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Abstract

Tectonic, climatic and biotic forces interact and imprint surface processes that shape
topographic relief. The combination of chemical weathering and physical erosion on the
Earth’s surface is defined as denudation rate. Catchment- averaged denudation rates are
one of the main parameters in geological research to quantify surface processes over
millennial time scales. The advantage of this method is to identify the characteristics of

surface processes previous to human impact.

Denudation rates are derived from cosmogenic nuclides which are rare isotopes that are
created by cosmic radiation, such as °Be and 2Al. Cosmogenic nuclides are produced in
the atmosphere (meteoric-produced isotopes) or within the mineral structure of different
rock material at the surface (in situ-produced isotopes). In situ-produced °Be is commonly
obtained from quartz which is one of the most frequent minerals on the Earth’s surface and,

hence, allows a wide range of applications for this method.

The identification of dominant natural controls on surface processes in different
environmental settings is challenging. With this study, for the first time, this challenge can
be solved by including catchment-averaged denudation rates in multivariate statistical-
analyses along with tectonic, climatic and biotic catchment parameters. The objective of
this thesis is to investigate the dominant natural controls on catchment-averaged denudation
rates within different environmental end-members of the Western Andes in South America.
The study area covers the environmental end-members reaching from the hyper arid

Atacama Desert to the glaciated regions of the Northern Patagonian Ice Fields.

The results of this thesis show that local tectonic processes have the highest influence on
denudation rates in the arid to hyper arid environments of northern Chile. In between the
environmental end-members the effect of vegetation and precipitation on denudation rate
varies depending on the initial vegetation-cover amount. In environments with high initial
vegetation cover, vegetation is decelerating sediment transportation and is limiting the

maximum variation in denudation rates. In the glaciated environment of the Northern



Patagonian Ice Field, the latitudinal variation of denudation rates is dependent on the
variations in vegetation cover in glaciated and deglaciated catchments.



Zusammenfassung

Topographisches Relief wird durch tektonische, klimatische und biotische Prozesse
beeinflusst, die interagieren und die Erdoberflache prégen. Die Kombination aus
chemischer Verwitterung und physikalischer Erosion auf der Erdoberflache wird als
Denudationsrate definiert. Denudationsraten werden uber Flusseinzugsgebiete gemittel
und sind einer der wichtigsten Parameter zur Quantifizierung von Oberflachenprozessen
Uber die Zeitspanne von Jahrtausenden in der geologischen Forschung. Der Vorteil dieser
Methode besteht darin, Oberflachenprozesse zeitlich vor dem Einfluss des Menschen zu

identifizieren.

Denudationsraten werden von kosmogenen Nukliden abgeleitet, bei denen es sich um
seltene Isotope handelt, die durch kosmische Strahlung erzeugt werden, beispielsweise °Be
und 2°Al. Kosmogene Nuklide werden in der Atmosphare (meteorisch erzeugte Isotope)
oder in der Mineralstruktur verschiedener Gesteinsmaterialien an der Oberflache (in situ
produzierte Isotope) erzeugt. In situ produziertes °Be wird im Allgemeinen aus Quarz
gewonnen, das zu den haufigsten Mineralien auf der Erdoberflache zéhlt, wodurch dieses

Verfahren fir eine Vielzahl von Anwendungen eingesetzt werden kann.

Die Identifikation von dominierenden natlrliche Einflussfaktoren auf Oberflachen-
prozesse aus verschiedenen Umweltzonen ist herausfordernd. Mit dieser Arbeit wird diese
Herausforderung zum ersten Mal mittels einer multivariaten statistischen Analyse und
durch die darin angewandte Kombination von Denudationsraten und tektonischen,
klimatischen sowie biotischen Flusseinzugsgebietsparametern geldst. Das Ziel dieser
Arbeit ist es, die dominierenden natlrlichen Einflussfaktoren auf Denudationsraten in
verschiedenen Endgliedern von Umweltzonen der westlichen Anden in Stdamerika zu
untersuchen. Das Untersuchungsgebiet umfasst die Entglieder der Umweltzonen von der
hyperariden Atacama-Wiiste bis zu den vergletscherten Regionen der nordpatagonischen
Eisfelder.

Die Ergebnisse dieser Arbeit zeigen, dass die in den ariden bis hyperariden Umweltzonen

von Nordchile, lokalisierte tektonische Prozesse den hochsten Einfluss auf die



Denudationsraten haben. Zwischen den Endglieder der Umweltzonen variiert die
Auswirkung von Vegetation und Niederschlag auf die Denudationsrate in Abh&ngigkeit
von der anfénglichen Vegetationsbedeckungsmenge. In Umwelzonen mit einer hohen
anfanglichen Vegetationsbedeckung verlangsamt die Vegetation den Sedimenttransport
und begrenzt die maximale Variation der Denudationsraten. In der vergletscherten
Umweltzone des ndrdlichen Patagonischen Eisfelds wird die maximale Variation in
Denudationsraten durch die Variationen in der Vegetationsentwicklung limitiert, die linear

mit dem Denudationsratenmuster zusammenhangt.
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Introduction

1 Motivation and objectives

1.1 Background

Erosion is a physical process of transporting material by natural forces (e.g. wind, water). In contrast,
weathering does not involve movement but breaks down and dissolves rocks by chemical alteration
(Chesworth, 1992). Quantifying chemical weathering and physical erosion has importance for a wide
range of research questions in geology, geomorphology, biogeochemistry and agricultural sciences.
Weathering and erosion are the fundamental processes for soil development or loss and therefore define
agricultural productivity (Stamey and Smith, 1964). In biogeochemistry, the release and transport of
solutes and nutrients to rivers and oceans is essential for environmental engineering and monitoring
(Schlesinger and Bernhardt, 2013). Erosion rate and sediment flux measurements are used for
geomorphological risk assessment, which identifies the vulnerability of regions that form habitats for
humans, fauna and flora (Morgan and Rickson, 2003). In geology, large-scale continental erosion

triggers processes that drive landscape evolution and mountain building (Pinet and Souriau, 1988).

A major challenge in geosciences is to reconstruct processes and environments without agricultural
influence and human impact. Determining weathering and long-term erosion over millennial timescales
prior to human impact is possible using cosmogenic nuclides. Cosmogenic nuclide analyses provide
opportunities for dating surfaces and measuring catchment-averaged denudation rates. The latter are
defined as a combination of chemical weathering and physical erosion averaged over river catchment

scale (von Blanckenburg, 2005).

Tectonic, climatic and biotic processes interact and imprint topographic relief. Cosmogenic nuclide
analyses elucidate landscape dynamics and the controls on the temporal and spatial evolution of
topography (von Blanckenburg, 2005). Consequently, to resolve landscape dynamics, the identification
of relationships between tectonic, climatic and vegetational parameters and the correlation to catchment-
wide denudation rates over spatial gradients is needed. Solving major questions of landscape dynamics
and paleo-environments, provides new opportunities to enhance landscape-forecast models on Earth and

to reconstruct paleo-landscapes of other Earth-like planets (Thomas et al., 2005).
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1.2 Study Area: Andean Mountains

This thesis is organized in three scientific chapters (PAPER | to II1). The scientific chapters | to 11 study
the Western Andean Margin of southern Peru and northern to central Chile along the mountain ranges
of the Coastal and Western Cordilleras. The study area of the science chapter Il is situated in southern

Chile in the northern Patagonian ice fields and fjord lands (Figure 1A).

The Western Andes represent an ideal research setting of an approximately similar tectonic setting
within a significant climatic and vegetational gradient. Figure 1B exemplarily illustrates this high
climatic gradient in South America by means of mean annual precipitation (MAP). The combination of
unique conditions in the Western Andes has high potential to disentangle specific processes that
influence denudation rates.
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Figure 1. A) Topographic overview of South America derived from SRTM (USGS, 2000). Study areas of the science chapters
(PAPER | to 111) of this thesis are shown in red boxes. B) Mean annual precipitation (MAP) map of South America derived from
WorldClim (Fick and Hijmans, 2017).
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Today topographic relief in South America is dominated by the Andes Mountains, which extend along
the Pacific Coast with elevations up to 6 km above sea level (Figure 1). The Andes are primarily created
by the convergence of the Nazca and South American tectonic plates (Allmendinger et al., 1997). The
exact timing and sequence of the Andean mountain building as well as the change in landscape dynamics
in response to the mountain evolution are still a matter of debate (Oncken et al., 2006).

1.3  Objectives and hypotheses

This thesis quantifies catchment-averaged denudation rates at the Western Andes in South America and
evaluates which parameters and processes have the strongest influence on denudation rates. The thesis
approach aims to analyze denudation rates derived from different environments which will be described
as environmental end-members in the thesis. One environmental end-member is the hyper arid Atacama
Desert in northern Chile that is assumed to represent the driest environment on Earth (Amundson et al.,
2012). The opposite environmental end-member is the glaciated environment of the Northern
Patagonian Ice Fields (Warren and Sugden, 1993). With reference to the thesis approach three general
objectives and hypotheses can be identified:

(1) [Tectonic and climatic control on denudation rates in arid to hyper arid regions] The first
objective aims to understand the interaction of tectonic and climatic parameters that influence
denudation rates in an end-member environment of arid to hyper arid climate conditions. Climate
conditions range from arid to hyper arid characteristics that are expected to have a low potential to
overprint denudation rates due to low precipitation that is limiting sediment-transportation
efficiency. The study area is situated in a syntaxial orogen in Northern Chile. In a syntaxial orogeny,
a subduction zone geometry is seismically described by a bulge (or slight shallowing in plate dip)
in the subducting plate (Hayes et al., 2012). However, definitions of syntaxial orogens vary within
the literature. This thesis follows the definition of Bendick and Ehlers (2014) which states that a
syntaxis is the narrow, cuspate region linking two adjacent subduction segments, and includes both

the down going and overriding plates.

In this environmental setting, the thesis tests the following hypothesis: If the syntaxial geometry of
the subducting Nazca plate causes spatial variations in rock uplift, then (1) this variation is
represented in long-wavelength (latitudinal) variations in topography and, then (2) the denudation

rates increase towards the center of the syntaxial bend.

(2) [Influence of vegetation cover on denudation rates across climate gradients] The second
objective aims to compliment the results from the first objective by extending the analysis to regions
that cross climate gradients. Consequently, denudation rates of catchments draining the Western
Andes are analyzed from 6°S to 36°S latitude in Southern Peru and Northern to Central Chile (Figure

1). In addition, to the analysis of the traditional tectonic and climatic parameters the influence of
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vegetation on denudation rates is explored in this study. The impact of vegetation on the shape and
evolution of Earth’s surface ranges from (1) the microscopic scale of Mycorrhiza weathering for
plant nutrition to (2) macroscopic scales where plants retard hillslope erosion, stabilize
environments for sediment deposition, and affect precipitation through evapotranspiration and leaf
phenology (Schwartzman and Volk, 1989; Berner, 1997; Retallack, 1997; Derry, 2006; Stokes et
al., 2008; Dosseto et al., 2010; Galy et al., 2015; Wang et al., 2016). This analysis represents a new
approach by using vegetation cover as a non-traditional parameter in geological research of

cosmogenic nuclides. Therefore, it can link climate and surface processes from a new perspective.

With respect to this objective, the thesis hypothesizes the following: If the latitudinal gradient in
vegetation cover influences the sediment transport on catchment-scale, then the denudation rates
adjust to this gradient. This implies that in regions of low vegetation density high variations in
denudation rate occur that are proportional to the amount of precipitation. In regions of high
vegetation density low variations of denudation rate are present and the influence of precipitation is

saturated.

(3) [Variation of denudation rates in glacial settings] The third objective explores the variation of

2

denudation rates in the end-member environment of glaciated regions from 43°S to 47°S in Southern
Chile (Figure 1). This study focuses on the area north of the present-day Northern Patagonian Ice
Field. Glaciated environments are characterized by the impact of glacial activity on orogen erosion,
which is reflected in accelerated denudation rates. In comparison to the first two objectives, the third
objective investigates denudation rates in a smaller latitudinal scale and compares partly glaciated
and deglaciated catchments. Furthermore, within the third objective, the thesis investigates effects
of grain sizes, denudation rates and drainage distance on denudation rates and analyses the potential

influence of climate, tectonic and biotic parameters on erosion rate.

Within this objective, the study tests the hypothesis: If the difference in timing of deglaciation is
influencing the environmental setting, then we identify high vegetation cover and low denudation
rates in catchments that have been deglaciated earlier and low vegetation cover and high denudation

rates in catchments that are still partly glaciated.

Methods

The objectives of the thesis are investigated by combining three main methods. The first two methods

aim to analyze remote sensing and geochemical datasets on a watershed catchments scale. The results

of these two methods identify catchment parameters and calculate denudation rates. The third method,

multivariate statistical analysis, is applied to identify the most important factor influencing denudation

rates from all available data. In the following sections, these three methods are introduced.
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2.1 Remote sensing and modelled datasets

The analysis of surface processes on catchment-scale requires the acquisition of information from
remote sensing and modelled datasets. This study identifies catchment parameters of topographic and
biotic variables from remote sensing data. Catchment parameters of for example local relief or slope are
calculated from the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM) with a
resolution of 90m or 30m (USGS, 2000). Catchment-wide vegetation cover is analysed using the 1km
MODIS-based Green Vegetation Fraction with a time resolution from 2001-2012 (Broxton et al., 2014).
The vegetation type is extracted by using MODIS landcover (2001-2012) with a data resolution of 0.5°-
0.5° (Broxton et al., 2014).

In contrast to remote sensing data, climate and paleoclimate parameters are derived from modelled
datasets. Mean annual precipitation (MAP) for example is calculated from (1) the data product TRMM
2B31 with a spatial resolution of 5x5 km (Bookhagen, 2013), (2) from WorldClim with a 1 km spatial
resolution (Fick and Hijmans, 2017) or (3) from CHELSA with a 1 km spatial resolution (Karger et al.,
2017). Paleoclimate data of different time slices such as the Last Glacial Maximum (LGM), Present Day
(PD), and Pre-Industrial (PI) time, is derived from the ECHAMS5 global atmospheric general circulation
model at a spectral resolution of T159 (~80x80 km) (Mutz et al., 2018).

The analysis of modelled climate parameters is chosen instead of measured climate parameters in order
to reduce uncertainties and bridge the difference in spatial and time resolution as well as sensitivity
between geochemical and geomorphological datasets. Measured climate parameters are very sensitive
to capture extreme rain events of a few hours and single days in response to ENSO-related variations
(Curtis et al., 2007). In particular in the arid setting of the study area, it remains unclear how extreme

precipitation events are converted into surface runoff (Grosjean et al., 2003).
2.2 Cosmogenic nuclide-derived denudation rates

2.1.1 Theory

Cosmogenic nuclides are rare isotopes (nuclides) that are created by cosmic radiation. They occur as
stable noble gas isotopes ®He and 2Ne or as radioactive isotopes such as °Be, 26Al, *Cl or **C. This
thesis concentrates on the analysis of the radionuclides 1°Be and 2°Al. The Earth is constantly bombarded
by cosmic radiation. Primary cosmic rays collide with upper atmosphere atoms and produce secondary
particles that produce cosmogenic nuclides in the atmosphere (e.g. meteoric °Be, %Al) or in mineral

grains (e.g. in-situ °Be, 2°Al) (von Blanckenburg and Willenbring, 2014) (Figure 2).

The dominant production mechanisms of °Be and 2°Al are nucleon spallation and negative muon
capture. During negative muon capture, a muon is captured into an orbit, reacts with a proton,

simultaneously forms a neutron and leads to a break-up of the target nucleus (e.g. O and C for °Be and
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Si for 28Al) through the excess energy that is released. This reaction only accounts for about 2% of the
total production. In contrast, the frequent reaction of nucleon spallation means that the secondary particle
impact produces Kinetic energy that breaks up the target nucleus. Due to the loss of energy in the
secondary cascade of particles, the production of in situ-produced nuclides is lower than of meteoric
nuclides (e.g. in-situ nuclides have only 2-20 atoms gminerai™® yr*) (Gosse and Phillips, 2001).

Figure 2. Production mechanism of meteoric and in-situ °Be
by cosmic rays and secondary particles (von Blanckenburg and
Willenbring, 2014).

The production of in situ-produced nuclides decreases exponentially with the adsorption depth. The
absorption depth describes the decrease of the cosmic ray mean free path (A) due to the density of the
mineral material with which the cosmic rays interact (Lal, 1991). For example, at 2 m depth in a rock or
sediment material the production of nuclides with reference to nucleonic absorption is lowered by 3%
compared to the surface production. In contrast, muonic absorption can contribute to production of
cosmogenic nuclides in deeper rock or sediment layers (7 to 10m) because the decrease of production
with depth is slower (Dunai, 2010) (Figure 3).
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Figure 3. Exponential decrease of cosmogenic nuclide
production with adsorption depth (von Blanckenburg, 2005).

Production rates of 1°Be and %Al vary with latitude, altitude and over time. Due to production processes,
the in situ-produced °Be and Al can only be found in material that has been exposed to cosmic
radiation where it decays. Following, the radionuclide °Be decays with a half-life of 1.39 Myr and 2°All
with a half-life of 0.72 Myr (Nishiizumi et al., 2007; Chmeleff et al., 2009; Korschinek et al., 2009).
Shielding of cosmic radiation is commonly considered by correcting surfaces for topographic shielding
(e.g. mountains or steep slopes), glacier or snow shielding or self-shielding, which is caused by the
thickness of a sample. The production rates for in situ- produced °Be and ?6Al can been calibrated with
analysis of 1°Be concentrations of surfaces of known age such as glacially-polished areas or landslides
and are scaled to sea level high latitude. Different scaling frameworks exist and are constantly modified
and improved. Scaling frameworks can be classified into constant production rate models (e.g. Lal,
1991) and time-varying production models (e.g. Dunai, 2001; Lifton et al., 2005). The time-varying
production models take into account changes in the strength of the Earth’s magnetic, whereas the
constant production rate models assume a constant magnetic field over time. Depending on the scaling
framework, production rates at sea level high latitude for °Be produced by spallation vary between 5 to
3.7 atoms ggit yr'! (Dunai, 2010; Philipps et al., 2016).

Cosmogenic nuclides offer a wide range of applications in geology and geomorphology (von
Blanckenburg and Willenbring, 2014). (1) The use of single or multiple nuclides enables burial age
determination for sediment and rock surfaces that once were exposed to cosmic radiation but have been
buried since then. This technique takes advantage of the radioactive decay of cosmogenic nuclides and
is commonly applied to cosmogenic-nuclide pairs with different half-lives. (2) Exposure age

determination is used to investigate the time elapsed since a rock or sediment surface has been exposed
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to cosmic radiation if no surface erosion or sediment accumulation has occurred since formation. The
age of landforms in glacial settings, fluvial terraces or lava flows can be successfully determined with
this technique. (3) The concentration of cosmogenic nuclides can be used to determine denudation rates
of river catchments on a surface of long-term steady erosion. A detailed method description of
catchment- averaged denudation rates is shown in section 2.1.3. Finally, the number of cosmogenic
nuclide applications is steadily increasing, and recent investigations show the possibility of calculating
soil production rates of weathering rates (von Blanckenburg and Willenbring, 2014; Schaller et al.,
2018).

2.1.2 Sample preparation

This thesis focuses on the determination of catchment-averaged denudation rates by using in situ-
produced 1°Be and 2°Al in quartz. In order to measure °Be and 2°Al, the target mineral quartz needs to
be extracted from the initial sample material that is collected in a river catchment.

Detrital sample material is sieved to 250-1000um and separated into a non-magnetic and magnetic
fraction using a strong magnetic field. The non-magnetic fraction is sequentially cleaned to pure quartz
with 10% hydrochloric acid for 48h, boiling pyrophosphoric acid and then boiling sodium hydroxide,
concentrated aqua regia for 24 h and 5% hydrofluoric acid for three to five weeks. The remaining pure
quartz is leached with concentrated hydrofluoric acid and aqua regia to remove meteoric-produced °Be
and 2®Al that is situated at the outer rim of the sand grain before spiking with °Be carrier. Samples are
not spiked with aluminum. Depending on each sample, approximately 200 to 300ug of °Be carrier was
added to approximately 20 to 100g pure quartz.

The in situ-produced nuclides of °Be and %Al were separated by using the standard separation method
of von Blanckenburg et al. (2005) and Wittmann et al. (2007). This standard separation method includes
the following steps: First the leached quartz is dissolved with concentrated hydrofluoric acid. Second,
the dissolved material is converted into a 6 molar hydrochloric acid. Third, an ion exchange procedure
using an ion exchange resin (anion resin) within a column separation removes all other elements from
the material accept for beryllium and aluminum. Fourth, the column separation is performed a second
time with a different ion exchange resin (cation resin) in order to separate beryllium. The remaining
aluminum-bearing material is a third time loaded into a column separation (anion resin) to clean the
material to a state that only aluminum is left. Fifth, beryllium is precipitated by using ammonia. The
remaining material of separated beryllium and aluminum is oxidized and pressed into copper targets
with niobium for the beryllium measurement and silver for the aluminum measurement. Consequently,
the ratios of 1°Be/°Be and 2°Al/?’ Al were measured as BeO and Al,O; targets by accelerator mass
spectrometry (AMS) at the University of KoIn. Native Al concentration measurements were performed

by inductively coupled plasma-optical emission spectrometry (ICP-OES) at the University of Tlbingen.
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2.1.3 Catchment-averaged denudation rates

Catchment-averaged denudation rates from river sediments are sensitive to the combined effects of
physical erosion and chemical weathering over the catchment area. In the publications (PAPER 1 to 1)
the term denudation rates and erosion rates are equally used and mean the same.

The calculation of catchment-averaged denudation rates relies on the following main assumptions: (1)
At an isotopic steady-state condition the radioactive decay and the cosmogenic nuclide export in the
river equals the averaged in-situ production of cosmogenic nuclides in the catchment (von
Blanckenburg, 2005) (2) Every catchment subarea contributes quartz material, weathering or erosional
processes do not enrich the quartz material and different grain sizes have a homogeneous nuclide
concentration (Dosseto and Schaller, 2016); (3) Sediment storage is insignificant in the catchment,
transport time of sediment is short, and the catchment is large enough to have a low frequency of
landslides and debris flows; (4) Shielding of the surface by glaciers, snow, and vegetation is minor (von
Blanckenburg, 2005; Dosseto and Schaller, 2016).

One of the first general equations to calculate cosmogenic nuclide concentrations at depth was
introduced by Lal (1991) and is shown in the following equation:

—ZXp pE
N(zt) = N(z,0)e ™ + 20 e x (1 - 1 (+5)ey (1)

where N is the nuclide concentration, N(z,0)e ¢ is the nuclide inheritance, X is the half-life of the
nuclide, t is time, P(0) is the nuclide production rate, p is the material density (e.g. quartz), ¢ is the
denudation rate, A is the cosmic ray mean free path and z is the adsorption law (z= A/ p). Assuming that
no cosmogenic nuclide inheritance is influencing the nuclide concentration the term N(z,0)e ~*t equals

zero and can be removed from the equation:

P(0 —(1+PE
N =4O w1 - ey &
pE
A+==
A
In a landscape that is in isotopic steady state, the surface nuclide concentration remains constant because
nuclide production and surface denudation are present over a long period of time (e.g. t > pe/a). In this

case, the equation can be further simplified to:

P(0)
1+22 ©
A

N(t) =

which represents the basic steady-state equation to calculate catchment-averaged denudation rates and
shows that the nuclide concentration N(t) of for example 1°Be and %Al at the Earth’s surface is inversely

proportional to the denudation rate.
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The advantage of calculating denudation rates from cosmogenic nuclides is that denudation rates are
insensitive to short-term changes and are averaging over timescales of natural geomorphic processes
(10*to 10° yr). The averaging time scale is a result of dividing the denudation rate by the adsorption
depth scale (z) and is also called apparent age. This averaging time scale corresponds to the
accumulation of cosmogenic nuclides in a setting where material moves towards the surface and results

in a damping of the cosmogenic nuclide signal (von Blanckenburg, 2005).

2.2 Statistical analysis

Statistical analyses where more than two variables are simultaneously analyzed are classified as
multivariate statistics. Examples of multivariate statistical methods are the discriminant analysis, the
principal component analysis or the factor analysis (Tabachnick and Fidell, 2007). The factor analysis
is applied in studies with a large number of variables that characterize objects or processes (Figure 4).
In medical research or social sciences, the factor analysis is frequently used to identify variables that
measure different aspects of the same underlying, driving factor of human behavior (Thompson, 2004).
In geosciences, the factor analysis is applied to identify geomorphological processes that drive chemical
compositions in lake sediments (Hartmann and Wiinnemann, 2009) or to identify the driving factor that
has the highest impact on denudation rates (PAPER I). Limits and assumptions of the factor analysis are:
(1) a sufficient sample size with a proposed sample-variable ratio of 5:1 (Hair et al., 1998), (2) a normal
variable distribution with a minor occurrence of outliers or missing values (Thompson, 2004) and (3) a
multicollinearity in the correlation matrix with observed correlation coefficients vales ranging between
0.5 to 1 (Hutcheson, 1999).

