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After spinal cord injury (SCI), nerve regeneration is severely
hampered due to the establishment of a highly inhibitory
microenvironment at the injury site, through the contribution
of multiple factors. The potential of antisense oligonucleotides
(AONs) to modify gene expression at different levels, allowing
the regulation of cell survival and cell function, together with
the availability of chemically modified nucleic acids with favor-
able biopharmaceutical properties, make AONs an attractive
tool for novel SCI therapy developments. In this work, we
explored the potential of locked nucleic acid (LNA)-modified
AON gapmers in combination with a fibrin hydrogel bridging
material to induce gene silencing in situ at a SCI lesion site.
LNA gapmers were effectively developed against two promising
gene targets aiming at enhancing axonal regeneration—RhoA
and GSK3p. The fibrin-matrix-assisted AON delivery system
mediated potent RNA knockdown in vitro in a dorsal root
ganglion explant culture system and in vivo at a SCI lesion
site, achieving around 75% downregulation 5 days after hydro-
gel injection. Our results show that local implantation of a
AON-gapmer-loaded hydrogel matrix mediated efficient gene
silencing in the lesioned spinal cord and is an innovative plat-
form that can potentially combine gene regulation with regen-
erative permissive substrates aiming at SCI therapeutics and
nerve regeneration.

INTRODUCTION

Spinal cord injury (SCI) is among the most daunting challenges for
regenerative medicine. It can lead to considerable damage to the hu-
man motor and physiological functions, having a significant impact
on the quality of life and life expectancy, with high costs associated
with primary care and loss of income. To date, there are no effective
treatments to reverse the damage to the spinal cord.

Several factors contribute to the non-permissive environment formed
at the injury site that is responsible for the limited neuroregeneration
and recovery observed after a SCI," including the formation of a glial
scar containing inhibitory extracellular matrix molecules released by
reactive astrocytes.z’3 Also, the presence of myelin debris, accumu-

lated due to the damage to oligodendrocyte myelin structures and
subsequent inefficient clearance by phagocytic inflammatory cells,
contributes to the inhibitory environment responsible for impeding
axonal regeneration.”” As such, therapeutic strategies that can block
the inhibitory signaling cascades promoted by the non-permissive
environment formed after SCI could have a positive impact on regen-
eration. Some approaches are already being investigated, even in clin-
ical trials, involving the use of blocking antibodies (e.g., anti-NogoA),
peptides (e.g., NEP1-40), and enzymes (e.g., C3-transferase, chon-
droitinase ABC), among others.”” Nonetheless, the inhibition of ge-
netic targets through the use of antisense oligonucleotides (AON’s)
could offer a new or complementary approach to existing options.

Compared to conventional drugs, AONs have an increased degree
of specificity since the interaction with their targets is based on the
genetic code. Furthermore, their design obeys a more “rational”
approach, as their RNA-binding activity is governed by Watson-
Crick rules instead of computational approaches for studying pro-
tein-small molecule interactions.® This Watson-Crick “rationale”
also makes any newly identified target gene virtually immediately
addressable by an antisense agent. Moreover, inhibition of mRNA
expression produces quicker and longer lasting clinical responses
than protein inhibition by conventional drugs. This is explained by
both the recycling nature of the mechanism of mRNA degradation
elicited by RNase H-based AONs and the resistance to both extra-
and intracellular degradation by newly developed AON chemistries,
which most often surpass those afforded by recombinant proteins,
peptides, and antibodies.”'® Of interest, when in the CNS, most
AONSs are readily taken up by neurons and glia,'' ™ although the
exact mechanisms of uptake are still under investigation."*'® A
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particular advantage of AONSs targeted to the CNS has been their
exceptionally long half-lives, which is of relevance for situations
where prolonged effects are desirable, avoiding the need for repeated
(invasive) administrations. This has been demonstrated in the case of
downregulation of mutant huntingtin (mHTT), with suppression of
mRNA lasting for up to 12 weeks in mice and in non-human pri-
mates."” Additionally, further support for the long AON half-lives
in the CNS is given by clinical data from amyotrophic lateral sclerosis
(ALS) patients in whom AONS, after intrathecal administration,
could be detected for up to 3 months in the spinal cord and brain.'®

In the context of a CNS lesion, such as a SCI, the functional delivery of
modified AON:ss is still rather unexplored, as is its potential for combi-
natorial approaches using biomaterials capable of bridging the
injured areas.' To this regard, fibrin materials have been explored
in combination with nanoparticle systems for purposes of in situ
gene therapy applications.'”*' Importantly, fibrin hydrogels have
been reported to improve functional recovery after SCI by acting as
a permissive bridging material for axonal regeneration when applied
to the lesion site.”> > However, the specific combination of fibrin hy-
drogels with AON has never been reported. In fact, the possibility of
exploring a local application of the AONs is highly beneficial in this
context to confine its action to the site of interest (lesioned area).

Thus, in this work, we explored the combination of a fibrin hydrogel
bridging material that not only will provide a scaffold for tissue regen-
eration but also will serve as a reservoir for locked-nucleic-acid
(LNA)-modified AON in situ delivery and the downregulation of
relevant gene targets in a SCI context. LNA AONs have been used
in many different settings such as antisense gapmers, anti-micro-
RNAs (antagomiRs), and anti-gene approaches.”*** LNA gapmers
have also been shown to have a remarkable gymnotic uptake
in vitro and in vivo® and, additionally, in the CNS; and particularly
in the brain, LNA-modified AONs were shown to be well tolerated.*®
As proof of principle, we designed AONs against genes associated
with neurite outgrowth inhibition or with the intrinsic capacity to
modulate neuronal regenerative programs in the context of SCL
Namely, LNA gapmers were designed against the Ras homolog
gene family member A (RhoA), recognized as a key player in the
inhibitory signaling cascade activated by the extracellular environ-
ment at a spinal cord lesion site,”’ ** and glycogen synthase kinase
3 beta (GSK3P), the inactivation of which has been shown to posi-
tively contribute to enhance the intrinsic axon regenerative potential,
including axonal outgrowth through the glial scar.’*~® Although
achieving nerve regeneration is considered a multifactorial process,
the choice of these gene targets was based on previous therapeutic
approaches, using modalities other than AONS, that either reached
clinical trials or had their potential confirmed by pharmacological in-
hibition in in vivo settings’”*®. Many other targets have been pre-
sented with the potential to increase the regenerative potential of neu-
rons®” and can thus be amenable to AON-based strategies.

Still, as these genes have broad physiological functions, it further
strengthens the importance of developing an effective but controlled
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and localized delivery of the antisense drug. We further show that
AONs remain within fibrin hydrogels, possibly by interacting with
fibrin fibers, and that the hydrogel system mediates the successful de-
livery of functional LNA-based AON gapmers in a dorsal root gan-
glion (DRG) explant 3D culture system. Moreover, we provide evi-
dence that the system can be used in vivo and applied to a SCI,
thus promoting the local downregulation of relevant target therapeu-
tic genes. By circumventing a systemic or intrathecal administration
and directly targeting the site of interest, we hypothesize that the
use of higher dosing regimens of therapeutic AONs can be avoided,
thereby lowering the associated costs and mitigating possible safety
issues. Our results suggest the viability of locally applying modified
AON:s as efficient therapeutic drugs mediated by materials providing
structural support in a spinal cord lesion, as a novel SCI therapeutic
approach.

