
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Web Platform for Monitoring Field
Trials

Pedro Daniel Viana Lima

Mestrado Integrado em Engenharia Informática e Computação

Supervisor: João Correia Lopes

Co-Supervisor: Jorge Miguel Neves Ribeiro

July 17, 2019

c© Pedro Daniel Viana Lima, 2019

Web Platform for Monitoring Field Trials

Pedro Daniel Viana Lima

Mestrado Integrado em Engenharia Informática e Computação

Approved in oral examination by the committee:

Chair: Prof. Doctor Sérgio Sobral Nunes

External Examiner: Prof. Doctor Maria Benedita Campos Neves Malheiro

Supervisor: Prof. Doctor João Correia Lopes
July 17, 2019

Resumo

Os testes de campo são normalmente destinados à validação de produtos num ambiente do mundo
real, onde um produto é testado pelos utilizadores finais num contexto real, e não sob condições
artificiais, em que geralmente estes testes são complementados com um procedimento de mon-
itorização por parte dos investigadores. Mesmo que pareça uma tarefa simples, monitorizar o
desempenho dos participantes ou do produto em si, pode acabar sendo uma tarefa difícil no caso
de ausência de ferramentas essenciais (por exemplo, uma visualização clara dos dados) ou con-
siderando que, o acompanhamento dos participantes todos os dias não é de uma maneira prática
nem eficiente de como fazê-lo.

O procedimento normal de monitorização destes testes de campo envolve: em primeiro lugar,
a recolha de dados referentes a cada utilizador, sendo esta obtida através de um vasto número de
hipóteses, desde questionários diários / semanais a sensores. E em segundo lugar, a visualização e
interpretação das informações armazenadas. Assumindo que a recolha de dados já é realizada com
sucesso, ainda é necessário proceder à sua visualização. Como resultado disso, e considerando a
web como a plataforma alvo, dado que esta concede acessibilidade, bem como a simplicidade no
uso e desenvolvimento, uma nova aplicação web seria exigida sempre que um teste de campo fosse
iniciado.

De forma a superar este problema, a solução deve envolver uma aplicação capaz de repre-
sentar e visualizar dados. Assim, o objetivo principal deste trabalho é criar uma aplicação com
a capacidade de adaptação a projetos com natureza de contexto distinta e que, como resultado
final, possa apoiar investigadores no processo de monitorização de testes de campo a um ritmo
mais rápido. A solução proposta segue uma arquitetura de 3 camadas, incluindo a definição de um
componente intermediário — o mediador, responsável por oferecer serviços através de uma API
ao cliente, enquanto solicita dados do fornecedor de base de dados. O mediador reconhece in-
formações relativas à base de dados, como informações de conexão, estrutura de dados e também
sobre a organização dos componentes como parte das interfaces do usuário, através da definição
de uma configuração baseada em YAML (YAML Ain’t Markup Language).

A validação da aplicação encontra-se dividida em duas etapas: a primeira, com o objetivo de
validar as interfaces de usuário sendo esta realizada com o auxílio de um teste de usabilidade onde
foram sujeitos um total de cinco participantes. O último, tendo em mente a validação de todo a
aplicação, ao aplicá-lo a dois casos de estudo diferentes. A partir da análise dos resultados, em
termos da interface projetada, estes foram bastante satisfatórios embora tenham sido identificados
pequenos problemas com o design. Relativamente aos casos de estudo e tendo em mente o facto
deles cobrirem a maior parte das funcionalidades, fomos capazes de provar que, com o trabalho
desenvolvido, é possível construir uma aplicação a partir de uma configuração pré-definida tendo
por base um mediador que permite a integração dos diferentes componentes e que estes funcionem
corretamente.

i

ii

Abstract

Field trials are commonly intended to validate products in a real-world environment where the
product is being tested by the end-users in a real-life context rather than under artificial conditions,
usually supplemented with a monitoring procedure from researchers. Even though it can seem a
simple task, monitoring the performance of either the participants or the product itself can end up
being a challenging task if there are essential tools missing (e.g. a clear visualization of the data)
or considering that following up on them everyday is not a practical nor an efficient way on how
to do it.

The normal procedure of monitoring these field trials always involve: firstly, the collection of
data related to each user which can be achieved through a vast number of ways from daily/weekly
questionnaires to sensors. And secondly, the visualization and interpretation of the information
stored and transformed. Assuming that the collection of data is already being done successfully,
there is still the need of displaying it. As a result of this, and considering the Web as the target
platform, mostly because it grants accessibility as well as the simplicity in use and developing, a
new Web application would be demanded whenever a field trial starts.

To overcome this problem, a solution must involve an application able to represent and visual-
ize data. Hence, the main goal of this work is to create an application with the endowed capacity
of being adapted to a heterogeneity of projects and that, as an end result, can support researchers
in the process of monitoring field trials in a faster time pace. The proposed solution follows a
3-tier architecture, including the definition of an intermediate component — the mediator, respon-
sible for offering services through an API to the client while requesting data from the database
provider. The mediator acknowledges information relative to the database such as the connec-
tion information, data structure and also, about the organization of the components as part of the
user interfaces, through the definition of a configuration based on YAML (YAML Ain’t Markup
Language).

The validation of the application is divided into two stages: the first aiming to validate the user
interfaces and accomplished with the aid of a usability test comprising a total of five participants.
The last, having in mind the validation of the whole application by applying it to two different case
studies. From the analysis of the results, in terms of the designed interface, they were satisfactory
although with a few minor design problems identified. On the other hand, considering the case
studies and that they covered most of the features, we were able to prove with the work developed,
that it is possible to building an application from a predefined configuration, having a mediator
enabling the different components to work seamlessly.

iii

iv

Acknowledgements

First and foremost, I would like to thank my supervisors, João Correia Lopes and Jorge Ribeiro,
whose expertise, guidance and support were invaluable during the whole thesis process. I can
gladly say that all the tools and conditions, that made it all possible, were provided by you as well
as the encouragement to push it forward.

Inevitably, to the colleagues at Fraunhofer Portugal for embracing me and for creating an ex-
cellent work environment where I felt part of. Among them, a special thanks to the volunteers
of the usability tests, namely: Cristiana Braga, Nuno Cardoso, João Almeida, Ana Sampaio and
Marcos Liberal, for your time and useful feedback. I am also extremely thankful for the opportu-
nity to participate in the workshops offered, undoubtedly, I received way more than I could ever
expect to give in return.

I would also like to acknowledge my friends, those I made along the way and those who
were there since day one, for all the support and all the joy, happiness and peace of mind they all
brought, always. For that, I am forever grateful.

To my family, blood or not, for always being there when I needed the most, for your wise
counsel but also, for your comprehension. To my father, for raising me as a man of nothing but
values and principles. Even knowing you would never see or share my success, it was for you I
made it all along.

My sincerest gratitude to all of you.

Pedro Lima

v

vi

‘Se puderes olhar, vê.
Se puderes ver, repara.”

José Saramago

vii

viii

Contents

Acknowledgements v

1 Introduction 1
1.1 Context . 1
1.2 Problem Definition . 2
1.3 Motivation . 3
1.4 Objectives and Contributions . 3
1.5 Document overview . 3

2 State of the Art 5
2.1 Information Visualization . 5

2.1.1 Data Characteristics and Types . 6
2.1.2 Classification . 7
2.1.3 Data Visualization Techniques . 8

2.2 Web Platform as the Presentation Layer . 10
2.3 Web-Oriented Visualization Tools . 11
2.4 Configurable Web Interfaces . 12

2.4.1 Metadata-driven UI . 13
2.4.2 Metadata-driven Databases . 14

2.5 Related Work . 15
2.5.1 Visualizations for Mental Health Topic Models 15
2.5.2 Minos: A Generic Tool for Sensor Data Acquisition and Storage 15
2.5.3 Metadata-driven Delphi Rating on the Internet 15
2.5.4 A Metadata-Driven Framework for Generating Field Data Entry Interfaces

in Ecology . 16
2.6 Summary . 17

3 Problem Statement and Solution Proposal 19
3.1 Problem . 19
3.2 Hypothesis . 20
3.3 User Stories . 20
3.4 Solution Proposal . 23

3.4.1 Application Architecture . 23
3.4.2 Tools and Technologies Adopted . 28

3.5 Summary . 28

ix

x CONTENTS

4 Mediator 31
4.1 Description . 31
4.2 API . 32
4.3 Mediator Workflow . 36
4.4 Database Support . 36

4.4.1 Assumptions . 38
4.4.2 Attribute Selection . 38
4.4.3 Inner Join Aggregation . 38
4.4.4 Filter Selection . 39
4.4.5 SQL . 41
4.4.6 Cloudfirestore . 41
4.4.7 Firebase Realtime Database . 42
4.4.8 Multiple Database Connections . 43

4.5 Cohorts . 44
4.6 Reducers . 45
4.7 Cache . 45
4.8 Application Configuration . 46

4.8.1 File system . 46
4.8.2 Database . 46
4.8.3 Reducers . 51
4.8.4 User Mapping . 52
4.8.5 Cohorts . 53

4.9 Summary . 54

5 Dashboard 55
5.1 Conception . 55
5.2 Skeleton page . 56
5.3 UI Components . 57

5.3.1 Card . 57
5.3.2 Section Panel . 57
5.3.3 Charts . 57

5.4 Participants Listing . 58
5.5 Filtering . 60
5.6 Interface Configuration . 60

5.6.1 Card . 61
5.6.2 Charts . 61

5.7 Usability Testing . 63
5.7.1 Protocol . 63
5.7.2 Results . 65
5.7.3 Evaluation . 66
5.7.4 Discussion . 66

5.8 Summary . 66

6 Case Studies 69
6.1 SmartBEAT . 69
6.2 Lifana . 72
6.3 Summary . 77

CONTENTS xi

7 Conclusions and Future Work 79
7.1 Conclusions . 79
7.2 Future Work . 80

References 83

A Semi-structured Interviews 87

B Usability Test Document 91

C System Usabiliy Scale 95
C.1 Observations . 95

C.1.1 Participant 1 . 95
C.1.2 Participant 2 . 95
C.1.3 Participant 3 . 96
C.1.4 Participant 4 . 96
C.1.5 Participant 5 . 96

C.2 SUS Score Calculation . 96

D Usability Test Scenarios, Tasks and Preparation 99
D.1 Preparation . 99
D.2 Scenarios . 99
D.3 Participant Task Instructions . 101
D.4 Participant general instructions . 101

E Mock ups 103
E.1 Version 1.0 . 103
E.2 Version 2.0 . 105

xii CONTENTS

List of Figures

2.1 Column graph . 9
2.2 Time-series graph . 10
2.3 System Architecture from Metadata-driven Delphi rating on the Internet 16

3.1 Component diagram . 25
3.2 Process view . 26
3.3 Physical view . 26
3.4 Package Diagram . 27

4.1 Mediator processing flow . 37
4.2 Example of a Cloudfirestore inner join . 40
4.3 Example of a path construction process . 44
4.4 Configuration file structure . 47

5.1 Example of a platform page . 56
5.2 Card component . 57
5.3 Time series representations with participants’ data 59
5.4 Example of how participants are listed . 60
5.5 Different filters provided by the application . 60

6.1 SmartBEAT time series example . 71
6.2 Application of a SmartBEAT reducer . 72
6.3 Lifana SQL structure . 74
6.4 Lifana time filtering example . 76

xiii

xiv LIST OF FIGURES

List of Tables

3.1 User Stories — Researchers . 20
3.2 User Stories — Developers . 21

4.1 GET /api/users . 33
4.2 GET /api/config . 34
4.3 GET api/config/pages/<page>/users/<id> . 35
4.4 GET api/resetCache . 36
4.5 Database configuration . 47

5.1 Effectiveness and Efficiency results . 65

C.1 SUS system classification . 96
C.2 Satisfaction results from SUS . 97

xv

xvi LIST OF TABLES

Abbreviations

AICOS Assistive Information and Communication Solutions
CMS Content Management System
CRUD Create, Read, Update and Delete
DOM Document Object Model
EML Ecological Metadata Language syntax
GDPR General Data Protection Regulation
HCI Human-Computer Interaction
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
IE Internet Explorer
InfoVis Information Visualization
JSON JavaScript Object Notation
MIT Massachusetts Institute of Technology
MVC Model-View-Controller
OOP Object-Oriented-Programming
ORM Object Relational Mapping
REST Representational state transfer
SPOF Single Point of Failure
SQL Structured Query Language
SUS System Usability Scale
TTL Time-To-Live
UI User Interface
XML Extensible Markup Language
YAML YAML Ain’t Markup Language

xvii

Chapter 1

Introduction

Whether it is in clinical trials, nutrition or health-care solutions, graphical visualizations are usu-

ally presented to us with an intended explicit message. Such visualizations when complemented

with contextualization and critical analysis by the observer, can support researchers in the process

of converting raw data into pertinent information. Nowadays, it is even more important as the data

being stored increases every year [34]. As IDC mentioned “Data is growing at a rapid pace. By

2020 the new information generated per second for every human being will approximate amount

to 1.7 MB” [38]. And, as they also stated, only 0.5 % of the all accessible data around the world

is being analyzed and used. This reveals an enormous amount of data and the potential that is still

unfolded and topics such as data visualization are becoming more vital these days.

In research fields, where data is collected and stored, we face the same problems aforemen-

tioned. According to a survey lead by MIT Sloan Management Review, getting the data is com-

monly not the biggest obstacle that companies face as only one out of five respondents considered

it as the primary obstacle [45]. Although, the lack of perception and insight about that same data

and neglecting its potential would possibly lead to poor decision making when designing a new

product, for instance. Also, monitoring a product or people and being able to gain a better under-

standing of them can prove crucial. Applying existent techniques conjugated with computational

systems could slightly improve the way we absorb information.

1.1 Context

Field trials are a common practice among research-oriented institutions that validate their products

in a real-world environment. Such practice can act upon a large spectrum of areas such as road

traffic [26], psychiatry [30] and specially, in Human-Computer-Interaction (HCI) fields — study-

ing the interaction with technology [9, 4], for instance using sensors for collecting bio-information

[46]. And it is frequently used and applied to either a prototype or a completed product in order

to provide an insight into the strengths and weaknesses of the product itself. Commonly, it can be

1

2 Introduction

complemented with a monitoring procedure of the participant performance and product use, for

instance, when new data was logged, which features were used according to technical reports sent

from their devices.

The process of collecting data can use several distinct tools, from regular end-user surveys,

interviews, observations and user reports made through the device. Also, the type of data col-

lected may be completely different based on the project being applied to and its context (e.g. a

project may require sensors, thus collecting data from the surrounding environment, while another

emphasis the user interaction and aims to test the designed usability). Nevertheless, regardless of

the topic, the objective settles a common ground that is to extract valuable information and that

consequently, can have a direct impact on the final product shape, design and usability according

to the end-users expectations. That is why it is so important in some cases that a product should

be evaluated in a real-world environment before its commercial launch to the public.

Field trials can generate large amounts of data as a consequence of the required proceeding of

collecting and storing data throughout the whole period of time. This, coupled with the necessary

analysis by researchers working at Fraunhofer Portugal1, make field trials so important and a great

source of useful information.

1.2 Problem Definition

When conducting field trials with end-users, it is a challenging process to keep track of how well

participants are doing and the performance of the product that is being tested. With that being said,

following up everyday is not a practical nor an efficient way to do it, and issues can end up being

imperceptible during the trial. Although, even when there is substantial data available, that same

data are represented in a typical data structure, making it quite difficult to understand it. Thus,

researchers are not able to extract valuable information from the collected data, as they desire,

regarding the structure and format of the data stored, making the task of monitoring field trials

almost impossible. Following that, it is clear that there are missing tools that could be addressed

having in mind topics such as Information Visualization, Machine Learning (Data Mining), etc.

Such problem demands the use of well-established data visualization techniques developed

during the past years, through a Web platform. The main purpose of its use is to bring to the end-

users of the platform — the researchers — a deeper understanding of the data, granting them a

wider knowledge and contextualization of the problem [2]. It is also important to notice that those

visualizations still require an in-depth analysis and understanding [36], involving the researcher

in a search for a result rather than present the results just as John Light described in “Portable

Document Indexes” [47, 64].

Nonetheless, it standalone would not totally solve the problem due to the fact that a new Web

application would be demanded whenever a new field trial began which consequently, leading to

increased costs associated with the re-design and adaptation of the past platform. Hence, a need

1Company where this work took place

1.3 Motivation 3

for a system endowed with both the capability of visualizing such data in an intuitive way and that

could serve as a platform for representing data from multiple and independent projects emerged.

This problem, just like every other problem, raises a necessity for a solution and therefore, this

one in specific originated the conception of this dissertation.

1.3 Motivation

With the exponential growth of data as a result of being collected in various ways, data requires

to be processed and analyzed in order to extract value from it. Fraunhofer Portugal, in the past, in

pursuance of addressing this issue, designed and developed a Web tool as part of the Clockwork

project2. The main purpose of it was to help the researchers keep track of how participants were

using the system. However, as they later mentioned, the solution taken, despite being useful for

that project, was an ad-hoc solution. Since it was not simple to extend it to other projects without

modifying a considerable amount of code, it would lead to significant costs by having to build up

an application whenever there was a new field trial starting.

Thereby, the main motivation for the elaboration of this work is to help and support researchers

in the proceeding of monitoring field trials by turning it into a way more simpler procedure by:

(i) reducing the impact of starting a newer project; (ii) enabling researchers to follow participants

from the beginning of the trial; (iii) reducing the time expended on the project set up and conse-

quently allowing an increased focus on the analysis of the data.

1.4 Objectives and Contributions

As it is beyond doubt from the analysis of the problem described, the main objective affiliated with

the realization of this dissertation is the conception of a Web platform for representing data from

heterogeneous contexts, granting the possibility of adapting to whatsoever project being submitted

to and the scope of it. Therefore, supporting the researchers in the process of monitoring field

trials, tracking its participants and the performance of the product being tested.

The main contribution of this work comes in the form of a tool for visualizing data that can

be applied to several field trials requiring, for that effort, the definition of a configuration, as we

will see later on. Also, as an implicit contribution, it is expected to improve the monitoring of

field trials by a faster adaptation without coding, granting researchers the possibility to track their

end-users from early stages and identify problems faster than the conventional methods used until

then.

1.5 Document overview

The remaining of the document is organized into seven chapters. By definition, each chapter was

written to be largely self-contained.

2Self-care management system for supporting shift workers in their everyday life

4 Introduction

Chapter 2, titled “State of the Art” presents a literature review of related work upon which our

research draws, consisting in an overview of the topic of information visualization, data charac-

teristics, their classification and the data visualization techniques developed, during the years, to

represent it. Also, it covers the state of configurable interfaces and a comparison between existent

tools are made.

Chapter 3, titled “Problem Statement and Solution Proposal” explains the problem in-depth,

the requirements associated and describes the architecture of the approached system.

Chapter 4 title “Mediator” includes the explanation of the most important component from the

proposed solution architecture, a broker from databases to visualizations.

Chapter 5 title “Dashboard” provides information about the path that led to the design choices

of the user interfaces conceived, the main functionalities it offers and at last, an analysis of the

results from the usability test applied.

Chapter 6 title “Case Studies” presents the main functionalities tested through the application

of two distinct case studies and discusses the results obtained.

Chapter 7 title “Conclusions and Future Work” aims to describe the main findings of this work

and what could be addressed in the future.

Chapter 2

State of the Art

The purpose of this chapter is to provide an overview of the background of information visu-

alization, followed by more specific domain information such as the existing data visualization

techniques, the different data types, the taxonomy for graphical representations and how can all

of those be implemented recurring to established frameworks and JavaScript libraries considering

the web as the platform. In addition, it is addressed the topic of metadata-driven approach as a

path to achieve a generic UI.

We conclude by presenting the related work on the area, as well as summarizing the topics

discussed throughout this section.