Factor Analysis Factor Analysis Example
Latent factors drive the observed variables.
S tem 1 e@ 71 Precipitation |« @
/ 7 ltem 2 s® / | Temperature < @
AN \\_\ . < @ N\ \,: . <:—®
N L] N\ L]
\
\\ \\
N ltem k 7@ Al Item k < @
A B

Figure 4. A) Conceptual overview of the factor analysis. The oval represents latent, unobserved
factors, rectangles represent observed variables at the sample level including measured errors (E)
(modified after Matsunaga, 2010). B) Example of a factor in geological applications (modified after
Matsunaga, 2010).
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The factor analysis describes variability among observed and correlated variables and extracts a few
common latent characteristics from a large set of manifest variables (e.g. factors). This analysis performs
a multivariate data reduction by detecting linear correlations with a maximum likelihood estimate
(Kaiser, 1956; Tucker and Lewis, 1960; Knott and Bartholomew, 1999; Reymant and Jvreskog, 1996)

and can be described by:
(4)

Xvxp) = FovxaoA'texp) + Equxp)
where X is the data matrix with N elements and p variables, F the factor score matrix with k the number
of factors to be used, A’ the factor loading matrix, plus the error term E (Reymant and Jvreskog, 1996).
A z-transformation was applied on the X data matrix to provide an interpretation independent of unit

dimension. A z-transformation can be calculated from the following formula:
z=WV-w/o (5)

where z is the z-score, V is the value of the element, u is the population mean, and ¢ is the standard
deviation. The factor analysis was performed in R-mode, which means that the X data matrix is
transformed into a correlation matrix R before it starts to compute the factor loadings. The fundamental

equation for all forms of an R-mode factor analysis is (Reymant and Jvreskog, 1996):
x=Af +e (6)

X is a column vector representing one object of the data matrix X, A is the factor loading matrix, f and e
are corresponding row vectors of F and E described above. We derive equation 4 by transforming
equation 2 in scalar notation. Consequently, for any given value of the data matrix of the n-th row and

i-th column the equation 5 is valid (Reymant and Jvreskog, 1996):

k
Xpi = anjaij + eni (7
=1

Following equation 5, we obtain for any row (x") of the data matrix X (Reymant and Jvreskog, 1996):
xX'=f'A+¢€ (8)
The transpose of equation 8 is the fundamental equation 4, the data matrix X, the factor score matrix F,
the factor loading matrix A, plus the error term E. In this thesis the factor analysis is calculated in R-
mode. R-mode factor analysis investigates the relation between individual variables whereas the Q-
mode analysis explores the relation between different sample sets. The z-transformation is applied on
the data set to provide an interpretation independent of scale. The z- transformation is an equation to

scale the mean of the variables to 0 and the standard deviation to 1 (Thompson, 2004). The calculated

factor loading results are varimax rotated (orthogonal rotated by 90°) to simplify the interpretation. This
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is possible because the varimax rotation produces a small number of large loadings and a large number

of zero loadings (Figure 5) (Reymant and Jvreskog, 1996).

3

Figure 5. Example of an orthogonal rotation (Menke, 2012). The factor f1 and f2
are rotated by the angle 0 and the orthogonal vectors {1 and f°2 are created.

Synthesis and main outcome

This thesis quantifies catchment-averaged denudation rates within the range of environmental end-

members, from hyper arid to glaciated settings. The most important factors and processes influencing

denudation patterns are identified for the Western Andes in southern Peru, northern and central Chile as

well as for the Patagonian Andes in Chile. The most important conclusions based on objectives (1-3)

are listed below and are followed by a more detailed description:

()

)

®)

In the arid to hyper arid regions of northern Chile (Atacama Desert), precipitation rates are too
low to trigger denudation rates that adjust to the variation in long wavelength variations in
topography. Consequently, local tectonic processes of (e.g.) smaller scale faulting show the

highest influence on catchment-averaged denudation rates (PAPER I).

For different climate settings, the effect of vegetation and precipitation on denudation rate varies
depending on the vegetation-cover amount. In environments with low initial vegetation,
denudation is mainly controlled by climate of tectonic parameters. In environments with high
initial vegetation cover, vegetation is decelerating sediment transportation and is limiting the

maximum variation in denudation rates (PAPER II).

In the glaciated environment of the Northern Patagonian Ice Field, the latitudinal variation of
denudation rates is dependent on variations in vegetation cover, which are linearly related to the
denudation rate patterns in first order. In second order, differences in denudation rates between

partly glaciated and deglaciated catchments are identified (PAPER I11).
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(1) Tectonic and climatic control on denudation rates in arid to hyper arid regions

In arid to hyper arid regions, main processes controlling denudation rates are local tectonics such as
smaller scale faulting. These controls are identified by the strong correlation and covariation of
denudation rate to channel steepness. The results imply an insignificant effect of climate parameters
on the denudation rates, however the utilized precipitation data is modelled and limited to a short,
recent record of eight years. A systematic decrease in denudation rates with increasing distance from
the syntaxial bend in the Andes is not clearly observed. This result is in contrast to spatial patterns
in exhumation rates observed from thermochronology in the significantly more erosive Himalayan
and southeast Alaskan syntaxes. Although a clear signal of denudation rate variations with distance
from the South American syntaxis is lacking, regional trends in topography in this arid region
display a decrease in maximum elevations away from the syntaxes. This trend in topography is in
compliance to the rock uplift pattern predicted by Bendick and Ehlers (2014) for upper plate
deformation above a subducting indenter (Hayes et al., 2012). In the studied arid to hyper arid
region, insufficient precipitation is available to erode the long wavelength variations in topography.
The thesis concludes that in this arid setting with low potential for erosion, the tectonic controls on
rock uplift outpace the ability of surface processes to denude and reflect regional scale tectonic

processes.

(2) Influence of vegetation cover on denudation rates across climate gradients

Several broader implications for the vegetation cover and precipitation effects on denudation are
identified. First, the analyses identify that the effect of vegetation and precipitation on catchment-
averaged denudation rate varies depending on the vegetation-cover amount in specific climate
regimes. In regimes with sparse vegetation the amount of vegetation cover allows an increase of
erosion with increasing precipitation. In regimes where dense vegetation occurs the vegetation cover
inhibit the maximum variation of erosion. Second, the identification of regimes implies that studies
focusing on individual catchments with a spatial extent smaller than the larger scale interactions
identified here, may insufficiently resolve vegetation-erosion rate interactions. Thus, the results
indicate that smaller scale studies are less likely to identify the range of vegetation-cover effects on
denudation rates documented here. Besides, such studies may be located at or across regimes where
different behaviors exist. Third, results from previous studies (Carretier et al., 2013; Acosta et al.,
2015; Olen et al., 2016) show both correlations and anti-correlations between vegetation cover,
precipitation and denudation rates. These conflicting results may have occurred in areas that are
located at, or straddle, the regimes identified here. Finally, our results demonstrate that previous
concepts of a vegetation control on soil erosion (Gyssels et al., 2005) can also be applied to large-

scale and long-term denudation rate studies.
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(3) Variation of denudation rates in glacial settings

Variations of denudation rate in glacial settings are dependent on vegetation cover and differences
in timing of deglaciation and ice cover. Denudation rates derived from partly glaciated and
deglaciated catchments show significant differences in latitudinal trend in northern Patagonia.
Denudation rates from partly glaciated catchments with low vegetation cover show higher values
than in catchments without glacier cover and higher vegetation density. Based on the
geomorphological setting, it is not possible to disentangle the vegetational and glacial influence on
erosion rates. This study identifies grain size effects on denudation rates caused by differences in
drainage distance. Any potential effect on denudation rates by long wavelength tectonic processes

or tectonic uplift rates cannot be identified.

4 Future perspectives

The broader implications of this thesis show that applying non-traditional tools and parameters is very
useful to identify new interactions from new perspectives. The use of multivariate statistical analysis
enables the identification of relationships between a large set of parameters that are not necessarily
linearly correlated. Multivariate statistical analysis are known, but not widely used in geomorphological
or geochemical analysis but are recommended to become a standard research tool. In addition, the
influence of biota on surface processes over geological timescales is an important interaction that
deserves more attention in classical geological research. The analysis of biological processes and
parameters with reference to catchment-averaged denudation rates is a successful strategy to draw a
more complete picture about the complex interactions of surface processes in different environmental

settings.

The publications developed in the course of this thesis reveal shortcomings and therefore yield
information on potential future research topics. To resolve these shortcomings, four options are

presented in the following:

i.  The interpretations in PAPER | are based on the assumption that the influence of climate on
denudation rates can only be identified by mean annual precipitation data derived from modelled
climate datasets. However, it remains unclear if this approach correctly represents the driving
climate forces modulating the denudation rates in this region. Denudation rates from fluvial
systems in central and northern Chile are thought to be controversial archives of climate
variability. Previous work suggests that the rivers are mainly recording erosion after extreme

precipitation events rather than long-term surface runoff (Carretier et al., 2012; Grosjean et al.,
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2003). Further research could focus on investigating (a) which amount of measured precipitation
is effectively converted into surface runoff that is able to excavate sediment from the catchment
slopes and (b) if denudation rates reproduce the same results in El Nifio years where huge and
dangerous flooding’s occur in comparison to years without any precipitation in the Atacama
desert.

The results of PAPER Il and 111 underline the importance of biota in geological research. Mean
annual vegetation cover and vegetation type are assumed to correctly represent the vegetational
gradient and biotic characteristics. However, from a biological perspective, vegetation cover
derived from remote sensing and measurement of green fraction reflection is connected to high
uncertainties. Vegetation density does not equal vegetation cover, however it is assumed to be
equal in PAPER Il. Future geological research is recommend to analyze further biological
parameters such as leaf index, photosynthesis capacity, and root depth or density to more
effectively represent vegetation density. The combined effect of flora and fauna on surface
processes over geological time scales remains a gap in research. In addition, denudation rate
represents physical erosion as well as chemical weathering. The effect of biota on weathering
is presumably the missing key to correctly interpret catchment-averaged denudation rates.

It is not within the scope of this thesis to assess if the observations for present-day denudation
rates can be transferred to paleo-denudation rates. Further research could focus on the
development of paleo-denudation models that take into account geological and biological
parameters of different time-slices. Using these models, calculated paleo-denudation rates could
be compared to measured cosmogenic nuclide-derived paleo-denudation rates to resolve
interpretation mismatches.

The data compilation of this thesis covers are large spatial extent across the Western and
Patagonian Andes. Currently, a comparable denudation-rate dataset for marine cores does not
exist. Therefore, future research could focus on the measurement of in situ-produced °Be
concentrations of marine cores from South America. With this new compilation it would be
possible to compare terrestrial denudation rates to offshore denudation rates. For the first time
test samples of the marine core (GeoB 7136-2) have been successfully measured and the

resulting 1°Be concentrations are presented in the appendix of this thesis.
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Key Points

=  Analyzing tectonic and climatic influences on °Be and 2°Al derived denudation rates at in a
syntaxial orogen

= Significant correlation and covariation of denudation rates and channel steepness indices

= Catchment-scale tectonic processes rather than orogen-scale topographic trends control

denudation rates in this arid setting

Abstract

In the arid region of northern Chile the environmental conditions are favorable for measuring tectonic
and climatic influences on catchment denudation rates in the absence of vegetation. Previous studies of
denudation rates from cosmogenic 1°Be and 2°Al concentrations are limited to single drainages. In this
study, we examine catchment- to orogen-scale spatial variation in denudation rates between 18 and 23°S
in the Coastal and Western Cordilleras of northern Chile. °Be and %Al data were obtained from 33
catchments to examine the relative roles of tectonics and climate on catchment-averaged denudation
rates. At broader scales, we examine whether denudation rates and orogen topography reflect the 3-D
plate geometry of the region. Cosmogenic nuclide-derived denudation rates range from 0.4+0.5 to
20.6x1.5 m/Myr in the Coastal Cordillera and from 1.4+0.7 to 168.0£19.8 m/Myr in the Western

Cordillera. The controls on the denudation rates are evaluated using a statistical factor analysis of 10
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selected catchment parameters. Denudation rates indicate a strong linear relationship with channel
steepness indices but insignificant correlations and covariation with mean annual precipitation rates,
drainage area, stream order, mean elevation, mean local relief, mean basin slope and analyzed grain size
of the sampled sediments. Moreover, denudation rates are better correlated with tectonic controls at
catchment scale than orogen-scale plate tectonics in the Western and Coastal Cordillera.

1 Introduction

The tectonic and climatic controls on the temporal evolution of topography in active mountain belts can
be investigated by landscape-scale denudation rates that correlate with precipitation rates, channel
steepness indices, mean basin slopes, local relief or rock uplift rates [Summerfield and Hulton, 1994;
Montgomery and Brandon, 2002; Wittmann et al., 2007; DiBiase et al., 2010]. Cosmogenic nuclide-
derived denudation rates are a valuable tool for understanding landscape dynamics over millennial
timescales [von Blanckenburg, 2006; Dunai, 2010]. However, the degree to which climate and tectonic
processes control denudation rates is not completely understood in mountain belts with an arid climate.
Furthermore, rarely are cosmogenic nuclide studies conducted to determine orogen-scale plate tectonic
controls on denudation rates. In this study, we focus on understanding catchment to orogen-scale spatial
variations in denudation rates and topography in the arid to hyperarid region of northern Chile. The ~550
km latitudinal extent of our study area is situated in a convergent, tectonic setting near the syntaxis of
the Central Andes. The arid and mainly abiotic environment in northern Chile [Vidiella et al., 1999]
preserves one of the oldest landscapes globally [Dunai et al., 2005]. Annual precipitation rates show
hyperarid conditions with rainfall ranging from 1 to 80 mm/a recorded by meteorological stations at the
cities of Arica, lquique and Antofagasta. Decreasing gradients in precipitation are observed from north
to south between 18° to 24°S and observed from east to west (from Western Cordillera to Coastal
Cordillera) [Schulz et al., 2012]. The region is well situated to investigate the tectonic and climate
control of denudation in the absence of vegetation (due to low precipitation rates), where complex
feedback loops between vegetation density, surface and hillslope processes are avoided [Acosta et al.,
2015; Olen et al., 2016]. In this study, we evaluate the hypothesis that the geometry of the subducting
Nazca plate produces a tectonically controlled localization of denudation rates into a “bulls-eye” pattern
near the Arica Bend in the Andes. The influence of climate on denudation rates in a syntaxial orogen

with low precipitation rates is a topic that has received little attention.

The tectonic setting of the Central Andes is characterized by an ocean-continent convergent plate
boundary. The subduction zone geometry is described seismically by a bulge (or slight shallowing in
plate dip) in the subducting plate located near the Arica Bend (Figure 1b) [Hayes et al., 2012].
Definitions of syntaxial orogens vary within the literature. Here we follow the definition of Bendick and

Ehlers [2014] which states that a syntaxis is the narrow, cuspate region linking two adjacent subduction
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segments, and includes both the down going and overriding plates. The subducting Nazca Plate in this
region bends roughly parallel to the west coast of South America around ~18.5°S [Isacks, 1988] at the
Arica Bend making this region a syntaxial orogen. Variations in the geometry of the subducting plate at
a syntaxis occur due to 3D plate bending required to accommodate subduction on a sphere. These
variations in plate geometry are important because bending of adjacent subducting plate segments leads
to a concentration of strain and stress at the transition zone (or cuspate region) between the segments.
The bulge in the subducting plate beneath a syntaxis results from the flexural stiffening of the plate
during bending [Mahadevan et al., 2010]. The flexurally stiffened bulge functions as a rigid indenter
and can influence the overriding plate by localizing deformation into a “bulls-eye” pattern and increasing

denudation rates [Bendick and Ehlers, 2014].

Previous, well studied, examples of syntaxial orogens include the western and eastern Himalayan
Syntaxes or the St. Elias Mountains in Alaska, which are zones of high and rapid surface uplift as well
as localized denudation in the syntaxes [Zeitler et al., 2001; Koons et al., 2013; Bendick and Ehlers
2014; Falkowski et al., 2014; Scherler et al., 2014]. While the Andean syntaxis is not commonly labeled
as such, the 3D geometry of the plate is similar, as are many other subduction zones around the world
(e.g. the Cascadia subduction zone, North America). One key difference between the Andean syntaxis
and the Himalayan and St. Elias syntaxes is that the Andean location represents an arid end-member.
To the best of our knowledge, no previous studies have evaluated long-wavelength, plate geometry
driven variations in denudation in an arid environment. Thus, the Andean syntaxis is well-suited to
evaluate if certain climatic and tectonic conditions (as suggested for the Himalaya and southeast Alaska)
are required to produce a “focused bulls-eye” pattern in deformation and denudation above the syntaxis
according to the indenter geometry of the subducting plate [c.f., Koons et al. 2013; Bendick and Ehlers,
2014]. Regional climate or tectonic influences on denudation rates might only be visible in the
topography if denudation cannot keep up with deformation associated with the subducting plate
geometry. How, or if, denudation rates and orogen topography reflect the 3D plate geometry in an arid

setting is unstudied and is a component of this study.

In this study, we investigate the latitudinal gradient of denudation rates around the arid end-member
syntaxial orogen of western South America (northern Chile). We do this over millennial timescales using
cosmogenic nuclides. The study compliments previous work [Kober et al., 2009; Abbuhl et al., 2010,
2011 a and b; Placzek et al., 2010; Jungers et al., 2013; Carretier et al., 2015a and b] by investigating
gradients of denudation rates and the control on denudation rates from 18°S to 23°S covering multiple
catchments. A data set of 34 new 1°Be and eight 26Al derived catchment-averaged denudation rates are

presented for northern Chile.

We test the hypothesis that the bent geometry of the subducting Nazca plate causes spatial variations in

rock uplift that are represented in long-wavelength (latitudinal) variations in topography and denudation
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rates. We expect that the denudation rates increase towards the center of the syntaxial bend of the Central
Andes and are not influenced by precipitation gradients due to the high aridity of the investigated region.
We test this hypothesis by answering the questions: How do '°Be derived denudation rates vary in the
north-south and east-west directions on the southern limb of the Arica Bend? Are denudation rates more
strongly related to latitudinal variations in tectonic or climate-related parameters?

2  Study Area

2.1 Geological Background

Plate convergence related mountain building in the Central Andes started around 40 Myr ago [Barnes
and Ehlers, 2009], despite a much longer history of plate subduction and arc volcanism along the
western margin. The evolution of the vertical relief was most likely initiated by two flat-ramp thrust
systems at the western Andean margin [Armijo et al., 2015]. It resulted in the evolution of five main
geologic domains that characterize the western continental margin of the Central Andes in northern
Chile (Figure 1a): the Coastal Cordillera (CC), the Central Depression (CD), the Western Cordillera
(WC), the Altiplano (AP) and the Calama Basin (CB). The timing of Andean arc activity in northern
Chile can be summarized by Jurassic arc activity (195 to 130 Myr) along the Coastal Cordillera, mid
Cretaceous arc activity (129 to 90 Myr) in the Central Depression, late Cretaceous-Eocene arc activity
(78 to 37 Myr) in the Western Cordillera and Neogene to modern volcanic arc activity (26 Myr to recent)
from the Western Cordillera to the Altiplano [Scheuber and Reutter, 1992; Haschke et al., 2006]. The
study area covers three of these geologic domains including the Coastal Cordillera, the Central
Depression, and the Western Cordillera (Figure 1a). The Coastal Cordillera is a remnant of Jurassic to
Early Cretaceous arc magmatism consisting of plutons (Figure 1b) and include mainly lithologies of
granodiorites, andesites and gabbros [Scheuber and Gonzalez, 1999; Hartley et al., 2000; Gonzalez et
al., 2003]. This domain is located parallel to the Western Cordillera and is characterized by a series of
east-west reverse faults (Figure 1a). Formed during the late Miocene some of these faults were
reactivated in the Quaternary and induce compression parallel to the plate boundary [Allmendinger et
al., 2005]. The Arica Bend between 17-20°S is a feature of the Coastal Cordillera showing low coastal
uplift rates [Madella et al., 2016]. The Central Depression is separated from the Coastal Cordillera by a
gradual topographic boundary and the north trending Atacama fault zone [Scheuber and Andriessen,
1990]. The east-west fault systems of the Coastal Cordillera become blind [Allmendinger et al., 2005]
in the Central Depression consisting of sedimentary infill of Oligocene to Holocene age (Figure 1b)
[Hartley et al., 2000]. The north trending active strike-slip Argomedo-West Fissure fault system (Figure
1a) is the major boundary to the west where the Central Depression meets the Western Cordillera

[Armijo et al., 2010]. The Western Cordillera is composed of late Cretaceous to Miocene volcanic strata
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(Figure 1b) and structurally characterized by dextral, orogen-parallel strike-slip-faults [Reutter et al.,
1996].
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Figure 1. Overview of the study area in northern Chile, South America. 1a: Geologic domains of Coastal Cordillera (CC),
Central Depression (CD), Western Cordillera (WC), Alitplano (AP) and Calama Basin (CB) are displayed. Major faults and
EW faults are extracted from the database of faults USGS [2013] and Allmendinger et al. [2005]. Major faults include the
Atacama fault zone (AFZ) and the Argomedo-West Fissure fault system (AWFFS). Sample locations are marked in red dots
and sampled catchments in black polygons. 1b: Geological map after geo6ag [USGS, 2016]. The black dashed lines highlight
the extent of the Coastal Cordillera (CC) and Western Cordillera (WC). Units in the geologic map refer to Paleozoic-Mesozoic
intrusive of igneous and metamorphic rocks (PMi), Mesozoic volcanics of igneous and metamorphic rocks (Mv), Mesozoic-
Cenozoic intrusive igneous and metamorphic rocks (MCi), Permian—Carboniferous sedimentary rocks (CP), Jurassic
sedimentary rocks (J), Cretaceous sedimentary rocks (K), Creteceous-Tertiary volcanics and metamorphic rocks (Cv), Tertiary
sedimentary rocks (T), Quaternary sedimentary rocks (Q). The syntaxis area labeled in panel b (inset) represents the region
above which the subducting plate is bent between the Peru and Chilean segments of the subduction zone (see Bendick and
Ehlers, 2014 for a description of syntaxial orogen geometry).

2.2 Geomorphic Setting

The Coastal and Western Cordilleras are north-south oriented mountain ranges (Figure 1a). The Coastal
Cordillera is characterized by a ~1 km high Coastal escarpment and has a maximum elevation of about
1.5 km above sea level (Figure 2a). Rapidly increasing elevations of the Western escarpment are typical
for the Western Cordillera that has a maximum altitude of about 4.5 km (Figure 2a). East-west trending
rivers incise both the Coastal and Western Cordilleras and reflect a hydrological change around 21°S in
the Western Cordillera. Perennial streams are situated north of 21°S whereas in the south mainly
ephemeral streams occur [Nester et al., 2007]. In the Atacama region south of 21°S exposure ages of 9

to 37 Myr revealed slow denudation rates since 25 Myr [Dunai et al., 2005].
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Present-day processes show the importance of fluvial and mass wasting processes in the study area.
Previous studies have documented the control on knickzones in many of the rivers draining the Western
Cordillera [Abbuhl et al., 2011b; Trauerstein et al., 2013; D'Arcy and Whittaker, 2014] related to a
relative surface uplift of at least 1 km since 10 Myr [Hoke et al., 2007; Jordan et al., 2010]. Large-scale
landslides (up to 9 km3) have been identified in the Coastal and Western Cordilleras between 18°S to
24°S [Mather et al., 2014]. These events are associated with large-magnitude earthquakes [Strasser and
Schlunegger, 2005; Pinto et al., 2008, Crosta et al., 2014; Mather et al., 2014].
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Figure 2. Overview of topography and precipitation rates in the study area. 2a: Topographic map shows elevation differences
in colors. The black dashed lines highlight the extent of the Coastal Cordillera (CC) and Western Cordillera (WC). The letters
near the sample location denote the rivers, which were sampled. Following rivers are highlighted: Rio Azapa (a), Rio Chaca
(b), Rio Camarones (c), Rio Chiza (d), Rio Tana and Tilviche (), Rio Tarapaca (f), Rio Mamina (g), Rio Chacarilla (h), Rio
Guatacondo (i), Rio Mani (j) and the Rio Loa (k). In locations without letters the river name is not known. 2b: Precipitation
map showing the annual mean precipitation rates derived from the data product of TRMM2b31 [Bookhagen and Strecker,
2008] and sample locations.