RESULTS

Design and Evaluation of Antisense Oligonucleotide Gapmers
(2'-O-Methyl and LNA Based) Targeting RhoA and Gsk33

For the design of AONs against the two target genes of interest—
RhoA and Gsk33—an algorithm from Integrated DNA Technologies
(IDT) was used, as well as IDT OligoAnalyzer tools (http://eu.idtdna.
com/calc/analyzer), to check for self-annealing and discard AON se-
quences with low melting temperature (Tm; 55°C was chosen as the
cutoff, using the default conditions against RNA target, from IDT
OligoAnalyzer) and BLASTn* for specificity checks. An AON
gapmer®' design was chosen using 2’0O-Me RNA bases at the 5’
and 3’ ends for the initial screening. A set of six different 22-nt
ASOs, targeting rat RhoA and Gsk3( were chosen to be evaluated
regarding their downregulation efficiency in vitro. After transfections
into a rat Schwannoma cell line (RN22), several AONs against each
target were identified as being able to promote a >70% downregula-
tion level (Figure 1).

The AON showing the highest activity, in the initial screen, for each
gene (Gsk36 and RhoA) was chosen to be modified to an LNA gapmer
(AON 183 and AON 180, respectively). Additionally, for Gsk38, one
extra AON (AON 026) was chosen for LNA gapmer substitution,
while for RhoA, three other AONs were chosen for LNA gapmer sub-
stitution (AON178, AON 180, and AON 024), as there was higher
variance in knockdown potency in the RhoA AON groups in the pre-
liminary in vitro 2'-O-methyl gapmer activity experiments. After
in vitro screening, one LNA AON for each target was identified as
having strong potential for gene downregulation (Figure 2), namely,
LNAG6624 against Gsk3P and LNA6621 against RhoA.

Characterization of the Microstructure of AON-Loaded Fibrin
Hydrogels and AON Release Kinetics

For in situ delivery of AONS, a fibrin hydrogel vehicle was used. Two
concentrations of fibrinogen were chosen to make the hydrogel—
namely, 6 and 14 mg/mL. A fully thiolated 2’-O-methyl RNA sin-
gle-stranded control oligonucleotide (Cy5-AON) was used as a model
AON to study incorporation in the fibrin hydrogels and its possible
derived effects to the fibrin meshwork. The fibrin gel structure, with
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Figure 1. Screening of 2'-O-Methyl RNA/DNA

Gapmer AON Sequences for Downregulation of
GSK3p and RhoA

Relative expression levels were analyzed by qRT-PCR,
after transfection of the different LNA gapmers (at a final
concentration of 0.3 uM) into the RN22 cell line. Results
indicate mean + SD, with each data point representing
one transfection. Statistical significance was determined
using one-way ANOVA, followed by Tukey multiple-
comparison test (**p < 0.01; ***p < 0.001; ***p < 0.0001;
ns, not significant).

& 1.44 ‘

o =

B 124 s ‘ g

@ o @

5 104 o e | o 2 10

x Py

] a 3

@ 0.8 S 0.8

: TR N

8 0.6 . & é

204 0 " o o g

> -

2 -

5 0.2 ‘? ‘I‘ ol T

K &
04— T T T T 2 {: 0.0 2 T T

PSS & SRS

S &S N S &

and without AONS, was evaluated using FITC (fluorescein isothiocy-
anate)-labeled fibrinogen and Cy5-AON (Figure 3). Interestingly, the
fibrin network density decreased when the gel was formed in the pres-
ence of AONs, as shown by the ~2-fold increase in the average pore
area (Figure 3A). In addition, we observed that the AONs were
distributed almost exclusively along the fibrin fibers, as revealed by
the extensive fluorescence co-localization (Figure 3B). This could
explain the decreased fibrin network density while suggesting a prom-
ising role for the fibrin gel as an AON vehicle for local sustained de-
livery. The incorporation of the control AON (Cy5-AON) in the
fibrin gels impacted the fibrin network structure, resulting in
enhanced neurite outgrowth from DRG explants when compared
with gels without AONs (Figure S1). Such behavior is in line with
the effect observed in gels with increased pore size that mediate
enhanced neurite extension.*”

Finally, AON release from fibrin gels was assessed in vitro in Tris-
buffered saline (TBS) at 37°C (Figure 4). The cumulative release
(Figure 4A) over 3 days of incubation, with total medium exchange
at each time point (sink conditions), reached almost 90%, without
attaining a plateau, showing that the AONs are still diffusing, despite
the observed close interaction between AONs and fibrin fibers.
When the gels were incubated in the presence of the release buffer
without any buffer exchange, a high retention of AONs was obtained
with around 65% AON being retained after 24 hr and 55%
after 72 hr.

When using sink conditions, the successive exchange of buffer stim-
ulates a fast release of the AONs by diffusion, as the gel maintains
integrity throughout the incubation period. In the second condition,
without buffer replacement, diffusion of the AONs occurs much more
slowly. An initial release of 20% AON with 2 hr of incubation was
observed, with a total of 40% AON being released when incubated
for 72 hr. As the initial AON concentration in the gel was 6 puM,
the initial 20% release into the buffer (with 10x the volume of gel)
would correspond to a concentration of 0.12 uM in the buffer solution
and 0.24 uM (corresponding to 40% release) after 72 hr. This indi-
cates that an equilibrium of the AON between the gel-solution
phases should not be the main cause of the high retention of the
AON in the gel.

Fibrin Gels Support the Functional Delivery of Free LNA AONs in
an In Vitro DRG Explant 3D Culture System

After establishing and characterizing our AON-loaded fibrin gel sys-
tem, we next cultured DRG explants embedded in a gel loaded with
Cy5-AON. This enabled the study of AON uptake in primary
neuronal cells accounting for the influence of a 3D microenviron-
ment. Forty-eight hours after the incubation start, a homogeneous
distribution of the AONs was found throughout the explant (Fig-
ure 5A), with uptake of AONs by neuronal cells verified by the co-
localization of the Cy5 fluorescence with B-III-tubulin (neuronal
marker)-stained cells (Figures 5B-5E).

Next, LNA AONs against the targets of interest (Gsk36 and RhoA),
and an unrelated sequence (GFP), were incorporated in the fibrin
gel to assess functionality. DRG explants were embedded in the
AON-containing gels, and after 7 days of culture, RNA and protein
levels were determined. A significant and specific gene downregula-
tion, both at the RNA (around 50%-60%) and protein levels (around
70%), was achieved, thus confirming the bioactivity of the AONs
released from the fibrin gel (Figures 6 and S2).