2.1 Information Visualization

Information Visualization (InfoVis) is intrinsically related to human visual perception, behaviour

and interaction and is “one of the most promising approaches that investigate the entire pipeline

of search, exploration, and analysis”[52, 61]. The principal reason behind it, is the leveraging of

cognition through those human perceptions to achieve a state of wisdom acquisition, based on few

steps: (i) The conversion of raw data into information by understanding relations between them

(physical structuring); (ii) The conversion of the resultant information into knowledge by identify-

ing patterns (cognitive structuring); (iii) And lastly, the transformation of the extracted knowledge

into wisdom by understanding the principles that support them (belief structuring). However, soft-

ware systems that follow an approach according to Information Visualization concepts are best

suitable for exploratory tasks, involving browsing a large set of data. Especially because, as ex-

plained before, its main objective is to increase cognition, for instance, perceptual speed, visual

working memory and verbal working memory [11, 61], which grants a better proficiency on iden-

tifying new patterns, make new findings, gaining a better insight about it and ask better questions.

[42]

5

6 State of the Art

InfoVis treats data belonging to an abstract domain and uses intimately, a graphical represen-

tation for such data. Graphic displays can serve as an excellent tool for the exploratory analysis

but also for information comparison and presentation of results. Depending on the purpose of

either presentation or exploration, there should be evident differences in both form and practice.

For instance, a presentation graphic should be static and exhaustive, containing the definitions and

explanations of the variables as a support for a conclusion, while exploratory graphs are more

informative and do not need to be as detailed as possible [13].

According to Edward R. Tufte’s [62] and the article Interactive Information Visualization of a

Million Items [25], InfoVis principle “is to map the attributes of an abstract data structure to visual

attributes such as Cartesian position, color and size, and to display the mapping”. This is the

opposite of scientific visualization, which deals with physical data (with representation in space),

with intrinsic visual representation and relations.

Throughout the years, researchers with expertise in the field of Human-Computer Interaction

and Information Visualization have been designing and developing unique visual techniques and

improving others. Yet, it is still difficult to evaluate those methods regarding the enormous time

and cost consuming of those evaluations procedures. [52].

2.1.1 Data Characteristics and Types

According to the book Information Visualization in Data Mining and Knowledge Discovery [23],

data has two characteristics: nature and domain. Nature can be divided into two possible alter-

natives: stable — in case the data will not change over time (therefore static), and dynamic —

consisting in the opposite scenario, where the data needs to be updated constantly. Based on the

domain it can be nominal or ordinal (qualitative) and discrete or continuous (quantitative).

Nonetheless, the visualization can either be classified as stationary, animated or interactive

as aforementioned. In case it is stationary, the graphical display will remain the same, if it is

animated, as the name implies, the graphical display will be animated which is very useful for

simulations since it is more engaging and helps in the data analysis process. Finally, in case it is

interactable, the user is able, for instance, to select and filter in order to reduce the data size that

his working on.

The visualized data belong to one of several types depending on the dimension, it is defined

in conformation to the number of variables or attributes, and frequently differ from one another.

The data sets may be classified in one-dimensional, two-dimensional, multi-dimensional, text and

hypertext, hierarchies and graphs, algorithms and software [41].

2.1.1.1 One-dimensional

This type refers to data that has only one dimension, typically related to temporal data. An example

is time-series of purchases from a store, where each time can be associated with one or multiple

variables.

2.1 Information Visualization 7

2.1.1.2 Two-dimensional

Two-dimensional data, as the name suggests, has two different dimensions. This kind of data is

commonly represented by X-Y plots (e.g. scatter plots, geographic maps) and establish a relation

between those variables. The problem of such simple representations is that when dealing with

large data sets, “axes and maps get quickly glutted” [41] and can directly interfere in the readability

and understanding of such displays.

2.1.1.3 Multi-dimensional

When the data set is composed by more than two variables or attributes, not allowing a simple

visualization from “flatland” domain (e.g. two dimensional plots) [62] or exceed the 3D domain

as well, it requires more complex graphical representations. Examples of it and one of the most

common, are the data sets usually represented on databases, constituted by multiple relationships

and attributes between tables [41].

2.1.1.4 Text and Hypertext

There are some data types in which standard visualization cannot be applied because of their raw

form is part of the text domain and not numerical. For instance, the “text and hypertext as well as

multimedia web page contents” [41].

2.1.1.5 Hierarchies and Graphs

Sometimes data is not simply an aggregation and collection of variables, as there are records that

can have a relationship with others information. Consequently, they can be structurally organized

into hierarchies and graphs [37]. Graphs consist of a set of relationships, called edges, between

objects, designated by nodes. Such properties turn them useful for these cases [41].

2.1.1.6 Algorithms and Software

Lastly, this kind of data appeared recently with the development of computer systems. Its main

purpose is to aid in the process of conceiving new software by visualizing the flow of information

in a program, the structure through hierarchical or graph representations. Besides, it can even help

programmers debugging the code [41].

2.1.2 Classification

Data visualizations techniques can be described and classified based on their focus, assuming a

geometric or symbolic designation, based on the dimension thus either 2D or 3D and also based

on the display, static or dynamic [23].

Geometric techniques involve the graphical representations that are based on geometric forms

such as lines, surfaces, volumes. Consequently, it includes techniques from exploratory statistics

8 State of the Art

for example, scatter plots but also from other domains (e.g. Parallel Coordinates visualization)

[41, 23].

On the other hand, symbolic techniques are concerned in representing data using pixels, icons

arrays, graphs, charts, hence emphasizing the graphical display of quantitative information and

the relations within. Kosslyn, in his book Understanding Graphs and Charts [43], divided them

into four main categories: (i) graphs; (ii) charts; (iii) maps; (iv) diagrams. In which they differ

essentially in the way that information is presented and the interpretation that is expected from its

analysis.

2.1.2.1 Graphs

Graphs are the most common visualizations, but also the most stifled, and they require at least two

scales representing the variables that are being paired in order to describe a relation between both.

Moreover, in order to represent higher values for the measurable variables, visual attributes such

as area, length are increased proportionally to the difference among them.

2.1.2.2 Charts

Charts frequently act upon hierarchical data since they reflect relationships among entities. Graph-

ically, charts have a structure in which the relationships are visible and entities are connected by

them, the so called links. Links can provide some sort of indication through labels and have a

direction associated with (e.g. directed or undirected).

2.1.2.3 Maps

Maps, as the name suggests, correspond to a graphical representation prescribing a portion of

territory and “the internal relations among parts of a map are determined by the spatial relations

of what is pictured” [43]. Furthermore, to identify distinct regions not only the borders are well

defined but also, usually, they are colored differently.

2.1.2.4 Diagrams

Diagrams are another category of symbolic techniques, making use of conventional symbols to af-

ford a better understanding. Diagrams are represented by a schema of entities or sub-components

of entities and commonly, based on the display, they are classified as static by their lack of inter-

actability. “Diagrams can lead to great insight, but also the lack of it” [11], the schema and the

symbols used must have in consideration the targeted audience because it greatly depends on the

illustration of the problem itself and the readability of it.

2.1.3 Data Visualization Techniques

As mentioned and described before, the visualization techniques were improved along the years,

some epochs with greater contributions and others with few, some widely accepted as a recognition

2.1 Information Visualization 9

Figure 2.1: Column graph

of a well designed representation, some discarded [32, 13]. Recently, with the arrival of computer

systems and their enormous power, those techniques were largely transposed from hand drawn

to the digital field, incorporating a vast number of advantages: the capability to handle huge

data sets [34], the graphical interactivity which allows a customized display for the analyst thus

increasing the overall performance of the exploratory task [10, 1] and the possibility of being

dynamic, reflecting the changes on data in real time [41].

These days, the number of adopted data visualization techniques for visual data mining is

really tremendous. From standard 2D/3D techniques such as bar and line charts, illustrated in

Figure 2.1 and Figure 2.2, to stacked displays (as a necessity from dealing with data highly related

and multi-dimensional) [41]. The utility of each graphical representation highly relies on the

characteristics of the data to be represented, for instance, in order to represent the variation of a

variable a period of time it is more viable the use of a time-series, nevertheless, if the aim is to

represent categorical data and their aggregation into categories, a bar chart should be considered.

Undoubtedly, the list of data visualization techniques is vast and because it was not possible

to fully or even partially cover them, this section served as an overview of potential symbolic

and geometric representations [43] that can be adapted to this work. The important concepts to

acknowledge is that the graphical visualization should be always adequate to the data type and in

any case forced. In addition, the same data can be represented in distinct ways, the essential is

at the end keeping it simple and obvious. At last, there is also an opportunity of mixing multiple

displays, for instance, a line graph with a bar chart. Whenever this happens we call it combined

graphs.

10 State of the Art

Figure 2.2: Time-series graph

2.2 Web Platform as the Presentation Layer

It is remarkable the transition of Information Visualization from hand made to computational sys-

tems. It brings the full potential and speed when in comparison to traditional methods, allowing

the user to handle much larger data sets in a faster time pace, which would not be possible other-

wise or would take a substantial amount of human resources. This interaction between humans and

computers raised a necessity of another field of study — the Human-Computer Interaction, where

the “key notion is that the user and computer engage in a communicative dialogue whose purpose

is the accomplishment of some task.” [12]. Thus, the system developer not only has to focus on

the logical component but also the design and how perceptible and clear should its representation

be, as it only reflects the mapping rules made by him.

The primary advantages of adapting the enumerated concepts of InfoVis into a web platform

can be described as follow:

1. By building software upon supported web-standard technologies, it provides the user with

the possibility of visualizing information everywhere using only a browser and an Internet

connection, independently of the device (e.g. Computer, Mobile) and the operating system

used (Windows, Linux, Mac, etc.) [50].

2. There are numerous cost-free tools for graphical displays that can be integrated with web

platforms. Most of them implement widely accepted visualizations, for example, bar chart,

scatter plot, maps and allow custom attribute adjustment such as color and also some sort of

interactivity.

3. The associated cost of implementing a web platform is usually less on behalf of the no priory

plugin or software acquisition requirement. Furthermore, the user does not need to spend

time installing them either.

2.3 Web-Oriented Visualization Tools 11

All of these advantages made the web the “perfect” platform for monitoring and visualizing

data. Most of the visualization tools are now web-oriented contributing to a more broad acceptance

of the web as a monitoring platform by enterprises and the general public. And, the combination of

the web with visualization tools that are involved in a monitoring process leads to the concept —

dashboard. A dashboard can be seen as a visual display of essential information with an established

purpose through one or multiple visual representations consolidated so it can be monitored at a

glance[27, 28]. These days there is an enormous number of existing dashboards, which can be

applied in the most variety of contexts. Although, in a broad context, we found as a good reference

Sisense1, Klipfolio2, MixPanel3. While in a clinical context (a context that our project belongs to),

there are different applications for a dashboard, such as Smart-trial4, Ethical5, Talos6. Having a

few focusing on biological statistics and others focusing in ePRO (Electronic patient-reported

outcome) where the patient is asked to answer, commonly, a questionnaire with topics ranging

from user engagement to quality of life, such as RAYLYTIC7, Kaiku Health8 and datacubed9.

Such platforms follow good practices when it comes to design and content organization, thus,

and as we will see later, some properties and design choices had them as inspiration.

2.3 Web-Oriented Visualization Tools

The topic InfoVis is getting more and more involved as individuals and enterprises find an oppor-

tunity in its adoption, a vast amount of frameworks were developed during the past years to fulfil

this ever-growing need. The number of innovative graphical representations are also expanding

largely due to the open-source frameworks.

According to the available visualization tools, we considered that there are two main distinc-

tions, being:

Libraries — there is a considerable volume of charting libraries nowadays, which are focused on

offering tools for representing data through predefined visualizations. Important to notice

that, these libraries must be integrated with other tools or frameworks as they do not operate

standalone. Example of such libraries are Highcharts.js10, FusionCharts11, D3.js12, where

the main differences reside in the fact that they comport different customization levels, pric-

ing, number of graphical representations offered, etc.

1https://www.sisense.com/
2https://www.klipfolio.com/
3https://mixpanel.com/
4https://www.smart-trial.co
5https://www.ethicalclinical.com/
6https://www.biorasi.com/clinical-trial-optimization-software
7https://www.raylytic.com/en/
8https://kaikuhealth.com
9https://www.datacubed.com/

10https://www.highcharts.com/
11https://www.fusioncharts.com/
12https://d3js.org/

12 State of the Art

Platforms — platforms already provide the graphical visualizations integrated within the system,

leaving for the user both the operation of choosing the adequate visualizations through the

UI based on a drag and drop functionality and import the data to be later represented. It

is important to notice that there is not any connection to a data source, demanding the

extraction of data to a file format, for example, Excel and then the importation of it. Example

of such platforms are Tableau13, Data Wrapper14 and Rawgraphs15.

Shortly, web is one of the most widely accepted and popular platforms when it comes to moni-

toring, it provides scalability, accessibility since it is on the internet, every device from everywhere

can have access to it, furnishes the facility of use, no required installation, no dependencies, so it

can run everywhere.

2.4 Configurable Web Interfaces

Building a web platform and its user interfaces is a costly and lengthy one: whenever a new

platform is needed, the procedure is repeated all over again and whether the developers are expe-

rienced or not, is a challenge to build it from scratch. The intended solution aims to define a web

platform for representing data with a common interface among multiple projects without the need

for coding or to re-arrange all the user interfaces.

There is an approach well-known for building applications out of a predefined configuration.

Such a solution is intrinsically related to a metadata approach, as stated by Dimas Gilang Saputra

and Fazat Nur Azizah in their paper “A Metadata Approach for Building Web Application User

Interface” [59].

Metadata can be defined as “structured data about data” [22] that “describes, explains, locates,

or otherwise makes it easier to retrieve, use or manage an information resource” [51, 59]. The

process of creating metadata can either receive subjective or objective input; with objective being

attributes that can be determined objectively (e.g. data corresponding to the definition of a set of

properties) and subjective, attributes that are as the name implies subjective based on different

perspectives [22].

Metadata can have multiple encoding schemes:

HTML (Hypertext Markup Language) — makes use of the HTML advantages as it has a hi-

erarchical structure thus the data can be described and related in the form of a tree and has

the virtue of simplicity [59].

XML (Extensible Markup Language) — highly used regarding its principles of modularity and

extensibility. It is one most used markup languages for exchanging structured data between

systems [22]

13https://www.tableau.com/
14https://www.datawrapper.de/
15http://app.rawgraphs.io/

2.4 Configurable Web Interfaces 13

JSON (JavaScript Object Notation) — it was created to allow data exchanging between het-

erogeneous platforms, with the great advantage of establishing a well-defined data structure

and being simple to understand by humans and easy to parse by machines. It expects a

key-pair: an attribute name and a value; or a collection of JavaScript objects.

YAML (YAML Ain’t Markup Language) — as it is a data serialization language, the data has

an unambiguous structure that is easily interpreted by humans.

Essentially, a metadata-driven approach can follow one or both of two paths, a first focused

on the configuration of the user interfaces and the second focused on the configuration of the data

access (e.g. database structure). Throughout this section, these will be explained in detail.

2.4.1 Metadata-driven UI

In this approach, “metadata is used to create a customized user interface (UI) portion of an appli-

cation” [18]. A metadata model is then defined and responsible for storing information about the

user interface. Moreover, it can be changed dynamically without further code implementation by

the developers, whereas the main objective is to prevent the problems aforementioned. Following

this approach, instead of developing the user interfaces programmatically, the developer defines

the metadata model in which each web platform will always require its own metadata definition.

In case modifications to the interfaces are expected, the metadata is the only thing to be updated

and not the whole code structure [59].

The typical process of metadata-driven UI starts by defining a metadata file representing the

interface components, their relations and structure. Afterwards, this file must be stored to be

later accessed and once this procedure is finished, it will be interpreted in order to define the user

interface accordingly. The intermediate node named by “Bind Data Sources” is only required in

the presence of a scenario where there is a necessity of binding data to UI controls, otherwise, it

should not be taken into consideration [18].

Nowadays, there are products that follow this approach. In which, based on a directory that

holds a group of configuration files following one of the encoding schemes stated above, it is

possible to build the interfaces of a system. Usually, this approach fits the needs of a CMS (Content

Management System) where the system only deals with static files, however, monitoring field trials

always involves a set of interfaces holding data that is the result of a process of recurrently storing

data, so the application of these products methodologies is not enough and in this context, their

functionalities must be extended for our needs.

Kirby16 is a good example of this since, it is a tool that allows the creation of a CMS based on

a predefined configuration, emphasized on the adaptability. In addition, it supports the definition

of configuration related to the database connections and queries, thus, similar to the functionality

we aim for.

16https://getkirby.com/

14 State of the Art

Another good example would be NetlifyCMS17, in which there is a predefined file system

structure that the user must follow. Since the configuration is, most likely, to be different from

others CMS, it is possible to define a YAML file containing information related to the authentica-

tion and collections, being collections elements that define the structure for the different content

types. The main difference relatively to Kirby is that it does not support database connections

and the possibility to retrieve data from them, essentially because, it has as an assumption that the

system is completely static.

2.4.2 Metadata-driven Databases

For most of the systems, following a metadata-driven UI approach is not enough since in order to

the interfaces reflect dynamic data from a database, the system also needs to understand how it

can have access to that same data. Furthermore, “Using these tools frequently requires developer

intervention and knowledge of the data model, which works against the self-service orientation of

the original web application interface” [7]. A viable solution would be a metadata-driven database,

demanding metadata specification at multiple levels [49]:

Conceptual At this level, the specification should contain an explicit representation of data se-

mantics. Semantic models raised to capture more meaning of the data and its structural organiza-

tion and also for design to become more systematic [49, 35, 15].

Logical Another level apart from conceptual is the logical level. At this level, it must have

a formal definition in order to be possible its implementation while maintaining a considerable

degree of independence from the physical one.

Physical The latter level, consists of providing a mapping of the data belonging to the logical

level. Moreover, it describes the details of how the data is stored physically through a file struc-

ture, the physical schema, etc.

Succinctly, it provides a precise description of each one of its components (tables), a full dis-

cretization of its attributes (type, name, etc) and in case its a relational database, the relationships

among elements. Consequently, by having an implicit knowledge of the subject data the end-

user can manage, through an interface, the data being presented. At any occasion, changes to the

displays presented can be applied by changing the metadata file(s) expressing the database infor-

mation, without changing the presentation module [20]. Example of such mechanism could be the

search interface that “leverages dynamic HTML, JavaScript, and dynamic SQL” with the intention

of providing a custom query without any further coding besides changing the respective metadata

files [7].

17https://www.netlifycms.org/

2.5 Related Work 15

2.5 Related Work

Along the years, the importance of web-based remote monitoring and data visualization is increas-

ing due to the continuous progress in technology and the ever-growing data generated. Nowadays,

the concepts of remote monitoring and web technologies are quite often used together and broadly

applied in multiple fields such as business, health systems [14, 65], psychiatry [30], road traffic

[26], therefore the existence of a large work in this area is imminent.

The possibility to infer a realistic diagnosis proves considerably crucial in fields such as health-

care systems, where patients require an unceasing tracking of their signals, for instance, vital signs

and body temperature [65].

Through this section, a list of relevant related work is identified and succinctly described. To

notice that most of the monitoring platforms are conceived to address a specific problem and not

to be adapted to several different projects.

2.5.1 Visualizations for Mental Health Topic Models

This work had its origins in a master thesis and consisted in developing a system capable of

converting data from texts, into information through visualizations based on a web platform, in

order to facilitate counselors work and allowing them to spend more time with the individuals

being submitted to this analysis. Only four different charts were used according to “four levels of

granularity” [14], built with the JavaScript library, D3.js.

There are undoubtedly differences to our project, starting with this being an ad-hoc solution,

with a smaller scope that does not require a larger number of graphical displays and where cus-

tomization is intended. By this means, D3.js was an acceptable tool.

