83.9% was obtained,

while the latter revealed 77.1% of accuracy and a mean error of classification of 3.2% (Table

3.3). Also, in Table 3.4, the percentage of wrong classification per range of rigidity reduction is

presented, which shows a higher misclassification in the lower range of rigidity reduction. This

translates into a better performance of the system when it needs to: on the detection of higher

reduction of rigidity, which correspond to possible electrode implantation profiles.
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Table 3.3: Results from the different phases of model evaluation. The number of signals (limbs)
used for training and for testing are presented. Phase 1 corresponds to when the receiving device
was a computer and Phase 2 when a smartphone was used.

Evaluation Phases 1 (EMBC’15)[14] 2 (NeuroIberia’16)[49]

Train 48 (12) 97 (16)

Test 156 (8) 83 (10)

Accuracy 83.9 % 77.1 %

Test Error - 3.3±3.4 %

Table 3.4: Distribution of wrong classification by the system according to the medical label for
rigidity reduction.

Improvement range (%) Percentage

(40-50) 42%

60 32%

(70-80) 26%
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3.4 Discussion

In both cases, a good accuracy was achieved (around 80% in both cases), which support the relia-

bility of the proposed solution. Also, the error of classification of 3.2% (mean absolute deviation

of the system classification from the medical label) supports that this model represents them quite

well, even when we are comparing a continuous scale with a decimal one, which by itself is an

inherent source of error.

Both models have shown a higher capacity to classify significant recoveries (70%-80% re-

ductions in rigidity). This improved performance backs up the use of this system to support the

physician decision when comparing possible final settings for stimulation (those which lead to

more significant rigidity reduction), thus where we find clinical relevance. The main difficulties

were found when distinguishing high and intermediate rigidities, which could be already predicted

based on the corresponding fitting found in Figure 3.10: here, the mean values of the signal de-

scriptor in the lower range of reduction do not fit the function as well as the remaining values. This

could be associated with a higher difficulty by the examiner to distinguish smaller improvements.

Also, cogwheel rigidity may play a role for small improvements, where it may still be present:

it causes a higher variability in the average angular velocity and average peak angular velocity,

causing the model fitting to worsen.

In the introduction to this work [50], conditions of use for the device were identified. Because

only the angular velocity around the y-axis of MoMo, the imposed flexion should be such that

largest amplitude occurs on the y direction and avoid rotational movements which do not comply

with that. Moreover, it is expected that the force applied by the physician does not vary greatly

over the course of DBS surgery and between surgeries as well. This system requires some training

of the examiner in terms of imposed force intensity, so the system provides a valid result.

Furthermore, it is important to emphasize that reduction in rigidity is not linearly related with

the range and amplitude of angular velocity. The presence of the cogwheel rigidity artifacts are of

utmost importance and affect greatly the perceived rigidity. In this sense, the described approach

does not encompass the presence and disappearance of this feature of parkinsonian rigidity: µω ,

µp and, consequently, φ do not translate the smoothness of the signal, overlooking this cardinal

characteristic. A first approach for the detection of these artifacts in presented in Section 3.5.

Besides, the provided improvement is computed in relation to an average rigidity state, deter-

mined by the training dataset used for modeling rigidity reduction.

3.5 Detection of cogwheel artifacts

As evident in Figure 3.7, the shape of the angular velocity signal for baseline rigidity is not smooth:

some jerks done by the muscles occur, which characterize cogwheel rigidity. To the author knowl-

edge, there is no proposal for identification of these events other than by Costa et al. [14]. These

jerks lead to the occurrence of a local-minima in the angular velocity signal during a wrist flexion.

Thus, for their detection, all peaks and valleys in the signal were identified and every triangle pos-
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sible enclosing the valley and the two immediate neighboring peaks was drawn, as represented in

Figure 3.11a. Smoother signals will have larger triangles whereas cogwheel-parts lead to smaller

and tilted triangles. The detection criterion is as follows:

h · (∆t ·A)−1 < λ (3.5)

where h stands for the distance between the valley and the midpoint between the flanking peaks,

∆t is the time span of the triangle, A is the area and λ is the threshold value for the detection

of a cogwheel artifact. For optimization of the threshold and assessment of the accuracy, a ROC

curve was built [51], using some training signals, whose ground-truth had been previously agreed

between observers.
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(a) Cogwheel effect is detected defining triangles
from fiducial points. From [14].
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(b) The ROC curve for the detection of cogwheel
artifacts on the angular speed signal. Optimal
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Figure 3.11: Detection of cogwheel rigidity artifacts.

The analysis of the ROC curve (Figure 3.11b) tell us that the optimal threshold λ is 100,

yielding a sensitivity of 0.93. The low computational requirements and simplicity of this method

are extremely appealing for in situ processing. Still, few signals were considered (30) at the

time and is only applicable after acquiring the whole signal, so further work is needed, especially

because, as mentioned already, this is a cardinal feature of parkinsonian rigidity and important for

its assessment.

3.6 Preliminary studies

In the monograph report [50], the methodology of building a polynomial model was compared

to other regression and classification approaches (support vector machine, regression and classi-

fication decision-trees, k-means and k-nearest neighbors) and the first was confirmed as the most

adequate for the problem at hand (as in Appendix C). Besides, some other potential features were

extracted from the angular velocity signal and their ability to discriminate different levels of rigid-

ity was confirmed. However, as it is the case of the already in-use, average angular velocity and

average peak angular velocity, they do not properly depict the shape of the signal, hence the occur-
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rence of cogwheel artifacts is overlooked. This was set as one of the pivotal goals of this thesis’

project.

An interesting finding was how early this polynomial modeling approach performance stabi-

lized, in terms of data size required for training: with 85 signals, the error stabilize at around 8.4%.

This fact leads to the conclusion that no further improvement in performance should be expected

by only increasing the data-set. Also, if it were to be applied in a new hospital, quickly the model

could be trained and used. New approaches may be explored, but there should be significant focus

on exploring other applications of this system.

Also, a proposal for a different manner for the context of rigidity was initiated, by exploring

the possibility of a multi-model approach, relying on the design of a specific model for different

baseline rigidities. This will be further presented in Chapter 4 and respective results.

3.7 Final Remarks: limitations and future work

The use of the MoMo as a sensor and of the overall system, using a smartphone for in situ pro-

cessing has been validated and with good performance. To the best of our knowledge, this is the

only proposal for real time evaluation and feedback of reduction in rigidity, appropriate to be used

in intra-operatory conditions, during DBS.

However, the improvement in rigidity obtained from the polynomial model originates from a

wide variety of patients, whose baseline rigidity differ, i. e., their UPDRS scores before starting

stimulation were unregarded. Because the medical scale used is a percentage of reduction in

rigidity, this will be a function of the patient baseline state. Thus, the possibility of having a

multi-model approach should be explored, i. e., considering the baseline signal acquired at the

beginning of the medical procedure or the UPDRS scale assigned by the clinician, select the most

appropriate model for such rigidity, obtained from previous training.

The premise of this analysis is that the assessment is being performed correctly, i. e., in any

way the patient is actively trying to counter or help in bending the wrist. Such behavior could lead

to undesired rigidity profiles and it is the doctor’s task to discard these cases. In our application it

is easy to do that because, after indication of the surgeon, we can label these signals as “invalid”.

Moreover, this kinematic-based approach is highly dependent on the consistency of how the

clinician imposes wrist flexion due to its velocity dependency. A decrease in wrist rigidity signifies

less resistive force to imposed movement and, if a clinician applies about the same force for each

Figure 3.12: Forces involved in passive wrist flexion.
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assessment, then higher values of angular velocity will be achieved. Nonetheless, if the clinician,

when feeling less resistance, imposes as well less force, then no significant change in velocity will

occurs, thus no improvement or less than expected is computed. This is a fragility of the system

because it perceives only the effect of the resultant force (see Figure 3.12). Other approaches

introduced in Chapter 2 had a gyroscope for measurement of angular velocity combined with a

force transducer to measure the applied force by the clinician. Also, when assessing the reduction

in rigidity, the presence and disappearance of cogwheel rigidity plays a role as well. So, just

considering the amplitude of the signal is not enough. Hence, a reliable method for detection of

this event and its inclusion into the model is needed.

The system classifies every train of 200 samples, so at least one full signal of 4 second should

be captured with significant information, meaning that if the patient is not cooperating (by actively

flexing the wrist) or the signal has few flexion events these hinder an adequate classification by

the model. The latter case will influence the classification because it might lead to a low average

angular velocity, whereas the few existent peaks reveal a high amplitude of the signal pointing to

a significant improvement.

Other than the potential of this system for decision support, it could help conceiving a system

for teaching, to help new examiners in the assessment of rigidity. However, this could be hampered

by the fact that no measurements of the resistive work were made and at least some reference

would be needed in order to properly recreate the situation. An approximation could be used

to normalize the measurements and by profiling the different rigidity status, and using a robotic

arm to reproduce them so interns can perceive different reductions in rigidity. Withal, this could

work as a method to have a closed-loop DBS (detailed in Chapter 6), by having stimulation only

when it is required (e. g., detection of a large number of cogwheel artifacts on daily life, or the

user can perform a specified number of flexions to activate the system and, thus, the stimulator if

the rigidity level without stimulation remains high). This increased efficiency (contrary to having

constant stimulation) would prolong the longevity of the stimulator battery.





Chapter 4

Rigidity Model

As already ascertained previously during the monograph, using the polynomial model for clas-

sification of rigidity was found to be the most suitable approach for the problem at hands. Still,

this did not consider the baseline rigidity of the patient, nor did it assess cogwheel rigidity sig-

nificantly. This motivated the development of a multi-model approach, i. e., design an unique

and individual polynomial classification model based on the initial rigidity status of the patient, as

perceived by the assessment of the physician’s score on the UPDRS scale. In this chapter, a survey

over this approach will be introduced, as well as the final rigidity model, after testing all possible

configurations and strategies to include baseline information.

4.1 Multi-Model Approach

As mentioned in the Final Remarks of Chapter 3, the existent system computes a general polyno-

mial model for every patient with Parkinson’s Disease (PD), regardless of his baseline rigidity. If

we go back to Section 1.2.2, the UPDRS scale was introduced and it defines that rigidity may be

assessed in a scale from 0 (non-existent) to 4 (severe). Because we are determining a percentage

of rigidity reduction, this should be a function of an initial rigidity assessment before any stimula-

tion, either by the physician or by considering the sensor measurements. Therefore, a preliminary

study was performed on the ability of the signal descriptor:

φ =
√

µω ·µp (4.1)

(where µω is the angular average velocity of wrist flexion and µp the average peak angular veloc-

ity) to discriminate (1) low and high levels of improvement in rigidity within two different groups,

where patients were separated accordingly to the initial severity of this symptom and (2) the initial

level rigidity severity for equivalent improvements assessed by the physician.

Later, using different approaches to define the signal descriptor (the basis for building the

polynomial model), an optimal definition was identified and its validity investigated.

37
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4.1.1 Preliminary study on the signal descriptor

Firstly, the full potential of the aforementioned descriptor, φ , to distinguish different levels of

rigidity’s severity was explored. For that purpose, to every signal acquired, a label was assigned

correspondent to the rigidity sub-score in the UPDRS scale assessed by the physician before any

stimulation was applied. A total of 237 signals (34 limbs) were then separated between low and

high rigidity severity: signal with sub-scores of 1 and 2 were grouped separately from the remain-

der. The number of signal per UPDRS label is presented in Table 4.1. Furthermore, within each

cluster , data was separated into low improvement (signals with classification of 40% and 50%)

and high improvement (signals with classification of 70% and 80%).

Table 4.1: Number of signals per initial UPDRS score.

Baseline Rigidity (UPDRS) # Signals

Low baseline rigidity patients
1 24

2 74

High baseline rigidity patients 3 139

Within each group, to test whether their data followed a normal distribution, the Jarque-Bera

hypothesis test [48] was performed: if p-value of a dataset was over 0.05, then it was considered a

normal distribution. The descriptive power of the signal descriptor φ was assessed by performing

a two-tailed t-test, when both sets (low and high improvement) followed a normal distribution;

otherwise, a Wilcoxon rank sum test was used. The mean values of φ and its standard deviation

were calculated in order to understand the influence of the baseline rigidity on it. The results are

presented in Figure 4.1.
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Figure 4.1: The mean + standard deviation of the signal descriptor φ are represented. High statis-
tical significance (indicated by *) was found between low (LI) and high (HI) rigidity improvement
for both separating the analysis according to initial rigidity UPDRS sub-score and considering the
data altogether (p < 0.001). φ does not distinguish patients with different baseline rigidity.
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The descriptor φ considering the full dataset and its sub-clusters (according to baseline rigid-

ity), allowed distinction between low and high rigidity-related improvement. However, its mean

values for low and high reduction in rigidity across initial rigidity scores are similar, contrary to

the expected. For someone with more severe rigidity, his starting velocity range and amplitude

is expected to be smaller and, consequently, smaller φ . By the same reasoning, for an equivalent

improvement, this person would also have a smaller φ than someone with lower baseline rigidity

(lower initial UPDRS score). However, Figure 4.1 shows such a difference does not exist: both

cases have similar mean values and even standard deviations. Consequently, we may conjecture

that the polynomial functions of the personalized models would be alike the model obtained using

a general approach and no improvement in accuracy would occur relying only in φ . This could

be related to the cogwheel rigidity, which is unregarded. This feature highly distinguishes rigidity

scores of 2 and 3. We hypothesize that by including into the signal descriptor this effect, models

that effectively consider the baseline rigidity could be obtained and, thus, improve the performance

of the overall system.1

4.1.2 Proposal of multi-model

Using only φ , as analyzed previously, may lead to no improvements. Therefore, it was hypothe-

sized that a different signal descriptor could be used for each cluster of rigidity severity. For that

purpose, other different kernels functions were considered. These are common practice in ma-

chine learning to project features, from a domain N, being N the number of features, to a higher

dimension N + 1, by recurring to kernel functions. These rely on the combination of features

to achieve better data separability in the dimension N + 1, leading to more distinct averages or

centroids. Such fact enables better recognition of patterns in the data.

Hence, the performance of using the kernel functions in Table 4.2 as signal descriptor was

assessed, by comparing the training error of the polynomial model, computed as the Leave-One-

Out error, whose procedure is as follows:

1. split entire dataset into training and test dataset, where the latter is composed by a single

sample, i (φttest = φi), randomly selected

2. training dataset is used to determined the best fitting polynomial model, P(φ) (in a least-

squares sense), relating φ and the rigidity label (reduction perceived by the physicians)

3. compute the rigidity label for the test sample, RLtest = P(φtest)

4. determine absolute difference between real rigidity label (assigned by a physician) and the

one given by the polynomial model (error = |RLphysician−RLtest|)

5. repeat from 1. onwards if number of iterations intended was not reached

1These results were presented in the international neurosurgery congress NeuroIberia 2016 [49]. The respective
abstract may be found in Appendix D.
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The leave-one-out error of each model was the average and standard deviation across all 2000

iterations performed. Each of these iterations simulates a classification that would be given by

the system in the operating room. An optimal descriptor was found for each rigidity UPDRS

sub-score. 237 signals from 34 limbs were considered.

Table 4.2: List of kernels for regression.

Kernel k(µω ,µp)

Hellinger’s √
µω µp

Intersection min(µω ,µp))

χ2 2 µω µp
µω+µp

JS µω

2 log2

(
µω+µp

µω

)
+

µp
2 log2

(
µω+µp

µp

)

Gaussian Homogeneous √
µω µp · exp

(
−

log
(

µp
µω

)2

2σ2

)

4.1.3 Results and Discussion

For the different definitions of the signal descriptor, the results are presented in Figure 4.2.
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Figure 4.2: Finding an optimal descriptor to be used in the polynomial model, for each baseline
rigidity severity level. The mean values + standard deviation are represented and minimum error
for each UPDRS sub-score is represented with a triangle. H stands for Hellinger’s, GH for Gaus-
sian homogeneous, Chi for Chi-square, Int for intersection and JS for Jensen-Shannon divergence.

On one hand, for both 1 and 2 sub-scores of rigidity, the Hellingers kernel, i. e., the same as

the described in Chapter 3, presents less training error (7.7±7.6% and 9.4±7.0%, respectively).

On the other hand, the remainder achieves a minimum training of 8.7± 7.1% when considering

the JS kernel. The correspondent polynomial models are represented in Figure 4.3. To emphasize

the fitting of the mean values of φ34 for each step of improvement with the correspondent model,

over the whole range of improvement. For signals acquired from patients initially less rigid and



4.1 Multi-Model Approach 41

experiencing a low reduction of rigidity under stimulation, we can identify a worse fitting. This

translated directly the difficulty for the examiner to identify small differences for stimulation stages

when the baseline is itself low rigid and with a signal shape closer to that under stimulation.

The polynomial models which lead to the lowest training error for each baseline rigidity clus-

ter (Hellinger’s and Jensen-Shannon kernel functions) were used to test a multi-model system

during DBS surgery (38 signals from 4 limbs). With these, approximately, the same accuracy was

achieved as before (82.0% against 83.9% [14] and 77.2%, considered as in Chapter 3), by using a

larger training set and by defining a model for two levels of baseline rigidity. The error of classifi-

cation of 3.4% supports that this model representative, even when we are comparing a continuous

scale with a decimal one. Also, cogwheel rigidity may play a role for small improvements, where

it may still be present: it causes a higher variability in the average angular velocity and average

peak angular velocity, causing the model fitting to worsen.2
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(a) For patients with low rigidity severity
in the multi-model approach.
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(b) For patients with high rigidity severity
in the multi-model approach.
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(c) Final Polynomial model tested.

Figure 4.3: Polynomial models obtained with different signal descriptor φ12 and φ34 for the multi
model approach and final model obtained.

2These results were submitted as a 4-pages conference paper in the 38th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society (EMBC’16), accepted and appointed for lecture [15]. This paper
may be found in Appendix B.
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4.2 Final Rigidity Model

As the multi-model approach lead to no significant improvement (at least, with the available

dataset), the initial approach was pursued (i. e., one single model for the whole dataset, itera-

tively improved after each surgery with new signals). This has the advantage of reducing steps

in the mobile application usage (which can be considered as an additional error source), specially

when no increase in performance is expected.

Using a dataset of 301 signals, which lead to the model in Figure 4.3c, a model similar to the

previous was obtained, with a R = 0.9926 and a training error of 8.7±7.7 %. For evaluation of the

model, the same procedure as previously was undertook.