Fibrin Gels Support the Delivery of Functional Free LNA AONs in
a Rat Model of SCI

We utilized the hemisection model system to perform the in vivo
studies, as transection models are particularly useful in regenerative
medicine research.”’ The strategy (Figure 7A) consisted of the appli-
cation of antisense LNA-loaded fibrin gel into the lesion site in two
subsequent layers, which was then covered by a bilayer P(TMC-CL)
patch. The bilayer patch comprised a solvent cast film onto
which electrospun aligned fibers have been deposited. Its use aimed
at containing and isolating the lesion area, with the additional benefits
of P(TMC-CL) being a known modulator of inflammation and
positively influencing nerve regeneration when neurons are in

contact.***

We initially checked for the distribution of the AONs 5 days post-
lesion, using Cy5-AONSs, and observed that the AONs were distrib-
uted throughout the lesion site and to regions distal from the lesion

epicenter (with a tendency for caudal distribution at this time point)
(Figure 7B), being found in close association with different cell types
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Figure 2. Screening of LNA Gapmer Sequences for
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present (Figure S3). Next, at the same time point, a 1-cm length of spi-
nal cord tissue (centered at the lesion site) was removed, and RNA
was extracted for quantification of gene expression (Figure 7C).
Here, antisense LNA-based oligonucleotides against Gsk36 were
tested. Confirming the in vitro DRG experiments, a robust Gsk3(6
downregulation could be achieved (mean downregulation, 75%).
Contrary to the in vitro experiments, a tendency for downregulation
of Gsk38 was observed for the control LNA-GFP (around 47% knock-
down), whereas using a second control AON (LNA-Luc) did not
induce GSK3B downregulation. For this reason, we further inspected
possible binding events of the LNA-GFP not only to the rat Gsk36
RNA transcript but now including all of its genomic sequence taken
from the Ensembl database (ensembl genome browser release 91:
https://www.ensembl.org/index.html). This takes into consideration
recent reports stating the importance of the binding events of gapmer
oligonucleotides to pre-mRNA and its influence in off-targeting.****
One site in intron 1 of Gsk3( was found with only 2 mismatches to the
LNA-GFP used. The found sequence (complementary to the LNA-
GFP) was: GACGTAAAtGaCCA (mismatches in small letters),
having two mismatches outside of the LNA wings. This points to a po-
tential RNase H1 cleavage event at the pre-mRNA level that could
lead to some level of downregulation of the final Gsk3@ transcript.

We further observed the extent of the inflammation area to assess
the initial implications of the system and possible negative effects of
a localized bolus delivery of AONs into the spinal cord. Our observa-
tions revealed no increase of the inflammation area in animals
receiving AON-loaded fibrin versus those treated with fibrin gel
only, as checked by immunofluorescence staining of infiltrated micro-
glia/macrophages (IBA1" cells) (Figure 8) and by H&E staining
(Figure S4).

DISCUSSION

Single-stranded AONs currently offer several means of altering the
expression of a target gene/RNA, such as through the direct block-
ing or degradation of a target transcript, redirection of pre-mRNA
splicing patterns or blocking of microRNA function.*” Through
these mechanisms, AONSs can ultimately regulate cell behavior, pro-
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multiple modes of action, confers a high ther-

apeutic potential that is already being explored
in a number of applications, including neurodegenerative disor-
ders,”” immunodeﬁciency,51 cancer,”> and cardiovascular and
metabolic diseases,”>”* with some at advanced clinical trial phases
and even US Food and Drug Association (FDA) approved.S 256
This therapeutic versatility prompted us to explore the application
of AONs in the context of CNS nerve regeneration, specifically in a
setting of SCI. In particular, with the understanding of the molec-
ular pathways leading to inhibition of nerve regeneration, blocking
of such inhibitory signaling by AONs could become a potent ther-
apeutic strategy.”” To this end, two molecular targets, RhoA and
Gsk3(, were chosen as candidate genes for downregulation, as their
inhibition has been shown to be relevant for promoting nerve

: 36,37
regeneration.””’

In general, application of AONs in the CNS normally involves by-
passing the blood-brain-barrier (BBB) through intraventricular or
intrathecal injections.'”'® The intrathecal delivery through osmotic
pump infusion® or intravenous injection®® has also been reported
in a few examples dealing with the application of AONs specifically
in the context of SCI. Nevertheless, a more localized delivery system
would be of benefit, especially when combined with a biomaterial-
based scaffold that can serve as a mean to bypass the glial scar." To
this end, fibrin-based hydrogels have been shown to both provide a
physical support and act as stimulant for axonal regeneration.”**’
Moreover, fibrin gels can be loaded with drugs, protein growth fac-
tors, and gene-based nanocomplexes,'”*"** providing a delivery
matrix for local application at a SCI lesion site. Nevertheless,
gene-based or antisense approaches mediated by fibrin have not
been widely investigated for application in SCL®® Such system
can potentially allow a synergistic action between the pro-regener-
ative impact of the fibrin gel and the modulation of molecular
mechanisms and cellular function mediated by the antisense gene
therapeutics.

Here, we propose and characterize AON-loaded fibrin hydrogels and
further investigate the efficiency of delivering potent LNA-modified
AON:s, unassisted by delivery vectors, mediated by the fibrin gel ma-
trix at a SCI lesion site.


https://www.ensembl.org/index.html

www.moleculartherapy.org

>

(-) AON (+) AON (+) AON

6 mg/mL Fib

14 mg/mL Fib

(+) AON B

Merged £

ok

5 O (-)AON
44 H (+)AON
3
2.
1
0 T T

6 14

[Fibrinogen] mg/mL

Average pore area
(um?)

Figure 3. Characterization of the Fibrin Gel Network in the Absence or Presence of AONs

(A) Representative maximum Z-projections of confocal stack images of the corresponding fibrin gels (at fibrin concentrations of 6 and 14 mg/mL containing 1% (w/w) FITC-
Fibrinogen). Complete association (co-localization) of Cy5-AONs with fibrin fibers (FITC-Fib) is observed. Scale bars, 10 pm. (B) Pore area was analyzed from confocal
microscopy images taken from the fibrin gels. The maximum Z-projections were used to calculate the average pore area per image field using MATLAB. Two-way ANOVA,
followed by Bonferroni post hoc test, was used for statistical analysis (mean + SD; n = 3 image fields per gel; “***p < 0.0001; ***p = 0.0001).

The design of LNA-containing AON gapmers allowed the reduction
of the size of the AONS, aiming at maintaining the same level of po-

. . -0 29,41,64
tency or even improving it.

