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Resumo

Este trabalho analisa mais de perto as ideias desenvolvidas por [7] e [13], a ideia de repre-

sentações de quivers com torção, colocadas num contexto mais geral. Estas ferramentes

são úteis para o estudo de álgebra homologica de certos objectos, entre eles temos os fi-

brados de Higgs e fibrados parabólicos. Sobre esta último, estas ferramentas são utlizadas

para estudar a sua teoria de deformação, que é o estudo do espaço vetorial Ext(E∗, E∗) para

um fibrado parabólico E∗. As ferramentas aqui desenvolvidas ajudam a dar uma descrição

limpa deste objeto.

Palavras-chave: representações de quivers com torção, fibrados vetoriais parabólicos,

teoria de deformação.
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Abstract

This work takes a closer look at the ideas developed by [7] and [13], that of twisted quiver

representations, put in a more general setting. These tools are useful to study homological

algebra of certain objects, among which we have Higgs bundles and parabolic bundles. In

the latter case, we use those tools to study their deformation theory, which is the study of

the vector space Ext(E∗, E∗) for a parabolic bundle E∗. The tools developed help give a clean

description of this object.

Keywords: twisted quiver representations, parabolic vector bundle, deformation theory.
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Chapter 1

Introduction

Parabolic bundles arose as one of two ways to generalize the Narasimhan-Seshadri theorem

([14], [12]), the other being Higgs bundles ([9], [16]). The moduli spaceM =M(D, d, α, k)

of parabolic bundles with divisor D, parabolic degree d, weights α and type of flag k has the

structure of a smooth quasiprojective variety, and is an object of active study. The tangent

space toM at a stable point E is identified with the space of infinitesimal deformations, that

is, Ext1(E , E). The study of this space is interesting even in the unstable case, as is done in

[2].

In [7], twisted quiver representations are defined and some of its properties are explored,

and then some geometric objects are studied under that context, unifying some aspects of

seperate theories: quiver representations and Higgs bundles for example. This project was

taken further by Mozgovoy in [13], defining categories of representations of diagrams. This

author developed some machinery to work with them, and one of the applications was finding

a long exact sequence in the category of quasiparabolic bundles with fixed length filtration,

involving Hom and Ext1 groups, hence in particular, encoding the deformation theory of such

a quasiparabolic bundle.

Another possible generalization of Gothen and King’s work appears in [1], which imposes

relations, in the form of taking quotients over ideals of the algebra associated to the twisted

representation.

This thesis is mostly based in the work of Mozgovoy in [13]. We will layout the structure of

the thesis in the next few paragraphs, but the goal is to understand what are representations

of diagrams, and how those tools work, by applying them to parabolic bundles. Thanks to

this, we found a way to describe the Ext groups of parabolic bundles as an extension of two
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2

other, simpler, Ext groups.

In chapter 2, we define some objects which will be used on the remainder of the thesis,

such as quivers, sheaves, and Grothendieck categories. We review some important ideas

and properties of these objects, which we will use to build examples to study with. We also

prove an equivalence of categories

[C, T ] ∼= A-ModT

where C is a category with finitely many objects, T a tensor category with coproducts, and

A = (A,µ, η) an appropriate monoid in T , which is a slight generalization of the well-known

equivalence of categories

[C, R-Mod] ∼= RC-Mod,

with a similar construction and proof.

Chapter 3 is extensively based on the work of Mozgovoy in [13], in which we cover his

idea of representations of diagrams. We restate most of the content, and give different

proofs of a few key results, for example:

Theorem 1.1. Let Φ be an abelian, finite quiver diagram with coproducts, and quiver Q. For

each X ∈ Rep∗(Φ), the sequence

0→
⊕
a∈Q1

σta(a∗Xsa)
β−→
⊕
i∈Q0

σi(Xi)
γ−→ X → 0

is exact.

In [13], this was done using the Freyd-Mitchell embedding theorem, and here we give an

alternative proof, without using an embedding. With this result, one gets a construction of

homological long exact sequences for appropriate representation diagrams. Using the tools

of chapter 2, we build a few examples and apply some of the results to them. In particular,

we embed quasiparabolic bundles in an abelian category R = Rep∗(Φ), which gives us a

way to calculate Ext(E,F ).

In chapter 4, we review the definition of the (abelian) categories of parabolicOX -modules

and parabolic sheaves as done by Yokogawa in [19], where the group Ext(F∗,G∗), is defined,

and we show that parabolic bundles are a full subcategory of the category of parabolic

sheaves. We also compare the Ext groups of parabolic sheaves with the Ext groups of the

category R in which quasiparabolic bundles are embedded: we find they are isomorphic.
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We also find that the Ext group of parabolic bundles is itself an extension of two other Ext

groups: the Ext group of coherent sheaves and the Ext group of quiver representations over

complex vector spaces. This means that the study of the deformation theory of a parabolic

bundle can be done through the deformation theory of the underlying vector bundle, and

does not depend on the values of the weights.
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Chapter 2

Preliminaries

In this chapter, we introduce a few fundamental concepts, some of which are the tools we

will use in the next chapter, and some of which we will use to give illustrative examples.

In what follows, all rings have unit, and unless noted, are commutative. We denote the

category of all small categories by Cat. Whenever we speak of a category, it will be assumed

small unless noted otherwise. For two categories C,D, we denote the category of functors

from C → D, with morphisms the natural transformations between them, by [C,D].

Two morphisms f, g are said to be composable if and only if g◦f exists (that is, dom(g) =

cod(f)).

2.1 Some sheaf theory

Let X be a topological space. We can form the category Op(X), whose objects are the

open subsets of X, and the morphisms are the inclusions; in other words, it is the poset of

open subsets.

Definition 2.1. Let C be a category. The category of C-presheaves or C-valued presheaves

over X is the functor category PShC(X) = [Op(X)op, C]. Unless there is any ambiguity, we

omit the category C.

Let F be a presheaf. We say F is a sheaf if, for all open subsets U and all open covers

{Ui}i∈I of U , then the functor F|J has a limit and

limF|J ∼= F(U)

5



6 2.1. SOME SHEAF THEORY

where J is the full subcategory of Op(X)op consisting of the objects Ui and Ui ∩Uj for each

i, j ∈ I.

The full subcategory of PSh(X) whose objects are sheaves is denoted by Sh(X), with

subscript C in case of ambiguity.

This general definition may be daunting, but when C has products, it is equivalent to

saying that

F(U)→
∏
i∈I
F(Ui) ⇒

∏
i,j∈I
F(Ui ∩ Uj)

is an equalizer. The morphisms are the ones induced by the inclusions

Ui ∩ Uj ⊆ Uk ⊆ U

for k ∈ {i, j}.

Concretely, a set-valued sheaf is a presheaf such that for every open set U , every open

cover {Ui}i∈I of U and every family {fi}i∈I such that fi ∈ F(Ui) and fi|Ui∩Uj = fj |Ui∩Uj for

all i, j ∈ I, there exists a unique f ∈ F(U) such that f |Ui = fi. An easy way to see this is to

consider an arbitrary commutative diagram

∗ →
∏
i∈I
F(Ui) ⇒

∏
i,j∈I
F(Ui ∩ Uj)

and then use the equalizer property.

For nice enough categories C, there exists a functor PShC(X) → ShC(X) left adjoint to

the inclusion functor, a process called sheafification. For F a C-presheaf, we may also call

its sheafification Fsh the sheaf associated to F . In particular, Set, Ab, CRing all have this

property. For more details, one can check [10].

Another helpful observation, if C has (co)limits of shape J , then Sh(C) also has pointwise

(co)limits of shape J . In particular, products of sheaves are sheaves. It is easy to see this

using the equalizer diagram above.

Definition 2.2. Let X,Y be topological spaces, f : X → Y continuous. If F is a sheaf on X,

we define a presheaf f∗F on Y as

V 7→ F(f−1(V ))

which can easily verified to be a sheaf. This is the direct image sheaf on Y .
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Let X be a topological space, OX be a ring-valued sheaf, or sheaf of rings, over X.

We call the pair (X,OX) a ringed space. If (Y,OY ) is another ringed space, a ringed

space morphism (X,OX) → (Y,OY ) is a pair (f, f#) where f : X → Y is continuous and

f# : OY → f∗OX is a sheaf morphism.

Definition 2.3. Let (X,OX) be a ringed space, and F be a sheaf of abelian groups over X.

We say F = (F , µ) is a OX -module if µ : OX × F → F is a morphism such that for each U

open, µU : OX(U)×F(U)→ F(U) is a morphism making (F(U), µU ) into anOX(U)-module.

Definition 2.4. Let F be an OX -module. We say F is locally free if there exists an open

covering {Ui}i∈I of X such that F|Ui is a free OX |Ui-module for each i ∈ I.

The above definition is useful, since for a schemeX, we have a bijective correspondence

between vector bundles and locally free sheaves of finite rank, check [8] for more details.

There is a problem, however; the category of locally free sheaves is not abelian, but one

may consider the category of coherent OX -modules, which we will not define here. Check

[10, p. 206] for the general definition, where J is the full subcategory of free OX -modules

of finite rank, or [8] for the case when X is a scheme. It is (as seen in the aforementioned

references) an abelian category, contains all locally free sheaves of finite rank, and has

enough “finiteness” conditions to be easy to work with, particularly sheaf cohomology.

Let E be a vector bundle over a complex scheme X, and E be the locally free sheaf

corresponding to E. We can recover the fiber of E at a point x ∈ X from E using the

following:

E(x) = Ex ⊗OX,x Cx = Ex/mxEx

where Cx is the skyscraper sheaf with value C in open neighbourhoods of x, and mx is the

unique maximal ideal of OX,x. This can be verified locally or check [15].

Commonly, one may study sheaves with some extra structure. One particular case is

that of Higgs sheaves, on a smooth complex projective curve X.

Definition 2.5. Let X be a smooth complex projective curve, and write KX for the canonical

line bundle, as a locally free sheaf. A Higgs sheaf is a pair (E , φ) where E is a coherent

sheaf and φ : E → E ⊗KX is a morphism.

One may also define morphisms between Higgs sheaves which preserve its structure,

and call it the category of Higgs sheaves.
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Higgs bundles correspond to Higgs sheaves (E , φ) where E is locally free, that is, a vector

bundle. Check [3] for more details about this subject.

2.2 Quick introduction to representations over a category

Let C,D be categories. A representation of C in D, or a D-representation of C is nothing

more than a functor F : C → D. Although deceivingly simple and redundant as it may appear,

in certain contexts it gives the correct mindset for a problem.

Example 2.6. Let G be a group, regarded as a one object category whose morphisms are

isomophisms, and consider the category C-Vectfg of finite dimensional vector spaces over

C. A linear representation of G may be regarded as a functor ρ : G→ C-Vectfg; to see why,

the single object ∗ ∈ G selects a vector space V = ρ∗, and we have a function

ρ∗,∗ : Hom(∗, ∗)→ Hom(V, V )

given by ρ. Hom(∗, ∗) with the composition operation is (isomorphic to) the group G, and this

function factors uniquely through the inclusion Aut(V ) ⊆ Hom(V, V ). This unique function

is a standard representation G → Aut(V ); functoriality guarantees that ρ1 = id and ρgh =

ρg ◦ ρh, so we have a group morphism.

For a richer supply of examples, but mostly for how important it is, we introduce the

following notion:

Definition 2.7. A quiver or digraph is a quadruple Q = (V,A, s, t) such that s, t : A → V .

We say that

• V is a set of vertices or objects;

• A is a set of arrows;

• s, t are functions which specify the source and target, respectively, of an arrow.

