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Resumo

Com o aumento da dificuldade em melhorar o desempenho e eficiência em sistemas computa-
cionais, aumenta também a atenção que é dada a plataformas de computação heterogéneas. Estas
plataformas criam a possibilidade de se usar hardware dedicado, com o objetivo de se acelerar
aplicações de software. Apesar disto, para que uma aplicação aproveite os recursos disponíveis
nestas plataformas é necessário que a mesma seja escrita de novo, usando um processo complexo
e demorado.

O objetivo deste trabalho é investigar mecanismos transparentes que permitam a transferência
do controlo de execução entre um CPU e uma FPGA, que contém um acelerador, particularmente
no contexto de Computação de Alto Desempenho (HPC). Tal mecanismo poderá ser acoplado
com ferramentas transparentes de análise e tradução para hardware, o que permitirá que software
comum aproveite a existência de aceleradores de forma transparente (sem qualquer intervenção
humana).

Neste trabalho, um novo mecanismo é proposto, que usa o ptrace, uma chamada de sistema
Linux, para tomar controlo total de uma aplicação em software, e transferir de forma transparente
o seu controlo de execução para um acelerador. O mecanismo é implementado sobre uma nova
plataforma híbrida da Intel chamada Xeon+FPGA, que combina no mesmo circuito integrado um
processador Xeon e uma FPGA Arria 10, enquanto partilham a memória principal. O protótipo
implementado foi testado usando duas aplicações exemplo: um encriptador AES 256 em modo
CTR, e um multiplicador de matrizes em vírgula flutuante de precisão simples.

Quando comparado com uma proposta anterior, os resultados mostram que o mecanismo pro-
posto introduz um atraso adicional que não ultrapassa os 1,1 ms, mas apresentando a grande
vantagem de permitir que seja aplicada a transferência transparente do controlo de execução a
qualquer função, o que antes não era possível.
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Abstract

As further improvements in computing performance and efficiency become harder to achieve,
more attention is being given to heterogeneous computing platforms. These platforms offer the
possibility of using dedicated hardware to accelerate software applications. However, for applica-
tions to take advantage of these platforms, they need to be rewritten, using a complex and tedious
process.

The goal of this work is to research transparent mechanisms that would allow the transfer of
the control flow between a CPU and an FPGA, which houses an accelerator, particularly in the con-
text of High-Performance Computing (HPC). Such a mechanism can be coupled with transparent
software profiling and automatic translation to hardware, which can allow regular software to take
advantage of hardware acceleration in a transparent fashion (without any human intervention).

In this work, a new mechanism is proposed that uses ptrace, a Linux system call, to take com-
plete control over a software application, and transparently transfer its execution to an accelerator.
Implementation is done over Intel’s new Xeon+FPGA hybrid platform, which combines a Xeon
processor and an Arria 10 FPGA in the same package while sharing the main system memory.
The implemented prototype was tested using two example applications: AES 256 CTR mode
encryption, and single-precision floating point matrix multiplication.

When compared against a previous approach, the obtained results show that the proposed
mechanism introduces an overhead penalty that does not exceed 1.1 ms but with the big advantage
of allowing the transparent control flow transfer of any type of function, which has not been
possible before.
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Chapter 1

Introduction

1.1 Context

With each step taken towards higher processing power in computing systems, new problems arise,

and the harder further development becomes. Recently it has been said that ”Moore’s law1 is dead”

[1, 2] and although that might be arguable, there is no denying that the shrinking of transistors can

not go on ad infinitum. This fact and the realization that processor frequencies cannot continue to

be increased, as they lead to much higher power consumption, are two of the reasons for increased

interest in heterogeneous computing platforms.

Heterogeneous platforms combine computing blocks which have different architectures, each

based on distinct computational models. Usually, specialized processing capabilities are combined

so that each task is executed more efficiently. This generally leads to higher processing power

while decreasing consumed energy overall. The use of this type of approach is thought to be one

of the ways in which current and future big improvements in efficiency can be achieved. These

platforms can combine common von Neumman General Purpose Processors (GPPs), Graphics

Processing Units (GPUs), Field-Programmable Gate Arrays (FPGAs) and Application Specific

Integrated Circuits. The most common type of configuration is when a GPP is used as the Central

Processing Unit (CPU) and the other units act as co-processors/accelerators that are only used to

compute specific tasks, which are executed with much higher efficiency than if they were executed

by the GPP.

FPGAs are integrated circuits which can be reconfigured after manufacturing and are espe-

cially interesting in the context of heterogeneous systems and of acceleration using co-processors.

They can be configured to accelerate a specific task, which can be done by exploring its parallel

nature, and later be reconfigured to accelerate a completely different task. The recent acquisition

of one of the biggest FPGA manufacturers (Altera) by Intel for 16.7 billion USD [3] shows that

Intel sees a future where FPGAs provide a valuable contribution to computing platforms.

In the context of High-Performance Computing (HPC), acceleration using co-processors is

starting to gain traction, but is still little used. The improvements in performance, and especially

1The inference that the number of transistors in integrated circuits doubles every two years
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2 Introduction

the reduction of consumed power, are always important, but even more for this kind of computing

platforms, as the need for cooling already represents a massive chunk of the total operation cost.

Several companies that own and operate data centers started in the last few years to include FPGAs

as accelerators in their systems [4, 5, 6] and GPUs have also been available.

1.2 Motivation

Although the use of accelerators and heterogeneous platforms can lead to much greater energy

efficiency in several contexts such as HPC [7, 8], it also brings some problems that have yet to be

solved.

On the one hand, the development of software applications that take advantage of the existence

of the accelerators is more complex and cumbersome. Specifically, if the accelerator is an FPGA,

the circuit of the accelerator needs to be designed from the ground up to be later configured in the

FPGA. The skills needed to design such accelerators are missing from the skill set of the common

software developer and, in general, this design process takes more time and demands exhaustive

testing, even when being conducted by someone with experience. The emergence of high-level

synthesis tools, which allow in some cases the automatic generation of accelerators from almost

regular software code, help attenuate this problem, but their utilization provides mixed results and

still requires specific care with hardware related issues.

On the other hand, the lack of backward compatibility further hinders the wide adoption of

accelerators. Any older application that was not designed to make use of a specific accelerator

will not take advantage of it. In many cases, it is not even possible to try and adapt the source code

of the application because only the binaries are available. Such is the case when applications are

proprietary. Furthermore, an application developed to use a specific accelerator will probably not

be compatible with other types of accelerators unless support for them was specifically thought

out at the design stage.

Due to these reasons, it is highly desirable to attain an automatic method of running applica-

tions on heterogeneous systems. When accelerators are available they should be used transpar-

ently, that is, without the software developers previously taking the accelerator into account and

without introducing any permanent changes to the software that would later impede its use on

different hardware and accelerators.

1.3 Objectives

In order for acceleration in heterogeneous platforms to be carried out transparently, there are three

main mechanisms that must be implemented, which depend on each other to some degree.

The first is a profiling mechanism that can automatically detect the portions of an application

that are good candidates for being accelerated. Commonly called ”hot spots”, they usually consist
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Figure 1.1: Transparent Acceleration Example

of repetitive sequences of computations that are especially taxing on the CPU and could be com-

puted in parallel by an accelerator. This mechanism must produce a description of these blocks

that is consumed by the other two mechanisms.

Then, there must be a mechanism that uses the previously generated description, and can

transparently generate all configurations needed for a specific accelerator to perform the same

computations as the portions of the application it will replace. The accelerator can be a GPU, in

which case the configuration is software targeted at GPUs, but can also be an FPGA, and in that

case the configuration is more complex, as it is a description of a hardware circuit.

Finally, the third mechanism is the transparent control flow transfer between the CPU and

an accelerator. This mechanism must use the description of which pieces of software should be

accelerated and transfer the execution to the appropriate accelerator. For that, it must also rely on

some information on how the accelerator was implemented in order to use the interface it provides.