2.3 Climate

The principal controls on the arid climate of northern Chile between 18° and 23° S are the Southeast
Pacific Ocean atmospheric high-pressure system, upwelling of cold water from the Humboldt Current,
and the Andean rain shadow blocking moisture from the Atlantic Ocean [Hartley and Chong, 2002;
Garreaud et al., 2003; Houston and Hartley, 2003; Rutllant, 2003; Ehlers and Poulsen, 2009; Jeffery et
al., 2012; Schulz et al., 2012]. Modern precipitation rates are mainly influenced by the EI-Nifio-Southern
Oscillation (ENSO) and show hyperarid conditions with rainfall ranging from 1 to 80 mm/a recorded
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by meteorological stations at the cities of Arica, lquique and Antofagasta [Schulz et al., 2012]. An
overview of annual precipitation rates is given in Figure 2b. Past climate records indicate a repeated
onset of hyperaridity since 14 Myr in the Atacama region [Jordan et al., 2014] and result in conflicting
interpretations from sedimentary and geomorphic records. A transition of precipitation rates from
semiarid to present-day hyperarid conditions was interpreted from paleosol evidence and is thought to
have occurred as early as 13 Myr [Rech et al., 2006] due to surface elevation changes of the Andean
Plateau [Ehlers and Poulsen, 2009; Insel et al., 2009]. Basin sediments indicated that semiarid climate
conditions dominated during the Miocene to early Pliocene in the northern Atacama region [Hartley and
Chong, 2002; Kirk-Lawlor et al., 2013; Schlunegger et al., 2017]. Geomorphic evidence revealed
aridification in the late Pliocene or early Pleistocene [Amundson et al., 2012] whereas wetter conditions

dominated in the early to mid-Miocene [Oerter et al., 2016].

3 Methods

3.1 Cosmogenic Nuclide-Derived Denudation Rates

Cosmogenic nuclide-derived denudation rates from river sediments are sensitive to the combined effects
of physical erosion and chemical weathering over the catchment area. Calculation of denudation rates
from these data rely on the following assumptions: (1) At an isotopic steady state condition the
radioactive decay and the cosmogenic nuclide export in the river equals the averaged in-situ production
of cosmogenic nuclides in the catchment [von Blanckenburg, 2006]; (2) Every catchment subarea
contributes quartz material, weathering or erosional processes do not enrich the quartz material and
different grain sizes have a homogeneous nuclide concentration [Dosseto and Schaller, 2016]; (3)
Sediment storage is insignificant in the catchment, transport time of sediment is short, and the catchment
is large enough to have a low frequency of landslides and debris flows; (4) Shielding of the surface by
glaciers, snow, and vegetation is minor [von Blanckenburg, 2006; Dosseto and Schaller, 2016]. Any

violation of these assumptions and systematic biases will be addressed in the discussion section 5.2.

Steady-state catchment-averaged denudation rates over timescales of <~10°%yr were calculated from the
blank corrected °Be and %Al concentrations, in the following labelled as °Be and %Al corrected
concentrations. Different response times of °Be and 2°Al are a result of their specific decay constant
and are an indicator of perturbation of steady state denudation, which can be only identified by
comparing °Be and 2°Al concentration of the same sample [Owen et al., 2011]. The cosmogenic isotope
concentration (C) of 1°Be and %Al at the Earth’s surface is inversely proportional to the denudation rate
(E) assuming that the surface is steadily eroding and described in the following equation [Schaller et al.,
2002]:
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where C is the isotope concentration (atoms/g(qtz)), E is the denudation rate (cm/yr), 1 is the decay
constant (1°Be 4.99E-07 + 0.43E-08 yr! and 2°Al 9.83E-07 + 2.50E-08 yr! [Chmeleff et al., 2010;
Korschinek et al., 2010; Balco et al., 2013]), p is the rock density (2.4 + 0.2 g/lcm™), and t is the time
(yr). Pnuc(0), Pusoppea(0) and P,ust(0) are the surface production rates of cosmogenic nuclides
(atoms/g*yr) by spallation, stopped and fast muons. The coefficients a;jx (dimensionless) and bijx
(g9/cm?) are used for depth scaling of the production rates and reported by Schaller et al. [2002]. The
nucleonic and muonic production rates were scaled using the time-dependent scaling laws of Dunai
[2000] and those of Schaller et al. [2002]. Sea level high latitude (SLHL) nucleonic production rates
(Pnuc) for 1°Be and 2°Al are based on the values 4.431 + 0.506 atoms/g*yr (*°Be) and 29.8 + 1.3
atoms/g*yr (*°Al) reported in Balco et al. [2008]. The fast and stopped muonic production rates use the
values 0.037 + 0.005 atoms/g*yr (*°Be Pygs), 0.025 + 0.002 atoms/g*yr (1°Be Pstopped), 0.352 + 0.042
atoms/g*yr (®°Al P,ug) and 0.307 + 0.028 atoms/g*yr (Al Popped) provided by Balco et al. [2013].
The catchment-averaged production rate is the average production rate for each DEM pixel (90 m
resolution) in the catchment area. Each single production rate was corrected for topographic shielding
following the procedure described in Dunne et al. [1999] and Norton and Vanacker [2009]. Corrections
for lithology and snow shielding were not applied because (1) catchments with similar rock type
(Jurassic and Cretaceous monzodiorites, granodiorites and granites) were targeted to provide more
uniform quartz content between catchments. (2) Mean annual snowfall is low in this region and close to
0 mm/a in the Coastal Cordillera and restricted to elevations above 4500m for the Western Cordillera
[Kober et al., 2007]. Furthermore, sufficient meteorological information is not available from the
Western Cordillera to provide a reliable estimate of any effect present in the higher reaches of the
catchments sampled. We calculate the uncertainties in denudation rates using a Monte Carlo simulation
of error propagation. The error propagation includes the production rate error of nucleonic, fast and
stopped muonic production, a 5% DEM altitude error for the production rate, the decay constant error,

the rock density error and the 1°Be concentration error.

Detrital samples were collected from 33 rivers with catchment sizes between 61 km? and about 42,600
km? (Table 1) for measurements of in situ-produced *°Be and Al. Catchments of similar stream order,
similar catchment size, and similar quartz-rich lithology were selected. The lithologies were mostly
Jurassic and Cretaceous monzodiorites, granodiorites and granites. The catchments are separated by
~50km. From each sample either the preferred 500 to 1000 um, or in cases of insufficient quartz mass
(sample ID 14, 17, 23, 29, 30 and 34), the 250 to 500 um grain size fraction was sieved and cleaned to
pure quartz (Table 1). Approximately 200 pg of °Be was added to approximately ~20 g pure quartz. °Be
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and 2°Al were separated by using the standard separation method of von Blanckenburg et al. [2004] and
Wittmann et al. [2007]. The ratios of 1°Be/°Be and 2°Al/?’Al were measured as BeO and Al,O; targets
by accelerator mass spectrometry (AMS) at the University of Koln. Stable Al concentration
measurements were performed by inductively coupled plasma-optical emission spectrometry (ICP-
OES) at the University of Tubingen. Sample ID 22b (Table 1) was measured twice to test reproducibility
of the method.

3.2  Analysis of Catchment Parameters

Catchment parameters of mean elevation, mean basin slope, mean 5km radius local relief, stream order,
mean normalized channel steepness index (mean ks,) and mean annual precipitation rate were calculated
for comparison to denudation rates. A minimum drainage area for initiating the stream order was set
with an area of 1 km?2. These parameters were computed using the Shuttle Radar Topography Mission
(SRTM) digital elevation model (DEM) with a resolution of 90m. Topographic parameters were
analyzed using ArcGIS, TopoToolboxv2 [Schwanghart and Scherler, 2014] and the Stream Profiler
Matlab scripts of Whipple et al. [2007].

The normalized channel steepness index (ks,) [Wobus et al., 2006] was calculated to characterize the
geometry of river longitudinal profiles. The stream power-law function shows the relation between slope

and drainage area by the functional relationship:

S=kxA? )

where S is the local channel gradient (m/m), ks the steepness index (m™), A is the upstream drainage
area (m?) and 0 is the concavity index (dimensionless) [Hack, 1973; Kirby and Whipple, 2001; Wobus
et al., 2006]. The advantage of using ks, is the quantification of the local specific channel steepness to
the steepness of an equilibrium river [Ouimet et al., 2009; Whittaker, 2012], which then enables
comparison between rivers in different regions. We calculated the normalized ks (ksn) by using a
reference concavity of 0.45, a smoothing window of 500m and a contour sampling interval of 20 m. The

resulting ks» values were clipped to the size of the catchments and used to calculate the mean Ksn.

The global Tropical Rainfall Measurement Mission (TRMM 2B31) provides a high-resolution
spatiotemporal distribution of precipitation from 1998 to 2006 with a 5x5 km grid resolution (Figure
2b). The data are reported in terms of mean annual precipitation [Bookhagen and Strecker, 2008] and
provide a complete record of precipitation data in this study area. Satellite derived precipitation is needed
because of the low density of weather stations in the region [Schulz et al., 2012]. Limits of the TRMM
product can occur by trying to capture extreme rain events of a few hours and single days in response to
ENSO related variations [Curtis et al., 2007]. The TRMM product is mostly insensitive to the detection

of hydrometeors such as small liquid water particles found in fog or low clouds [Duan et al., 2015]. The
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effects of the spatial and temporal variability of fog in the Coastal Cordillera and the Central Depression
[Cereceda et al., 2008] could be therefore underestimated.

3.3 Factor Analysis Model

Factor analysis is a multivariate statistical method that extracts from a large set of variables a few
common latent characteristics by detecting linear correlations with a maximum likelihood estimate
[Kaiser, 1957; Tucker and Lewis, 1973; Knott and Bartholomew, 1999]. Similar to a principal
component analysis, the approach groups correlated variables into a smaller number of “factors” that
reduces system complexity and identifies the primary controls on a system by identifying correlations
and covariations. The factors are linear combinations of the original variables. Factor loadings are the
correlations between the original variables and the factors and represent the calculation of catchment
parameter covariation. The factor analysis model can be described by:

’ (3)
Xnxp) = Finxi)A (kxp) + E(nxp)

where X is the data matrix with N elements and p variables, F the factor score matrix with k the number
of factors to be used, A’ the factor loading matrix, plus the error term E [Reyment and Jvreskog, 1996].
Additional details of the method used here are described in Hartmann and Winnemann [2009]. The data
matrix X contains ten variables of the sampled basins from 18.52°S to 22.64°S. Replicate measurements
and one sample disturbed by a neighbouring large landslide (Table 1, sample ID 22b + 10) were
excluded. The independent variable in the data matrix is the latitude. The dependent variables contain
the catchment characteristics of drainage area, mean elevation, 1°Be blank corrected concentration,
denudation rate, mean annual precipitation, stream order [Strahler, 1957], mean ks,, grain size used to
measure the °Be concentration, mean basin slope and mean local relief (5 km radius). With increasing
number of variables, the robustness of the factor analysis increases. We used both the °Be
concentrations as well as the denudation rates because we know that from these two variables an inverse
relation is expected. The same holds for drainage area and stream order, which are expected to show a
positive relationship. By using these variables, we can check the results of the factor analysis. A z-
transformation was applied on the X data matrix to provide an interpretation independent of unit
dimension. The factor analysis model was performed in R-mode, which means that the X data matrix is

transformed into a correlation matrix R before factor loadings are computed.
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4 Results

4.1 The Coastal Cordillera

4.1.1 19Be Concentrations and Derived Denudation Rates

Analyses of five blank corrected °Be measurements and one duplicate analysis provide insight into the
erosional characteristics of the coastal escarpment of the Coastal Cordillera between 20°S to 23°S
(Figure 3a). Table 1 illustrates the nuclide concentrations along the Coastal Cordillera that range
between 25.1 + 1.1 to 521.3 + 16.2 10* atoms/g(qtz). Denudation rates were calculated from °Be
concentrations (Figure 3a, 4a). In the Coastal Cordillera denudation rates vary between 0.4 + 0.5 to 20.6
+ 1.5 m/Myr (Figure 4a). The general latitudinal trend in the data is an increase in the denudation rate
from north to south (Figure 4a). The analysis of sample ID 22b represents a reanalysis of sample ID 22a
and was conducted for evaluating the reproducibility of samples. The reanalysis results show that the
derived denudation rates of sample ID 22a and ID 22b are in the same range. Denudation rates of 0.4 +
0.5 m/Myr were measured for ID 22a and 0.3 + 1.2 m/Myr for ID 22b, respectively.

4.1.2 Mean Basin Slope, Relief and Precipitation

The catchment parameters of mean basin slope and mean local relief reflect the degree to which the
surface is incised by climate or tectonic driven denudation. In this study mean basin slope and mean
local relief scale non-linearly with mean precipitation rates and seem to be decoupled from denudation
rates. The mean local relief ranges between 365 + 135m and 881 + 38m and is characterized by large 2-
sigma standard deviations (Figure 4b). Figure 4c shows the catchment-averaged mean slopes. The large
2-sigma standard deviations from the mean slopes are given in Table 2 and are not illustrated to enhance
the figure clearness. Catchment-averaged mean slopes are clustered into two groups between 10° to 16°
and 2° to 8°, respectively. To investigate climate control on denudation, the TRMM derived catchment-
wide mean annual precipitation rates were included (Figure 4e). The mean precipitation rates vary
between 0 mm/a and 116 mm/a. Four out of five catchments draining the Coastal Cordillera have mean

precipitation rates of less than 40mm/a.

4.1.3 Normalized Channel Steepness Index (Ksn)

Figure 4d shows the mean channel steepness index and the 2-sigma standard deviation for the main
channels of each of the five drainage basins. The results show pronounced variations in the channel
steepness depending on the location of the channels. Drainage basins with channels located at the coastal
scarp display the highest ks, values relative to the plateau of the Coastal Cordillera and the Central

Depression. Mean ks, values for each catchment vary between 37+15m®° and 136+112m°¢ (Table 2).
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Large 2-sigma standard deviations from mean ks, values are observed in the catchments due to the rapid
increase of elevation at the coastal scarp.
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Figure 3. Denudation rates and normalized channel steepness indices of the study area. 3a: The spatial distribution of selected
denudation rates is illustrated in red for the Coastal Cordillera and in black for the Western Cordillera. The catchment borders
are shown in black, except for the Rio Lluta catchment that is illustrated with brown lines. Please note that not all data are
shown. Numbers in brackets refer to sample ID in Table 1. 3b: Digital Elevation Model of SRTM 90m colour coded by
elevation and colour coded normalized channel steepness indices (ksn). Cold colours refer to low normalized channel steepness
indices whereas warm colours document high indices.

4.2 The Western Cordillera

4.2.1 0Be and %Al Concentrations and Derived Denudation Rates

The measured nuclide concentrations for °Be are given in Table 1, and for 2°Al in Table 3. The spatial
distribution of the denudation rates is shown in Figures 3a and 4f. The measured °Be concentrations
extend from 18°S to 23°S and provide information about the spatial variation of drainage basin
denudation rates along the Western Cordillera. The values range from 7.3 + 0.4 to 441.9 + 13.5 10*
atoms/g(qtz). The nuclide concentrations are generally lower than those measured at the Coastal
Cordillera. Catchments draining the Western Cordillera have a denudation rates up to 2 orders of
magnitude higher, 1.4 + 0.7 to 168.0 + 19.8 m/Myr, than catchments in the Coastal Cordillera (Figure
3a, compare also Figure 4f and 4a). Two catchments of the Western Cordillera including the exorheic
Camarones basin around 19°S and the endorheic Guatacondo basin at 21°S, yield the highest catchment-
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averaged denudation rates of the study area, 165.2 + 25.3 and 168.0 + 19.7 m/Myr (Figure 4f). One
sample from the Rio Camarones, ID 10 (Table 1), is considered unreliable because of a large landslide
documented by Mather et al. [2014] above the sample site.

Analyses of Al concentrations from eight samples range from 54.2 + 4.1 to 2138.5 + 71.1 10*
atoms/g(qtz) (Table 3). The calculated denudation rates of 26Al range from 5.3 + 0.3 to 274.8 + 53.9
m/Myr including the sample, ID 5 (Table 3) that is considered unreliable due to a large landslide [Mather
et al., 2014]. The denudation rates derived from Al and 1°Be are within the same range of uncertainty
(Table 3). The ratio of Al and °Be is sensitive to the exposure history of a sample due to differences
in the radioactive decay rate. The evolution of 2Al/*°Be with time is shown in the erosion island plot
(‘Banana plot’ Figure 5). The ratio varies between 6.3 + 0.2 to 7.4 £+ 0.6 (Table 3) and suggests minimal
effects from sediment storage and recycling in the samples analyzed. These results differ from the results

of Jungers et al. [2013] who sampled alluvial deposits and found sediment recycling to be significant.

4.2.2 Mean Basin Slope, Relief and Precipitation

The Western Cordillera as well as the Coastal Cordillera indicate a decoupling between denudation
rates, mean basin slope morphology, local relief and precipitation rates. Mean local relief for each basin
covers a wide range of values and show large 2-sigma standard deviations for the Western Cordillera
(Figure 4g). Catchment-averaged mean slopes are distributed in the same groups as the Coastal
Cordillera, between 10° to 16° or from 2° to 8°, respectively (Figure 4h). Mean precipitation rates range
from 6 mm/a to 115 mm/a. The highest rates can be found around 19°S. The spatial distribution displays
a decreasing trend from north to south for catchments draining the Western Cordillera (Figure 4j).

4.2.3 Normalized Channel Steepness (Ksn)

The highest ks, values in the Western Cordillera are clustered along the steep scarp of the Western
Cordillera between elevations of 2.5 and 3.5 km surface elevation (Figure 3b, 4i) along similar lithology
of Cretaceous and Tertiary volcanic strata (Figure 1b). Lower ks, values are concentrated in the diffuse
and rounded landscapes of the Central Depression as well as in the Altiplano. Mean ks, values for each
catchment, ranging from 42 + 34 m®° to 230 + 140 m®°, exhibit a large 2-sigma standard deviation

especially for basins reaching higher elevations (Table 2).
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Figure 4. Summary of catchment characteristics in Western and Coastal Cordilleras versus latitude. 4a and 4f: Denudation
rates with 1-sigma uncertainty. Horizontal error bars describe the latitudinal extent of the catchments. Please note differences
in the y- and x-axis from left and right- hand panels. 4b and 4g: Local relief of 5km radius. Error bars show 2-sigma standard
deviation from mean value. 4c and 4h: Mean basin slope. 2-sigma standard deviation is given in Table 2 and not shown to
enhance the figure clarity. 4d and 4i: Normalized channel steepness indices showing mean value and standard deviation. 4e
and 4j: Catchment-wide annual mean precipitation derived from TRMM2b31.
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Figure 5. Erosion island plot (‘Banana plot”). 25Al/'°Be ratio versus °Be concentration (normalized to sea level high latitude
(SLHL)). The diagram shows conditions of constant exposure by zero erosion and steady state erosion (black lines) and
predicted changes due to different periods of burial deposition (green lines). Red lines reproduce the denudation rates. The
black ellipses illustrate the sample results according to their 26Al/*°Be ratio and denudation rate including the 1o error. The
figure was produced with the add-in CosmoCalc [Vermeesch, 2007].

4.3 Latitudinal Gradient of Topography

Latitudinal variations in topography were investigated with 50 and 100km wide swath- profiles for the
Western Cordillera, Central Depression and Coastal Cordillera (Figure 6a). Swath- profiles of 50km
width were used to capture the Central Depression and Coastal Cordillera that have a smaller width than
the Western Cordillera. The analysis provides information about regional differences in topography.
This analysis is needed because measured denudation rates (Figure 3a, 4a and 4f) are extremely low in
this region and may not reflect large-scale topographic trends. The results compiled for the Western
Cordillera, Central Depression, and Coastal Cordillera show a slightly decreasing topographic geometry
from north to south until 21°S (Figure 6b, 6¢ and 6d). South of 21°S topography becomes more complex
and shows different patterns for the Western Cordillera, Central Depression and Coastal Cordillera. In
Figure 6b it is visible that the Western Cordillera decreases rapidly in elevation at 22.5°S, which marks
the start of the Calama Basin with lower surface elevations. The swath- profile for the Central
Depression illustrates an overall topography with a concave shape and the lowest elevation at 21.5°S
(Figure 6c¢). The lowest point of surface elevation can be attributed to the incision of the Rio Loa.
Comparing the Western and Coastal Cordillera, an inverse topography is noticeable for the Coastal
Cordillera (Figure 6d).
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Figure 6. Latitudinal topographic characteristics. 6a: Top panel shows swath positions in DEM. 6b: Swath- profile of Western
Cordillera (600kmx100km). 6¢: Swath- profile of Central Depression (600kmx50km). 6d: Swath- profile of Coastal Cordillera
(600kmx50km). Red dashed lines in A, B and C indicate the topographic trends measured from north to south.

4.4 Correlation and Covariation of Catchment Parameters

The factor analysis calculated correlation coefficients (R) at the 95% confidence level and modeled the
multivariate covariation of catchment parameters that are reported as factor loadings. Table 4 contains
a complete list of the correlation coefficients and the factor loadings are reported in Table 5. Correlation
and covariation are statistical methods to explore the strength of linear association between parameters.
Parameters with no relationship or with a non-linear relationship are not accounted in the analysis.
Results of the correlation coefficient R (Table 4) display strong and significant positive correlations for
the parameters of mean elevation and mean slope (0.56) as well as mean ks, and mean elevation (0.65).

Furthermore, a strong positive linear correlation occurs for denudation rate and mean ks, (0.61). The
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mean annual precipitation rate is not significantly correlated with other catchment parameters except for
a very weak negative linear correlation with the 1°Be corrected concentration (-0.36).

The factor loadings represent the calculation of catchment parameter covariation and are clustered into
three groups (factors). The number of factors is selected by the Kaiser-criteria with an eigenvalue greater
than one. The three factors are sorted by decreasing order of explained variance and explain in total
about 62% of the variance in catchment parameters (Table 5). The first factor explains about 23% of the
total variance and is associated with drainage area, stream order and mean local relief. The second factor
accounts for about 21% of the variance. It leads to the selection of denudation rate and indicates the
mean Ks, as a covarying parameter. The third factor selects the mean basin slope as well as the mean
elevation and explains about 18% of the total variance. The latitudinal distribution of covarying
parameters grouped in factors is shown in Figure 7. Strong covariation of the first factor, area, stream
order and mean local relief, can be found at 21.5°S. The denudation rate and mean ks, strongly covary
at 19°S and 21°S. The last factor, mean elevation and mean basin slope, show the strongest covariation
at 20°S.