We can associate to each quiver Q = (V,A, s, t) a category FQ, the free category gen-

erated by Q. As one can describe the free monoid generated by a set, the construction of

FQ follows a similar train of thought: Let MA be the free monoid generated by the set A.

The category FQ is defined as follows:

• Ob(FQ) = V is the set of objects;



CHAPTER 2. PRELIMINARIES 9

• Mor(FQ) = V ∪{ a1 . . . an ∈MA | s(ak) = t(ak+1) for k < n } is the set of morphisms;

• dom(a1 . . . an) = s(an), dom(i) = i;

• cod(a1 . . . an) = t(a1), cod(i) = i;

• id is the inclusion Ob(FQ) ⊆ Mor(FQ).

We also say two morphisms f, g are composable if dom(g) = cod(f), and define their

composition to be g ◦ f , given by concatenation. By virtue of the composable condition, g ◦ f

is also a morphism. One can easily check that this data satisfies the conditions for being a

category. For an appropriate notion of morphism between quivers, it can be shown that given

such a morphism φ, there is a corresponding functor Fφ. The data of this correspondence

can be packed into a functor F : Quiv→ Cat, left adjoint to the forgetful functor (see [11, p.

49-50]).

Representations of the form FQ → C for a quiver Q and a category C are what we call

quiver representations. For each diagram one can draw down there is a list of examples.

We will exhibit a few examples after defining the composition algebra next.

In the case that T is a tensor category (that is, an abelian category which is also sym-

metric monoidal, whose tensor product is additive in both arguments (see [5] for details on

these objects, but note that our definition of tensor category conflicts with theirs)), we have

a way to “algebrize” a category of representations. Before we jump into that, we have to

introduce a few notions:

Definition 2.8. Let M = (M,⊗, I) be a monoidal category. A monoid in M is a triple

(M,µ, ε), where M ∈ M, µ : M ⊗ M → M and ε : I → M . This data is subject to the

following condition: the diagrams

(M ⊗M)⊗M M ⊗ (M ⊗M) M ⊗M

M ⊗M M M ⊗M I ⊗M M M ⊗ I

α

µ⊗1 1⊗µ µ

µ µ

ε⊗1

λ

1⊗ε

ρ

must commute, where α : (−⊗−)⊗− ⇒ −⊗ (−⊗−) is the associator and λX : I⊗X → X,

ρX : X⊗ I → X are the left and right unitors, respectively. These diagrams are, respectively,

the associativity and identity diagrams.

Furthermore, ifM is symmetrical, a commutative monoid is a monoid that also makes
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the following diagram commute

M ⊗M M ⊗M

M

γ

µ µ

where γA,B : A⊗B → B ⊗A is the braiding.

For two monoids (M,µ, ε) and (N, η, ε′), a monoid morphism is a morphism f : M → N

making the following diagrams commute:

M ⊗M N ⊗N I

M N M N

f⊗f

µ η
ε ε′

f f

The monoids with the morphisms above give rise to the category MonM of monoid objects

inM with monoid morphisms. The commutative monoid objects of a symmetrical monoidal

category form CMonM, with the same morphisms. For more details, check [4].

Example 2.9. We list a few examples:

• In (Set,×, ∗), the category of monoid objects is just the category of monoids with

monoid morphisms;

• For a ring R, in (R-Mod,⊗R, R) the category of monoid objects is the category R-Alg

of R-algebras, with R-algebra morphisms. In the case R = Z we get the category of

noncommutative rings. We get similar results if we consider the category of commuta-

tive monoids.

• The category Z-Mod is symmetric monoidal, and its category of commutative monoids

is the category of rings.

• For a category C, a monoid object in the monoidal category ([C, C], ◦, idC) is a monad.

• LetM be a monoidal category, C be any category. Then the functor category [C,M] is

also (pointwise) monoidal. Its category of monoids is equivalent to the functor category

[C,MonM], and likewise for commutative monoids ifM is symmetrical.

• A consequence of two of the above examples: If M = ShAb(X) is the category of

abelian group valued sheaves over X, then CMonM is the category of ring valued

sheaves.

Definition 2.10. LetM be a monoidal category, and let R = (R,µ, ε) be a monoid inM. A

left module over R or left R-module is a tuple M = (M,η) where M ∈M and a morphism
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η : R⊗M →M . This morphism makes the following diagrams commute:

(R⊗R)⊗M R⊗ (R⊗M) R⊗M

R⊗M M R⊗M I ⊗M M

α

µ⊗1 1⊗η η

η η

ε⊗1

λ

For two R-modules M = (M,η) and M ′ = (M ′, η′), a R-module morphism is a morphism

f : M →M ′ making the following diagram commute:

R⊗M R⊗M ′

M M ′

1⊗f

η η′

f

This forms a category of R-ModM, of R-module objects inM with R-module morphisms.

Example 2.11. We give two common examples:

• Since a ring R is a commutative monoid object in Ab, the category R-Mod is the

category of R-module objects.

• Let OX be a sheaf of rings over X. Then OX -Mod is the category of OX -module

objects.

Theorem 2.12. Let C be a small category with a finite set of objects, and let T = (T ,⊗, I)

be a tensor category with coproducts, whose tensor product preserves them. Then we have

[C, T ] ∼= A-ModT

for A = (A,µ, ε) an appropriate monoid in T . This is what we call the category or convo-

lution monoid of C over T . In the case T = R-Mod, replace “monoid” by “R-algebra”, and

write A = RC in this case.

This result is a slight generalization of the equivalence of categories

[C, R-Mod] ∼= RC-Mod,

and has essentially the same proof, where RC is the free R-module generated by the mor-

phisms in C, and the product is induced by composition in C.

PROOF. We will imitate the idea for the case T = R-Mod as closely as we can. The first

step is to define the monoid:

A =
⊕

f∈Mor C
If
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and write ιf : I → A for the inclusions. If f = idc for some object c ∈ C, write ιc instead.

Define µ : A⊗A→ A to be the unique morphism making the following diagram commute

for all morphisms f, g:

I ⊗ I A⊗A

I A

ιg⊗ιf

µg,f µ

ηg,f

where we let µg,f be the isomorphism I⊗I ∼= I (the left/right unitor) for all f, g, and ηg,f = ιg◦f

if f, g are composable, zero otherwise.

Since C has a finite number of objects, let

ε =
∑
c∈C

ιc : I → A

One can easily check that (A,µ, ε) is a monoid, just verify the associativity diagram com-

mutes for the maps µg,f , and the result follows by the use of universal properties. The

commutativity of the identity diagram follows by a similar idea.

Let F ,G : C → T be functors. Define

M =
⊕
c∈C
Fc

with inclusions ic : Fc → M and let η : A ⊗M → M be the unique morphism making the

following diagram commute

I ⊗Fc A⊗M

Fd M

ιf⊗ic

ηf,c,d η

id

where ηf,c,d = Ff ◦ λ if f : c→ d and the zero morphism otherwise. Checking that (M,η) is

an A-module is not unlike showing A is a monoid. We can also define the A-module (M ′, η′)

given by G.

For a natural transformation φ : F → G, we define φ∗ : M → M ′ to be the unique mor-

phism such that the following diagram

Fc M

Gd M ′

ic

φ∗c,d φ∗

i′d

commutes, where φ∗c,d = φc if c = d and the zero morphism otherwise. Verifying φ∗ is a

module morphism is similar to showing that (M,η) is a module: we check the commutativity
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of the diagrams at the “generators” (I, Fc, Gc), then using universal properties to extend to

M .

The above construction should make it clear to what are the steps to reverse it; let M be

an A-module. If A were an R-algebra, we would decompose M into modules ecM , where

{ec}c∈C is a complete set of idempotents ofM . We can also do this is general, by considering

the of the following chain of morphisms:

M
λ−1

−−→ I ⊗M ιc⊗1−−−→ A⊗M η−→M

We suggestively write ecM for the (co)image of the above triple composite. It is not dificult

to show that

M ∼=
⊕
c∈C

ecM

which suggests defining Fc = ecM for each c ∈ C, just like it is done in the case C = R-Mod.

Similarly, for each morphism f , and objects c, d, define ηf,c,d to be the composite

I ⊗Fc
ιf⊗ic−−−→ A⊗M η−→M

πd−→ Fd.

Showing ηf,c,d behaves as we expect amounts to checking that the “restriction” of the action

η by f : c′ → d′ to Fc, at Fd, is 0 unless c = c′ and d = d′, in which case we define

Ff = ηf,c,d ◦ λ−1. This is an immediate calculation, just like in C = R-Mod. It is also

straightforward to check that F is a functor, and that ηf,c,d as defined also makes (2.2)

commute.

Finally, let φ : (M,η)→ (M ′, η′) be a module morphism. Let F ,G be the functors associ-

ated to (M,η) and (M ′, η′), respectively. As we did to define Ff for f : c→ d, we consider

Fc ic−→M
φ−→M ′

π′d−→ Gd

and let φ∗c,d be this composite, which is zero possibly except when c = d, and we recover a

natural transformation φ∗ : F → G with φ∗c = φ∗c,c.

Some comments: we can drop the requirement that C is finite, losing the unit in the

process, so we get “semigroup” objects instead. In the particular case T = R-Mod, we get

R-algebras without unit.

There is a “dual” construction, appropriate for locally finite posets, which recovers the

incidence algebra. In this case, we must also require that each morphism f in C has a finite
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number of factorizations. We will not go through the details, but in the case C finite, this

construction and the dual one are the same, check [17] for more details.

In the case C = FQ for a quiver Q, T = R-Mod, we say A is the path R-algebra of the

representation.

Example 2.13. Let F : C → T be a representation satisfying the hypothesis of the previous

result, let A be the composition monoid constructed above.

• If C = G is a group, T = C-Mod, we have A = C[G]. In fact, we can replace C by any

ring R.

• If C = P is a finite poset, T = R-Mod, then due to a remark above, A is commonly

known as the incidence algebra. Usually, we have R = Z.

• Let Q be the quiver

• x

and T = R-Mod. Then A = R[x] is the ring of polynomials with coefficients in R.

• Let Q be the quiver

• · · ·x1 x2 xn

and T = R-Mod. Then A = R〈x1, x2, . . . , xn〉 is the free R-algebra on {x1, x2, . . . , xn},

or the ring of polynomials in n noncommuting variables with coefficients in R.

2.3 Grothendieck categories

Definition 2.14. Let J be a category. If

• J is nonempty,

• for each pair i, j ∈ J of objects, there exists an object k ∈ J with arrows f : i→ k and

g : j → k,

• and for each pair of parallel arrows f, g : i → j there exists an object k with an arrow

h : j → k such that hf = hg,

then we say that J is a filtered category, and a colimit of a functor F : J → C for some

category C is called a filtered colimit.
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Definition 2.15. Let C be an abelian category.

• We say C has exact filtered colimits if for all filtered categories J and functors F,G : J →

C such that for each j ∈ J

0→ Fj → Gj

is exact, then

0→ colimF → colimG

is also exact, whenever both colimits exist.

• We say g ∈ C is a generator if, given f : c → d we have fφ = 0 for all φ : g → c, then

f = 0.

• We say C is a Grothendieck category if it has all coproducts, exact filtered colimits

and has a generator.

Note that in the definition of exact filtered colimits, we only required left exactness, since

all colimits are necessarily right exact (they are left adjoints).

Example 2.16. Many important categories are Grothendieck:

• R-Mod for each ring R, and in particular, Ab;

• OX -Mod for each ringed space (X,OX);

• Lex(Cop,Ab), category of left-exact functors with natural transformations, for each

abelian category C. We have a fully faithful and exact embedding of C into the above

category, not unlike Yoneda’s embedding ([6]).

Lemma 2.17. If a direct summand is a generator, then the direct sum is a generator.