Together, they may allow a computing platform to behave as represented in figure 1.1. When

an application is executed, in the beginning, it will run as usual, but in the background, a profiling

task will be executed that can automatically detect the hot spots. The accelerator will also be

configured in the background when the profiling finishes. Then, a sudden rise in performance can

be noticed, because an accelerator will start to be used to accelerate some parts of the application.

This work focuses on only one of these mechanisms. It is the transparent control flow transfer

that is investigated. Therefore, for its implementation and evaluation purposes, the detection of hot

spots and configuration of corresponding accelerators can be made in a non-transparent fashion,

as these problems are assumed as solved. Indeed, approaches to these issues in embedded systems

have been addressed [9, 10, 11, 12].

To summarize, the main objective of this thesis is to research mechanisms that allow the trans-

parent transfer of the control flow between a CPU and an FPGA, which houses an accelerator,

particularly in the context of HPC.

The presented results were obtained on resources hosted at the Paderborn Center for Parallel

Computing (PC2) in the Intel Hardware Accelerator Research Program (HARP2). Specifically, a
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new platform developed by Intel is used in this work. It combines a Xeon CPU and an Arria 10

FPGA in the same integrated circuit, both sharing the main system memory, and connected with

several high bandwidth interfaces.

1.4 Contributions

The main contributions of this work are:

• Proposal of a new transparent control flow transfer mechanism which works on top of the

Linux operating system. Unlike previous approaches, this mechanism is not limited to the

acceleration of functions provided by shared libraries.

• Development of a framework that implements the proposed mechanism on a new Intel plat-

form which combines a high-performance CPU and an FPGA in the same integrated circuit

(Intel Xeon+FPGA).

• Study and evaluation of the framework and mechanism using two case studies: AES 256

CTR mode encryption and single precision floating-point matrix multiplication.

1.5 Structure of the Report

This report is structured as follows. In chapter 2 the related literature is reviewed, and context on

the underlying Intel platform will be provided. Chapter 3 will present the problem and propose a

new transparent control flow transfer mechanism. In chapter 4, the implementation of the proposed

mechanism is described and its performance evaluated. Finally, in chapter 5, conclusions are taken

and recommendations are given on future work.



Chapter 2

Background and Literature Review

Previous research on acceleration using co-processors exists for some time and goes as far back

as the 1980s [13, 14, 15, 12]. Despite this, most of the investigation on this topic consists on

the development of dedicated accelerators in conjunction with applications that make use of such

accelerators, in a process commonly called HW/SW co-design. This approach is application and

platform specific and does not try to attain transparent acceleration. Efforts towards achieving a

mechanism that displays this characteristic appeared only more recently.

The following sections start by a revision of the types of interfaces between CPU and acceler-

ator, followed by a review of previously proposed mechanisms that are used to transfer the control

flow between a CPU and an accelerator, and also of the type of memory access capabilities of the

accelerator. Then, some background is provided on the Intel Xeon-FPGA platform and related

tools.

2.1 CPU-Accelerator Interface

In the literature, the interface that the CPU uses to communicate and exchange data with an ac-

celerator can be classified in one of two major categories, which are directly related to the hetero-

geneous platform architecture. One is when the accelerator is directly coupled to CPU’s pipeline.

Some times the accelerator behaves as an alternative to the main Arithmetic Logic Unit. A rep-

resentative example of this approach is described in [10]. This has the advantage of a reduced

overhead in the communication between the CPU and the accelerator. On the other hand, the

design of the accelerator becomes dependent on the CPU’s design. Additionally, unless the CPU

was specifically designed to accept an accelerator in this form, for example by presenting a custom

instruction (CI) port, the CPU’s hardware needs to be adapted to the accelerator as well.

The other alternative is to have the accelerator be a peripheral as in [11]. This alternative

approach is more portable and allows for more complex accelerators that are not subject to the

CPU’s pipeline restrictions, but presents larger overheads in the communication between the CPU

and the accelerator.

5



6 Background and Literature Review

2.2 Transfer Mechanism

Any mechanism that transfers the control flow between a CPU and an accelerator must use the

interface between them to first transfer input data from the CPU to the accelerator, and later to

transfer the outputs from the acceleration back to the CPU. For this work, the most interesting

aspect about a control flow transfer mechanism is if whether or not it is transparent. A brief

reference to this characteristic was made in section 1.2, but now it is important to define it more

precisely in order to properly evaluate the different previous research approaches.

In the context of this work, transparency is a characteristic that control flow transfer mecha-

nisms can present. A transparent transfer mechanism is one that allows for the transparent accel-

eration of a program. If a program is transparently accelerated, then the program itself does not

need to be specifically designed to be accelerated, and, therefore, the programmers that developed

the application do not have to know about the existence of an accelerator.

The most common approach to the implementation of control flow transfer mechanisms re-

mains non-transparent. Many times applications are designed from the ground up to be acceler-

ated by partitioning tasks to each computing device, which is a complex and cumbersome task

as already stated. In these situations, the transfer mechanism is usually directly embedded in the

design of both the software and the accelerator.

The following sub-sections summarize some representative previously proposed approaches

for transparent control flow transfer mechanisms. They are split into two distinct categories ac-

cording to the type of platforms they are applicable to: embedded platforms and HPC platforms.

Although it is likely that any approach applicable to embedded platforms will not be directly appli-

cable to HPC, they may provide inspiration on how this problem can be addressed for the present

and future works.

2.2.1 Embedded Platforms

Bundled Execution of Recurring Traces The co-processor BERET is an accelerator that is

tightly coupled to a CPU and allows the efficient execution of small and atomic instruction traces.

The control flow transfer approach proposed in [10] makes use of a compilation process that tags

the instructions in which hot spots begin. When the program is being executed, whenever the

program counter reaches a tagged instruction this is detected because the processor’s fetch stage

contains a table with all tagged instructions. Then, an entry trigger is sent to the BERET hardware

along with the corresponding trace configuration address, which was also added to the binary by

the compiler. BERET then retrieves the configuration bits using the instruction cache. When

BERET ends executing, an exit trigger is launched and control is given back to the CPU, that

resumes from the fetch stage. This means that the CPU stalls while BERET runs.

The transfer mechanism in this approach relies on information provided by the compilation

step, which includes some form of binary profiling capabilities, to be able to know when the

transfer should be initiated. This approach is transparent but its implementation implies the re-

design of some parts of the CPU.
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Figure 2.1: CLA Architecture (from [11])

Custom Loop Accelerator In [11] the target software is analyzed so that Megablocks, which

are repetitive instruction traces, can be extracted. Megablocks are then accelerated by a Recon-

figurable Processing Unit (RPU) that is configured to perform the same computations. Figure 2.1

presents the architecture of the approach.

The Local Memory Bus (LMB) injector is the block with more relevance to this work. It is

responsible for triggering the transfer of the control flow between the GPP and RPU and achieves

this by monitoring and controlling the contents of the instruction bus. When an address that is

associated with the start of a Megablock is detected, the LMB injector changes the instruction

so that a subroutine that handles the transfer is called. This routine is called Communication

Routine (CR) by the authors and it starts by sending the contents from the GPP’s registers to the

RPU. It then sends a start signal and when the RPU execution ends, it is also responsible for

reestablishing the GPP registers with the computed results and resuming the program. While the

RPU is computing, the GPP stalls.

This is yet another approach which is only practical in the context of embedded platforms.

Despite this, the idea of changing the program dynamically is interesting. This allows all the code

responsible for interfacing with an accelerator to be put together inside a routine. Transferring

execution to an accelerator becomes as simple as managing to get that routine to be executed

instead of the hot spot. In this mechanism, the way a transfer is initiated is somewhat similar to

the previous one. In BERET, the processors own fetch stage is modified so that tagged instructions

trigger the acceleration. In this case, an instruction bus supervisor performs that same job.