A total of 56 signals were evaluated, where 41 were correctly classified (accuracy of 77.1%),

with an error of 4.2±5.1 %. These results had a correlation of 0.85 with the assessment of the two

physicians and during DBS surgery.

4.3 Overview of results

In order to have an understanding of the evolution of the validation results over the different phases,

Table 4.3 presents the respective number of signals (and number of limbs) used from training the

model and to test it, as well as the achieved training and classification error.

Table 4.3: Results from the different phases of model evaluation. The number of signals (limbs)
used for training and for testing are presented.

Evaluation Phases 1 (EMBC’15)[14] 2 (NeuroIberia’16)[49] 3 (EMBC’16)[15] 4

Train 48 (12) 97 (16) 237 (34) 301 (31)

Test 156 (8) 83 (10) 38 (4) 56 (8)

Accuracy 83.9 % 77.1 % 82.0 % 77.1 %

Test Error - 3.3±3.4 % 3.4±3.6 % 4.2±5.1

The consistency of these results (always over 75% of accuracy) lead to the conclusion of the

suitability of the polynomial approach to model the reduction in rigidity and its ability to actually

support in real-time the physician in his rigidity assessment. The training error similarity support

previous results (Appendix C) about the influence of the training dataset size. All these phases

encompassed the use of a polynomial model, with the particularity of the 3rd using multiple model

design, adaptive to the baseline rigidity UPDRS score. This proves the limitation of kinematic

measures in further distinguishing different rigidity levels since both approaches lead to similar

results, even though differences were expected. It was envisioned that the detection and inclu-

sion of the cogwheel effect on the wrist flexion would be a pivotal step, which is introduced and

explored in Chapter 5. It was hypothesized that the integration of velocity-related information

and occurrence of cogwheel artifacts could compensate the variability on the physician’s force to

impose movement.
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As already mentioned, the validation in a single center performing DBS surgery has been

achieved. Still, this it an isolated case, requiring further proof of concept in other settings/prac-

tices, to prevent over-fitting to the two physicians. In that sense, the purview of this project must

encompass broadening the clinical partners, to build a diversified dataset.





Chapter 5

Cogwheel Rigidity

Under the assumption that the applied force by the physician is approximately the same over sev-

eral trials, a procedure to evaluate the reduction in rigidity was developed relying on a signal

descriptor extrapolated from the amplitude of the signal. In Chapter 4, the baseline rigidity, given

by the doctor’s UPDRS rigidity sub-score, was considered in the development of models of rigid-

ity reduction specific for different initial rigidity severity. However, this multi-model approach,

relying on the amplitude of the flexion velocity signal, did not enable a more accurate feedback on

the rigidity reduction occurred. Hence, it was hypothesized that the shape of this signal would be

a pivotal step to upgrade the system, because it translates the smoothness of the wrist flexion and

to a cardinal signal of parkinsonian rigidity, cogwheel rigidity.

5.1 Cogwheel Phenomenon

As previously described, parkinsonian rigidity is characterized by the occurrence of the cogwheel

phenomenon, which is more noticeable in the wrist than in the elbow. The “cogwheeling” is

caused by episodic bursts of muscle potential which lead to increment of resistance [10]. In terms

of angular velocity, this leads to sudden decreases over the wrist flexion movement, as depicted in

Figure 5.1.
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Figure 5.1: Example of angular velocity signal of consecutive hand flexion movements where the
circles indicate cogwheel artifacts.
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5.1.1 Dataset description

In this section, 186 signals were used from 9 patients (17 limbs) and their distribution according

to their baseline rigidity UPDRS is in Table 5.1.

Table 5.1: Number of signals per initial UPDRS score.

Baseline Rigidity (UPDRS) # Signals

1 24

2 74

3 89

4 0

5.1.2 Detection of cogwheel rigidity

5.1.2.1 Approach

When conceiving the detection technique of these events, simplicity was a goal in order to lessen

the processing burden and, hence, not hamper the real-time feedback.

The valleys were identified and for them to be classified as cogwheel events, three criteria

were considered:

• the local average within a 5-samples window is over a given threshold λ1;8

• the smaller neighboring peak of the valley has an amplitude equal or over λ2 (%) of the

average peak angular velocity of the same signal;

• the neighboring peaks that shape a valley are within 15-samples window.

To optimize the parameters λ1 and λ2 and to evaluate the performance of this approach, the

agreement of 4 observers was considered in 30 signals (as indicated in [52]) of angular velocity

correspondent to the passive wrist flexion imposed by a physician during DBS surgeries. To define

this ground truth, the observers were explained about the context of the problem and, in particular,

about cogwheel rigidity and they were asked to indicate in a previously defined set of 30 signals

where this phenomenon had occurred.

At first, the thresholds λ1 and λ2 were considered alone and, only latter, combined. These

methodologies were compared using Operating Characteristic (ROC) curves.

5.1.2.2 ROC curves

These ROC graphs allows comparison between classification methodologies, representing the

trade-off that exists between true positives and false positives. They are depicted in two-dimensional
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graphs where the true positive rate (TPR) is plotted against the false positive rate (FPR) [53]. TPR

and FPR are defined as follows:

The optimal classification methodology is one that correctly identifies every positive and never

gives off a false alarm (false positive). However, that is never the case so the goal is always to reach

an optimal proportion of FPR and TPR, appropriate to the problem at hands.

The overall information given by ROC curves may be represented by the area under the curve

(AUC). This is a proportion ranging from 0.0 to 1.0 In particular, if the ROC curve were a diagonal

between (0,0) and (1,1), which translates a random performance of the correspondent classifier,

we would have an AUC of 0.5. This may be perceived as a boundary which defines whether a

classifier is realistic (AUC over 0.5) or otherwise (AUC lower than 0.5) [53]. AUC translates the

probability of a classifier of ranking a randomly chosen positive instance higher than a randomly

chosen negative chosen negative instance. To be noted that a classifier, even though having higher

AUC, may not have better performance in the whole ROC space. Still, AUC is considered a good

tool to predict classifiers performance [53]. For parameter optimization, the thresholds were the

values correspondent to the point of the ROC curve closest to the (0,1) coordinate of the ROC

space.

5.1.2.3 Results on the cogwheel detection

When defining the ground truth, which relied on the cross-observer agreement, an accuracy of al-

most 61% was found. This relatively low agreement is related to the fact that no margin relative to

the events detected by the observer was considered, hence some selections by different observers,

which were in consecutive samples, were not considered. This zero-tolerance was applied because

there are single-sample cogwheel artifacts.

Then, the use of a single or two thresholds into the detection method was compared, by using

ROC curves analysis. λ1 ranged from 0.001, 0.010 and 0.050 to 10.000, in steps of 0.05, while λ2

ranged from 0.01 and 0.05 to 1.00, in steps of 0.05. The obtained ROC curves are in Figure 5.2

and some of the consequent results are in Table 5.2.

Using a single threshold, either regarding the average amplitude of the neighborhood of a given

data point or the amplitude of the neighboring peaks of a valley, the ROC curves obtained had an

AUC of 0.9951 and 0.9933, respectively. When combining both thresholds in a single detection

method, this increased to 0.9954.

For λ1, the optimal value was 3.75 ◦/s, which allowed a TPR of 100% and a FPR of 1.31%.

When considering a detection method relying only the peak average amplitude, the optimal λ2 was

33.50%, with an equal TPR but a higher FPR (1.50%). When combining both thresholds (related

to average amplitude of the data point neighborhood and to the peaks average amplitude), λ2 was

optimal at 33.50% still identifying every cogwheel event, with a lower FPR (1.13%). Hence, the

final threshold values to be used in the mobile application were λ1 = 3.75 ◦/s and λ2 = 33.50%.

The next step was to incorporate into the rigidity reduction model the effect of cogwheel

rigidity.
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Figure 5.2: In red, green and blue the roc curves for using λ1, λ2 (separately) and λ1 combined
with λ2, respectively.

Table 5.2: Results of ROC curve analysis. AUC stands for area under curve, TPR for true positive
rate and FPR for false positive rate. TPR and FPR are those at the closest point of the curve to
(1,0) of the ROC domain.

Methodology AUC TPR FPR

λ1 0.9951 100% 1.31%

λ2 0.9933 100% 1.50%

λ1 & λ2 0.9954 100% 1.13%
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5.1.3 Model with cogwheel effect

Up to this point, the model relied on amplitude features and barely and indirectly on the shape of

the signal which depicts the smoothness of the flexion movement. As the smoothness is inversely

related to the occurrence of cogwheel rigidity, it was thought that introducing it as a penalty

to the output of the amplitude-based model would be effective to improve performance of the

system. Furthermore, it was experimented having the rigidity label (RL) weighted according to a

relationship between the number of events in baseline rigidity and the currently achieved.

5.1.3.1 Penalty Approach

The model initially validated by Costa et al. [14] was used at this stage, where the rigidity label

of the system (RLsystem) was given by:

RLsystem =−0.1638φ
2 +9.3266φ −17.6309 (5.1)

where this is a percentage of rigidity reduction. It was attempted to identify whether there was a

penalty (P) that should subtracted to RLsystem, to achieved less error, related to the occurrence of

cogwheel artifacts (CA), as follows:

RL f inal = RLsystem−P(CA) (5.2)

It was predicted that the penalty would increase linearly with CA.

Hence, we subtracted the RLsystem of each of the 186 signals on the database to its current

medical label and unregarded differences above 20%. The remainder of the signals was clustered

according to the number of identified artifacts. Then for each of these clusters, the mean value (the

respective cogwheel penalty) and standard deviation of this difference were computed. Further-

more, it was hypothesized that this penalty would be different according to the baseline rigidity.

Therefore, the signals from limbs initially rated with 2 and 3 in the UPDRS scale for rigidity were

also considered separately.

In Figure 5.3, the results are shown where the incidence of cogwheel artifacts is plotted against

the mean difference between the classifications, considered as the penalty associated to cogwheel.

Contrary to the expectation, no growth tendency of penalty was found as the cogwheel artifacts

increased, either regarding or not the initial rigidity score: the mean difference was rather constant,

still distinct of the mean training error when fitting the polynomium to the data (8.2%). Thus,

the penalty value considered was 6.7% which was the mean difference found between system’s

rigidity label and assigned label by physician (with a standard deviation of 4.7%).

This penalty would only be applied when the signal’s number of CA was higher than a thresh-

old for the number of cogwheel events, e: not always the occurrence of CA is significant, hence

this threshold should be considered.

Then, the error of classification was re-computed, now considering the penalty (6.7%) when

applicable. The mean training error and standard deviation are shown in Figure 5.4, as a function
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Figure 5.3: Mean ± standard deviation of difference between the system’s classification and the
medical label, given than the first was up to 20% higher than the latter. These penalties were
computed considering every 186 signals together and by clustering them according to the UPDRS
rigidity score. The black line indicates the global average deviation found (6.7%).
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of the threshold for the number of cogwheel events, e. Also, the training error achieved when no

penalty whatsoever is applied is presented.
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Figure 5.4: Mean ± standard deviation of training error achieved through the penalty approach
considering the cogwheel artifacts detected. WP stands for “Without penalty” (P = 0).

These results lead us to the conclusion that this penalty-based approach to include the influence

of cogwheel rigidity will bring no significant improvement to the performance of the system, since

no significant difference is found for every e experimented.

5.1.3.2 Multiplicative-Factor Approach

The following approach relied on considering a multiplicative factor, F , which would affect the

RLsystem as follows:

RL f inal = RLsystem ·F (5.3)

where F ranges from 0 to 1 and would be related to the occurrence of cogwheel artifacts. This

was defined in various manners in order to reflect the severity and reduction of these events with

electrical stimulation:

• as a ratio translating the loss of amplitude due to cogwheel, i. e., the disparity from a

smooth arcade and the actual signal. For each cogwheel artifact detected, the neighboring

peaks were considered to create a temporary version of the signal. This would translate a

smooth hand movement and was created by performing linear interpolation of the samples

in-between the peaks, as exemplified in Figure 5.5. In this case, F would be equal to:

F = AL =
∑

N
i ω(i)

∑
N
i ωn(i)

(5.4)

where AL is a ratio for amplitude loss, ranging from 0 to 1 (no loss), ω is the angular velocity

signal and ωn is a version of the previous where, at every detected artifact, an interpolation

was performed between the respective neighboring peaks.
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Figure 5.5: Representation of an arcade correspondent to a hand flexion movement with a cog-
wheel artifact and the interpolation of a perfect arcade using the neighboring peaks of the artifact.

• as given by a second degree polynomial scaling function of C:

F = f (C) = aC2 +bC+ c (5.5)

where a, b and c are parameters such that a = (O−1)
(1−2AL−1

b +AL−2
b )

and b = −2aAL−1
b and c =

1+aAL−2
b and C = AL

ALb
and ALb is AL of the respective baseline signal. An example of this

function is in Figure 5.6, where O, the proportion factor applied when AL = ALb, is equal to

0.80 and ALb = 0.92. Because O translates the weight of having no improvement in terms

of movement smoothness, this was varied from 0.84 to 0.98 to check whether tweaking this

parameter would benefit the overall model performance.

For both definitions of F , the training error was compared to having no multiplicative factor.

Furthermore, it was attempted to include baseline comparison, i. e., when building the polynomial

model, consider as well the RL = 0%, correspondent to the respective baseline signal. Possibly by

enriching the input data for building the model with the baseline signal’s descriptor could enhance

performance. The results may be found in Figure 5.7.

Neither including the effect of cogwheel as in Equation 5.3 or/and having baseline compari-

son when building the polynomial model bring any increased performance; in fact, it worsen the

performance. Figure 5.7 shows that the error is worst for any value of O different from 1, both

considering the baseline signal or not. Table 5.3 presents the error achieved with the first definition

of F , which also proves to be unable to reduce the system’s error. The struggle in finding an appro-

priate manner in which to include this cardinal feature in parkinsonic rigidity may be associated

as well to some inconsistency of the specialist assessment regarding it.
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Figure 5.6: Example of f (C) function to model weight of cogwheel artifacts impact on the rigidity
label. In this case, ALb = 0.92 and O = 0.80.
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(a) No baseline comparison.
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(b) Baseline Comparison.

Figure 5.7: Impact of having the F factor in the rigidity label on the training error (mean +
standard deviation is represented). F = AL is the first definition introduced, where AL translates a
measure of amplitude loss by cogwheel (where 1 corresponds to no loss), F = 1 is the case where
the multiplicative fator does not influence the final classification and O is the proportion factor F
applied when the ratio AL/ALb = 1 (i. e., when the loss of signal amplitude in the current signal
and in the baseline signal due to cogwheel is equal). The dashed line represents the mean training
error achieved when F = 1.

Table 5.3: Comparison of mean ± standard deviation of training error when there is no influence
of the multiplicative factor (F = 1) and when it is equal to the loss of amplitude due to cogwheel
(F = AL).

Baseline

Comparison

No Baseline

Comparison

F = 1 16.8±18.3 % 7.6±7.6 %

F = AL 16.3±17.2% 9.1±8.7 %
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5.1.3.3 Random Forest

In introductory work (in Appendix C), a regressive decision tree-based approach, random forest

(RF), using only the signal descriptor φ for classification of rigidity proved to have similar results

as the polynomial model. With that in mind, it was hypothesized that such method, now consider-

ing as well cogwheel-related features, would be beneficial. The number of trees considered in the

forest were 1, 2, 5, 10, 15, 25, 50, 80, 100, 150 and 200. The leave-one-out error was computed,

performing 1000 iterations. The following combinations were used to build the trees:

1. φsignal , CAsignal and CAbaseline of every signal (377 signals)

2. φsignal , CAsignal and CAbaseline of every signal excluding baseline signals (341 signals)

3. φsignal and CAsignal of every signal excluding baseline signals (341 signals)

where CAsignal and CAbaseline are the number of cogwheel artifacts detected in the signal and its

respective baseline, respectively. At this point, a larger dataset was considered than in previous

sections (total of 377 signals from 40 limbs).

Figure 5.8 presents the results for these different combinations. As in Section 5.1.3.2, includ-

ing the signals of baseline rigidity into building the model worsen the results, achieving a minimum

training error of 10.1± 9.7 % for 50 trees (Figure 5.8a). As for the two others, they achieve, re-

spectively, 7.1±5.6 % for 80 trees (Figure 5.8b) and 7.4±6.0 % for 50 trees (Figure 5.8c). The

error for all RF converge with the increase of the number of trees. Still, such convergence does

not translate into improved performance.

The performance of generated models relying on the angular velocity signal of bending seems

to have reached a plateau, neither increasing the dataset size (based only on 2 physicians at least)

nor by considering cogwheel occurrence seems to improve. Additionally, such methodology com-

prising of so many trees would affect significantly the response-time of the mobile application

when classifying, which would not be worthwhile.

5.1.4 Incidence of Cogwheel Artifacts

Cogwheel rigidity causes further impairment to a patient and is more prominent as the disease

status is as well more severe. That is shown in Figure 5.9a and 5.9b, respectively, by showing

that, with a lessened rigidity perceived by the specialist, both number of jerk occurrences and their

amplitude are smaller. This is further confirmed if we consider only the signals from baseline

rigidity grouped according to the patient’s UPDRS subscore, where, from 1 to 3, the mean value

decreases (even though no statistical difference is found), as shown in Figure 5.10.
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(a) Considering φ , CAsignal and CAbaseline. Including Baseline signals.

10 50 100 200
0

5

10

15

20

Nr. Trees

%
of

R
ig

id
ity

Im
pr

ov
em

en
tE

rr
or

(b) Considering φ , CAsignal and CAbaseline. Excluding Baseline signals.
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(c) Considering φ and CAsignal . Excluding Baseline signals.

Figure 5.8: Performance of random forest approach for classification of rigidity. φ is the signal de-
scriptor, CAsignal the number of cogwheel artifacts detected in the signal and CAbaseline the number
of those same artifacts in the respective baseline state.
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Figure 5.9: Tendency for a lessened rigidity perceived with less amplitude loss in hand flexion and
less occurrence of cogwheel.
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(b) Number of cogwheel jerks.