PROOF. Let {Gk}k∈K be a collection of objects in C, and suppose that there exists i ∈ K

such that Gi is a generator. Let f : X → Y be a map such that for all g :
⊕

kGk → X we

have fg = 0. Let φi : Gi → X be any morphism, and for k 6= i, let φk : Gk → X be the

zero morphism; then there exists a unique morphism φ :
⊕

kGk → X factoring φk through

the inclusions. In particular, φιi = φi, so fφi = 0. This implies f = 0, hence the sum is a

generator.

Let C be a Grothendieck category. C has several nice properties which make it very

interesting to study. Among those:
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• C has an injective cogenerator, and in particular, enough injectives;

• C has all limits;

• C is a full subcategory of R-Mod, where R = Hom(G,G), for G a generator of C;

• If a functor F : C → D preserves (co)limits, then it is a (left) right adjoint;

• If a functor F : Cop → Set preserves limits, then it is representable, that is, F ∼=

Hom(−, C) for some C ∈ C.

Check [10] for more details on Grothendieck categories.



Chapter 3

Representations of diagrams

For a category I, a diagram over I is a functor Φ: I → Cat. Given a morphism a in I, we

will normally write a∗ or a∗ for Φa, depending on context.

3.1 Getting our feet wet

Definition 3.1. Let I be a category, let Φ be a diagram over I, and, for each arrow p : i→ j,

write p∗ = Φa whenever confusion won’t arise. We define the category Rep∗(Φ) as follows.

An object X is determined by the following data:

• For each object i ∈ I, an object Xi ∈ Φi;

• For each arrow p : i→ j in I, an arrow Xp : p∗Xi → Xj

This data is subject to the following condition: for p, q composable morphisms, we have

Xq◦p = Xq ◦ q∗Xp (3.1)

This condition is motivated by requiring the following diagram to be commutative:

q∗p∗Xi q∗Xj Xk

(q ◦ p)∗Xi Xk

q∗Xp Xq

Xq◦p

17
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A morphism f : X → Y is, for each i ∈ I, an arrow fi : Xi → Yi, and we require these arrows

to be such that the following diagram

p∗Xi Xj

p∗Yi Yj

p∗fi

Xp

Xj

Yp

is commutative.

The goal is to take a (nonabelian) category of interest in which we would like to do ho-

mological algebra, and embed it in a full subcategory of Rep∗(Φ) for an adequate diagram Φ.

We consider a whole class of simple examples. Let Φ: I → Cat be a diagram such that

Φi = C for all i ∈ I and p∗ = idC for all p : i→ j; the constant diagram to C. Then Rep∗(Φ) is

equivalent to the functor category [I, C], which is just the category of I-representations over

C, as defined in the previous chapter.

We can quickly check this: for each i ∈ I, we have an object Xi ∈ C, and for each

p : i→ j, a morphism Xp : Xi → Xj . These morphisms satisfy

Xq◦p = Xq ◦ p∗Xp = Xq ◦Xp

for each pair of composable morphisms p, q, hence X : I → C is a functor. A morphism

f : X → Y in Rep∗(Φ) satisfies

Xi Xj

Yi Yj

fi

Xp

fj

Yp

which is just a natural transformation, and all natural transformations give morphisms in

Rep∗(Φ).

Example 3.2. Linear representations of a group, R-module representations of a poset and

quiver representations are all special cases of the above, from the previous chapter.

Example 3.3. We have another class of examples; suppose that I is a discrete category, a

category with no non-identity arrows. Then Rep∗(Φ) ∼=
∏
i∈I Φi.

To quickly check this, we have for each i ∈ I an object Φi, and for each morphism

p : i→ i, necessarily an identity, we have a morphism Xp : Xi → Xi, an identity as well.

For X,Y ∈ Rep∗(Φ), a morphism is just a map fi : Xi → Yi for each i ∈ I, so the

condition (3.1) is automatically satisfied.
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Now we consider nontrivial examples: let M be a monoidal category, and consider a

family {Mp}p of objects inM indexed by the morphisms of I satisfying

Mq◦p = Mq ⊗Mp

We define the diagram Φ to be constant on objects, equal toM, and for each arrow p : i→ j,

we define p∗ = Mp ⊗−. We recover the categories of twisted representations, as defined in

[7], lettingM = R-Mod for a ring R orM = OX -Mod for a sheaf of rings O over a space X.

Furthermore, we observe that if I = FQ for a quiver Q, the family {Mp}p is determined by

the objects on the arrows of Q. We give a particular case:

Example 3.4. Higgs sheaves over a curve can be described in the following way: Let X be

a complex projective curve, let KX be the canonical line bundle as a locally free OX -module.

We define Q to be the quiver

• a

and define Φ to be a diagram over FQ such that Φ• = CohX and a∗ = −⊗KX . An object

in Rep∗(Φ)op is then an object E ∈ CohX and a morphism φ : E → E ⊗KX . Later we will

be allowed to conclude that this category is abelian, because CohX is abelian and a∗ is left

exact.

Example 3.5. A final and more involved example which we will study more in-depth in the

next chapter: quasiparabolic bundles. Given a smooth complex projective curve X, with

reduced divisor D = p1 + . . . + pn, a quasiparabolic sheaf (E , E∗) on X over D is given by

the following data:

• A coherent OX -module E ;

• For each point p ∈ D, a positive integer mp and a filtration

Ep ⊗ Cp = Ep,0 ⊇ Ep,1 ⊇ . . . ⊇ Ep,mp ⊇ Ep,mp+1 = 0

We say mp is the length of the parabolic structure at p.

We get a quasiparabolic bundle when we have E locally free. Given quasiparabolic bundles

(E , E∗), (F , F∗), a morphism φ : E → F is defined only when the filtrations are of the same

length at every point p ∈ D, and such a morphism satisfies φ(Ep,j) ⊆ Fp,j for all p, j. This

can be restated by saying that the morphism must preserve filtrations.
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Write QParm(X,D) for this category of quasiparabolic sheaves of length m. Suppose for

simplicity that D = p. We proceed to show how to embed this category in Rep∗(Φ) for an

appropriate Φ: let Q be the quiver

0
a−→ 1→ . . .→ m

and define Φ0 = Coh(X), Φk = Vectop for k > 0, a∗ to be the functor opposite to Hom(−,Cp),

and b∗ = id for arrows b 6= a. This gives us a diagram Φ: FQ → Cat, and the correspond-

ing category Rep∗(Φ). Concretely, this is the category with objects a coherent sheaf E and

vector spaces V1, . . . , Vm, with a chain of linear maps

Hom(E ,Cp) ∼= (Ep)∗ ← V1 ← . . .← Vm

Note that the direction of the linear maps is the opposite of the quiver’s arrows; this is

because the “original” morphisms live in Vectop.

Let E be a quasiparabolic sheaf of length m. Then we have a filtration

E0 ⊃ . . . ⊃ Em+1 = 0

where E0 = Ep. So for each i ≥ 0, let Vi = (E0/Em+1−i)
∗. We justify this in a series of steps:

We started with

E0 ←↩ . . .←↩ Em+1

where the maps are inclusions, so by defining Ek = E0/Ek, we get

E0 � . . .� Em+1 ∼= E0

where the morphisms are the projections induced by the inclusions above. Next, we dualize:

(E0)∗ � . . .� (Em+1)∗ ∼= (E0)∗

note that this diagram is in Vectop. Finally, reversing the indices (Vk = (Em+1−k)∗) we get

Vm+1 → Vm → . . .→ V0 = (E0)∗ ∼= Hom(E ,Cp)

which is a chain of linear maps, as above (that is, a diagram in Vect). Removing Vm+1 = 0,

we have a chain of length m.

The morphisms (E , V•) → (F ,W•) in Rep∗(Φ) are precisely those which make the rect-

angles
E∗p V1 . . . Vm

F ∗p W1 . . . Wm



CHAPTER 3. REPRESENTATIONS OF DIAGRAMS 21

commute. If the objects are (the image of) a parabolic sheaf, all parabolic sheaf morphisms

arise in this way, by preservation of filtrations. This exhibits the parabolic sheaves as a full

subcategory of Rep∗(Φ), which is abelian.

For general D = p1 + . . .+ pk, we can use the following quiver

1 2 . . . m1

0
...

1 2 . . . mk

a1

ak

that is, a tree rooted at 0 with k branches, each with the length of its filtration, and Φaj the

opposite functor of Hom(−,Cpj ).

What is not clear right now is why we had to go to such length to define Φ as we did,

which made the embedding difficult to construct and understand. The reason is simple:

We require a∗ to be right-exact, so thaat we can guarantee that Rep∗(Φ) is abelian. In what

follows, we will explore what conditions we need on a diagram Φ to get more good properties

on Rep∗(Φ).

3.2 Grothendieck construction and the dual version

Let Φ be a diagram over I, and consider the large category Cat∗,clx of colax-pointed cate-

gories:

• Objects are given by pairs (C, c) where C is a non-empty category and c is an object of

C;

• Morphisms are given by pairs (F, f) : (C, c)→ (D, d) where F : C → D is a functor and

f : d→ Fc is a morphism.

• For (F, f) , (G, g) composable arrows, composition is given by

(G, g) ◦ (F, f) = (G ◦ F,Gf ◦ g)
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Write U : Cat∗,clx → Cat for the forgetful functor. The Grothendieck construction for Φ is

the pullback Π:
∫

Φ→ I of U along Φ, given by the following pullback diagram:

∫
Φ Cat∗,clx

I Cat

Π U

Φ

In other words,
∫

Φ has objects (i, c) where i ∈ I and c ∈ Φi and morphisms

(p, f) : (i, c)→ (j, d)

where p : i→ j and f : d→ p∗c, where p∗ = Φp. So, the Grothendieck construction Π of Φ is

the functor projecting to the first coordinate.

Example 3.6. Suppose I is a set (discrete category) and Φ be a diagram over I. Then∫
Φ ∼=

∑
i∈I Φi.

Note that the category
∑

i∈I Φi whose objects are pairs (i, c) for c ∈ Φi, with morphisms

given by (i, f) : (i, c)→ (i, d) where f : c→ d in Φi.

Example 3.7. Let Sh : Top → Cat be the functor sending each topological space to its

category of sheaves of rings Sh(X) and each continuous map f : X → Y to the direct

image functor f∗ : Sh(X)→ Sh(Y ). The category
∫

Sh in the pullback

∫
Sh Cat∗,clx

Top CatSh

is the category of ringed spaces, with ringed space morphisms between them: The objects

are pairs (X,OX) for X topological space and OX a sheaf of rings over X, and a mor-

phism (f, f#) : (X,OX) → (Y,OY ) is a continuous map f : X → Y and a sheaf morphism

f# : OY → f∗OX .

Dually, we can get another construction by replacing Cat∗,clx by Cat∗,lx, the category

of lax-pointed categories, with the same objects and similar morphisms; for a morphism

(F, f) : (C, c) → (D, d) we require f : Fc → d instead, and (G, g) ◦ (F, f) = (G ◦ F, g ◦

Gf) for (F, f) , (G, g) composable arrows. The following definition and result will clarify the

relationship between both constructions.
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Definition 3.8. For a diagram Φ over I, we define the opposite diagram Φop : I → Cat such

that Φop
i is the opposite category of Φi and Φop

p : Φop
i → Φop

j the opposite functor for p : i→ j

in I.

Proposition 3.9. Let Φ be a diagram over I, and consider the pullbacks

∫
Φ Cat∗,lx

∫
Φop Cat∗,clx

I Cat I Cat

Π∗ Π∗

Φ Φop

Then
∫

Φ and
∫

Φop are isomorphic categories.