2.2.2 HPC Platforms

Shared Library Interposing Shared Library Interposing consists of replacing shared library

calls. This was proposed in [16] as a way to transparently transfer the control flow between a CPU

and an accelerator by having accelerated versions of shared library functions replace the original

ones. Shared libraries consist of pre-compiled code that can be reused. These can be linked to an

executable at run-time, allowing for reduced program size and lower memory use.
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Figure 2.2: Accelerator Memory Access Main Alternatives

Several mechanisms that would allow shared library interposing are studied and one was cho-

sen to be implemented. It consists of setting the LD_PRELOAD environment variable on the Linux

operating system, which essentially allows choosing which shared libraries will be linked to the

application at run-time. A shared library is loaded instead of the original that contained the func-

tion to be accelerated. The new shared library contains code which handles the transfer of the

control flow to an accelerator and back.

This mechanism is different from the other examples because it doesn’t target embedded plat-

forms. Although very simple, it allows for a very flexible implementation, remains transparent,

and is applicable to HPC. For example, the loaded shared library can follow a policy for when it

should execute the needed computations on software, or in one of several available accelerators.

The great disadvantage of this approach is the limitation of only being able to accelerate hot spots

contained inside shared library functions. It is not possible to transfer the control flow to an ac-

celerator when the hot spot is in a static library or local function. Ideally, the execution of any

arbitrary block of code should be able to be transferred to an accelerator.

2.3 Accelerator Memory Access

How and if memory can be accessed by an accelerator plays a major role in how much speed up

the accelerator can provide. The greatest speedups occur when many computations can be made in

parallel and, for this to happen, the inputs for these computations need to be readily available. To

avoid the overhead of transferring all necessary data to an accelerator before beginning execution,

fast access to the memory where the data resides is important. Ideally, the more memory accesses

can be done at the same time, the better. The main alternatives are represented in figure 2.2 and

are external memory, internal memory, and shared memory. If external memory is used, probably

any gains that would be obtained by the use of the accelerator are lost due to the large memory

access overheads. If memory internal to the accelerator is used such as in [17], then it is necessary
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Figure 2.3: Xeon-FPGA Platform Internal Block Diagram

to transfer all data necessary to an acceleration before it begins, which can be a considerable

overhead but usually limited and much smaller than the external memory one. The other option is

to share the memory with the CPU. The memory shared can be the main memory as in the example

figure and then all memory is shared [10], or secondary memories are used and in that case, only

a portion of the memory is shared [15].

2.4 Target Platform - Xeon-FPGA

The target Xeon-FPGA hybrid platform was developed by Intel and combines in the same pack-

age a high-performance Xeon processor and an Arria 10 GX 1150 FPGA. The two devices are

connected by high bandwidth links. The platform’s internal block diagram is present in figure 2.3.

The processor is a Xeon E5-2600 v4 and presents 14 cores with Intel’s Hyper-Threading tech-

nology, meaning that a total of 28 threads can run concurrently. The processor’s microarchitecture

is Broadwell. As for connectivity, the Xeon presents four DDR4 memory controllers, one QPI co-

herent link, and 24 lanes of PCI-Express 3.0. QuickPath Interconnect (QPI) is an Intel proprietary

technology used to interconnect different processors. It provides low-latency and coherent access

to a shared address space which is achieved through a directory-based home snoop coherency pro-

tocol. QPI’s transfer speeds are up to 9.6 GT/s. Recently, this platform has already been upgraded

to use a Skylake Xeon SP6138 processor, which has available six DDR4 memory controllers. Also

QPI has been upgraded to UltraPath Interconnect (UPI), which reaches speeds of 10.4 GT/s. In the

upgraded versions, as stated in [18], due to the existence of two available UPI slots on the Xeon

processor, a setup could be used in which two Xeon+FPGA platforms are connected together and

behave as one.

The Arria FPGA present in the target platform is connected to the Xeon also with a QPI link

and two PCI-Express 3.0 x8 links. As just stated, the QPI link provides coherent access to shared

memory space, which means that the FPGA shares the memory with the processor in a cache

coherent fashion. This allows the FPGA to access data seamlessly whether it resides in cache or
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Figure 2.4: Xeon-FPGA Platform Memory Hierarchy (from [19])

in memory, which leads to fewer overheads where data location is discovered and removes the

need for redundant data storage or DMA. The FPGA also features an external high-speed serial

interface that can be used for example as a network port. Besides being a large FPGA, which

has available 1.115.000 logic elements, it also features hard single-precision floating point units,

which is uncommon in FPGAs.

For accelerators to access memory, they use the Core Cache Interface (CCI-P) which abstracts

the platform physical links (PCI-Express and QPI) [19]. The Intel FPGA Interface Unit (FIU) is

a block of logic statically configured on the FPGA which connects to the Xeon processor with the

stated existing links and offers the CCI-P interface to the accelerators present in the FPGA. FIU

has the task of mapping both PCI-Express x8 links and the QPI coherent link to the CCI-P interface

in a way that an accelerator sees a single logical connection with a capacity equal to the sum of

the three link’s capacities. Accelerators actually see four virtual channels: VL0, VH0, VH1 and

VA. The first three map one to one the each one of the interfaces, therefore granting control over

which physical interface is used. The last virtual channel maps to all the three physical interfaces.

Accelerators should remain platform independent if they use mainly the VA virtual channel. In

this channel a de-multiplexer is used to route requests to all the physical links.

A diagram of the platform memory hierarchy can be found in figure 2.4. When an accelerator

requests a memory access, it can be served by one of three components: the FPGA cache (A.1), the

processor cache (A.2) or the SDRAM (A.3). The FPGA cache is inside the processor’s coherence

domain and offers the highest bandwidth but is only used when requests are sent via the QPI link.

When VA is used there is the chance that requests are mapped to one of the PCI-Express links

when the FPGA cache could service the request, in which case a latency penalty is incurred. If the

FPGA cache can not service a request, then the processor cache is used. Of course, this one has a

higher latency than the FPGA cache. Finally, if the processor cache also can not service a request

then the SDRAM is used, which has an even bigger and the highest access latency.
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A performance comparison between two representative platforms, one being a predecessor to

the one being targeted in this work, is made in [20]. The predecessor is also based on a QPI link

to provide coherent memory access to the FPGA in a fashion very similar to the one previously

described. The difference between the two is that this previous version has the FPGA on another

socket in the same board, which should perform worse than the targeted platform. This approach

is compared to a more traditional PCI-based one, in which the FPGA accesses the main memory

through DMA and has its own private memory. The authors came to the conclusion that if appli-

cations are carefully designed to hide memory access latency, then the PCI-based approach can

catch up to the QPI approach in most scenarios, but the latter has a large advantage in fine-grained

(<4KB) communication latency, being up to two orders of magnitude faster in those scenarios.

Given that the platform targeted in this work displays an architecture very similar to the previous

implementation, with some improvements such as having the FPGA even closer to the CPU, this

platform should have the same if not even greater advantage when compared to the traditional

PCI-based approach.

The use of accelerators implemented in the FPGA is done using OPAE, which is a software

layer that was developed with the goal of simplifying the integration of FPGA devices into soft-

ware applications [21]. It encompasses several software tools, drivers for interaction with Intel

FPGAs and user-space APIs that allow applications to take advantage of accelerators. On the

CPU, OPAE sits on top of the operating system. On the FPGA, there are two main components:

the FPGA Interface Manager (FIM) and the Accelerator Function (AF). FIM is a static region in

the FPGA that is responsible for infrastructure tasks, such as energy consumption, temperature

management, and partial reconfiguration. The AF is an area of re-configurable logic in which new

logic functions can be implemented.

At the current time, OPAE provides APIs in C, C++, and Python. They are all very similar and

allow the discovery, allocation, access, and management of accelerator resources. For example, the

typical flow that a C programmed application would have to follow in order to acquire ownership

and access an accelerator is represented in figure 4 of [21]. First, an application must create a

fpga_properties object that allows the specification of the desired characteristics for an accelerator.