Figure 5.10: Tendency for a smaller rigidity score with less amplitude loss in hand flexion and less
occurrence of cogwheel. Only the baseline signals were considered.
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5.2 Categorization of cogwheel rigidity severity

The inclusion of a parameter related to the cogwheel occurrence did not lead to any improvement

in the training error in comparison to the initial approach, still we considered as an important

feedback to provide to the physician, hence the detection of cogwheel artifacts was included in the

system (i. e., mobile application). The concept followed was to give additional information to the

user, by providing the number of jerks identified per signal (having a single indicator related to

the hand movement smoothness), which would be associated to a visual scale:

• green - cogwheel of a low rigidity (LR) state

• yellow - cogwheel of a medium rigidity (MR) state

• red - cogwheel of a high rigidity (HR) state

From a total of 302 signals, every signal whose respective baseline signal had less than 4

cogwheel artifacts (CA) (3.07 is the average of CA in the signals with medical labels of 70%

and 80%) was discarded, to keep only meaningful data and because, if baseline does not have

cogwheel, neither will the others. 52 signals were discarded. Then, three clusters (HR, MR and

LR) were defined as in Table 5.4 containing the number of cogwheel artifacts detected and the

respective mean value per cluster was computed.

The mean values of each group were used as the seed points for a 3-means clustering to

partition all the data distribution into three clusters. This was performed using the cogwheel events

within a period of 300 samples and 200 samples (sample-interval set for the mobile application to

provide each RL). These new cluster centers found allowed defining boundaries of each cogwheel

rigidity realm as the mid-points between LR|MR and MR|HR. The results are presented in Figure

5.11, where the seed points, final cluster centers and boundaries are represented, considering both

200 samples and 300 samples signals.

To keep the feedback-rate of the mobile application at every 200 samples, the boundaries

considered were:

• HR | MR: 7.807 ~8 CA

• MR | LR: 2.798 ~3 CA

Table 5.4: Association of the categories of low, medium and high rigidity cogwheel states (LR,
MR and HR, respectively) to the medical label assigned by the specialist to a given signal and
their respective mean number of cogwheel artifacts (CA) detected. 0% corresponds to the baseline
signal of the limb.

Cog. Severity Range Mean CA (300 samples)

HR (0/40/50)% 6.3

MR 60% 3.9

LR (70/80)% 2.3
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Figure 5.11: Result of 3-means clustering. The cluster centers for high, medium and low rigidity
cogwheel (HR, MR and LR, respectively) are shown as triangles and the mean values of cogwheel
artifacts (CA) as circles (i. e., seeds for 3-means clustering). The frontiers HR-MR and MR-LR
are represented as lines.

If we applied straight forward these hard-coded boundaries to classify a signal regarding cog-

wheel rigidity using the same set of signals as before, we would have an accuracy of 68.5% and

sensitivity of 52.8%, whereas, using the 300-samples boundaries, 68.8 % and 44.3%, would be

achieved.

It was further envisioned to have adaptive-boundaries for classification of the cogwheel rigidity

severity. Hence, for any new limb under analysis, the baseline signal was acquired and processed,

having obtained CAb, the number of CA of the baseline signal. According to this value, the

frontiers (BHR|MR and BMR|LR) would adapt according to the distance to the HR cluster center,

CCHR (in the case of 200-samples analysis, 11 CA) as follows:

B
′
HR|MR = BHR|MR

CAb

CCHR
(5.6)

B
′
MR|LR = BMR|LR

CAb

CCHR
(5.7)

For every signal, its CA is positioned within one of these 3 realms having in mind the new

values of the boundaries, B
′
HR|MR and B

′
MR|LR, and categorized as high, medium or low cogwheel

rigidity severity. These adaptive-boundaries lead to lower accuracy and sensitivity (63.5% and

45.2%, respectively) than before but still such approach was carried on for being more versatile and

adaptable. Moreover, the goal is to categorize cogwheel rigidity in one of three distinct status to

give a sense of changes in movement smoothness (base on quantitative data) rather than effectively

to correctly classify. A summary of these results is presented in Table 5.5.



5.3 Final Remarks 59

Table 5.5: Accuracy and sensitivity of the approaches to categorize the cogwheel rigidity severity.

Accuracy (%) Sensitivity (%)

300 samples, fixed boundaries 68,8 44,3

300 samples, adaptive boundaries 62,7 44,0

200 samples, fixed boundaries 68,5 52,8

200 samples, adaptive boundaries 63,5 45,2

5.3 Final Remarks

In this chapter, a cogwheel detection method was introduced which proved to be reliable (TPR =

100% and FPR = 1.13%) using light-processing. Then its combination with the current model, as

a penalty or as a multiplicative-factor were attempted but no significant differences were found.

Still, as cardinal feature of the symptom under scope, its occurrence could not be ignored, then a

categorization system as searched for and developed sub-dividing into three realms (high, medium

and low cogwheel rigidity severity) and as a function of the baseline rigidity of the patient. This

allows having a perspective of both the improvement related to overall amplitude increase and also

a rating system of movement smoothness. Its implementation and presentation will be introduced

in Chapter 6.





Chapter 6

System Overview

Initially, the system had two components: a MoMo for hand-sensing and a smartphone for pro-

cessing and visual feedback. The mobile application provided the last evaluation of rigidity, a

real-time plot of hand flexion velocity and interface widgets for data-logging. Still, to incorpo-

rate the work present in Chapter 5 related to cogwheel detection and categorization, new features

needed to be added. Additionally, improvement to usability of the application were introduced

by adding an extra-interface to provide feedback at the hand of the physician performing the as-

sessment, in a smartwatch. Furthermore, this system may provide capabilities other than rigidity

assessment: both by assessing other motor symptoms and by complementing other under-study

system (closed-loop DBS). Those will be introduced later in this chapter.

6.1 Intended System Capabilities

In Chapter 5, cogwheel rigidity was categorized considering the available dataset, as well as the

cogwheel artifacts (CA) detected in the baseline signal acquired before any application of stimu-

lation. Also, other usability improvements were planned (to enrich the interface). A summary of

the new envisioned features may be found in Figure 6.1 (represented as white “Use Cases”):

• provide cogwheel-related information

• allow defining a signal as baseline signal (which requires a plot of baseline signal to check

its quality/significance)

• represent a reference of average angular velocity peaks, µp (considered as the mean of those

signal labeled with 70% or 80% improvement)

• provide a history of the most recent rigidity label provided by the system

• provide rigidity evaluation feedback through smartwatch.

A block diagram representing the system is in Figure 6.2, where the display unit may be a

smartphone or a smartwatch.

61
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Figure 6.1: Use Case diagram of iHandU android application. White use cases depict new features
to be added and black use cases the existing ones. The MoMo is the sensor being worn in the hand
of the patient, whose rigidity is being assessed by the physician; the technician is the individual
holding the handheld smartphone, where the application iHandU is running.

Processor UnitSensor Unit
Wrist bending 

angular velocity
Gyroscope

Rigidity Index 

Calculation

Cogwheel Detection

Categorize Cogwheel Rigidity Bluetooth

Display Unit

Show Rigidity Index and 

Cogwheel Rigidity Category

Figure 6.2: Block Diagram of proposed device. The sensor unit and processor unit could be a
single module, communicating the resultant parameters to an external device with simply display
function.
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6.2 Implementation of cogwheel detection

Rather than having an “offline” processing for the artifact detection, i. e. waiting for the acquisi-

tion of all 200-samples and then analyze the signal, the implementation performed such that this

detection was “on-the-fly”. The flux diagram is in Figure 6.3.

After the computation of the number of CA this was categorized as high-, medium- and low-

severity, applying the adaptive boundaries according to the CA identified in the saved baseline

signal. In case the baseline signal had less than 4 CA, then this information was considered

meaningless.

6.3 Visual Updates

The previous categorization of cogwheel is provided to the user as:

• green, low cogwheel rigidity severity

• yellow, medium cogwheel rigidity severity

• red, high cogwheel rigidity severity

• grey, baseline rigidity did not reveal significant number of CA (<4)

Furthermore, the feedback provided by the system, when the rigidity label was lower than

35% or the signal had a mean velocity value than that found in the baseline signal, changed to

NR instead of the output given by the model, standing for “No Reduction”. Also, a reference was

placed in the graph (as the green plot) which depicts the average of µp of 70% and 80% reductions

in rigidity so the operator has a sense of scale when observing the variation of angular velocity,

as well as a visual threshold which defines an improvement. Withal, a history with the 3 previous

classifications by the systems are presented.

With the cogwheel-related updates, features of baseline rigidity are required. For that reason,

the visual-assessment of the quality of the baseline signal under use (check the signal significance,

if it is representative by having an adequate number of flexion-arcades in the signal and meaningful

information) was of interest which was added to the interface, accompanied by a control button

for this signal acquisition.

The final user interface is as in Figure 6.4.
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Figure 6.3: Flux diagram of “on-the-fly” cogwheel detection. CA stands for cogwheel artifacts.
200 is the number of samples per signal.
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Figure 6.4: Screenshot of mobile application.

6.4 Usability Survey

Figure 6.5: Interface of Mobile Application simplified (“end-user mode”).

To evaluate the easiness of use of the proposed system, 5 first-time users were invited to use it

and do the following:

1. place the sensor correctly in a person

2. initialize the mobile application in the handheld

3. record a baseline signal

4. observe the provided feedback by the mobile application

5. finalize the acquisition

as it would occur in a DBS surgery context.

For this purpose, the mobile application was changed to a simpler interface (all widgets related

to data acquisition were removed), as in Figure 6.5. The simplicity of the design may even be

adapted, depending on the style and background of the physician (e. g. discarding the real-time

signal plot), or reducing to the minimally required and relevant as in Figure 6.8 . Each of the steps

and sub-tasks (e. g., visualization of the baseline signal shape, check rigidity label history) were

evaluated as in Appendix G.
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In a scale from 1 (highly difficult) to 5 (highly simple), the procedure has an average rating of

4.84 and an overall appreciation of 4.9.

6.5 Phone-Watch Communication

As the system was designed, the physician did not have direct visual access to the improvement

computed by the system while making his assessment because it is only provided in the smart-

phone screen. This required for the physician to ask for the system’s classification to the person

holding the device. With that in mind, one of the goals of this project was to extend the feedback

functionality, by allowing the examiner to check the computed feedback right away (impacting

the overall time of consultation). For that purpose, the Google Play Services library of wearable

devices was used.

When the mobile application starts, a GoogleApiClient is initialized to allow communication

with the wearable data layer. This wearable should be connected through Android Wear to the

smartphone. If this is available, every time a classification is computed in the smartphone, it

sends the last 4 classifications, the number of detected CA and color associated to the cogwheel

rigidity categorization (green, yellow, red and gray), decided by the processing in the handheld

phone. This operation of connecting to the wearable data layer is initialized and performed in as

an asynchronous task, which is terminated if there is no wearable available or after the message is

sent. The information is sent as in Table 6.1.

Table 6.1: Message sent from handheld phone to wearable. Ri is the ithrigidity reduction computed
by the system, where i = 1 is the most recent.

Index 1-2 3-4 5-6 7-8 9-10 11

Item R1 R2 R3 R4 CA Cog.Category

The use case related to the smartwatch usage intra-operatively has been tested and validated

(Appendix F).

After decrypting the message received by the wearable, this is displayed by the interface, as in

Figure 6.6. Every update is accompanied by a vibration of the watch to warn the physician about

the arrival of new data. The full system is represented in Figure 6.7 and the class diagram related

to the MoMo communication may be found in Appendix E and a picture of the system under use

in DBS surgery in Appendix F.

In a prototype stage, a factor to consider is the color code used in the display interface. The

red color must be reserved to signal alarm and emergencies [54] (ISO 3864: Graphical symbols -

Safety colours and safety signs). Furthermore, an even more simplified interface could be aimed

for as exemplified in Figure 6.8, where the background color of the display changes according

to the movement’s smoothness categorization, provides only the most recent classification and

shows ′+′ or ′−′ indicating increase or decrease of the classification in comparison to the previous

classification.
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Figure 6.6: Wearable application interface in smartwatch Moto360. From top to bottom, there is
the most recent rigidity label, followed by the corresponding count of cogwheel artifacts which is
associated to a color code related to severity of their occurrence and, finally, the history of rigidity
labels.

T

D P

D

Smartwatch

Figure 6.7: Overall System. “T” stands for technician, “D” for doctor performing the rigidity
assessment and “P” for patient.The elastic band, within which lies the sensor, is placed in P’s
hand. The sensor communicates with the handheld smartphone via-Bluetooth. At its end, data
processing, cogwheel artifacts detection and computation of the rigidity label take places and then
forwarded to the smartwatch worn by the physician.
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Figure 6.8: Simplified smartwatch interface.

6.6 Final Remarks

Additional functions were added to the system for rigidity assessment by (1) enriching the hand-

held mobile application with support features (e. g., history of classifications) and cogwheel rigid-

ity information and (2) adding a smartwatch to be worn by the physician who is making the

assessment to provide him feedback on the computed rigidity reduction, instead of being shown

the smartphone or being told.

However, as a proper medical device, can it be successful? Which requirements should be

met? What is lacking? Who might be the partners and competition? This issues will be tackled in

Chapter 7.



Chapter 7

System as a Business Opportunity

Up to this stage, we have presented a system which aims at quantitatively evaluate rigidity in intra-

operatory conditions. But one who prospects to have it become a medical device to be added to the

Deep Brain Stimulation surgery context should be aware of the industry environment, validation

and legal procedures to be followed and how to protect the technology. This chapter will give an

overview from this perspective.

7.1 Need and Stakeholders

In Deep Brain Stimulation (DBS) surgeries of patients with Parkinson’s Disease (PD), the im-

provement caused by stimulation is assessed relying on the evaluation of wrist rigidity, performed

by a physician. This is done relying on the physician assessment capabilities, experience and

perception, with no supportive quantitative data, bestowing subjectivity over it. Hereby, a need

of supporting the physician decision with quantitative data was identified, of mixed nature (no

current solution still an increment to the context of deep brain stimulation surgery).

To meet this need, we are faced with the following stakeholders, who have their own interest-

s/questions:

• Administration/Board: is the device cost-effective? how does it influence the time of occu-

pation of an operating room? Does it reduce future revisits by the patient?

• Neurosurgical operating team: is the device easy-to-use? Is the device reliable? Is it time-

consuming? Does it reduce future revisits by the patient?

• Patient: does it prolong the surgical procedure (notice that he is awake during the electrodes’

implantation)? Does the device influence his comfort? Does it reduce the number of future

revisits to the hospital?

• Buyer (private, government): cost of device? is the device cost-effective? how does it

influence the time of occupation of an operating room? Does it reduce future revisits by the

patient?

69
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Neuromodulation: $3.65 billion 

Deep Brain Stimulation

Deep Brain Stimulation in Parkinson's Disease: $1.79 billion

Deep Brain Stimulation in Parkinson's Disease
Europe and USA: $912.9 million

Figure 7.1: Top-down market segmentation. From Neuromodulation to Deep Brain Stimulation
Surgery devices for Parkinson’s Disease in Europe and USA.

7.2 Market of Deep Brain Stimulation

The neuromodulation 1 market is expected to reach a value of $6.20 Billion in 2020 (evaluated in

$3.65 billion in 2015). One of its drivers is DBS due to its large growth potential (settled in the

treatment of movement disorders but currently expanding in targeting diseases) [55].

The global sub-market of DBS Devices for PD also reveals growth tendency: in 2013 it was

valued in $1.79 billion (ore1.60 thousand million) and the expectation is to reach a value of $3.21

billion (or e2.88 thousand million) in 2020 [56]. A CAGR 2 of 8.9% justified by (1) demand of

minimally invasive surgical procedures and (2) increasing rates of incidence of target disorder

[57].

A global incidence of 4.9-19 per 100,000 people was reported by the World Health Organi-

zation (WHO), as well as higher prevalence rates in Caucasians in Europe (108-257 per 100,000

[58]) and North America [59]. The European and USA DBS devices market for PD may be esti-

mated as 51% 3 of the global market, i. e. , $912.9 million (e808.1 million). The growing market

is a signal of attractability of this industry, thus attractive to introduce a product into it.

7.3 Industry Landscape

If one envisions to place a medical device on the market, knowledge of the players in the market

of interest is required. These may play an important role on the future success (or not), either

as competition or as partners. So, in the DBS devices market there are five main players to be

emphasized [57]:

1Direct stimulation of nervous system with electrical signals
2Compound Annual Growth Rate (CAGR) is the mean annual growth rate of an investment over a specified period

of time longer than one year.
3Considered (NEU+NUSA)DBSEU&USA

(Nglobal DBSglobal)
where N stands for number of patients worldwide (global), Europe (EU) and

USA (6,954.2, 1,342.0 and 1,082.4, thousands, respectively [57]). DBSglobal and DBSEU&USA is the DBS treatment
availability which was estimated as being equal to drug treatment availability provided by the WHO (60.6% and 88.1%,
respectively [59]), where availability in USA was considered equal to the European’s.
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• Medtronic Inc. (USA): the initiator of this medical device segment with the first European

approval in 1993 for tremor, dystonia and PD [60], FDA approval for PD in 2002 [61] and

in 2010 was holder of an over 25% share of Europe Neurology Devices Market

• St. Jude Medical Inc. (USA): launched its therapy for PD in Europe in 2009 [60] and got

FDA approval in 2015 [62]

• Boston Scientific Corp. (USA): got CE marking DBS system in 2012 [63]

• Deep Brain Innovations, LLC (USA): focus on increasing efficiency of deep brain stimula-

tion systems

• Aleva Neurotherapeutics SA (Switzerland): focus on electrode fabrication for increased

stimulation target specificity, start-up founded in 2008, received its third round of financing

in 2016

There is also Precisis AG (Germany) which provides solutions for high precision intervention

in neurosurgery, radiotherapy and stereotaxy, from software to hardware (e. g. drilling system and

stereotatic frame). Furthermore, a start-ups rise in this field can be identified as demonstrated by

[57]:

• Functional Neuromodulation Inc., focused on the application of DBS to the fornix area (with

Medtronic and Genesys Capital - a Canadian-based venture capital firm - as Investors [64])

• Intelect Medical Inc., who developed a software to visualize and steer stimulation (acquired

by Boston Scientific in 2011 for $78 million (about e68 million)

• Sapiens Steering Brain Stimulation GMBH (from the Netherlands, acquired by Medtronic

in 2014 for e150 million)

• NeuroSigma, developing DBS systems for pos-traumatic stress disorder, obesity and cachexia

• Brainsway Ltd., tackling DBS through transcranial magnetic stimulation instead of an inva-

sive approach

The role of these companies may be perceived as supporting existing products of possible

acquirers, with larger market share (“for a possible tuck-in acquisition”), i. e., complementing

the current framework by exploring new target diseases for DBS, new ways to intra-operatively

confirm that clinicians have reached the target of stimulation, diagnostics to help selecting eligible

patients for DBS and also by providing supporting technologies to help clinicians advance ther-

apies for diseases that are more complex and difficult [60]. Herewith, our proposed system may

fit into the context of DBS as well, in particular, in the surgical stage in PD patients, as a guide

to indirectly identify whether the stimulation electrode is placed in the optimal position. In this

sense, by partnering with an already-established company could provide an opportunity, not only

for their expertise on product regulation and manufacturing capability, but also easy access to a

large number of centers providing DBS surgery to the population.
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Rivalry among existing
competitors

Threat of substitutesPublic policies

Bargaining power of
suppliers

Bargaining power of users

Threat of new entrants

(-) Large Companies
(+) Cooperation
(+) Growing industry
(+) Low product differentiation

(+) Large availability of suppliers
(-) Forward Integration (?)