PROOF. We only need to find functors
∫

Φ → Cat∗,clx and
∫

Φop → Cat∗,lx. The universal

properties of the pullbacks guarantee there are unique morphisms from one category to the

other, implying we have an isomorphism.

First, for p : i → j in I, write p∗ = Φp, p∗ = Φop
p , and for f : c → d in some category C,

write fop : d→ c for the same morphism in Cop. Note that pop
∗ = p∗.

Let G :
∫

Φ→ Cat∗,clx be such that

G(i, c) = (Φop
i , c) and G(p, f) = (p∗, fop)

To check this is well defined, note that if f : p∗c→ d is a morphism in Φj , then fop : d→ p∗c

is a morphism in Φop
j . We can define the other functor in almost exactly the same way.

In this next proposition, we will show how to use the Grothendieck construction for a

diagram Φ to give an easier definition of Rep∗(Φ):

Proposition 3.10. Let Φ be a diagram over I, consider its Grothendieck construction Π

with lax-pointed categories. The category Rep∗(Φ) is equivalent to the full subcategory of

sections of Π of the functor category [I,
∫

Φ].

PROOF. Let X : I →
∫

Φ be a section of Π. For p : i → j in I, we can write, if we abuse

notation, Xi = (i,Xi) and Xp = (p,Xp), it becomes clear that X is a representation, since

Xi ∈ Φi and Xp : p∗Xi → Xj , and the condition 3.1 is satisfied. That any representation

gives a section of Π is immediate as well.

What remains is to check that the morphisms correspond to natural transformations. For

X,Y sections, consider a natural transformation f : X → Y between them. For i ∈ I, we
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may (continue to abuse notation and) write fi = (idi, fi). For a morphism p : i→ j, we have

the following commutative diagram:

Xi Xj

Yi Yj

Xp

fi fj

Yp

Here, the abuse of notation becomes deceiving, because of the composition of morphisms:

remember that Yp ◦ fi = Yp ◦ p∗fi (on the LHS, abuse of notation, on the RHS, actual

composition) and Xp : p∗Xi → Xj . So diagram above translates to

p∗Xi Xj

p∗Yi Yj

Xp

p∗fi fj

Yp

which is just the diagram expressing the representation morphism condition. Equivalently, it

is clear that a representation morphism gives a natural transformation between sections.

Example 3.11. For Φ a diagram over a discrete category, as in Example 3.3, we verify

Rep∗(Φ) ∼=
∏
i∈I Φi; a way to define

∏
i Φi in terms of

∑
i Φi is exactly the category of

functors I →
∑

i Φi which are sections of the “projection”
∑

i Φi → I.

Next, we consider the dual concept: given such a diagram Φ, we can define the category

Rep∗(Φ):

Definition 3.12. For a category I, let Φ: I → Cat be a diagram, and write p∗ = Φp. The

objects of Rep∗(Φ) are given by data

• For each object i ∈ I, an object Xi ∈ Φi;

• For each morphism p : i→ j in I, a morphism Xp : Xj → p∗Xi

This data is subject to the following condition: for p, q composable morphisms, we have

Xq◦p = p∗Xq ◦Xp

A morphism f : X → Y is determined by the following data: for each i ∈ I, an arrow

f i : Xi → Y i, and for each morphism p : i→ j, the diagram

Xi p∗Xj

Y i a∗Y j

f i

Xp

p∗fj

Y p

commutes.
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Much like Rep∗(Φ), one can quickly check that Rep∗(Φ) is equivalent to the category

of sections of Π, where Π is the Grothendieck construction for Φ using the colax-pointed

categories.

Proposition 3.13. Let Φ be a diagram. We have

Rep∗(Φop) ∼= Rep∗(Φ)op

PROOF. Consider the pullbacks∫
Φ Cat∗,lx

∫
Φop Cat∗,clx

I Cat I Cat

Π∗ U Π∗ U

Φ Φop

We have seen, in Proposition 3.8, that
∫

Φ and
∫

Φop are isomorphic, hence the categories

[I,
∫

Φ] and [I,
∫

Φop] are isomorphic; if X is a section of Π∗, write Xop for the corresponding

section of Π∗, and the same backwards.

Let f : X → Y be a natural transformation between sections of Π∗. We have, for a

morphism p : i→ j

p∗Xi Xj

p∗Yi Yj .

p∗fi

Xp

fj

Yp

So define fop : Y op → Xop such that (fop)i = (fi)
op. We get a diagram similar to the

one above, but with the arrows flipped and indices raised, so fop : Y op → Xop is a natural

transformation. The reverse direction is equivalent, and hence the categories Rep∗(Φ)op

and Rep∗(Φop) are isomorphic.

For every result we prove about Rep∗(Φ), there is a corresponding result for Rep∗(Φ),

and this result allows us to take the liberty to prove just one of the cases, since the dual one

will implicitly follow.

Definition 3.14. Let Φ, Ψ be diagrams over I and Iop respectively. We say Φ, Ψ are a pair

of adjoint diagrams if for all i ∈ I we have Φi = Ψi, and for each p : i→ j in I, p∗ = Φp and

p∗ = Ψp are a pair of adjoint functors.

Proposition 3.15. Let Φ,Ψ be a pair of adjoint diagrams. Then

Rep∗(Φ) ∼= Rep∗(Ψ)
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PROOF. For p : i → j, let φp : HomΦj (p∗(−),−) → HomΨi(−, p∗(−)) be the adjunction’s

natural isomorphism.

Define a functor F : Rep∗(Φ) → Rep∗(Ψ) as follows: for f : X → Y a morphism in

Rep∗(Φ) and p : i→ j a morphism in I we have

• F(X)i = Xi;

• F(X)p = φpXi,Xj (Xp) : Xi → p∗Xj

• F(f)i = fi.

So F(X) is an object in Rep∗(Φ), and we must check that F(f) is a morphism. This amounts

to proving that the following rectangle

Xi p∗p∗X
i p∗Xj

Y i p∗p∗Y
i p∗Y j

hXi

p∗f i

p∗Xp

p∗p∗f i p∗fj

hYi p∗Y p

is a commutative diagram, where hZ = φpZ,p∗Z(id). By applying p∗ to the diagram expressing

that f is a representation morphism shows that the right square commutes, and since φp is

a natural transformation, the left square commutes.

In a similar fashion, one can define a functor G : Rep∗(Ψ) → Rep∗(Φ) such that for a

morphism f : X → Y in Rep∗(Ψ) and a morphism p : i→ j we have

• G(X)i = Xi;

• G(X)p = (φpXi,Xj )
−1(Xp);

• Gfi = f i.

That F ,G are actually functors can be checked easily.

It is clear, by inspection, that GF and FG are exactly the identities of Rep∗(Φ) and

Rep∗(Ψ), respectively. Hence the categories are isomorphic.

3.3 Properties of Rep∗(Φ) and Rep∗(Φ)

This section is devoted to listing the several properties of Rep∗(Φ) under some suitable

conditions on Φ. First we define some abbreviations:

Definition 3.16. Let Φ be a diagram over I. We say that
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• Φ is a finite diagram if I has finitely many objects.

• Φ is a quiver diagram if I is generated by a quiver Q, and is a finite quiver diagram if

Q is finite.

• Φ is an abelian diagram if for all i ∈ I, Φi is an abelian category, and for all morphisms

p, Φp is additive;

• Φ has (co)products if for all i ∈ I, Φi has coproducts and for each morphism p, Φp

preserves them;

• Φ is a (left, right) exact diagram if Φ is abelian and for each morphism p, Φp is (left,

right) exact;

• Φ has exact filtered colimits/cofiltered limits if Φ is abelian, has coproducts/products

and for each i ∈ I, Φi has exact filtered colimits/cofiltered limits;

• Φ has (injective, projective) (co)generators if for each i ∈ I, Φi has (injective, pro-

jective) (co)generators;

• Φ is a (co-)Grothendieck diagram if Φ has exact filtered colimits (cofiltered limits) and

(co)generators;

• Φ has enough injectives/projectives if for each i ∈ I, Φi has enough injectives/projectives.

This will come in handy when stating hypothesis for the next few results.

Definition 3.17. Let Φ be a diagram over I. For each i ∈ I, define a functor ρi : Rep∗(Φ)→

Φi such that ρi(X) = Xi and ρi(f) = fi for all f : X → Y . Equivalently, we can define

functors ρi : Rep∗(Φ)→ Φi for each i ∈ I.

The next result is trivial in the sense that, for each i ∈ I, we can embed Φi into Rep∗(Φ),

but will come in handy.

Proposition 3.18. Let Φ be a diagram. ρi has a right adjoint; dually, ρi has a left adjoint.

These adjoints are fully faithful.

PROOF. Define τi : Φi → Rep∗(Φ) to be such that, for each M ∈ Φi:

• τ(M)j = 0 for i 6= j, and τ(M)i = M ;

• τ(M)p : p∗τ(M)j → τ(M)k is the zero morphism for a 6= id, and the identity if p = id.

Given f : M → N in Φi, we define τ(f)j = 0 for i 6= j, and τ(f)i = f . This trivially satisfies

the conditions for being a representation morphism.
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We define φ : Hom(Xi,M)→ Hom(X, τ(M)) such that for f : Xi →M , define φ(f)i = f

and φ(f)j = 0 otherwise, which is clearly a natural isomorphism. Full faithfulness is the

observation that ρi(τi(M)) = M and then applying the adjunction isomorphism.

Proposition 3.19. Let Φ be an abelian, right exact diagram over I. Then Rep∗(Φ) is abelian.

Furthermore, X → Y → Z is exact in Rep∗(Φ) iff for all i ∈ I, Xi → Yi → Zi is exact. In

particular, ρi is an exact functor for each i ∈ I.

PROOF. LetR = Rep∗(Φ). First, we begin to show that for each pairX,Y ∈ R, HomR(X,Y )

has the structure of an abelian group, by showing it is a subgroup of

∏
i∈I

HomΦi(Xi, Yi).

The zero morphism 0: X → Y satisfies Yp ◦ p∗0i = 0j ◦ Xp for all p : i → j, so it belongs

in HomR(X,Y ). For f, g : X → Y , we can verify that f − g is in HomR(X,Y ), since p∗ is in

particular additive for all p : i→ j:

Ya ◦ o∗(fi − gi) = Ya ◦ p∗fi − Yp ◦ p∗gi = fi ◦Xp − gi ◦Xp = (fi − gi) ◦Xp

Thus HomR(X,Y ) is an abelian group.

For X1, X2 objects, we define X1 ⊕X2 such that (X1 ⊕X2)i = X1,i ⊕X2,i for each i ∈ I

and

(X1 ⊕X2)p : p∗(X1,i ⊕X2,i)→ X1,j ⊕X2,j

to be the unique morphism making the following diagram commute

p∗X1,i p∗X1,i ⊕ p∗X2,i p∗X2,i

X1,j X1,j ⊕X2,j X2,j

X1,p X2,p

for each p : i → j, remarking that p∗(X1,i ⊕X2,i) = p∗X1,i ⊕ p∗X2,i by right exactness. This

implies, in particular, that the inclusions ιk : Xk → X1 ⊕ X2 are representation morphisms,

and likewise for the projections.

For k = 1, 2, consider morphisms gk : Xk → Z. Then for each i ∈ I, there exist unique

hi : X1,i ⊕ X2,i → Zi which factor gk,i through the inclusions ιk,i : Xk,i → X1,i ⊕ X2,i. To

check h is a representation morphism, for each k we have a maps p∗Xk,i → Zj , given by
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gk,j ◦Xk,p = Zp ◦ p∗gk,i, since g is a representation morphism. Factoring g, we get

hj ◦ ιk,j ◦Xk,p = hj ◦ (X1 ⊕X2)p ◦ p∗ιk,i

= Zp ◦ p∗hi ◦ p∗ιk,i

where the first equality is consequence of ιk being a representation morphism. The given

maps p∗Xk,i → Zj factor uniquely through p∗ιk,i for k = 1, 2, implying hj ◦ (X1 ⊕ X2)p =

Zp ◦ p∗hi. This is enough to show that X ⊕ Y is a biproduct.