Then, the function fpgaEnumerate() must be called with the properties object as an argument and

it possibly returns tokens, which identify accelerator instances. Calling the function fpgaOpen()

grants ownership over the instance that a given token identifies, and finally access to the accelerator

is granted. Once ownership is obtained it is necessary to map accelerator registers to user space

and allocate shared memory space. Only then computations can be made on the accelerator.

Several processes can share an accelerator by calling the function fpgaOpen() and opt for non-

exclusive access. It is also possible for several operating systems running on virtual machines to

use OPAE and concurrently use and share an FPGA.

Bundled with OPAE is also the Intel Accelerator Functional Unit (AFU) Simulation Envi-

ronment (ASE), which is a simulator for OPAE designs. It runs using two processes. One is the

simulation of the AFU RTL, thus simulating the computations made by the FPGA. The other com-

municates with the software that would use the accelerator in the FPGA. This setup allows for a
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much faster development of both the software and AFU hardware.

The CCI-P interface that was mentioned earlier is a purposefully simple and basic interface

which provides no guarantee on the order by which any memory access requests are processed.

It also expects the accelerator to request accesses to physical memory addresses. To tackle these

hurdles, Intel provides its FPGA Basic Build Blocks (BBB) [22]. As the name hints, this is a

collection of blocks and they can be used to transform the CCI-P interface. One of the blocks is

the Memory Properties Factory (MPF) and it can be configured to provide these and other features:

• VTP - Virtual to physical translation of addresses for read and write requests

• ROB - A reorder buffer which returns read responses in the order they were requested

• WRO - Guarantees that write and reads to the same address are completed with respect to

the order they were requested

• PWRITE - Offers partial write functionality, which is implemented as a read-modify-write

Other blocks present in the Intel BBB are MUX and ASYNC. MUX allows multiple acceler-

ators compliant with the CCI-P interface to be connected to the same CCI-P instance. ASYNC

is a block that handles clock crossing, which allows accelerators with lower clock frequencies to

be attached to the CCI-P interface. All these features provided by Intel BBB may or may not be

needed by each specific accelerator so they are added to each design only when strictly necessary,

which allows for significant reductions of FPGA occupied area.

2.5 Conclusion

Although there is research regarding the topic of transparent transfer of control flow for accel-

eration purposes, there is yet to appear a practical solution that would allow wider adoption of

heterogeneous computing platforms. Most of the efforts towards achieving this goal appear to be

focused on embedded systems. Such as in HPC but for slightly different reasons, they too benefit

from higher computing efficiency but their nature allows for a much more fine-grained control

over the design of any transfer mechanism. A solution for transparent control flow transfer in the

context of HPC seems to be further away.

The most promising past work applicable to HPC seems to be the shared library interposing

mechanism. It was proven to work over Linux, one of the most used operating systems in that

segment, which runs on the top 500 supercomputers in the world [23]. The main problem with

this approach is the lack of support for transferring execution to an accelerator when hot spots are

not constrained inside shared library functions.

The architecture of the Intel hybrid Xeon+FPGA platform is in a middle ground between

the two alternatives presented in section 2.1. Compared to a loosely-coupled accelerator-CPU

architecture, the accelerator is much closer to the CPU, allowing both to share the same view to

the main memory through a high bandwidth link. This means that it is not necessary to transfer
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all data from the CPU to the accelerator prior to its operation as well as transferring all the results

back only at the end. Compared to the tightly-coupled alternative, the accelerator is also close to

the CPU but not directly coupled to its pipeline. This means that it does not suffer from the same

drawback: limited accelerator complexity.
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Chapter 3

Transparent Control Flow Transfer
Mechanism

3.1 Problem Description

This work aims at researching transparent control flow transfer mechanisms that can be applied

to HPC. Although not all HPC platforms run Linux, the vast majority run some version of this

operating system. Thus, only transfer mechanisms applicable to applications that run on Linux are

considered. Taking this into account, previous work on this topic that targets embedded platforms

can only eventually provide some inspiration on how to proceed.

It is also assumed that a software application binary executable is the target for acceleration and

that there is available in the platform some software interface for applications to take advantage of

available accelerators. A possible solution must meet some requisites:

• The software application must be stopped when it reaches the beginning of a code block

considered a hot spot.

• When that happens, all data necessary for acceleration to begin must be transferred to an

accelerator and a run order must be issued.

• After the accelerator concludes its execution of the hot spot, output results must be pulled

from the accelerator and the software application resumed, as if the hot spot was executed

in software.

• No intervention should be required from the user. All needed information should be obtained

from transparent profiling of the application.

The use of shared library interposing [16] manages to fulfill these requisites using a simple

approach. As a hot spot can only be a routine from a shared library, replacing the shared library

stops the application from executing the hot spot when the routine is called, and code that handles

the control flow transfer is executed instead. This includes the transfer of some data prior to

15
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accelerator execution. As long as the new routine behaves similarly to the original one, the original

software is later resumed as if the hot spot was computed in software.

In order for the mechanism to support the transfer of the control flow not only when hot spots

can be shared library routines, but also other code blocks, such as a loop, an approach different

from shared library interposing must be conceived.

In this work, only single-threaded applications are considered for acceleration targets. Ac-

celerating multi-threaded applications is expected to be a considerably more complex research

task that is left for future work. However, it would be advantageous if a proposal for a transfer

mechanism is extensible in that regard.

3.2 Proposed Mechanism

The main idea is to develop an approach which takes advantage of the Linux system call ptrace.

This system call provides a process with the ability to observe and take complete control over the

execution of another process. The process that takes control is called the ”tracer”, and the process

that is controlled is called the ”tracee”. This system call is commonly used by debuggers in order

to insert breakpoints and trace a program’s execution.

A process becomes a tracee after the tracer attaches to it. From that moment until the tracer

detaches, it will stop executing every time a signal is delivered. Signals are a Linux communication

primitive used for different processes to communicate with each other. They work almost as

notifications that processes receive and act upon. The tracer can observe and control the tracee

by waiting for such moments, and then read and modify the contents of the tracee’s memory and

processor registers. Finally, the tracer can resume the tracee’s execution and wait for the next

time it stops. It can also purposefully only let the tracee run a single instruction or even insert a

breakpoint on which the tracee will return control to the tracer.

The system call prototype is:

1 l ong p t r a c e ( enum _ _ p t r a c e _ r e q u e s t r e q u e s t , p i d _ t pid ,
2 vo id ∗ addr , vo id ∗ d a t a ) ;

This single interface allows all the mentioned functionality. Depending on the value of request,

the other arguments have different purposes. There are dozens of possible requests, but the most

important for this work are:

• PTRACE_PEEKTEXT - reads a word from the tracee’s memory

• PTRACE_POKETEXT - writes a word to the tracee’s memory

• PTRACE_GETREGS - copies the tracee’s registers

• PTRACE_SETREGS - changes the tracee’s registers

• PTRACE_CONT - resumes execution of a stopped tracee
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Figure 3.1: Adding a Breakpoint to a Hot Spot

• PTRACE_SINGLESTEP - same as PTRACE_CONT but the tracee executes only one instruc-

tion before control is given back to the tracer

It is evident that this system call allows very fine-grained control over a process’s execution.

This makes it powerful but also has the disadvantage of making its use very dependent on the

specific underlying processor architecture.

3.2.1 The ”Manager” Process

Using ptrace, a new process, the ”manager”, has the responsibility of controlling the program

to be accelerated, the ”target”. The manager process can then stop the target before it reaches

a hot stop, and transfer the control flow to an accelerator that performs the same computations.

When the accelerator finishes, the state of the target process is set up as if the software routine had

just executed, and the target’s execution is resumed, thus allowing the requisites for successfully

transferring the control flow to be met.