The embedment of the AONs on the fibrin gel matrix revealed that
the gel network was influenced by the presence of the AONs, as the
average pore area was significantly increased. This fact is already of
importance to any studies that could use oligonucleotides loaded in
fibrin gels for observation of neurite outgrowth lengths, as the sole
physical impact of the AONs on the fibrin network density will influ-
ence neurite extension. One possible explanation could be the known
tendency for oligonucleotides containing a phosphorothioated (PS)
backbone to inhibit the thrombin clotting activity through a direct
competition with fibrinogen for binding to exosite I of thrombin.®
In addition, when using both fluorescently labeled AONs and labeled
fibrinogen, we did not observe a diffuse fluorescence throughout the
gel; instead, AONSs were seen completely associated with the fibrin fi-
bers. This could also be justified by the polyanionic nature of oligonu-
cleotides, similar to the anticoagulant heparin, suggesting the poten-
tial of AONs to bind to the heparin-binding domain of fibrinogen
(rich in positively charged amino acids) through weak electrostatic in-
teractions.’® While these features could mediate a potential negative
effect if the PS AONSs were to be delivered systemically in high doses,
in the present context, these can be beneficial, as the fibrin fibers will
act as natural local depots for the AONs, enabling an efficient loading
of these relatively small oligonucleotide drugs (normally with an
average molecular weight ranging from 4 to 8 kDa). Based on these
observations, it could be expected that the electrostatic-force-medi-
ated entrapment of the AONs within the fibrin network would impact
the AON release kinetics from the fibrin hydrogels. Release tests have
been conducted, both under non-sink and sink conditions. The
observed kinetics further support the occurrence of a physical inter-
action between the AONs and the fibrin fibers (possibly of electro-
static nature), which enables some resistance to simple diffusion of
the small AONs through the gel.

To confirm the bioactivity of the AONs after release, we incubated
DRG explants embedded in AON-loaded gels. The use of DRG ex-
plants embedded in the fibrin gel allowed us to have a 3D in vitro sys-
tem with primary neural cells in the presence of natural extracellular
matrix components, thus mimicking free AON uptake in a microen-
vironment closer to the in vivo situation.®”” ®° Under these conditions,
we could confirm that the released AONs were bioactive, achieving a
significant downregulation of the target genes of around 50%-60%.

The feasibility of using the AON-fibrin gel system was also evaluated
in an animal model of SCI. For this, we used a hemisection of the rat
spinal cord, which is commonly used to test hydrogel scaffolds and
regenerative medicine therapies in general and is amenable to stan-
dardization aiming at reducing variability between lesions.”>*> An
initial amount of AON-loaded fibrin gel was allowed to polymerize
in situ in order to better fill the lesion site, after which, a pre-polymer-
ized AON-fibrin gel was placed directly atop the first gel to provide an
extra reservoir of bioactive AONs. As pre-polymerized fibrin gels are
more resistant to degradation,”* this could provide an opportunity for
the release of AONs over a longer period of time after the initially
applied fibrin gel has been degraded. The diffusion of AONs in the
lesion was assessed by visualization of Cy5-AONs 5 days following
implantation. AONs were seen present at the lesion site at high levels
(seen by the strong fluorescence), but also, an effective distribution
throughout the lesion site and to regions distal from the lesion
epicenter (with a strong tendency for caudal distribution at this
time point) was detected. Important was the observation that the
AONs were not confined to the lesion epicenter, where the gel is
initially applied, but were able to diffuse some distance into the intact
spinal cord, an observation that, to the best of our knowledge, has not
been reported yet. It is expected that several cell types can uptake the
AON:s in the CNS, as previously reported;1 =13 this can, in fact, be ad-
vantageous as some gene targets have been shown to have an wide-
spread upregulation at a CNS lesion site.”” For example, Rho A has
been shown to be rapidly activated after trauma in the CNS, a cellular
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B Figure 4. AON Release Behavior
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response conserved in various cells and regions of the CNS.”
Thereby, affecting different nervous system cell types such as neurons
or glia can have beneficial effects.”””!

Accordingly, the LNA AONs locally applied through the fibrin gel
matrix were able to potently downregulate (around 75% inhibition)
the expression of the target gene, Gsk30, 5 days post-implantation
of the gel at the spinal cord lesion site. We observed that, in vivo,
the control LNA-GFP showed an unexpected effect leading to a
decrease of the GSK3p levels, albeit at a lower level than the specific
LNA-GSK3p. One site in intron 1 of Gsk3( pre-mRNA was found
with only two mismatches against the corresponding LNA-GFP.
This sequence contained two mismatches outside of the LNA wings,
meaning that it could, indeed, act as antisense to the Gsk3@ pre-
mRNA. A study by Kamola et al.”” using 16-mer LNA-modified
AONSs has shown active intron off-targets to be, in many cases, highly
potent and that around 50% of putative intronic off-targets with
2 mismatches showed very significant knockdown, with some se-
quences even displaying knockdown activities equivalent to those of
the on-target AONs. Even for 14-mer LNA-modified AONs with
2 mismatches, a significant number of interactions were reported as
still occurring.”> The question of how accessible this site is—and,
thus, the strength of knockdown—is hard to predict in silico with cur-
rent available tools, but this information provides a strong basis to
explain the downregulation observed in vivo. The mismatches in
this case are located in the DNA region of the gapmer and not in
the LNA wings. Although this could suggest that the penalty in Tm
could be lower than if mismatches were located in the LNA region,
such inference is, in reality, difficult to foresee, further complicating
the analysis of the off-targeting potential of AONs.”?

It is worth noting, however, that in vivo, we are using a much higher
concentration of oligos than in the in vitro screens.

Also, by using a second control LNA-AON sequence (LNA-Luc,
found to have at least >3 mismatches against the Gsk3@ pre-
mRNA), such downregulation effect was not present, corroborating
the initially unforeseen specific effects of the LNA-GFP sequence.
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The effect observed with the control oligo LNA-GEFP attests to the
importance of a careful investigation of possible off-target binding
events leading to RNase-H-mediated antisense effects at the pre-
mRNA level by modified gapmer AONSs, as recently reported.*”*%”>

Also importantly, in the lesioned spinal cord, acute tissue toxicity dif-
ferences between animals treated with fibrin only or fibrin with Gsk36
or GFP LNA gapmers were not observed. In fact, the inflammation
status of the injury area 5 days post-implantation of the AON-fibrin
gel system was qualitatively evaluated by looking at the presence of
microglia/macrophages in the different experimental conditions, as
well as by H&E staining. The presence of microglia/macrophages
was observed in all the conditions (fibrin only, fibrin/LNA-GSK38,
and fibrin/LNA-GFP), which is in agreement with previous reports
where fibrin was shown to be permissive to cell migration and infil-
tration.”* Furthermore, no notable alterations in terms of inflamma-
tion response could be observed in the LNA-GSK3B-treated animals
when compared to both the fibrin-only and control fibrin/LNA-GFP
AONs, indicating that the presence of AONs did not exacerbate this
response.

We thus propose that the delivery of free AONs from a fibrin gel ma-
trix is a viable option for SCI application, potentially providing a
combinatorial effect where the AONs are able to locally modulate
cellular gene expression, while fibrin hydrogel offers a permissive sup-
port matrix for cell infiltration and neuronal regeneration.