Next, consider a morphism f : X → Y . Then for each i ∈ I let ki : Ki → Xi and

ci : Yi → Ci. be the kernel and cokernel of fi, respectively. Given p : i → j, we have the

diagram

p∗Ki p∗Xi p∗Yi p∗Ci

Kj Xj Yj Cj

p∗ki

Kp

p∗fi

Xp

p∗ci

Yp Cp

kj fj cj

whereKp, Cp are the unique morphisms making the diagram commute by the universal prop-

erty of kernel and cokernel, respectively: note that right exactness of p∗ guarantees that p∗ci

is the cokernel of p∗fi. As a consequence, K,C are representations, and k : K → X,

c : Y → C are representation morphisms. To check they are the kernel, cokernel respec-

tively, consider maps g : Z → X and h : Y → W such that fg and hf are zero morphisms.

Then for each i ∈ I, there exist unique ĝi : Zi → Ki and ĥi : Ci →Wi such that

kiĝi = gi and ĥici = hi.

so for each a : i→ j, we have

kj ◦ ĝj ◦ Zp = Xp ◦ p∗ki ◦ p∗ĝi = kj ◦Kp ◦ p∗ĝi

Wa ◦ p∗ĥi ◦ p∗ci = ĥj ◦ cj ◦ Yp = ĥj ◦ Cp ◦ p∗ci

and since kj , p∗ci are a monomorphism and an epimorphism respectively, we conclude that

ĝ and ĥ are representation morphisms. Everything up until now also allows us to observe

that for each i ∈ I, ρi is an exact functor.

Finally, let f : X → Y be a morphism. Now it must be shown that the morphism f̂

X → coker(ker f)
f̂−→ ker(coker f)→ Y
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is an isomorphism, that is to say, we must have f̂i an isomorphism for each i ∈ I. So we

apply ρi to the diagram above, getting (the indices go inside because ρi is exact)

Xi → coker(ker fi)
f̂i−→ ker(coker fi)→ Yi

and because Φi is abelian, we have just verified f̂i is an isomorphism.

If X
f−→ Y

g−→ Z is exact in R, then Xi
fi−→ Yi

gi−→ Zi for each i ∈ I by exactness of ρi.

Conversely, suppose that we have morphisms f : X → Y and g : Y → Z such that for

each i ∈ I, Xi
fi−→ Yi

gi−→ Zi is exact. Then for each i ∈ I

ρi(Ker g) = Ker gi = Im fi = ρi(Im f)

now consider a : i → j. The maps Ker gi → Yi and Im fi → Yi are the same for all i ∈ I, so

the maps (Ker g)p and (Im f)p coincide. Hence Ker g = Im f , proving exactness in R.

For convenience, we state the dual result:

Corollary 3.20. Let Ψ be a left exact diagram over I. Then Rep∗(Ψ) is abelian, moreover

X → Y → Z is exact iff Xi → Y i → Zi is exact.

With stronger conditions on Φ, we can extract even more information about Rep∗(Φ).

The main goal is finding conditions that guarantee enough projectives. Before getting to that

point, we have the following result, whose proof is omitted since it uses almost the same

argument as for binary (co)products.

Proposition 3.21. Let Φ be a diagram with (co)products. Then Rep∗(Φ) has all (co)products,

and for each i ∈ I, ρi preserves them.

The next proposition is arguably one of the most important; under good enough condi-

tions, it allows us to transport properties from Φ to Rep∗(Φ) more easily. [13].

Proposition 3.22. Let Φ be a diagram with coproducts. For each i ∈ I, define a functor,

σi : Φi → Rep∗(Φ) such that for each j ∈ I, q : j → k in I, M ∈ Φi and f : M → N in Φi we

have

• σi(M)j =
⊕

p : i→j
p∗M ;

• σi(M)q : q∗σi(M)j → σi(M)k the (inclusion) morphism induced by the inclusions:

q∗σi(M)j =
⊕
p : i→j

q∗p∗M →
⊕
r : i→k

r∗M = σi(M)k
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• σi(f)j =
⊕

p : i→j
p∗f .

We have σi left adjoint to ρi. Moreover, if Φ is left exact, and has exact coproducts, then σi

is left exact.

PROOF. WriteR = Rep∗(Φ), and ιp : p∗M → σi(M)j for the inclusion morphism, with p : i→

j. For each X ∈ R, and M ∈ Φi, we want to define isomorphisms

φM,X : HomR(σi(M), X)→ HomΦi(M,Xi)

ψM,X : HomΦi(M,Xi)→ HomR(σi(M), X)

Omitting indices, for f : σi(M)→ X we define φ(f) to be the composite

M
ιid−→

⊕
p : i→i

p∗M = σi(M)i
fi−→ Xi

and for g : M → Xi define ψ(g)j to be the unique morphism such that

ψ(g)j ◦ ιp = Xp ◦ p∗g

for all p : i→ j. So for g : M → Xi

φ(ψ(g)) = ψ(g)i ◦ ιid = g

and since the following diagram commutes for all p : i→ j

p∗M p∗σi(M)i

σi(M)j

p∗ιid

ιp

σi(M)p

for f : σi(M)→ X, we get

ψ(φ(f))j ◦ ιp = Xp ◦ p∗φ(f) = Xp ◦ p∗fi ◦ p∗ιid = fj ◦ σi(M)i ◦ p∗ιid = fj ◦ ιp

for each p : i→ j, hence we conclude that ψ(φ(f))j = fj , so ψφ and φψ are identities, hence

φ and ψ are isomorphisms.

Naturality boils down to the fact that σi(g)iιidM = ιidN g for a morphism g : M → N in Φi,

given by definition of σi(g). We have

fi ◦ φ(h) ◦ g = fi ◦ hi ◦ ιidN ◦ g = fi ◦ hi ◦ σi(g)i ◦ ιidM = φ(f ◦ h ◦ σi(g))

for f : X → Y , g : M → N and h : σi(N)→ X.

Left exactness is a simple consequence, all we need to show is preservation of kernels.

Since coproducts and p∗ are assumed left exact for all p : i→ j, this is guaranteed.
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A quick sidenote: The hypothesis can be slightly weakened, while keeping essentially

the same proof. Let κ = maxi,j(card HomI(i, j)). We only need Φi to have coproducts of

size ≤ κ, and for p∗ to preserve them. This still allows for σi to be well-defined for each i ∈ I,

and the adjointness follows. Similarly requiring left exactness of products and p∗ of size ≤ κ

is also enough to have σi exact. This can be sharpened even further, if we look at each σi

individually.

We will sometimes use the above fact to our advantage, particularly when I has finite

hom-sets, and Φ is an right exact diagram. We may conclude that the adjoints already exist

in this setting, and if we take Φ to be exact, we have σi exact. As a more concrete example,

let I be generated by an acyclic quiver, and choose Φi to be categories of finite dimensional

vector spaces, with right exact functors between them.

Since this result is so useful, we state the dual result, which can be weakened as we

remarked.

Corollary 3.23. Let Ψ be a diagram with products. For each i ∈ I, define a functor, σi : Ψi →

Rep∗(Ψ) such that for each j ∈ I, M ∈ Ψi

σi(M)j =
∏

p : i→j
p∗M

and for q : j → k, define

σi(M)q : σi(M)j → q∗σi(M)k

to be the morphism induced by the projections

∏
r : i→k

r∗M = σi(M)k → (qp)∗M = q∗p∗M

For f : M → N in Ψi, let

σi(f)j =
∏

a : i→j
a∗f

We have σi right adjoint to ρi. Moreover, σi is right exact if Ψ is right exact and has exact

products.

From this set of adjunctions, there is a lot we can say about Rep∗(Φ):

Corollary 3.24. Let Φ be a diagram with coproducts, and let i ∈ I. If M ∈ Φi is projective,

then so is σi(M).
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PROOF. Let R = Rep∗(Φ). We have an isomorphism

HomR(σi(M), X) ∼= HomΦi(M,Xi)

Since the functor HomΦi(M,ρi(−)) is exact, being the composition of two exact functors, we

conclude σi(M) is projective.

With no conditions of Φ, and almost the same proof, if M ∈ Φi is injective, then so is

τi(M).

Corollary 3.25. Let Φ be a Grothendieck diagram. Then Rep∗(Φ) and Rep∗(Φ) are Grothendieck

categories.

This result follows immediately by the following two lemmas:

Lemma 3.26. Suppose Φ has exact filtered colimits. Then filtered colimits in Rep∗(Φ) and

Rep∗(Φ) are exact.

PROOF. Let J be a filtered category, and suppose that for X,Y : J → Rep∗(Φ) we have

0→ Xj → Yj

exact for each j ∈ J Then for all i ∈ I, we have

0→ ρiXj → ρiYj

exact in Φi. Since this category has exact filtered colimits,

0→ colim ρiX → colim ρiY

and since ρi preserves colimits,

0→ ρi colimX → ρi colimY

is exact for all i ∈ I, hence we conclude

0→ colimX → colimY

is exact, showing that Rep∗(Φ) also has exact filtered colimits. The proof is the same for

Rep∗(Φ).
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Lemma 3.27. Let Φ be a diagram with coproducts and generators. For each i ∈ I, let

Gi ∈ Φi be a generator. Then

Ĝ =
⊕
i∈I

σi(Gi) G̃ =
⊕
i∈I

τi(Gi)

are generators in R∗ = Rep∗(Φ) and R∗ = Rep∗(Φ), respectively.

PROOF. We begin by fixing f : X → Y in. Suppose that, for all φ : Ĝ → X we have fφ = 0.

Now fix i ∈ I, and let g : Gi → Xi be any morphism. Since

HomR∗(σi(Gi), X) ∼= HomΦi(Gi, Xi),

let ĝ be the corresponding morphism in R∗. We have fĝ = 0 by hypothesis, and so fiĝi = 0.

Writing ιGi → σi(Gi)i for the inclusion reveals that fiĝiι = fig = 0. Since Gi is a generator,

this implies fi = 0. This is true for all i ∈ I, hence f = 0.

The proof for R∗ is similar but easier, because ρi(τ i(Gi)) = Gi.

Corollary 3.28. Some applications of this result to “trivial” cases, which are known without

resorting to these methods:

• Let C be a Grothendieck category. Then [I, C] is a Grothendieck category for any I.

Proof: [I, C] is equivalent to Rep∗(Φ) for Φ the constant diagram to C. It is a diagram

of Grothendieck categories, and the identity functor preserves colimits.

• Products of Grothendieck categories are Grothendieck. Proof: Let I be a set/discrete

category, and {Φi}i∈I be a family of Grothendieck categories. We have
∏
i Φi equiva-

lent to Rep∗(Φ), and identity functors preserve colimits.

Corollary 3.29. Let Φ be a diagram with coproducts and projective generators. If Pi ∈ Φi is

a projective generator for each i ∈ I, then

P̂ =
⊕
i∈I

σi(Pi)

is a projective generator.

PROOF. Let Pi, P̂ be as above. Then by the previous lemma, P̂ is a generator. By a previous

corollary, σi(Pi) is projective for each i ∈ I. P̂ is therefore a coproduct of projectives, hence

it must be projective itself.
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The next few results give us short exact sequences which we will use to prove and make

use of the existence of enough projectives:

Proposition 3.30. Let Φ be a diagram, either finite or with coproducts. For each X ∈

Rep∗(Φ), we have an epimorphism

γ :
⊕
i∈I

σi(Xi)→ X

where, for each j ∈ I, γj is induced by morphisms Xp : p∗Xi → Xj for each p : i→ j.