Depending on the local configuration of the Linux security module Yama, the manager may

have to be executed with administrative privileges so that it will be able to attach to an already

running target [24]. When this is the case and the user is not an administrator of the system, the

manager won’t be able to attach to a running target but can fork and launch the target as its child

process, and then attach to it later.

For the manager to get the target to stop when hot spots have been reached, it can insert

breakpoints. The insertion of breakpoints in the target process is relatively simple and is analogous

to how debuggers insert breakpoints into processes being debugged. The manager uses ptrace to
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rewrite the beginning of each hot spot with a trap instruction, such as represented in figure 3.1.

A trap instruction is simply a special invalid instruction, which sends to process into kernel mode

when executed. Once inside kernel mode, the kernel sends a SIGTRAP signal back to the process.

If the target was not being traced, it would automatically terminate. Because it is being traced by

the manager, the delivery of the signal causes it to stop and the manager regains control, just as

intended.

Using the described strategy could allow many other types of hot spots to be transferred to an

accelerator in a transparent fashion. The acceleration of a routine should be simpler, but it should

also be possible to accelerate other hot spots such as loops. Accelerating routines can be as simple

as setting the breakpoint on the function call, and when the accelerator finishes, resuming the

target after that call. It does not make a difference if the routine is from a shared library or a local

one. Accelerating loops can be more difficult. Adding the breakpoint works in the same way, but

a loop can have more than one exit point, which makes it harder for the manager to know where

the target should resume once the accelerator finishes. One way this problem can be solved is by

executing the last iteration of the loop in software, as proposed in [25]. That way the manager

does not have to know from which instruction the target must resume.

3.2.2 Control Flow Transfer

Once the target is stopped because it reached a breakpoint previously inserted by the manager, the

control flow must be transferred to an accelerator. It is necessary to transfer all the data that the

accelerator needs to start operating. In the case of the Xeon+FPGA platform, this typically consists

of some static data, which can be directly written to accelerator control/status registers (CSRs),

but also larger data structures, whose addresses are also written to CSRs but are only later directly

accessed by the accelerator while it is operating. Once the accelerator starts working, the CPU

can either perform some part of the computations while cooperating with the accelerator or simply

busy-waits for the accelerator to finish. The two case studies performed in this work implement

the latter case. Any results generated by the accelerator that are not at that point already written

in memory can then be read from CSRs. It is assumed that there is an API that provides a set

of routines that allow communicating with available accelerators. In the case of the Xeon+FPGA

platform, OPAE provides its API as described in chapter 2.

The manager could use the OPAE API to transfer data that it gets from the target using ptrace.

However, this method presents a problem. If it is the manager that uses OPAE, then it is the man-

ager that will become the owner of the used accelerator. This means that in case an accelerator uses

virtual addressing to access the main memory, the translation from virtual to physical addresses

will be applied to addresses of the manager process, instead of the target. This is a problem be-

cause the two processes have different address spaces. Although other platforms might be used in

which this would not be a problem, the majority of them should work in a similar fashion, so it is

unfeasible to have the manager communicating directly with available accelerators.

Although it is not obvious how it can be achieved, it must be the target process to use the

OPAE API for the aforementioned reason. The target executable could be modified in order to
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achieve this, but that approach creates problems because it would result in a lower portability level

of the target application, which is not desirable. Depending on the modification that would be

introduced into the binaries, it could stop the executable from being run on any machine that does

not have an accelerator available.

The solution is to inject the control flow transfer code into the target at run-time. In this

way, any modifications introduced are temporary and it can be the target to request the use of an

accelerator. In a way, shared library interposing manages to ”inject” the code responsible for the

transfer at the application startup. Once the code is injected, the manager can run it every time it

gains control after a breakpoint is reached in the target.

To sum up, once the manager attaches to the target, it is responsible for the following tasks:

• The code that handles the transfer of execution to an accelerator must be injected into the

target process.

• A breakpoint in the form of a trap instruction must be inserted at the beginning of every hot

spot in the target’s program.

• When the target reaches a breakpoint, it must make sure the code that was injected is exe-

cuted.

• When the accelerator finishes its execution, it must resume the target as if the control flow

had never been transferred to the accelerator

3.2.3 Transfer Code Injection

Three alternatives that use ptrace were considered for a mechanism capable of injecting the code

responsible for the transfer of control flow to the accelerator. Here they are compared and reasons

for choosing one over the others are presented.

Inject over existing code As was previously explained, ptrace allows to change the tracee’s

memory without any restrictions. The first alternative, which is the most naive, is the first rep-

resented in figure 3.2. In stage 1, the target had just reached a breakpoint and control was given

to the manager. The manager would then have to copy a block of code of the size of the transfer

code so that it can be later restored, and write the transfer code over the existing, already saved

code. This is represented in stage 2. A new breakpoint would have to be inserted at the end of

this code to ensure control is eventually given back and the target would be resumed. When the

target stops on that new breakpoint, stage 3 is reached. Finally, the target’s code would have to be

restored to its initial state and the instruction pointer changed to point to the end of the hot spot.

In this approach, the transfer code is injected only when needed and must be removed after the

accelerator is used. Thus, this approach suffers from a big disadvantage: it is very inefficient to

write the transfer code in the target process and restore it after acceleration every time a hot spot

is reached. The introduced overhead would probably cancel any potential gains obtained from the

acceleration.
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Figure 3.2: Transfer Code Injection Alternatives

Inject on allocated memory In order to avoid unnecessary modifications to the target’s program

that imply that the transfer code would have to constantly be written and erased from the target,

ideally, the chosen approach should inject the transfer code only once in some unused memory

location of the target process. In this second alternative, this is achieved as represented in the

middle row of figure 3.2. Stage 1 represents the state of the target when the manager has just

attached and the instruction pointer is in a random place. The manager should write in the target

a call to the mmap system call, which allows creating a new mapping in the process memory. The

code that is overwritten must be previously saved to be later restored. The arguments of the system

call must also be set so that the new memory block is executable. In stage 2 the call to mmap is

represented and stage 3 shows the state of the target after the execution of mmap. A new block

of memory is available and the final step is to write the transfer code into that free executable

memory space. This approach is much more efficient than the first as the injection only happens

once. Although changes are being introduced to the target application, this approach remains

transparent because they are only made in memory and are not permanent.

Shared library loading This is yet another approach which allows the injection of the transfer

code to be made only once. In this approach, the transfer code must be compiled as a shared

library. It is very similar to the previous one but instead of injecting a call to mmap, it is a call to

dlopen. This is a function that allows to dynamically load shared libraries on demand. There is a
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problem because dlopen is a function that is part of libdl, the dynamic linking library, which may

not have been loaded by the target application. The solution is to use libc’s implementation, called

__libc_dlopen_mode, which should be in the target process.

In practice, the advantage of this approach over the mmap one, it that the transfer code is

already loaded when the single call to dlopen is complete and removes that responsibility from the

manager. Although calling dlopen is not as simple as making a mmap system call, this approach

was preferred overall. Calling dlopen was achieved in the same way as the injected code was

executed when needed. This is described in section 3.2.4.

3.2.4 Executing Injected Code

By using dlopen to load the transfer code into the target’s process, one difficulty is introduced.

Linux implements a security technique called Address Space Layout Randomization (ASLR).

ASLR is used to prevent memory corruption vulnerabilities from being exploited by randomizing

the position where each area of a process memory is located. In practice, this means that dlopen

will load the transfer code to a random position in the target’s memory. In order to be able to

execute the previously injected code when the target reaches a hot spot, the manager must know

where that code is.

One way to overcome the problem ASLR introduces is proposed in [26]. The idea is that Linux

provides a pseudo-filesystem named proc which allows kernel data structures to be accessed. Each

running process has a dedicated folder inside proc named with its own process identifier. One of

the files that each process has in its folder is the maps file. This file describes every region of
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contiguous virtual memory that the process has mapped. By using this file, the manager can

parse its contents and learn the position where the shared library was loaded. This in itself does

not solve the problem because the manager needs to know where a certain function is inside the

shared library. To solve this, the manager can also load the shared library with the transfer code

so that it can learn the offset from the start of the library to where the transfer code is located. As

long as both processes have loaded the same version of a shared library, this offset should remain

the same and the manager has discovered which address it should make the target jump to when a

hot spot is reached. A diagram that illustrates this concept is present in figure 3.3.