2.5.2 Minos: A Generic Tool for Sensor Data Acquisition and Storage

Minos is a Java tool for collecting and storing data relative to sensor’s readings in wireless net-

works. The main explicit objective is to convert data collected into a general data model or schema

“archived” at a central repository, endowing researchers with a tool for handling data in hetero-

geneous environments. As part of a larger project, Dhestino, the idea is to also visualize the

data collected and stored by Minos through a unique web platform interface, based on the REST

paradigm for the implementation of web services [58].

In this context, the data is initially collected and stored in resemblance to a determined gener-

alized model and only then it is visualized. In contrast to our project, where data is already stored,

demanding a different approach — one that could abstract the presentation layer.

2.5.3 Metadata-driven Delphi Rating on the Internet

In this work, a web platform was designed and developed following a metadata-driven approach,

as mentioned in Section 2.4, to collect and analyze opinions using a Delphi process [31]. Due to

16 State of the Art

Figure 2.3: System Architecture from Metadata-driven Delphi rating on the Internet

the fact that they needed generic and reusable software without further coding tasks included, they

decided to opt for this approach, ensuring it could later be adapted to different domains.

The system architecture follows the standard 3-tier approach [40]: presentation, logic and

data. The end-user interacts with the web platform use pre-defined interfaces. Consequently, the

client-side will communicate with a web server, which is responsible for mediating completely the

communication between the web platform and the databases [19]. The architecture mentioned can

be found in Figure 2.3, extracted from their document.

Despite being designed for surveys and questionnaires, a possible variation from this work

can be extended to our project by the incorporation of data visualization techniques and a gener-

alization of the domain being managed. At least, the system architecture and the metadata-driven

approach can be inherited to confer the adaptability and ease of use expected.

2.5.4 A Metadata-Driven Framework for Generating Field Data Entry Interfaces
in Ecology

As the name suggests, this project consists in the conception of a framework that serves upon

structured data — the metadata — to generate automatically user interfaces. The metadata has a

well-defined structure, an encoding schema based on XML-based that follows an EML (Ecolog-

ical Metadata Language syntax). The objective is to describe completely arbitrary data schemes,

enriching the whole process of creating those interfaces.

In order to support their idea, they employ a framework called Jalama that operates based on

four steps: (i) Creation of an EML/XML document describing the data; (ii) Processing of the

previous document by the UI generator module; (iii) Synchronization of the interface outputted on

the client-side; (iv) Synchronization of the EML documents and the data collected in the field.

It is easily perceived that this is a generic solution but intrinsically related to the ecology

field. Also, since it is fairly old (2005), so the existent tools were far more limited than the ones

2.6 Summary 17

available in the current days when it comes to visualizing data. Although, the core and fundamental

principles are there, moreover, our solution can derive and have some guidelines according to it.

2.6 Summary

From the reading of this chapter, it is described Information Visualization as a really old topic,

which started with the first diagrams and geographical maps in order to exchange information

between individuals and suffer a major evolution through time with the arrival of more complex

graphical representations until reaching the ones that are seen today. The idea of leveraging cogni-

tion through visual perceptions to obtain knowledge fits the current state of analysing data. Mainly

because nowadays, with the ever-growing data stored, visuals are still better for exploratory tasks

when compared to the automatic data mining tools. Furthermore, when conjugated with computer

systems it is possible to bring the advantages commonly associated: the computational power and

speed, the capability of leading with large volumes of data, etc. As a consequence, the information

visualization was then adapted to a computational context, specifically to the web, which directly

influenced the rise of multiple charting libraries and frameworks embedding data visualization

techniques.

The process of monitoring field trials (independently of context inserted) now involves the

recurrent use of web technologies as a manner of way for visualizing the data and tracking its

subjects.

Throughout this section was also presented some of the research realized towards the adap-

tation of a single interface to a vast number of different domains, dynamically, by being able

to represent their data. Such work relies on metadata-driven approaches either being based on

database or user interfaces, where a metadata file is created defining and describing the structure

of data stored in the databases and the organization of the UI, followed by an interpretation module

in order to be reflected in the presentation layer without any coding task besides the modification

of the respective metadata.

18 State of the Art

Chapter 3

Problem Statement and Solution
Proposal

The primary objective of this chapter is to define and describe, the problem at hand and the so-

lution developed to overcome it. Hence, the technological tools chosen for the solution as well

as an overview of application architecture emphasizing its components and interactions will be

considered.

3.1 Problem

Commonly, web and mobile application “prototypes” are being submitted to field trials and tested

by a restrict number of previously selected participants, mainly, to understand strengths and weak-

nesses through received feedback to possibly redesign the product before releasing it to the public.

The typical collection and storage of data from different sources such as sensors, self-report or

behavioural, is already being applied, yet, there is not a standard approach nor a proper way to vi-

sualize that same data. Additionally, there is the need for a generic platform in which its interface

can reflect the target project data without further coding process involved, greatly decreasing the

costs of re-defining and modifying both back-end and front-end code whenever a new project is

carried out.

The problem can then be deconstructed into two sub-problems: (i) building a platform, re-

sponsible for presenting the graphical visualizations of the data stored. In this scenario, the web

is the targeted platform. It makes sense in the way it has the accessibility without requiring fur-

ther installation, the computational power and speed at the client side, the ability to handle larger

data sets and most important there is a vast number of charting libraries and front-end frameworks

which work seamlessly; (ii) the ability to be extended to subsequent projects while supporting

their distinct inner characteristics – data and project specifications (e.g. database type).

19

20 Problem Statement and Solution Proposal

3.2 Hypothesis

We believe that an application following a 3-tier architecture, in which the presentation tier repre-

sented as a web platform and, the logical tier, acknowledging the data structure and UI interface

through a predefined YAML configuration, then researchers are able to conduct the monitoring

procedure while decreasing the costs of re-designing the platform.

3.3 User Stories

During the planning phase, we proceed to clearly understand and identify the requirements of the

application as well as the identification of the common databases, data types, project scopes and

the features expected by the end-users of the application since it was of extreme importance . In

order to do so, two different semi-structured interviews were conducted (attached in Appendix A)

according to each of one of the use case actors of our application: the first aiming to the end-users

of the platform, the researchers; the last having in mind the developers that normally manage the

data being stored. It was then submitted to a total of six participants, evenly distributed among

these two distinct groups.

Based on the collected information, we were able to identify that: (i) MySQL and Firebase

as the two main databases; (ii) field trials always involve participants and data is the reflection of

their behaviour; (iii) the most commonly used charts were bar, line and pie charts and also time

series; (iv) the collected data comes in multiple forms from sensors, questionnaires to applications.

Consequently, the frequency in which they collect information is also different;

All of this information immensely aided us in the process of conceiving the application, as we

had information about prior projects, suggestions and the requirements, we were able to have a

more concrete outline of the architecture. Also, the insights from the interviews aforementioned

provided by the participants lead to the user stories enumerated in Table 3.1 and Table 3.2.

Table 3.1: User Stories — Researchers

Number Name Description Priority

US01 View participants As a Researcher, I want to list the participants of

the current field trial so I can easily check their

information.

High

US02 Select participant As a Researcher, I want to select a participant so

I can follow his progress.

High.

US03 Filter participant As a Researcher, I want to visualize the data re-

lated to a participant through graphical represen-

tations so I can extract information visually from

it.

High

Continues on next page. . .

3.3 User Stories 21

Table 3.1 – continued from previous page

Number Name Description Priority

US04 Visualize aggre-

gated data

As a Researcher, I want to visualize aggregated

data so I can better understand the overall perfor-

mance of the participants.

High

US05 Filter temporal data As a Researcher, I want to be able to filter partic-

ipants information according to a time range so

I can better understand their behaviour during a

certain time lapse.

High

US06 Compare multiple

participants

As a Researcher, I want to be able to compare

data between multiple participants so I can bet-

ter understand their different progress during the

trial.

Low

US07 Alert system As a Researcher, I want to be notified whenever

a participant reaches a specific variable threshold

so I can minimize the expended time analysing

the participants

Low

US08 Export Visualiza-

tion

As a Researcher, I want to be able to export a

specific visualization in a predefined format so I

can store and share it with someone else.

Low

Table 3.2: User Stories — Developers

Number Name Description Priority

US09 Configure pages As a Developer, I want to be able to define a page

and its components so I can have access to it in

the website.

High

US10 Define several

chart types

As a Developer, I want to be able to represent

several types of charts so I can better understand

the data collected in several different ways.

High

US11 Define retrieved ta-

ble attributes and

filters applied via

YAML

As a Developer, I want to be able to define

the data attributes to be retrieved while filtering

based on a specific attribute threshold.

High

Continues on next page. . .

22 Problem Statement and Solution Proposal

Table 3.2 – continued from previous page

Number Name Description Priority

US11 Define retrieved ta-

ble attributes and

filters applied via

YAML

As a Developer, I want to be able to define

the data attributes to be retrieved while filtering

based on a specific attribute threshold in order to

access restricted data.

Medium

US12 Configure chart As a Developer, I want to be able to configure

charts title and labels so researchers can under-

stand the data being represented.

High

US13 Define aggregation

cards

As a Developer, I want to be able to define a card

that will further reflect a specified table attribute

aggregated based, also, on a specified operator

(max, min, etc) in order to easily identify some

indicators.

High

US14 Configure layout As a Developer, I want to be able to configure a

page layout so I can visually organize data.

Low

US15 Support SQL

databases

As a Developer, I want to be able to connect and

access to data stored in SQL databases so I can

retrieve data following SQL paradigms.

High

US16 Support Cloudfire-

store

As a Developer, I want to be able to connect and

access to data stored in Cloudfirestore databases

so I can retrieve the data stored in them.

High

US17 Multiple databases

connection

As a Developer, I want to establish simultane-

ous connections to multiple databases so I can

retrieve data distributed among them.

Medium

US18 YAML validation As a Developer, I want to validate the YAML

configuration files so I can better understand syn-

tax errors that were made.

Low

US19 Define Cohorts As a Developer, I want to be able to define co-

horts so I can select participants based on their

cohort.

High

US20 Authentication

System

As a Developer, I want to have an authentication

system between the presentation and logic tier so

I can guarantee increased security of the whole

system.

Low

Unfortunately, not every single requirement planned could be implemented, mostly, due to the

time and effort required to overcome them. The requirements have priorities ordered, from the

3.4 Solution Proposal 23

highest to the lowest priority feature.

3.4 Solution Proposal

Resultant from an in-depth analysis of the problem stated in Section 3.1, it is perceived that there

are different necessities arising from this project, being the visualization of data through a web ap-

plication and the adaptation to distinct and heterogeneous contexts. The approach adopted comes

as a proof of concept to a wider problem, therefore, we focused on achieving a certain functionality

and then, with the right validation, prove it worked by being able to be extended to a bigger scope

(e.g. supporting more visualizations, types of databases, etc.), applicable to field trial targeted for

monitoring.

To come up with the solution, we considered wise to use a bottom-up approach, starting by

understanding the data patterns transversal to all projects or the templates that can be induced,

providing a standing point for the solution for the second sub-problem and afterwards, building

the rest on top of that.

3.4.1 Application Architecture

The application architecture adapted to solve this problem is composed of three components that

are interconnected and work seamlessly, as illustrated in Figure 3.1: (1) a web interface running

on the client side (e.g. researchers devices); (2) a mediator providing an external API to the web

platform to retrieve the data models with the main purpose of solving the principle of heterogeneity

among projects; (3) the source of information — the corresponding databases from the diverse

projects.

This software architecture approach is well known as the 3-Tier Architecture [40, 48], consist-

ing of an architecture separation in 3 distinct tiers:

• Presentation tier: as the names suggest, this tier is in control of the presentation and the

user interface, remaining concentrated in displaying information and handling user related

events;

• Application tier: It contains the business logic and rules of the application;

• Data tier: represents the database access, management and information storage. Database

access comprises the operations of accessing and retrieving data, while information storage

relates to writing operations of the data to be later available. Lastly, management involves

the management of the data stored. It is important to note that, this tier, can be composed

by a unique or multiple databases hosted in one or more data servers.

Having as reference Channu Kambalyal and its article “3-Tier Architecture” [40], the 3-tier

architecture comes with some disadvantages, for instance, it has a more complex structure, it is

more difficult to set up and maintain and the extra tier adds vulnerability to the application (since it

is also single-point-of-failure). However, the advantages outnumber the disadvantages, example of

24 Problem Statement and Solution Proposal

them are: (i) complex application rules easy to implement an application server; (ii) business logic

off-loaded from database server and client, which improves performance; (iii) changes to business

logic automatically enforced by server – changes require only new application server software to

be installed; (iv) Application server logic is portable to other database server platforms by virtue

of the application software.

Relatively to the physical layout, the three different tiers, in our solution, were designed for a

the one described in Section 3.4.1.3, although there are some other possible variations distributed

along with the internet. Therefore it is crucial and indispensable the communication among those

components. The communication flow always involves the mediator as the centre of all commu-

nication and the first-receptor of all messages exchanged. The expected flow is:

client-side←→ mediator←→ database

Of course, in the presence of a scenario where both frontend and backend are running on the

same machine, the frontend could have direct access to the configuration files through the file

system, having the advantage of reduced delay when compared to a remote service. However,

following an approach based on web services, they could be physically separated and also, imag-

ining a future and mature product where the mediator is a centralized component, storing all the

configurations, this methodology would cover this case.

Our approach comes with the implementation of web services, through a well-defined protocol

that ensures the preservation of integrity, confidentiality and reliability over the Internet. Following

on that, the implementation of these web services will be based on a vastly accepted protocol,

REST (Representational state transfer), due to the fact that is simple, fast and it offers CRUD

(Create, Read, Update and Delete) operations by HTTP (HyperText Transfer Protocol) methods,

in which messages should contain all the information needed to the server handle it since no state

is stored [56]. In addition, it allows multiple encoding types besides JSON.

To better understand the different components, their interactions and how they are physically

distributed, a set of diagrams will be presented next.

3.4.1.1 Component Diagram

The component diagram, illustrated in Figure 3.1, shows the organization and relationships among

components in our application.

As mentioned before, there are three main components: the client, mediator and database

provider. The client explicitly uses an API provided by the mediator to obtain the configuration,

in which, then it accesses data through an API offered by the database provider. This provider, a

built-in library that encapsulates a database, allows data access, modification and differs depend-

ing on its type. Therewith, for Cloudfirestore1 and Realtime2 it is Firebase3 while for SQL it is

Sequelize4.
1https://firebase.google.com/docs/firestore
2https://firebase.google.com/docs/database
3https://firebase.google.com/
4http://docs.sequelizejs.com/

3.4 Solution Proposal 25

Figure 3.1: Component diagram

3.4.1.2 Process View

The process view, illustrated in Figure 3.2, is a comprehensive way of representing dynamic as-

pects, explaining the application processes and how they communicate while focusing on run-time

behaviour.

The common flow involves the web starting by sending a request to the mediator, followed by

a read operation of the configuration files written in YAML and only then it is able to request data

from the database. Afterwards, it sends the response back to the web.

3.4.1.3 Physical View

The physical view, illustrated in Figure 3.3, “describes the mapping of the software onto the hard-

ware and reflects its distributed aspect” [44].

This application was specially designed to have the layout above, yet there can be some varia-

tions, either front-end running on a different physical server than the mediator or the same server

hosts both front-end, back-end and database. This last scenario can occur more often, regarding the

network settings (in case it is internal with ports and availability restrictions to outside networks)

or firewall accesses, it may need to be running on the same machine.

Even if these layouts differ in the number of machines used, they have something in com-

mon: the components. With that being said, it is always included the client device, which will be

interacting through a website, the front-end, the mediator API and the database modules.

3.4.1.4 Package Diagram

The package diagram, illustrated in Figure 3.4, is intended to describe the package hierarchy and

dependencies between them. The packages were divided into three main layers:

Config — Package containing every configuration file of the system.

Frontend — Package containing the presentation layer files.

Backend — Package containing the logical layers files.

26 Problem Statement and Solution Proposal

Figure 3.2: Process view

Figure 3.3: Physical view

3.4 Solution Proposal 27

(a) Backend and Config

(b) Frontend

Figure 3.4: Package Diagram

28 Problem Statement and Solution Proposal

3.4.2 Tools and Technologies Adopted

3.4.2.1 Front-end

There is a vast number of JavaScript frameworks. However, in concordance with past experience

of the team and also to facilitate the process of developing the user interfaces of the web platform, a

front-end framework was used — React.js5. React.js is a JavaScript library to build user interfaces

on the web. It comes with the concept of Virtual DOM (Document Object Model) in which, based

on state modifications only the affected elements will be re-rendered on the screen, meaning the

real DOM is also updated. Another great advantage of its use is the modularity and the division of

UI partitions into individual components, which can also be included as part of other components

[24, 33].

Furthermore, considering the multiple charting libraries available, a library such as D3.js6 has

the main advantage of being full-customized and allows the creation of visualizations completely

from scratch, however, it does not support old browsers, on the other hand libraries just as High-

Charts.js7 provide strong default visualizations with the downside of its pricing label. Thus, to

reach and cover the most browsers, bearing in mind that customization is neither a must nor an

improvement for this project, and also the ease in use, the satisfactory number of visualizations

available and the price (free is optimal), the tool used was Plotly.js8, as it comprises all these

advantages relatively to those libraries.

The combination of these two ensured that the presentation layer had all the needed tools and

requirements to carry on towards their principal objective.

3.4.2.2 Mediator

For the mediator development, we ended up choosing Node.js9 together with Express.js10, not only

considering the prior experience of the team but also a large volume of existent libraries available.

This, together with the coding language used, Javascript, grants more consistency between the

different components and allows code re-usability. Besides, it has also the benefit of having a

great open-source supportive community.

3.5 Summary

In conclusion, the problem addressed throughout this chapter has a huge impact on the interac-

tion and the information that can possibly be retrieved from the monitoring of field trials by the

researchers. Prior to these projects, as stated in Section 3.1, there was not a proper way of visu-

alizing such data which is continuously being collected and stored distributively among different

5https://reactjs.org
6https://d3js.org/
7https://www.highcharts.com/
8https://plot.ly/javascript/
9https://nodejs.org/en/

10https://expressjs.com/

3.5 Summary 29

database servers. The designed software architecture seems a solution to be greatly considered as it

completely divides the different layers, granting an abstraction to the front-end: better modularity

and most important, it fulfils the project primary requirements. Although, it also has its drawbacks

such as ensuring the communication channels are secure and with an extra vulnerability added to

the system as a whole by including a mediator.

Furthermore, each one of the components defined in the application architecture will be dis-

sected and explained in detail.

30 Problem Statement and Solution Proposal

Chapter 4

Mediator

In this chapter, the implementation details of the mediator component will be defined and de-

scribed including the main services it offers as an API to the front-end, followed by the databases

it supports, how it is achieved, the possible limitations and finally, the proposed data schema for

future database implementations.

4.1 Description

The second component of this application naturally belongs to the application/logical tier regard-

ing the fact it comprises the business logic and rules. The primary purpose of developing a me-

diator is to act, as the name suggests, as a mediator/broker between the web browser and the

corresponding database, controlling how these interact with each other. Hence, instead of those

two tiers establishing a direct connection between them, the communication flow will always pass

through this component. The main advantage of its use is that this mediation “simplifies, abstracts,

reduces, merges, and explains data” [63], also, a 2-tier architecture would imply more code in the

client side leading to a less smooth user experience and in case the logical rules must be changed,

the client software must be distributed again, where the only good side of its use would be a

simpler structure and an increased facility in maintaining it [40].

When applied to a real-life context, there is the possibility of projects using different databases

that can be physically separated or not. Nowadays, there is even a broad number of database

types, however, in order to simplify, we chose a few that will be initially supported coming as

a proof-of-concept, as described in Section 4.4. Relatively to the client-side, it demands data to

be later displayed on the screen, although it does not have the fundamental knowledge about the

data layer (e.g. the schema, endpoint connection, etc), for the most part, because it is built with

a predefined skeleton that is later filled in resemblance to the configuration. Such configuration

must be defined a priori by the researcher and must contain all the necessary information readable

by the front-end, for instance, the number of pages, the name of the platform and the layout for

31

32 Mediator

each one of the pages. For this reason, it fulfils the basic idea behind the use of a mediator —

supply a level of abstraction to the presentation tier, leveraging most of the data process and the

required prior knowledge of the database schema, data attributes and connection configurations,

leaving only small and necessary operations to it.