PROOF. For each j ∈ I, the identity Xj → Xj is one of the maps inducing γj , hence it is a

right factor of the identity, implying it is an epimorphism.

Theorem 3.31. Let Φ be a diagram, either finite or with coproducts, and enough projectives.

Then R = Rep∗(Φ) has enough projectives.

PROOF. Let X ∈ R. Then for each i ∈ I, there exist Pi projective and an epimorphism

ηi : Pi → Xi. Since σi is right exact, σi(ηi) is an epimorphism, and hence

η̂ : P̂ →
⊕
i∈I

σi(Xi)

where P̂ is the generator constructed in (3.27). Using the previous proposition, we have

γη̂ : P̂ → X epimorphism with P̂ projective.

One can give an explicit expression for the kernel of γ, if Φ is given by a finite quiver.

This result, which is one of the central results of this work, relies crucially on the following

lemma:

Lemma 3.32. Let C be an abelian category with coproducts (in particular we have colimits),

{Zn}n∈N a set of objects and a set of morphisms fn : Zn → Zn for n ≥ 0, satisfying ιnfn =

fn+1ιn, fn+1
n = 0, and let f∞ : Z∞ → Z∞ their filtered colimit. Then id− f∞ is invertible.

PROOF. The trick to this proof is to note that, for a noncommutative ring R and x ∈ R we

have

(1− x)(1 + x+ x2 + . . .) = (1 + x+ x2 + . . .)(1− x) = 1

whenever there is an appropriate notion of “1 + x + x2 + x3 + . . .”. For instance, this is

true when x is nilpotent, since the sum is finite. In this case, we have R = Hom(Z∞, Z∞),

x = f∞, and must find another way around the infinite sum.
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Let ι≤n : Zn → Z∞ be the induced inclusion. Define

gn =

n∑
j=0

f jn : Zn → Zn

and note that ιngn = gn+1ιn, since fn+1
n = 0 and ιnfn = fn+1ιn, so we may write g∞ for

the colimit of the gn with the morphisms ιn. calculating directly, we note that (id − fn)gn =

gn(id − fn) = id. The maps (id − f∞)g∞, g∞(id − f∞), id : Z∞ → Z∞ are induced by

(id − fn)gn, gn(id − fn), id : Zn → Zn respectively, and these three are all equal, either

by the above remark or by calculating explicitly. Hence id − f∞ is an isomorphism, as we

wanted.

A classical example: let C ∈ C. If Zn = C for all n ∈ N, and fn : C → C is the identity

for n > 0, this is the left-shift operator. The above lemma says that (identity + left-shift) is an

invertible operator.

Theorem 3.33. Let Φ be an abelian, finite quiver diagram with coproducts and quiver Q. For

each X ∈ Rep∗(Φ), the sequence

0→
⊕
a∈Q1

σta(a∗Xsa)
β−→
⊕
i∈Q0

σi(Xi)
γ−→ X → 0

is exact, where γj is induced by Xp : p∗Xi → Xj for each p : i→ j, as defined above, and for

each j ∈ Q, βj is induced by maps

(id,−q∗Xa) : q∗a∗Xsa → q∗a∗Xsa ⊕ q∗Xta.

This result has a proof in [13], using embeddings of abelian categories in categories of

modules over a ring. Here, we give an alternative proof, independent of such embeddings.

PROOF. Fix j ∈ Q0. For this proof, it is useful to define, for each k ≥ 0

Zk =
⊕

cod p=j
l(p)=k

p∗Xdom p Ẑ ′n =

n⊕
k=1

Zn, Ẑn = Ẑ ′n ⊕Xj ,

Z ′∞ =
⊕
n>0

Zn, Z∞ = Z ′∞ ⊕Xj .

where l(p) is the length of the path p = pl(p) . . . p1. It is not difficult to check that if we

let ιn : Ẑn → Ẑn+1 be the inclusions, then Z∞ is the filtered colimit of the Ẑn with those

inclusions, and likewise for Z ′∞ and Ẑ ′n with similar inclusions ι′n.
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We must check exactness of

0→ Z>0
βj−→ Z≥0

γj−→ Xj → 0

at Z>0 and Z≥0; we already know exactness at Xj by (3.30).

We define β′j,n : Ẑn → Ẑn to be 0 for n = 0 and for n > 0, the map induced by

q∗Xa : (qa)∗Xsa → q∗Xta, for each path q of length ≤ n − 1 and each arrow a, such that

a, q are composable. To apply the previous lemma, we need to show that ιnβ′j,n = β′j,n+1ιn,

and, for n > 0, β′n+1
j,n = 0. The first relation follows by a look at the definition of β′j,n. To

prove the second, note that for p : i → j of length k > 0, one can prove by induction that,

at p∗Xi, β
k
j,n is induced by Xp, and βk+1

j,n is induced by zero. Hence βn+1
j,n is induced by zero

maps at all p∗Xi with p of length ≤ n, and is therefore zero. The previous lemma guarantees

that id − β′j,∞ is invertible, where β′j,∞ is the colimit of β′j,n with ιn, and we note that βj can

be equivalently defined to be (id− β′j,∞)ι′, where ι′ : Z ′∞ → Z∞ is the inclusion. This makes

it clear that βj is a monomorphism.

We’re left with showing that ker γj = im βj . We will make an attempt to simplify the

problem: since γj can be seen as a map Z>0 ⊕ Z0 → Z0, by decomposing the morphism

into maps γ′j : Z>0 → Z0 and id : Z0 → Z0, the kernel is determined as the pullback of this

pair. Let γ∨j : Z>0 → Z≥0 be induced by id : Z>0 → Z>0 and −γ′j : Z>0 → Z0. This is the

kernel map, and the problem then becomes finding an isomorphism Z>0 → Z>0 such that

βj = γ∨j φ.

We define, for n ≥ 1, φ′n : Ẑ ′n → Ẑ ′n to be π̂n ◦ β′j,n ◦ ι̂n, where

ι̂n : Ẑ ′n → Ẑn π̂n : Ẑn → Ẑ ′n

are the inclusion and projection, respectively. The proof that φ′nn = 0, and ι′nφ
′
n = φ′n+1ι

′
n

resembles the analogous one for β′j,n, since the definitions are nearly equivalent. By letting

φ′∞ be the colimit, the previous lemma says that φ = id− φ′∞ is invertible.

It is not difficult to confirm that φ = π′βj , so to check that βj = γ∨j φ, we only need to

check that π0βj = π0γ
∨
j φ. We have

π0γ
∨
j φ = −γ′j ◦ (id− φ′) = γ′jφ− γ′j .

These are maps Z ′∞ → Z0, so we’re aiming to understand their behaviour at each Zn, n ≥ 1.

• γ′j is induced by Xp at p∗Xi for each p : i→ j, for p of length n ≥ 1;
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• φ is induced by the zero map at Z1, and for paths p of length n ≥ 1 and arrows a with

a, p composable, it is induced by p∗Xa;

• Combining the two previous ones, γ′jφ is induced by the zero map at Z1, and by Xp ◦

p∗Xa = Xp◦a for p of length ≥ 1 and arrow a with a, p composable.

This means that γ′jφ− γ′j is induced by zero maps Zn → Z0 for n > 1, and induced by maps

−Xa at Z1. βj is induced by maps (pa)∗Xsa → (pa)∗Xsa ⊕ p∗Xta for each path p and arrow

a with a, p composable, and the only nonzero ones remaining after projecting to Z0 are the

ones given by −Xa for each arrow a. This proves βj = γ∨j φ.

We remark that if we assume that the quiver above is acyclic, then we don’t need arbitrary

coproducts, nor the previous lemma; finite coproducts suffice, and the objects Zn are zero

for n greater than the maximum length for a path. For reference, we state the dual result:

Proposition 3.34. Let Φ be an abelian, finite quiver diagram with products and quiver Q.

For each X ∈ Rep∗(Φ), the sequence

0→ X
γ−→
⊕
i∈Q0

σi(Xi)
β−→
⊕
a∈Q1

σta(a∗Xsa)→ 0

is exact, where for each j ∈ Q, γj is defined to be the map induced by the Xp for each

p : i→ j in I, and βj is induced by maps

(id,−q∗Xa) : q∗a∗Xsa ⊕ q∗Xsa → q∗a∗Xsa.

Before we construct the long exact sequences, we will need the following result, given in

[13]:

Lemma 3.35. Let A,B be abelian categories such that either A has enough projectives or

B has enough injectives, and L : A → B, R : B → A be a pair of adjoint functors, with L

exact if we have enough projectives, R exact if we have enough injectives. Then we have

the following isomorphism

ExtnB(L(−),−) ∼= ExtnA(−, R(−))

for all n ≥ 0.

PROOF. Let X ∈ A, Y ∈ B. If A has enough projectives, let

P • → X → 0
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be a projective resolution of X. Since L is exact, we have

L(P •)→ L(X)→ 0

exact. Applying functors Hom(−, R(Y )), Hom(−, Y ) to each of the sequences above, we

get

0→ Hom(X,R(Y ))→ Hom(P •, R(Y ))

0→ Hom(L(X), Y )→ Hom(L(P •), Y )

and for each n ∈ N, we have

ExtnA(X,R(Y )) ∼= HomA(Pn, R(Y )) ∼= HomB(L(Pn), Y ) ∼= ExtnB(L(X), Y )

If we have enough injectives in B instead, then we assume R is exact, and the proof is

dual: use an injective resolution of Y and consider functors Hom(L(X),−) and Hom(X,−)

instead.

Theorem 3.36. Let Φ be an exact finite quiver diagram with enough projectives, exact co-

products and quiver Q, and let R = Rep∗(Φ). Then we have the following long exact se-

quence

0→ HomR(X,Y )→
⊕
i∈Q0

HomΦi(Xi, Yi)→
⊕
a∈Q1

HomΦsa(a∗Xsa, Yta)

→ Ext1R(X,Y )→
⊕
i∈Q0

Ext1Φi(Xi, Yi)→
⊕
a∈Q1

Ext1Φsa(a∗Xsa, Yta)

→ Ext2R(X,Y )→ . . .

for each X,Y ∈ R.

PROOF. By the previous theorem, given X ∈ R, we have the following short exact sequence

0→
⊕
a∈Q1

σta(a∗Xsa)→
⊕
i∈Q0

σi(Xi)→ X → 0.

For Y ∈ R, the functor Hom(−, Y ) is left exact, so we get

0→ HomR(X,Y )→ HomR

⊕
i∈Q0

σi(Xi), Y

→ HomR

⊕
a∈Q1

σsa(a∗Xsa), Y

 .

There are isomorphisms

HomR

⊕
i∈Q0

σi(Xi), Y

 ∼= ⊕
i∈Q0

HomΦi(Xi, Yi)
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HomR

⊕
a∈Q1

σta(a∗Xsa), Y

 ∼= ⊕
a∈Q1

HomΦi(a∗Xsa, Yta)

and together with the fact that σi is an exact functor for each i ∈ Q0 and R has enough

projectives, we can use the previous lemma, and conclude that the long exact sequence we

get from the right derived functors of Hom(−, Y ) is isomorphic to the one above.

The next result gives the same sequence under different conditions, which allows us to

exploit the adjunction Hom(a∗(−),−) ∼= Hom(−, a∗(−)) whenever we have a pair of adjoint

diagrams.