MATERIALS AND METHODS

Synthesis of Oligonucleotides

2 0-Methyl RNA-DNA AON Gapmers

All 2'0O-methyl RNA-DNA AON gapmers were synthesized on an
AKTA Oligopilot Plus 10 system at GE Healthcare Bio-Sciences (Up-
psala, Sweden) using Primer Support 5G UnyLinker (353 pmol/g) as
solid support. Standard template 2'-OMe RNA synthesis methods
were used except thiolation, which was carried out with a 1:1 mixture
of acetonitrile (ACN) and 0.2 M PADS ((bis(diphenylacetyl)disulfide)
(Ionis Pharmaceuticals, Carlsbad, CA, USA) in ACN/3-Picoline 1:1
[v/v]). Other ancillary reagents (EMD Chemicals, Gibbstown, NJ,
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Figure 5. Distribution of Naked AONs in a DRG Explant

DRG were cultured in a fibrin gel (14 mg/mL Fibrinogen) containing 6 uM of AONs and cultured for 48 h. DRG were processed by cryosectioning and images represent the
middle section (in Z axis) imaged by confocal laser scanning microscopy (CLSM). (A) A MAX intensity Z-projection of the whole DRG middle section (16 um thick) with the
following staining: B-lll tubulin (green); Cy5-ON (red); and nucleus (blue). The white square delimits the area observed in (B)-(E) (B-Ill tubulin, green, B; nucleus,
blue, C; Cy5-AONs, red, D; merged picture, E). (B-E) The cellular distribution of the AONs in neuronal (8-l tubulin stained) and non-neuronal cells (representative examples of
B-Ill-tubulin-stained neuronal cells with intracellular ONs are indicated with arrowheads). Scale bars, 200 um in (A) and 20 um in (B)—(E).

USA) were used as recommended by GE Healthcare Bio-Sciences.
Cy5 amidite (GE Healthcare, #28904249) was used as recommended
by the supplier. Final detritylation and dietylamine treatment were
carried out (to remove beta-cyanoethyl groups) prior to cleavage
and deprotection overnight in 25% aqueous ammonium hydroxide
(Merck, Darmstadt, Germany) at 55°C, releasing the crude oligonu-
cleotide derivative into solution ready for purification.

All purifications were carried out using an AKTAexplorer 100 system
equipped with Capto Q ImPres columns for anion-exchange chroma-
tography (AEC) (buffer A: 10% ACN, 10 mM NaClOy, 50 mM Tris
[pH 7.5]; 1 mM EDTA; buffer B: 10% ACN, 500 mM NaClO,,
50 mM Tris [pH 7.5]; 1 mM EDTA).

After AEC purification, the AONs were in a solution containing sodium
perchlorate. The salt was removed from the samples by gel filtration
with an isocratic flow (3 mL/min) of Milli-Q water. Five HiTrap desalt-
ing columns were mounted in serial on the AKT Aexplorer system and
enabled desalting of one complete 12-mL fraction in about 15 min.

For purity analysis and characterization of the oligonucleotide deriv-
atives, a Xevo G2 QTof, together with an AQUITY UPLC H-Class

system (both from Waters Sweden, Sollentuna, Sweden) equipped
with an ACQUITY UPLC OST C,g, 1.7 um, 2.1-mm X 50-mm col-
umn (buffer A: 15 mM triethylamine [TEA]/400 mM hexafluoroiso-
propanol [HFIP] in water; buffer B: methanol [MeOH]), controlled
by MassLynx was used, together with Maxentl (Waters Sverige AB)
software for molecular weight calculation.

LNA AON Gapmers

LNA AON gapmers were synthesized at the University of Southern
Denmark on an AKTA Oligopilot Plus 10 system under anhydrous
conditions using a polystyrene-based support in 1.0-pmol scale.
LNA monomers were obtained from Exiqon A/S. The synthesis con-
ditions used for the incorporation of LNA monomers were as follows:
trichloroacetic acid in CH,Cl, (3:97) as detritylation reagent; 0.25 M
4,5-dicyanoimidazole (DCI) in CH3CN as activator; acetic anhydride
in tetrahydrofuran (THF) (9:91, v/v) as cap A solution; N-methylimi-
dazole in THF (1:9, v/v) as cap B solution; as a thiolation solution,
0.0225 M xanthan hydrate in pyridine/CH;CN (20:90, v/v); coupling
time was 6 min. Determination of the stepwise coupling yields (95%—
99% per step) was based on the absorbance of dimethoxytrityl cations
(DMT™) released after each coupling step. The cleavage from the
support was carried out by using a 32% (w/v) aqueous solution of
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Figure 6. Downregulation of GSK3B and RhoA in
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exposure to LNA AONs. LNA AONs against an irrelevant
sequence (LNAB424-GFP) were used as controls. Each
point represents an independent experiment where RNA
from a pool of 10-15 independently treated DRG explants

for gPCR quantification. Results indicate mean + SD. One

way-ANOVA with Dunnett’s multiple comparison test (versus non-treated [NT]) was used where indicated (*p < 0.05; **p < 0.01; n.s., not significant). (B) Western blot analysis
of GSK3B and RhoA protein expression levels after AON treatments. Protein was extracted from a pool of 10-15 DRG explants, each treated independently with LNA
gapmers. Percentages shown indicate the relative amount of protein remaining in comparison to control and normalized to the GAPDH band, as calculated by semi-
quantitative analysis (band densitometry). For the original western blot membranes, see also Figure S2.

ammonia for 12 hr at 55°C. All oligonucleotide products were puri-
fied by reversed-phase high-pressure liquid chromatography (RP-
HPLC) using a Waters 600 system equipped with an XBridge OST
C18 (2.5 um, 19 x 100 mm) column and an XBridge Prep C18
(5 pm, 10 x 10 mm) pre-column. After DMT-group removal, the
oligonucleotide products were further characterized by ion-exchange
HPLC (IE-HPLC) on a Dionex HPLC system (VWR) and by MALDI-
TOF on a microflex MALDI system (Bruker Instruments, Leipzig,
Germany). The purified oligonucleotides were precipitated from
acetone, and their purity (>90%) and composition were verified by
IE-HPLC and MALDI-TOF analysis, respectively.

Oligonucleotide sequences and modifications are shown in Table 1.

Cell Culture and Transfections

The RN22 cell line (ECACC 93011414), a rat Schwannoma cell
line, was cultured at 37°C, 5% CO,, in DMEM with GlutaMAX
(GIBCO), supplemented with 10% (v/v) heat-inactivated (30 min,
57°C) fetal bovine serum (FBS; GIBCO) and 30 pg/mL gentamycin
(Sigma-Aldrich). All cell lines were routinely checked for Myco-
plasma contamination.

Cells were seeded (75,000 viable cells per well; viable cells determined
by the trypan blue exclusion assay) in 24-well plates 24 hr prior to
transfections. At the day of transfection (with cells at around 75%
confluency), culture medium was exchanged for medium without an-
tibiotics. Transfections were conducted using the TransIT-Oligo
Transfection Reagent (MirusBio). Briefly, 4 pL TransIT reagent was
mixed with 50 pL serum-free Opti-MEM (GIBCO), after which
4.5 uL AON (20 pM) was added. The transfection mixture was incu-
bated for 15-20 min before adding to the cells, in a final volume of
300 pL. An equal volume of complete medium (no antibiotics) was
then added after 6 hr, and incubation proceeded for a total of 24 hr.