3.2.5 Architecture

In figure 3.4 there is a block diagram representing this architecture when the mechanism is applied

in the Xeon+FPGA platform. Two processes are represented, one being the manager and the other

the target. As an example, the OPAE C Library is also represented being called by the target

process. The target application does not originally have any code that calls routines in this library.

It is the manager that alters the target process by injecting code as previously described.

3.2.6 Final Considerations

Compared to the only previously identified proposed mechanism which could be applied in HPC

scenarios, the mechanism here proposed is not limited to only transferring the control flow to an

accelerator when a hot spot is contained inside a shared library function. This means that other

types of hot spots, such as static libraries or even local functions can be accelerated, which is

an important advantage. Furthermore, although it is not implemented in this work, it should be
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possible to apply this mechanism to arbitrary blocks of code not restricted to entire functions, such

as loops.

Although only single-threaded applications are being considered as possible acceleration tar-

gets, ptrace can be used with multiple threads and it works on a thread by thread basis. That is,

each thread must be attached individually. A manager that would support multiple threads could

probably maintain a collection of threads being managed, at the cost of increased complexity and

overheads added to each one. Another option is to have multiple managers, each one controlling

only a portion of the threads being accelerated.

One downside of the proposed approach is the introduction of a larger overhead. Having the

manager stop the target, reading and writing to its memory, every time a hot spot is reached, is

expected to have a negative impact on the overall performance of this mechanism that will likely

put it behind shared library interposing when compared while doing shared library calls acceler-

ation. Specifically how much worse it fares is evaluated in chapter 4. The proposed mechanism

is also much more complex. On top of this, Linux only allows each process to be traced by one

tracer. This means that the target will not be able to be debugged whenever it is being transpar-

ently accelerated, as the manager will already be attached to it. Finally, one last disadvantage of

the proposed approach is that it is highly dependent on which specific processor this is being used

and also on the application binary interface.
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Chapter 4

A Framework for Transparent
Acceleration

A basic framework was developed which implements the previously described transparent control

flow transfer mechanism. For now, it relies on offline manual configuration of parameters such as

which routines to accelerate, its arguments, among others. However, in the future, this could be

coupled with profiling tools which could provide the same set of parameters. This framework was

applied to two applications, namely AES 256 encryption in CTR block cipher mode of operation

and matrix multiplication. The results are here evaluated and performance is compared with the

shared library interposing mechanism.

4.1 Framework Description

The developed implementation of the mechanism described in chapter 3 consists of a framework

that presents the following features:

• Supports the transparent control flow transfer of a hot spot function.

• The configuration uses a single hot spot description json file.

• The decision to accelerate the hot spot can be taken at run-time based on input data (set in

the same description file).

• Automatic fallback to software in case accelerator is already in use or otherwise unavailable.

4.1.1 Manager Implementation

The configuration file is both read during the compilation of the manager application and at the

start of its execution. It comprises of all the information that the manager needs. The most impor-

tant fields are shown in table 4.1 alongside a basic description.

When performing the compilation of the manager process, the configuration file is used for

several steps. First, a new version of the manager source code is generated automatically. This

25
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Table 4.1: Data Fields of Configuration File

Field Description
targetName Name of the target executable

functionName Name of the function to be accelerated
functionArgs Array describing each one of the function arguments
accLibString Name of the shared library containing the transfer code
accLibPath Path to the shared library containing the transfer code

accHeaderPath Path to the header file of the shared library
accFunctionName Name of the function containing the transfer code

new version includes the header file of the shared library that contains the transfer code as well as

the name of the function inside that library that must be called. This is used so that the manager

can load the same library and obtain the offset to the transfer function as described in section 3.2.4.

The name of the software function to be accelerated is also used to find out all the places in

the target’s binary from where that function is called. For this, the command line tool objdump

is used to disassemble the target’s binary and its outputs are parsed in order to automatically find

the address of every call instruction that targets that specific function. These addresses are then

added to a copy of the configuration file which is later loaded at run-time by the manager. The

command line tool nm is also used to find out the address where the function to be accelerated is

located. This is also added to the copy of the configuration file and is used by the manager to run

the software version in case the arguments reveal that it is not worth it to use the accelerator. It is

also used for the same purpose when the accelerator is not available. All these steps are performed

automatically by a script.

When the manager runs, it starts by loading the new version of the json configuration file,

which was generated during the compilation phase. From there, it learns the thresholds that specify

when it should transfer the execution to the accelerator or let the hot spot execute on software. It

also learns the address of the software function and the addresses where that function is called.

Any future profiling and tracing mechanism that might be used in the scope of this framework

is subject to the requirement of being able to correctly fill the fields of this description file. This

is the only configuration that the transfer mechanism needs. Although the current specification

of the description file only supports one function to be executed in the FPGA, it should be easily

extensible to accommodate an arbitrary number of functions. Its a matter of replicating the data

specific to the function for each one of the other functions.

The automatic fallback to software feature is being triggered by a specific return of the function

that handles the control flow transfer. When this specific return value is detected, the manager

knows it was not possible to use the FPGA to execute the hot spot and proceeds to make the target

process execute the original software function, using the same mechanism it uses to call the control

flow transfer function. This mechanism is described in section 3.2.4.
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4.1.2 Injected Code

The accelerator interface and the code that is injected into the target process are highly dependant

on each other. Although there are other possible configurations, especially if other platforms are

used, in the specific case of the Xeon+FPGA, communication originating from software that is

destined to an accelerator in the FPGA, must be made through accelerator CSRs. Thus, it is

expected that accelerators present an interface in the form of a collection of CSRs, and the code

that is injected into the target process transfers data to and from these CSRs. As previously stated,

data that has a variable length is directly accessed by the FPGA. The injected code must provide

the address where such data is located in memory beforehand.

For the acceleration to be carried out transparently, it is convenient that the accelerator is

capable of accessing the memory using virtual addressing. Otherwise, multiple addresses had to

be provided as a contiguous buffer previously allocated in software might be stored in physical

memory as multiple non-contiguous blocks. As explained in section 2.4, Intel BBB provides the

VTP block, which can translate virtual addresses to physical ones. The VTP block is currently

available in two alternative implementations. One implements the translation of addresses in the

FPGA fabric, and another sends translation requests to software. Both were tested and translating

addresses directly in the FPGA was found to have the advantage of being up to 44 times faster, at

the expense of requiring that all memory buffers be pinned by the software before the FPGA can

access them. The software translation alternative does not require any treatment of buffers that

will be accessed by the FPGA. In the implemented examples, complete hardware translation was

chosen as the overhead of translating the addresses in software was prohibitive. The transfer code

which is injected into the target process handles the pinning of the buffers. When pinning buffers

for FPGA use, only entire virtual pages can be pinned. The current implementation is limited as

it assumes that the target software allocates every data structure that needs to be accessed by the

FPGA aligned to the virtual page size.

4.2 Case Studies

Two accelerators were developed in RTL to be used as examples to evaluate this framework and

measure the overheads introduced by the proposed transparent control flow transfer mechanism.

These accelerators are used to accelerate two distinct software applications, which were not pre-

viously prepared to take advantage of the accelerators.

To evaluate the proposed mechanism, both applications were also transparently accelerated

using shared library interposing, and the performance of both mechanisms is compared. The

code present in the accelerated versions of the shared libraries is the same as the one injected by

the proposed mechanism. The main aspect that needs to be characterized is the overhead that the

proposed approach introduces when compared against shared library interposing. This comparison

can only be made while using applications that have their hot spots inside a shared library routine

because only the proposed mechanism can be applied to hot spots inside routines other than ones
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Figure 4.1: CTR Mode of Operation (from [27])

that belong to shared libraries. No comparison is made specifically against the use of a non-

transparent control flow transfer mechanism, as shared library interposing will behave exactly in

the same way. This is assuming that the code that is loaded instead of the original function is the

same as the one that would be already present in the target application in the non-transparent case.