Theorem 3.37. Let Φ,Ψ be an adjoint pair of exact, finite quiver diagrams, with quivers Q,

Qop respectively. Suppose that we also have either exact products and enough injectives, or

exact coproducts and enough projectives. Then, for each X,Y ∈ R = Rep∗(Φ) ∼= Rep∗(Ψ),

we have we following long exact sequence

0→ HomR(X,Y )→
⊕
i∈Q0

HomΦi(Xi, Yi)→
⊕
a∈Q1

HomΦsa(a∗Xsa, Yta)

→ Ext1R(X,Y )→
⊕
i∈Q0

Ext1Φi(Xi, Yi)→
⊕
a∈Q1

Ext1Φsa(a∗Xsa, Yta)

→ Ext2R(X,Y )→ . . .

PROOF. Since Φ, Ψ is an adjoint pair of diagrams, we have the adjunction Hom(a∗Xsa, Yta) ∼=

Hom(Xsa, a
∗Yta) for each arrow a. Then we can apply either the previous theorem or its dual,

and use the adjunction to adjust the sequence if necessary.

Now, we test out these results on a few examples:

Example 3.38. Let Q be a finite quiver, and Φ be a diagram such that Φi = Vect for all

i ∈ Q0 and Φa = id for all a ∈ Q1. Here we have Vect a Grothendieck category with

enough projectives, which has exact coproducts, and the identity functor is clearly exact and

coproduct preserving, so we can apply Theorems 3.33 and 3.36.

Write mi,j = #HomFQ(i, j) for each i, j ∈ Q0. Fixing V ∈ Rep∗(Φ) = [FQ,Vect] = R,

we have the following short exact sequence for each j ∈ Q0

0→
⊕
a∈Q1

V
mta,j
sa →

⊕
i∈Q0

V
mi,j
i → Vj → 0.
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Fixing W ∈ R, this gives the following exact sequence,

0→ HomR(V,W )→
⊕
i∈Q0

Hom(Vi,Wi)→
⊕
a∈Q1

Hom(Vsa,Wta)→ ExtR(V,W )→ 0,

since every short exact sequence of vector spaces splits, that is, Ext(M,N) = 0 for any

vector spaces M,N .

We take a look at a particular case: let Q be the quiver

0→ 1→ . . .→ n.

In this case, mi,j ≤ 1 since this is a poset, and the short exact sequence simplifies to

0→
j−1⊕
i=0

Vi →
j⊕
i=0

Vi → Vj → 0.

Although these simplifications of the short exact sequence are not necessary to determine

the long exact sequence, nor help with simplifying it, we’re able to reason about it more

easily, as we will see in the next chapter.

Example 3.39. Let Q be a finite quiver, Φi = R-Mod for a ring R, and let {Ma}a∈Q1 be a

family of projective R-modules. Define a∗ = Ma⊗R−. This functor has a right adjoint, which

we will write a∗ = Hom(Ma,−), and this is also exact. R-Mod is a Grothendieck category,

with exact products and a∗ is an exact, coproduct preserving functor, meaning we are under

the conditions of Theorem 3.35. For N,P ∈ Rep∗(Φ), we have the long exact sequence

0→ HomR(N,P )→
⊕
i∈Q0

HomR(Ni, Pi)→
⊕
a∈Q1

HomR(Ma ⊗R Nsa, Pta)

→ Ext1R(N,P )→
⊕
i∈Q0

Ext1R(Ni, Pi)→
⊕
a∈Q1

Ext1R(Ma ⊗R Nsa, Pta)

→ Ext2R(N,P )→ . . .

which corresponds to Theorem 4.1 in [7] (one can replace R-Mod by OX -Mod with small

changes).

Example 3.40. LetX be a smooth complex projective curve, divisorD = p, and let (E , E∗), (F , F∗)

be quasiparabolic bundles of length n, and a quiver Q given by

0
a−→ 1→ . . .→ n

and Φ0 = QCoh(X) = Q, Φj = Vectop for j > 0, Φa the opposite functor of Hom(−,Cp),

and Φb = id for arrows b 6= a, similar to what was given in the final example of the first
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section. Φa is an exact functor, since Cp is an injective object. Also, both QCoh(X) and Vect

are Grothendieck categories, and the latter also has exact products and enough injectives,

meaning we are under the conditions of Theorem 3.36. For j = 0, we have the following

exact sequence:

0→ 0→ E → E → 0

and the remaining short exact sequences for j > 0 are given by

0→
j−1⊕
i=0

Vi →
j⊕
i=0

Vi → Vj → 0

for Vk = (E0/En+1−k)
∗. Note that this sequence lives in Vectop. If we also write Wk =

(F0/Fn+1−k)
∗, and write Ê = (E , V•), F̂ = (F ,W•), the long exact sequence is given by

0→ HomR(Ê , F̂)→ HomQ(E ,F)⊕
n⊕
i=1

Hom(Ei, Fi)→
n−1⊕
i=0

Hom(Ei, Fi+1)

→ Ext1R(Ê , F̂)→ Ext1Q(E ,F)→ 0→ Ext2R(Ê , F̂)→ Ext2Q(E ,F)→ 0→ . . .

In particular, we note that for m > 1

ExtmR(Ê , F̂) ∼= ExtmQ(E ,F).



Chapter 4

Parabolic Sheaves

We begin this section by defining the tools used in [19] to define parabolic sheaves. Although

the theory of the next section applies to any scheme X and any effective Cartier divisor D,

we will restrict ourselves to the case that X is a complex projective curve and D is reduced,

that is, a finite set of points in X. With the tools developed in the last chapter, we give simple

proofs of some parabolic sheaf properties.

4.1 Parabolic OX-modules

Definition 4.1. Let OX -Mod be the category of OX -modules, and consider R as a category:

objects are real numbers, morphisms induced by the usual order, and if α ≤ β we denote

the morphism by iα,β. An R-filtered OX -module is a presheaf Rop → OX -Mod. For such a

presheaf E∗, we write

• Eα for E∗(α),

• iα,βE for E∗(iα,β)

for real numbers α ≤ β.

Given two R-filtered OX -modules E∗ and F∗, a morphism f∗ : E∗ → F∗ of filtered OX -

modules is a presheaf morphism, and we write f∗(α) = fα.

Write OX -FilMod for the presheaf category above.

To give the next definition, we need two extra pieces: Firsly, let E∗ be a filtered OX -

module. We have a bifunctor

OX -FilMod× Rop → OX -FilMod

43
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sending (E∗, α) to the filtered OX -module E [α]∗, defined to be

E [α]β = Eα+β

iβ,γE [α] = iα+β,α+γ
E

If we have a morphism f∗ : E∗ → F∗, we have a morphism f [α]∗ : E [α]∗ → F [α]∗ such

that f [α]β = fα+β. Moreover, if α ≤ β, then we have a morphism

i
[α,β]
E : E [β]∗ → E [α]∗

such that (i
[α,β]
E )γ = iα+γ,β+γ

E . Finally, we define f [α,β]
∗ : E [β]∗ → F [α]∗ to be the diagonal of

the following commutative square

E [β]∗ E [α]∗

F [β]∗ F [α]∗.

i
[α,β]
E

f [β]∗ f [α]∗

i
[α,β]
F

Secondly, given an OX -module F , and an R-filtered OX -module E∗, we can define an

R-filtered OX -module E∗ ⊗F as follows:

(E∗ ⊗F)α = Eα ⊗F

iα,βE∗⊗F = iα,βE ⊗ idF

Definition 4.2. A parabolic OX -module w.r.t D is a pair E∗ = (E∗, jE) where

• E∗ is an R-filtered OX -module,

• jE : E∗ ⊗OX(−D)→ E [1]∗ is an isomorphism,

such that

i
[0,1]
E ◦ jE = idE ⊗ ιD

where ιD : OX(−D)→ OX is the induced map.

For (E∗, jE) and (F∗, jF ) parabolic OX -modules, a morphism f∗ : E∗ → F∗ is parabolic iff

the diagram

E∗ ⊗OX(−D) F∗ ⊗OX(−D)

E [1]∗ F [1]∗

f∗⊗id

jE jF

f [1]∗

is commutative. We denote this category by Par(X,D).
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As seen in [19, p.129], the category above is Grothendieck and an abelian subcategory

of [Rop,OX -Mod] (this last category is also Grothendieck by Corollary 3.28).

Definition 4.3. Let E∗ be a parabolic OX -module. E∗ is a parabolic sheaf if there exist

n ≥ 1 and a sequence α0, . . . , αn+1 ∈ [0, 1] with α0 = 0 and αn+1 = 1 such that ix,αk+1

E is an

isomorphism for each k ≤ n and each x with αk < x < αk+1, and Eα is a coherent sheaf for

all α ∈ R.

Whenever we have a parabolic sheaf E∗ with sequence α0, . . . , αn, we say the sequence

is a system of weights whenever iαk,αk+1 is not an isomorphism for all k < n. The following

result is useful:

Proposition 4.4. Let A be the full subcategory of Par(X,D) of parabolic sheaves. Then A

is an abelian subcategory.

PROOF. By [18], we only need to check that 0 ∈ A and A is closed under products, kernels

and cokernels.

The first one is obvious, for any sequence α0, . . . , αn+1 ∈ [0, 1], ix,αk+1

0 is the zero mor-

phism on the zero OX -module, which is an isomorphism for all x.

Let E∗,F∗ be parabolic sheaves, with sequences

αE0 , . . . α
E
m+1, α

F
0 , . . . α

F
n+1 ∈ [0, 1]

for some m,n ≥ 1, with αE0 = αF0 = 0, αEm+1 = αFn+1 = 1, and let

S =
{
αEi , α

F
j

∣∣ 0 ≤ i ≤ m+ 1, 0 ≤ j ≤ n+ 1
}
,

M = #S − 2 and β be the unique increasing sequence {0, . . . ,M + 1} → S.

Consider E∗ ⊕ F∗. For each 0 ≤ k ≤ M + 1, βk < x < βk+1, we have i
x,βk+1

E⊕F =

i
x,βk+1

E ⊕ ix,βk+1

F . One may check that both morphisms on the right are isomorphisms, and

since products of coherent sheaves are coherent, E∗ ⊕F∗ is a parabolic sheaf.

Now suppose we have a parabolic morphism f∗ : E∗ → F∗. Since Ker f and Coker f

are defined pointwise just like ⊕, checking both are parabolic sheaves is done in almost the

same way.

Note that parabolic sheaves aren’t preserved under arbitrary coproducts, even if we drop

the coherent sheaf condition: consider the parabolic sheaf En∗ defined on [0, 1] such that

Enα = OX for n < α−1 and 0 otherwise. There is no finite sequence in [0, 1] satisfying the

above property.
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4.2 Embedding

In [12], parabolic bundles are defined for reduced divisors D = p1 + . . . + pn: a parabolic

bundle is a pair (E,α) where E a vector bundle and for each p ∈ D we have a positive

integer np and a filtration of inclusions

Ep = Ep,0 ⊇ Ep,1 ⊇ . . . ⊇ Ep,np ⊇ Ep,np+1 = 0

and for each p an increasing sequence α∗(p) in [0, 1] with α0(p) = 0 and αnp+1(p) = 1. We

say α is a system of weights, a definition for which the above is analogous.