Factor 1
(drainage area, mean local relief)

3f Factor 2
(denudation rate,
mean k_ )

Factor 3
(mean basin slope,
mean elevation)

Factor loadings [ ]
N

LM

-19 -20 21 -22

North Latitude [] South

Figure 7. Factor loadings plotted versus latitude showing the distribution and highest covariance of catchment parameters for
a given latitude. Red bars show factor 1, black bars factor 2 and grey bars factor 3. The calculated factor loadings are
dimensionless and sorted by decreasing explained variance.
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Table 1
1%ge Analytical and Denudation Rate Data
1%8e corr. Uncertainty
Drainage Grain Ptot conc. (:104 Denudation
area Sample Sample miqtz) size (atoms/g (104atoms,fg atoms/g rate Uncertainty Apparent Uncertainty
ID (km?) lat (deg)  long (deg) (g) (mm) (qtz)*yr) (qtz))? (qtz)) (m/Myr) (xm/Myr)  age (kyr) (xkyr)
Western Cordillera
1 4670 —19.55089 —70.19434 214 0.5-1 14.2 64.0 22 15.2 0.6 45.0 4.9
2 1288 —19.60263 —69.96312 244 0.5-1 8.1 317.0 9.7 1.4 0.7 389.5 383
3 633 —19.34849 —69.51186 20.1 0.5-1 370 384 1.4 65.9 3.0 10.4 1.1
4 4744 —19.16942 —-70.20037  20.0 0.5-1 189 8.1 0.5 165.2 253 43 0.4
5 2284 —19.16528 —70.16817 19.0 0.5-1 13.7 75 0.7 131.2 44.2 515 0.5
6 2398 —19.15475 -70.18531  23.0 0.5-1 239 14.1 06 118.2 8.4 59 0.6
7 2367 —19.15947 —70.19036 19.9 0.5-1 244 16.2 0.8 104.7 7.8 6.6 0.7
8 1801 —1851871 —70.18941 244 0.5-1 234 76.0 26 209 0.8 B 3.5
9 1501 —18.77716 —70.26838 23.0 0.5-1 17/ 654 22 18.7 0.8 36.5 38
10 1526 —19.0072 —69.8206 234 0.5-1 306 73 0.4 289.8 269 24 03
1 435 —18.99569 —69.84812 235 0.5-1 199 78.2 25 17.2 0.6 394 4.3
14 42617 —21.42659 —70.05085 18.1 0.25-0.5 14.7 376 13 273 11l 256 2.7
15 1028 —18.95096 —69.49113 244 0.5-1 376 255 1.0 101.2 5.2 6.8 0.7
16 228 —18.8779 —69.68276 19.7 0.5-1 275 138.1 4.4 133 0.6 503 4.9
17 162 —18.86769 —69.67751 216 02505 28.7 243.6 7.5 7.7 0.3 84.7 9.0
18 228 —18.86675 —69.68132 23.2 0.5-1 275 3221 10.0 5.4 0.2 1171 12.0
19 1565 —19.88353 —69.46416 19.9 0.5-1 339 103.7 3.4 220 0.7 306 34
20 1452 —19.8744 —69.42287 19.2 0.5-1 356 1013 34 236 1.0 285 29
21 352 —19.86701 —69.17344 19.7 0.5-1 40.1 159.2 5.2 16.8 0.6 39.7 4.2
23 23201 —21.6853 —69.52814 19.1 0.25-0.5 16.1 182.4 5.7 5.7 0.3 1134 1.7
26 61 —20.1191  —69.20985  19.1 0.5-1 316 14255 4.7 14.8 0.5 45.1 49
27 499 —20.24223 —69.39035 19.0 0.5-1 28.1 1122 38 16.8 0.6 399 4.4
28 194 —20.24965 —69.43873 203 0.5-1 20.2 61.7 23 224 1.0 306 33
29 223 —20.19265 —69.31455 21.0 0.25-05 19.8 1104 35 120 0.5 55.7 5.8
30 223 —20.69 —69.27 183 0.25-05 19.5 778 1G] 17.0 06 399 4.2
31 400 —20.92806 —69.06219 7.5 0.5-1 370 15.1 09 168.0 19.7 4.1 0.5
32 463 —20.97284 —69.19701 18.1 0.5-1 337 19.7 0.9 117.4 8.1 59 0.6
33 499 —21.09846 —69.29047 17.1 0.5-1 333 50.3 1.8 452 2.7 15.1 1.5
34 8518 —2245746 —68.73074 186  0.25-05 18.8 4419 B4 25 0.1 23515 24,0
Coastal Cordillera
12 75 —20.77136 —70.1334 167 0.5-1 4.4 116.8 37 23 0.1 267.7 28.2
13 112 —20.98845 —70.1528 19.4 0.5-1 4.5 1121 38 2.5 0.1 250.7 26.6
22a 591 —20.40027 —69.78211 18.5 0.5-1 6.1 5213 16.2 0.4 0.5 854.7 86.4
22b 591 —20.40027 -69.78211 223 0.5-1 6.1 649.0 19.7 03 1.2 1064.0 1100
24 559 —21.71416 —70.13986 1353 0.5-1 7.8 56.1 1 9.6 0.5 723 75
25 1556 —22.64401 —70.24519 14.7 0.5-1 71 25.1 11 206 1.5 35.2 3.5

*The '°Be-corrected concentration was blank-corrected with the averagedee blank concentration of 8.19E04 atoms/g(qtz).
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Table 2
Catchment Parameters
Mean Stream Mean local STD local

Sample River Mean elev.  precip. order Mean STD ks,  Mean basin STD relief (5 km relief (5 km
ID name name (m) (mm/a)  (Strahler count)  ksn (m“) m%) slope (deg) slope (deg) radiusinm) radius in m)
Western Cordillera
1 15CL002 Tana 2017 27 6 109 194 6 8 855 494
2 15CL008 Tana 1479 12 5 42 34 3 5 609 353
3 15CLOT1 Tana 3925 81 4 162 193 12 8 855 494
4 15CLO12 Camarones 2475 49 6 183 166 12 9 984 569
5 15CL014  Camarones 2062 25 5 170 135 1 9 772 446
6 15CLO15 Camarones 2889 64 6 202 205 14 9 983 568
7 15CLO16 Camarones 2924 67 6 203 205 14 9 983 568
8 15CLO18 Azapa 2926 71 5 143 150 13 10 1139 658
9 15CLO19 Chaca 2357 31 4 127 123 11 9 741 428
10 15CLO20 Camarones 3491 91 5 221 217 14 9 983 569
1" 15CLO21 Camarones 2747 93 3 222 217 14 9 883 521
14 15CL028 Loa 2100 25 8 103 150 6 7 1282 740
15 15CLO31 Camarones 3998 115 5 178 222 i 8 980 567
16 15CL034 Camarones 3420 40 1 122 63 14 7 586 331
17 15CLO35 Camarones 3507 40 3 119 41 14 7 586 332
18  15CL036  Camarones 3424 40 2 119 41 14 7 586 331
19 15CLO4 Tarapaca 3706 a7 5 189 145 14 8 863 499
20 15CLO42 Tarapaca 3827 48 3 195 156 14 8 863 497
21 15CL045 Tarapaca 4104 68 4 162 137 13 8 824 476
23 15CLO49 Loa 2310 29 7 76 89 5 6 1282 740
26 15CLO57 Mamina 3667 16 2 124 25 18 7 1068 338
27  15CLO58 Mamina 3304 27 5 196 94 13 8 897 517
28  15CLO59 Mamina 2782 21 3 167 34 12 8 776 448
29 15CLO61 Mamina 2856 12 1 145 54 14 8 839 476
30 15CL063 Chacarilla 2770 57 5 132 44 7 7 767 423
31 15CL065  Guatacondo 3933 41 2 222 150 15 10 852 486
32 15CL069  Guatacondo 3702 38 4 230 140 15 9 847 488
33 15CLO70 Mani 3647 28 4 223 131 13 8 788 455
34  15CLO75 Loa 2818 6 7 64 49 7 7 1282 740
Coastal Cordillera
12 15CLO26 / 697 116 3 37 15 4 4 365 135
13 15CL027 / 721 40 3 136 112 11 7 689 338
22 15CLo47 ! 1149 0 2 34 195 12 7 486 186
24 15CLO54 / 1460 4 4 116 193 4 4 519 306
25  15CLO55 / 1345 5 5 70 42 15 11 881 38
Table 3
) Analytical and Denudation Rate Data

26l corr.
Concentration® Uncertainty

Sample Sample Sample Ptot m(qgtz) (104 atoms/g (1104 atoms/g Denudation  Uncertainty 261/1%e Uncertainty
ID name lat. (deg)  long.(deg) (atoms/g*yr) (9) (gtz) (gtz)) rate (m/Myr)  (£m/Myr) ratio +ratio
Western Cordillera
1 15CL002 —19.55089 —70.19434 93.31 2141 4379 20.1 14.5 1.1 6.8 03
2 15CLO15 —19.15475 —70.18531 164.46 23.00 94.9 5.8 1243 15.1 6.7 0.4
8 15CL018 —18.51871 —70.18941 159.23 2435 493.0 19.8 22.0 1.5 6.5 03
9 15CLO19 —1877716 —70.26838 121.24 2299 449.8 183 184 13 6.9 03
10 15CL020 —19.0072  —69.8206 208.28 2338 54.2 4.1 2748 539 7.4 0.6
11 15CLO21 —18.99569 —69.84812 134.81 23.46 492.5 19.1 18.6 1.3 6.3 0.2
15 15CLO31 —18.95096 —69.49113 254.60 24.40 173.2 8.8 103.0 9.7 6.8 0.3
18 15CL036 —18.86675 —69.68132 186.58 23.22 21385 71.1 53 0.3 6.6 0.2
*The 2Al-corrected concentration was corrected with the averagedZEAI blank concentration of 3.70E04 atoms/g(qtz).
Table 4
Factor Analysis Results for Correlation Coefficient®

Drainage Mean 1%e corr. Denudation Mean Stream  Mean  Grain  Mean basin  Mean local

Parameters area elevation  concentration rate precipitation  order ks size slope relief
Drainage area 1.00 —0.16 —0.02 —0.06 —0.16 0.61 —-0.24 054 —0.43 0.57
Mean elevation -0.16 1.00 -0.18 0.30 0.26 —0.15 0.65 0.02 0.56 0.30
%8¢ corr. concentration —0.02 —0.18 1.00 —0.54 —0.36 —-017 —-063 —-0.25 -0.17 —0.20
Denudation rate —0.06 0.30 —0.54 1.00 0.25 0.18 0.61 0.27 0.30 0.21
Mean precipitation —0.16 0.26 —-0.36 0.25 1.00 0.01 0.32 0.22 0.05 0.00
Stream order 0.61 —0.15 017 0.18 0.01 1.00 —-0.06 027 —0.49 0.63
Mean kgp, —0.24 0.65 —0.63 0.61 0.32 —0.06 1.00 031 0.56 0.23
Grain size —0.54 0.02 —0.25 0.27 0.22 —0.27 0.31 1.00 033 —0.35
Mean basin slope —0.43 0.56 -0.17 0.30 0.05 —0.49 0.56 033 1.00 0.07
Mean local relief 0.57 0.30 —0.20 0.21 0.00 0.63 0.23 —0.35 0.07 1.00

A correlation coefficient of 1.00 describes the maximum positive linear correlation and is highlighted in bold numbers.
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Table 5

Factor Analysis Results for Factor Loading Values®

Parameters Factor 1 Factor 2 Factor 3
Drainage area 0.73 —0.09 —0.23
Mean elevation 0.02 0.31 0.67
'%Be corr. concentration —0.08 —0.74 —-0.10
Denudation rate 0.06 0.68 0.20
Mean precipitation —0.07 0.41 0.04
Stream order 0.79 0.24 —0.35
Mean kqp, —0.07 0.76 0.54
Grain size —0.47 0.34 0.10
Mean basin slope —0.28 0.14 0.83
Mean local relief 0.92 0.12 0.37

Values in bold show the components of the specific factors.

5 Discussion

5.1 Synthesis of Observations

Cosmogenic nuclide derived denudation rates obtained from °Be and 2°Al in this study are two orders
of magnitude lower than denudation rates measured from the eastern side of the Andes in Bolivia [Safran
et al., 2005; Insel et al., 2010]. Comparisons of all measured 1°Be concentrations of this study indicate
higher values in the Coastal Cordillera than of the Western Cordillera. This suggests that the basins of
the Western Cordillera are eroding more rapidly than the basins in the Coastal Cordillera (compare
Figure 4a and 4f). Latitudinal variations in denudation rates do not display a continuous signal following
the trend in the topography (compare Figure 4a and 4f and 6a, b and c). Rather, the latitudinal variation
in denudation rates indicates two peaks of increased denudation rates at 19°S and 21°S that are most
likely controlled by local catchment characteristics. The factor analysis model indicates that denudation
rates show a strong linear correlation and covariation with the channel steepness whereas the TRMM
derived mean annual precipitation does not show a significant relation to other basin parameters. The

reliability and control of denudation rates will be discussed in the following section.

5.2 Reliability of Denudation Rates

As an independent check on the results presented here, three catchments draining the Western Cordillera
and one catchment draining the Coastal Cordillera were calculated in the CRONUS-Earth °Be erosion
rate calculator — with the latest version 2.3 [Balco et al., 2008; Borchers et al., 2016]. The results from
CRONUS-Earth 2.3 are reported in Table 6. Comparing the denudation rates of our method to the results
of CRONUS-Earth with different scaling schemes and the new calibrated production rates (spallation)
of Borchers et al. [2016] the denudation rates resulting from CRONUS are within the same range of
uncertainty (Table 6). The values of the investigated denudation rates are also consistent with previous
studies. For example, the range of denudation rates in this study are consistent with denudation rates
north of our study area at 18°S reported by Kober et al. [2009] from the Rio Lluta. The low denudation
rates from the Altiplano in this study of 2.5+0.1 m/Myr (ID 34, Table 1), are in the same range as the
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results < 10 to 20 m/Myr published by Karatson et al. [2012]. The Rio Chiza analyzed by Carretier et
al. [2015a] was resampled in our study. The denudation rate is 131.2 £ 44.2 m/Myr and is within the
uncertainty of the published value, 87 +20 m/Myr [Carretier et al., 2015a].

However, potentially systematic biases in denudation rates can occur due to some of the (commonly
made) assumptions associated with this method. These assumptions include:

(1) Similar quartz content in lithologies. The contribution of material from subcatchments without quartz
[Dosseto and Schaller, 2016] appears to be minor in this study. The similarity in denudation rates across
lithologically different catchments and the observation of different denudation rates in similar
lithologies (Figure 1b) suggests that any effects of varying quartz amounts in each catchment is muted
in terms of the overall production of 1°Be and 2°Al. For example, in each of the catchments of the Coastal
Cordillera, the substrate is dominated by the same granodiorite and andesite of Jurassic age but the

denudation rates vary by one order of magnitude (Figure 1b).

(2) Effect of bedrock landsliding (or other stochastic erosional events) is negligible. An increasing
amount of deep bedrock landsliding can bias denudation rates. This effect can be avoided by sampling
larger catchments [Niemi et al., 2005]. One sample from the Rio Camarones, ID 10 (Table 1), is
considered to not represent the long-term denudation rate because of a large landslide documented by
Mather et al. [2014] directly above (~200 m) the sample site. Any strong correlations between the
catchment size (area) and the denudation rate cannot be confirmed (Table 4). Any strong significant
trend of increased denudation rates and the mean catchment elevation is also not evident (Table 4).
However, it is difficult to completely exclude such biases because the total contribution of seismic

activity triggered landslides to the main erosional mechanism in the study area is unclear.

(3) Effect of sediment storage and variable transport time is neglible. Sediment transport times in
northern Chile for the Western Cordillera and Coastal Cordillera are not well known because, although
previous studies have addressed this topic with two different results. First, previous studies [Grosjean
et al., 2003; Carretier et al., 2012] reported short and infrequent sediment transportation times after
extreme precipitation events. In March 2015 extreme precipitation events increased quickly sediment
budget and transportation time in northern and central Chile [Barrett et al., 2016]. A short transport time
is evident for the Rio Lluta in northern Chile draining the Western Cordillera [Kober et al., 2007].
Decadal records of sediment budgets from gauging stations show the same denudation rates as those
determined from cosmogenic nuclides in the Rio Lluta. The effect of complex exposure histories in this
region is mostly observed for non-bedrock samples of boulders and clasts and is rather an exception as
document by Kober et al., [2007]. The Rio Lluta drainage is of a similar size to the basins sampled in
our study and the catchment averaged cosmogenic nuclide measurements we (and Kober et al., [2007])
present were obtained from modern river channel sediments. Thus, following from Kober et al. [2007]

we conclude the sampling procedure used in this study reflects catchment average denudation rates.

41



PAPER |

Second, other studies [Biermann and Nichols, 2004; Nichols et al., 2005; Nishiizumi et al., 2005; Placzek
et al., 2010; Jungers et al., 2013] reported °Be accumulation during sediment transport within
catchments in arid regions. These studies concluded that cosmogenic derived denudation rates might
instead represent transport rates (rather than catchment denudation rates). This would result in increasing
19Be concentration with increasing travelling distance and catchment area. However, such relationships
are not found in our dataset. More specifically, alluvial fan sediments, boulders, channel gravels and
depth profiles of the Atacama Desert between 23°S and 24°S revealed complex exposure history during
the Quaternary [Jungers et al., 2013] and have shown high cosmogenic nuclide concentrations [Placzek
et al., 2010] near the Calama Basin south of this study area. The mean blank corrected °Be
concentrations vary between 545.1 +15.5 10*atoms/g(qtz) [Jungers et al., 2013] and 1031.6 + 38.4 10*
atoms/g(qtz) [Placzek et al., 2010]. However, the mean blank corrected °Be concentrations of this study
are significantly lower than the cosmogenic nuclide concentrations found by Jungers et al. [2013] and
Placzek et al. [2010] where our results are 104.7 + 3.4 10* atoms/g(qtz) for the Western Cordillera and
246 + 7.7 10* atoms/g(qtz) for the Coastal Cordillera. The most likely explanation for the difference
between our results and those of Jungers et al. [2013] and Placzek et al. [2010] stems from the
geomorphological setting and the material sampled in the field. In contrast to the previous studies, our
sampling targeted modern (active, or recently active) channels where either flowing water was present
at the time of sampling, or (in the case of ephemeral flow) fluvial deposits within the channel (e.g. cross
bed sets, sediments with ripple marks, and imbricated clasts) were clearly visible and could be sampled.

Furthermore, we highlight from our results that the condition of steady-state long-term denudation is
fulfilled, and that our samples do not appear to be shielded by burial deposition. The effect of shielding
was tested by means of 2°Al/*°Be ratio calculation of the Western Cordillera and is illustrated in Figure
5. The evolution of the Al/*°Be ratio with time indicates the exposure history of a sample. Continuously
exposed surfaces eroding in a steady-state condition follow the steady state denudation line (thick black
line Figure 5). Samples that plot below this line experienced a complex exposure of burial deposition.
The so-called “forbidden zone” [Lal, 1991] is located above the steady-state denudation line and
indicates errors in the sample preparation or production rate values. Seven out of eight ratios follow the
steady-state denudation line and suggest that they have been continually exposed at the surface. One
ratio is slightly in the forbidden zone although there is no evidence of Al contamination from the
laboratory procedure because the measured 26Al blanks are not increased. Assuming that the measured
26A1/*Be ratios are only representative for the Western Cordillera it is difficult to extrapolate this
conclusion to the Central Depression or Coastal Cordillera. Catchments exclusively draining the Central
Depression were not sampled to avoid sampling alluvial fans. The Coastal Cordillera was sampled
according to the same strategy of the Western Cordillera and we collected sediments from active streams

and recently active streams with wet sediments of no evidence of burial deposition. To summarize, we

42



PAPER |

assume that our dataset represents long-term denudation rates because we find no evidence of burial

deposition or complex exposure history.
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5.3 Controls on East-West Variation of Denudation Rates

East-west variations in denudation rates between the Coastal and Western Cordillera can be observed in
two settings. The first is expressed in the difference in denudation rates between the catchments of the
Coastal Cordillera and the Western Cordillera. The difference is evident in Figure 4a and 4f where rates
range between 0.4 + 0.5 to 20.6 + 1.5 m/Myr in the Coastal Cordillera and 1.4 = 0.7 to 168.0 £ 19.7
m/Myr in the Western Cordillera. Higher °Be concentration and, therefore lower denudation rates can
be found in the Coastal Cordillera. This increase in isotope concentration can be related to an increase
in sediment residence time within the catchment by the lack of precipitation available to transport
material downslope. The Coastal Cordillera catchments are mainly characterized by ephemeral channels
that flow only for days after rainfall events, which might explain the increase of residence time.

The second east-west variation is documented by changes in denudation rates along the river profiles in
the Western Cordillera itself. Figure 8 illustrates these changes and shows four examples of drainage
basins at 19°S, 19.5°S, 20.2°S and 21.9°S. The general pattern of east-west variations in denudation rate
is heterogeneous and highly influenced by basin-specific conditions as described below.

(1) The Rio Camarones, at 19°S (Figure 8a), shows both observations of decreasing denudation rates
with decreasing stream order and increasing elevation within its mostly concave river profile. Fifth-
order channels have a denudation rate of 131.2 + 44.2 m/Myr and third-order streams exhibit a
denudation rate of 7.7 £ 0.3 m/Myr (Table 1 and Table 2). Low denudation rates were calculated (sample
ID 17) (Figure 8a) near the Oxaya ignimbrites above a convex knickpoint of a tributary with moderate
to shallow channel steepness in the Western Cordillera. The Oxaya ignimbrites form the top of the
Oxaya formation at the Camarones valley and are dated to about 20.6 + 0.8 Myr (K—Ar, biotite) [von
Rotz et al., 2005]. The Rio Camarones is characterized by strong incision into the Coastal Cordillera
[Farias et al., 2005] and displays rapid denudation rates of 165.2+25.3 m/Myr at the outlet near to the
coast. The Rio Camarones shows a number of undated landslides within the main channel that are
triggered mainly by local tectonic activity of the Moquella Flexure, which could cause the increased
denudation rates of fifth-order streams [Pinto et al., 2004; Pinto et al., 2008].

(2) The Rio Tana, at 19.5°S (Figure 8b), shows a denudation rate of 15.2+0.6 m/Myr at the west coast
(downstream) of the convex knickzone in the Coastal Cordillera, a denudation rate of 1.4+0.7 m/Myr
for a tributary of the Rio Tana east (upstream) of the convex knickzone and a denudation rate of 65.9+3.0
m/Myr west of the concave knickzone in the Western Cordillera (Figure 8b). The Rio Tana, including
the Tana canyon, is characterized by an upstream convex knickzone that is currently 43 km away from
the coast and highlights the boundary between increased incision in the western portion of the Coastal
Cordillera and decreased incision east of the knickzone in the Central Depression [Kirk-Lawlor et al.,

2013; Coudurier-Curveur et al., 2015]. The incision of the Tana canyon started around 6.4 Myr [Hoke
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et al., 2007] and cut through the Coastal Cordillera around 3.5 Myr [Kirk-Lawlor et al., 2013]. The
denudation rates are slower than the denudation rates of the Rio Camarones indicating that the Rio Tana
has lower stream power to incise the bedrock than the rivers in the north as previously suggested by
Hoke et al. [2007].

(3) In contrast to the Rio Tana, the Rio Aroma, at 20.2°S (Figure 8c), is an endorheic stream associated
with alluvial fan deposition that goes subsurface before it reaches the Central Depression. The river
profile shows a concave shape with no major knickzones. The Rio Aroma drainage reveals three main
flexures showing recent activity in the Aroma earthquake in 2001 and a relative surface uplift since 27
Myr of about 700 to 420 m [Farias et al., 2005]. The denudation rates decrease slightly with stream
order from 16.8+0.6 to 12.0+0.5 m/Myr but do not appear to be strongly impacted by the tectonic activity
or by earthquake triggered landslides.

(4) The Rio Loa, at 21.9°S (Figure 8d), displays decreasing denudation rates with increasing elevation
of the main stream. West of the Coastal Cordillera at the outlet of the Rio Loa the denudation rate is
27.3£1.1 m/Myr. East of the Coastal Cordillera the denudation rates decrease to a value of 5.7+0.3
m/Myr and the slowest denudation rates with 2.5+0.1 m/Myr can be found on the Altiplano. The Rio
Loa is the only exorheic river system between 19°35'S and 23°S and has its source on the Altiplano
[Coudurier-Curveur et al., 2015]. The Rio Loa, characterized by several convex and concave
knickpoints, and the Rio Tana exhibit the smallest extent of knickpoints migration for the four rivers
presented in Figure 8. The incision of the Rio Loa into the Coastal Cordillera started after 6 Myr ago
and resulted in a base level drop of approximately 1000 m [S&ez et al., 2012]. This base level drop
initiated the capture of single drainages from the location of the Rio Loa until the location of the Rio
Tana in the north [Hoke et al., 2007].
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5.4 Controls on North-South Variation of Denudation Rates

Latitudinal variations can be explored by the factor analysis model, which quantifies correlations and
covariation with reference to the latitude of the river basin. Figure 7 summarizes the calculated three
factors and the degree of latitudinal occurrence. The factors are sorted by decreasing explained variance
(1) The first factor of the analysis indicates that the variables catchment area, stream order and mean
local relief have a strong covariance and a major impact on the data set around 21.5°S. At this location,
we sampled the Rio Loa and the Coastal Cordillera, which represent the end members of a very large
catchment (around 43,000 km?), and a very small catchment (around 111 km? area). (2) The second
factor is characterised by a high factor loading of the denudation rate and the mean ks, at 19°S and 21°S.
This strong linear relationship indicated by correlation as well as covariation is attributed to local
tectonic effects, for instance landslides triggered by seismic activity, which strongly imprint the
denudation rate locally compared to other regions. (3) The third factor is associated with the covariation
of mean elevation and mean basin slope around 20°S. This factor is sensitive to the sampling strategy
and reflects the fact that we sampled smaller catchments in higher elevations thereby leading to higher
mean basin slope values. As such, the benefit of the third factor is to identify a spatial methological bias
(Figure 7). In total about 62% of the variance is explained, but the analysis also indicates that the existing
dataset is heterogeneous and does not explain 38% of the data variance. Adding parameters, particularly
for climate such as discharge, temperature or extreme climatic events, could enhance to some degree the
explained variance, but the heterogeneity of the existing data would still influence the factor analysis.
Thus, the results presented here give us a good indication of covarying parameters and their degree of
latitudinal control. We quantified the intensity of covariation spatially and can exclude parameters with

minor impact on the dataset such as the catchment-wide mean annual precipitation (Table 5).

In this study the catchment-wide mean annual precipitation based on the TRMM data was chosen to
represent the climate parameter but the results are insignificantly correlated and show no covariation to
other parameters (Tables 4 and 5). Whereas denudation rates integrate over the mean apparent age of
117kyr, the timescale of the TRMM data set spans only 8 yr not capturing climate changes that may
have occurred. The TRMM data set averages out stochastic variations in rainfall for the eight years of
data where annual-averaged rainfall is available (Figure 2b). Thus, the accuracy of the precipitation rate
is biased by the sensitivity to precipitation type that can lead to an underestimation of orographic rainfall
[Huffman et al., 2007; Chen et al., 2013]. A general inaccuracy can also occur in mountain ranges with
short rainfall events or extreme climatic events that are not captured in this data set [Bookhagen and
Burbank, 2006; Islam et al., 2010]. All these limitations could combine together in northern Chile to
account for part of the unexplained 38% in the variance in the factor analysis. This interpretation
suggests that TRMM based precipitation rates do not necessarily represent the driving climate forces

modulating the denudation rates in this region. It should be noted that denudation rates from fluvial
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systems in central and northern Chile are thought to be controversial archives of climate variability.
Previous work has suggested the rivers are mainly recording erosion after extreme precipitation events

rather than long-term surface runoff [Grosjean et al., 2003; Carretier et al., 2012].