(+) No equivalent

(-) Reluctance to change
(-) Reduced budgets
(+) Aging population

(-) High research and develop-
ment expenditures
(-) Strong existing brands
(Medtronic, St. Jude Medical,..)
(-) Difficult access to early-stage
capital (start-ups)
(+/-) Intellectual property protec-
tion
(-) High incidence of research on
DBS and PD

(-) Highly regulated in-
dustry (medical devices)

Figure 7.2: 6 Porter Forces related to the DBS-related devices industry.

To summarize the mentioned ideas and add some viewpoints, Figure 7.2 introduces the 6

Porter’s Forces related to the DBS devices market. To meet the need of having a support tool for

rigidity evaluation, the surgical operating teams may show reluctance to change which may hamper

the acceptance of a new device into the procedure. Furthermore, there are well-established com-

panies on this segment, with a strong brand. However, the product for DBS have relatively low

differentiation which opens the possibility to endeavors to complement these already-marketed

devices used intra-operatively by cooperating with these companies, specially considering the

market’s growth. The possibility of cooperation becomes even more important in the sense that

there has been higher difficulty to access to early-stage capital for start-ups in recent years [65].

Still, this cooperation will only be possible if there is appropriate intellectual property protection

to impede forward integration on the suppliers side (due to high simplicity of the system) and

also among the competition, specially considering there is no substitute product available for the

identified need, other than the end-users (physicians) themselves. The cooperation would be ben-

eficial for both sides, namely regarding these companies’ expertise in regulatory matters, inherent

to the medical devices’ market. Yet, one should consider that other research groups worldwide

with affiliation to big player on the market can create a research project for a similar device.

7.4 Proposed Solution

As so far told, the system developed has three components:

1. Elastic band with a gyroscope placed in the patient’s palm
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Neurosurgical Team (N)

Physician (P) Support (S)

1. Implant lead 

2. Vary lead positioning (for 
registration) (N+P+S)

3. Change lead placement 
according to registration (N+P)

5. Change lead placement
according to rigidity assessment 
(N+P)

6. Place the lead in the final position

Patient

2. Evaluate brain activity (during registration) 

3. Define lead positioning (for rigidity
assessment)

4. Place elastic band with sensor in patient's
hand and turn on the sensor (P+S)

5. Assess patient's rigidity for different
electrodes (anterior, medial, lateral and 
posterior) and electrode positionings (by
 request) (P+S+N)
 5a. Check feedback in the smartwatch

6. Define final settings of stimulation (P+N) 
and remove elastic band from patient

2. Do annotations on the identified brain
activity based on physician's assessment
(S+P+N)  

4. Initialize mobile application for rigidity
reduction evaluation (P+S) 

5. Change stimulating electrode and 
intensity and do annotations of physician's 
rigidity assessment (S+P+N)

6. Close mobile application

pre-definedTarget

lead
vertical axis

lead position variation 
for registration

2. Registration
coronal view

3. Test different electrodes
and positions

Anatomical target

Electrodes

Vary lead
positioning

Figure 7.3: DBS surgery workflow: influence of the system for rigidity evaluation. In red are
emphasized the additional tasks demanded by the use of the proposed system.

2. Smartphone as an acquisition, processing and feedback unit

3. Wearable (smartwatch) worn by the physician to receive feedback

which communicate between them via Bluetooth.

The impact on the DBS surgery workflow is depicted in Figure 7.3. As it is evidenced, this

solution requires additional tasks that would slightly increase the duration of the overall rigidity

assessment procedure. Thus, for an administrator, the benefit of this proposal does not rely on

increasing the pace of the surgery but the possibility of reducing the number of reoperations due

to suboptimal positioning of the stimulating electrodes, as it has been reported by Ellis et al. [66],

which would benefit all involved stakeholders. To notice that a single surgery of DBS costs about

e25 000 [67]. The miniaturized system is extremely easy to place and to be worn, and revealed

accuracy. Finally, it is a device which can provide important information over the course of the
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Processor UnitSensor Unit
Wrist bending 

angular velocity
Gyroscope

Rigidity Index 

Calculation

Cogwheel Detection

Categorize Cogwheel Rigidity Bluetooth

Display Unit

Show Rigidity Index and 

Cogwheel Rigidity Category

Figure 7.4: Block Diagram of proposed device. The sensor unit and processor unit could be a
single module, communicating the resultant parameters to an external device with simply display
function.

surgery, namely by reducing the subjectivity of the physicians’ decision-making.

We could further miniaturize this system by having the sensor and processing unit in a single

module which computes the needed parameters which are transmitted via Bluetooth to an external

device working as a display unit (Figure 7.4). Such system would have the advantage of not being

limited to the processing capabilities of an external device (smartphone or wearable). Hence, we

could have it only as a glove/elastic band with a module for signal acquisition, processing and

an accessory software to receive and display computed parameters from the later in an external

device (e. g. android application).

As this system has two components, each should be considered separately as a medical device,

as referred in Annex IX of the European Medical Devices Directive [68]. The hardware module

would be classified as non-invasive (only in contact with intact skin) and as an active device

for diagnosis because of his measuring and diagnosing capabilities of a state of health, which

is to identify improvements in a motor symptom. Thus, it would be Class IIa medical device,

compliant with rule 1 applicable to non-invasive devices (contact with intact skin) and rule 10 for

active device for diagnosis (diagnosing feature) [69]. The accessory software would fall to the

same category as it also provides diagnosing.

For such system to be placed in the European Union market, the CE mark (compliance label)

is a must. However, several steps must be taken to apply for marking as in Figure 7.5.



7.4 Proposed Solution 75

1. Research Work

2. Clinical Testing under ethics committee 7

3. Definition of final product

(a) Voice of the customer: feedback from clinical staff and possible
partners (e. g. Medtronic)

(b) List of essential requirement and applicable standards for safety

(c) From (a), define clear user scenarios, user needs and application
environments

(d) Risk analysis of the current solution based on the user scenarios
defined in (c)

(e) Definition of requirements from user scenarios

(f) Planning development, deciding hierarchy of activities and initiate
designing

(g) Verification (of requirements through tests) and validation (of user
needs through inquiries and observation)

(h) Prototype production and validation

4. Application for CE mark

7 stands for current stage

Procedure Sequence for a Medical Device

Figure 7.5: From research to marketing: the procedures [70].
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7.4.1 Final Product Definition

Clinical Testing is under way, but what may follow other than continue the testing? Firstly, one

should get feedback from the surgeon, nurses, patients and even other companies that have activity

in this context. This would require to gather more centers, thus more DBS operational teams to

evaluate the performance and usability of this system.

7.4.1.1 Requirements and standards

Secondly, one must identify requirements and standards that must be met. A medical device must

not ever be considered absolutely safe because some shortcomings may only be experienced after

extensive market experience. With this in mind, other than the essential requirements of Medical

Devices (Annex I of Directive 93/42/EEC), there is a set of harmonized standards, related to

the quality, safety and effectiveness of medical devices issued by International Organization for

Standardization (ISO) and International Electrotechnical Commission (IEC). For the system under

analysis in the European Union, the following are applicable [71]:

• Biological Evaluation of Medical Devices: Evaluation and testing within a risk management

process (ISO 10993-1:2009)

• Quality management systems - Requirements for regulatory purposes (ISO 13485: 2012/AC

:2012)

• Sterilization of medical devices - Information to be provided by the manufacturer for the

processing of resterilizable medical devices (ISO 17664:2004)

• Medical electrical equipment - Part 1: General requirements for basic safety and essential

performance (IEC 60601-1:2005/A1:2012)

• Medical electrical equipment - Part 1-6: General requirements for basic safety and essential

performance - Collateral standard: Usability (IEC 60601-1-6:2010+A1:2013)

• Medical device software - Software life-cycle processes (IEC 62304:2006)

• Medical devices - Part 1: Application of usability engineering to medical devices (IEC

62366-1:2015, respective tutorial 62366-2:2015)

7.4.1.2 Risk Analysis

Also, when proposing a medical device, a risk assessment should be performed to identify where

and when it could become hazardous and result in safety problems and harm. According to the

category of the medical device, the degree of regulation imposed varies. For manufactures to

develop an appropriate risk management approach, the ISO provides a framework which includes

risk analysis, risk evaluation and risk control in medical device design (ISO 14971:2007).

Even though the device is non-invasive, there are some risks that must be considered. Just to

name a few:

• occurrence of surgical complications (venous infarction or air embolism, leading hypoxia,

incidence rate ranging from 1 to 10% [72]) which requires deciding: (1) proceed with iden-

tifying optimal stimulation settings and (2) use (or not) the system for quantitatively assess
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rigidity. Both these decisions have implications on how quickly the stereotatic frame is

removed and the patient is attended which may compromise his health

• reliability of communication protocol (radio-frequency, Bluetooth)

• device overheating

7.4.1.3 Additional Requirements

The developer may identify additional requirements related to the user scenarios considered that

must be met, to be included in the previously prepared list. Overall the requirements may be

related to:

• functional performance

• interface

• regulatory

• manufacturing

• training

• installation

• non-functional (environmental, usability, ergonomics, labeling, storage and cleaning and

disinfection)

These requirements are related to the user needs and are applied to each of the components of

the system: hardware and software.

Also, a development plan should be created and activities hierarchized. Furthermore, several

products design should be done. Then, these are reviewed, by checking whether they meet the

requirements. Finally, one design should be chosen and frozen, to produce a prototype and to

proceed with its validation.

7.4.1.4 Clinical Evaluation

A manufacturer when performing clinical evaluation verifies whether the characteristics and per-

formance of the device under normal conditions of use are compliant with the customer/market

requirements (in respect to the intended use and instructions of use, exemplified in Figure 7.6),

relying on clinical data (be it relevant scientific literature, be it result of clinical investigations

made).

As stated in the article 15 of the Council Directive concerning medical devices (Official Journal

of the European Communities), the occurrence of these clinical investigations should be commu-

nicated to the competent authorities of the Member States in which the investigations are to be

conducted and authorization should be given.

This communication should be accompanied by:

• data allowing identification of the device in question

• an investigation plan (purpose, scientific, technical or medical grounds, scope and number

of devices concerned)
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Intended Use “The iHandU sensor is a wireless inertial measurement unit in-
tended to be used by neurologists during Deep Brain Stimulation surg-
eries to act as a second opinion for the evaluation and assessment of the
muscular rigidity under different stimulation parameters. It is intended
to be held by a textile band and located on the palm of the hand, while
measuring kinematic data and transferring it to a mobile application for
processing and displaying of relevant clinical data. The classification
functions are expected to be improved over time, as long as surgeries
are being done, thus improving the adaptability and customization of
the system to the end-user.”

Indications for use “It is indicated for use on Deep Brain Stimulation surg-
eries, in which the neurologist think that it may be appropriate to per-
form the passive flexion movement of the hand for rigidity evaluation.”

Statements

Figure 7.6: Proposal of statements for Intended Use and Indications for use

• opinion of the ethics committee

• place, starting date and scheduled duration for the investigations

• statement that the device in question confirms to the essential requirements apart from the

aspects covered by the investigations and that, with regard to these aspects, every precaution

has been taken to protect health and safety of the patient

Over the course of the clinical investigation, documentation about the device should be avail-

able for the competent national authorities with (1) a general description of the product, (2) design

drawings, methods of manufacture envisaged, diagrams of components, sub-assemblies, circuits,

etc, (3) respective descriptions and explanations, (4) results of the risk analysis and list of stan-

dards to be met applied in full or in part, and descriptions of the solutions adopted to meet the

requirements and (5) results of the design calculations, and of the inspections and technical tests

carried out, etc.

The methodology of a clinical investigation must:

• be performed reflecting the latest scientific and technical knowledge

• be defined in such a way to refute the manufacturer’s claim

• include an adequate number of observations to guarantee scientific validity

• be performed in similar conditions to the normal use of the device

• be performed under the responsibility of a medical practitioner or another authorized quali-

fied person in an appropriate environment

• include all adverse incidents record and notification

This should be accompanied by a written report with a discussion of all the data collected over

the course of the clinical evaluation.
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System Technical File to enable affixing CE Mark to the system, which shall
include:

• Supplier qualification records and quality agreements

• Manufacturing qualifications, verifications, process validations
plans and reports

• Final manufacturing plan

• Final system validation test plan and results

• First article reports

• Device Master Records (released at production, includes work in-
structions and production methods)

• Design Verification and Validation plans and reports

• Hazard and security analysis and risk management report

• Labeling

• Design reviews

Compliance with all the regulatory and global requirements including
testing and certification to IEC 60601, 3rd and 4th editions as applicable

Completed Declaration of Conformity and Essential Requirements Matrix

Documentation for CE mark

Figure 7.7: Documents for application for CE marking.

7.4.2 Application for CE mark

To affix the CE marking necessary to market a medical device of this category (IIa), more than

confirming the compliance of the device with its requirements is necessary. The manufacturer

should perform an EC declaration of conformity, where it ensures and declares that the products

concerned meet the provisions of this Directive which apply to them. This would be coupled with

either a production quality assurance, a product quality assurance or EC verification (Annexes V,

VI and IV of the Directive 93/42/EEC, respectively) [73]. All the requisites are summarized in

Figure 7.7.

7.5 Intellectual Property

7.5.1 Protection Methods

Patent When in a very competitive market, the replication/copying of new-solutions may occur.

Thus, before any publication, the original developers (João Paulo Cunha and Pedro Ferro Costa)
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recurred to the intellectual property (IP) system by applying for a patent, to protect this rigidity

evaluation method:

1. having a sensor (either gyroscope or accelerometer) placed in the anterior or posterior face

of the hand (in a skin-contacting patch, coupled with an elastic band or fingerless glove) to

which flexion/extension was imposed (in the context of deep brain stimulation surgery of a

patient), which allowed extracting the angular velocity around the axis of joint rotation

2. the angular velocity signal enables distinguishing joint’s rigid and non-rigid state and was

used in a processing unit to compute a non-rigidity index.

3. the latter index is then displayed by a wireless connected device (the method encompasses

having the data processor either electrically connected to the sensor or wirelessly)

4. the angular velocity signal may also be used to determine cogwheel rigidity, by the proce-

dure in Chapter 3.

As in “Guidelines for Examination in the European Patent Office (EPO)”, a process, machine,

manufacture or composition of matter is patentable when:

1. there is an “invention”, belonging to any field of technology

2. the invention is susceptible of industrial application
3. the invention is new
4. the invention involves an “inventive step”

and this acknowledgment gives exclusive right to the inventor(s) to earn from a product or process,

thus enabling them with bargaining power in negotiations with business partners to launch the

proposed solution. This protection lasts generally for 20 years from the application date.

The several stages of the patenting process are in Figure 7.8. Initially, a provisional patent

application had been submitted to secure priority of this request and ensures privacy up to 12

months. Presently, a definite submission has been done and a filing date (Stage 2) has been given

(which indicates that documentation apparently is correct). This is be followed by a formalities

examination to ensure whether documentation is correct and complete. Up to 12 months after the

filing date assignment, the inventors may decide how many countries he wishes to include to be

covered by this patent protection (with the same filing date). Next, a search report will be sent to

the inventors (Stage 3), which includes a list of other prior art documents found by the examiner

that may be of interest for the invention and, possibly, an initial opinion on the patentability of the

proposed system. 18 months after the filing date, the application is published in databases available

around the world (Stage 4). At his point a final decision will be made about both proceeding with

the patent application (by requesting a substantive examination - Stage 5) and which countries

to include in the patent protection. Finally, after deep analysis of the application, a decision is

reported to the inventor (Stage 6) and then it must be validated in each of the countries/states

where the inventor has applied. In Europe, a patent may only be opposed up to 9 months after

granting the patent (Stage 8) and appeal the decision (Stage 9).
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Stage 0: Provisional Ap-
plication Submission

Stage 1: Application Submission

Stage 2: Filing Date and
Initial Examination 7

Stage 3: Search Report

Stage 4: Publication

Stage 5: Substantive Examination

Stage 6: Decision
to grant a patent

Stage 7: Validation

Stage 8: Opposition

Stage 9: Appeal

Figure 7.8: Stages of the patenting process. Adapted from European Patent Office. 7 indicates
current stage.
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Stage 1: Application Submission

Stage 2: Form examination (1 M)

Stage 3: Search Report and
Written Opinion (4 M)

Stage 4: Opposition (2 M)

Stage 5: Final Examination (1 M)

Stage 6: Publication

Figure 7.9: Stages and respective duration for Utility Model grant (M stands for month).