This knowledge is granted to the mediator by following a metadata-driven approach based

on information systems, as mentioned in Section 2.4.2. By creating an entry point metadata file

containing all the pertinent and vital information describing the general configuration and database

accesses without redundancy, using, for that purpose, a YAML encoding schema. As a justification

for that choice, YAML among the others (e.g. JSON, XML) has the advantage of being simple and

human-friendly.

Consequently, the front-end is now able to display the desired interfaces, considering its con-

figuration was previously defined in the proper and expected file system location. The metadata

files are expected to have information relative to the:

Database — such as type (e.g. MySQL, SQLite, PostgreSQL etc.), the connection properties:

username, password, host, etc.

Database Schema — its name/identifier, the relationships with other tables, its attributes and for

each attribute the variable type.

Important to note that we considered as an assumption, when conceiving the application, that

the data is already being collected and stored in one or multiple databases, which means our

application works only with read operations, there are not, in no case, modifications to the current

state of the information.

4.2 API

Services are offered in the sense of a RESTFul API, allowing other devices to operate over them.

Here, due to the fact that the main goal is to monitor field trials where data is already stored, being

them weekly reports, passive data recording or special events triggered from third-parties devices

(e.g. sensors, applications), the services provided are read-only. There are just three of them, some

related to the users and some to the platform configuration.

The requests are then handled using routers and controllers. The routes are defined in Node.js

and associated with the server App, in the same way, controllers are associated with each one of

the routes of the router. Whenever a specified route is called it will delegate it to the controller,

containing the correct information on how to handle the request.

Moreover, applicable for every service, they either return the expected information (it can be

null in case there is none) with a status of 200 or a response with a status of 500 whenever an

exception was thrown at the server side.

4.2 API 33

GET /api/users

Gets the participants identifiers from the corresponding database (as we will see later on, it is

possible to retrieve a subset of attributes according to the configuration, the same applies to the

number of participants retrieved as they may as well be filtered).

Table 4.1: GET /api/users

Input Success Failure

GET

http://<domain>/api/users

1 [

2 {

3 "key": "079a3ad9-2f96-4bd6-a4d8-719

b8ba75fb0",

4 "id": "Participant 1",

5 "onboarding": true,

6 "mealplanTimestamp": 1559054872767,

7 "npsTimestamp": 1559054872767

8 },

9 {

10 "key": "08c3b991-09b4-44d4-953d-

d7219ea82006",

11 ...

12 },

13 ...

14]

Status

500

GET /api/config

Gets the main configuration of the platform such as name, abbreviation and the pages that will

later be presented in the left sidebar.

34 Mediator

Table 4.2: GET /api/config

Input Success Failure

GET

http://<domain>/api/config

1 {

2 "title": "Lifana",

3 "abbreviation": "LF",

4 "pages": [

5 {

6 "fileName": "Activity",

7 "name": "Walking Activity"

8 },

9 {

10 "fileName": "MealPlanning",

11 "name": "Meal planning"

12 }

13 ...

14]

15 }

Status

500

GET api/config/pages/<page>/users/<id>

Gets the configuration for the page provided, filtered or not by user, depending on the request

parameters. The parameter “page” must be defined while the “id” is optional.

4.2 API 35

Table 4.3: GET api/config/pages/<page>/users/<id>

Input Success Failure

GET api/config/pages/Activ-

ity/users/user0001

1 [

2 {

3 "type": "time series",

4 "plurality": "single",

5 "title": "Activity registry",

6 "ylabel": "Number of steps",

7 "xlabel": "Grouped by Day",

8 "specifications": {

9 ...

10 "data": {

11 "x": [

12 "2019-01-18T00:00:00+00:00",

13 "2019-01-27T00:00:00+00:00",

14 "2019-02-01T00:00:00+00:00",

15 "2019-02-12T00:00:00+00:00",

16 "2019-02-14T00:00:00+00:00"

17],

18 "y": [

19 156,

20 679,

21 2446,

22 2906,

23 6325

24]

25 }

26 }

27 },

28 {

29 "type": "Histogram",

30 "title": "Activities Histogram",

31 ...

32 },

33]

Status

500

GET api/resetCache

Service offered by the back-end to allow the reset of the complete cache state.

36 Mediator

Table 4.4: GET api/resetCache

Input Success Failure

GET http://<domain>/api/resetCache

1 {

2 success: "Cache Reseted"

3 }

Status

500

4.3 Mediator Workflow

The mediator itself has a well-defined working flow, involving all the functionalities and sub-

components mentioned above. Starting through the web services exposed over the Internet, when-

ever a request is made, the router will delegate it to the corresponding controller, which is respon-

sible for handling all the process thereafter. The controller for every request will first check its

cache, if it has stored before and that same data still “lives”, sends a response with it otherwise it

follows the next approach: (1) Calls the .getData() function from the database module API; (2)

The data return is then submitted to the reducer based on the .submitToReducer() function, a

function that converts the raw data to the expected format by the UI component; (3) The resultant

formatted data is sent back as a response.

4.4 Database Support

As part of the data tier, the databases are an essential and indispensable component of this ap-

plication, holding all the information relative to the field trials being the object of the monitoring

process. These databases can be heterogeneous or homogeneous, according to their type. Al-

though, as we mentioned earlier, this project appears as a proof-of-concept, therefore, only the

most relevant database types for the company were featured, namely: Cloudfirestore and SQL

databases. Firebase Realtime Database, a Google database, is also supported but at a minimum

level when compared to the others.

The main functionalities relative to the databases are the attribute selection, the inner join ag-

gregation and the filtering operation. Their implementation depends on the database type, some

using built-in methods already provided through an interface while others achieve the same func-

tionality using JavaScript methods or libraries.

4.4 Database Support 37

Figure 4.1: Mediator processing flow

38 Mediator

4.4.1 Assumptions

Having in mind that every field trial always involves users, a table representing those users must

always exist and other tables or collections must reference it in some way, depending on whether

it is a Firebase or a SQL database.

4.4.2 Attribute Selection

The attribute selection is quite relevant since, usually, a table contains more information than the

one we actually need for representing in a chart. Sequelize already offers a way to filter attributes,

if there is just one table (no inner join required), the attributes provided will be directly filtered;

otherwise, based on a recursive inner join function, if the current table to be joined has any of

the attributes specified (the model allows reflection, therefore, acknowledge its own attributes and

keys), those who match will be filtered. On the other hand, Firebase databases do not extend

this functionality so they were replicated via the JavaScript library lodash1, more precisely, with

recourse to the function .pick().

Assuming a case scenario where two tables will be joined together and they both have an

attribute with the same name and it is supposed to filter that same attribute, there are two possibil-

ities: (i) the user just specifies the attribute and as a consequence the attribute from the first table

will be considered, ignoring the second; (ii) the user specifies through YAML < TN >.< attr >,

where TN is the table name and attr is the target attribute and as a result, the attribute with that

table name will be filtered.

1 var queryObject = { ... };

2 var attributes = await retrieveTableAttr(model, properties);

3 queryObject.attributes = (attributes.length) ? attributes : [];

Listing 4.5: Sequelize attribute selection

4 data.reduce((arr, el) => {

5 arr.push(pick(el, properties));

6 return arr;

7 }, []);

Listing 4.6: Cloudfirestore attribute selection

4.4.3 Inner Join Aggregation

Having into consideration the typical SQL, tables refer to one another, using foreign keys. More-

over, in case the complete information is to be retrieved, then a join must be done based on the

1https://lodash.com/

4.4 Database Support 39

foreign and primary key from both the one referring and being referenced, respectively [6]. There

are multiple types of joins, although, at this stage, we support only one — the inner join. As data

is to be submitted to specific charts, comprehending predefined target axis, their values should not

be null. Thus, inner joins are the commonly expected joins to be executed as they return records

with matching values in both tables. For instance, considering a case scenario where we want to

visualize a line chart and one of the tables contains the attribute corresponding to one of the axes

(e.g. x-axis) and the second containing an attribute to be represented in the remaining axis (e.g.

y-axis), considering one of them already has a reference to the other one, an inner join will give as

the proper data while other joins would not.

Regarding Cloudfirestore and our proposed schema, the data is considered denormalized by

either replicating or referring other tables data and being completely flat, in other words, there are

no sub-collections derived from each one of those tables. Furthermore, if data is being replicated,

each table has all the information needed and no additional process is required. However, if

the approach followed is based on references then, and knowing that Cloudfirestore as a NoSQL

database does not support inner joins, this has to be replicated by the server based on: (i) multiple

queries (one for each table); (ii) inner join through JavaScript code; This procedure is illustrated

in Figure 4.2.

4.4.4 Filter Selection

Another functionality of our application is the filtering selection of the data. It is possible to

specify an array of filters which will be applied in the form of a concatenation of filters through

an AND operator. The typical structure of an operator is an object containing a: (i) target —

the targeted table; (ii) operator — the filter operator, that must assume one the following values:

“!==”, “==”, “>=”, “>”, “<=”, “<”; (iii) value — the value to be compared with.

This functionality is achieved in Sequelize through the where property when defining the

object to be submitted to the function .find(), while in Cloudfirestore it is achieved based on

the .where(), a function provided by its API. To note that when using Cloudfirestore to do

such filtering it requires the definition of indexes, which can be done through the Firebase project

console.

These filters can be utilised in two different moments during the configuration definition.

Firstly, when defining the users’ location, it is possible to filter them as well as select the attributes

wanted. Lastly, in each component, their data can be filtered according to the filters specified.

40 Mediator

Figure 4.2: Example of a Cloudfirestore inner join

4.4 Database Support 41

8 Post.findAll({

9 where: {

10 authorId: 12,

11 status: ’active’

12 }

13 });

Listing 4.7: Sequelize filtering Example

14 db.collection("Posts")

15 .where("authorId",

16 "==",

17 "active");

Listing 4.8: Cloudfirestore filtering Example

4.4.5 SQL

The standard SQL databases are still quite often used, particularly MySQL, which made their

support so important. Nonetheless, supporting only MySQL would lead to major changes in the

future, so bearing in mind the SQL well-known structure definition we searched for an abstraction

layer that could encapsulate several relational databases. That is when we came across with the

concept of ORM (Object Relational Mapping), an ORM allows the manipulation of data from

a database through an OOP (Object-Oriented-Programming) paradigm by mapping objects with

underlying databases and providing an API for querying or modifying those objects [39, 57].

Although, it also appeared with one drawback, as it comes with the notion of models, where

models are, in simple words, mappings between objects and tables, meaning they must be defined

a priori. To counter this problem, the proposed solution provides a higher level definition of these

models, instead of the usual coding process, they can be defined through YAML without having

to deal with implied information. Also, because there are not any writing operations, it is neither

necessary the model synchronization nor the mapping of the whole database but rather the tables

and attributes targeted by the monitoring process, for instance, extra tables inside a wider database.

Because the mediator was built with Node.js, it was inevitable an ORM composed for JavaScript.

Hence, Sequelize was chosen due to being, most likely, the most used and well-known JavaScript

ORM and also because it supported the necessary features.

4.4.6 Cloudfirestore

Cloudfirestore is the second database type supported, mainly because, it is considered an im-

proved version of Firebase Realtime database, highly recommended by the Firebase team. There

is a great number of advantages, among them we have [29]: (i) it has a new and more intuitive data

42 Mediator

model with richer and faster queries; (ii) it scales better; (iii) the scaling is automatic, no need for

sharding; (iv) includes chain filtering and sorting functionality; (v) has the possibility to query a

document instead of an entire collection. There were a lot more advantages arising from its adop-

tion, although, considering the features required, some of them did not seem worth to mention.

Those who were mentioned backed up our decision towards its support.

Regarding the fact is follows a NoSQL paradigm, it has a dynamic schema for unstructured

data when compared to SQL that has a standard structure. Therefore, it is possible to have a

collection within collections recursively, which may reach an immense depth. In case we face a

similar scenario, which is most likely to occur, whenever a collection is queried, only the attributes

from its documents will be retrieved and not its sub-collections (precisely what was needed). There

are four approaches to overcome this problem, namely:

• Instead of using the concept of sub-collections, a combination of map objects and arrays

could be used. The main disadvantage associated with it, is that a document has a max limit

of 1 MB (when using a sub-collection, its size is not accounted for).

• Use of .collectionGroup function provided by Cloudfirestore to obtain a sub-collection

data nested inside another collection.

• A flatter structure, one level max, through data denormalization, thus avoiding sub-collections.

This solution has two variations: either the data is replicated in each node, and each node is

self-contained (when in the context of the data it stores) or it has a reference to another table

in similarity to SQL structure.

• The last possibility involves querying the wrapper collection followed by a query for each

child document to obtain its sub-collections. Such an approach will induce a bigger over-

head in comparison to the ones described before. In addition, since the Cloudfirestore pric-

ing is made according to both write and read operations, it would have some significant

implications.

In order to have consistency among future projects, a convention for a schema was established,

based on the denormalized approach. The only drawback is that denormalization usually implies

replication of data, moreover, there is the necessity of keeping its integrity which will cause an

increasing amount of operations in order to keep data similar in multiple places.

4.4.7 Firebase Realtime Database

Firebase Realtime Database has minimum support, but mostly because it was one of the databases

used in a prior project so we needed it for the platform validation. The minimum level of support

is justified because Cloudfirestore is increasingly getting more users and as aforementioned, it is

considered an improved version of it. Minimum level support is understood as the possibility of

query and apply reducers without the possibility of doing multiple queries or filter data by some

operator and attribute.

4.4 Database Support 43

4.4.7.1 Assumptions

Having in mind it is a NoSQL database and that every field trial always involves users, a relation

representing those users must always exist. Either it is a loner collection and the other tables

documents ids refer to a user (equal to the respective user document id) or it has those tables as

children which automatically links both.

4.4.7.2 Limitations

As a minimum support level, it means that there are features missing when comparing to the others

databases supported, namely: (i) the UI component that aggregates a value by an operator; (ii) the

filtering selection, as a result of how limited is Realtime relatively to filtering, meaning it would

have to be done via Javascript on the server side; (iii) the aggregation — since it is aimed for a

NoSQL paradigm, the aggregation should not be required as it is expected that linked tables are

nested in one another.

4.4.7.3 Implementation

In order to retrieve data, and acknowledging that same data is structured as a huge JSON in its

database, whether a property is a list of objects, an object or a primitive value, a path to the target

table must be provided. As an explanation, considering a table User with a nested HeartRegistry

table, the query should be similar to db.ref("User/" + userID + "/HeartRegistry")

as it is not possible to retrieve it without providing the “userID” since User is a collection of

documents.

The typical process comprises the table name definition for each UI component, in which,

based on the database configuration defined a priori, the table is then found recursively and its

path obtained by a mix of backtracking and concatenation. This is mainly achieved due to the fact

that JSON, in this context, is interpreted as a tree where a table is viewed as a node/leaf, thus, an

in-depth search is applied through recursion. In each step of backtracking, a verification is made

regarding its node type, in case it is a collection then the path is a sort of “ref = "Table/" + id +

resultantPath;” otherwise it is ‘ref = "Table/" + resultantPath;”.

All of this information is illustrated in Figure 4.3, where the input table is “Bp” and the num-

bers inside brackets indicate the order that steps are performed. Resultant from the analysis of it

and in conformity to what has been said before, the ordering is justifiable by the in-depth search

approach while the path creation is achieved by the backtracking as a consequence of the recur-

sion. As we can see, the path created in step 5 does not include a measureID because Measure is

not a collection but rather an object.

4.4.8 Multiple Database Connections

When conducting the initial interviews, one of the needed requirements (US17 in Table 3.2) was

the possibility of connecting to multiple and/or distinct databases. For instance, one of the projects

44 Mediator

Figure 4.3: Example of a path construction process

at Fraunhofer and target of a case study in Chapter 6, had two databases storing different infor-

mation, linked to one another based on a stored attribute that references the same user as the other

one.

Here, to fulfil this functionality, the developer with insight about the databases at stake, must

define the configuration of each one of them. In addition, each one must have an identifier so later,

when defining the UI components, it is possible to reference which database we intend to query

and obtain the corresponding information. Nevertheless, since now there can co-exist multiple

databases it is important to decide from which the users will be retrieved. It is equally important

to guarantee the link between both databases, as it is possible to users to be mapped differently,

for example, in one it can be the attribute “user_id” inside “Users” table while on the other can be

“userID” from “User” table.

There is no restriction when it comes to the type of the database, so it is conceivable to have

multiple SQL databases as well as multiple Firebase databases.

4.5 Cohorts

In some cases, users can be grouped into cohorts without their explicit declaration in the database.

This functionality aims to help researchers selecting users that belong to the same group based on

some characteristic (e.g. location), by selecting a cohort, the researcher can only select users from

that same cohort so he does not need to search between a full list of users.

4.6 Reducers 45

4.6 Reducers

Once the data is retrieved, it still needs to be formatted based on the chart type read from the

page configuration file. In order to do so, the data processed by the database module is then sent

to the reducer module. These reducers functions follow a convention, although, in case the user

wants to have control over this formatting operator or do additional filtering operations, he is able

to define his own model (that must be placed inside the folder “config/reducers”) and afterwards,

define its name in the component configuration so it later overrides the default reducer function.

The reducer always receives as first argument the data retrieved by the database, and as second an

array of arguments defined via YAML when setting the reducer, as shown in the code listing 4.6,

provided below:

18 exports.flattenSingleTimeChart = (data, args) => {

19 var x = args[0];

20 var y = args[1];

21

22 x = getPropertyName(x, data[0]).shift();

23 y = getPropertyName(y, data[0]).shift();

24 data = orderBy(data, [x], [’asc’]);

25 // x-> first key & y -> second key

26 return { x: data.map(el => extractDateFromTimestamp(el[x])), y: data.map(el =>

parseFloat(el[y])) };

27 }

Listing 4.9: Example of a reducer

4.7 Cache

From the analysis of the field trials already applied, there is not the need of constantly reading the

configuration and querying the database as users are set, usually, at the beginning (in some cases

they start in distinct time stages) so they are not being updated every day, hour or even minutes. In

addition, the devices that collect data differ in the frequency they register thus, for instance, if it is

a questionnaire, it commonly appears once a week while a sensor can have a rate of one registry

per minute.

By introducing a cache mechanism, consecutive requests have a significantly decreased re-

sponse time, therefore improving the user experience perceived by the researchers while decreas-

ing the time spent analysing the participants. The TTL (Time To Live) set for a request aiming to

retrieve a page configuration response or the field trial participants must also differ, one day for

users and five minutes to the page configuration.

Nevertheless, as we mentioned, if data is updated it will not be reflected in the monitoring

platform until the cache content times out and is deleted. In order to diminish this problem, the

server offers a service to reset its own cache.

46 Mediator

4.8 Application Configuration

The configuration can be divided into multiple pieces with different responsibilities, namely: (i)

platform — configuration that provides which and how components are displayed in the web

platform; (ii) database — configuration that defines how and with whom the database connections

are established and also its structure; (iii) reducers — configuration that defines the set of reducers

that can later be applied when defining the UI components; (iv) users mapping — configuration

that allows mapping user identifiers retrieved from the database to a more user-friendly format.

4.8.1 File system

The typical structure, as represented in Figure 4.4 as a tree of components, in which, the leaves

represent the files and the intermediate nodes the directories, contains the following main directo-

ries:

blueprints — this directory contains the information related to the platform interfaces through

the files declared inside the sub-directory “pages” and also, the database structure which is

defined in site.yaml.

reducers — the reducers directory can have multiple files containing multiple functions. Also,

it has a default entry file named “index.js” which is responsible for exporting all functions

from all files.

cohorts — this file contains the definition of the users grouped into cohorts.

user-mapping — At last, this directory contains a file that will operate on top of the retrieved

users.