5.5 Hypothesis Evaluation and Tectonic Controls on Denudation Rates

In this study, we evaluate the hypothesis that the geometry of the subducting Nazca plate produces a
tectonically controlled localization of denudation rates into a “bulls-eye” pattern near the Arica Bend in
the Andes. We do this by collecting samples along two profile at different distances from the coast that
extend south from the syntaxis, and therefore cover half of the a symmetric “bulls-eye” pattern [Bendick
and Ehlers, 2014]. We find the following influence of the subducting plate geometry on denudation
rates. First, the denudation rates from both the Coastal and Western Cordillera (Figure 4a, f) do not
produce a discernable decrease in denudation rates from the syntaxis (Figure 1a) to the south as
predicted. In fact, denudation rates in the Coastal Cordillera do the opposite and increase slightly to the
south. Thus, the pattern of denudation rates in these settings is different than what is observed from
thermochronometer data in the more erosive syntaxes of the Himalaya or southeast Alaska, or predicted
in Bendick and Ehlers [2014]. However (second), this study area was investigated specifically because
it represents an arid end-member compared to the other, better studied, syntaxial orogens. In an arid
setting where there is insufficient precipitation to erode tectonically driven increases in elevation,
denudation can be outpaced by tectonic rock uplift. As a result, the region could be climate limited in
terms of producing a denudation signal of large-scale tectonic processes such that surface uplift, rather
than denudation rates, may reflect this tectonic process. Indeed, our analysis of the trends in maximum
topography (the least eroded portion of the remaining landscape) show a regional decrease in maximum
elevations of the Coastal and Western Cordillera to the south from the syntaxis (Figure 6). This pattern
in maximum elevations has a length scale of ~300 km and is similar to the predicted 300-400 km length
scale of rock uplift patterns (measured from the center of the “bulls-eye” outward) suggested for a range
of different subducting indenter geometries [see rock uplift velocities in Fig. 2d of Bendick and Ehlers,
2014]. From this, we conclude that in an arid syntaxial orogen the denudation rates are not influenced

by the subducting plate geometry, but the regional topography may be.

In the remainder of this section, we discuss additional local and regional tectonic contributions to
denudation rates attributed to this region. First, local (catchment-scale) tectonic effects are evident from
our factor analysis that indicates a strong linear correlation and covariation of denudation rate and mean
channel steepness index. In northern Chile, previous studies have suggested that river knickpoints and
channel steepness indices are indicative of relative surface uplift [Hoke et al., 2007; Cooper et al., 2016].
Although denudation rates in this study cannot be related to absolute uplift rates of the Central Andes

[Regard et al., 2010], the spatial distribution of denudation rates and channel steepness indices are most
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likely related to local, faulting controlled, tectonic or earthquake induced landslide activity where the
highest denudation rates at 19°S and 21°S are observed. For example, east-west oriented faults extend
from 19°S and 21.6°S and are mainly restricted to the Coastal zone of northern Chile [Allmendinger et
al., 2005] (Figure 1a). The EW-faults are the longest at 19°S in the Rio Camarones drainage basin.
Evidence for a temporal clustering of seismic activity [Mouslopoulou et al., 2016] and the occurrence
of giant landslides at 19°S is suggested by previous work by Pinto et al. [2008] and Crosta et al. [2014].
The occurrence and concentration of mostly undated landslides could lead to the effect of °Be
dissolution resulting in higher denudation rates in this setting. The occurrence of landslides due to
seismic effects at 21°S may be a possible explanation for the high denudation rates of the Rio
Guatacondo. Consequently, a coupling of denudation rates to tectonically induced landsliding rather

than a coupling to local topographic trends or precipitation rates cannot be excluded.

Second, as previously mentioned on a regional-scale, changes in the maximum topography, rather than
denudation rates, are suggestive of plate subduction geometry. However, there is one final note we
should make concerning regional variations in topography and denudation rates around the syntaxis.
Recent work by Madella et al. [2016] in southern Peru showed that the bend in the coastline at the Arica
Bend (Figure 1) is characterized by low long-term plate coupling, low seismicity, low coastal uplift, and
high sediment supply. They estimated the supply of post-10 Ma sediment by differencing the modern
topography and the late Miocene pediplain they interpolated from available exposures. They conclude,
contrary to our findings, that the sediment discharge near the Arica Bend yields higher sediment volumes
than adjacent regions. Although our sampling approach extends over a large distance (400 km) from the
center of the bend southward, there are several aspects of their results and ours that warrant future
investigation. The difference between the results of Madella et al. [2016] and this study could be due to
either: (a) differences in the integration timescale of the observations used (10° vs. 10° years), (b)
differences in denudation rates in southern Peru vs. northern Chile are not distinguishable with our
northern limit of sampling, or (c) discrepancies in the true vs. interpolated late Miocene surface used in
their analysis. At this time, additional observations (e.g. cosmogenic-derived denudation rates) are

needed from southern Peru to evaluate these different possible explenations.

6 Conclusions

We present 34 new °Be derived denudation rates from the arid end-member syntaxial orogen of South
America in northern Chile. Samples were collected along north-south and east-west oriented profiles
between 18°S to 23°S. Controls on the denudation rates were evaluated using a statistical factor analysis
to reveal correlation and covariation of catchment parameters. The three main conclusions of this study

are:
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First, in the east-west direction the denudation rates of the Coastal Cordillera are one order of magnitude
lower than in the Western Cordillera. In the north-south direction the Coastal Cordillera denudation rates
increase towards the south, where no clear latitudinal trend in denudation rates is evident in the Western
Cordillera.

Second, the main control on denudation rates indicated from the factor analysis is local tectonic (smaller
scale faulting) processes that is identified by the strong correlation and covariation of the denudation
rate to channel steepness. The effect of climate parameters on the denudation rates seems to be

insignificant, although the precipitation data are limited to a short, recent record (eight years).

Third, a systematic decrease in denudation rates away from the syntaxial bend in the Andes (Figure 1b)
is not clearly present. This is in contrast to spatial patterns in exhumation rates observed from
thermochronology in the much more erosive Himalayan and southeast Alaskan syntaxes. Although a
clear signal of denudation rate variations with distance from the South American syntaxis is lacking,
regional trends in topography in this arid region (Figure 6) display a decrease in maximum elevations
away from the syntaxes. This trend in topography is similar to the rock uplift pattern predicted by
Bendick and Ehlers [2014] for upper plate deformation above a subducting indenter [Hayes et al., 2012]
and could reflect that there is simply not enough precipitation available in this region to erode the long
wavelength variations in topography. We conclude that in this arid setting with low potential for erosion
the tectonic controls on rock uplift may be outpacing the ability of surface processes to denude and
reflect regional scale tectonic processes.
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This supplementary material aims to illustrate the results that were obtained to show the relationship
between denudation rates with nine parameters analyzed in the main manuscript. Further information
about when and how the data were collected or created as well as the general description of processing

steps used are described in the main article.

Figure Slillustrates nine scatter plots that show the summarized results for the correlation coefficient on
denudation rates to nine analyzed parameters. The data are plotted according to the data in Table 1 and
Table 2. The correlation coefficients R of the scatter plots are the same as reported in Table 4 of the
main article. In addition, the 95% level of significance is expressed with the p-value in each subplot.
The p-value means that a value of 0 corresponds to a significant correlation in R and a low probability
of observing the null hypothesis. If the value exceeds 0.05 the correlation is insignificant within 95%

level of significance.
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Figure S1. Correlation coefficient scatter plot. In all subplots the black line is the regression line for the plotted data. The p-
value describes the significance of the correlation. S1a) The plot shows the correlation coefficient R for denudation rates with
normalized channel steepness. S1b) The plot shows the correlation coefficient R for denudation rates with mean annual
precipitation. Slc) Correlation coefficient R between denudation rate and mean basin slope. S1d) Correlation coefficient R
between denudation rate and stream order. Sle) Correlation coefficient R between denudation rate and local relief. S1f)
Correlation coefficient R between denudation rate and mean elevation. S1g) Correlation coefficient R between denudation

rate and drainage area. S1h) Correlation coefficient R between denudation rate and grain size. S1i) Correlation coefficient R
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Abstract

Vegetation influences erosion by stabilizing hillslopes and accelerating weathering. Previous studies
investigating vegetation effects on erosion have proved challenging due to poorly understood
interactions between vegetation and other factors such as precipitation and surface processes. Here we
address these complexities along 3,500 km of the extreme climate and vegetation gradient of the Andean
Western Cordillera (6°S to 36°S latitude). We do this using 94 cosmogenic radionuclide-derived erosion
rates of millennial time scale and multivariate statistics. We identify regimes where sparse vegetation
allows an increase of erosion with increasing precipitation and regimes where dense vegetation inhibit

the maximum variation of erosion.

One sentence summary

We identify three different regimes in which variable of vegetation cover affects erosion in the Andean

Western Cordillera, South America.

Main manuscript

The impact of vegetation on the shape and evolution of Earth’s surface ranges (for example) from the
microscopic scale of Mycorrhiza weathering for plant nutrition to macroscopic scales where plants
retard hillslope erosion, stabilize environments for sediment deposition, and affect precipitation through

evapotranspiration and leaf phenology (1-10). However, defining the influence of vegetation on
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catchment-averaged erosion or denudation, rates (the combination of physical erosion and chemical
weathering) has proven difficult because of non-linear interactions between vegetation type and cover
with precipitation, temperature, and solar radiation (11-14, 80). Disentangling the effects of vegetation
and climate on topography requires quantifying catchment-averaged erosion rates over a large range of
climate and biogeographic conditions. The production of cosmogenic radionuclides in the upper ~2 m
of Earth’s surface provides one means for quantifying catchment-averaged erosion rates (15-17) that
can be compared to different topographic, climate, and vegetation metrics. Here we quantify the
relationships between catchment-averaged erosion rates with vegetation cover, climate, and topographic
slope along the extended climate and ecological gradient of the Andean Western Cordillera, South
America (Fig. 1 and Fig. 2). Millennial timescale erosion rates are quantified with 11 new, and 83
previously published nuclide-concentrations from river channel sediments (18-30). These 94 catchments
are adjacent to a similar tectonic plate boundary (subduction zone). Catchment lithologies range from
Oligo-Miocene, Plio-Pleistocene volcanoclastic deposits and ignimbrites to sedimentary deposits of
Jurassic and Cretaceous age as well as Paleozoic and Cretaceous granodiorites to Precambrian gneiss
(79) (Tab. 6). We identify 13 lithological types including subtypes in the study area. The total
lithological-weighted quartz content for each catchment varies between 15% to 49% (Tab. 4, Tab. 7,
Fig. S1, Fig S6).
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Fig. 1. (A) Topographic map is showing the catchment-averaged erosion rate sample locations of river sediments from the
Andean Western Cordillera. Black dots indicate the location of previously published 1°Be concentrations (18-30). Red dots
are new data presented in this study (Supplement Tables 1, 2). (B) Catchment-averaged erosion rates [m/Myr] are plotted
versus latitude [°S]. Uncertainties represent the 1o error. The black line represents the three-point moving average. All
catchment-averaged erosion rates were calculated using the same calculation procedure (see supplemental material). (C)
Quartz content [%)] for each catchment based on the GLIM lithological map (79). A detailed list of lithological types and
quartz content including uncertainties is shown in the supplementary (Table 6).

The Andean Western Cordillera between 6°S to 36°S latitude extends over 3,500 km (Fig.1A) and
crosses six climate zones from hyper arid to temperate (31), and four distinct vegetation zones within
biogeographic regions (32). Often with conflicting results, cosmogenic nuclide-derived erosion rates
and their controlling factors were investigated along the Andean Western Cordillera with an increasing
number of studies during the last two decades (18-30, 57, 58). The emphasis of these studies ranges
from quantification of erosion rates in the vegetation-limited Atacama Desert (19,30), sediment storage
in hyper arid environments (18,22,23), to the rates of canyon incision and hillslope erosion in the Andean
Western Cordillera (24,25,27,28). With the exception of work by Carretier et al. (26) few studies have
looked at systematic latitudinal variations in erosion rates along this climate and ecological gradient. To
the best of our knowledge, no study to date has investigated a latitudinally diverse enough data set to
document non-linearities and influence of vegetation-climate effects on catchment erosion in South

America.
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Here we present the effect of vegetation cover on millennial-scale erosion rates from basins draining the
Andean Western Cordillera. Cosmogenic radionuclide concentrations of 10Be (half-life, 1.386 + 0.016
Myr) (33) were measured from new samples and combined with recently published data from Peru and
Chile (Fig. 1A, B) (18-30). All new and existing concentrations were used to recalculate the erosion
rates using the same sea level high latitude production rates and production rate scaling (34-38) (Fig.
S1A). For each catchment the 20 range in vegetation cover, mean annual precipitation (MAP) and
temperature (MAT), solar radiation, and basin-averaged slope, local relief, quartz content and lithology
were determined from MODIS, TRMM, CHELSA, WorldClim, SRTM and GLiM datasets (39-43,79)
(Fig. 1C, 2 A, B, C, Fig. S3). We compared TRMM, CHELSA and WorldClim (MAT and MAP values),
found no large differences in variability and continued to work with WorldClim. A combined
multivariate statistical factor analysis was used to calculate correlation coefficients and covariance
between catchment-averaged erosion rates, basin-averaged slopes and local relief from 90m SRTM,
MAP, MAT as well as solar radiation from WorldClim (1km resolution), MODIS vegetation cover (1
km resolution), quartz content and lithology (from GliM) (Fig. 2D, E). The details of each method and

additional catchment parameters are discussed in the supplementary materials.
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Fig. 2. Latitudinal variations in vegetation cover, precipitation, topographic slope and their correlation with erosion rates from
catchments sampled in Fig. 1A. (A) Vegetation cover and type plotted versus latitude (see also supplement for vegetation type
distribution in each catchment). The solid green line represents the three-point moving average of the mean vegetation cover.
The dashed green lines represent the three-point moving averages of the 2¢ standard deviation from the mean value. The
catchment-wide main vegetation type is highlighted in colored zones. The classification is taken from MODIS 2012 vegetation
continuous field data (41). The vegetation type in region | represents mixed forest. Region Il is dominated by grassland, and
region 111 is characterized by open shrubland. Region IV shows barren or sparsely vegetated areas. (B) Precipitation plotted
versus latitude where the blue solid line is the three-point moving average from the mean values. The dashed blue lines
represent the three-point moving averages of the 2o standard deviation from the mean value. Data are derived from TRMM2b
(40). (C) Slope versus latitude. The solid red line represents the three-point moving average from the mean slope. The dashed
red lines represent the three-point moving averages of the 2c standard deviation from the mean value. Data are derived from
90 m resolution of SRTM data (39). (D) Correlation coefficient R plotted versus latitude. The correlation coefficient ranges
between -1 to 1. The red lines represent the mean and 1o error of the correlation coefficient between erosion rate versus slope.
The blue lines represent the mean and 1o error of the correlation coefficient between erosion rate versus precipitation. (E)
Correlation coefficient R plotted versus latitude. Correlation coefficient and uncertainties calculated with a Monte Carlo
analysis. The solid green lines represent the mean and 1o error of the correlation coefficient between erosion rate versus
vegetation cover. The dashed green line represents trends in the correlation coefficient within each zone. Correlation
coefficients were calculated from samples within 2° bins, the minimum size possible to provide enough points for a robust
analysis. The 1o errors on the correlation coefficients presented in D and E were calculated using a Monte Carlo analysis of
the uncertainties in erosion rates for all samples within each bin (see supplement for details).
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Catchment-averaged erosion rates vary between 1.4 and 300 m/Myr (Fig. 1B). Starting in the north (6°S
to 12°S) erosion rates display increasing values between 0 to 300 m/Myr. From 12° to 20°S the scatter
in erosion rates decreases (0 to 210 m/Myr). The lowest erosion rates are located between 20°S to 30°S
(0 to 120 m/Myr). In the south (30°S to 36°S) erosion rates vary between 0 to 150 m/Myr and show
increasing values from 30°S to 33.5°S and decreasing values from 33.5°S to 36°S. In general, the quartz
content for each catchment ranges from 15% to 50%. From 6°S to 22°S the quartz content is
continuously increasing from 15% to 50%. From 26°S to 36°S the quartz content varies from 20% to
40% but shows no clear trend. (Fig. 1C). Starting in the north, catchment vegetation cover and MAP are
the highest of the regions studied (70-90% and 600-800 mm/yr, respectively) (Fig 2 A, B). They
gradually decrease to a minimum (5% and <50 mm/yr, respectively) at the latitudes of the Atacama
Desert (20°S to 30°S). Further south (30°S to 36°S), the vegetation cover and MAP gradually increase
to a southern maximum (42% and 700 mm/yr, respectively). Basin-averaged slopes have increasing
values up to 30° from 6°S to 12°S. The values gradually decrease towards the south (12°S to 20°S) and
vary between 30° to 10°. The lowest slopes (5° to 10°) are situated between 20° to 30°. In the south

(30°S to 36°S) topographic slopes increase up to 28° (Fig 2.C)

The calculation of the Pearson correlation coefficients R averaged over 2° latitudinal increments
illuminates changes in correlations over large scales. Each correlation coefficient derived of a 2° bin
represents the correlation coefficient of n number of catchments between individual parameters (Fig.
S10). The 2° increments were chosen as the minimum spatial scale over which sufficient data points are
available for a robust analysis. The correlation coefficients were calculated using a Monte Carlo
Simulation of the 2 sigma range of values produced by uncertainties in each parameter for all locations
(Fig 1 and Fig. 2). The relationship between erosion rate and slope (Fig. 2D) can be classified after (86)
into regions with very weak (0.00-0.19), weak (0.20-0.39), moderate (0.40-0.59) and strong (0.60-0.79)
and very strong (0.80-1.0) correlations. Starting in the north, a moderate positive correlation between
erosion and slope occurs between 6°S to 8°S (~0.7). Strong positive correlations are present from 8°S
to 12°S (~0.7-1.0). From 12°S to 14°S a weak negative correlation (~-0.3) can be observed. A further
decrease in correlation to moderate negative correlated is shown from 14°S to 16°S (~-0.5). Correlations
remain moderate negative correlated between 16°S to 18°S (~0.4) and change to very weak negative
correlated from 18°S to 20°S. The last correlation coefficient in the northern part shows a moderate
positive correlation (~0.4). Due to low data availability in the latitudinal increments from 22°S to 28°S
and 32°S and 34°S correlation coefficients cannot be calculated. However, it is possible to identify a
moderate positive correlation from 28°S to 30°S (~0.5), a very strong positive correlation (~0.7-1.0)
from 30°S to 32°S and a moderate correlation from 34°S to 36°S (~0.5). Precipitation and erosion rate
are weak to moderate but positively correlated (typically >0 to <0.5) between 6°S and 10°S (Fig. 2D).
From 10°S to 12°S a very strong positive correlation (~0.7-1.0) occurs but changes to a moderate

positive correlation from 12°S to 14°S and to a very weak correlation between 14°S to 16°S. A strong
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positive correlation is present from 16°S to 18°S and shifts to a weak and insignificant correlation
between 18°S to 22°S. In the south a strong positive correlation occurs from 28°S to 30°S, a strong
negative correlation can be found from 30°S to 32°S that is changing to a moderate positive correlation
from 34°S to 36°S.

In contrast to the correlations between erosion rate and slope or precipitation, which show many changes
in correlation, the correlation between erosion rate and vegetation cover contains only a few changes
(Fig. 2E). The correlation coefficient is very weak correlated from 6°S to 10°S. From 10°S to 14°S a
very strong positive correlation is present which decreases to a very weak correlation from 14°S to 16°S.
Weak positive as well as weak negative correlations can be found between 16°S to 20°S. Moderate
negative correlations occur between 20°S to 22°S and 28°S to 30°S. A very strong negative correlation
is shown from 30°S to 32°S which is changing to a very weak correlation between 34°S to 36°S. In
addition, the statistical analysis shows no correlation or covariance with quartz content or lithology with
erosion rate in the study area (Tab. 4, Tab. 7, Fig. S1, Fig. S6).

Results from the multivariate factor analysis of erosion rate, vegetation cover, slope, mean annual
temperature, mean annual precipitation, mean annual solar radiation, local relief, quartz content and
lithology identify four factors that explain 62% of the data variance (Tab S4, Tab. S5). First, the results
highlight the importance of vegetation cover on erosion rate and identifies vegetation and erosion rate
as having a high covariance (factor loading of 0.5 to 0.6 in factor 1). In addition, vegetation cover and
erosion show an inter-dependency with WorldClim annual precipitation (factor loading >0.9 in factor
1). Second, in factor 2 vegetation cover is also covarying with WorldClim annual temperature (factor
loading >0.6) and with the lithological type of acid volcanic rocks ‘va’ (factor loading 0.7). Third, we
identify mean slope and mean local relief as having a strong covariance (factor loading > 0.8 in factor
3). The last factor 4 shows that the quartz content and the lithological type of unconsolidated sediments
are covarying (> factor loading 0.5). Details of the factor analysis are explained in the supplementary

material.

Based on the above results we note that along the 30° latitudinal transect, the correlation coefficient
between precipitation and erosion rate does not show a clear variation (except between 6-12° S. latitude),
and correlation coefficients oscillate, with few exceptions, between 0 to 0.5 (Fig. 2D). Similarly, there
is no clear systematic latitudinal variation in the correlation coefficients between slope and erosion rates.
In contrast, vegetation cover-erosion rate correlations show regimes that either clearly coincide or are
antithetic in correlation. Starting in the arid (<50 mm/yr) and sparsely vegetated (vegetation cover
<15%) regime (20°S to 30°S) the erosion-vegetation correlation indicates a negative relationship which
cannot be proven over the whole zone due to low data availability of catchment erosion rates in mostly
alluvial fan dominated geomorphological settings (22, 23). The regime between 12°S-20°S and 30°S-

36°S shows a transitional signal in which correlation coefficients change with reference to increasing
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vegetation cover from negative significant to insignificant and then to positive significant erosion-
vegetation correlation. The shift in correlation is between 30°S to 36°S not as clear as between 12°S to
20°S due to low data availability. In contrast, the regime from 6°S to 12°S (Fig. 2E) is characterized by
a progressive latitudinal shift in the vegetation cover-erosion rate correlation from insignificant to
positive significant (N-S). Due to the northern extent of the study area it is not possible to identify if the
correlation coefficients change from insignificant correlation to significant negative correlation like in

an opposite behaviour to regime between 12°S to 22°S.
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Fig. 3. (A) Modelled relative erosion based on increasing vegetation cover and precipitation. VVegetation cover-derived relative
erosion is shown in green and is based on functions reported in Gyssels et. al. and Renard and Freimund (48,86). Vegetation
cover (V) is calculated by: V=Pxa”°, where P is precipitation, a is 1.55 and b is 0.6 (86). The factors a and b are derived from
the calculated exponential relationship of vegetation cover and precipitation of the study area and are shown in the
supplementary FigureS4. The equation of relative erosion (R1) is: R1=e"%%2 (48) Precipitation-derived relative erosion (Rz)
is shown in blue and is based on functions reported in Renard and Freimund (86), R.=Pxa”?, where P is precipitation. We use
for the factors a and b the values a=0.82 and b=1.09 reported in Cooper (87). The orange curve represents the relative erosion
(Recombined) derived from the combined effect of increasing vegetation cover and precipitation. It is calculated with the equation
Reombined =V(R1*R2). For further details see also Table 8. (B) Observed relationship between erosion rate, vegetation cover and
mean annual precipitation (MAP) for each individual catchment. Erosion rates plotted versus vegetation cover in dots. The
dots are colour coded according to mean annual precipitation derived from TRMM dataset shown in Fig. 2. Black squares
represent outliers most likely resulting from glacier remnants (29). For comparison, supplement Fig. S6A is identical, but
colour coded by slope
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The previous vegetation related regime can be interpreted as the result of specific surface process and
vegetation related factors that superimpose the observed changes in correlation (Fig. 3). From 20°S to
30°S, a regime with non- to sparse vegetation (vegetation cover between 0% to 15%) parameters such
as basin slope, and stochastic variations in precipitation (e.g. large rare storms) and sediment storage
exert a strong influence on erosion which leads to a high general variance in erosion rates because
precipitation is more readily converted into surface runoff, physical erosion, and sediment transport that
can increase the range in erosion rates (44-48). Adding vegetation cover in a regime with low initial
vegetation leads to large changes in behavior of correlation because the stabilizing, or buffering, effect
of vegetation cover is directly present. However, due to the low initial water availability in this regime
erosion rates are also relatively low. In the regime from 12°S to 20°S (15% to 50% vegetation cover) a
transition takes place where both abiotic (surface) processes and vegetation effects influence erosion
rates and cause a shift in correlation. In regions with sufficient water availability but medium to high
vegetation erosion rates increase with increasing vegetation. Due to the limits of the study area the effect
of high vegetation cover that decreases erosion rates cannot be observed in correlation coefficients. The
shift in correlation from positive significant to insignificant indicates that the effect of vegetation (~50%
cover) starts to have its maximum (saturated) impact on erosion rate despite a continuing trend of
increasing vegetation cover and precipitation (Fig. 2A, B). Although increasing precipitation rates
should cause a proportional increase in discharge and therefore a proportional increase in erosion rates
(81-83) an increase of vegetation cover seems to act as a biological filter that is limiting the maximum
amount of erosion. In this study we observe that a vegetation cover greater than 50% leads to a
maintenance of steep mean slopes of 25° to 30° (Fig. S6). In the transitional regime and the regime with
initial low vegetation mean slopes vary mainly between 5° to 20° (Fig. S6). Any further change in the
vegetation-erosion correlation is muted by factors such as hillslopes at the angle of repose contributing

to erosion (49).