Utility Model In case this system is not deemed inventive, then an adequate solution to pursue

is applying for utility model (UM). This is very similar to patenting but differs in the following

[74]:

• even thought novelty is still a mandatory requirement, the significance of the “inventive

step” or “non-obviousness” may be much lower or even absent

• may grant IP protection after 3-6 months after applying whereas when patenting it takes on

average 43.1 months (≈ 3.5 years)

• last from 7 to 10 years without possibility of renewal

• much cheaper to obtain and to maintain

• the search process is often significantly simpler and faster, taking, on average, six months

• a small number of countries and regions (however significant because must European coun-

tries are included) provide the option of UM protection (in Appendix H)

• does not include inventions which cover biological matter or substances or pharmaceutical

and chemical processes

The steps for getting UM protection are in Figure 7.9.
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7.5.2 Related Prior Art

To verify the illegibility of this method for rigidity assessment for IP protection, a search was

performed regarding hand or arm sensorized systems to evaluate movement. The following patents

and UM have been granted in this context (Figure 7.10):

• US 7892189 B2 (2006): system comprising of a movement sensor for sensing an acquiring

movement data of a subject with a brain disorder (including PD), which is coupled to a

analyzing unit and a display unit to show the analysis results related to the severity of the

disorder and based on the movement’s energy, as in Figure 7.10a; it focus on a magnetic

sensor used in the fingers

• CN 104522949 B (2015): a wristband comprising of a motion sensor module (3 axial ac-

celerometer, gyroscope and magnetometer) to detect different motion states of a Parkinson’s

patient and sending to a central processing module, which analyzes and processes the mo-

tion state signals to extract parameters and/or disease-relate information. The latter are then

communicated to the upper computer (smart phones, tablet, or computer) wirelessly; the

valid actions for evaluation include unilateral action palming, bilateral palming action, uni-

lateral arm action, bilateral arm action; additionally, the target symptom described is tremor

• US 7862522 B1 (2006): multi-sensorized glove (Force-Resistor Sensor, potentiometer, bend

sensors and accelerometer) for control of motion, sound and light comprising hand and

fingers (Figure 7.10b);

• US 8581856 B2 (2009): system comprising of a receiver component that receives body

gesture data from a sensor (measuring myogenic activity through a wristband, a band on

the forearm, device coupled to the human shoulder or necklace), which controls a display

component;

• US 8981765 B2 (2011): the invention is a device with simplified calibration for finger-

tapping evaluation by using magnetic sensors (Figure 7.10c);

• US 6589190 B1 (2001): the patent comprises the device in Figure 7.10d, which imposes

non-sinusoidal and non-ramp trajectories to a joint and the method to evaluate muscle stiff-

ness, by extraction of stiffness, inertial and viscosity parameters;

• CN 203733070 U (2014): glove comprising of finger stalls, palm part and a hand back part,

with a pressure sensing assembly and a photoelectric sensor, connected to a processing unit

which wirelessly transmits function as to replace an ordinary mouse or simple keyboard

adjustment operations for an improved user experience;

• US 5050618 A (1990, prescribed): apparatus to measure elastic component of resistance of

angular displacement of a body joint, using a motor to impose movement and measuring the

strain (Figure 7.10e)
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Furthermore, several applications for patents were found which use sensorized systems to

evaluate upper limb movement (displayed in Figures 7.11 and 7.12):

• US 20120127070 (2012, rejected): wearable device which combines data from wrist, arm

and fingers, each with inertial sensors as gyroscopes and accelerometers; different move-

ments generate different signals which allow controlling an external device (Figure 7.11a)

• EP 2733578 (2013, examination requested): wearable device with one or more sensor for

gesture recognition which estimated the position of arm and hand from the sensor measure-

ments (Figure 7.11b)

• US 20120025945 (2011, rejected): hand wearable glove with one or more sensors coupled

to it and positioned to measure hand movement; there is, at least, temporary data storage

from the sensors, which may be wirelessly synchronized with an external device in real-time

(Figure 7.11c)

• US 20120319940 (2012, rejected): wearable device to control electronic devices, as an

alternative to other input devices (mouse, keyboard, or game controller). Such device is

able to recognize complex gestures, such as a person signing American Sign Language and

may include a plurality of motion sensors affixed to a user’s fingers and a plurality of motion

sensors affixed to a user’s wrists, a processing component and a communication component

designed to communicate with a second electronic device (Figure 7.11d)

• JP 2010193936 A (2010, request for patent): system which evaluates muscle rigidity, in

particular, cogwheel rigidity, by measuring myogenic activity and resistive torque when a

step-motor imposes bending to the upper limb of a subject (Figure 7.11e)

• US 20140276242 (2014, revised claims under-examination): wearable body sensor system

to monitor body posture with or without an assistive walking device (considering the center

of gravity and base of support); system comprising of a sensor placed at the center of gravity

of the body, a network of sensors placed in pre-determined positions; each sensor composed

of 3D accelerometer, gyroscope and magnetometer (Figure 7.11f)

• CN 104127187 (2014, under examination): system for cardinal symptom quantitative detec-

tion of Parkinson Patients, comprising of a glove and a computer (connected through wires

or wirelessly); the glove comprises of a wrist module (3-axis accelerometer and gyroscope,

two pressure sensors for data acquisition related to muscle stiffness, and a microcontroller)

and a fingertip module (3-axis accelerometer and gyroscope, for data collection related to

tremor and bradykinesia); through a microcontrollers, the data is sent to a computer for

processing a display (Figure 7.12a)

• WO 2014108883 (2014, examination requested): wearable device with tri-axial inertial sen-

sors to monitor “on-the-fly” human limbs biomechanics; sensors placed in the distal pha-

lanxes of the fingers (Figure 7.12b), with the possibility of communicating wirelessly or not

to an external device
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• EP 2714188 A4 (2012, to be refused): mentioned in Chapter 2, method for adjusting DBS

parameters after surgery based on quantitative motor assessment, using an accelerometer/-

gyroscope placed in a finger connected to a processing module which communicates with

a external device for display. The quantified parameters are related to clinician score to the

motor disorder (UPDRS in the case of PD) (Figure 7.12c)

Among the granted protection, the herein proposed invention is novel because there has not

been anyone tackling rigidity evaluation using only kinematic information and to correlate it to re-

sistive force (rather than coupling the system with strain or pressure gauges) and requiring only the

placement of a sensor in the anterior face of the hand (rather than using fingers). Still, other patents

may deem this proposal “obvious”. For example, in the apparatus of US 5050618 A, a controlled

angular velocity is imposed to any joint and the resistive force is measured , which translates its

rigidity. The solution proposed reverses the mindset: because the technique to evaluate rigidity

clinically is standardized, possibly one may consider that about the same force is applied by the

movement-imposing subject to the joint (i. e., clinician), hence differences in angular velocity will

translate differences in resistive force of the patient’s joint and, consequently, in rigidity. Also, in

2014 a patent application was filed, which also comprised of a system to evaluate biomechanics

which uses inertial sensors and also real-time feedback of extracted parameters; still, as many oth-

ers, they focus on the fingers and having a processing unit in the wrist. The wireless connection

to provide data from a sensor and/or processing unit to an external device to provide feedback has

been issued both in the latter as in the patent CN 104522949 B, deeming “obvious” this feature.

The aforementioned patent applications which were rejected had most of its claims considered as

obvious namely by prior art Barclay (US 7862522 B1). Among those systems found, we may em-

phasize JP 2010193936 A for rigidity evaluation, in particular, cogwheel rigidity, still the setup is

quite different recurring to a motor to impose movement and also capturing the myogenic signal.
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(a) Movement analysis display apparatus and
movement analyzing method (US 7892189 B2)
by Akihiko Kandori, Tsuyoshi Miyashita and
Kuniomi Ogata.

(b) Sensor Glove (US 7862522 B1) by David
Barclay, Glenn Silver, Johan Versteegh and
Bruce Lanoil.

(c) Motor Function Analyzing Apparatus (US
8981765 B2) by Yuko Sano, Akihiko Kandori,
Tsuyoshi Miyashita, Katsuya Morohoshi and
Kouichi Ishizuka.

(d) Quantification of Muscle Tone (US 6589190
B1) by Sami Kanderian, Randal Goldberg, Kat-
rina Obell, Barbara de Lateur, Louis Whitcomb
and Fred Lenz.

(e) Method and apparatus for measurement of joint
stiffness (US 5050618-3 A) by Lawrence E. Larsen.

Figure 7.10: Granted Patent Figures.
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(a) Control signal input device and method us-
ing posture recognition (US 20120127070) by Don
Wan Ryuoo and Jun Seok Park.

(b) User gesture input to wearable electronic de-
vice involving movement of device (EP 2733578)
by Pranav Mistry, Sajid Sadi, Lining Yao, John
Snavely.

(c) Motion capture data glove (US 20120025945)
by Faisal M. Yazadi, Mark Schelbert and Lawrence
Miller.

(d) Wearable Digital Input Device for Multipoint
Free Space Data Collection and Analysis (US
20120319940) by Daniel Bress, Mark Bernard Ja-
cobs, James Edward Dunstan and Steven Bress.

(e) Muscle Rigidity Degree Quantitative Evaluation
(JP 2010193936) by Tetsuya Maeda and Nakamura
Kazuhiro.

(f) Wearable body 3d sensor network system and
method (US 20140276242) by Shyh-Min Chen,
Manli Yang and Arthur Tu.

Figure 7.11: Patent Applications Figures (Part 1).
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(a) Wearable system and method for cardinal symptom quantitative detection of
Parkinson patients (CN 104127187) by Houde Dai.

(b) Method and related apparatus for monitoring biomechanical performances of hu-
man limbs (WO 2014108883 A1) by Filippo Cavallo, Carlo Maremmani, Dario Es-
posito, Erika Rovini, Michela Aquilano, Paolo Dario and Maria Chiara Carrozza.

(c) Method and system for tuning of movement disorder therapy devices (EP 2714188
A4) by Joseph P. Giuffrida, Dustin A. Heldman and Thomas O. Meraa.

Figure 7.12: Patent Applications Figures (Part 2).
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7.6 Final Remarks

In this chapter, the intricacies of the DBS-related market were explored as well as the pathway

from investigation-to-market and IP protection.

It is widely agreed the growth of the DBS devices market, in particular, for movement dis-

orders as in the case of PD. This is related not only to the aging population (thus, an expected

increase in incidence of PD) but also to the effectiveness of the surgery. To supply and support

DBS specialized centers for these disorders, there are few suppliers (Medtronic Inc., St. Jude

Medical Inc. and Boston Scientific Corp.) and there is possibility of growth by establishment

of symbiotic relationships with them as has already occurred (by complementing their systems).

Easy access to centers performing DBS surgeries and expertise on medical devices regulation (as

introduced, extremely tortuous) would be great add-ons for the introduction of a new product

originating from an institution focused on research. A tool for bargaining is the application for

patent of the existing device which protects the developers and institution of having the concept

stolen from these established companies. The patent and UM search revealed mostly systems for

control of external devices but as well as for assessment of motor symptoms. Still, the patent

should be granted considering the unique design (finger-less glove or elastic band) and kinematic-

only information acquired which is used for rigidity evaluation; other existent systems (waiting

examination, rejected and patent/UM granted) (1) rely mostly on sensors positioned in the fingers,

(2) target controlling external devices or (3) tremor or bradykinesia quantification or (4), when

focused on rigidity, they encompass motors and pressure gauges. Even if the proposed system is

deemed obvious, applying for UM (which may provide protection over the same product simulta-

neously to a patent [75]), could secure IP protection, which is not as strict with the aforementioned

feature as in patents examination.

Anyhow, granting a patent may still take over 2 years and in the meantime, other procedures

should be undertaken to take the system to market. Feedback of the research device should be

gathered from a significant number of medical doctors, nurses and patients and even with possible

partners (to design it to best complement current procedures and their devices), comply with the

ISO and IEC standards, as well as the essential requirements demanded, propose several candi-

dates for final design and review them in regards to the aforementioned requirements. Finally,

a design is chosen which leads to the prototype production and clinical evaluation. Only then,

accompanied by the adequate documentation and manufacturing planning, this system may be

proposed for CE mark, which enables marketing.

In summary, from this point onwards, the research work should be pitched to current players

in this market. If successful, this will provide help in having this technology tested cross-center

and thus a rich and diversified feedback from the stakeholders. Otherwise, several clinical collab-

orations should be established to fulfill that purpose. Such information is pivotal namely in the

sense of enabling us to best overcome the reluctance to change of the involved parties Moreover,

innovation competitions (e. g. Web Summit, Health Acceleration Challenge, Imagine Cup) should

be targeted to get funding for to take the steps towards CE marking and even advisors in legislation
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related to medical devices. To assure protection in case patent is rejected an application for UM is

advisable: in case of rejection of the application, other medical device companies may overthrow

the efforts in the current system and produce similar solutions, to distinguish their own already

established products in this highly competitive market.



Chapter 8

Other Applications of the System

This system for rigidity assessment during DBS can be applied to other scenarios, namely other

motor symptoms evaluation or even to control on-demand the stimulation, according to the severity

of rigidity. This will be further explored next.

8.1 Tremor

Tremor is a motor symptom related to Parkinson’s Disease, which is more noticeable in rest po-

sition with a prevalence over 70% in the patients with Parkinson’s Disease. Postural and rest

tremor are more strongly associated to Essential tremor [6, 7]. As introduced in Chapter 2, several

parameters in time- and frequency-domain have been used to study tremor. Herein, we will be

comparing the impact of tremor on some of these parameters, using the MoMo to acquire signal

and validating its use for motor symptoms assessment, other than rigidity. Time- and frequency-

domain parameters will be experimented and validated which could be later to further enlarge the

scope of the system to other neurological diseases, where Deep Brain Stimulation (DBS) surgery

may be applied.

8.1.1 Methodology

8.1.1.1 Acquisition Protocol

The data acquisition protocol encompasses two distinct settings:

• simulation, with healthy subjects who had tremor elicited

• real-life, as in acquiring data from patients who were subjected to DBS surgery, before and

after the surgery

Using MoMo in the subject hand (introduced previously in Chapter 3) broadcasting accel-

eration, angular velocity and quaternion data via Bluetooth to a computer or smartphone, signal

acquisitions were performed.

To simulate a tremoric conditions, a shaker was used, comprising of a rotating plate parallel

to the ground, where a subject rested his arm (as in Figure 8.1). The range of rotations allowed

91
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were from 160 to 640 rotations per minute. This setup was chosen instead of asking for a subject

to simulate tremor because more data variability could be acquired under controlled conditions.

So, when dealing with healthy subjects, we proceeded as follows:

• Extend both arms forward, to get the baseline status relative to an healthy subject

• Rest the arm whose hand has the sensor over the shaker, holding up hand as in Figure 8.1

• Perform measurements for each of the following rotation frequencies of the shaker: 160

rpm, 320 rpm, 480 rpm and 640 rpm. This range encompasses the neurological tremor

frequency range from 3 - 12 Hz [7]

• Repeat in the opposite arm

The patients subjected to DBS surgery would perform the usual tasks to assess postural tremor

and dynamic tremor as introduced in Chapter 2, i. e.:

• postural tremor by extending arms forward

• dynamic tremor by successively extending and bending an arm to tap the nose (as in Figure

8.2)

8.1.1.2 Signal Processing

For data processing, the focus was on the Euler angles computed from the quaternion data, given

by the MoMo:

o = [θ ψ φ ] (8.1)

where θ , ψ and φ stand for yaw, pitch and roll, respectively.

Focus was given to the Euler angles since both angular velocity and acceleration are derived

from the positioning of the hand, being redundant data. Furthermore, acceleration translated linear

movement and not rotational, which is the type that occurs in human tremor (as a rotation of a

joint).

Figure 8.1: Positioning of arm over the shaker’s plate.
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z
x

Figure 8.2: Representation of dynamic tremor assessment task. The orientation of the z- and x-axis
of the sensor are shown.

In the time domain, the RMS was computed (equivalent to the standard deviation of the original

signal when average of the signal is removed). Also, other parameters were computed such as

skewness, which is a measure of the asymmetry of the signal given by:

S =

√
n(n−1)
(n−2)

1
n ∑

n
i=1 (xi−µ)3

σ3 (8.2)

and, aiming for low computational cost, a local deviation measure (LD), where for every sample

of the signal, the absolute deviation towards the mean value µlocal of the window with width of 17

samples was computed and then summed and normalized by dividing by the length of the signal:

LD =
∑

n
i |xi−µlocal|

n
(8.3)

The size of this window was selected considering the lower bound of the tremor frequency range of

interest, 3 Hz. Because the sample frequency is about 50 Hz, hence a full oscillation is represented

by 50/3 ≈ 17 samples and, by performing a local averaging within this window, we have the

angular deviation from an approximate “tremorless-state”.

For a frequency analysis, the fast Fourier transformation was applied and the PF in 1-15 Hz

band and C-factor, computed as follows:

C− f actor =
PowerPF

Powertotal
(8.4)

translating the ratio between the power of the detected frequency and the total power of the signal.

To compute these frequency parameters, the signal was detreended by removing to its average.

By simulating tremor, we envisioned to identify a relationship between the peak frequency
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found and other measures of the tremor angular magnitude (RMS, S and LD) and also C-fator,

which has been correlated with the tremor severity. In previous work [30, 76, 77], such endeavor

has been made but towards comparing frequency, f to a linear displacement measurement, d, as

log( f ) = f (log(d).

Therefore, for each of the features, the best fitting linear function was found in a least-squares

sense as follows:

p = f (log(PF)) (8.5)

log(p) = f (log(PF)) (8.6)

where log is the natural logarithm and p the parameter used.

8.1.2 Experiments

8.1.2.1 Simulation Setting

A total of 181 signals, 300 samples long, were acquired from healthy subjects, either related to

their baseline state and to the simulated tremor with different rotations by the shaker. In Figure

8.3a, the differences found in the orientation of the hand overtime and in the frequency domain are

presented. As expected, we find a sinusoidal wave for simulation settings translating the evoked

tremor, a frequency behavior with a peak frequency of 7.81 Hz and a C-Factor of 0.45.

As expected, with the simulation setup, we were able to simulate various tremors (different

frequency and amplitudes) due to different RPM tested in the shaker device and also inherent

difference in the subject anatomy (hand’s length and weight). This is proven by Figure 8.4, where

Figure 8.4a translates the variability of the main frequency of simulated tremor elicited by a same

rotation speed. Likewise, some amplitude of rotation of the wrist joint due to induced-tremor was

achieved.

A statistically significant difference was found between the healthy baseline state and tremor-

induced for RMS, LD, and C-factor, with the exception of S (Figure 8.5). Furthermore, it was

inspected whether the peak frequency was related to these features as shown in Figure 8.6. No

correlation whatsoever or extremely reduced was found regarding S and RMS, either considering

them as function of PF and log(PF), whereas related to C-factor and LD, some interdependence

between them and peak frequency was found (approximately 20% of the variation of either fea-

tures may be explained by changes of frequency).

8.1.2.2 Clinical Setting: Postural Tremor

From the total of patients, only the data of those diagnosed with tremor was considered (3 pa-

tients, 5 limbs). The variation of RMS, LD, S and C-factor caused by implantation of stimulation

electrodes may be found in Figure 8.7 and the tremor frequency in Table 8.1. The latter presents

as well the C-factor and LD for each limb analyzed and the computed frequency relying on the

functions found relating these and the tremor frequency (presented in Figure 8.6).
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Figure 8.3: Comparison between baseline and induced tremor of healthy subject in the time and
frequency domain.
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Figure 8.4: Achieved tremor behavior with simulation method. RPM stands for rotation per
minute. Mean ± standard deviation of RMS.
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(d) Crest factor (C-factor). p < 0.001.