For both applications, the average execution times and respective acceleration factors of dif-

ferent configurations are measured for a range of input data sizes. For each single input data size,

the presented values result from the average of many executions. The number of executions was

varied so that the time it took to measure every single average remained approximately the same,

therefore, fewer executions were performed when the input data sizes were larger. Also, another

comparison is made between the proposed framework with no acceleration threshold configured

and the proposed framework when the optimal threshold is configured.

The time taken by the injection step, which only happens once at the beginning, was also

measured for each example application to see if it stops the target process for enough time that it

might cause noticeable problems.

4.2.1 Case 1 - AES 256 CTR Mode Encryption

Advanced Encryption Standard (AES) is an encryption specification used all over the world. It is

a symmetric key algorithm which can encrypt and decrypt blocks of a fixed 128 bits size with the

same key, which can have a variable length. In order to encrypt information larger than the 128 bits

sized block, block cipher modes of operation can be used. These specify how block ciphers should

be applied to larger data segments in order for the encryption to remain secure. One of them is

the Counter mode or CTR. This specific mode is characterized for allowing both encryption and

decryption steps to be computed in parallel. A block diagram showing how CTR mode encryption

works is in figure 4.1. In this mode, a counter is used to feed one or more AES encryption blocks,

which results in a pseudo-random sequence. Performing the XOR between the input data and this

pseudo-random sequence produces a sequence of bits which can only be transformed back to the

original data by knowing both the key used by the AES block and the initial counter state, or by
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cracking the AES encryption standard. Usually, the initial value from which the counter starts is

called the initialization vector or IV.

The developed accelerator expects the software running in the CPU to write in its CSRs several

arguments that it needs to start operating. They are detailed in table 4.2. Each one of the CSRs is

64 bits wide, so they can hold an entire memory address. As for the initialization vector, which is

128 bits wide, two registers are used to hold it. The key is 256 bits wide, so four registers are used

to hold it. There is also a CSR used to run the accelerator when the rest of the CSRs are valid.

Table 4.2: CSRs of AES 256 CTR Encryption Accelerator

Address Function
0 Virtual address of source buffer
1 Virtual address of destination buffer
2 Buffer length in multiples of cache line size
3 Run signal
4 Initialization vector (bits 0 to 63)
5 Initialization vector (bits 64 to 127)
6 Key (bits 0 to 63)
7 Key (bits 64 to 127)
8 Key (bits 128 to 191)
9 Key (bits 192 to 255)

This accelerator is based on an open source, previously designed AES 256 encryption core,

which can be found in [28]. This core presents a pipelined architecture, which can encrypt one

128-bit data block per clock cycle. It also presents an input to output latency of 29 clock cycles in

its 256 key size variant.

To feed this AES core, address generators were developed which make use of the source and

destination addresses available in the CSRs. They go through the buffers sequentially, stopping

momentarily when too many memory access requests are in flight or when the input and output

buffers start to fill up. A simplified block diagram representing the accelerator architecture is in

figure 4.2. Blocks from Intel BBB were used, specifically VTP and ROB from MPF. As stated in

section 2.4, ROB guarantees that the responses to read requests are delivered back to the accel-

erator in the same order as the requests were issued. As the accelerator has access to the entire

512-bit cache line, which holds up to four 128 bit data blocks, four AES 256 cores were used in

parallel. For simplification purposes, this design assumes that only multiples of the cache line size

can be used as length for the data to be encrypted.

As the transfer of all the data that is to be encrypted is managed by the accelerator in the

FPGA itself, the transfer code, which is injected in the target application, only has to wait for the

accelerator to finish. In this platform, no interrupt mechanism is available, so the software running

on the CPU must spin-wait until a CSR of the accelerator signals that the accelerator finished. An

Intel SSE2 pause instruction was used in this spin-wait loop in order to signal the CPU that this

loop is, in fact, spin-waiting, which is recommended in [29] in order to reduce the processor power

consumption and to avoid memory ordering issues.
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Figure 4.2: AES 256 CTR Mode Encryption Accelerator Simplified Architecture

The two plots in figure 4.3 display the execution time and respective acceleration factors when

several alternative configurations are used to encrypt data. The represented cases are:

• Software - the original application running on its own. The used software implementation

of AES 256 CTR encryption can be found in [30].

• Shared Library Interposing - the original application using a version of the AES shared

library that transfers execution to the FPGA accelerator.

• Proposed Framework not configured with an acceleration threshold.

• Proposed Framework configured to only use FPGA accelerator when data size hints that the

accelerator will be faster than software.

As expected, when the software executes on its own, without its control flow being transferred

to an accelerator, its execution time is the smallest when the input data sizes are small. When

small amounts of data need to be processed, the overhead of transferring the control flow to an

accelerator, no matter the approach, is bigger than any potential gains that the accelerator might

provide.

It is also evident from the figure, that the use of the implemented framework, leads to a

higher overhead than the shared library interposing approach. This additional overhead averages

at around 1.1ms, no matter the size of the input data. Depending on the application that is being

accelerated, and amount of data that needs to be processed, this overhead may be neglected. In
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Figure 4.3: AES 256 CTR Encryption Average Execution Time and Acceleration for Different
Data Sizes

this case, it is worthwhile to transfer the execution to the FPGA when data sizes are over 40KB

and shared library interposing is being used, and the same can only be said when data sizes are

over 70KB in the case of the proposed framework. It is worth noticing that if the original software

ran faster, these thresholds would become further apart from each other, and the additional over-

head of the proposed mechanism would be much more noticeable. If the software was slower, the

overhead would have less impact.

When a threshold over which the FPGA is used is chosen wisely, in this case, that is 32500

bytes, a lower penalty has to be paid for using this framework when small data sizes are used.

Although the AES encryption is completely computed in software, the mechanism continues to

introduce some overhead. This value was chosen empirically in order to begin using the FPGA as

soon as it was worth it when raising the data size.

A sudden additional overhead can be observed when the FPGA is being used to encrypt more

than 125KB of data. This is noticeable both when the proposed mechanism is used as well as

when it is not. The exact reason that causes this phenomenon to occur is unknown, but it is

possibly related to the memory access mechanism. As this threshold is almost half of the size of

the CPU level 2 cache, which has 256KB, and the level 2 cache is the one that the FPGA connects

to, the additional delay might be related to cache management. Further investigation would be

required in order to know for sure.

Another measurement that was performed was the time the injection takes to complete. The

target application is stopped while the injection is taking place, which may or may not be relevant.

The average injection time in this example was measured at 15,3 ms. This amount of time will

probably not affect the application in any negative way unless the application is subject to hard
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real-time constraints. It is unlikely that real-time applications, which could be affected by an

additional delay of about 15ms, would be running over Linux, but if indeed that is the case, the

time at which the injection phase takes place could become a concern.

4.2.2 Case 2 - Matrix Multiplication

The other example accelerator that was implemented is a matrix multiplication accelerator. Matrix

multiplication is used in a wide array of scientific applications, such as simulations, image and

signal processing, optimization problems, among many others.

In this example, the CSRs which the software uses to transfer input data to the accelerator

are depicted in table 4.3. This accelerator expects matrix A to be stored in row-major order and

matrix B in column-major order. This was a design decision taken with the goal of reducing

design complexity. Expecting the input matrices to be stored this way allowed the accelerator to

be designed faster.