In addition, we modelled relative erosion rates based on increasing vegetation cover and precipitation
rate (Fig. 3A) (48,86). With increasing vegetation cover relative erosion is decreasing whereas with
increasing precipitation relative erosion is also increasing (Fig. 3A). Extracting the root of the multiplied
vegetation and precipitation induced relative erosion shows a combining effect of vegetation and
precipitation on relative erosion. This effect shows that until 15% vegetation cover relative erosion is
increasing, from 15% to 50% relative erosion remains stable and is decreasing from 50% to 100%
vegetation cover (Fig. 3A). A similar trend can be observed in the measured erosion rates. We identify
a general trend that the maximum variation in erosion is decreasing with increasing vegetation (>15%)
despite increasing precipitation rates (Fig.3B), erosion remains stable in the transition zone and starts to

decrease and the dense vegetated regime.
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The results presented here are consistent with concepts developed in previous soil erosion and sediment
yield studies (46,48,84). Previous soil erosion studies document that as the type and density of vegetation
cover increases, the resistance of soil to erosion through enhanced slope stabilization increases (6,48,50-
52). This concept has also been investigated in modelling studies that implemented surface resistance to
hillslope erosion through vegetation induced root cohesion and modification of surface runoff (53-
56,85). Recent studies suggest that vegetation shows a non-linear behaviour which is complicated to
untangle with methods using linear calculations (80). New simulations show that in a setting with low
initial vegetation cover, like we find in this study area, the effect of changing vegetation cover has a
larger impact on erosion due to non-linear response of diffusivity and fluvial erodibility compared to the
linear behaviour to changes in precipitation (80). Similar findings to ours of a vegetation control on
catchment-averaged erosion rates have also been reported for smaller geographic areas in both East
Africa (57) and the Himalaya (58). Confirmation of our findings with other study areas means that
despite differences in the climate and geomorphic settings, vegetation cover exhibits an influence on

erosion rates consistent with the results presented here.

Erosion rates vary with uplift rates in steady-state condition, but the results indicate that the study area
is not at steady state because: First, the main phases of mountain building in the Andean Western
Cordillera are from 20-10 Ma and terminated around 9 Ma (59-63), and only isolated regions of recent
neo-tectonic activity (e.g. surface rupturing faults) have been observed, and with limited displacement
(64,65) (Fig. S6). The regimes of vegetation-erosion interactions identified in Figure 2 do not correspond
to known patterns of tectonic activity or subducting oceanic ridges (Fig. S6). Second, changes in base
level lowering are still propagation through the river profiles. Knickzones in the river profiles are present
along the Andean Western Cordillera and are propagating headward at least since the Late Miocene (77)
(Fig. S7). Third, the results indicate that hillslopes are in state of transient response. This means that our
observed weak correlation between slopes and erosion rates, and occasional strong correlation between
vegetation and erosion could be explained by a decoupling between the fluvial channels and hillslopes
over protracted timescales. If, and how well, river channels and hillslopes are decoupled from each other
need to be investigated further. A second potential caveat is that paleo-precipitation rates could differ in
magnitude from the modern (78). However, paleo-precipitation gradients (from Pliocene to modern
time) in the investigated region are similar to modern precipitation gradients along the Andean Western
Cordillera (66) (Fig. S5). Our identified regimes are therefore unlikely to be relicts of paleo-climate

change.

There are several broader implications for the vegetation cover and precipitation effects on erosion that
we identify. First, our analysis identifies that the effect of vegetation and precipitation on catchment
erosion varies depending on the vegetation cover amount (Fig. 2). Second, the identification of regimes

implies that studies focusing on individual catchments with a spatial extent smaller than the larger scale
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interactions identified here could poorly resolve vegetation-erosion rate interactions. The results indicate
that smaller scale studies are less likely to identify the range of vegetation cover effects on erosion rates
documented here and could be located at or across regimes where different behaviors exist. Third, results
from previous studies (26,57,58) have shown both correlations and anti-correlations between vegetation
cover, precipitation and erosion rates. These conflicting results may have occurred in areas that are
located at, or straddle, the regimes identified here. Finally, our results demonstrate that previous
concepts of a vegetation control on soil erosion (48) can also be applied to large-scale and long-term

erosion rate studies

Acknowledgement

D. Kost and L. Michel are thanked for laboratory and field assistance, respectively. We also thank three
anonymous reviewers for their thoughtful comments. Funding: This study was funded by a European
Research Council (ERC) consolidator grant (CoG 615703) to T.A. Ehlers. Authors contribution: J.
Starke and T.A. Ehlers planned the study. J. Starke is responsible for all sample collection and
calculations. J. Starke and M. Schaller are responsible for the laboratory analysis. All authors contributed
to manuscript and figure preparation. Competing interest: The authors have no competing financial
conflicts of interest with this study. Data and materials availability: Data reported in the paper are

presented in the Supplementary Materials.

71



PAPER Il

Supplementary to Paper Il

1 Materials

1.1 Cosmogenic nuclides sampling approach

River stream sediments were collected from 11 basins draining the Andean Western Cordillera in
Southern Peru from 15°-18.3°S latitude. These detrital sediments were obtained in a regular spacing
with ~50km between sampled basins. Catchment sizes vary between 636 km? and 14,710 km?. The
lithology was characterized by mostly Jurassic and Cretaceous granodiorites and granites similar to the
catchments analysed in northern Chile (30). In the field, the grain size fraction of 500 to 1000um was
sieved. In cases of insufficient quartz mass, the 250 to 500um grain size fraction was extracted and
further cleaned for pure quartz. All newly generated data are summarized in Table 1. Newly collected
samples from Southern Peru for measurements of in situ-produced °Be were dried, separated using
magnetic separation followed by etching with 10% HCL and followed by 10% HF. Approximately 300
ug of °Be was added to ~40 g pure quartz. Be was extracted by using the standard separation method of
von Blanckenburg et al. (67). The ratios of °Be/°Be were measured as BeO targets by accelerator mass
spectrometry (AMS) at the University of Koln and blank corrected with a blank ratio of 3.06E-15 £
6.46E-16.

1.2 Literature data

Previous studies have made significant progress in understanding cosmogenic nuclide- derived
concentrations, erosion rates and the processes controlling them along the Western margin of South
America. In this study, we complement our dataset with the °Be blank corrected concentrations at
sample location (18-30), which are summarized in Table 2. The data from Nishiizumi et al. (18) and
Placzek et al. (22) are taken from alluvial sediments in the Central Atacama Desert between 23° to
26.3°S and represent a different geomorphological setting compared to catchments that are exclusively
draining the Western Cordillera. The detrital samples from Carretier et al. (26) and Carretier et al. (27)
are taken at 13°S and14.5°S in Southern Peru and from 27°S to 35.7°S in Central Chile. Catchments of
Central and Southern Peru were sampled by Reber et al. (29) from 6.4°S to 18.1°S.
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2 Methods

2.1 Catchment-averaged erosion rates

Catchment-averaged erosion rates over timescales of <~108yr were calculated from the blank corrected
19Be concentrations. The cosmogenic isotope concentration (C) of °Be at the Earth’s surface is inversely
proportional to the erosion rate (D) assuming that the surface is steadily eroding and described in the

following equation:

C= PNuc(O) X

+ P/.Lstopped (0) X

+ Pufast(o) X ﬁ (1)

b3

where C is the isotope concentration (at gqw)™2), D is the erosion rate (cm yr?), A is the decay constant
(*°Be 4.99E-07 + 0.43E-08 yr? (33); (68-69)), and p is the rock density (2.4 + 0.2 g cm™3). Pnuc(0),
Pustoppea(0), and P,us(0) are the surface production rates of cosmogenic nuclides (at (9w yr?) by
spallation, stopped and fast muons. The coefficients as, a. and a:(dimensionless) and b, b. and bs (g cm-
2) are used for depth scaling of the production rates and reported by Braucher et al. (38).

Sea level high latitude (SLHL) nucleonic production rates (Pn.) for °Be are based on the value 3.7 +
0.57 at (g Y1) (*°Be) (37). The stopped and fast muonic production rates use the values 0.012 +0.012
at (Ji Y1) * (1°Be Pysioppea) and 0.039 + 0.004 at (g Y1) (°Be Pusst), provided by Braucher et al. (38).
The nucleonic and muonic production rates were scaled using the time-dependent scaling laws of Dunai
(34). The catchment-averaged production rate is the average production rate of each DEM pixel (90 m
resolution) in the catchment area. Each single production rate was corrected for topographic shielding
following the procedure described in Dunne et al. (35) and Norton and Vanacker (36). Corrections for
lithology and snow shielding were not applied. We calculate the uncertainties in erosion rates using a
Monte Carlo simulation of error propagation. The error propagation includes the production rate error
of nucleonic, stopped and fast muonic production, a 5% DEM altitude error for the production rate, the
decay constant error, the rock density error and the '°Be concentration error. In order to contain a
consistent erosion rate along the Western margin of South America the production rates as well as the
erosion rates were recalculated from the blank corrected °Be concentrations of the literature data (Fig.

S1). The new calculated erosion rates are reported in Table 3.
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2.2 Factor analysis

Factor analysis is a multivariate statistical method that extracts from a large set of manifest variables a
few common latent characteristics. Examples of using a factor analysis in geological research are
described in Hartmann and Wiinneman (71). The factor analysis performs a multivariate data reduction
by detecting linear correlations with a maximum likelihood estimate (72-74). The factor analysis model

can be described by:
Xvxp) = FovxaoA'texp) + Equxp) (2)

where X is the data matrix with N elements and p variables, F the factor score matrix with k the number
of factors to be used, A’ the factor loading matrix, plus the error term E (75). A z-transformation was
applied on the X data matrix to provide an interpretation independent of unit dimension. A z-

transformation can be calculated from the following formula:

z=WV-—-w/o 3)

where z is the z-score, V is the value of the element, p is the population mean, and o is the standard
deviation. The factor analysis was performed in R-mode, which means that the X data matrix is
transformed into a correlation matrix R before it starts to compute the factor loadings. The fundamental
equation for all forms of a R-mode factor analysis is (75):

x=Af +e 4)

X is a column vector representing one object of the data matrix X, A is the factor loading matrix, f and e
are corresponding row vectors of F and E described above. We derive equation 4 by transforming
equation 2 in scalar notation. Consequently, for any given value of the data matrix of the nth row and

ith column the equation 5 is valid (75):

Xni = Z?:l fnjQij + en; (5)
Following equation 5 we obtain for any row (x") of the data matrix X (75):
xX'=fA+e (6)

The transpose of equation 6 is the fundamental equation 4 for the R-mode factor analysis. The data

matrix X, the factor score matrix F, the factor loading matrix A, plus the error term E.

In the first step the factor analysis calculates the Pearson correlation coefficients R and the p-value
(Table. 5) over a 2° latitudinal bin and implements a Monte Carlo Simulation to be independent from

the mean catchment parameters and to address their uncertainties. The 2° increments were chosen as the
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minimum spatial scale over which sufficient data points are available for a robust analysis. The Monte
Carlo Simulation repeats the equations 100,000 times, while each repetition iteratively selects random
input variables according to the probability distribution function of the data matrix (76). Consequently,
the correlation coefficient represents the relationship of two parameters including their uncertainties in
a specific region while other parameters are kept constant. In a second step the covariation of parameters
from 6°S to 36°S are calculated to identify relationships between parameters that are present over the
whole region. A second Monte Carlo Simulation is added after the first step in order to repeat 100,000
times the equations to calculate the covariation. The data matrix X contains the catchment parameters
including their uncertainties from 6°S to 36°S for each sampled basin. The independent variable of the
covariation analysis is the catchment latitude. Only catchments were selected that drain the Western
Cordillera and represent catchment-averaged erosion rates of non-alluvial systems. Catchments with an
influence of glacial activity are marked as outliers (Fig. 3). The factor analysis was performed in Matlab

and the results are documented in Table 4 and Table 5.

2.3 Catchment parameters

Catchment parameters of mean local relief of 10 km radius, mean slope, mean annual precipitation
(MAP), mean annual temperature (MAT), mean annual solar radiation, vegetation cover and vegetation
type were calculated for comparison to erosion rates. Mean local relief of 10 km radius and mean slope
were computed using the Shuttle Radar Topography Mission (SRTM) digital elevation model (DEM)
with a resolution of 90m (39). Mean annual precipitation was calculated with the data product TRMM
2B31 5x5km grid (1998-2006) (40) with WorldClim 1 km resolution (42) and CHELSA 1km resolution
(43). Mean annual temperature was calculated from WorldClim and CHELSA. Values of mean annual
solar radiation were derived from WorldClim. Catchment-wide vegetation cover was analyzed using the
1km Modis- based Green Vegetation Fraction with a time resolution from 2001-2012 (41). The
vegetation type was extracted by using MODIS landcover (2001-2012) with a data resolution of 0.5°-
0.5°. Quartz content and the lithological types are derived from the Glim dataset (79). The 13 main
lithological types that we find in the study area are Basic plutonic rocks (pb), Acid plutonic rocks (pa),
Intermediate plutonic rocks (pi), Pyroclastics (py), Carbonate sedimentary rocks (sc), Mixed
sedimentary rocks (sm), Siliciclastic sedimentary rocks (ss), Evaporites (ev), Metamorphics (mt), Acid
volcanic rocks (va), Basic volcanic rocks (vb), Intermediate volcanic rocks (vi), Unconsolidated
sediments (su). Catchment parameters were analyzed using ArcGIS and TopoToolboxv2 (70) and were
recalculated to obtain a consistent data set for the literature data (Fig. S2, S3, S4, S5, S6, S8 and Table
S3).
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3

Tables

All Tables of PAPER Il are also archived in the digital appendix. The digital appendix is a CD that sticks

to the last page of this thesis.

Table S1: Sample data from this study

Authar Sample Sample Latitude Longitude  Stream Order Grain "“Be conc Error Mormalized ™Be conc.  Normalized Error
name type 5 w Strahler size blank corrected 1o blank corrected 1o
o o count mm atoms gr’ atoms gr’
this study ~ 16PE002 Western Cordillera  -16.38889 -73.25798 5.0 0.25-0.5 851263 26702 0.7 0.02
this study  16PE003 Western Cordillera  -16.63559  -72.86041 4.0 0.25-0.5 290835 11408 0.2 0.01
this study  16PE013 Western Cordillera  -17.62401  -71.33701 5.0 0.25-0.5 692498 24163 0.6 0.02
this study  16PE016 Western Cordillera  -17.90685  -70.95811 6.0 0.51 585362 19088 0.5 0.02
this study  16PE018 Western Cordillera  -18.15887 -70.67024 6.0 0.25-0.5 639356 24039 0.5 0.02
this study  16PE019 Western Cordillera  -18.29308  -70.43336 5.0 0.51 1370876 42271 1.2 0.04
this study ~ 16PE031 Western Cordillera  -17.88617  -70.43275 4.0 0.51 526646 28656 0.7 0.02
this study ~ 16PE040 Western Cordillera  -17.21526  -70.97372 5.0 0.25-0.5 955937 32854 0.8 0.03
this study  16PE046 Western Cordillera  -16.27236  -72.45062 7.0 0.25-0.5 182413 7572 0.2 0.01
this study  16PE063 Western Cordillera  -15.67173  -74.52261 5.0 0.25-0.5 610920 19367 0.5 0.02
this study  16PE0G4 Western Cordillera  -15.51300 -74.83815 5.0 0.25-0.5 62609 2754 0.1 0.00
this study  16PE0G5 Western Cordillera  -14.97702  -74.98862 4.0 0.25-0.5 251486 8738 0.2 0.01

76



PAPER |1

Table S2, part 1: Sample data from literature

Authar Sample Sample Latitude Longitude 10Be conc. Error Mormalized 10Be conc. Mormalized Error
name type 5 w blank corrected 1o blank corrected 1a
® i atoms gr-1 atoms gr-1
(20) Pis11 Western Cordillera -13.73 -75.8855 171000 12000 0.1 0.01
(26) SAM1 Western Cordillera -27.2 -689.82 1027511 153842 09 0.13
(26) HUA12 Western Cordillera -286 -F0.73 F986449 24962 0.5 0.02
(26) HUA10 Western Cordillera -287 -70.55 hE8993 16567 0.5 0.01
(26) HUAT Western Cordillera -28.8 -70.46 833051 53481 0.7 0.05
(26) HUA1 Western Cordillera -28.99 -70.28 479983 13641 0.4 0.01
(26) ELK1 Western Cordillera -29.85 -70.49 177039 23322 0.2 0.02
(26) HURA Western Cordillera -30.31 -T0.73 593074 38635 0.5 0.03
(26) ILL1 Western Cordillera -31.6 -T1.11 463966 13507 0.4 0.01
(26) CHOO08235  Woestern Cordillera -31.61 714 218067 9450 0.2 0.01
(26) CHOO0820 Western Cordillera -31.66 -71.22 234948 10795 0.2 0.01
(26) CHOO08225  Woestern Cordillera -31.66 -71.3 198207 5803 0.2 0.00
(26) CHO Western Cordillera -31.69 -T1.27 195648 6708 0.2 0.01
(26) ACOA Western Cordillera -32.83 -70.54 101191 2915 0.1 0.00
(26) WA Western Cordillera -33.58 -70.44 87032 5010 0.1 0.00
(26) CACA Western Cordillera -34.21 -70.53 91404 10713 0.1 0.01
(26) TIN1 Western Cordillera -34.68 -70.87 99370 5275 0.1 0.00
(26) TEMA1 Western Cordillera -34.99 -70.86 733 48099 0.1 0.04
(26) LOMNA Western Cordillera -3518 -71.12 64381 20145 0.1 0.02
(26) MALA Western Cordillera -35.73 -71.02 129351 14825 0.1 0.01
(26) GRA1 Western Cordillera -14.5173  -75.2108 360000 20000 0.3 0.02
(26) CANZ Western Cordillera -13.0275  -76.1932 328000 21000 0.3 0.02
(18) 17 WCHAlluvial Sediment  -26.26 -G8.56 12340000 3000000 105 2.55
(22) ADBA-25D  Alluvial Sediment -23.5335 -69.0796 8840000 300000 75 0.26
(22) ASOI-SD Alluvial Sediment -24.0933  -70.1688 6470000 260000 55 0.22
(22) ADS0-43D  Channel gravel -24.0384 -59.8728 6110000 270000 52 0.23
22) ADS0-BCH  Channel gravel -24.1529  -68.547 2060000 270000 6.9 0.23
22) ADSA-4CH  Channel gravel -23.2232 -68.5649 4020000 360000 3.4 0.31
(22) ADSA-1ED  Alluvial Sediment -23.7857 -B8.107T1 3040000 RE0000 6.8 0.49
(22) ADCRE-8 Channel gravel -24.7089  -70.369 12580000 270000 107 0.23
(22) ADSA1SD  Alluvial Sediment -23.7857 -B8.1071 2040000 580000 6.8 0.43
(22) ADCRW-3 Channel gravel -24.5682  -70.5411 322000 79000 0.3 0.07
(29) PRCME-1 Western Cordillera -18.1191  -70.3274 1018000 22000 09 0.02
(29) PRCME-3 Western Cordillera -17.824  -70.5046 556000 14000 0.5 0.01
(29) PRCME-401 Woestern Cordillera -17.9073 -70.9562 910000 18000 0.8 0.02
(29) PRCME-5 Western Cordillera -17.28656 -70.9895 834000 18000 0.7 0.02
(29) PRCME-G Western Cordillera -17.0288 -71.6908 219000 2000 0.2 0.01
(29) PRCME-7 Western Cordillera -16.5849 727285 157000 4000 0.1 0.00
(29) PRCME-& Western Cordillera -16.7192 724187 508000 20000 0.4 0.02
(29) PRCME-2 Western Cordillera -16.4217  -73.1153 85000 4000 0.1 0.00
(29) PRCME-10  Woestern Cordillera -16.226  -T3.6178 936000 18000 0.8 0.02
(29) PRCME-11  Woestern Cordillera -15.846  -74 2607 659000 16000 0.6 0.01
(29) PRCME-12  Woestern Cordillera -15.672  -745232 596000 12000 0.5 0.01
(29) PRCME-13  Woestern Cordillera -15.6286 -7T4.6368 213000 2000 0.2 0.01
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Table S2, part 2: Sample data from literature

name type g w blank corrected 1o blank comrected 1a
° ° atoms gr-1 atoms gr-1
(29) PRCME-1401 Western Cordillera -14.6476  -75.2424 273000 2000 0.2 0.01
(29) PRCME-15  Wastern Cordillera -14 3448  -75.6858 366000 10000 0.3 0.01
(29) PRCME-17  Wastern Cordillera -13.4656  -TB.1365 181000 5000 0.2 0.00
(29) PRCME-18  Western Cordillera -13.3213  -76.2433 354000 3000 0.3 0.01
(29) PRCME-19  Waestern Cordillera -13.1238  -76.3944 288000 11000 0.2 0.01
(29) PRCME-20  Waeastern Cordillera -12.6652 -76.6515 261000 2000 0.2 0.01
(29) PRCME-21  Wastern Cordillera -12.5005 -76.7412 262000 3000 0.2 0.01
(29) PRCME-22  Western Cordillera -12.251 -T6.8919 306000 G000 0.3 0.01
(29) PRCME-23  Waestern Cordillera -11.6083  -77.2387 141000 5000 0.1 0.00
(29) PRCME-24  Wastern Cordillera -11.0713 -T7.586 113000 4000 0.1 0.00
(29) PRCME-25  Wastern Cordillera -10.839  -77.6962 254000 6000 0.2 0.01
(29) PRCME-26  Western Cordillera -10.6551 -77.8337 317000 9000 0.3 0.01
(29) PRCME-27  Waestern Cordillera -3.9662  -TB.6209 226000 9000 0.2 0.01
(29) PRCME-28  Wastern Cordillera -3.423 -TE.7835 620000 26000 0.5 0.02
(29) PRCME-29  Western Cordillera -8.14 -T9.0076 427000 14000 0.4 0.01
(29) PRCME-30  Western Cordillera -7.3234 794807 299000 9000 0.3 0.01
(29) PRCME-31  Waestern Cordillera -6.9804  -T9.6335 354000 10000 0.3 0.01
(29) PRCME-32  Wastern Cordillera -6.4519  -7T9.8572 262000 G000 0.2 0.01
(29) PRCME-33  Waestern Cordillera -G.7882  -T9.6043 224000 7000 0.2 0.01
(29) PRCME-34  Western Cordillera -7.8193 -791728 144000 4000 0.1 0.00
(29) PRCME-35  Waestern Cordillera -92627 -TE4313 167000 4000 0.1 0.00
(29) PRCME-36  Wastern Cordillera -9.4815  -T8.2945 219000 7000 0.2 0.01
(29) PRCME-37  Western Cordillera -9.9358  -TE.2186 208000 3000 0.2 0.01
(29) PRCME-38  Waestern Cordillera -10.0847 -78.1504 528000 11000 0.4 0.01
(29) PRCME-39  Wastern Cordillera 117923 -76.9914 170000 G000 0.1 0.01
(29) PAT-ME Western Cordillera -10.7203 -77.7695 64000 3000 0.1 0.00
(29) Pisco Western Cordillera -13.7274  -75.8855 171000 12000 0.1 0.01
(30) 15CL002 Western Cordillera -18.55089 -70.19434 640136 21787 0.5 0.02
(30) 15CLO14 Western Cordillera -18.16528 -70.16817 75031 7309 0.1 0.01
(30) 15CLO018 Western Cordillera -18.51871 -70.18941 759969 25654 0.6 0.02
(30) 15CL019 Western Cordillera -18.77716 -70.26838 654193 22113 0.6 0.02
(30) 15CL0Z28 Western Cordillera -21.42659 -70.05085 375624 13095 0.3 0.01
(30) 15CL031 Western Cordillera -18.95096 -659.45113 254547 9690 0.2 0.01
(30) 15CL041 Western Cordillera -18.88353 -69.45416 1037114 33845 04 0.03
(30) 15CL049 Western Cordillera -21.6853 -69.52814 1823654 56656 16 0.05
(30) 15CLO57 Western Cordillera -20.1191  -69.20985 1424909 46586 1.2 0.04
(30) 15CL058 Western Cordillera -20.24223 -69.38035 1122408 aravz 10 0.03
(30) 15CL0G3 Western Cordillera -20.69 -69.27 7775R9 25365 0.7 0.02
(30) 15CL0G9 Western Cordillera -20.97284 -6919701 197467 9247 0.2 0.01
(30) 15CLOT0 Western Cordillera -21.09846 -59.25047 502836 17987 04 0.02
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Table S4: Factor analysis