Figure 8.5: Distinguishing healthy baseline (HB) from simulated tremor (ST). The mean ± stan-
dard deviation of each feature is represented for both HB and ST. * indicates a significant differ-
ence was found between HB and ST (p < 0.01).
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(d) C-Factor vs peak Frequency.

Figure 8.6: Relationship found between several parameters and simulated-tremor frequency. R
stands for correlation coefficient.
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Overall, the DBS surgery lead to a decrease in both LD and RMS, which can distinguish these

two states as in simulation settings (healthy baseline versus induced-tremor). Still, an annotation

should be done to the range of these parameters in both settings:

• the most severe tremor situation had a RMS before surgery of 14.62 ◦ and a LD of 7.18 ◦

• the most subtle fits into the simulated tremor range, with a RMS = 0.84 and LD = 0.29

whereas, the mean± standard deviation of RMS and LD values of simulated tremor were, respec-

tively, 1.22±0.44 and 0.71±0.35. On a different note, a tendency of increase in S was found,

whilst the C-factor decreased.

To test the validity of the functions relating the most correlated features with the peak fre-

quency in simulation settings:

C-factor = 0.14log(PF)+0.11 (8.7)

log(C-factor) =−0.59log(PF)−2.18 (8.8)

LD =−0.37log(PF)+1.41 (8.9)

log(LD) =−0.44log(PF)+0.39 (8.10)

The consequent PF was compared to the directly computed from the signal. The results are in

Table 8.1. A mean absolute deviation from the true frequency of:

• 3.39 Hz for F= f (log(C-factor))

• 3.02 Hz for F= f (C-factor)

• 9.85 Hz for F= f (log(LD))

• 6.14 Hz for F= f (LD)

Considering that the tremor frequency range is between 3 and 12 Hz, these deviations are

extremely high, covering the frequency band of interest from 38% to over 100%.

8.1.2.3 Clinical Setting: Dynamic Tremor

For analysis of dynamic tremor, there is only a single patient study to present (correspondent to

limbs 1 and 2 referenced in Table 8.1). In Figure 8.8, a limb’s data is represented from before

and after DBS surgery. The wider and higher arcades correspond to the movement of flexion/ex-

tension of elbow joint (Figure 8.8a and 8.8b), whereas the lower amplitude oscillation (of higher

frequency) is the pathological tremor (Figure 8.8b). These correspond in the frequency domain,

respectively, to the peaks in a lower frequency range and higher frequency (~5Hz in Figure 8.8c).
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Table 8.1: Peak Frequency (PF) measured in each of the examined limbs. C-factor stands for crest
factor, ID for identification assigned for different limbs, LD for local deviation and F as frequency
computed from a function f determined previously.

ID PF C-factor LD F= f (log(C-factor)) F= f (C-factor) F= f (log(LD)) F= f (LD)

1 3.71 Hz 0.367 3.80 7.36 Hz 6.27 Hz 0.12 Hz <0.01 Hz

2 3.41 Hz 0.148 3.66 1.58 Hz 1.31 Hz 0.13 Hz <0.01 Hz

3 6.15 Hz 0.463 0.29 10.91 Hz 12.45 Hz 40.44 Hz 20.64 Hz

4 3.03 Hz 0.351 0.57 6.82 Hz 5.59 Hz 8.71 Hz 9.68 Hz

5 2.44 Hz 0.305 7,18 5.38 Hz 4.03 Hz 0.03 Hz <0.01 Hz
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Figure 8.7: Influence of surgery on motor performance given by RMS, LD, S and C-factor (mean +
standard deviation, if applicable). Each color represents a patient. Blue, green and red correspond
respectively to limbs 1 and 2 (mean ± standard deviation), 3 and 4 and 5. Black dot indicates
mean value ± standard deviation of parameters across all patients after surgery. B-DBS and A-
DBS stand for before and after DBS surgery.
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Figure 8.8: Comparison of dynamic tremor before and after DBS surgery, in the time and fre-
quency domain.
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Figure 8.9: Influence of surgery on motor performance given by RMS, LD, S and C-factor.

The movement may be perceived as much smoother after DBS surgery by the disappearance of

high frequency “noise” related to tremor, which shows the efficacy of stimulation in nullifying the

abnormal firing pattern which triggers tremor.

Relatively to the parameters RMS, LD, S and C-factor, the only coherent variation due to the

effect of electrical stimulation is in LD; all others have opposite trends comparing both patient’s

limbs.

8.1.3 Discussion

8.1.3.1 Postural Tremor

Regarding postural tremor, to a certain extent, recreating tremor allowed the identification of pa-

rameters which allowed discerning an healthy and tremoric state of the hand, where RMS, LD,

related to the variation of hand orientation overtime, and C-factor, related to the relative strength
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of the peak frequency found in the signal. These had higher values in tremor was induced as

expected. Although not statistically significant, a growth-tendency was found in S.

Such results are in agreement with the comparison made between before and after DBS

surgery, proving the efficacy of reducing this motor symptom by having a less defined peak fre-

quency and having variations in orientation that may be associated to muscle noise-like activity

causing an increase of S. Because the existence of tremor may be modeled after a sinusoidal wave

(as seen in Figure 8.3b), then this may be perceived as a more symmetric signal, in comparison to

random variation of the orientation of the outstretched arms occurring with less significant tremor

or in its absence.

Also, by mechanically inducing tremor in healthy subjects, we were aiming for a relationship

between some parameters and the peak frequency of the signal correspondent to the assessment of

postural tremor. This had been previously done, correlating the logarithm of the peak frequency

and the logarithm of linear displacement [30, 76], having a range of correlation coefficient from

-0.50 to -0.70. The parameters which revealed higher correlation with peak frequency were LD

and C-factor (-0.46 and 0.48, respectively), showing some degree of interdependence, still not as

significant as in the literature. Another point is the difference between ranges of hand oscillation

which, in a real clinical setting, is much broader than the one achieved in the simulation-setup.

This is related to the design of both acquisition protocols: when inducing-tremor, the hand was

free to move and its oscillation were dependent on the weight and length of the hand (as well

as in the shaker), i. e., we only regarded hand tremor. When dealing with tremoric patients, the

measurements encompass oscillation of the three joints: wrist, elbow and shoulder. This higher

number of degrees of freedom allow a much wider range of variation in hand orientation occurring

during the outstretched-arms position. Consequently, the poor results achieved when applying the

amplitude-based models to get the frequency of tremor were expectable. Such could only be

improved by gathering clinical data, representative of the reality we want to tackle.

8.1.3.2 Dynamic Tremor

We may hypothesize greater adequacy of LD to distinguish tremor states, even though there is

not significant evidence. Still, its better performance was expected in comparison to RMS and

C-factor due to the interference in amplitude and frequency of the movement for nose-tap: RMS

considers the deviation of every sample to the mean of the signal which is high by nature because

of the rotation in ψ , relatively to the amplitude caused by tremor. Also, for an analysis in fre-

quency domain, it is highly susceptible to how fast the patient performs the movement, leading to

associating a maximum frequency found within the range of interest to tremor. That may be seen

in Figure 8.8: with loss of tremor after surgery, the patient is faster to execute the task, hence the

movement frequency comes inside the focused range, “contaminating” C-factor. Consequently,

local-analysis within a smaller window of samples is favored, as is in the computation of LD. Ad-

ditionally by comparing the peak frequencies of postural (<4 Hz) and dynamic tremor (~5Hz) in

the same patient, an increase is noticed which is agreement with the literature [78].
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8.2 Bradykinesia

One other symptom that may be found in patients with PD is bradykinesia, also referred to as

akinesia and hypokinesia, related to the slowness in performing movement. This may manifest

itself as decreased arm swing and leg stride when walking and decreased amplitude of voice, for

example [9]. As others symptoms, this is related to a dopamine-deficiency in both striatum and

substantia nigra, which may be compensated by a levodopa-based drug therapy or by DBS surgery

to the subthalamic nucleus (STN). Hence, we propose the usage of this same sensor to identify

improvements related to this motor symptom.

8.2.1 Methodology

8.2.1.1 Acquisition Protocol

Two approaches were considered to identify slowness in movement:

• analyze time in-between nose taps during the dynamic tremor assessment task

• analyze time and amplitude of each hand pronation/supination cycle

As in tremor, a simulation trial was performed on healthy subjects, consisting of:

1. having subject perform the hand pronation/supination, taking about 2 seconds per cycle

2. repeating, but reproducing a 1-second long cycle

Additionally, true patients would perform as well this task, but without the time-instruction

given to the healthy subjects, before and after their DBS surgery. Instead, they were instructed

to do it as fast as they could, without stopping until told otherwise and to do hand rotation as

complete as possible.

8.2.1.2 Signal Processing

The first exercise performed is represented in Figure 8.2. The flexion performed can be perceived

as a rotation of the sensor in the plane xy of the sensor and around the axis z of the sensor. Thus,

the sensor yaw rotation, φ , was considered to identify the duration of each flexion towards the

nose (NT ).

φ , as in tremor analysis, was detrended, by removing the signal average value. Then, a mean

filter was applied using a 10-sample window, centered in the sample under analysis (to reduce in-

terference of existing tremor artifacts). Then, the signals’ local maxima were detected considering

a threshold of 60◦. Having found these moments, the number of samples in-between consecutive

peaks were extracted, representing the time of the finger-to-nose task.

On regards to the hand pronation/supination task, the rotation around the x-axis was consid-

ered, i. e., θ from the Euler angles vector. Its mean value was removed. The rotation time

(RT ) was considered as the distance between consecutive peaks (local maxima) and its average
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was considered. For a clinical analysis, additionally, the peak-to-peak distance (distance between

consecutive minima and maxima) in the signal was considered (PP) to verify whether there was

increased range of motion in the wrist joint. The threshold for peak detection considered was 90
◦.

8.2.2 Experiments

8.2.2.1 Nose Tapping Task

The possibility of using the finger-to-nose exercise (the task performed to assess dynamic tremor)

to extract some information on changes on its execution-time was explored. Signals were acquired

from 5 patients (9 limbs) who were subjected to DBS surgery. The obtained mean and standard

deviation of NT is represented in Figure 8.10.

Slowness of movement or bradykinesia is a common symptom in several neurological disease

hence it was expected to have an higher NT before surgery rather than after. The majority of this

cohort confirms our expectations however, with some exceptions.
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Figure 8.10: Nose-tapping Time (NT ) for each patient (represented by different colors) before and
after DBS surgery (B-DBS and A-DBS, respectively). Mean + or − standard deviation of NT are
represented.

8.2.2.2 Hand Pronation/Supination Task: Simulation Setting

69 400-samples long signals were acquired from 7 subjects. An example of signal is shown in

Figure 8.11a, where the peaks and every RT is shown. As expected, clear distinction between the

two task-rates were found, using the period of a cycle of hand pronation/supination.
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Figure 8.11: Rotation time computation over a signal and differences found in simulation settings.
* statistically significant difference was found (p < 0.001).
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Figure 8.12: Change of parameters with DBS surgery (mean + or − standard deviation of RT
and PP). B-DBS and A-DBS stand for before and after DBS surgery, respectively.* stands for
statistically significant difference.
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8.2.2.3 Hand Pronation/Supination Task: Clinical Setting

Data from only data one patient (2 limbs) was acquired from analysis of the influence of surgery

on the motor performance in regards to range-of-motion (PP) and time of task (RT ). On the latter,

a significant decrease was found which is in agreement with report of efficacy of DBS surgery

on bradykinesia [13], as in Figure 8.12a. However, one of those had a reduction on the range of

motion with surgery, hence, the difference found in time-domain may be associated with the more

incomplete rotation of the wrist.

8.2.3 Discussion

By having patients perform the nose-tapping task, which is done for dynamic tremor assessment,

we could find in most of our group of patients a reduction on the task’s time. This supports the

possibility of dual evaluation, having synchronous quantitative assessment of bradykinesia and

dynamic tremor using this sensor and motor task.

Regarding the standard-task used for bradykinesia assessment, the simple determination of the

local minima and maxima enabled distinguishing two simulated rates of task performance with

healthy subjects. However, in a clinical sense, the expected improvements were only conclusively

identified in one of the two limbs analyzed both in range-of-motion and slowness of movement.

8.3 Closed-Loop DBS

It has been been proposed [80], the control of stimulation settings of DBS relying on the assess-

ment of the neurochemical environment in the brain and adapting the parameters as necessary

(Figure 8.13), instead of scheduling several appointments to reprogram the stimulator, as before-

therapeutic parameters may lose its efficacy due to disease progression, change in interactions of

electrode-environment or lead displacement. There have been some studies on animal-models of

this approach which supported improved motor-performance than in standard DBS [78]. Another

Figure 8.13: Illustration of an Open-Loop and an Adaptive Closed-Loop Deep Brain Stimulation.
From [79].



8.4 Final Remarks 107

proof-of-concept relied on surface-electroencephalography where the stimulation was controlled

by sensing movement intentions [81]. Also it has been proposed to use a quantitative method

of assessment of tremor to further support this type of system to only turn-on stimulation when

needed. This closed-loop approach could reduce side-effects of DBS to only when it is required

and prolong stimulator batteries lifetime. Within this context, this could be another route to be

explored, but by combining with rigidity assessment.

8.4 Final Remarks

This system’s application is not restricted to rigidity evaluation: in this chapter we have proved

the ability to identify improvements due to DBS surgery, both in tremor (postural and action)

and bradykinesia using Euler angles and the system in question. Thus, its target evaluation could

become broader, supporting quantitatively in the assessment of other motor symptoms in this

intra-operatory setting. Furthermore, the data suggested that, using the standard exercise to assess

dynamic tremor, we could identify some improvement in time-of-task. Still, these possibilities

must be supported with a larger dataset. We attempted to verify a relationship between angular

amplitude-related parameters and frequency of tremor, in order to verify if a relationship was

found as in previous work (between displacement and frequency). However, related to unrealistic

data, such models were not achieved.

The fact of having the MoMo broadcasting Euler angles makes easy the task of identifying

on-demand which clinical assessment is being performed among those experimented: postural,

dynamic tremor and bradykinesia through hand supination/pronation, and also because these are

highly standardized.

On one hand, there is a broader range of motor symptoms that may be analyzed with this type

of system. On another, this could be used to support others, as in the case of closed-loop DBS,

as an additional informant tool to decide when to stimulate or not to better use the battery of the

stimulator and maximize the patient’s quality of life by reducing side-effects.





Chapter 9

Conclusions and Future Work

The project was born out of a need in the clinic, in particular, in the Movement Disorders Unit

of Centro Hospitalar de S. João, where the surgery of deep brain stimulation for treatment of the

Parkinson’s Disease (PD) was introduced 14 years ago. In this context, the patient’s wrist rigidity

is assessed to decide the parameters for stimulation, to identify when the motor improvement is

maximal. With that purpose, in the aforementioned unit, this is decided by the agreement of two

physicians. However, a quantitative element was missing, which motivated the collaboration with

the Biomedical Research and Innovation group in INESC TEC to tackle that absence. An initial

proposal was done relying on kinematic measurements and a polynomial model, which unregarded

the initial severity of rigidity and cogwheel occurrence.

One of the goals stated for this dissertation in Chapter 1 was to improve the modeling of rigid-

ity reduction relying on velocity of the wrist flexion, imposed by a physician. Previously, other

methods were attempted rather than polynomial modeling, yet the only which revealed equiv-

alent performance was the use of random forest (Appendix C). This prompt to further explore

the potentialities of the initial proposal by both following a multiple model approach (baseline-

dependent) and to incorporate the cogwheel effect. It was expected that the performance would

benefit from this input enrichment, namely for reducing the impact of the variability of force ap-

plied by physicians in different assessment trials. However, such hope was unfunded because the

best performances had similar results to the initial approach. This further supports the limitation

of kinematic information. Also, the measurements are performed during the rigidity assessment of

two experienced physician. Over the past validations (as in Chapter 4) of polynomial-base models,

consistently a performance over 75% and mean errors under 5% are achieved, which supports the

system’s usability in this single context. However, over-fitting to the two experienced physicians

is expected and the lack of variability of the dataset may partially justify the plateau in perfor-

mance. It is a mandatory step to increase the clinical partners, to perform cross-center validation

of this system. For this purpose, the cooperation with existing companies in the field of DBS

may be advantageous. Additionally, it would be interesting performing a cross-observer study

about the difference in the assessment of rigidity, namely to identify the importance of experience

by comparing interns with experienced physicians and also validate its use in DBS programming

109
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appointments.

Even though cogwheel detection in the signal did not improve the model itself, it was con-

sidered as an important supporting information to be provided, translating the smoothness of the

movement. Thus, it was incorporated into the user-interface of the mobile application to provide

smoothness related categorization (severe, moderate and low cogwheel severity), as a function of

the signal acquired before any stimulation (which translates the baseline rigidity state of a pa-

tient). This required further changes to the mobile application (recording a significant baseline

signal) which still did not compromised its usability. Additionally, the blending in of the system

into the operating room was further enhanced by introducing the smartwatch to be worn by the

assessing physician, to serve as display as well. This was experimented in a surgery and proved

to be comfortable and handy. However it must be emphasized that the physician is responsible for

first performing his own evaluation and only then consult the computed rigidity reduction because

the system developed is intended to support and not to replace the doctor.

The last goal was to ascertain about the ability of this system to be used to assess other motor

symptoms: tremor and bradykinesia. For that purpose, two approaches were followed through:

simulating those in healthy subjects and perform measurements in patients before and after DBS

surgery. The measures of the quadratic mean (root mean square), local deviation, crest factor and

skewness were considered for tremor evaluation (both postural and dynamic) and, as for bradyki-

nesia, time and amplitude of movement were considered, all extracted from the Euler angle do-

main. For tremor, in both conditions, the difference was perceived by the parameters still few

patients were considered. Regarding slowness of movement during the task specific for its assess-

ment, a single patient (2 limbs) was considered, hence no conclusive results may be extracted.