The required directories and files, at all times, are “blueprints”, “site.yaml”, “pages” sub-

directory and its files. The rest of them are optional, although it is obvious that, for instance, when

it is intended to use reducers, the corresponding directory, index and reducer file must be provided.

The same applies to cohorts definition and user-mapping;

4.8.2 Database

To connect to the databases, our application requires the file “site.yaml” with the database con-

figuration. This configuration must include information related to the connection establishment,

its database type, its overall structure, etc. Going into more detail, the main properties available

are: (i) usersLocation — This property is required whenever there are multiple database connec-

tions; (ii) databases — the list of the databases configuration; On the other hand, the properties

associated with each one of them are described in Table 4.5.

4.8 Application Configuration 47

Figure 4.4: Configuration file structure

Table 4.5: Database configuration

Property Values Notes
Identification and Classification

id Can assume any string besides empty. No default. Required in case there are
multiple databases.

type <firebase> | <mysql> | <postgresql> |
<mariadb> | <sqlite> | <mssql>

No default. Always required.

subtype <realtime> | <cloudfirestore> Default is realtime. Only required if it
is a Firebase database.

Access configuration
uri A string containing a valid URI. No default. Only required if config

property is not set.
config Object containing database, username,

password and host property.
No default. Only required if uri prop-
erty is not set.

Users Access and Mapping
users Object with table, idAttribute and

nmAttributes property.
If property not provided assumes the
location as being table “Users”, the
idAttribute as being its usual id and no
additional attributes to be retrieved be-
sides the common id.

Structure
structure Structural object. No default. Always required.

48 Mediator

4.8.2.1 Identification and Classification

Whenever there are multiple database connections, there is a property “id” — the database identi-

fier, which must be set, providing a way of unambiguously identify them. In order to classify the

database and to choose the proper module to handle the data, the property “type” — the type of

the database, must be defined. Also, if it is a Firebase database, the property “sub-type” must also

be defined.

4.8.2.2 Access configuration

The database connection establishment depends on whether it is a SQL or a Firebase database.

For Firebase, it comes with the definition of a property “config” with the sub-properties: apiKey,

authDomain, databaseURL, projectId, storageBucket, messageSenderId, which are obtained via

the Firebase console. When it comes to SQL, the connection can be done through the property

“‘uri”, which is the database connection URI, or through the property “config”, in similarity to

Firebase, although with some nuances relatively to the properties it receives, where the accepted

ones are: database — the name of the target database and host — the database host connection

point; The Listing 4.10 appears as an example.

28 config:

29 database: smSQL

30 username: postgres

31 password: 123

32 host: 127.0.0.1

33 # OR

34 uri: mysql://username:password@host:port/dbname

Listing 4.10: SQL connection configuration

4.8.2.3 Users Access and Mapping

Since there is the need of accessing a list containing all users, the corresponding table or collection,

depending on the database type, must be provided (the default table name is “Users”). If the

developer wants to obtain additional information stored inside this table, can do it by providing a

list of elements or an element to the property “nmAttributes”.

In terms of linking multiple databases, the user identifier must be the same. To do so, it is

possible to define the attribute through the property “idAttribute” which will serve as the user

identifier when querying that same database.

In the sense of filtering the users, it is possible to configure a list of filters to be applied based on

the property “filters”. Each filter is composed by a property “target”, “operator” and “value”. The

first corresponding to the target attribute, the second to the operator which can take the following

values: “!==”, “==”, “>=”, “>”, “<=”, “<” . And finally, the third consonant to the value to be

compared with.

4.8 Application Configuration 49

35 users:

36 table: User

37 idAttribute: externalID

38 nmAttributes: gender

39 filters:

40 - target: age

41 operator: ’>=’

42 value: 23

Listing 4.11: Users configuration

The Listing 4.11 serves as a confirmation to what has been said previously.

4.8.2.4 Structure

The database structure configuration is greatly influenced by the type and sub-type of each database.

Furthermore, there are three distinct variations, one for Firebase Realtime Database, one for

Cloudfirestore and another for SQL databases.

SQL The structure configuration can be seen as a list of tables. For each table, we must define

a set of properties, that have no default values and are always required, that will later be

mapped to Sequelize models, namely: (i) “PK” — represents the primary key and accepts a

string; (ii) “attributes” — as the names infer, accepts a list of strings (attributes — columns

in SQL); (iii) relations — represents the relations with other tables, accepts a list of relations.

A relation object can have up to four properties: (i) “type” — the relation type which can

assume three values, “belongsTo”, “belongsToMany” and “hasMany”; (ii) “target” — the

table it is related with; (iii) “through” — in case its a N-M relation, through assumes the

value of the intermediate table that relates both of them; (iv) “FK” — a relation of type

“belongsTo” or “belongsToMany” must have defined the name of the foreign key. With

respect to SQL, the relation object has also three variations according to the relation type.

To note that whenever two tables have a relation both will have a relation object in their

relations list object. If it is a 1-1 relation we choose one table that will reference the other

by having its type defined to “belongsTo” and the remaining with “‘hasMany”. In case its a

1-M relation, just need to add a relation “belongsTo” to the one referencing and “hasMany”

to the one being referenced. At last, in a scenario where both tables are related to each other

based on an N-M relation, naturally, there will be an intermediate table resultant from this

relation. The intermediate table will not require additional information besides its attributes,

while the others two must reference each other based on the “through” property. Examples

of both N-M and 1-M relation are illustrated in Listing 4.12. and Listing 4.13, respectively.

Cloudfirestore The structure adopted for Cloudfirestore is a denormalized and flat one as afore-

mentioned. In certain circumstances, we can have data replicated, or we can have data

50 Mediator

referencing one another. This structure definition is not needed if it follows a completely

denormalized approach with each table being independent and self-contained as it has all

the essential information, although based on the principle of replication of data. However,

if a collection is related to another then such information should be specified.

Usually, each table comports two properties, “attributes” and “FK”. The first represented as

a list of attributes (strings) and the second as an object composed by “name”, the foreign

key name, and “reference”, the related table name. The join is then made according to each

document key. The Listing 4.14 illustrates what was mentioned before.

Firebase Realtime Database Taking into account the typical NoSQL nested structure, the database

structure configuration is similar to describing it as a JSON. Imagining the JSON structure

as a tree graph, each intermediate node has three properties: “plurality”, “document” and

“children”. The first is presumed to be either “collection” in case it has a list of elements

as its children or “unique” in case the children are just properties (in which those can have

nested properties or not). Relatively to the “document” property, it refers to the name of

the node. And at length, “children” refers to the node children, that can assume as value a

list of nodes, a list of leaves. To note that leaves do not have properties, their name is used

explicitly. Also, the starting node must be called “root”. Both listings, Listing 4.15 and

Listing 4.16, exemplify the explained configuration.

43 structure:

44 - product:

45 PK: product_id

46 attributes: [name]

47 relations:

48 - type: belongsToMany

49 target: users

50 through: productUser

51 FK: product_id

52 - productUser:

53 attributes: [product_id, user_id]

54 - users:

55 PK: user_id

56 attributes: age

57 relations:

58 - type: belongsToMany

59 target: product

60 through: productUser

61 FK: user_id

Listing 4.12: Example of N-M relation

configuration definition

62 structure:

63 - activities:

64 PK: activity_id

65 attributes: value

66 relations:

67 - type: belongsTo

68 target: users

69 FK: user_id

70 - users:

71 PK: user_id

72 attributes: age

73 relations:

74 - type: hasMany

75 target: activities

Listing 4.13: Example of a 1-M

relation configuration definition

4.8 Application Configuration 51

76 structure:

77 User:

78 attributes: [name, teste]

79 Activities:

80 attributes: [timestamp, value]

81 FK:

82 name: user

83 reference: User

Listing 4.14: Example of Cloudfirestore

structure

84 {

85 Users:

86 "x":

87 Measures:

88 Activities:

89 1553212800000: 2955

90 ...

91 }

Listing 4.15: Example of Firebase Realtime

Database content

92 document: root

93 children:

94 - document: Users

95 plurality: collection

96 children:

97 - document: Measures

98 plurality: unique

99 children:

100 - document:

Activities

101 plurality:

collection

102 ...

Listing 4.16: Example of the

corresponding configuration

4.8.3 Reducers

The custom reducers, that are to be defined, must be placed inside the directory “config/reducers”

and can be distributed along with multiple files, inside this same directory, or mixed up in one

single file. Differently, the entry file “ìndex.js” must always be defined (because it exports those

reducers) and its content must be similar to the one illustrated in Listing 4.17. Bear in mind that,

each reducer function receives as an argument the data retrieved by the server when it makes a

request to the database.

52 Mediator

103 require(’fs’).readdirSync(__dirname).

forEach(file => {

104 let name = file.split(’.’)[0]

105 exports[name] = require(’./’ + name

);

106 });

Listing 4.17: Reducer entry point content

107 - type: time series

108 ...

109 specifications:

110 ...

111 map:

112 file: mappers

113 method:

_histogramMultiExample

114 ...

Listing 4.18: Reducer usage through the UI

component

Once these reducers are defined, the application is able to read and apply them. In order to

do so, whenever the user is defining a UI component, under the “specifications‘” property, the file

name of the reducer and the name of the reducer function must be provided. As an example of it,

the Listing 4.18 comes as an illustration.

4.8.4 User Mapping

Sometimes the common database identifier of each user is illegible to the researcher, for example,

if it is a hash string with a ten character length. Thus, it might be necessary the definition of a map

between the real identifier and a pseudo-random identifier (the one that the researcher knows it

for). Moreover, this is supported in the case where we do not want to have personal information in

the database, that could easily identify the field trial participant (e.g. name, address, etc), or even

have this information spread across multiples databases.

In this scenario, the researcher responsible for conducting the field trial has a way of clearly

identify the participant. Furthermore, this mapping between the database id and the identifier that

the researcher implicitly knows it for can be done in two different ways: (i) through a file named

“config-file.yaml”, as represented in Listing 4.19, where the left side is the database id and on the

right, the desired identifier; (ii) through a function designated by “config-function.js”, as shown in

Listing 4.20, receiving as a single parameter the data retrieved relatively to the users; Ultimately,

in case none of those was specified, the default would be just using the database identifier itself.

4.8 Application Configuration 53

115 # <database_id> : <desired_id>

116 user0001: Pedro Lima

117 user0002: Ana Viana

118 user0003: Miguel Silva

Listing 4.19: User mapping by file content

119 exports.default = (data) => {

120 # Format data as desired

121 # return the resultant data

122 }

Listing 4.20: User mapping by function

123 # site.yaml

124 title: Lifana

125 ...

126 userMapping: function

127 ...

Listing 4.21: User mapping application

Afterwards, the researcher is able to define it in the configuration in order to apply it. To this

end, inside the file “site.yaml”, the property “userMapping” can take, naturally, in resemblance

to what has mentioned above, three different values: file, function and id. By way of example,

Listing 4.21 is presented.

4.8.5 Cohorts

In similarity to user mapping, the developer can define a file named “cohorts.yaml” inside the

“config” directory, where there is established a mapping between users identifiers and the corre-

sponding cohort, just as represented in Listing 4.22.

128 USA:

129 - user0001

130 ...

131 PT:

132 ...

133 - user004

Listing 4.22: Cohort definition

54 Mediator

4.9 Summary

The application architecture component described in this chapter lead to the interoperability be-

tween the remaining heterogeneous components, since it is the mediator of all communication

between the client and the databases through offered services in the form of a RESTful API. To

reduce some of the overhead and improve the user experience, a cache system was implemented

with different TTL (Time-to-Live) depending on if its user or page configuration data. Regarding

the data tier and its interactions, the databases supported were chosen, mainly, according to past

projects. While the functionalities explored were based on necessity.

In its essence, the mediator is responsible for leveraging and abstracting the presentation tier

while simplifying the whole system, requiring for that purpose, the configuration declaration, also

documented throughout this chapter.

Chapter 5

Dashboard

The objective of this chapter is to present the process that led to the design and implementation

decisions, as well as the main functionalities developed, followed by evaluation through the appli-

cation of a usability test and the analysis of the results obtained.

5.1 Conception

Regarding the modular nature of our intended platform, we had to identify common components

that are presented for data visualization. To do so, we proceed with the analysis of the state of

the art and we came up with the identification of a few things, namely: (i) almost everyone had a

sidebar on the left containing multiple links to distinct pages; (ii) an authentication and notification

system was always featured; (iii) the pages represented an overview of the data; (iv) the layout,

most of the time, followed a grid system; (v) some of them used a header panel to separate different

sections in the same page; (vi) the UI components were limited to charts and also cards with a

single value (displaying the aggregation of an attribute). In the sense of inspiration, not only the

interfaces were designed according to the state of the art but also they comprehend the user stories

since they were filtered according to it.

Moreover, since there is a filtering process going on, both temporal and user related, they had

to be placed in an adequate position where they were grouped together. Also, these filters are

expected to be applied to an entire page.

The process of designing the interface is usually accepted “as a process that is intrinsically

open (new considerations may appear in time), iterative (several cycles are needed to reach an

acceptable result), and incomplete (not all required considerations are available at design time)”

[16, 17]. The same applied here, where the process of conceiving these interfaces was not done

at first try, instead it was an iterative process. For that purpose, medium fidelity prototypes were

constructed using Adobe XD1, as attached in Appendix E. Once the first prototype was finished, it

1https://www.adobe.com/pt/products/xd.html

55

56 Dashboard

Figure 5.1: Example of a platform page

was then analyzed and some design problems identified, which lead to the next iteration. In every

following iteration, the previous problems were corrected and the UI validated again. When we felt

confident with the design, it was then transposed to a real prototype, meaning it was implemented

via code.

5.2 Skeleton page

The designed skeleton page — the set of components that are common to every page of our plat-

form — is composed, as illustrated in Figure 5.1, by: (1) a sidebar containing the principal navi-

gation of our platform; (2) the list of links that redirect to each one of the page of our application;

(3) the filtering bar which contains, as the name suggests, all the filters to be applied; (4) and at

last, the area corresponding to the mutable page content.

The navigation between pages is essentially done through the left sidebar, where each button

acts as a link and redirects to the corresponding page which will then call an endpoint that retrieves

its configuration. The number of buttons presented is in conformity to the number of YAML files

5.3 UI Components 57

inside the directory “config/blueprints/pages”. The breadcrumb aligned on the left and inside the

filtering bar provides a second level of navigation, in which the page remains the same, while the

request made and the data received as a response, changes accordingly.

5.3 UI Components

As aforementioned, the UI components selected derived, as a source of inspiration, from enter-

prises that work essentially with analytic tools. Thus, those components can be divided into cards,

section panels and charts.

5.3.1 Card

Such component is mainly used to provide an overview, for either a participant or multiple partici-

pants, relatively to a specific table attribute, comprising a title, a value and an aggregation operator

identifier. It admits the aggregation based on several operators being: “max”, “min”, “count”,

“avg”, “sum”, with SQL databases supporting as much as Sequelize grants.

Figure 5.2: Card component

5.3.2 Section Panel

The section panel, as the names suggest, introduces a section in which its primary objective is to

organize components inside a page since a page can contain multiple sections and each section

contain multiple other components.

5.3.3 Charts

Initially, when we were still in a stage of exploring the visual representations, a total of 6 types of

visualizations were used, namely: time-series, bar chart, pie/doughnut chart, histogram, parallel

coordinates and scatter plot matrix. Although, when they were first tested by end-users some

feedback was received and we realized that last two of them were slightly advanced and more

difficult to interpret as these representations have strong statistical foundations. Naturally, the

most used visualizations are expected to be the first four as they are the most simple, far reaching

a higher number of researchers.

58 Dashboard

Time Series The typical process of monitoring a field trial has a certain limited duration, and

participants are followed during this time, which in some cases, their activity is registered as tem-

poral data (as it has a timestamp associated). The best way to represent such data is by using

time-series where x-axis reflects the time and the y-axis the corresponding value registered. Illus-

trated in Figure 5.3, there is an example of the application of time-series visualization with real

participants’ data.

Bar chart Whenever there is categorical data, that same data can be comprehended into multiple

and distinct categories (x-axis) and their respective values (y-axis) aggregated according to an

operator such as mean, maximum, minimum, etc. The optimal representation would be either a

bar chart or a column chart, where the orientation decision depends on the insight gained from

the researcher configuring the application. Despite its common use for categorical data, this chart

can also be applied for representing temporal data, emphasizing the area and allowing, in certain

circumstances, a better interpretation when comparing to the typical time-series, as the area is

directly proportional to the y-value. Although, time-series can also be represented with their areas

coloured in similarity to an Area-chart. As a side note, the visual representation of this component

through the platform includes an additional button that allows multiples types of aggregations such

as prior mentioned.

Histogram The time to live of a field trial for a determined participant can be considerable

extensive (duration of a few months), normally involving the execution of repeated procedures over

time. With that being said, it could be of extreme value, the frequency analysis of those procedures

turning the histogram a valuable representation as it is the best suitable for these occurrences.

Pie chart Sometimes is also useful to compare categories in terms of the proportion of their

frequency. In such cases, a pie/doughnut chart would be appropriate since the arc length is pro-

portional to the frequency, evidencing, the proportions to one another.

5.4 Participants Listing

Throughout this document, we emphasized that field trials always involve users in order to keep in

mind that the data collected has at some point a reference to them. These participants usually have

personal information associated as well (e.g. age, profession, blood type, etc) that allows their

identification, characterization and aggregation in groups. Furthermore, it is important to have

access to this information through the platform instead of the default or defined id as researchers

may not able to retrieve much information from it, so a page was designed especially for listing

all the users that are participating in the corresponding field trial (or the ones actually filtered in

case they were defined in the configuration). Participants are listed on a table and this table is

complemented with a search and pagination. To note that this kind of filtering is achieved through

a .filter() function on the front-end side.

5.4 Participants Listing 59

(a) Single variable

(b) Multiple variables

Figure 5.3: Time series representations with participants’ data

60 Dashboard

Figure 5.4: Example of how participants are listed

5.5 Filtering

There are two different filters in our platform, as shown in Figure 5.5, one that acts upon the user(s)

selected and the other upon the time range.

The first allows changing between two views: a general overview of the data and a specific

user view, both share the same configuration differing from one another only on the data that is

displayed.

The second filter is responsible for selecting time ranges, reflected on temporal charts (time

series or bar charts that deal with temporal data in their x-axis). Its UI component is represented

as a date picker placed at the right upper corner that, whenever the user clicks inside it, a col-

lapsed view becomes visible allowing the user to change between default time ranges (e.g. Today,

Yesterday, This Week, Last Week, This Month, Last Month) or directly select a custom time range.

5.6 Interface Configuration

The interfaces configuration appear as an extent and complementation of the application configu-

ration explained in Section 4.8, therefore, they are mainly configurable through the pages inside

the directory “config/blueprints/pages”, with exception to the platform title which is set in the file

“site.yaml” by the property “title”. Each page is composed of two different properties, “title” —

a string representing the page identification in the platform sidebar and “components” — a list of

components that reflect as the page content. Bear in mind, each component is restricted to the UI

components defined in Section 5.3 and its classification into a type is done due to the property

“type”.

(a) Participant filter (b) Time filter

Figure 5.5: Different filters provided by the application

5.6 Interface Configuration 61

For components that contemplate data, they share a configuration property designated by

“specifications”. Since it highly depends on the UI component being represented, it takes the

form of an object that contains, as a template, a property “database” — a string representing the

id of the database (in case there are multiple databases), “tables” — a list of strings, representing

the tables needed to retrieve the desired information, “filters” — representing a list of filters. Each

filter composed by three properties, namely: (i) “target” — the attribute to be filtered (we need to

make sure this attribute exists in the table defined or in one of the tables defined); (ii) “operator”

— the filtering operator, the ones supported are: “!==”, “==”, “>=”, “>”, “<=”, “<”; (iii) “value”

— the value in which the target attribute will be compared with.