Preparation and Characterization of AON-Loaded Fibrin Gels

Fibrin hydrogels were prepared with human fibrinogen containing
factor XIII (Sigma-Aldrich). Fibrinogen solution was prepared dis-
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solving fibrinogen in ultrapure water, followed by dialysis against
TBS (137 mM NaCl, 2.7 mM KCl, 33 mM Trizma base [pH 7.4])
for 24 hr. The resulting fibrinogen solution was then sterile-filtered,
and its concentration was determined spectrophotometrically at
280 nm.”* Fibrin gels were obtained by mixing equal volumes of
the fibrinogen solution and a thrombin solution in TBS containing
CaCl, and aprotinin (Sigma-Aldrich) (final concentration of fibrin
components: 6 or 14 mg/mL human fibrinogen, 2 NIH U/mL [for
in vitro experiments] or 25 NIH U/mL [for in vivo experiments] hu-
man thrombin, 2.5 mM CaCl,, and 10 pg/mL [in vitro] or 25 pg/mL
[in vivo] aprotinin in TBS). AONs were incorporated into the fibrin-
ogen solution before mixing with the thrombin working solution.
Fibrin gels were allowed to polymerize for at least 30 min at 37°C
in a 5% CO, humidified incubator.

Fibrin hydrogel microstructure was analyzed by confocal laser scan-
ning microscopy.”* Fibrin gels (20 pL) were prepared as described
earlier in a 15-well p-Slide Angiogenesis (IBIDI) and hydrated with
40 pL PBS before image acquisition. To visualize the fibrin network,
Alexa-Fluor-488-labeled human fibrinogen (Thermo Fisher Scienti-
fic) was mixed with non-labeled human fibrinogen at a 1:100 ratio
(final concentration, 0.14 mg/mL). Cy5-labeled AONs (Cy5-
AON705) were used to track AON distribution within the fibrin gel
network. Images were acquired with a Leica TCS SP2 confocal micro-
scope (Leica Microsystems, Wetzlar, Germany) with a 63x/1.4 oil-
immersion objective lens and a zoom factor of 4. Three randomly
chosen fibrin fields were analyzed at 0.5-um step size to obtain
10-um z stack images (1,024 x 1,024 x 172 pixels). Maximum Z-pro-
jections were then used to calculate the average fibrin pore areas per
image field using MATLAB 8.6 (v.R2015b).

To assess the AON release from the fibrin hydrogel, Cy5-labeled
AONs (Cy5-AON705) containing hydrogels (120 pmol AON in
20 uL) were incubated with 200 uL TBS at 37°C. Quantification of
AON release was evaluated in two different ways: (1) at every time
point, the buffer was completely removed and stored at —20°C,
new buffer was added to the gel drops (n = 3 independent gel drops),
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Figure 7. Downregulation of the GSK3p Target In Vivo after Delivery of Naked LNA AONs in a Fibrin Hydrogel System

(A) Schematic drawing of spinal cord injury hemisection model system and strategy for local release of antisense LNA-based antisense oligonucleotides (LNA AONs) from
fibrin hydrogels. The hemisection lesion site is quickly filled with an AON-loaded fibrin gel (5 nmol) prior to polymerization, after which a pre-polymerized AON (5 nmol)-
containing gel patch is placed covering the lesion. Finally, the AON-loaded fibrin gels were covered with a polymeric bilayer P(TMC-CL) patch to better hold the system in place
and to retain AONs at the lesion site. (B) Distribution of Cy5-AON (red) along a spinal cord section 5 days post-application of the AON-loaded fibrin gels (white arrow points to
location of the initial hemisection; dotted white line delimits the ventral side of the spinal cord). (C) Functional activity of LNA AONs after local application of the AON-loaded
fibrin gel delivery system, evaluated 5 days post-lesion. Fibrin gel with no AONs was applied in the lesion of control group rats (CTRL). LNA AONs against GFP or Luciferase
(LNAB424-GFP and LNAB422-Luc) were also used as additional controls. Relative quantification of GSK3B RNA levels by gRT-PCR is indicated. Values above box plots refer
to GSK3B expression levels as relative mean percentages. Error bars represent minimum-maximum (min-max), with line at median (control, n = 9; LNA6624, n = 11;
LNAB424, n = 11; LNAB422, n = 7). One-way ANOVA, with Tukey multiple comparison, was used for statistical analysis (“**p < 0.001, ***p < 0.0001; n.s., not significant).

and at the end of the experiment, the AON present in all the samples
was quantified by fluorescence reading in a multimode microplate
reader (SynergiMX, Bioteck); (2) an independent gel drop per time
point (n = 3 gel drops per time point) was used, with the buffer being
removed and stored at —20°C (no buffer was added again). The gel
drops were stored at —20°C and, at the end of the experiment, incu-
bated with 0.25% Trypsin/0.05% EDTA for 30 min at 37°C to solubi-
lize the hydrogel and release remaining AONs. AON release/reten-
tion was quantified by fluorescence readings as described earlier
and expressed as a function of the fluorescence of AON-containing
gel drops produced and immediately stored at —20°C (no buffer in-
cubation step).

Animals

All animal experiments were carried out with the permission of the
local animal ethical committee in accordance with the European
Union (EU) Directive (2010/63/EU) and Portuguese law (DL 113/
2013). The experimental protocol (421/000/000/2014) was approved
by the ethics committee of the Portuguese official authority on animal
welfare and experimentation (Dire¢ao-Geral de Alimentagéo e Veter-
indria; DGAV). DRG (in vitro studies) were obtained from rat em-
bryos from pregnant 3-month-old female Wistar rats. Female Wistar

rats (130-200 g) were used for the SCI surgeries. All animals were
maintained under a 12-hr/12-hr light/dark cycle and fed with regular
rodent’s chow and tap water ad libitum.

DRG Explant Cultures

DRG explants were dissected from embryonic day (E)18 rat embryos
and were temporarily maintained in ice-cooled DMEM/F12 with
GlutaMAX (GIBCO) and 1% (v/v) P/S (Biowest). Fibrin gels (with
or without 6 pM of AONs in the gel) were prepared as described
earlier in 15-well p-Slide Angiogenesis plates (IBIDI) and DRG ex-
plants embedded in the fibrin polymerizing solution (1 DRG /well),
under a stereoscope. Fibrin was allowed to polymerize for at least
30 min at 37°C in a 5% CO, humidified incubator before the addition
of 40 pL medium: (DMEM/F12 with GlutaMAX, supplemented with
2% [v/v] B-27 [Thermo Fisher Scientific), 1% (v/v) P/S, 1.25 pg/mL
amphotericin B (Capricorn Scientific), 30 ng/mL NGF (Millipore),
and 10 pg/mL aprotinin (Sigma-Aldrich). DRG explants were
cultured for up to 7 days. Half volume of the medium was changed
every 3 days. NGF was withdrawn at day 6 of culture. The distribution
of AONs within the DRG was assessed at day 2 of culture by immu-
nofluorescence, while mRNA and protein levels were determined at
day 7 of culture.
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Figure 8. Inflammation Status of the Injury Area after Implantation of AON-Fibrin Gel

Inflammatory response as determined by IBA1 staining (monocyte/macrophage marker) of middle sections of the spinal cord 5 days post-implantation of the AON-loaded
fibrin gel delivery system. White arrows point to the location of the hemisection; dotted line delimits the spinal cord at the ventral side. White squares represent the cor-
responding magnified areas shown on the lower picture panels. IBA1 staining (green), nucleus (blue). Scale bars, 500 um (upper panels) and 100 um (lower panels).