Yet, by considering the dynamic tremor task performed by 4 patients (7 limbs), most often the

execution time decreased with DBS surgery. This opens up the possibility of even extracting from

a single task type measurements related to different motor symptoms. Furthermore, there is also

the possibility of incorporating the sensor and processing into a closed-loop DBS, to enrich the

input signals which control stimulation (combining brain-sensing with motor sensing). In short, a

similar setup for other symptoms analysis was confirmed. This work could be followed-up by:

• further proceed with acquisitions in patients (irrespective to their neurological disorder)

before and after DBS surgery

• acquire data from routine consults of the latter to distinguish “on” and “off” states (under

the effect of medication or not, respectively)

Finally, as to investigate the potential of the proposed system for rigidity assessment into the

market, this context was explored, as well as the stages for getting CE mark (compliance label

in Europe) and the options of intellectual property protection and prior art that may hinder the

assignment of patent to this method. Briefly, forecasts for 2020 expect a significant growth of the

market segment of DBS, in particular, for PD patients and currently in Europe and USA it has

an estimated size of e808.1 million, 51% of the global market. This has some main players as

Medtronic, St. Jude Medical Inc. and others which could hinder a newcomer entry. However,
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by cooperating with these, complementing their systems and helping them in differentiating and

potentiating their established products one can smoothly enter this field, as other start-ups have

done (and some were even later acquired by them). This cooperative mindset, for INESC TEC,

would be greatly advantageous because, on one hand, these companies have access to a large

number of centers performing DBS surgery and, on the other, their own expertise in placing a

medical device in the market, which in itself is a major struggle to a newcomer to the area, could

be helpful. As probed in Chapter 7, that is a very intricate process especially considering the

diagnostic-nature of the afore proposed system, in which we still are in the early stages. As it has

been already done, feedback from the different stakeholders has to be gathered but should be more

diverse than just Centro Hospitalar de S. João; essential requirements, IEC and ISO standards to be

met have to be identified, there should proposals of product design and examine their compliance

with the requirements, create and validate a prototype and finally apply for CE-marking.

An important decision was applying for patent with this method for rigidity evaluation which

may prove to become a bargaining tool when negotiating with prospective partners. The latter

without a doubt is novel; still it may be deemed as obvious in regard to the patent and utility

models search. In such case, applying for utility model (protection regime not worldwide available

with exception of most European countries) would be an interesting alternative because it is far

less rigorous in terms of obviousness than patents and a much faster and cheaper procedure (yet,

enables shorter protection time).

In short, even though several efforts have been made, the performance of the model for rigidity

reduction seems to have reached a plateau, which allows consistently an accuracy of over 75%

and mean error of 5%. It seems important to widen the variability of specialists in the growing

dataset so other centers are necessary to collaborate. The output of the model is now supported

by a smoothness related indicator which relies on the cogwheel artifacts detection. These may

be displayed in a smartphone to the support technician of the DBS surgery’s operational team

and in a smartwatch worn by the physician during the rigidity assessment step. Both these “use

cases” have been already validated. Additionally, the broadening the range of applications to

tremor and bradykinesia has been proved possible but requires a larger cohort of patients. Even

though the uniqueness of the device is related to rigidity, extending its application may turn it

more interesting for a buyer. In fact, the commercial potential is already large because a significant

growth is expected in the segment of market of DBS devices for PD. In that view, there should be

an endeavor to find an industrial partner to assist in its introduction or even take over it, with whom

the application for patent will grant the researchers with bargaining power. In case the patent is

not granted, applying for a utility model should be done meanwhile because it provides as well

intellectual property protection with a less strict non-obviousness requirement.
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An Adaptive Model Approach for Quantitative Wrist Rigidity
Evaluation during Deep Brain Stimulation Surgery
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Abstract— Intraoperative evaluation of the efficacy of Deep
Brain Stimulation includes evaluation of the effect on rigidity.
A subjective semi-quantitative scale is used, dependent on the
examiner perception and experience. A system was proposed
previously, aiming to tackle this subjectivity, using quantitative
data and providing real-time feedback of the computed rigidity
reduction, hence supporting the physician decision. This system
comprised of a gyroscope-based motion sensor in a textile band,
placed in the patients hand, which communicated its measure-
ments to a laptop. The latter computed a signal descriptor
from the angular velocity of the hand during wrist flexion
in DBS surgery. The first approach relied on using a general
rigidity reduction model, regardless of the initial severity of the
symptom. Thus, to enhance the performance of the previously
presented system, we aimed to develop models for high and low
baseline rigidity, according to the examiner assessment before
any stimulation. This would allow a more patient-oriented
approach. Additionally, usability was improved by having in
situ processing in a smartphone, instead of a computer. Such
system has shown to be reliable, presenting an accuracy of
82.0% and a mean error of 3.4%. Relatively to previous results,
the performance was similar, further supporting the importance
of considering the cogwheel rigidity to better infer about the
reduction in rigidity. Overall, we present a simple, wearable,
mobile system, suitable for intra-operatory conditions during
DBS, supporting a physician in decision-making when setting
stimulation parameters.

I. INTRODUCTION

The Parkinson’s Disease (PD) is a neurodegenerative dis-
order, characterized by the loss of dopaminergic cells in
the substantia nigra. Usually, signals are propagated from
substantia nigra to the striatum and, from here, to the motor
cortex. With a decrease of dopamine release, the ability to ef-
fectively control movement is lost and abnormal neurofiring
patterns occur. This leads to the cardinal motor symptoms of
PD: tremor at rest, rigidity and bradykinesia [1]. To evaluate
the severity of the aforementioned symptoms and others
(psychological and speech, for example), the most used scale
is the Unified Parkison Disease Rating Scale (UPDRS) [2],
which was first introduced in 1987. In particular, for the case
of wrist rigidity, present in almost all PD patients [3], an
examiner imposes its flexion and extension and subjectively
grades it from absent (0) to severe rigidity (4). The wrist
joint, relatively to the elbow, is easy to manoeuvre and to
assess its motor performance and, therefore, to evaluate its
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rigidity. One considers a joint more rigid when more force
than expected is needed to move it over. During examination
of the wrist, cogwheel rigidity in the movement may be
identified, which is similar to the ratchet pattern of a gear
[3].

So far, there are no methods to cure the PD, only to
control its symptoms. The gold-standard is levodopa (L-
dopa)[4], which is believed to convert to dopamine in the
brain [5]. When the efficacy L-dopa decreases and incidence
and severity of side-effects increase, a different approach is
needed. That is deep brain stimulation (DBS), which relies on
the electrical stimulation with a tretapolar electrode at high
frequencies (130 Hz) with pulse length at 60 µs in the basal
ganglia structures (subthalamic nucleus (STN) or internal
globlus pallidus (GPi)). To evaluate the improvement, or not,
of the patient with electrical stimulation, the severity of rigid-
ity is evaluated in a semi-quantitative manner for different
settings [6]. The scale used for rigidity reduction is based on
the subjective assessment of the examiner involved in this
process, therefore, influenced by his experience and percep-
tion. In some cases, a second examiner performs blind testing
for confirmation of the best improvement achieved, however
the subjectivity prevails. Thus, a quantitative method for the
assessment of this rigidity reduction is lacking.

The effectiveness of STN-DBS has been assessed by
Shapiro and colleagues using the elbow joint, where they
compared the rigidity UPDRS scores from when patients had
the stimulation activated and deactivated [7]. Also, they built
a setup comprised by a motor which imposed movement of
the elbow joint and measured the resistive torque over the
movement. This allowed the computation of the mechanical
work, a measure that was able to distinguish parkinsonian
patients from the healthy control group and also to identify
the improvement of rigidity. Other biomechanical variables
have been related to rigidity: mechanical impedance [8], peak
torque [9], impulse [8], [10],difference of bias [11], elastic
stiffness [8], [10] and damping constant [8], [10]. Surface
electromyography (EMG) of biceps and triceps brachii has
been proposed to quantify rigidity [11]. With this, strong
correlation was found between the clinical rigidity score and
EMG-derived variable [11].

Even though work has been done towards the quantifica-
tion of rigidity both in the elbow and wrist joints, to the
authors knowledge, only Kwon et al. [8] have performed
measurements in intra-operative conditions during DBS, us-
ing the wrist joint. Still, no real-time feedback related to
the patients rigidity was provided to the examiner. Also,
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Fig. 1: System architecture. The sensor communicates via Bluetooth with a smartphone. In the mobile application, the user
selects the UPDRS subscore related to rigidity assigned by the physician prior to any stimulation. The correspondent model
is then used to compute the reduction in rigidity.

most setups designed for quantification of rigidity are bulky
and complex, hence inappropriate to take into the operating
room; during DBS surgery it is easier to assess wrist rigidity
and some setups that have been proposed target the elbow
joint. With this is mind, a novel, comfortable, wearable and
wireless sensor has been validated [12], to measure angular
velocity during passive wrist flexion in DBS surgery. The
sensor was communicating with a computer, which derived
a signal descriptor from peak and mean values of angular
velocity and then applied a general model to compute a per-
centage of improvement in rigidity. Such system could have
its usability improved for intra-operatory usage. Additionally,
the model obtained was indifferent to the baseline rigidity,
which can be expressed as an UPDRS subscore. The output
of this model translated into a reduction relative to an average
baseline rigidity. Yet significant differences may be found
in the population in terms of the symptom severity. Thus,
we propose the usage of this sensor during DBS surgery to
provide real-time feedback by performing in situ processing
in a smartphone, where a multi-model system, specific for
each baseline rigidity and estimated based on the in situ
measures and previous UPDRS scores, will be explored. By
considering the data for different levels of rigidity, prior
to any stimulation and building the respective models, the
most appropriate model could be selected at start-off of the
surgery, according to the physician initial assessment. We
hypothesize that such approach, with its increased personal-
ization, would allow an improved performance of the system.
For the models definition, alternative signal descriptors were
experimented, relating peak and mean angular velocity and
those which enable lowest training error would be used for
validation in DBS surgery.

II. METHODOLOGY

a) System architecture: The sensor was introduced in
previous work [12]. The overall system, in Fig. 1, differs
from before because we have Bluetooth communication
with a smartphone a smartphone (Samsung Galaxy Note II,
Quad Core 1.6 GHz), which received the raw data relative
to angular velocity and performed local processing. Such
system aimed to improve usability in DBS surgery. The data
was transmitted at 50 Hz, instead of 42 Hz, as in [12]. The
smartphone has stored the models specific for each of the
two levels of baseline rigidity considered.

b) Subjects and Experiments: The system was used
during the bilateral DBS surgery (both to the STN and GPi)
of parkinsonian patients, while an examiner was assessing
the improvement in rigidity for different stimulation settings.
The subjects had their medication withdrawn 12h prior to the
procedure and were under local anaesthesia during the sur-
gical intervention. A stereotactic target for stimulation and a
trajectory for the electrode were defined beforehand based on
medical imagery; electrophysiological exploration was done
during surgery in order to define the best electrode place-
ment. The stimulation frequency was set at 130 Hz; voltage
and placement were varied while rigidity was assessed, by
imposition of passive wrist flexion. Definite conditions of
stimulation were agreed by two experienced physicians. To
train the classification models, data was acquired from a total
of 17 patients, correspondent to a total of 237 signals; to test
them, 2 patients were considered and 38 evaluations were
performed. Before any stimulation, the physician assessed
the patient rigidity, using the UPDRS scale. That subscore
was used to select in the mobile application the appropriate
model for such rigidity severity, which would be used to
compute the rigidity reduction. The signal classifications
presented by the mobile application were compared to the
assessment of the two physicians and were accepted if they
were within a range of 5% away from their classification.
Patient monitoring was authorized by the Hospitals Ethic
Committee and all patients signed an Informed Consent
form.

c) Signal Processing: The processing was done as
described in [12], for the exception that no filtering was used.
The signal correspondent to the rotation over the y-axis of the
sensor (Fig. 1) was acquired and processed by a smartphone.
First the raw data was converted to angular velocity; then
only its negative values were considered (restricting the
analysis to the flexion wrist movement). Two features were
considered: average angular velocity (µω) and average peak
value (µp). A signal descriptor, by combination of both
features, was used to describe the decrease in rigidity. This
can be perceived as a kernel function, whose purpose is to
reduce the model susceptibility to signal plateaus and low
occurrence of peaks. Other kernel functions are proposed in
the next section to build the rigidity reduction models.
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TABLE I: Number of signals per initial UPDRS score.

Baseline Rigidity (UPDRS) # Signals

Low baseline 1 24
rigidity patients 2 74

High baseline 3 139
rigidity patients 4 0

TABLE II: List of kernels for regression.

Kernel k(x, y)

Hellinger’s
√
xy

Intersection min(x,y))

χ2 2 xy
x+y

JS x
2
log2

(
x+y
x

)
+ y

2
log2

(
x+y
y

)

Gaussian Homogeneous
√
xy · exp

(
− log(

y
x )

2

2σ2

)

d) Classification Model: In previous work [12], a
single signal descriptor was used to build the general models.
Herein, an alternative approach will be presented, relying
on other kernel functions, experimented to develop specific
model for high and low rigidity severity. By combining in
different ways the aforementioned features, we can identify
which one allows better data separation for each initial
severity of the symptom. The training set was separated in
two different clusters, where those signals associated to an
UPDRS scores of 1 or 2 were apart from the remainder
(number of signals per rigidity level in Table I). Each of
these subsets was used to obtain a second degree polynomial
mathematical model that would better relate the perceived
improvement in rigidity with the mean value of signal
descriptor. A higher-degree could lead to over-fitting to the
training data. Polynomial models were built, considering as
signal descriptor each of the kernel functions in Table II.
For each baseline rigidity, the kernel which allowed lowest
training error was used for validation in intra-operatory
conditions, as afore described.

III. RESULTS

Fig. 2 shows the signals for three levels of rigidity (base-
line rigidity, 50% and 80% improvements). Higher reduction
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Fig. 3: Mean training error ± standard deviation for each
kernel function as signal descriptor. H stands for Hellingers,
GH for Gaussian homogeneous, Int for intersection and
JS for Jensen-Shannon divergence. The colors correspond to
UPDRS rigidity subscores 1, 2 and 3, from darker to lighter,
respectively.

in rigidity leads to a smoother waveform and overall higher
amplitude signal in each wrist flexion. In addition, the
artifacts in the signals, abundant in the initial rigidity state,
are evidence of cogwheel rigidity.

In Fig. 3, the training error of the polynomials models
defined by different signal descriptors are presented. For both
UPDRS rigidity subscores, 1 and 2, the Hellingers function
allowed lowest error of classification (7.7±7.55% and 9.4±
7.0%). For a baseline rigidity of 3, it was the Jensen-Shannon
the optimal signal descriptor (8.7 ± 7.1%). The respective
polynomial models may be found in Fig. 4.

This multi-model system, during DBS surgery, allowed an
accuracy of 82.0% and a mean error of 3.4%.

IV. DISCUSSION

The polynomial models which allowed the least training
error (Hellinger’s and Jensen-Shannon kernel functions) were
used to test a multi-model system during DBS surgery. If
we consider Figure 4, a high fitting of the mean values of
the signal descriptor for high initial rigidity states for each
step of improvement over the whole range of improvement
may be found. For reduced rigidity decreases in patients
initially less rigid, we can identify worst fitting, which could
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be related to a higher difficulty by the examiner to identify
small differences when the baseline is, as well, small.

Approximately, the same accuracy was achieved as before
(82.0%) [12], by using a larger training set and by defining
a model for two levels of baseline rigidity. The error of
classification of 3.4% supports that this model represent them
quite well, even when we are comparing a continuous scale
with a decimal one. Also, cogwheel rigidity may play a role
for small improvements, where it may still be present: it
causes a higher variability in the average angular velocity
and average peak angular velocity, causing the model fitting
to worsen. The achievement of similar results in both works
supports the reliability of this approach to support an exam-
iner assessment in intra-operatory conditions, by providing
real-time feedback. However, it also proves the limitation
of kinematic measures in further distinguishing different
rigidity levels since both approaches lead to similar results,
even though differences were expected. Hence, it is a pivotal
step to include the cogwheel detection into the procedure and
into the models. As evidenced in Fig. 2, one major feature in
parkinsonian rigidity is the occurrence of cogwheel rigidity
artifacts, correspondent to the disacceleration in wrist flexion,
which highly distinguishes UPDRS subscores of 2 and 3.
Hence, future work should encompass this cardinal feature
of rigidity in PD patients.

Furthermore, this system is velocity-dependent, thus it

requires the examiner to impose approximately the same
force in every trial. Additionally, it is important to perform
validation of this system across centers performing DBS
surgery, to support the use of this system as a normal tool
associated to the surgery.

V. CONCLUSIONS

This work supports the usability of a simple, wireless,
comfortable and mobile system in intra-operatory. This is
comprised of a small custom-made sensor placed in the
patients hand, communicating with a smartphone, which pro-
vided real-time feedback to the examiners about the rigidity
reduction under different stimulation settings. The improve-
ment was computed using a set of polynomial mathematical
models, specific for low and high initial rigidity states,
which classified correctly 82.0% of the evaluated signals,
with a mean error of 3.4%, which supports the reliability of
this solution. Similar results as before were achieved but
it is hypothesized that the detection of cogwheel rigidity
artifacts and its inclusion into the models will enhance their
performance. The inclusion of biomechanical measures could
be beneficial to the system as well. The sensor could be also
in the proximal end of the forearm, allowing measurements
during the elbow joint rigidity assessment. In future work, the
applications of this sensor for different symptoms analysis
could be explored.
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Appendix C

Alternative approaches

C.1 Model of rigidity improvement

Both the assessment of training set size effect on the model performance and the exploration of

different approaches to obtain the model (relying on the features µω and µp). For modeling,

classification and regression methods were experimented. Additionally, the possibility of using

the current methodology for specific design for different levels of rigidity severity was explored.

C.1.1 Influence of training data size

For all modeling procedures, the amount of training data may be paramount so we aimed to ascer-

tain its influence on the training error by the method leave-one-out.

With that purpose, the size of the training set was varied from 15 to 235 signals in steps of 10,

which were randomly selected from a total of 237 and 4000 iterations were performed to determine

the error’s average and standard deviation.

The error of classification converges quite quickly with additional amount of data: from 85

signals onward, the error stabilize around 8.4% and the standard deviation does not vary signifi-

cantly, as evidenced in Figure C.1. With a quite reduced amount of signals, a robust methodology

is achieved, specially considering this 5-category problem, distancing itself 8.9% in average from

the real classification, with 35 training samples. This supports that further acquiring data to im-

prove this general polynomial model for rigidity reduction evaluation will not enhance the system

performance. Also, another practical consequence is that, with a low number of surgeries attended

for data acquisition, we can have an usable system specific for a new examiner (about 15-20 sig-

nals are acquired per surgery). This proves the versatility of the system, namely to adapt to new

users.