These components have, normally, the definition of one or more attributes that hold the data

needed. Although, when configuring this attributes and considering there is an inner join between

data and that both tables have attributes with the same name as the desired, the user is able to

specify which one will be picked by converting the name of the attribute to the concatenation

between the table that holds it with a dot and the attribute name (e.g. value -> Activity.value).

5.6.1 Card

As we have seen, a card contains a title, a value and an operator. The configuration mirrors these

by offering a property “title”, and a property “specifications”. The second appears to be a variation

of the object mentioned above, with the additional properties: “x” — a string serving as the name

of the attribute and finally, “operator” — a string representing the operator to be applied which

can take the values: avg, max, min, sum, count for Cloudfirestore and for Sequelize the same but

complemented with other operators that the library offers. There is also a property named “round”

that can assume the values of “u” (units), “d” (decimals), “c” (hundredths) or a number, being

units — zero, decimals — one and so on so forth.

134 - type: Card

135 title: Number of Steps

136 round: 1

137 specifications:

138 database: smSQL

139 tables: activities

140 x: activities.value

141 operator: max

Listing 5.1: Card configuration

5.6.2 Charts

5.6.2.1 Shared

The graphical representations share some configuration such as: (i) “type” — the type of visu-

alization, taking as values “time series”, “Histogram”, “barchart” and “piechart”; (ii) “title” — a

62 Dashboard

string representing the chart title; (iii) “specifications” — an object that defines the data access and

retrieval.

On behalf of most of the graphical representations supported having two axes, apart from pie

charts, they have properties that allow the denotation of a custom name to both axes, being those

properties: “xlabel” and “ylabel”.

5.6.2.2 Time Series

A time series chart can have, in terms of plurality, a single or multiple values. Meaning that there

can co-exist multiple lines in the same visualization. To do so, it is possible the declaration of a

property “plurality”. When it comes to the specifications object, it is somewhat equivalent to the

template defined previously, although with some modifications. It is expected to have “database”,

“tables” in resemblance to it, but since it is a chart and contains two axes, both properties “x” and

“y” are offered. Not only that, it also offers a property “groupby” which contains as sub-properties:

(i) “time” — the time aggregation reference, having as possibilities: hour, day, week, month; (ii)

“operator” — representing the aggregation operator to be applied, accepting avg, max, min, sum,

count.

5.6.2.3 Pie Chart

Due to the fact that a pie chart is used in the context of analyzing the proportion of the occurrences

of a determined attribute, the specifications object only requires the property “database”, “tables”

and “x”. The last accepts an attribute which usually reflects an enumeration (e.g. foodType: veg-

etables or meat or fish).

There are some more specific properties, such as “subtype”, which can take only one value,

“donut” and is used whenever we want to switch the representation to a donut chart. Also, it

supports the definition of labels that allow the mapping between the attributes retrieved and a

name, as shown in Listing 5.2.

142 labels:

143 meat: Meat

144 fish: Fish

145 veg: Vegetables

Listing 5.2: Labels configuration on a pie chart

5.6.2.4 Histogram

As we know, histogram groups numeric data into segmented columns. Be that as it may, it is

possible the definition of an interval in the x-axis and the size of each segment. For instance, in

Listing 5.3, the displayed values will be limited by 0 and 6000, having each segment a length of

500, so we have a total of 12 segments.

5.7 Usability Testing 63

146 interval:

147 start: 0

148 end: 6000

149 size: 500

Listing 5.3: Interval range definition for

Histogram

The specifications object contains the property “database”, “tables” and “x”. However, in case

it is a Firebase Realtime database, the property “x” is not needed as it requires a reducer.

5.6.2.5 Bar Chart

The supported bar chart visualization can be applied in order to represent categorical or temporal

data. The property “domain” indicates which one will be employed, accepting as strings: categor-

ical or temporal. In case it is temporal the rest of the configuration is identical to a time-series.

Otherwise, there are three possible configurations according to three different scenarios:

1. In order to act as a histogram, we must define a property “x” similar to a histogram with the

additional property “y” with the default value “IS_COUNT”.

2. To express categories, and being in the presence of a case scenario where a single variable

can have multiple categories, the property “x” will be the name of that variable and the

property “y”, the value to be represented in the y-axis.

3. Also when expressing categories, imagining there are multiple attributes as part of each data

row. It is only required the definition of “x”, being “x” a list of attributes representing each

one of them a category.

5.7 Usability Testing

Once the mockups were done and a first sketch of the platform coded, usability tests [5, 55] were

conducted. Helping us in the evaluation process and also in identifying usability problems on the

designed interfaces.

5.7.1 Protocol

Fraunhofer Usability Test Protocol2 was followed as it describes the usability testing process with

a preferred level of granularity, from the selection of the users to the evaluation according to

predefined metrics.

2Protocol available in Fraunhofer intranet.

64 Dashboard

5.7.1.1 Users

In a general context, usability testing involves a set of pre-selected and real users as “it is the

most fundamental usability method” [54] and “a focus on usability requires users” [21]. Ideally,

that have a background and a level of familiarization similar to the targeted end-users of the final

platform since they eventually drive the design decisions through their needs.

Five users were selected because, as suggested by Nielsen [54, 53], because it is considered

the optimal number as most of the usability problems are detected and an increased number is

likely to not provide additional information. The selection of the users had in mind the essential

characteristics needed, therefore, every user belonged to the HCI department as they are the end-

users of our application as well as they have a minimum level of familiarization with technology.

5.7.1.2 Setup

The setting and type of space in which the evaluation was conducted were carefully selected

in order to represent a real-life situation. It occurred in the Fraunhofer meeting room, a quiet

environment without anyone surrounding the user besides the testing representative. To the user

it was provided a laptop with a browser installed that was used to display and interact with the

targeted website, so relevant aspects of the intended environment were simulated. Although, the

test settings can probably differ from the normal context of use based on the screen resolution

and the browser used. The web app was running on Firefox 67, on a laptop running Windows 8.0

through a wireless connection, with a screen resolution of 1920x1080 and a size of 15 inches.

5.7.1.3 Test procedure

To achieve our goal with the usability test, a set of procedures had to be followed. Firstly, it was

important to identify what we would be testing and why it was so important, secondly, which users

should be approached taking into consideration the necessary characteristics and finally, how can

we evaluate and measure their performances, which metrics do we require.

That being said, all of that information took a form of a simple script. Composed by a little

introduction and contextualization, a section aiming to describe the general instructions that the

users would require, the tasks to be performed (a total of five tasks), a SUS (System Usability

Scale) questionnaire in order to measure the satisfaction and at the end of the document, a text

area for suggestions.

To the extent of preparing the usability test, a pilot was performed with a length of one session.

Pilot testing helps tuning usability test conditions, in which the main objective is to test the study to

make sure it goes as planned without any mishap, obtaining more reliable results as a consequence

[60].

5.7 Usability Testing 65

Table 5.1: Effectiveness and Efficiency results

Status Task 1 Task 2 Task 3 Task 4 Task 5
C 3 5 0 4 5

CA 2 0 5 1 0
E 0 0 0 0 0

Total 5 5 5 5 5
T 5 5 1 1 5

NT 0 0 4 4 0
Total 5 5 5 5 5

5.7.1.4 Performance and Satisfaction Metrics

Effectiveness based on per cent task completion, frequency of errors, frequency of assists to the

participant from the testers, and frequency of accesses to help or documentation by the participants

during the task. Efficiency based on the time needed to finish the task and satisfaction according

to SUS3 questionnaire. A SUS is “a simple, ten-item scale giving a global view of subjective

assessments of usability” [8], mainly through the final score calculation of the answers to those

scales.

5.7.2 Results

5.7.2.1 Performance Results

In order to evaluate the performance of each one of the participants during the tasks, effectiveness

and efficiency served as metrics. While effectiveness is focused on completeness and accuracy,

efficiency relates commonly, and also in the context of our test, to the mean time required to meet

the criteria for successful completion.

In Table 5.1, we present the effectiveness as well as the efficiency evaluation which was

recorded during the test with the aid of a recording software previously installed on the com-

puter. Consider: C - completed, CA - completed with assistance, E - Error, T - In time, NT - Not

in time.

5.7.2.2 Satisfaction Results

Satisfaction describes a subjective evaluation when using the product and are applied via ques-

tionnaires. Here, the satisfaction metric was measured based on the SUS, consisting of a Likert

scale composed of 10 distinct scales, each one evaluating a specific parameter. Inside the usability

test script provided to the users, Appendix B, the SUS questionnaire was addressed and leading to

the data collection of those answers. The score is then reflected as a value ranging from 0 to 100,

classified according to Table C.1.

3System Usability Scale

66 Dashboard

Calculating the SUS score, we obtained 77.5 (also presented in Appendix C), which classifies

the platform design as a robust “Good”[3].

5.7.3 Evaluation

As part of every test, usability or not, there is always an evaluation followed by an analysis of the

results obtained. Thus, from the analysis of these metrics, it is perceptible that:

• In terms of effectiveness, all users were able to complete their tasks although in some cases

requiring assistance. Tasks 1, 2 and 5 were not challenging at all, while for task 3 and 4

users showed some consistency and needed assistance, either because the guideline was not

completely explicit on what should have been done or because there were design problems

associated.

• In terms of efficiency, there is a strong positive correlation between the tasks that demanded

assistance and the incapability to complete them in time.

• Relatively to satisfaction, it proved consistent although there is enough room to improve

namely in layout.

5.7.4 Discussion

From the suggestions, it was clear there was some resemblance regarding the design problems of

the platform. Although, since it was not possible to implement every single one, they were ordered

by priority, mostly, considering the effects on the chart interpretation.

By a top-bottom priority, they can be distributed as follows: (i) Renaming the chart titles; (ii)

the layout and organization of the components in the interface and the possibility to resize them

according to the window size changes; (iii) The aggregation button in the bar chart should be

highlighted and more self-explanatory; (iv) Separation between the overview area and the chart

itself; Changes to the date picker by removing unnecessary buttons and making more explicit the

range selection.

5.8 Summary

During this chapter, it was discussed the first component of our application architecture — the

client, and the iterative path, composed by an intermediate evaluation and analysis of the inter-

faces, that posteriorly lead to the final product. Each one of the designed UI components has a

purpose, either being the representation of data through graphical visualizations or even to im-

prove the layout organization as well as its interpretation. All of it is achieved by defining the

proper configuration that will later be reflected in the platform interfaces.

Another key component described throughout this chapter was the Usability Tests applied,

where the environment and tools set up tried to mimic a real case scenario complemented with a

process of carefully selecting the participants in order to provide significant and valuable feedback

5.8 Summary 67

that later on, conferred an additionally confidence relative to the design choices. Despite the fact

that from the results obtained, the designed interfaces were satisfactory, improvements could be

addressed in the future.

68 Dashboard

Chapter 6

Case Studies

The goal of this chapter is to define and describe the process that involved applying the solution

developed to real case scenarios, essentially, to validate it and to that end, verifying if it fulfils the

user stories raised.

Regarding that the solution developed comes as an extent of already existing projects and is

built upon them, two different projects were analyzed separately namely, SmartBEAT and Lifana,

in a form of case study diverging from one another in their context, database structure and config-

uration.

6.1 SmartBEAT

SmartBEAT is a project carried by Fraunhofer AICOS, that aims to address the needs of senior

heart failure patients and their formal and informal caregivers by offering an integrated solution

to leverage patient self-care through autonomous condition monitoring and real-time feedback to

their carers. Patients are followed according to specific parameters input: (i) the activity level —

reflecting the number of steps done by the patient; (ii) the weight (iii) heartbeat rate per minute;

(iv) arrhythmia — corresponding to the irregularity of the heartbeat; (v) systolic pressure; (vi) And

lastly, diastolic pressure.

All of this information is collected via an application installed on the patient smartphone.

Some of these actions are executed in background, passively, without user interaction while others

require the patient to be active. In this regard, parameters such as activity level are obtained based

on sensors although for measuring the weight the patient has to use a proper balance and record it.

Also, the application provides an interface in which questionnaires are presented to him so he can

fill them and send that same information to the database.

69

70 Case Studies

Data Structure

This project uses a Firebase Realtime Database, and because it was already in the production

phase, the data structure was already defined. In order to have the retrieved data in an acceptable

format, it was necessary the definition of reducers.

The schema followed, represented through Listing 6.1, has as its root node the collection Users

in which each child document refers to a patient. Inside each one of the patients’ document, there

are two different collections: Measures and Questionnaires. Questionnaires holding documents

referring to a single answer by a unique timestamp, while Measures containing sub-collections

relatively to each registry type, for instance, Activity, Heart, Height. Its sub-documents refer to

each one the measures made identified by the unique timestamp of its registration.

150 {

151 Users:

152 "x":

153 Measures:

154 Activities:

155 1553212800000: 2955

156 ...

157 Weight: ...

158 HeartRate: ...

159 ...

160 QuestionnaireResponses: ...

161 ...

162 }

Listing 6.1: SmartBEAT database structure

Configuration

Here it is presented the main functionalities tested against SmartBEAT as well as their configura-

tion in order to accomplish the end results.

6.1.0.1 Platform

The main configuration of the platform is obtained based on the file “site.yaml” and the files inside

the directory “config/blueprints/pages”. While the first provides the title of the platform the second

gives the pages that will compose the web sidebar. Hence, in the directory “config/blueprints/-

pages”, two different files were added each one representing a separate page. Such configuration

led to two different links in the left sidebar and the title to be set to “Smartbeat” on the platform

interface.

6.1 SmartBEAT 71

6.1.0.2 Pages

The platform is configured having in mind two different pages being, “General Information” and

“Histograms”. The first containing graphical representations such as bar charts and time-series

and the second only histograms, having both pages reflecting data according to multiple sources

such as heart rate, activity level, questionnaire answers, etc. On this regard, each one of these

pages contains a specific configuration file. As an example of its application, Figure 6.1 comes as

an illustration.

163 - type: time series

164 plurality: single

165 title: Activity registry

166 ylabel: Number of steps

167 xlabel: Grouped by week

168 specifications:

169 database: smartbeat

170 table: Activities

171 groupby:

172 time: week

173 operator: avg

Figure 6.1: SmartBEAT time series example

6.1.0.3 Chart Properties

As we know by now, it is possible to change some properties of the chart such as title, labels and

others that are restricted to a specific type of a chart. With this subsection, we intend to test and

validate this functionality. Hence, a simple demonstration will be presented in order to do it.

Starting with title and labels, as seen in Figure 6.1, the configuration defined had “Activity reg-

istry‘” as title, and the x-axis and y-axis defined as “Grouped by week” and “‘Number of steps”,

respectively. Furthermore, some charts differ from one another in the configuration they offer, for

instance, time-series allow the aggregation of data per hour, day, week and month. While others

such a histogram allows the definition of the x range and the in-between range values. Subse-

quently, in this example, the “groupby” was set to week and its aggregation operator to average.

Both examples are expressed through the same figure, and it is clear that the data is being grouped

by week where the different four points registered to reflect the last month recordings (4 weeks).

In addition, the chart side configurations are exactly the way they were defined. Having all this

into consideration, we believe this proves the functionality is working as intended.

72 Case Studies

Figure 6.2: Application of a SmartBEAT reducer

6.1.0.4 Users

In this context and at the time that the validation was made, only some of the patients from the

whole set were needed (as others already had finished their trial or some of the accounts were

made regarding testing purposes). Thus, as we support alternatives to overcome this problem,

here it was selected the approach of defining a user-mapping file, meaning that only the users

presented in that file would actually appear in the platform.

The output resulted in the provided users being displayed in the form of a table, also, the user

identifier was mapped accordingly to the specified via the file “config-file.yaml”. Proving once

again, the desired functionality is working as expected.

6.1.0.5 Reducers

Referring back to Section 6.1, the data structure was not compatible with our convention mainly

the project had already started when the validation came. So it was necessary the definition of

reducers more particularly, seven reducers, which are in other words, functions that convert the

data retrieved to the format that is expected to be received by the front-end in order to be able to

represent it through the corresponding chart.

As specified in Figure 6.2 and for the sake of simplicity, only one reducer is represented in order

to provide some guidance and explanation. Here we can see that the input data is an object with

multiple entries, being timestamp the key and the activity level the value. Which, after being

submitted to the reducer, a reducer related to a time-series component, it is, naturally, converted to

an object with two arrays: one holding the values from the x-axis and the second the values from

the y-axis.

6.2 Lifana

The last case study to which the proposed solution was confronted with, is the Lifana project.

Lifana is also a project designed by Fraunhofer AICOS, that acknowledges the fact that many

6.2 Lifana 73

elderly suffer from nutritional problems that can cause chronic health conditions such as high

blood pressure or cardiovascular diseases. The primary goal of it is to develop and evaluate the

Lifana Nutrition Solution that supports healthy nutrition through all phases of ageing, from active

seniors to elderly users and patients in need of daily care. Individual meal recommendations are

provided based on personal advice from professional nutritionists in which it is complemented

with a decision support system so the patients are able to change their eating habits in order to

maintain a healthier lifestyle.

This product can be seen as a recommender system that takes the form of a mobile application,

where patients are able to set their preferences while having some guidance from criteria and

rules set by health-care professionals. The prototype made, was submitted to field trials (that

already started), applied in both Portugal and The Netherlands in order to test its usability and

will have a twelve-month duration length. Besides the common analytics related to the application

use (e.g. screens navigated to, mobile phones OS, periods of time which it is used, etc) being

collected through Firebase, as we will see later on, there is also other information that requires

to be analyzed patient by patient in order to understand how the product is evolving and if it is

becoming more and more mature.

174 Users:

175 "id":

176 mealPlanTimestamp: 1560758076593,

177 ...

178 trialUser: true

179 ...

180 SurveyNps:

181 "idSurvey":

182 answer: 3,

183 timestamp: 1561053500331,

184 user: "user_id"

185 SurveyPlanAdequated: ...,

186 SurveyPlanFollowed: ...,

Listing 6.2: Lifana Cloudfirestore database structure

Data Structure

The data structure is quite different comparatively to SmartBEAT, mostly because, it has two

distinct databases: Cloudfirestore and MySQL, linked to each other based on the user id from

Cloudfirestore and the “external_id” field from the corresponding user table in MySQL database.

As the test is having in mind the usability, design problems and functionality, a set of question-

naires from time to time appear in the screen of the application, mainly, to collect feedback. This

questionnaires consist of a set of Likert scales ranging from zero to five and can evaluate, for

74 Case Studies

Figure 6.3: Lifana SQL structure

instance, whether the application provides adequate recommendations based on the patient prefer-

ence or not, and these ones are stored in Cloudfirestore. In the other hand, information relatively

to recommendations, ingredients, user preferences, are stored in MySQL.

The Cloudfirestore structure follows the schema defined as a convention by us, totally flat and

denormalized. As it can be seen in Listing 6.2, there is naturally a collection of users that refer to

the patients’ target by the field trial, and a set of collections, similar in structure, representing the

different questionnaires applied. Each one of its entries contains a reference for a unique user.

Regarding MySQL, and as aforementioned, it comports the majority of the project data. However,

most of it is useless for the process of monitoring the field trial, so the simplified structure that was

used for validating our application is presented in Figure 6.3. In order to test it, we chose to pick

up an example representing an N-M and a 1-M relation to cover the typical set up. Moreover, there

is a table named “Ingredient” that has an id, name, dose, protein and many more as attributes and

naturally, a table for the participants called “User”. Because a user can have multiple ingredients

associated and vice-versa, there is another table that relates both of them, designated by “User-

RestrictionIngredient”, containing foreign keys to each one of them. In addition, there is a table

“ActivityLevel” that references a participant.

Configuration

Through this section, the remaining most important functionalities, that were not tested with

SmartBEAT, are covered.