Parameter Factor 1 Factor 2 Factor 2 Factor 4
Erosion rate 0.5 -0.3 01 0.2
Vegetation cover 06 0.6 0.2 0.3
Slope o4 -0.2 0.8 0.2
Area 0.0 -0.1 -0.3 0.0
Worldclim MAP=! 09 -0.1 01 0.2
Worldclim MAT* 01 10 01 0.0
WorldClim Solar radiatic -0.7 -0.5 -0.3 -0.1
Local relief 0.3 -0.3 09 -0.1
Quartz content 0.1 0.5 0.1 0.6
Lithology 'pa’ -0.2 0.0 0.2 0.2
Lithology 'ss' 0.0 0.0 0.1 0.4
Lithology 'sumxgl’ 03 -0.4 -0.2 -0.5
Lithology 'sumsxvr' 0.1 0.0 -0.1 0.5
Lithology 'va' 0.2 0.7 0.3 0.1
Lithology 'vivi' -0.3 -0.1 -0.4 -0.1
Lithology 'vipy' -0.3 -0.4 0.2 -0.2
KVarEigen [36) 62.0

eVarEigen [34] 231 19.7 11.3 7.8

'Acid plutonic rocks (pa), Siliciclastic sedimentary rocks (=), Acid
volcanic rocks (va), Intermediate volcanic rocks (vi) with pyroclastics
(vipv), Unconsolidated sediments (su) with mixed grains and glacial
remnants (sumxgl) and mixed grains and subordinate volcanics

(summvr)
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R-values

Table S5
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Table S6, part 1: Lithological data
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Table S6, part 2: Lithological data
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tes with varying quartz content

ion ra

Product
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0T S 0 SET 99°TTT 16T VE'8TT 0LT 1Z°8ZT EEE LYVTET 05°sT 00LT 0S'8T 0002 S'L 092 6¥8G°9L-  LINoHd

L 4 0 S8TT £9'89T 6LTT €9°8LT 98°'%T 7S'86T ST9T 99°0TZ 9€°0z S9TE €T L1852 8L T92  llgr9l- 63INOHd

0 0 0 ¥S'L 66ES 608 €TLS ogg or'e9 1 1S9 89°SC STLC 8€70¢€ 8cle 69 6¢¢  SJZ0EL ZNYD

0z 1 14 690 €L6T 650 86°0¢ 580 9v'Ee 860 47414 S0°L £€9°L 8] 596 96 0CE  5005¢k kg-3ndud

T 6 0 €E0 STTT vE0 e8Il [a4] STET o SLET Lvr's 18°s 679 029 vL 9FT  F0BE'Y LE-INDIU

S ] 0 080 SE'6T 160 88°0€ 160 ZOEE STT 68°CE 906 856 62°0T 5201 oS 99T 28819 £E-INOHd

ST 1T T 70 ST6T £2°0 S20T 8€0 e 90 Ov'ET 989 8L €18 158 €L vvZ  6LGFS ZEINOHd

[5] [An/w] A w] [An/w] [An/w] [An/w] A/ w] A w] A /w] [37¢] [3/3¢] [372¢] [ED [aa] [o6] [
zyenb g zyenb 901 zHenb 9oz o1 zuenb %01 o1 zuenb o1 o1 zenb 90z o1 zuenb |ejo3  zuenb y%g zyenb g1 zyenb g0z 3usjuoo zenb e303 yum o1 juawyszed ug

uoisosa uy adueyy Ajurepssaun uoisosy Ajuiensoun uoisosy Ajurenssun uoisosy Ajurenssoun uoisouy Y3m a3el uoizaNpolg 33E4 Uuoi3ONpouyg [E30] Ajulemaoupn jusjuos zyaenb |ejo)]  spnineq sweN

85



PAPER Il

Table S8, part 1: Vegetation cover and relative erosion

Precipitation (P) Vegetation cover Relative Erosion Relative Erosion Relative Erosion

[mm,f',.fr] [%] “:aj_]'*2 {Rz}*a Rc{:urr'l:u'rshap4

1 1.5 1.00 0.000 0.022
10 6.2 0.85 0.006 0.071
25 10.7 0.73 0.016 0.109
30 16.2 0.60 0.034 0.144
75 20.6 0.52 0.054 0.166
100 24.5 0.45 0.073 0.182
125 28.0 0.40 0.093 0.193
150 3l1.2 0.36 0.114 0.201
175 34.3 0.32 0.135 0.208
200 37.1 0.29 0.156 0.213
225 39.8 0.26 0.177 0.216
250 42.4 0.24 0.199 0.219
275 44.9 0.22 0.221 0.221
300 47.3 0.20 0.243 0.222
325 49.7 0.19 0.265 0.223
350 31.9 0.17 0.287 0.223
375 4.1 0.16 0.309 0.223
400 56.3 0.15 0.332 0.222
425 58.3 0.14 0.355 0.222
450 60.4 0.13 0.377 0.221
475 62.4 0.12 0.400 0.220
500 64.3 0.11 0.423 0.218
525 66.2 0.11 0.447 0.217

*1 Calculated vegetation cover based on Renard &Freimund 1994 {V=anﬂh}, where P is
precipitation, a is 1.55 and b is 0.60 derived from Figures4.

*2 Relative erosion (R,) based on Gyssels et al. 2005 (R,=e

*3 Relative erosion (R;) based on Renard &Freimund 1954 (R2=axP"b), where P is

-1.55:-:'5.-:!52}

precipitation, a is 0.82, and b is 1.09 derived from Cooper 2011.

*4 Relative erosion (R_ompineq) 15 calculated by R pines =V (Ry%R5)
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Table S8, part 2: Vegetation cover and relative erosion

Precipitation (P) Vegetation cover Relative Erosion Relative Erosion Relative Erosion

[mm/yr] [%] |{R1.]'*a {Rz}*z Rﬂ:-rr'l:u'rshnp4
550 68.1 0.10 0.470 0.215
575 69.9 0.09 0.493 0.214
600 717 0.09 0.516 0.212
625 73.5 0.08 0.540 0.210
650 75.3 0.08 0.564 0.208
675 77.0 0.07 0.587 0.206
J00 78.7 0.07 0.611 0.204
725 80.4 0.06 0.635 0.202
750 82.0 0.06 0.659 0.200
775 83.7 0.06 0.683 0.198
800 85.3 0.05 0.707 0.196
825 86.9 0.05 0.731 0.154
850 88.4 0.05 0.755 0.192
875 90.0 0.05 0.779 0.189
900 91.5 0.04 0.804 0.187
925 93.0 0.04 0.828 0.185
950 94.5 0.04 0.852 0.183
975 96.0 0.04 0.877 0.181
1000 97.5 0.04 0.901 0.179
1025 98.9 0.03 0.926 0.177
1050 100.4 0.03 0.951 0.175
1075 101.8 0.03 0.975 0.173
1100 103.2 0.03 1.000 0.170

*1 Calculated vegetation cover based on Renard &Freimund 1954 {V:an*h}, where P is
precipitation, a is 1.55 and b is 0.60 derived from Figures4.

*2 Relative erosion (R,) based on Gyssels et al. 2005 (R,=e

*3 Relative erosion (R;) based on Renard &Freimund 1994 (R2=axP~b), where P is

-1.55):{!.{!52}

precipitation, a is 0.82, and b is 1.09 derived from Cooper 2011.

*4 Relative erosion (R_mpineq) 15 calculated by R mpines =V (R1%R;)
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4 Figures

Normalized 19Be conc. [ ] Correlation Coefficient R

R: Erosion - Quartz
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Fig. S1: Normalized °Be blank corrected concentrations are plotted versus latitude [°S]. The concentrations are normalized
with the averaged °Be concentration of all catchments (1.18-10° at gr)™®). Values of 1°Be concentrations vary between
6.3-10% and 1.3-107 at gr(qty™* (Table S1, S2). Normalized 1°Be concentrations range between 0 and 10 and progressively
increase and then decrease with increasing south latitude (Fig. 1B). For example, starting in the north (6°S to 12°S) values of
normalized 1°Be concentrations are low and between 0 to 0.5. From 12°S to 20°S the values increase up to 1.5. Values reach
a maximum (5 t010) between 20°S to 30°S (Fig. 1B). Further south (30°S to 36°S) concentration values then decrease and
range between 0 to 0.5. (B) Correlation coefficients for erosion rate and quartz content averaged over a 2° latitudinal bin. Grey
zones display the uncertainty of correlation. From 12°S to 14°S, 16°S to 22°S and 30°S to 36°S correlation coefficients show
no clear correlation and vary between 0 to 0.3. Only catchments between 14°S to 16°S and 28°S to 30° S show a clear
correlation. From 14°S to 16°S a positive correlation of around 0.5 occurs. Negative correlations of about -0.75 can be found
from 28°S to 30°S.
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Longitude [°W] Swath-Profiles [km]
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Fig. S2: Latitudinal distribution of relief and vegetation type. (A) Topographic map showing cosmogenic nuclide sample
positions. (B) Swath-profiles plotted versus latitude. Swath-profiles have a 100km radius and illustrate from left to right,
minimum, mean and maximum elevation. (C) Vegetation type is plotted versus latitude and classified in percent distribution
across a 100km latitudinal profile in the Andean Western Cordillera. Grey lines represent barren or sparsely vegetated areas.
Black lines show open shrublands. Green lines are grasslands. Purple lines are woody savannas. Blue lines are mixed forests
and orange lines are evergreen forest. Values are derived from Modis landcover data (41).
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Fig. S3: Comparison of different climatic parameters plotted versus latitude and used in the factor analysis. The solid lines
display the three-point moving average of the mean and the dashed lines the 26 standard deviation from the mean value (A)
Mean annual precipitation derived from WorldClim (42). (B) Mean annual precipitation derived from Chelsa (43). (C) Mean
annual temperature derived from WorldClim (42). (D) Mean annual temperature derived from Chelsa (43). (E) Mean annual
solar radiation derived from WorldClim (42). (F) Mean local relief of 10km radius derived from a 90m DEM.
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Fig S4: Mean annual precipitation derived from TRMM data plotted versus vegetation cover. A power model fit with one
number of terms (f(x) = a*x” b). Coefficients with 95% confidence bounds: a= 1.545 (0.7671, 2.324) b= 0.6039 (0.5198,
0.688)) have been added as a red line. The goodness of fit is SSE:1.33e+04, R-square: 0.6685, Adjusted R-square: 0.6646 and
RMSE: 12.58. The figure shows that with increasing precipitation (>200 mm/yr) the relationship between vegetation cover
and precipitation becomes more diverse and the fit of the regression model decreases.
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Fig S5: Comparison of predicted precipitation and precipitation differences for different time slices along the western Andean
margin. Results were calculated for the Last Glacial Maximum (LGM), Present Day (PD), and Pre-Industrial (P1) conditions
with the ECHAMS global atmospheric general circulation model at a spectral resolution of T159 (~80x80 km)(66).
Precipitation rates (A-C) were extracted from the ECHAM simulations (66) for the location of each catchment (Fig. 1 main
text). For the precipitation differences (D-F), positive values highlight regions with wetter conditions and negative values
indicate regions with dryer conditions relative to the Pl simulation. (A) Mean annual ECHAMS predicted precipitation during
the LGM. (B) Predicted mean annual precipitation during the P1. (C) Predicted mean annual precipitation of the PD. (D) Mean
annual precipitation difference between the LGM and PI from ECHAMS. (E) Mean annual precipitation difference between
LGM and PD from ECHAMS. (F) Mean annual precipitation difference between Pl and PD from ECHAMS. LGM mean
annual precipitation is included because the apparent ages for the cosmogenic radionuclide data (Table S3) are typically on
the order of 10* years and cover one or more glacial-interglacial cycles. Based on the similarity in the latitudinal gradient of
modern and paleo precipitation gradients with latitude (e.g. compare A, B) the calculated correlation between modern
precipitation and erosion rate (Fig. 2D, main text) is not expected to be different when paleoprecipitation is considered. The
results indicate that the latitudinal gradient of paleoprecipitation (and hence paleovegetation gradient influenced by
precipitation) would not have varied significantly from recent (PD) conditions.
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Fig S6: Observed relationship between erosion rate, vegetation cover and mean slope. Erosion rates plotted versus vegetation
cover in dots. The dots are color coded according to mean slope that are shown in Fig. 2. Outliers most likely result from
glacier remnants (29). The figure highlights that with an increasing vegetation cover (>50%) slopes are stabilized and steeper
compared to mean slopes within the transition and abiotic zone. (B) Observed relation between erosion rate and total quartz
content for each catchment. Grey bars display the uncertainty.
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Fig. S7: (A) Distribution of shallow seismic events in South America that occur in 0.8 to 15km depth. Earthquakes of at least
magnitude 5 have been considered. The data are derived from the USGS Earthquake Data and display earthquakes from 1973
to 2015. (B) Distribution of shallow seismic events in South America that occur in 15 to 40km depth. Earthquakes of at least
magnitude 5 have been considered. The data are derived from the USGS Earthquake Data and display earthquakes from 1973

to 2015.
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Fig. S8: Elevation of knickpoints and age of river incision from catchments draining the Western Cordillera. Data is derived
from Kober et al. (19), Schlunegger et al. (88), Hoke et al. (90), Farias et al. (89), Abbiihl et al. (77), Cooper et al. (87).
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Fig. S9: Comparison of detailed R-values within the latitudinal bins of 10° to 12° and 12°to 14°. Montecarlo-derived
uncertainties are not displayed.
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Key Points

= Analyzing the influence of glacier cover and timing of deglaciation on Holocene catchment-
wide erosion rates

= Significant correlation of catchment-wide erosion rates with vegetation cover

Abstract

The presence of the Northern Patagonian Ice Field (NPI) results in a strong glacial impact on Patagonian
topography. In the region surrounding the NPI, deep incised U-shaped valleys exist and are infilled with
sediment. In situ-produced cosmogenic °Be is widely used to derive catchment-wide erosion rates.
However, in the region of the NPI the influence of post-glacial erosional processes on catchment-wide
erosion rates remains unclear. Here, we report 21 new °Be and 19 new 2Al concentrations from river
sediments in six catchments spanning from ~43° to 47°S latitude. Apparent ages of samples are ranging
from 0.4 to 3.3 ka and represent catchment erosion after deglaciation. Erosion rates (ranging from 0.3
to 0.9 mm/yr) derived from °Be concentrations show a decrease in erosion rates with decreasing
latitude. Comparison of erosion rates with different topographic metrics (e.g. relief, slope, normalized
steepness) and vegetation cover indicate the strongest correlation (R?=0.7) between erosion rates and
vegetation cover, whereby southern catchments with low vegetation cover show higher erosion rates
than northern catchments without glacier cover and higher vegetation cover. Potential effects on erosion

rates by long wavelength tectonic (slab window) processes or local variations in rock uplift are not
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visible. Analysis of erosion rates in different grain sizes from the catchments indicates grain size effects
on erosion rates caused by differences in transport distance in the river channel.

1 Introduction

The evolution of mountain landscapes and topography is highly dependent on the spatial variability of
erosion. In contrast to purely fluvial settings, the identification of Holocene erosion rates is more
complex in glaciated and post-glaciated environments (Koppes et al., 2015; Adams and Ehlers, 2018).
Glacial and post-glacial impact on orogen erosion can occur by non-uniform erosion in catchments
shaped by glaciers (Stock et al., 2006; Stock et al., 2009) or by the control of sediment distribution on
postglacial fluvial dynamics (Norton et al., 2010; Hobbley et al., 2010). Boundary conditions for
hillslope erosion can be set by post-glacial trunk streams that erode or aggrade and modify tributary
catchments (Burbank et al., 1996; Whipple, 2004).

The Patagonian Andes (38°S to 53°S) in southern Chile are subject to glaciation since approximately 7
Ma (Warren and Sugden, 1993). At present, the Northern Patagonian Ice Field (NPI) is one of the largest
ice fields of the temperate zone in the Southern Hemisphere with a surface area of about 4200km? and
28 outlet glaciers (Warren and Sugden, 1993). The presence of the NPI results in a strong glacial and

post-glacial impact on landscape change and orogen erosion in the Patagonian Andes.

Previous studies have identified the northern and southern Patagonian glacial chronology by means of
geochronological methods (e.g. sediment facies, cosmogenic nuclides or luminescence dating) (Glasser
and Hambrey, 2002; Ackert et al., 2003; Kaplan et al., 2004; Glasser et al., 2005; Glasser et al., 2006;
Kaplan et al., 2007; Ackert et al., 2008; Kaplan et al., 2008; Hein et al., 2009a; Hein et al., 2009b; Hein
et al., 2010; Kaplan et al., 2011, Darvill et al,. 2016a; Darvill et al., 2016b; Henriquez et al., 2017).
Glacial erosion has been derived from sediment budget of outlet glaciers (45° to 55°S west or south of
the NPI) and ranges from 0.1 to 10 mm/yr (Koppes and Montgomery, 2009; Koppes et al., 2009; Koppes
et al., 2015). Erosion rates deduced from thermochronological data (e.g. fission track) vary between 0.1
to 1.1 mm/yr and have been documented by for example Thomson et al. (2001), Adriasola et al. (2006),
Thomson et al. (2010) and Fernandez et al. (2016). Holocene erosion rates for the Patagonian Andes
have been only reported by Breuer et al. (2013) and are identified from lake sediment budgets at 53°S.
These Holocene erosion rates vary from 0.08 mm/kyr in the high elevated catchments of granitic rocks
to 9.91 mm/kyr in the low vegetated catchments of sedimentary rocks. However, Holocene post-glacial
catchment-wide erosion rates derived from cosmogenic 1°Be are not reported for the regions adjacent to
NPI.

Variations in post-glacial catchment-wide erosion rates in over steepened and heavily glaciated regions

are largely unknown for the eastern side and further north from the NPI. Therefore, this study focuses
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on the area north of the present-day Northern Patagonian Ice Field (NPI) between 43°S and 47°S that
covers the Patagonian Andes (Figure 1, Table 1). This research investigates the latitudinal variation of
catchment-wide erosion rates and the influence of differences in glacier cover. We compare partly
glaciated and deglaciated catchments and investigate three objectives that are: (1) to identify effects of
grain size on calculated erosion rates, (2) to investigate effects of transport distance on erosion rates,
and (3) to analyze the potential influence of climate, tectonic parameters, topography and vegetation on
erosion rate.

35°

40°

45°

50°

55°

Fig. 1: Overview of the study area. (A) The topographic map shows the elevation distribution. In light blue the recent
ice/glacier cover is illustrated which is derived from NSIDC (2018). NPI is the Northern Patagonian Ice field whereas SPI is
the Southern Patagonian Ice field. The black line represents the Last Glacial Maximum (LGM) ice cover extend and is derived
from Singer et al. (2004) and Thomson et al. (2010). Red to yellow colours represent the age of oceanic crust and location of
trench/plate boundaries derived from GPLATES global plate model of Muller et al. (2008) and Seton et al. (2012). CTJ is the
Chilean Triple Junction. The red box is the study area and is shown in more detail on the right. (B) Black polygons illustrate
the catchments whereas red lines represent the major fault systems of Liquifie-Ofqui Fault Zone (LOFZ) and Exploradores
Faults (EF).
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2  Study Area

2.1 Geological and Geomorphological Setting

Subduction of oceanic plates beneath the Chilean continental margin lead to the formation of the
southern Andes (Ramos and Ghiglione, 2008). North of 46°30’S, the northeast subduction direction of
the Nazca plate initiated at 20 Ma and is ongoing at a rate of ~7cm/yr (Pardo-Casas and Molnar, 1987).
South of 46°30°S, the Antarctic plate subducts with a rate of ~2cm/yr since 16 Ma (Breitsprecher and
Thorkelson, 2009). The boundary between the two different subducting plates is the Chile Triple
Junction (CTJ). All six catchments (Figure 1B) are located north of the CTJ. The three northernmost
catchments are situated close to the Liquifie-Ofqui fault zone (LOFZ), a major geologic feature affecting
the southern Andes (Figure 1B). The LOFZ extends >1000km north of the CTJ and is a dextral-
transpressional fault system that is seismically active (Cembrano et al., 1996). The three southernmost
catchments are located in the Exploradores Faults (EF), an area characterized by reverse faults, north of
the NPI (Georgieva et al., 2016).

Distinct variations in topography of the Patagonian Andes can be found north and south of the CTJ
location. A maximum and mean elevation of 2000 m and 1000 m, respectively, is representative for the
area north of the CTJ. South of the CTJ, mean elevations increase but become more variable and
maximum elevations range between 3000 m to 4000 m (Georgieva et al., 2016). The highest peak in the
NPI is Mt. San Valentin at 4058 m elevation. Although variations in topography are present, apatite
Helium (AHe) ages ranging from 1 Ma to 11 Ma collected at elevations between 0 to 500 m indicate no
significant latitudinal trend in cooling ages from 43°S to 47°S (Figure S1; Thomson et al., 2010;
Guillaume et al., 2013; and Georgieva et al., 2016).

2.2 Glacier Setting

The NPI is one of the largest ice fields in the Southern Hemisphere (Warren and Sugden, 1993). The
glacier accumulation area covers a surface of 2578 km? and the ablation area a surface of 1550 km?.
Accumulation and ablation areas are divided by the equilibrium line which is estimated to be located at
an elevation between 900 to 1350 m (Aniya, 1988). In recent years the NP1 shows an ice retreat of 0.059
+ 0.005 mm/yr (Foresta et al., 2018).

The Patagonian Andes including the NPI are an orographic barrier. The western side of the NPI is
characterized by a maritime regime with wet conditions of rain and snow accumulation whereas the
eastern side shows a dryer continental climate signal (Thomson et al., 2010; Willis et al., 2012). The
glacier accumulation and drainage pattern of the NP1 follows the climatic settings of wet and dry climatic

regimes. An example is the San Rafael glacier which terminates into the Laguna San Rafael in the east
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of the northern NP1 (Koppes et al., 2010). The San Rafael glacier is adjacent to this study area but is not
draining to the catchments 4 to 6 that are located at the northern eastern side of the NPI.
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Fig. 2: Summary of deglaciation timing north of the NPI. Four different ice stages are reported. The first stage is shown as a
black dashed line that represents the extent of ice cover during LGM. The dark dashed blue line represents an intermediate ice
position between LGM and 12.8 ka. The light blue line illustrates the glacier position at 12.8 ka and the solid light blue line
shows the current ice extent. All ice stages are modified after Hultan et al. (2002), Turner et al. (2005), Hubbard et al. (2005),
Hein et al. (2009) and Bendle et al. (2017).

Figure 2 shows a summary of timing of deglaciation including present-day glacier cover. The last glacial
maximum (LGM) covered the six catchments with thick ice from 19 ka to 23 ka ago. Rapid ice retreats
produced several intermediate stages and occurred within centuries from 17.5 ka to 17.1 ka and 16 ka
to 15 ka in the warmer and therefore more sensitive northern ice sheet domains. A phase of glacier
stability occurred between 13.6 ka and 12.8 ka. The final deglaciation and final separation of the NPI
and SPI started from 12.8 ka and the present-day margin is believed to be stable since 11 ka with local
glacier fluctuations (Hultan et al., 2002; Turner et al., 2005; Hubbard et al., 2005; Hein et al., 2009;
Bendle et al., 2017). Reconstructions of the timing of deglaciation indicates that the northern catchments

(1 to 3) have been deglaciated earlier than the southern catchments (4 to 6). In addition, catchments 4 to
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6 are located very close to the present-day NPI and may have experienced local glacier fluctuations over
time (e.g. little ice age).

3 Methods

3.1 Determination of Geomorphic Parameters

Catchment parameters of elevation, slope, local relief (10 km radius), MAP (mean annual precipitation),
MAT (mean annual temperature), glacier cover, vegetation cover, normalized channel steepness index
(ksn) and lithology are analyzed for comparison to °Be concentration and erosion rates. The topographic
parameters of elevation, slope and local relief are based on an ASTER- DEM (30 m resolution) (USGS
2018). Climate parameters of MAP and MAT are determined from WorldClim (1 km resolution).
Vegetation cover is derived from MODIS maximum green vegetation fraction (1 km resolution)
(Broxton et al. 2014). Glacier cover and lithology are based on GLIMS Glacier database (NSIDC 2018)
and GLiM lithological map (Hartmann and Moosdorf, 2012) (Table 1). Areas covered by ice are masked

out in all presented calculations.