C.1.2 Classification and Regression methods

After acquiring data, this can be used for machine learning, meaning, from a set of training ex-

amples to infer regularities/functional dependencies. In this particular context, we stand before a
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Figure C.1: Implications of the number of signals in the training set in the performance of the
polynomial model. The average error ± standard deviation is represented.

case of supervised learning, where the training data is associated to a label, which is the examiner

assessment of rigidity reduction in the wrist, from 0% to 80% in a decimal scale. Relying on

this background information, we could predict based on regression methods, having a continuous

variable as an output, or on classification methods, where this output is categorical [83].

The existent system relies on a regression method, by computing a polynomial model achieved

by the least-mean square approach, considering the mean values in the training set for each level

of rigidity reduction.

Various possibilities will be herein explored: k-nearest neighbors (kNN), k-means, decision

trees (DT) and support vector machine (SVM). The performance analysis of each was performed

using a training data set of 119 signals (number of signals available at the time of this analysis).

C.1.2.1 k-Nearest Neighbors

kNN is an algorithm for classification which relies on inspecting the label of the k-nearest neigh-

bors, belonging to the training set, and upon that, classify according to their categories. In the

simplest case (k = 1), to classify a new data point x, the nearest neighbor x′ has to be identified

and its label will be assigned to x. For larger values of k, the category assigned will be the one

which occurs most often in the subset of k-nearest neighbors [84].

This approach requires defining the number of nearest neighbors to be inspected, k. Like-

wise, the type of distance to be used has also to be decided beforehand. Several possibilities are

presented in Table C.1.
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Table C.1: Type of distance metrics. xs and yt are two feature vector. The Euclidean and City
Block distances are particular cases of the Minkowski metric (p = 2 and p = 1, respectively).

Distance Expression

Minkowski p
√

∑
n
j=1

∣∣xs j− yt j
∣∣p

Euclidean
√
(xs− yt)(xs− yt)′

City Block ∑
n
j=1

∣∣xs j− yt j
∣∣

Chebychev max j
(∣∣xs j− yt j

∣∣)

Correlation 1− (xs−x̄s)(yt−ȳt)
′√

(xs−x̄s)(xs−x̄s)
′√(yt−ȳy)(yt−ȳt)

′

Cosine 1− xsy′t√
(xsx′s)(yt y′t)

This procedure is computationally heavy because, for every new data point x, a vector of

distances to every point of the training set is computed to identify the nearest neighbors.

Nevertheless, its performance was assessed. Therefore, xs and yt were considered as vector

comprising of µω and µp. The accuracy and F1-score (as in Equation C.1) were determined.

F1− score = 2
P
R

(C.1)

where

R =
T P

T P+FP
(C.2)

and

P =
T P

T P+FN
. (C.3)

where T P stands for true positive, FP for false positive, FN for false negative, R for recall and P

for precision. F1-score is a measure of accuracy which consists of the weighted average of P and

R, and reaches its best value at 1 and worst at 0.

The error achieved using this approach for different k and distinct distance metrics is presented

in Figure C.2. We find that, for every distance metric and number of neighbors considered, the

performance of the classifier is quite weak: the maximum is 56% of accuracy. The overall behavior

may be justified by the cross-category overlapping in the feature domain, as shown in later in

Figure C.3. For a methodology that decides each label relying on its neighborhood labeling, this

weakens its power before a problem of this nature. An increased number of neighbors benefits the

classifier performance. However, at some point, the classifier will consistently assign the label of

the most available category. The only distinguishable behavior regarding the distance metric is the

clear worst performance of the correlation metric.
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Figure C.2: Performance of the k-nearest neighbor classifier.

C.1.2.2 k-Means

Another approach for classification is relying on clustering, in this case, k-means clustering. This

is an unsupervised method for learning which is initialized by defining the number of clusters, c, to

be considered, equivalent to the number of categories in which the training data may be separated.

Each of the cluster is associated to a seed point, µi , where its centre is located. All training data

points is assigned to one of these clusters, by identifying which µi is closer to its coordinates.

Afterward, a new cluster centre, µ ′i , is computed by averaging the coordinates of every training

point that had been assigned to the ith cluster. After updating all cluster centres, this procedure of

assignment and update is repeated until µi converges, for every i = 1,...,c [84].

Contrary to the previous, this iterative method may be moderately time consuming but only

when training; after attaining the final cluster centres, for every new data point, only c distances

are computed to define its category. However, the main drawback is the need to set the seed

coordinates when initializing which may greatly influence the final clusters positioning.

To evaluate the accuracy of k-means, a semi-supervised standpoint was used: after cluster-

ing, each cluster was associated to the category which had the closest mean feature value. The

seed points were randomly selected and 1000 iterations were performed to determine the accuracy

of such approach. A representation of the clustering is presented in Figure C.3. Different dis-

tance metrics, as before in the kNN approach analysis, were used, namely the Hamming distance,

defined as:

As aforesaid, the high overlap of the categories in the feature domain is easily identifiable,

which hinders categorization. This proves to have a clear influence on the final results, where an

accuracy of under 20% was obtained, independently of the distance metric used. This supports the
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Figure C.4: Performance of the k-Means clustering approach for classification.
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inability to tear the overlapping using non-linear metrics.

In addition to this, an increasing number of clusters was experimented (each assignment was

performed as already described) , to evaluate whether it would have any effect. However, no

improvements occur and we may incur in promoting over-fitting to the training data.

C.1.2.3 Decision trees

This approach to model a problem relies on classifying a pattern based on a chain of “yes/no” or

“value(property) ∈ set of values” questions.

When a DT is being built, as we go down, the training data is split in smaller and smaller

subsets, at each node. To define which question/test should be performed at each node, a value for

the property test T that maximizes the purity (or minimizes impurity) of the immediate descendent

subsets is searched. Ideally, each subset would have the same category label, however they usually

have a mixture. Thus, or (1) a stopping criteria is defined to stop tree branching, by defining how

much imperfection we accept, or (2) a different feature is considered to further grow the tree.

When the stopping criteria has been reached, we are upon a terminal node, which need a label

to be assigned. That labeling will correspond to the category that has most points represented

(classification DT) or to the average value of the labeling in the terminal subset (regression DT)

[84].

This procedure generates a tree as in Figure C.5: when considering a new input, it is subjected

to a series of queries, which decide the links to be followed, until a terminal node is reached. Its

label will be assigned to the new input.

A DT-base approach, other than being quite intuitive to understand, is enables quite rapid

classification because it relies on simple and pre-defined queries [84].

Figure C.5: Example of decision tree. Let x1 be µω and x2 be µp. Only 30 signals were considered
in order to have a short DT.
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The use of a single tree may not guarantee by itself a good description of the patterns in the

training data. Alternatively, we can rely on the creation of an ensemble of DT, a Random Forest,

where each has its own splitting criteria and branches. By combining all DT classification, an

improved ability to correctly model the problem may be expected. The different splitting needed

is guaranteed by using for each node a randomly chosen feature to then minimize the impurity of

the subsequent subsets [85].

To assess the performance of this approach, both classification and regression DT were ex-

perimented and the number of trees was varied from 1 to 300. 1000 iterations for each combina-

tion were performed and accuracy and training error were computed relying on the leave-one-out

method, i. e., one sample from the training set was randomly selected to test the model obtained

from the remainder data-set.

Herein, the results of both classification and regression trees will be presented and discussed

(Figure C.6).
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Figure C.6: Performance of the Random Forest approach.

By considering the different levels of rigidity as categories instead of its own numeric values

(40%, 50%, 60%, 70% and 80%), a low accuracy (under 50%) is achieved, independently of the

number of trees considered to support the final category assignment to the testing input. This

may be related, as previously described, to the overlap of the different rigidity level domains,

which turns inappropriate such an approach to evaluate new signals. Still, a subtle improvement

is identified by considering additional trees for the final classification, from 40% with one DT to

53% of accuracy with 200 trees.

The use of regression DT, which consider the numerical value of the labeling of the subset

at the terminal node encountered for the evaluation of a new signal, allows relatively low error

(around 6.5%), which is quite small and offers results more comparable to the currently attained.

The influence of the number of trees is noticeable in a small scale and lower range: by having

the support of a second DT, is enough to have an error of (6.6± 5.7)%. With increased number

of trees, the error diminishes until a minimum of (6.0 ±4.9)% for 25 trees. From them on, the

number of trees did not improve any further the performance of the model computed.
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This methodology could be adequate for local processing because it only relies on single fea-

ture inequalities. An disadvantage is the tiresome task to implement all nodes in the mobile appli-

cation, especially by considering several DT. However, the queries and the classification criteria

are easy to mimic, which would be rather fast to execute. A modeling solution relying on regres-

sion DT could be explored in the future.

C.1.2.4 Support Vector Machine

SVM is a machine learning approach to model binary problems. This relies on the definition of a

hyperplane in the feature space, ∈ ℜd (where d is the number of features considered), which best

separates the features of different classes, thus dividing the feature space into the two considered

classes, according to the training data. The classification of the new input data is defined by its

positioning in the feature space, in relation to the separation hyperplane, parametrized as follows:

w · x+b = 0 (C.4)

where, w is a vector orthogonal to the hyperplane and b a constant.

Considering the possible class labeling as y = −1,1, the decision function can be obtained

from the hyperplane expression, as:

f (x) = sgn(w · x+b) (C.5)

As aforementioned, the hyperplane is achieved by maximizing the distance between its closest

data points, i. e., by maximizing the margin as represented in Figure C.7. The performance of

SVM relies on having perfectly separable training data. However, not always that is the case and

the mapping into a higher dimensional space by the use of kernels is required (see Figure C.7b). In

addition, when designing such model, one should consider the complexity in defining a separation

hyperplane and the susceptibility to outliers by the SVM. So, when fitting of the model is being

performed, one can tweak it is by tuning the cost C, which sets the acceptable number of wrongly

classified observations during the fitting. This mindset leads to the definition of a soft margin

model, which acceptably separates the training data but allows some misclassification.

Considering a given separation hyperplane, we can identify a set of vectors which represent

the data points closest to the categories boundary, known as support vectors [86]. Equation C.5

can be further explicit as:

f (x) = sgn

(
`

∑
i=1

yiαi ·K(x,xi)+b

)
(C.6)

where yi =−1,1 (indicates the category of the the ith support vector), αi is the weight assigned to

the ith support vector, K(x,xi) is the value of the kernel between a new feature vector x and the ith

support vector and b is the bias, which is optimized during training of the SVM classifier [87].
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(a) Representation of a separation hyperplane
and the margin. From [88].

(b) Non-linear transformation for linear separa-
tion. From [89].

Figure C.7: Support Vector Machine.

A multi-class problem, as it is the case, may be solved by combining the solution obtained

from several binary classifier (one for each category, against all others) [86].

To assess the power of SVM for this context and which are the best parameters, various kernels

and respective arg (Table C.2) and C values (1, 10, 50, 100, 200), by cross validation [83]. The

latter parameter is related to the constraints defined when determining the separation hyperplane:

higher values of C lead to a stricter separation by increasing the cost associated to misclassification.

Cross-validation, contrary to the leave-one-out method (as used before), consists on dividing data

into two subsets: train and test sets. The number of folds is the number of data partitions into these

pairs, randomly generated. Then, the performance of the classification approach is measured on

the test data set.

The optimal C and arg were determined by making 20 iterations of 4-fold cross-validation and

by finding the maximum accuracy. The kernel type was fixed (RBF). After first optimization, then,

20 other iterations were performed in order to reach to the most appropriate kernel, by having 3-

fold cross-validation. The best trio was determined 13 times. These results are presented in Table

C.3.

Table C.2: Kernels tested. x and y are both features vectors. For each new input, the value of the
kernel is computed in relation to every support vector. RBF for radial basis function. [87]

Kernel Expression arg values

Linear x′ · y -

RBF exp
(
−0.5·‖x−y‖2

arg2

)
0.8 to 1.4, steps of 0.2

Sigmoid tanh(arg · (x′ · y)+arg) 0.8 to 1.4, steps of 0.2

Among the three kernel types tested, the radial basis function (RBF) consistently proved to be

more effective in enhancing data separation by revealing higher accuracy values, yet, still low. For

its particular case, when a new feature vector x arrives, the distance between this and the support

vectors is computed and this is used for exponentiation. Consequently, when x is close to the
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Table C.3: Results for the SVM classifier. For every iteration, the Radial Basis Function (RBF)
revealed better performance than the remaining kernel functions. FP rate stands false positive rate.

# Iteration Kernel C arg Acccuracy FP rate

1 RBF 50 1 42.8% 0.15

2 RBF 50 0.8 33.3% 0.17

3 RBF 100 1 28.7% 0.16

4 RBF 400 1 33.0% 0.20

5 RBF 100 1.4 30.3% 0.14

6 RBF 100 1.2 24.0% 0.14

7 RBF 200 0.8 30.0% 0.15

8 RBF 100 1 41.3% 0.10

9 RBF 200 1.4 34.7% 0.15

10 RBF 400 0.8 47.0% 0.13

11 RBF 10 1.4 20.0% 0.17

12 RBF 50 1 20.8% 0.19

13 RBF 100 1.2 37.3% 0.15
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boundary (i.e., close to the some support vectors), the kernel value will be quite small; otherwise,

faraway from the boundary, the exponential will tend to infinite. This mindset seems to improve

class separation.

The utilization of a linear kernel is appropriate when linear separation may be achieved be-

tween classes. However, such is not the case (categories domain overlap in feature space), thus

the algorithm is unable to define the separation hyperplanes required. The sigmoid kernel, as well,

was ineffective.

One other reason for this disparity may be related to the order of optimization (first the kernel

was fixed and varied C and arg). However, prior work (no results to be presented) comprised of

ascertain workable range of arg, from 0.001 to 200, but the resultant performance did not improve.

Still, the achieved optimal combination of arg, C and kernel function lead to a minimum

accuracy of 20.0% and a maximum of 47%. The SVM is known as a powerful machine learning

approach which appear not to collaborate with the attained results. In addition, the false positive

rate is not as bad, ranging from 0.10 to 0.19. This demeanor could be related to the inability by

the SVM to the achieve data separability, even by considering these kernel functions.

C.2 Summary

An interesting finding was how early the polynomial modeling approach performance stabilized,

in terms of data size required for training: with 85 signals, the error stabilize at around 8.4%. This

fact leads to the conclusion that no further improvement in performance should be expected by

simply increasing the data-set. New approaches may be explored, but there should be significant

focus on exploring other applications of this system.

One other option to model this problem was by recurring to other methodologies, be it clas-

sification or regression ones. Still, in terms of accuracy for the classification approaches (kNN,

kMeans and SVM), none achieved as high as the current system. This is related to considering

categories instead of it numerical value, which hinders correct classification because each cate-

gory domain significantly overlaps others. The regression methodology (DT) proved to have a

relatively low error and improved performance was found by increasing the number of trees con-

sidered to support the final label assignment to a signal (Random Forest). This approach, contrary

to the previous, is quite easy to implement and allows relatively fast processing because it relies

on a series of pre-defined queries, given the non-excessive number of trees considered.
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O-FUN-16 - A REAL-TIME INTRA-OPERATORY SYSTEM FOR RIGIDITY EVALUATION
DURING DEEP BRAIN STIMULATION SURGERY
A.S. Assis1, R. Vaz2,3, M.J. Rosas4, C. Chamadoira2, P. Costa1 and J.P. Silva Cunha1

1INESC TEC e Faculdade de Engenharia, Universidade do Porto, Porto. 2Serviço de Neurocirurgia; 4Serviço de
Neurologia, Centro Hospitalar de São João, Porto. 3Unidade de Neurociências, Hospital CUF, Porto.

Resumen

Objectives: Deep Brain Stimulation (DBS) has a proved value in the treatment of severe forms of
Parkinson’s Disease. Intraoperative evaluation of the efficacy of stimulation includes evaluation of
the effect on rigidity. A subjective semi-quantitative scale is used, dependent on the examiner
perception and experience. So, the system proposed herein aims to tackle this subjectivity, using
quantitative data and providing real-time feedback of the computed rigidity reduction, hence
supporting the physician decision.

Material and methods: This system comprises of a gyroscope-based motion sensor in a textile
band, placed in the patient’s hand, which communicates its measurements to a smartphone. The
latter computes a signal descriptor from the angular velocity of the hand during wrist flexion in DBS
surgery and applies a polynomial model to determine the rigidity reduction, which is communicated
to the physician. This model was trained using signals from 8 patients (Mean Age: 61) and validated
in 5 patients (Mean Age: 56) surgeries. These patients were subjected to bilateral DBS implantation
and stimulation.

Results: The system presented 3.2% of error and 77.1% of accuracy (when compared to two
specialists’ agreement). The implemented descriptor proved to discriminate well high and low
rigidity reduction (p < 0.001), but was unable to distinguish equal improvements from patients with
different baseline rigidity. This will hinder the future design of different models for each baseline
rigidity profile.

Conclusions: Overall, we present a simple, wearable, mobile system, suitable for intra-operatory
conditions during DBS, providing a reliable second-opinion about the improvement in rigidity for
different stimulation settings.
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Figure E.1: Classes, methods and attributes involved in smartphone/handheld communication.
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Figure F.1: Intra-operatory use of the system.
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• Albania

• Angola

• Argentina

• African Regional Intellectual Property

Organization

• Armenia

• Aruba

• Australia

• Austria

• Azerbaijan

• Belarus

• Belize

• Brazil

• Bolivia

• Bulgaria

• Chile

• China (including Hong Kong and Macau)

• Colombia

• Costa Rica

• Czech Republic

• Denmark

• Ecuador

• Egypt

• Estonia

• Ethiopia

• Finland

• France

• Georgia

• Germany

• Greece

• Guatemala

• Honduras

• Hungary

• Indonesia

• Ireland

• Italy

• Japan

• Kazakhstan

• Kuwait

• Kyrgyzstan

• Laos

• Malaysia

• Mexico

• Organisation Africaine de la Propriété In-

tellectuelle

• Peru

• Philippines

• Poland

• Portugal

• Republic of Korea

• Republic of Moldova

• Russian Federation

• Slovakia

• Spain

• Taiwan

• Tajikistan

• Trinidad & Tobago

• Turkey

• Ukraine

• Uruguay

• Uzbekistan
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