For two parabolic bundles E∗ = (E,α), F∗ = (F, β), a parabolic bundle morphism

f : E∗ → F∗ is a vector bundle morphism f : E → F such that for each p ∈ D we have

αj(p) > βk(p) implies f(Ep,j) ⊆ Fp,k+1

for all j, k. This condition can be more easily visualized, in blue, in the following diagram:

α5 = 1α0 = 0

β0 = 0 β6 = 1

α2α1 α3 α4

β1 β2 β3 β5β4

Figure 4.1: Map between filtrations

The lines in red suggest how this condition is equivalent to preservation of filtrations,

by looking at this picture as if it were a commutative diagram, where the top and bottom

horizontal lines are left-directed inclusions. We will make this precise in the following result:

Theorem 4.5. Let C be the category of parabolic bundles on X with divisor D, as defined

above. Then C is equivalent to the full subcategory of the category of parabolic sheaves on

X over D whose objects E∗ are such that E0 is locally free and iα,βE is a monomorphism for

all α ≤ β.
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PROOF. Let (E,α) be a parabolic bundle in the sense of [12], denote by E the locally free

sheaf associated to the vector bundle E, and for each p ∈ D, j ∈ {0, . . . , np + 1}, write

Ejp = Ep/Ep,j .

For x ∈ [0, 1], define

Ex = Ker

E →⊕
p∈D

E
jp(x)
p


where we define, for each p ∈ D

jp(x) = min { j ∈ {0, . . . , np + 1} | x ≤ αj(p) }

Now, define S = { aj(p) | p ∈ D and 0 ≤ j ≤ np + 1 }, and letN = #S−2. Let α̂ : {0, . . . , N+

1} → S be the unique increasing function. In particular, α̂0 = 0 and α̂N+1 = 1. For k ≤ N ,

we define iα̂k,α̂k+1

E to be the unique morphism making the diagram commute:

0 Eα̂k+1
E

⊕
p∈D

E
jp(α̂k+1)
p 0

0 Eα̂k E
⊕
p∈D

E
jp(α̂k)
p 0

where the middle vertical morphism is the identity, and the right vertical morphism is induced

by either Ejp(αk)
p = E

jp(αk+1)
p or a projection Ejp(αk+1)

p → E
jp(αk)
p .

For x < α̂k+1, let iα̂k,xE be the identity. Then extend E∗ to R by tensoring with OX(−D),

defining Ex = Ex−n ⊗O(−nD), where n = bxc, and likewise define ia,bE for all a ≤ b.

First, note that we can identify each vector space Ejp with a skyscraper sheaf supported

at p, which is coherent, and finite coproducts of coherent sheaves are coherent. Since E is

locally free, it is also coherent. From this, we conclude that Ex is coherent for all x ∈ [0, 1],

since it is the kernel of a coherent sheaf morphism. We may take the sequence α̂, which by

definition satisfies the required property. Hence E∗ is a coherent parabolic sheaf.

For (E,α), (F, β) parabolic bundles in the sense of [12], write E∗, F∗ respectively for the

corresponding coherent parabolic sheaves as defined above. Let f : (E,α) → (F, β) be a

parabolic bundle morphism. For x ∈ [0, 1], we define f̂x : Ex → Fx to be unique morphism
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making the diagram commute

0 Ex E
⊕
p∈D

E
jp(x)
p 0

0 Fx F
⊕
p∈D

F
kp(x)
p 0

f̂

where the vertical right one is induced by f(Ep,j(x)) ⊆ Fp,k(x). We need to make sure this

inclusion does occur: let k′ be the largest such that αj(x)(p) > βk′(p). Then x ≤ αj(p) ≤

βk′+1(p), we have a chain of inclusions f(Ep, j) ⊆ Fp,k′+1, and k(x) = k′ + 1 by definition.

Now given a map f̂∗ : E∗ → F∗, we want to reconstruct f . Let f : E → F be the vec-

tor bundle morphism corresponding to f̂0, and consider the unique morphism making the

diagram commute, given by the cokernel:

0 Ex E
⊕
p∈D

E
jp(x)
p 0

0 Fx F
⊕
p∈D

F
kp(x)
p 0.

f̂x f̂

Note that Coker(Ex → E) ∼=
⊕

p∈D E
jp(x)
p , since it is the kernel of an epimorphism, so the

dashed morphism must be the same as the one induced by the inclusions f(Ep,j(x)) ⊆

Fp,k(x), which implies f(Ep,j) ⊆ Fp,k+1 whenever αj(p) > βk(p). To see this, suppose without

losing generality that k is the largest satisfying the hypothesis, and take x = αj(p). Then we

have jp(x) = j, kp(x) = k + 1, as wanted to see.

Wrapping things up, this proves we have a fully faithful embedding from the parabolic

bundles in the sense of Mehta and Seshadri into the category of coherent parabolic sheaves.

To show equivalence, let E∗ be a coherent parabolic sheaf such that E0 is locally free,

and for 0 ≤ α ≤ β ≤ 1, iα,βE is a monomorphism. To construct (E,α), let E be the vector

bundle associated to E0, and for each p ∈ D, define α̂k(p) = αk. Write Ej = Coker(i0,αjE ), so

that we have the following exact sequence

0→ Eαj → E → Ej → 0

and since looking at stalks is an exact functor, we may define Ep,j to be the vector space at

the stalk at p of Eαj , where Ejp plays the role of Ep/Ep,j , as was done in the other direction.
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It is easy to see that we have Ep,j+1 ⊆ Ep,j for j ≤ n, so we have a filtration. After re-

moving unnecessary weights, we get a parabolic bundle, and a bunch of calculations which

were suggested throughout shows that E∗ ∼= Ê∗ where Ê∗ is the coherent parabolic sheaf

associated to the object we just defined.

In [13], Theorem 5.1, the author embeds quasiparabolic bundles over X wrt to D = p

of length n into an abelian category Rn as was done in the end of the first section of the

previous chapter. As suggested in the above reference, we will show that the Ext groups

of parabolic bundles can be calculated in Rn. In particular, we conclude that the Ext group

does not depend on the values of weights themselves, but on their ordering. The next result

will make this precise.

Proposition 4.6. Suppose D = p. Let (E,α), (F, β) be parabolic bundles in the sense of

[12], write E∗, F∗ respectively for the corresponding coherent parabolic sheaves, and write

Ê, F̂ denote the objects associated to the quasiparabolic bundles from E, F inR = Rep∗(Φ)

for an appropriate Φ. We have ExtP(E ,F) ∼= ExtR(Ê, F̂ ).

PROOF. Let γ : {0, . . . , N+1} → [0, 1] be the unique increasing map with values in the image

of α and β, and define the quiver

Q = (0
a−→ 1 . . .→ N + 1).

Define Φ: FQ→ Cat as was done in the first section of last chapter, and define Ek = Eγ(k),

Fk = Fγ(k). Then Ê, F̂ ∈ R are given by

• Ê0 = E , Êi = Vi;

• F̂0 = F , F̂i = Wi.

and for all p : i→ j, Êp and F̂p are induced by the inclusions. For X = E,F , given an arrow

k → k + 1, we denote these inclusions by ik,k+1
X , which are epimorphisms in Vectop.

Let Ĝ be an extension of F̂ by Ê. For each i ∈ Q0, we have

0 Êk Ĝk F̂k 0

0 Êk+1 Ĝk+1 F̂k+1 0

ik,k+1
E ik,k+1

G ik,k+1
F

By the short 5-lemma, ik,k+1
G is also an epimorphism, hence there exists a parabolic bundle

(G, γ) inducing Ĝ, and the morphisms Ê → Ĝ and Ĝ → F̂ are also given by parabolic
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bundle morphisms. Embedding (G, γ) in P as G∗, together with those two morphisms, we

get a short exact sequence of parabolic sheaves

0→ E∗ → G∗ → F∗ → 0,

so we have determined an extension of F∗ by E∗.

Conversely, suppose we start out with the above exact sequence of parabolic sheaves.

The previous proposition guarantees that

0→ E0 → G0 → F0 → 0

is exact and extensions of locally free sheaves are locally free. Also, we have, for each k,

0 Eαk Gαk Fαk 0

0 Eαk+1 Gαk+1 Fαk+1 0

ik,k+1
E ik,k+1

G ik,k+1
F

so again by the short 5-lemma, ik,k+1
G is a monomorphism. Proving that ix,αk+1

G is an iso-

morphism for each x ∈ (αk, αk+1) also follows by the short 5-lemma. Hence G∗ is a

parabolic sheaf, so there exists a parabolic bundle (G, γ) and parabolic bundle morphisms

(E,α) → (G, γ), (G, γ) → (F, β), and we get corresponding morphisms in Rep∗(Φ), hence

we have determined an extension of F̂ by Ê.

To make sure these transitions do in fact preserve/reflect the monomorphisms and epi-

morphisms present, note that a parabolic bundle morphism is a (mono,epi)morphism if and

only if the underlying vector bundle morphism is. It is also not difficult to see that the

parabolic sheaf determined by the extension in Rep∗(Φ) determines an object isomorphic to

the original.

Two of the long exact sequences at the end of the previous chapter allow us to prove

the following result, not found in the literature, giving some insight on how to work with the

machinery of diagram representations.

Proposition 4.7. Let (E,α), (F, β) be parabolic bundles over X with respect to D = p, write

γ for the join of the sequences α and β, and choose n so that the length of γ is n + 1.

Let R = Rep∗(Φ) be the category embedding quasiparabolic bundles of length n, as done

previously, where Φ: FQ→ Cat, with Q = (0→ 1→ . . .→ n). We have the following short

exact sequence

0→ ExtQ(V∗,W∗)→ ExtR(Ê, F̂ )→ ExtCohX(E ,F)→ 0
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where Q = [Q,Vect], Ê, F̂ the quasiparabolic structure from the parabolic bundles (E,α),

(F, β), E ,F are the locally free sheaves associated to E,F respectively, Vk = (E0/En+1−k)
∗

and Wk = (F0/Fn+1−k)
∗.

PROOF. Consider the diagram

V0 ← V1 ← . . . Vn,

induced by the filtration of E, which is the object V∗ we are considering, and similarly for W∗.

The projections of the short exact sequences to each Φk for Ê are given by

0→ 0→ E
id−→ E → 0

in QCoh(X) for k = 0, and

0→
k−1⊕
j=0

Vj
β0
k−→

k⊕
j=0

Vj
γ0k−→ Vk → 0

for k > 0, in Vectop. For V∗, the short exact sequences are given by

0→ V0
id−→ V0 → 0→ 0

for k = 0, and

0→ Vk
γ1k−→

k⊕
j=0

Vj
β1
k−→

k−1⊕
j=0

Vj → 0

for k > 0, both in Vect.

From Examples 3.40 and 3.38, we get the two following exact sequences, now with some

named arrows:

0→ HomR(E,F )→ HomQCohX(E,F )⊕
n⊕
i=1

Hom(Ei, F i)
d0−→

n⊕
i=1

Hom(Ei+1, F i)

f−→ ExtR(E,F )→ ExtQCohX(E,F )→ 0

0→ HomQ(E,F )→
n+1⊕
i=1

Hom(Ei, F i)
d1−→

n⊕
i=1

Hom(Ei+1, F i)
π−→ ExtQ(E,F )→ 0

We note that Im(d0) ∼= Im(d1). To see why, from the adjunctions and left exactness of

Hom(−, F ), we have

Im(d0) ∼= Coim(HomR(β0, F )) ∼= Coker(HomR(γ0, F )),

and Im(d1) ∼= Coker(HomQ(γ1, F )). The short exact sequences for the vertices k > 0 in R

andQ coincide, and in particular γ1
k = γ0

k . In the vertex k = 0, γi0 is the identity in both cases,

so the cokernel is 0.
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Hence we have Ker f = Ker π, and since π is an epimorphism, there exists a unique φ

with Ker φ = 0 making the following diagram commute

n⊕
i=1

Hom(Ei+1, F i) ExtQ(E,F )

ExtQCoh(X)(E,F )

π

f
φ

and satisfying Im φ = Im f . This gives us the desired exact sequence

0→ ExtQ(E,F )
φ−→ ExtR(E,F )→ ExtQCoh(X)(E,F )→ 0,

concluding the proof.
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