SCI Model: Surgeries

Female Wistar rats were anesthetized with a peritoneal injection of
ketamine (75 mg/kg; Prodivet ZN) and medetomidine (0.5 mg/kg;
Vétoquinol) or isofluorane (at 5% for induction and 1.5%-3% dur-
ing surgery). Before surgery, animals received two separate subcu-
taneous injections of the analgesic buprenorphine (0.04 mg/kg;
Richter Pharma Ag) and 3 mL saline solution with 5% (w/v)
glucose or Ringer’s lactate solution. The spinal cord was exposed
by laminectomy at the T7/T8 level. The dura mater was then
opened longitudinally, and a dorsal hemisection was performed at
a depth of approximately 2 mm using a microscissor (reference
no. 15025-10; Fine Science Tools). A solution of 5 pL fibrin gel
with or without AONs (5 nmol) was then applied to the lesion
and allowed to polymerize in situ (with gelification occurring in
around 5 s) with a further pre-polymerized fibrin gel patch applied
to the top of the lesion. Finally, a bilayer poly(trimethylene carbon-
ate-co-e-caprolactone) (P(TMC-CL)) patch, prepared as previously
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described,**”® was used to cover the lesion containing the fibrin

gels. After this, the muscle and the skin layers were sutured. At
the end of the surgery, only the animals anesthetized with
ketamine/medetomidine were injected with atipamezole (1 mg/kg;
Virbac). During all surgery procedures, the animal was kept on a
heating pad to maintain the body temperature, and the eyes were
constantly wet with a saline solution. In the following days, the an-
imals were kept on a heating pad (2-3 days post-injury) and in-
jected with buprenorphine (0.04 mg/kg). The bladder was manually
emptied twice a day.

After 5 days, the animals were perfused through the left heart
ventricle with 150 mL of 0.1 M PBS, followed by 4% (w/v) paraformal-
dehyde (PFA) in 0.1 M PBS, or they were sacrificed in a CO, chamber,
and the spinal cord was removed and (1) processed for immunohis-
tochemistry or (2) stored in RN Alater solution (Thermo Fisher Scien-
tific), respectively.
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Table 1. Oligonucleotides Used in the Study

Code Target Sequence

AON 177 Rho A mUmA mCmC mU*mG*c*t* t*c*c*c*g*t* c* ' mA* mC mU*mU*mC*mA
AON 178 Rho A mA* MU mC*mU mU*mC*c*t*g*t* c*c*a*g* c*t* mG* mU mG* mU*mC*mC
AON 179 Rho A mC*mUmC*mC'mC*mG*c*c*t*t*g* t* g t*g* c* mU* mC* mA*mU*mC*mA
AON 180 Rho A mA*MC*mC mU*mC* mU*c*t*c*a*c*t*c* g t* mC mU*mU*mU mG*mG
AON 181 Rho A mC*mC mG mA* mC mUt t* t* t* c t* t* c* " mG* mC* m G mU*mC*mU
AON 024 Rho A mA* MU mCmUmC*mU*g*c* c* t* t*c*t* t*c*a* mG*mG*mU*mU*mU*mU
AON 182 Gsk33 MA'MA*MA*'mG*'mG* mA*g g t* g gt t* c t* ' mG'mG* mU*mC*mG*mC
AON 183 Gsk38 mCmC*mU* mCmA*mU*c*t* t* t* c* t t* c t " m G m C*m C* mA*mC*mU
AON 059 Gsk33 mG' MG MU mU*mC mU*g t*g* g t* t*t*a*a*t* mG* mU mC* mU*mC*mG
AON 063 Gsk3B mC'mA*mG mU mU mCHt*t* gra* g t* g* g t*a* mA*mA* mG* mU*mU*mG
AON 060 Gsk33 mG MA* MG MG mA*mG*g*g*a*t*a*a*g*gra* ' mG*'mG* mU mG*mG*mC
AON 026 Gsk3B mU*mU*mCmU*mC*mA*t* gra*t* c* t* g*g*a* g mC*mU* mC*mU*mC*mG
LNA 6425 Rho A +TH+CH+CH* gt e cra* g+ T+ G+ T

LNA 6426 Rho A +T*+G*+C Pttt cra* + G+ G+ T

LNA 6621 Rho A +CHTH+CH* cra* e g + T+ CH+ T

LNA 6622 Rho A +CHTHTH Tt P+ CH+G*+C

LNA 6623 Gsk36 +AHTHC T Tttt +C+ G +C

LNA 6624 Gsk36 +CHHAT g a* g gta* + G+ CH+T

LNA 6424 GFP +T*+G*+G* g t* t*t*a* c+G*+T*+C

LNA 6422 luciferase +TH+TH+Crc* gt cra* tr X g + T*+C*+T

Cy5-AON B-globin (IVIS2-705)* Cy5-*mC*mC*mU*mC*mU*mU*mA*mC*mC* mU*mC* mA*mG* mU*mU*mA*mC*mA

DNA bases are written in small letters; 2’-O-methyl RNA bases are written as mN (N, nucleotide); LNA bases are written as +N; phosphorothioate linkages are indicated by an asterisk.
*This oligonucleotide sequence was originally used for splice correction activity,”® being targeted to the mutant form of B-globin (IVIS2-705). It was thus used as a control sequence

having no relevant biological activity for this work.

RNA Extraction and qRT-PCR

RNA from cultured cells was extracted using Direct-zol RNA
MiniPrep (Zymo Research). An amount of 200 ng RNA was used
for the synthesis of cDNA using the NZY First-Strand cDNA Synthesis
Kit (NZYTech). A final volume of 20 uL was used. qPCR was manually
set up using the SYBR Green Supermix (Bio-Rad). The final reaction
volume was 20 pL, using 2 pL ¢cDNA from the RT step. Primers
were used at a final concentration of 0.25 uM. Cycling conditions
were as follows: hot start, 95°C, 3 min; PCR amplification (40 cycles),
95°C, 30 s (denaturation), 56°C for Gsk383/Ywhaz or 55°C for RhoA/
Ywhaz pairs, 30 s (annealing), and 72°C, 30 s (extension).

RNA from DRG explant cultures (pools of 10-15 DRGs) was ex-
tracted with the mirVana miRNA Isolation Kit (Ambion). Ten nano-
grams of RNA were used to manually set up the qPCR reaction using
the SYBR Green One Step qPCR Kit (Biotools). The final reaction vol-
ume was 20 pL. Cycling conditions were as follows: reverse transcrip-
tion, 50°C, 3 min; hot start, 95°C, 5 min; PCR amplification (40 cy-
cles), 95°C, 10 s (denaturation), 56°C for Gsk33/Ywhaz or 55°C for
RhoA/Ywhaz pairs, 30 s (annealing) and 72°C, 20 s (extension).