6.2 Lifana 75

6.2.0.1 Multiple Database Connections

The requirement of supporting multiple database connections arrived as a necessity of Lifana

handling two distinct databases. Therefore, it is here that we will be testing this feature by defining

in the file “site.yaml”, two different databases components. As we can see in Listing 6.3, the

“databases” properties consist in a list of two databases, one being a MySQL database where

its connection is made accordingly to the URI specified, and the other being a Cloudfirestore

database, where the connection is made based on the property “config”. The establishment of these

connections is in conformity to the Section 4.8.2.2, however, for obvious reasons, the configuration

accesses are not the ones defined in the example.

187 databases:

188 - id: lifanaMySQL

189 type: mysql

190 uri: mysql://username:password@i-662.cloud.fraunhofer.pt

:30306/CordonGrisPT

191 ...

192 - id: lifanaFirebase

193 type: firebase

194 subtype: cloudfirestore

195 config:

196 apiKey: ’random_key’

197 authDomain: ’lifana-app-abcdef.firebaseapp.com’

198 databaseURL: ’https://lifana-app-abcdef.firebaseio.com’

199 projectId: ’lifana-app-abcdef’

200 storageBucket: ’lifana-app-abcdef.appspot.com’

201 messagingSenderId: ’63512332875’

202 ...

Listing 6.3: Lifana multiple database configuration

Once the server starts, the initial process involves the connection to all databases which for SQL,

in specific, also involves the incorporation of the models and their associations. Through this

example, it is shown that both connections were established correctly so, consequently, the server

started listening and handling requests normally.

6.2.0.2 UI Filtering

Another functionality from our platform is the filtering that can be applied to both participants

and the time range. For testing the time filtering, as demonstrated in Figure 6.4, it was defined as

a custom time range from 1st to 30th of June. The time-series charts, represented on the whole

page, changed accordingly to the date set.

In relation to participants filter, it is possible to switch between an overview and more focused

view through the selection of a particular participant or by clearing its selection. This feature was

76 Case Studies

Figure 6.4: Lifana time filtering example

tested based on two examples, the first representing a case scenario where there is not any user

selected so the aggregated data is retrieved while the second representing that when selecting a

participant, for instance the participant number 29, the chart changes its data accordingly to that

same participant.

6.2.0.3 Modelling and query

A crucial feature from our application is the SQL support, which is achieved through the use of the

Sequelize library. Also important, are the features implemented based on the offered API such as

the inner join, attribute and filtering selection. Regarding the fact that Lifana uses, as mentioned

before, a MySQL database, it served as a validation of these aspects.

In the example below, Listing 6.4, the bar chart represented aims to act as a histogram by provid-

ing the frequency of each ingredient in the food restrictions defined among all participants from

the field trial. In order to work, the database structure for SQL was modelled according to the

specifications stated in Section 4.8.2.4, where both “Ingredient” and “User” tables are linked to

each other based on the “through” property that is defined as being “UserRestrictionIngredient”.

Not only N-M relations are possible but also 1-M. We set up an example where a time-series chart

is used to represent the activity level that is collected over the past days related to each user. The

“ActivityLevel” table contains a reference to a user, a date which is stored in the format “yyyy-

mm-dd hh:mm:ss” and a value, corresponding to the level registered. The modelling procedure

involved, as shown in Listing 6.5, the definition of a “hasMany” relation in the table “User”,

as it is the one being referenced, and the complementary relation “belongsTo” declared inside

“ActivityLevel”.

6.3 Summary 77

203 structure:

204 - User:

205 PK: idUser

206 relations:

207 - type: belongsToMany

208 target: Ingredient

209 through:

UserRestrictionIngredient

210 FK: User_idUser

211 - UserRestrictionIngredient:

212 atributes: [Ingredient_idIngredient

, User_idUser]

213 - Ingredient:

214 PK: idIngredient

215 atributes: [name]

216 relations:

217 - type: belongsToMany

218 target: User

219 through:

UserRestrictionIngredient

220 FK: Ingredient_idIngredient

Listing 6.4: Lifana N-M modelling results

221 structure:

222 - User:

223 ...

224 relations:

225 ...

226 - type: hasMany

227 target: ActivityLevel

228 - ActivityLevel:

229 PK: idActivityLevel

230 attributes: [value, date]

231 relations:

232 - type: belongsTo

233 target: User

234 FK: User_idUser

Listing 6.5: Lifana 1-M modelling

results

6.3 Summary

This chapter had the established goal of validating the solution proposed and developed during the

past months. Here, in order to cover a wider number of user stories we tested our solution against

two different projects that came to be, throughout the whole chapter, case studies. We started by

doing a brief description and contextualization followed by an analysis of the database structure

and only then we proceed to enumerate the tests performed. Since both projects differed in their

database structure and configuration, thus, different levels of testing were done, as we tried to not

repeat the same tests for different projects, we ended up validating and prove that the application

works as expected. Although, worth to mention that, improvements could be addressed in the

future.

78 Case Studies

Chapter 7

Conclusions and Future Work

In this chapter, the conclusions derived from the work carried on throughout the conception of this

dissertation are presented. In addition, these conclusions are complemented with a description of

the features that were not implemented but that could be considered as future work.

7.1 Conclusions

Remote monitoring a field trial through a web application has the advantage of being simple to

use as well as being accessible everywhere, although building one from scratch whenever there

is a field trial comes at a great cost. Be that as it may, the work demonstrated here comes, in

simple words, in the form of a web platform representing agnostic data and that could be adapted

to multiple projects.

During the literature review in Chapter 2, we were able to understand the main categorization of

data based on their characteristics into types (e.g. graphs, charts, maps, diagrams, etc). Not only

that but also, the data visualization techniques that are applied in the current days and how they

represent the data, providing better or worse insights compared to others based on these same

data characteristics. Another key factor found was related to the conception of systems based on

metadata, a structural way of defining a configuration such that it can be interpreted by a computer

according to an existing encoding schema represented such as JSON or YAML. As a sense of

inspiration from all the information and knowledge obtained during this phase of literature review,

the application built follows a 3-tier architecture composed by a client, a server and a database

provider. The server is responsible for providing services to the client while requesting data from

the database, thus acting as a mediator between the two parts.

Having in mind the goal of this dissertation as well as the target end-users (researchers), it was

important to have a deeper understanding of the needs and requirements of the platform, which

led to the conception of two semi-structured interviews aiming to both researchers and develop-

ers. From the developers, we were able to identify common databases used, data structures, data

79

80 Conclusions and Future Work

registration frequency while from the researchers we intended to understand common problems

but also good practices related to the user interfaces and information needs. The development

of the mediator had considered the most important database types in order to support them, that

consequently, led to the usage of Firebase databases and Sequelize as an abstraction to SQL ones.

On the other hand, the conception of the user interfaces involved analysing different interfaces

and well-design dashboards and once extracted the design guidelines filtered by our necessities,

we were able to conduct usability tests to evaluate them according to specific metrics. The results

from the usability tests were positive, although at the same time revealing a few design problems.

Afterwards, the application was subject of testing for two different case studies with different con-

texts, database types and structure. From this, we were able to test most of the features that were

initially established, thus, giving us confidence about the correctness of them. In conclusion, the

proposed solution confirms our hypothesis and demonstrates that is possible to use a configurable

application for monitoring field trials.

7.2 Future Work

This section aims to explain the work that should be carried out, having in mind a mature and

robust product built upon the current state of the application. For the sake of simplicity, only the

most important are enumerated:

Alert System — The alert system, for this platform, could consist in defining a set of rules in

the database configuration file. That, whenever a value for a specified attribute surpassed

a defined threshold, either a notification would be generated requiring for that purpose the

storage of it (e.g. file system, local or remote database, etc) or the number of trespassed rules

would be provided when retrieving the database data.

YAML Validation — This feature is one of the most important since it could immensely decrease

the time required for configuring a new instance of the platform. Ideally, it consisted in hav-

ing a set of defined rules for the configuration syntax, therefore, in case the user misspelt

a word, inserted a non-existing property or provided the wrong property value, a message

would be displayed. There are multiple ways of doing this; example of them are: (i) when-

ever the service starts, it firstly reads and analyzes all the files inside the “config” folder,

through a JavaScript module that should be implemented, and only then it proceeds with the

normal execution; (ii) the use of a JavaScript library named “YAML-Validator” that already

allows the definition of the syntax to be confronted with; (iii) a Visual Studio Code plugin

that could give, in real time, suggestions or prompt the errors found.

Compare Data Between Participants — Such a feature would allow the researcher to analyze

multiples participants having the same reference through a single graphical visualization.

It would be quite a useful tool for a researcher in order to compare different participants

progression during the same interval of time.

7.2 Future Work 81

Authentication — The implementation of an authentication system could allow the definition of

roles, thus, each role could have restricted permissions on what information could it have

access to.

Additional Representation — More graphical representations could be supported, for instance,

to represent tabular data.

Overall, the implementation of these features would improve the user experience perceived by both

researchers and developers, while facilitating the process of generating an instance of a platform.

82 Conclusions and Future Work

References

[1] Christopher Ahlberg and Ben Shneiderman. Visual information seeking: Tight coupling of
dynamic query filters with starfield displays. In The Craft of Information Visualization, pages
7–13. Elsevier, 2003.

[2] Chandrajit Bajaj. Data Visualization Techniques. John Willey & sons, 1998.

[3] Aaron Bangor, Philip Kortum, and James Miller. Determining what individual sus scores
mean: Adding an adjective rating scale. Journal of usability studies, 4(3):114–123, 2009.

[4] Louise Barkhuus and Jennifer A. Rode. From mice to men – 24 years of evaluation in chi,
2007.

[5] Brenda Battleson, Austin Booth, and Jane Weintrop. Usability testing of an academic library
web site: a case study. The Journal of Academic Librarianship, 27(3):188–198, 2001.

[6] Alan Beaulieu. Learning SQL: Master SQL Fundamentals. " O’Reilly Media, Inc.", 2009.

[7] Michael Blakeley, Syme Kutz, and Carl Backstrom. Web-based user interface for searching
metadata-driven relational databases, November 30 2010. US Patent 7,844,587.

[8] John Brooke et al. Sus-a quick and dirty usability scale. Usability evaluation in industry,
189(194):4–7, 1996.

[9] Barry Brown, Stuart Reeves, and Scott Sherwood. Into the wild: challenges and opportuni-
ties for field trial methods. In Proceedings of the SIGCHI conference on human factors in
computing systems, pages 1657–1666. ACM, 2011.

[10] Andreas Buja, John Alan McDonald, John Michalak, and Werner Stuetzle. Interactive data
visualization using focusing and linking. In Visualization, pages 156–163. IEEE, 1991.

[11] Mackinlay Card. Readings in information visualization: using vision to think. Morgan
Kaufmann, 1999.

[12] Stuart K Card. The psychology of human-computer interactionCard, S. K. (2017). The psy-
chology of human-computer interaction. CRC Press, 2017.

[13] Chun-houh Chen, Wolfgang Karl Härdle, and Antony Unwin. Handbook of data visualiza-
tion. Springer Science & Business Media, 2007.

[14] Ge Jackie Chen. Visualizations for mental health topic models. PhD thesis, Massachusetts
Institute of Technology, 2014.

[15] Edgar F Codd. Extending the database relational model to capture more meaning. ACM
Transactions on Database Systems (TODS), 4(4):397–434, 1979.

83

84 REFERENCES

[16] Adrien Coyette, Suzanne Kieffer, and Jean Vanderdonckt. Multi-fidelity prototyping of user
interfaces. In IFIP Conference on Human-Computer Interaction, pages 150–164. Springer,
2007.

[17] Adrien Coyette and Jean Vanderdonckt. A sketching tool for designing anyuser, anyplatform,
anywhere user interfaces. In IFIP Conference on Human-Computer Interaction, pages 550–
564. Springer, 2005.

[18] Patrick M Dengler, Arvind K Krishnan, Jagdish Singh, Lawrence M Sanchez, Sai Shankar,
Satish Kumar Chittamuru, Zoltan Pekic, Nabarun Mondal, Namendra Kumar, Ricard Roma
i Dalfó, et al. Metadata driven user interface, January 10 2012. US Patent 8,095,565.

[19] Aniruddha M. Deshpande, Richard N. Shiffman, and Prakash M. Nadkarni. Metadata-driven
delphi rating on the internet. Computer Methods and Programs in Biomedicine, 77(1):49 –
56, 2005.

[20] Ronald J Dovich and Peter J Eppele. Metadata-driven data presentation module for database
system, October 23 2001. US Patent 6,308,168.

[21] Joseph S Dumas, Joseph S Dumas, and Janice Redish. A practical guide to usability testing.
Intellect books, 1999.

[22] Erik Duval, Wayne Hodgins, Stuart Sutton, and Stuart L Weibel. Metadata principles and
practicalities. D-lib Magazine, 8(4):1082–9873, 2002.

[23] Usama Fayyad, Georges G Grinstein, and Andreas Wierse, editors. Information Visualiza-
tion in Data Mining and Knowledge Discovery. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2002.

[24] Artemij Fedosejev. React. js Essentials. Packt Publishing Ltd, 2015.

[25] J-D Fekete and Catherine Plaisant. Interactive information visualization of a million items.
In IEEE Symposium on Information Visualization, 2002. INFOVIS 2002., pages 117–124.
IEEE, 2002.

[26] Joaquim Ferreira, Muhammad Alam, Bruno Fernandes, Luis Silva, João Almeida, Lara
Moura, Rui Costa, Giovanni Iovino, and Elena Cordiviola. Cooperative sensing for improved
traffic efficiency: The highway field trial. Computer Networks, 143:82–97, oct 2018.

[27] Stephen Few. Information dashboard design. 2006.

[28] Stephen Few and Perceptual Edge. Dashboard confusion revisited. Perceptual Edge, pages
1–6, 2007.

[29] Firebase. Choose a Database: Cloud Firestore or Realtime Database . https://
firebase.google.com/docs/database/rtdb-vs-firestore. [Online; accessed
18-February-2019].

[30] Michael B First. The importance of developmental field trials in the revision of psychiatric
classifications. The Lancet Psychiatry, 3(6):579–584, jun 2016.

[31] Kathryn Fitch, Steven J Bernstein, Marfa D Aguilar, Bernard Burnand, and Juan R LaCalle.
The RAND/UCLA appropriateness method user’s manual. Technical report, RAND CORP
SANTA MONICA CA, 2001.

https://firebase.google.com/docs/database/rtdb-vs-firestore
https://firebase.google.com/docs/database/rtdb-vs-firestore

REFERENCES 85

[32] Michael Friendly. A brief history of data visualization. In Handbook of data visualization,
pages 15–56. Springer, 2008.

[33] Cory Gackenheimer. Introduction to React. Apress, 2015.

[34] Amy Genender-Feltheimer. Visualizing High Dimensional and Big Data. Procedia Com-
puter Science, 140:112–121, jan 2018.

[35] Terry Halpin and Tony Morgan. Information modeling and relational databases. Morgan
Kaufmann, 2010.

[36] James Douglas Hamilton. Time series analysis, volume 2. NJ: Princeton university press,
Princeton, United States of America, 1994.

[37] Jeffrey Heer, Michael Bostock, Vadim Ogievetsky, et al. A tour through the visualization
zoo. Commun. Acm, 53(6):59–67, 2010.

[38] IDC. The Digital Universe of Opportunities. https://www.emc.com/collateral/
analyst-reports/idc-digital-universe-2014.pdf. [Online; accessed 14-
December-2018].

[39] Christopher Ireland, David Bowers, Michael Newton, and Kevin Waugh. Understanding
object-relational mapping: A framework based approach. International Journal on Advances
in Software Volume 1, Numbers 2&3, 2009, 2009.

[40] Channu Kambalyal. 3-tier architecture. Retrieved On, 2, 2010.

[41] Daniel A. Keim. Information Visualization and Visual Data Mining. IEEE Transactions on
Visualization & Computer Graphics, 7(14):8, 2002.

[42] Andreas Kerren, John Stasko, Jean-Daniel Fekete, and Chris North. Information Visualiza-
tion: Human-Centered Issues and Perspectives, volume 4950. Springer, 2008.

[43] Stephen M. Kosslyn. Understanding charts and graphs. Applied Cognitive Psychology,
3(3):185–225, jul 1989.

[44] Philippe Kruchten. The 4+1 view model of architecture. IEEE Software, 12:45–50, 11 1995.

[45] Steve LaValle, Eric Lesser, Rebecca Shockley, Michael S Hopkins, and Nina Kruschwitz.
Big data, analytics and the path from insights to value. MIT sloan management review,
52(2):21, 2011.

[46] Matthew L Lee and Anind K Dey. Lifelogging memory appliance for people with episodic
memory impairment. In Proceedings of the 10th international conference on Ubiquitous
computing, pages 44–53. ACM, 2008.

[47] John Light. Information visualization in data mining and knowledge discovery. chapter
Portable Document Indexes, pages 99–102. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA, 2002.

[48] Paul D Manuel and Jarallah AlGhamdi. A data-centric design for n-tier architecture. Infor-
mation Sciences, 150(3-4):195–206, apr 2003.

[49] Marius Muji. Metadata Repositories in Database-driven Information Systems. Procedia
Technology, 19:816–819, 2015.

https://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf
https://www.emc.com/collateral/analyst-reports/idc-digital-universe-2014.pdf

86 REFERENCES

[50] Scott Murray. Interactive Data Visualization for the Web: An Introduction to Designing with.
O’Reilly Media, Inc., 2017.

[51] National Information Standards Organization (U.S.). Understanding metadata. NISO Press,
2004.

[52] Kawa Nazemi, Dirk Burkhardt, David Hoppe, Mariam Nazemi, and Jörn Kohlhammer. Web-
based Evaluation of Information Visualization. Procedia Manufacturing, 3:5527–5534, jan
2015.

[53] Jakob Nielsen. How many test users in a usability study? NNGroup.com [Online; posted
04-June-2012].

[54] Jakob Nielsen. Usability engineering. Elsevier, 1994.

[55] Jakob Nielsen. Usability inspection methods. In Conference companion on Human factors
in computing systems, pages 413–414. ACM, 1994.

[56] Leonard Richardson and Sam Ruby. RESTful web services. O’Reilly Media, Inc., 2008.

[57] Craig Russell. Bridging the object-relational divide. Queue, 6(3):18–28, 2008.

[58] Silvia Santini and Daniel Rauch. Minos: A generic tool for sensor data acquisition and
storage. In 19th International Conference on Scientific and Statistical Database Management
IEEE, 2008.

[59] Dimas Gilang Saputra and Fazat Nur Azizah. A Metadata Approach for Building Web Ap-
plication User Interface. Procedia Technology, 11:903–911, jan 2013.

[60] Amy Schade. Pilot testing: Getting it right (before) the first time. NNGroup.com [Online;
posted 05-April-2015].

[61] Ben Steichen, Giuseppe Carenini, and Cristina Conati. User-adaptive information visualiza-
tion: using eye gaze data to infer visualization tasks and user cognitive abilities. In Pro-
ceedings of the 2013 international conference on Intelligent user interfaces, pages 317–328.
ACM, 2013.

[62] Edward Tufte. The visual display of quantitative informations 2nd ed. Graphics Press,
Cheshire, Conn., 2001.

[63] Gio Wiederhold. Mediators in the architecture of future information systems. Computer,
25(3):38–49, 1992.

[64] LO Yusuf, O Folorunso, AT Akinwale, and AI Adejumobi. Visualizing the behaviour of re-
inforced concrete beam structure under various types of loadings. African Journal of Math-
ematics and Computer Science Research, 2(10):202–217, 2009.

[65] Qi Zhang. Web-based medical data visualization and information sharing towards application
in distributed diagnosis. Informatics in Medicine Unlocked, 2018.

https://www.nngroup.com/articles/how-many-test-users/
https://www.nngroup.com/articles/pilot-testing/

Appendix A

Semi-structured Interviews

87

Semi-structured Interview - Researchers

<Introdução>
Bom dia, o meu nome é Pedro Lima e no âmbito da minha dissertação de mestrado terei de
conceber uma plataforma para monitorização de pilotos (field trials). Aquilo que é pretendido
é que esta seja genérica, podendo ser adaptada a outros projetos com o intuito de facilitar o
trabalho dos investigadores. No entanto, é preciso primeiro perceber os end-users
(investigadores), o processo atual, as dificuldades encontradas e possíveis sugestões,
sendo esse o objetivo fundamental desta entrevista.