Table 4.3: CSRs of Matrix Multiplication Accelerator

Address Function
0 Virtual address of input matrix A
1 Virtual address of input matrix B
2 Virtual address of output matrix C
3 Run signal
4 M - number of lines of matrix A
5 N - number of columns of matrix B
6 K - number of columns of matrix A and lines of matrix B

The software-only implementation used for this comparison is CBLAS. This is a C implemen-

tation of the Basic Linear Algebra Subprograms, which provides a large collection of routines

oriented at vector and matrix operations. There are several levels of these routines, the first level

containing scalar and vector operations, the second matrix-vector operations and the third matrix-

matrix operations. The third level routine SGEMM (Single precision floating General Matrix

Multiply) allows the computation expressed in 4.1 and is the one used as the software version.

SGEMM : C = αAB+βC (4.1)

The software routine which is accelerated has more functionality than the example accelerator,

allowing the result of the multiplication to scaled by a factor of α and to be added to a β -scaled

version of the output matrix. It also allows specifying the order in which each matrix is stored,

which is important so that matrix A can be fed in row-major and B in column-major order. In this

example, the SGEMM routine is only used with α set to 1 and β to 0.

The architecture of this accelerator follows the same pattern as the previous example. Data is

requested using an address generator, which sequentially requests the appropriate addresses from
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Figure 4.4: Matrix Multiplication Accelerator Simplified Architecture

matrix A and B. In this case, data is stored in two separate input buffers, one for each of the

matrices. This data is then fed into the hard single-precision floating point units of the Arria 10

FPGA. Several levels of these units were used. The first consists of sixteen multiply-accumulate

units which multiply elements from both input matrices and accumulate with previous results until

the end of a matrix line is reached. The outputs of these units are connected into other levels of

floating point units, but this time they are adders. Together they form an adder tree. The result

of the addition of the outputs of all multiplication units is then stored in an output buffer, and

later a write request to a position in the output matrix is sent with that result. The described

architecture is represented in figure 4.4. Such as it was the case with the AES encryption example,

this accelerator expects the input data to always be a multiple of the cache line size. In this case

that is 512 bits, which corresponds to 16 single-precision floating point values. It is important

to notice that this accelerator was designed only as an example to be used while evaluating the

performance of the control flow transfer mechanism implementation. It is definitely possible to

design a much more efficient matrix multiplication accelerator. One possible way to improve the

performance of the accelerator would be to use a blocked algorithm which can significantly reduce

the penalties incurred while accessing memory which is not cached. This is the case because

matrix multiplication uses the same data multiple times, which does not happen with the AES

encryption example that simply needs the data the be read and written sequentially.

In this example, the same MPF configuration was used, with VTP and ROB enabled. The

same version of VTP was also used, which means this accelerator implementation suffers from



34 A Framework for Transparent Acceleration

0 200 400 600 800 1000
Square Matrix Size (N*N)

103

104

105

106

107

108

109

A
ve

ra
ge

 E
xe

cu
tio

n 
T

im
e 

(n
se

cs
)

FPGA Shared Library Interposing
FPGA Proposed Mechanism
FPGA + Software Proposed Mechanism
Software

(a) Average Execution Time vs. Square Matrix Size

0 200 400 600 800 1000
Square Matrix Size (N*N)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

A
ve

ra
ge

 A
cc

el
er

at
io

n

FPGA Shared Library Interposing
FPGA Proposed Mechanism
FPGA + Software Proposed Mechanism

(b) Average Acceleration vs. Square Matrix Size

Figure 4.5: Matrix Multiplication Average Execution Time and Acceleration for Different Square
Matrix Sizes

the same limitation. That is, all the buffers that are accessed by the FPGA must be virtual-page

aligned by the software application so that the injected code can easily pin them for FPGA access.

The two plots in figure 4.5 were obtained in a fashion very similar to the ones presented for the

AES encryption example. Execution time and respective acceleration values were measured for

several implementations that match the ones in AES encryption, but now for matrix multiplication.

Squared input matrices were used in all measured runs.

Although the curves are very distinct from the previous example, the important aspects related

to the relationship between the different alternatives, are the same. As expected, software contin-

ues to be the fastest alternative when small matrices, up until 256 by 256, are used. From that point

on, multiplying the matrices on the FPGA is faster. The use of the proposed mechanism continues

to introduce a measurable overhead when compared with shared library interposing. In this exam-

ple, that overhead is about 0.6 ms, almost half of the one measured in the AES encryption example.

This means that the overhead introduced by the proposed mechanism can vary considerably.

In this example, setting a threshold for the accelerator to be used also improves the perfor-

mance of the framework when small matrix sizes are being multiplied. Due to the overhead intro-

duced by the mechanism, the optimal threshold is not 256 by 256 matrix size, but even earlier at

160 by 160. This value was also empirically discovered.

Just as in the previous example, the time injection takes to complete was also measured. In this

example, it was measured at 16,8 ms. This represents a rise of 9,8%, but the overhead introduced

continues to be negligible unless in an uncommon real-time application. This rise in injection time

is thought to be caused by factors not directly related to the injection of code, such as operating

system tasks.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

This work had the goal of researching transparent control flow transfer mechanisms, particularly

those applicable to HPC platforms, as the new Intel Xeon+FPGA. To achieve this goal, a new

mechanism was proposed, which harnesses the power of ptrace, to take complete control over an

application and transparently transfer its execution to an accelerator.

The proposed mechanism was implemented and its performance quantified while running on

real hardware, a Xeon+FPGA platform provided by Intel. The results obtained during the course

of this research, clearly show that ptrace could be used to implement a transparent control flow

transfer mechanism without some of the limitations that previous mechanisms present. Shared

library interposing was the most promising idea that was previously proposed, but suffered from

the limitation of only being able to be applied to hot spots inside shared library functions. It was

demonstrated that the mechanism proposed by this work is applicable to other types of functions,

such as local or static library ones.

Several downsides were also identified in the proposed mechanism. For one, the approach is

extremely architecture dependent, but this could be worked around by adding dedicated support

for multiple architectures. Another is that it inhibits the possibility of debugging the software

being accelerated. This could not be a problem as acceleration could be turned off to allow for

application debugging. On top of this, and maybe the worst disadvantage of the proposed mech-

anism is the overhead penalty that its use implies. This overhead could or could not be important

depending on the specific situation at hand. On the evaluated examples, this additional overhead

reached 1.1ms, but could certainly reach higher values while accelerating different applications or

running on different hardware. Only knowing how much time is spared by using a specific accel-

erator can this overhead be considered negligible or harmful. For example, on applications that

when ran on an accelerator, have their execution time reduced by several seconds, this mechanism

will be worth using. It is worth noting that HPC applications usually have a high running time, or

else HPC would not be used.

35
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5.2 Future Work

Taking into account the place where this work is left off, the following tasks are recommended as

the next important steps towards practical transparent control flow transfer:

• Further characterize the proposed framework and mechanism. This work found that the

overhead introduced by the proposed mechanism can vary from as low as 0.6 ms to as much

as 1.1 ms. It is important to research how much this overhead can vary by applying it to

other applications.

• Incorporate transparent binary profiling, tracing and accelerator configuration tools into the

current framework. This task would result in a complete transparent acceleration framework

which could allow applications to be accelerated without any human intervention aside from

choosing to enable the framework in the first place.

• Add support for multi-threaded applications. The proposed framework only supports single-

threaded applications, which is a significant limitation given that nowadays most applica-

tions are composed of multiple threads. Adding this feature would allow each thread to use

different available accelerators and eventually would also allow several threads to share the

same accelerator.

• Improve the framework by adding support for hot spots to be any generic block of code.

This would increase the complexity of the mechanism but it would no more be limited to

accelerate hot spots that are inside functions. For example, a lengthy loop running outside

of any function could also be transparently accelerated. This would also heavily rely on the

capabilities of the transparent binary profiling tool.

• Integrate a scheduling mechanism which could reconfigure available accelerators when cer-

tain configurations are expected to be needed.

The implementation developed during the course of this research is only a proof of concept.

Further research is needed in order to achieve a practical implementation of the proposed mecha-

nism.
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