For isolation of RNA from the spinal cord, 1 cm tissue (with the lesion
as the center point) was homogenized in lysis buffer (mirVana

miRNA Isolation Kit, Ambion), with the help of a tissue homogenizer
(VDI 12, VWR) and/or a tissue grinder (1 mL; Wheaton). Samples
were then processed afterward following the RNA isolation proced-
ures as indicated (mirVana miRNA Isolation Kit, Ambion). An
amount of 200 ng RNA was used for the synthesis of cDNA using
the NZY First-Strand cDNA Synthesis Kit (NZYTech). A final vol-
ume of 20 uL was used. qPCR was manually set up using the SYBR
Green Supermix (Bio-Rad) in conditions as described earlier.

Primers used were as follows: Gsk33 forward (Fwd) 5-TCGAGTG
GCGAGAAGAAAGAT, reverse (Rev) 5'- GTCTCGATGGCAGAT
CCCAA; RhoA Fwd 5-AATGAAGCAGGAGCCGGTAAA, Rev
5-GATGAGGCACCCCGACTTTT; Ywhaz Fwd 5'-ACGACGTACT
GTCTCTTTTGG, Rev 5-GTATGCTTGCTGTGACTGGT. Gsk38
and RhoA mRNA expressions were normalized against the internal
standard Ywhaz. All QPCRs were run on an iQ5 or CFX Real-Time
PCR system (Bio-Rad), and data were calculated by the relative quan-
tification method using the exponential transformation of delta Ct
values (27244CY,

Primer efficiency was determined to be close to 100% based on stan-

dard curves using a known amount of RNA, which was serially
diluted. Melt curves were always performed for checking primer
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specificity. All samples were run in the qPCR plates as triplicates for
each gene.

Western Blot

Protein was extracted from a pool of 10-15 DRG explants by lysis at
4°C in RIPA buffer (150 mM NaCl, 1% NP-40, 50 mM Tris [pH 8],
0.5% sodium deoxycholate, 0.1% SDS) supplemented with protease
inhibitor cocktail (ref. P8340, Sigma-Aldrich). Total protein was
quantified using the DC Protein Assay (Bio-Rad). Protein was loaded
on a Bolt 4%-12% Bis-Tris Plus gel (Thermo Fisher Scientific) and
run using MOPS buffer (Thermo Fisher Scientific) at 150 V for
50 min. Protein was transferred using an iBlot system (Thermo Fisher
Scientific) equipped with a nitrocellulose transfer stack (Thermo
Fisher Scientific) (PO program used). Membrane was blocked
in TBS-Tween 0.1% (v/v) with 5% (w/v) dry milk. The primary anti-
bodies and specific dilutions used were as follows: mouse anti-GSK3
/B (1:2,000; Santa Cruz Biotechnology), rabbit anti-RhoA (1:1,000;
Cell Signaling Technology), mouse anti-GAPDH (1:40,000; HyTec).
Horseradish peroxidase (HRP) conjugates of sheep anti-mouse
(1:10,000; Abcam) and goat anti-rabbit (1:1,000; Thermo Fisher Sci-
entific) were used as the secondary antibodies for visualizing proteins
using WesternBright Quantum HRP substrate (Advansta). Protein
band signals were detected in a ChemiDoc XRS+ documentation sys-
tem (Bio-Rad) and quantified using the ImageLab software (Bio-Rad).
The protein lane density was normalized to the GAPDH loading con-
trol, and the percentage of inhibition was calculated as a relative value
to the control sample.

Immuno-cytochemistry and Histochemistry

The distribution and cellular uptake of Cy5-AONs were assessed by
immunofluorescence in DRG and spinal cord cryosections. For
DRG explants: upon fixation with 4% (w/v) PFA for 15 min, whole
DRG explants were pulled out from fibrin gels and were frozen in
OCT embedding medium (Thermo Fisher Scientific). Serial cryosec-
tions (16 pm thick) were made through the entire DRG explant,
mounted in gelatin-coated slides and air dried before staining.
The DRG middle sections were selected for B-III tubulin staining.
Immunocytochemistry was performed as follows: DRG sections
were permeabilized with 0.2% (v/v) Triton X-100 (Sigma-Aldrich)
in PBS for 10 min, incubated in 5% (v/v) normal goat serum
(NGS) (Sigma-Aldrich) blocking solution in 0.05% (v/v) Tween-20
(Sigma-Aldrich) in PBS for 1 hr, stained overnight with rabbit poly-
clonal B-III tubulin antibody (1:500, Abcam) at 4°C, and finally incu-
bated with goat anti-rabbit Alexa Fluor 488 (1:500, Molecular Probes)
for 1 hr in 1% (v/v) NGS solution. Nuclei were counterstained with
DAPI for 10 min (0.1 pg/mL, GIBCO). Images were acquired with Le-
ica TCS SP2 or SP5 confocal microscopes (Leica Microsystems,
Nussloch, Germany) with 20x/0.7 oil-immersion objective lenses.
Maximum projections were obtained using the Image] software
(v.2.0.0-rc-44/1.50e). For spinal cords: the spinal cord was removed
from perfused animals and post-fixed 24 hr in the same fixative, after
which it was stored in 30% (w/v) sucrose in PBS at 4°C or —20°C until
use. The spinal cord tissues were then embedded in OCT medium,
frozen, and sectioned in 16-um-thick longitudinal (sagittal plane) sec-
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tions in a cryostat. Cryosections were used for histology with H&E
staining, as well as immunohistochemistry (IHC). IHC was per-
formed as follows: slides were first incubated 5 min with 0.1% (w/v)
sodium borohydride in Tris-EDTA (pH 9) to block free aldehydes,
followed by a 15-min incubation in 50 mM NH,CI in PBS. Samples
were then blocked in 5% NGS with 0.3% Triton X-100 in PBS for
1 hr. Antibodies used for subsequent staining were as follows: mono-
clonal rabbit anti-B-III tubulin (1:500, Covance); rabbit anti-GFAP
(1:400, Dako); and rabbit anti-IBA1 (1:500, Dako). Goat anti-rabbit
Alexa Fluor 488 (1:1,000, Thermo Fisher Scientific) was used as sec-
ondary antibody. Nuclei were counterstained with Hoechst 33342
(Thermo Fisher Scientific) (1:10,000 dilution in 1x PBS from a solu-
tion at 10 mg/mL) for 10 min.

Images were captured using an inverted microscope (Axiovert 200M,
Zeiss) or laser scanning confocal microscope (Leica TCS SP5).

Statistical Analysis

GraphPad Prism 6 was used for graphical representation of
results and statistical analysis. Tests used for calculation of statistical
significance are described in the corresponding figures. Results with
p < 0.05 were considered statistically significant.
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