Q1. Com base na metodologia aplicada até então, como decorre atualmente o processo de
monitorização dos participantes durante um piloto?

Q1.1. Consegue-me enumerar as principais dificuldades com que se depara?
Q1.2. Consegue dar exemplos reais para cada uma dessas dificuldades?
Q1.3. Falou de dificuldades em X, considera que existe algo que possa ser feito a esse

respeito?
Q1.4. De acordo com o que mencionou, quais as condições necessárias para se

encontrar na presença de um cenário ideal?

Q2. Que tipo de registos são normalmente feitos e que viabilizam a interpretação dos
dados?

Q2.1. É possível demonstrar e exemplificar com casos reais?

Q3. Quais as principais métricas que são analisadas aquando do acompanhamento dos
participantes? (Médias, somatórios, números totais, etc)

Q3.1. Existe alguma em especial que considera relevante e que não é tida em conta?

Q4. Quais são as visualizações gráficas mais utilizadas em projetos passados?

Q4.1. Essas visualizações são satisfatórias face ao propósito? Em caso negativo, porque
não o são?

Q4.2. Segundo a sua opinião, dentro desse espectro, quais são aquelas que transmitem
com mais eficácia a informação?

Q4.3. As visualizações comportam algum tipo de interação com o utilizador? Por
exemplo zoom, selection, etc. Julga ser uma mais valia ou representações estáticas
satisfazem plenamente as necessidades?

Q4.4. Que outras possíveis representações acha que fariam sentido incorporar e que
eventualmente ajudariam neste processo?

Q4.5. Seria útil poder exportar esses gráficos?

Q5. Consegue enumerar quais as principais características comuns nas plataformas web
enquanto ferramenta de monitorização?

Q5.1. Essas mesmas características são úteis ou podem ser melhoradas?
Q5.2. Que features devesse a plataforma ser dotada de forma a facilitar o seu trabalho?

Semi-structured Interview - Developers

<Introdução>
Bom dia, o meu nome é Pedro Lima e no âmbito da minha dissertação de mestrado terei de
conceber uma plataforma para monitorização de pilotos (field trials). Aquilo que é pretendido
é que esta seja genérica, podendo ser adaptada a outros projetos com o intuito de facilitar o
trabalho dos investigadores. No entanto, é preciso primeiro perceber os end-users
(investigadores), o processo atual, as dificuldades encontradas e possíveis sugestões,
sendo esse o objetivo fundamental desta entrevista.

Q1. Pode descrever, de forma geral, como é feito atualmente o registo de dados dos pilotos
e de que forma?
Q1.1. A solução é feita de raiz ou servindo-se de ferramentas já existentes?
Q1.2. (Se serve-se de ferramentas já existentes) Que ferramentas ou soluções são essas
adotadas para auxiliar no processo de analytics? (Escolha de base de dados, paradigmas -
SQL ou NoSQL).
Q1.3. Ordene-as da mais utilizada para a menos utilizada.
Q1.4. (No caso de mencionar Firebase) Que tipo é usado Cloud Firestore ou Realtime
database?
Q1.5. De acordo com a sua experiência, no futuro pensa voltar a usar essas ferramentas?

Q2. Que registos são usualmente feitos?
Q2.1. Pode demonstrar com exemplos? Se possível através de um diagrama UML.
Q2.2. Pode falar-me mais acerca desses exemplos?
Q2.3. Tipicamente, qual a dimensão média da base de dados, tendo em conta apenas as
usadas para processos de monitorização.

Q3. Em projectos que envolvem pilotos com utilizadores quais as principais estruturas de
dados usadas (classificações/ratings, contagens, frequências, medições)?

Q4. Os dados sujeitos à monitorização são normalmente de que domínio? (categóricos,
discretos, contínuos ou textuais)
Q4.1 Quais os mais e menos frequentes?

Q5. Os dados coletados têm, sempre ou maioritariamente das vezes, um registo temporal
associado? (Por exemplo à semelhança do Sequelize que guarda o registo do createdAt e
updatedAt)
Q5.1 Esses dados estão sempre associados a um participante, certo? (Confirmação)

Q6. A base de dados para efeitos de monitorização encontra-se normalmente integrada
com a base de dados do projeto ou separada? São independentes (i.e as tabelas para
analytics pode não precisar de relações/ligações com as tabelas relacionadas com a lógica
de negócio da aplicação se for o caso)

90 Semi-structured Interviews

Appendix B

Usability Test Document

91

Informação pessoal:

Idade:

Browser usado normalmente:

Instruções gerais:

O sistema encontra-se dividido em múltiplas seções. A secção ‘Walking Activity’ alberga os
registos relacionados com o número de passos dados pelos participantes. A secção
‘Questionnaire responses’ dados acerca da resposta dada pelos participantes ao diferentes
questionários. A secção ‘Swimming Activity’, contendo informação relativa à prática de
natação e por fim, ‘Heart Measurements’ contendo registos de batimento cardíaco e da sua
irregularidade assim como da pressão sistólica e diastólica.

Tarefas:

1. Identifique o número máximo de passos dados num dia, pelo participante número 1,
durante o mês de Fevereiro.

2. Agora, faça o mesmo mas analisando a partir da informação agregada de todos os
utilizadores do sistema.

3. Consegue enumerar os intervalos de números de passos, nos quais o participante
número dois possui uma frequência equivalente a zero?

4. Identifique agora, ainda para o mesmo participante, os valores máximos e mínimos
registados para cada uma das medidas coletadas referentes ao coração (batimento
cardíaco por minuto, irregularidade, pressão sistólica e diastólica).

5. Procure pelo utilizador número 50 na lista de participantes. Seguidamente, remova-o
enquanto participante selecionado.

Questionário - SUS (System Usability Scale)

1. Eu acho que gostaria de
usar este sistema com
frequência.

Discordo
Totalmente

1
2 3 4

Concordo
Totalmente

5

2. Eu acho o sistema
desnecessariamente complexo.

Discordo
Totalmente

1
2 3 4

Concordo
Totalmente

5

3. Eu achei o sistema fácil de usar.

Discordo
Totalmente

1
2 3 4

Concordo
Totalmente

5

4. Eu acho que precisaria de ajuda
de uma pessoa com
conhecimentos técnicos para
usar o sistema.

Discordo
Totalmente

1
2 3 4

Concordo
Totalmente

5

5. Eu acho que as várias funções
do sistema estão muito bem
integradas.

Discordo
Totalmente

1
2 3 4

Concordo
Totalmente

5

6. Eu acho que o sistema
apresenta muita inconsistência.

Discordo
Totalmente

1
2 3 4

Concordo
Totalmente

5

7. Eu imagino que as pessoas
aprenderão como usar este
sistema rapidamente.

Discordo
Totalmente

1
2 3 4

Concordo
Totalmente

5

8. Eu achei o sistema dificil de
usar.

Discordo
Totalmente

1
2 3 4

Concordo
Totalmente

5

9. Eu senti-me confiante ao usar o
sistema.

Discordo
Totalmente

1
2 3 4

Concordo
Totalmente

5

10. Eu precisei de aprender várias
coisas novas antes de
conseguir usar o sistema.

Discordo
Totalmente

1
2 3 4

Concordo
Totalmente

5

Sugestões:

Appendix C

System Usabiliy Scale

C.1 Observations

The script given to the participants for the usability test was composed, at the end of it, by a text

area for suggestions and observations where they were encouraged to provide relevant feedback

which consequently, that feedback aided us in understanding existing design problems and where

we should have focused our attention. Despite the time available, only a few could be taken into

the development stage and the rest of it to be considered in future work.

Here, both verbal and textual feedback given by the participants will be presented in conformity

to the interviews.

C.1.1 Participant 1

Age: 32

Common used browser: Chrome

• “The charts should have a better designation since it was a little confusing, for instance, the

one containing the heart measurements, Bp registry as a title is not that clear.”

• “Better adaption of the components to the window size.”

C.1.2 Participant 2

Age: 22

Common used browser: Mozilla Firefox and Opera

• “In the option to adjust the temporal range of the data visualized on the chart, the overview

should be separated from the rest of the chart and include an icon allusive to the functionality

(a magnifying glass icon, as an example”

• “The range selection of dates should be explicit in some manner.”

95

96 System Usabiliy Scale

• “Should highlight the element of the selection of the aggregation operator (min, max, etc)

displayed in the "Bp by attribute" chart.”

• “The chart titles should be renamed in order to be more descriptive.”

C.1.3 Participant 3

Age: 23

Common used browser: Chrome and Mozilla Firefox

• “Internal buttons that display the date from the date picker are not necessary since they are

just repeating information and also, they have the form of a button but are not interactable.”

• “In the heart measurements chart it is not perceptible the aggregation being made if it is the

average of the maximum, the minimum or the average of values.”

• “The second chart was not visible, a better layout of the components should be considered."

C.1.4 Participant 4

Age: 25

Common used browser: Firefox

• “In my particular case, because of my practice, my eyes were focused too much on the

sidebar menu and in the central area. Minor options in the upper right corner of the screen

weren’t inside of my field of vision. Although it was just a question of paying more atten-

tion.”

C.1.5 Participant 5

Age: 27

Common used browser: Chrome

• “Platform should have a better schema color, a set of colors less fluorescent.”

• “Search should be more intuitive.”

C.2 SUS Score Calculation

Table C.1: SUS system classification

>= 95 >= 85 >= 72 >= 52 >= 38 < 38
Best imaginable Excellent Good OK/Fair Poor Worst imaginable

The score calculation is done according to a specific set of rules [8]:

C.2 SUS Score Calculation 97

Table C.2: Satisfaction results from SUS

User Scale 1 Scale 2 Scale 3 Scale 4 Scale 5 Scale 6 Scale 7 Scale 8 Scale 9 Scale
10

U1 4 2 3 3 4 2 4 2 3 3
U2 4 3 4 4 4 2 4 3 3 2
U3 5 2 4 1 5 4 5 2 4 1
U4 5 3 4 2 5 1 5 2 4 1
U5 5 1 4 2 5 2 5 1 5 1
Mean 4.6 2.16 3.8 2.4 4.6 2.2 4.6 2 3.8 1.6
Standard
Devia-
tion

0.55 0.75 0.45 1.14 0.55 1.1 0.55 0.7 0.84 0.89

Max 5 3 4 4 5 4 5 3 5 3
Min 4 1 3 1 4 1 4 1 3 1

1. Sum the contributions from each question.

2. For every question with an odd number (1,3,5,7,9), subtract the scale position by 1.

3. For every question with an even number, subtract the scale position from 5.

4. Multiply the sum of the scores by 2.5.

98 System Usabiliy Scale

Appendix D

Usability Test Scenarios, Tasks and
Preparation

D.1 Preparation

To the extent of preparing the usability test, a pilot was performed with a length of one session.

Pilot testing helps tuning usability test conditions, in which the main objective is to test the study to

make sure it goes as planned without any mishap, obtaining more reliable results as a consequence

[60]. There are many advantages from its use, but in the context of our study the most important

were: (i) Rehearsal - it prepared us for improvisations just as in a real-life situations and guaranteed

that the website was working, the script printed and the recording software installed; (ii) Tests

the tasks - It allowed us to test the tasks, if they were possible and if the written text was self-

explanatory or it needed further explanation; (iii) Timing - We were able to test how much time

was required for each task and estimate the possible duration of each interview;

After this test, the script was reformulated as well as the instructions given to the users. Nev-

ertheless, since the user participating in this pilot already knew a priori the platform, the timing

stipulated was somehow biased.

D.2 Scenarios

Scenario 1: The maximum activity level registered and the corresponding day for participant

number 1 in February 2019

Sub-tasks: (i) Click on the Activity tab displayed in the left sidebar of the screen; (ii) Select

participant number 1; (iii) Select the whole February month; (iv) Hover the maximum registered

value;

Criteria for successful completion of the goal of each scenario: Participant identified the max-

imum level as 7675 and the day as 9th of February.

Maximum time limit for completing the scenario: 60 seconds.

99

100 Usability Test Scenarios, Tasks and Preparation

Policies and procedures for interaction between tester(s) and test participants: Whenever the

participant asks for help or takes too long to complete a task or a sub-task, the tester is allowed to

intervene.

Scenario 2: The maximum activity level registered and the corresponding day considering the

overall participants’ registry.

Sub-tasks: Starting on the home page: (i) Click on the Activity tab displayed in the left sidebar of

the screen; (ii) Select the whole February month if not selected already; (iii) Hover the maximum

registered value;

Starting on the activity page with a previously selected participant: (i) Click either on the drop-

down clear button or on ‘all participants’ link; (ii) Select the whole February month if not selected

already; (iii) Hover the maximum registered value;

Criteria for successful completion of the goal of each scenario: Participant identified the max-

imum level as 7675 and the day as 9th of February.

Maximum time limit for completing the scenario: 30 seconds + 30 depending on the starting

circumstances.

Policies and procedures for interaction between tester(s) and test participants: Whenever the

participant asks for help or takes too long to complete a task or a sub-task, the tester is allowed to

intervene.

Scenario 3: The range of steps with a frequency of 0 for participant number 2.

Sub-tasks: (i) Click on the Activity tab displayed in the left sidebar of the screen if not selected

already; (ii) Select participant number 2; (iii) Select the whole February month if not selected

already; (iv) Hover the ranges with a zero frequency;

Criteria for successful completion of the goal of each scenario: Participant identified the inter-

vals as [3600, 4000 [and [4400, 4800 [.

Maximum time limit for completing the scenario: 30 seconds + 30 depending on the starting

circumstances.

Policies and procedures for interaction between tester(s) and test participants: Whenever the

participant asks for help or takes too long to complete a task or a sub-task, the tester is allowed to

intervene.

Scenario 4: Minimum and maximum value registered for each one of the Heart metrics for

participant number 2.

Sub-tasks: (i) Click on the Bp tab displayed in the left sidebar of the screen if not selected already;

(ii) Select participant number 2 if not selected already; (iii) Select the max opt presented in graph

UI dropdown; (iv) Hover each one of the columns; (v) Select the min option presented in graph

UI dropdown; (vi) Hover each one of the columns;

Criteria for successful completion of the goal of each scenario: Participant identified the max-

imum values as [75, 90, 10, 134] and minimum values as [45, 60, 0, 104]

D.3 Participant Task Instructions 101

Maximum time limit for completing the scenario: 75 seconds.

Policies and procedures for interaction between tester(s) and test participants: Whenever the

participant asks for help or takes too long to complete a task or a sub-task, the tester is allowed to

intervene.

Scenario 5: Search participant number 50 and then clear the participant selection field.

Sub-tasks: (i) Select participant number 50 by searching or scrolling the corresponding drop-

down; (ii) Click on the dropdown cross button;

Criteria for successful completion of the goal of each scenario: Participant number 50 is se-

lected and ultimately filter is cleared.

Maximum time limit for completing the scenario: 30 seconds.

Policies and procedures for interaction between tester(s) and test participants: Whenever the

participant asks for help or takes too long to complete a task or a sub-task, the tester is allowed to

intervene.

D.3 Participant Task Instructions

1. Can you identify the maximum number of steps registered in February for participant num-

ber 1?

2. Now, can you do the same thing but for the overall users of the system?

3. Can you enumerate, the ranges, in which participant number 2, has a frequency of zero

according to the number of steps?

4. For each one of the heart metrics being measured, identify the maximum and minimum

values for participant number 2.

5. Search for participant number 50 among the participants displayed in the dropdown. After,

deselect it.

D.4 Participant general instructions

Orientation to the test context and consents given to the participants: Whenever the partic-

ipant felt stuck onto something or couldn’t understand how to overcome the task provided, the

tester would assist him. In any case, it was not the user that was being tested but the system

usability instead. All the information needed to solve each task was provided with a priori.

General instructions to be given to the participants: The system is divided into multiple sec-

tions. The ’Walking Activity’ section contains the records related to the number of steps taken

by the participants. The ’Questionnaire responses’ section gives information about the response

102 Usability Test Scenarios, Tasks and Preparation

given by the participants to the different questionnaires. The ’Swimming Activity’ section, con-

taining information on swimming practice and, finally, ’Heart Measurements’ containing heart

rate records and their irregularity as well as systolic and diastolic pressure.

Instructions on how participants were to interact with any other persons present, including
how they were to ask for assistance or interact with other: Participants could either call the

tester or raise their hand for assistance.

Appendix E

Mock ups

E.1 Version 1.0

103

104 Mock ups

E.2 Version 2.0 105

E.2 Version 2.0

	Front Page
	Acknowledgements
	Conteúdo
	Lista de Figuras
	Lista de Tabelas
	1 Introduction
	1.1 Context
	1.2 Problem Definition
	1.3 Motivation
	1.4 Objectives and Contributions
	1.5 Document overview

	2 State of the Art
	2.1 Information Visualization
	2.1.1 Data Characteristics and Types
	2.1.2 Classification
	2.1.3 Data Visualization Techniques

	2.2 Web Platform as the Presentation Layer
	2.3 Web-Oriented Visualization Tools
	2.4 Configurable Web Interfaces
	2.4.1 Metadata-driven UI
	2.4.2 Metadata-driven Databases

	2.5 Related Work
	2.5.1 Visualizations for Mental Health Topic Models
	2.5.2 Minos: A Generic Tool for Sensor Data Acquisition and Storage
	2.5.3 Metadata-driven Delphi Rating on the Internet
	2.5.4 A Metadata-Driven Framework for Generating Field Data Entry Interfaces in Ecology

	2.6 Summary

	3 Problem Statement and Solution Proposal
	3.1 Problem
	3.2 Hypothesis
	3.3 User Stories
	3.4 Solution Proposal
	3.4.1 Application Architecture
	3.4.2 Tools and Technologies Adopted

	3.5 Summary

	4 Mediator
	4.1 Description
	4.2 API
	4.3 Mediator Workflow
	4.4 Database Support
	4.4.1 Assumptions
	4.4.2 Attribute Selection
	4.4.3 Inner Join Aggregation
	4.4.4 Filter Selection
	4.4.5 SQL
	4.4.6 Cloudfirestore
	4.4.7 Firebase Realtime Database
	4.4.8 Multiple Database Connections

	4.5 Cohorts
	4.6 Reducers
	4.7 Cache
	4.8 Application Configuration
	4.8.1 File system
	4.8.2 Database
	4.8.3 Reducers
	4.8.4 User Mapping
	4.8.5 Cohorts

	4.9 Summary

	5 Dashboard
	5.1 Conception
	5.2 Skeleton page
	5.3 UI Components
	5.3.1 Card
	5.3.2 Section Panel
	5.3.3 Charts

	5.4 Participants Listing
	5.5 Filtering
	5.6 Interface Configuration
	5.6.1 Card
	5.6.2 Charts

	5.7 Usability Testing
	5.7.1 Protocol
	5.7.2 Results
	5.7.3 Evaluation
	5.7.4 Discussion

	5.8 Summary

	6 Case Studies
	6.1 SmartBEAT
	6.2 Lifana
	6.3 Summary

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work

	References
	A Semi-structured Interviews
	B Usability Test Document
	C System Usabiliy Scale
	C.1 Observations
	C.1.1 Participant 1
	C.1.2 Participant 2
	C.1.3 Participant 3
	C.1.4 Participant 4
	C.1.5 Participant 5

	C.2 SUS Score Calculation

	D Usability Test Scenarios, Tasks and Preparation
	D.1 Preparation
	D.2 Scenarios
	D.3 Participant Task Instructions
	D.4 Participant general instructions

	E Mock ups
	E.1 Version 1.0
	E.2 Version 2.0