The normalized channel steepness index (ks) (Wobus et al., 2006) is calculated to characterize the
geometry of river longitudinal profiles. The stream power law function relates slope and drainage area

by:

S=ksx A"

where S is the local channel gradient (m/m), ks is the steepness index (m®°), A is the upstream drainage
area (m?), and 0 is the concavity index (dimensionless) (Hack, 1973; Kirby and Whipple, 2001; Wobus
et al., 2006). The advantage of using ksn is the quantification of the local specific channel-steepness to
the steepness of an equilibrium river (Ouimet et al., 2009; Whipple, and Granger, 2009; Whittaker,
2012), which enables the comparison between rivers in different regions. We calculated the normalized
ks (ksn) by using a reference concavity of 0.45, a smoothing window of 500 m, and a contour sampling
interval of 20 m. The resulting ks, values were clipped to the size of the catchments. All parameters were
analyzed using ArcGIS, TopoToolbox 2 (Schwanghart and Scherler, 2014), and the Stream Profiler
Matlab scripts of Whipple et al. (2007).

3.2 Cosmogenic Sample processing and Analysis

Detrital sand and pebbles were collected from 6 rivers with catchment sizes between 163 km? and about
1416 km? for measurements of in situ-produced °Be and Al (Figure 3 and Figure 4, Table 1). In

catchment 5, the samples 17PG23 and 17PG24 are directly taken from glacier outwash (Figure 4).
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Catchments of similar stream order, similar catchment size, and lithology of similar quartz-content are
selected. The catchment lithologies are characterized by mainly (over 60% catchment area) acidic
plutonic rocks. From each detrital sample, the 500 to 1000 um grain size fraction and the 250 to 500 um
grain size fraction was sieved and cleaned to pure quartz. River pebbles of similar size (1.6 to 5.2 cm)
were selected, and crushed, and sieved to 500 to 1000 um and 250 to 500 um grain size fractions for
further treatment. Approximately 300 ng of °Be was added to approximately ~100 g pure quartz before
dissolution of the quartz. Beryllium and Aluminum were separated by using the standard separation
method of von Blanckenburg (2005) and Wittmann et al. (2007). The ratios of °Be/°Be and 2°Al/>’Al
were measured as BeO and Al.Os targets by accelerator mass spectrometry at the University of Koln.
Stable Al concentration measurements were performed by inductively coupled plasma-optical emission

spectrometry at the University of Tiibingen.

107



PAPER IlI

_Catchment 1

i

17PG80

— Catchment
| ® Sample

Fig. 3: Aerial photo of catchment sample locations 1 to 3 from 43°S to 45°S latitude and 72°S to 73°W longitude. White areas
indicate snow cover.
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Fig. 4: Aerial photo of catchment sample locations 4 to 6 from 46°S to 47°S latitude and 72°S to 73°W longitude. White areas
indicate snow or glacier cover.

3.3 Erosion Rate Calculation

Catchment-wide erosion rates over timescales of <~10°yr were calculated from the blank corrected °Be
concentrations. Assuming that the Earth’s surface is steadily eroding, the cosmogenic isotope
concentration (C) of 1°Be is inversely proportional to the erosion rate (D) and described in the following
equation:

a;

(1+25°)

C= PNuc(O) X

a;

+ Pystoppea(0) X m

+ Pufast(o) X (/1+a§><_1))

b3

where C is the isotope concentration (at g ™), D is the erosion rate (cm yr?), A is the decay constant
(*°Be 4.99E-07 + 0.43E-08 yr!; Chmeleff et al., 2010; Korschinek et al., 2010), and p is the rock density
(2.4 £ 0.2 g cm ™). Pnwe(0), Pusiopped(0), and Puag(0) are the surface production rates of cosmogenic

nuclides (at gqw) yr?) by spallation, stopped and fast muons. Depth scaling of the production rates is
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based on nucleonic, stopped muonic, and fast muonic adsorption lengths which are 157, 1500, and 4320
g/cm?, respectively (Braucher et al., 2011).

Sea level high latitude (SLHL) nucleonic production rates (Pnyc) for °Be are based on the value 3.92
atoms/(g) Yr) (Borchers et al. 2016). The stopped and fast muonic production rates use the values
0.012 atoms/(ggtz) Yr) (*°Be Pystopped) @and 0.039 atoms/(gqrz) Yr) (1°Be Pysse), provided by Borchers et al.
(2016). The nucleonic and muonic production rates were scaled using the procedure of Lifton et al.
(2014).

The catchment-wide production rate is the average production rate of each DEM pixel (90 m resolution)
in the catchment area. Each single production rate was corrected for topographic shielding following the
procedure described in Dunne et al. (1999) and Norton and Vanacker (2009). The °Be concentrations
as well as the %Al concentrations are blank corrected with a value of 52,804 atoms/g(y) for °Be and
66,412 atoms/g(q,) for 2°Al (Table 2). Values of °Be concentrations are reported to SLHL (Table 2).

Corrections for glacier cover and snow were applied as follows. DEM pixels under present day ice cover
are assumed to be 100% shielded and are not included in the average production rate calculation. Snow
shielding was calculated from the equations of Gosse and Phillips (2001). Snow depth estimations were
performed using the MODIS/Terra Snow Cover Monthly L3 Global 0.05°, Version 6 dataset with a
monthly time resolution from 2001 to 2017 (Hall and Riggs, 2015). For each study area the snow cover
is given in percent surface cover ranging from 0 to 100%. These values are scaled to snow depth by
assuming that 100% snow cover equals the maximum show depth that was measured by Foster et al.
(2001 and 2002). A snow density of 0.25 g/cm? for shielding calculations is assumed.

The above reported snow depth estimations introduce uncertainties. Hence, the reported erosion rates
should be interpreted as maximum values and the possible effect of snow shielding on the calculation
of erosion rates needs to be constrained. Consequently, we calculate the uncertainties in erosion rates
using a Monte Carlo simulation of error propagation. The error propagation includes the production rate
error of nucleonic, stopped and fast muonic production, a 5% DEM altitude error for the production rate,
the decay constant error, the rock density error, and the °Be concentration error. Erosion rates are
reported with a) topographic shielding including glaciated areas, b) with topographic shielding and snow
shielding including glaciated areas and c¢) with topographic and snow shielding excluding areas covered

by glaciers in Table 3.

Catchment-wide erosion rates are compared to all available catchment parameters by analysis of linear
regression and Person correlation coefficients. Multivariate statistics cannot be performed on this dataset

due to a small number of data points which is insufficient to perform a reliable result.
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4 Results

4.1 Catchment Parameters

The analyzed geomorphic parameters show following results: Catchment mean elevations are constant
within the uncertainty of the measurement and range from 908 + 379 m to 1057 + 393 m (Table 1).
Similar to the mean elevation, local relief over a 10km radius shows no latitudinal trend between the
catchments and vary between 922 + 76 m to 1174 + 458m (Figure 1, Table 1). Geomorphic parameters

of elevation and local relief equally show no latitudinal trend in the investigated area.

Mean slope and vegetation cover show strong inner catchment variations. Generally, the lowest slopes
and highest vegetation cover can be identified in the river valleys, whereas at the valley walls are steep
and vegetation cover is low. North of the NPI, former as well as present-day glaciated valleys show
generally steep mean slopes but distinct differences in vegetation cover. Catchment mean slopes in the
study area range between 19.5 + 14.5° and 26.2 + 16.2° but are constant within the uncertainty (Table
1). Figure 5 and Figure 6 illustrate that for all six catchments, slopes lower than 15° can only be found
in the valley floors that are infilled with Quaternary sediments. On the contrary, steeper slopes (>15°)
are mainly concentrated at the valley walls consisting of acid plutonic rocks. The vegetation is highest
at locations of shallow slopes and Quaternary sediments. In contrast to mean slopes, mean vegetation
cover shows a latitudinal trend. Catchments closer to the NPI have a lower mean vegetation cover (min
28 + 37 %) than catchments further north (max 92 £+ 10 %) (Table 1).

111



PAPER IlI

Slope [°]
QN0
‘\/‘\/‘,’3
NCRY @Q

Lithology

Q
Q(O‘o N '@‘b ) %Qﬂn’

NNENE 7 NEEOOEEN

72.03°W 72.03°W
NP ;

43.3°S

L 10KM A
7I2.6°W

43.3°S

44.7°S
44.7°S

722 W
NP
P oF
3
10KM E

Catchment 3 Catchment 2 Catchment 1

Fig. 5: Lithology and slope of catchments 1 to 3. (A, C, E) Lithological maps showing lithological types of acid plutonic rocks
(pa), pyroclastics (py), metamorphics (mt), unconsolidated sediments (su), water body (wb) and glaciers (ice cover) derived
from GLiM lithological map (Hartmann and Moosdorf, 2012). The catchments 1 to 3 are not covered by glaciers. (B, D, E)
Color coded slope maps showing slope steepness in degrees based on ASTER- DEM (30m resolution) from USGS (2018).

Geological parameters show clear variations. The lithological analysis identifies the types of acid
plutonic rocks (pa), pyroclastics (py), metamorphics (mt) and unconsolidated sediments (su) in the
catchments (Figure 5 and Figure 6). The dominant lithology is acid plutonic rock that varies from 61%
to 100% within the catchment (Table 1.). North of the NPI, the lithological units are characterized by
the Jurassic to Miocene Patagonian batholith that mainly consists of acid plutonic rocks. In addition,
Jurassic volcanics, Triassic metasediments, Paleozoic metasediments, and Quaternary unconsolidated
sediments can be found in this region (Ramos and Ghiglione, 2008). Similar to the general lithological
classification, catchment lithologies are mainly composed of acid plutonic rocks (> 60% catchment area)
and Quaternary unconsolidated sediments (derived from GLiM by Hartmann and Moosdorf, (2012)).
Minor percentages of metamorphic or pyroclastic rocks are mapped (Figure 5 and Figure 6, Table 1).
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Fig. 6: Lithology and slope of catchments 4 to 6. (A, C, E) Lithological maps showing lithological types of acid plutonic rocks
(pa), pyroclastics (py), metamorphics (mt), unconsolidated sediments (su), water body (wb) and glaciers (ice cover) derived
from GLiM lithological map (Hartmann and Moosdorf, 2012). (B, D, E) Color coded slope maps showing slope in degree
based on an ASTER- DEM (30m resolution) (USGS, 2018).

Faults with incompletely known deformation histories cross the catchment areas. Catchments 1 to 3 are
situated in the LOFZ whereas catchments 4 to 6 neighbour the EF zone (Figure 1B). In order to
investigate the postglacial deformation history of the faults in more detail the normalized channel
steepness index (Ksn) is analyzed (Figure 7). Generally, low mean K, values (< 50) are calculated
throughout the catchments in the low elevation, glacial valley portions of the catchments. Maximum K,
values range from 95 to 394. Minimum K, values vary from 0.01 to 0.02. For all catchments the highest
Ksn values, indicating knickzones, are found in locations of incoming tributaries of hanging valleys or
lithological differences (e.g. compare Figure 4, 5 and 6). Indications for fault-zone produced knickzones
and high Ks, values cannot be identified.
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Fig. 7: Normalized channel steepness. Drainage network is color coded by the normalized channel steepness value (Ksn). The
red dots mark the sample positions. In panel B, D and F the longitudinal river profiles are highlighted. In catchments 1, 3 and
4 the number 1 or 2 is written close to channel. The number 1 means high Ksn values are caused by hanging valleys whereas
number 2 indicates high Ksn values are caused by lithological differences.

Climatic parameters of MAT and MAP show no latitudinal trend for the catchments 1 to 6 and are
similar within 2c standard deviation from the mean (Table 1). Mean annual temperature (MAT) and
mean annual precipitation (MAP) derived from WorldClim show no latitudinal trends between the
catchments. MAT values range from 3.1 + 2.9°C to 5.3 £1.8°C and MAP values vary between 1306 +
84 mm/yr to 1465 = 191 mm/yr (Table 1). Catchments 4 to 6 have a glacier cover of 0.4 % to 6.2%,
which is caused by smaller glaciers located at the dryer western side of the NPI. The catchments 1 to 3

are located further from the NP1 and have a lower glacier cover of 0.02% to 1.9% (Table 1).
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4.2 Variation of '’Be Concentration and '’Be-derived Erosion Rates

Values of blank corrected °Be concentrations normalized to SLHL are reported in Table 2. The
concentrations are derived from river sand, river pebbles and glacier outwash. In general, °Be
concentrations of river sand from catchments 1 to 3 in the north are higher than in catchments 4 to 6 in
the south. In the north °Be concentrations of river sand vary from 7,556 + 435 atoms/g(q:,) to 15,926 +
723 atoms/g(qz) Whereas concentrations in southern catchments range from 3,811 + 407 atoms/g(q) to
11,182 +579 atoms/g(qw). The °Be concentrations of the coarser grained river pebbles are of same
order, but not identical to °Be concentrations of river sand. In comparison to river sand, the °Be
concentrations of river pebbles are generally lower in the north than sand samples, ranging from 5,032
+ 317 atoms/g(q) to 9146 + 546 atoms/g(q) and in the south °Be concentrations are higher of river
pebbles than sand, ranging from 6,418 + 740 atoms/g(qt) to 6,975 + 521 atoms/g(q). The lowest °Be
concentrations are observed from the glacier outwash samples (17PG23 and 17PG24) with values of
2,027 £ 319 atoms/g(q) and 2,377+ 290 atoms/g(q). Analytical limitations occur for samples that are
processed with a dissolved weighted quartz amount lower than 100g. For these samples it is not possible
to calculate a °Be concentration (Table 2).
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Fig. 8: Erosion rates plotted versus latitude. Erosion rates are reported including topographic and snow shielding. Orange
boxes show erosion rates derived from river pebbles and blue boxes show erosion rates from river sand. The single red box
reports the only erosion rate derived from glacier outwash.

Erosion rates are calculated in three different ways including: (1) only a topographic shielding
correction, (2) topographic shielding correction plus snow shielding correction and (3) topographic plus
snow shielding correction with the glaciated areas being removed from the calculation (Figure 8, Table
3). In the following the erosion rates including topographic and snow shielding are reported because it

remains unclear if material coming from under the glacier cover contains °Be or not.
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Erosion rates derived from river sand are lower in the northern catchments varying from 0.24 + 0.03
mm/yr to 0.36 £ 0.05 mm/yr (Figure 8). In comparison, erosion rates from the southern catchments are
higher ranging from 0.30 + 0.03 mm/yr to 0.84 + 0.23 mm/yr. Erosion rates derived from river pebbles
are similar or higher for catchments 1 to 3, and range from 0.37 + 0.05 mm/yr to 0.61 + 0.15 mm/yr. In
catchments 4 to 6, erosion rates from pebbles are within the uncertainty the same as erosion rates
reported for river-sand and range from 0.49 + 0.09 mm/yr to 0.53 £ 0.24 mm/yr. The highest erosion
rate is calculated from sample material of glacier outwash and has a value of 1.89 + 0.58 mm/yr, however
this value is likely not accurate and more likely represents a decreased (or inherited) nuclide
concentration of ice-shielded sediment source from under the glacier. Integration time for all types of
sampled material range from 423 + 42 yr to 2727 + 258 yr (Table 3).

4.3 20A1/'Be ratio in modern river sediments

To investigate the possibility of sediment storage and burial effects, the blank corrected Al
concentration were analyzed (Table 2). In general, 26Al concentrations of river sand from catchments 1
to 3 in the north are similar or higher compared to catchments 4 to 6 in the south. For example, in the
north, 2°Al concentrations of river sand vary from 62,420 + 6496 atoms/g(q) to 120,467 + 8408
atoms/g(qi) Whereas in the south, the Al concentrations range from 31,612 + 7153 atoms/g(q) to
89,572 + 6,323 atoms/g(qw)-

The 26Al concentrations of river pebbles are in the same order, but not identical to 2Al concentrations
of river sand. In comparison to river sand, the Al concentrations of river pebbles are similar or lower
in the north, ranging from 30,652 + 3,624 atoms/g(q) to 74,849 + 6,519 atoms/g(q), and higher in the
southern catchments, ranging from 43,984 + 12,503 atoms/g(q) to 67,682 + 8,833 atoms/g(q). Due to
analytical limitations it is not possible to determine the Al concentration of the glacier outwash sample
material (17Pg23 and 17PG24 Table 2). The 26Al/*°Be ratio is sensitive to the exposure history of a
sample due to differences in the radioactive decay rate and can provide an indication of if the samples
experience burial (and shielding) prior to measurement. Major burial effects cannot be identified because

the ratios vary between 6 to 7 and include a high uncertainty (Figure 9).
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Fig. 9: Erosion island plot (“banana plot”) showing the evolution of 26Al/°Be with time. The °Be concentration normalized
to SLHL is plotted versus the ratio of 26Al/*°Be. The color coded circles represent the ratios of the six catchments and are
labelled accordingly. The solid black line indicates the steady erosion line whereas the black dashed line indicates zero erosion.
The area below the steady erosion and zero erosion line is the zone of burial effects. The samples have high uncertainties
which is represented by the size of the circle. However, major burial effects cannot be identified.

4.4 Correlation of ’Be concentration and Erosion Rate to Catchment

Parameters

The squared Pearson correlation coefficient (R?) of the °Be concentration (normalized to SLHL for
comparison to each other) is plotted versus topographic, geomorphic, geologic and climatic parameters
in Figure S2. Values for river sediments and river pebbles are included to increase the statistical security
and calculate a robust correlation coefficient as well as regression. The analysis illustrates that the
correlation coefficients of the °Be concentrations to MAP, MAT, catchment area, local relief, lithology,
Ksn and slope indicate weak to non-correlations with R? smaller than 0.36. The best fit regression
combined with the highest correlation is observed for °Be concentration with vegetation cover
(R?=0.66).

The squared Pearson correlation coefficient (R?) of the erosion rate is plotted versus topographic,
geomorphic, geologic and climatic parameters in Figure 10. The analysis emphasizes that the correlation
coefficient of the erosion rates to MAP, MAT, catchment area, local relief, lithology, Ks, and slope
indicate weak correlations with R? smaller than 0.43. Similar to Figure S2, the best fit regression

combined with the highest correlation is observed for erosion rate with vegetation cover (R?=0.7).
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5 Discussion

5.1 Reliability of 1’Be and 2°Al Concentrations and Erosion Rates

The reliability of the calculated erosion rates is dependent on the accuracy of the measured °Be/°Be
ratios. For the samples 17PG24 (pebble with a size of 2.1-4.7 cm in catchment 5), 17 PG30 (pebble with
a size of 1.6-5.2 cm in catchment 6), 17PG28 (river sand 500-1000 pum in catchment 6) and 17PG26
(river sand 250-500 um in catchment 6) a measurement error of larger than 10% exists. This error is
caused by insufficient pure quartz material that is dissolved for the measurement. For an accurate
measurement a pure quartz >100g of quartz per sample is recommended to measure °Be in this study
area. Erosion rates are only calculated for samples with measurement errors lower than 10%. Similar to
the °Be/°Be ratios, the 2°Al/>’Al ratios are evaluated based on the measurement accuracy and the
samples 17PG23, 17PG24, 17PG26, 17PG28 and 17PG30 are dismissed from further interpretation due
to high uncertainties in the measurement. The ZAl/*°Be ratio is only calculated for reliable 1°Be and Al
concentrations and ranges from 5.1 + 1.3t0 9.5+ 1.7.
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Fig. 10: Erosion rate plotted versus different catchment parameters. In each subplot samples are represented in catchment 1
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sign (#), catchment 5 with a square sign (m) and catchment 6 with a plus sign (+). Uncertainties are displayed with grey bars,
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The squared Pearson correlation coefficient (R?) and the goodness of fit (RMSE) is shown. A RMSE value closer to 1
represents a perfect fit of the regression. Regression line calculations failed for comparisons of erosion rate to mean slope,
MAP and MAT.
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Erosion rates are calculated with three different shielding options in this study (Table 3): (1) only
topographic shielding, (2) topographic shielding and snow shielding including glaciated areas and (3)
topographic shielding plus snow shielding without glaciated areas. This study reports and favors the
erosion rate calculation based on topographic shielding combined with snow shielding. This is because
it remains unclear if the sediment beneath glaciers from glacier outwash contains °Be or not. The sample
17PG23 (sand 500-1000um) is taken directly in front of the glacier from glacier outwash in catchment
5. For this sample a °Be concentration (SLHL) of 2027 + 319 atoms/g(q) is measured. We cannot
disentangle if the sediment contains °Be because material on top of the glacier or from the sides

contributes to the glacier outwash.

5.2 Effect of Sampled Grain Size on Erosion Rate

Potential grain size effects can be investigated in catchments 1, 3 and 4 where erosion rates are derived
from river pebbles as well as river sands (Figure 11, Table 2). Minor grain size effects are detected in
catchments 1 and 3 whereas in catchment 4 erosion rates for river pebbles and river sediments are
similar. Catchments 1 and 3 are characterized by steep main channels and have the smallest catchment
area of 163 km? and 377 km?, respectively. For these catchments the investigated erosion rate is higher
in the pebble-size fraction compared to the sand samples. On average, large grains are more rapidly
exhumed by mass wasting than small grains and indicate deep-seated bedrock landslides (Schuerch et
al., 2006; Miicher et al., 2018). Owed to the small catchment area, it seems unlikely that the size of the
clasts is significantly reduced during transport in the channel system (Rice and Church, 1998).
Consequently, thel®Be signal can be diluted by larger grains that did not receive a similar irradiation
dose than smaller grains. Similar observations are reported, for example, by Brown et al. (1995) for a
densely forest-covered catchment in Puerto Rico or by Belmont et al. (2007) where cobble weathering

is diluting the °Be signal for catchments in Washington State.

In catchment 4 similar 1°Be erosion rates are observed for a wide range of grain sizes. This indicates that
different-sized grains are (1) homogenously transported downslope by surface wash or debris flows in
the channel system and (2) the effect of deep-seated landslides can be excluded. However, this study
emphasizes that erosion in catchment 4 is not steady or continuous for samples of similar-sized grains
and shows a large variation of derived erosion rates from river sand. For instance, the samples 17PG01
(river sand, 500-1000 um) and 17PG04 (river sand, 500-1000 um) are sampled from the same GPS
location but different deposits and show a different 1°Be concentration and erosion rate (Table 2) within
the uncertainty. The sample 17PGO04 represents sand material which is not directly taken from the
modern channel but instead from a terrace of unknown age, 1 m above the modern channel. The erosion
rate of 17PG04 is two times lower than from modern river channel sediment. Consequently, sample

17PG04 demonstrates that river sand is not necessarily well mixed in the river channel.
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We find that although the available replicates from similar locations in a channel do not agree within
uncertainties, but are close to each other, samples deposited earlier (e.g. terrace samples are different by
0.3 mml/yr). This finding suggests that although river channels for cosmogenic nuclide analysis are often
assumed to be well mixed, some variation within a single channel is possible and adds additional
uncertainty. Given this, this study recommends that multiple samples of the same location and grain size
should be analyzed to derive a reproducible result. In catchment 4, three out of four river sand samples
showed the same erosion rate indicating that an erosion rate between 0.61 + 0.17 mm/yr to 0.66 + 0.15
mm/yr (17PG03 and 17PGO01) is more likely to be the catchment-wide erosion than 0.30 + 0.03 mm/yr
(17PG04).

5.3 Effect of Transport Distance on Erosion Rate

Two effects of transport distance on erosion rate signals can be identified. The first effect has been
aforementioned and describes catchment size controlling grain size effects. A second effect occurs with
decreasing transport distance to glacier cover (Fig. 10). In catchments 3 and 5 we tested if sampling
along the main channel towards the headwaters lead to a change erosion rate. In the present-day non-
glaciated catchment 3 two river sand samples (sampling distance between 17PG44 and 17PG48 of
~20km) are analyzed and within the uncertainty show the same erosion rate of 0.28 + 0.03 mm/yr and
0.25 £ 0.03 mm/yr, respectively. In the upstream glaciated catchment 5 the samples 17PG22 and
17PG24 show large differences in erosion rates, which vary between 0.82 + 0.32 mm/yr and 1.89 + 0.58

mm/yr.

The results indicate that with closer proximity to the glacier, the erosion rates increase. This suggests
that some low-nuclide concentration sediment is sourced from under the ice and leads to the appearance
of higher erosion rates. However, it is notable that the sample 17PG24 contains detectable °Be although
it is sampled directly from glacier outwash. It remains unclear from where exactly the sample material
is excavated. Two possibilities can be distinguished: (1) The sample material is sourced further upstream
and collecting irradiation doses during transportation or (2) the 1°Be containing material is falling down
from the top or from the sides of the glacier and incorporated into the glacier outwash. Similar
observations and the heterogeneity of glacier erosion upstream in a catchment with ice cover were
previously reported by, for example, Hallet et al. (1996), Wittmann et al. (2007), Godard et al. (2012)
or Strunk et al. (2017).
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5.4 Other Factors Influencing Erosion Rates: Glacier Cover and Timing of

Deglaciation

The results of the correlation coefficient analysis indicate that vegetation cover has the best fit
correlation to erosion rate from all available parameters. Previous soil erosion and sediment yield studies
document that as the type and density of vegetation cover increases, the resistance of soil to erosion
through enhanced slope stabilization increases proportionally (Wainwright et al., 2000; Morgan et al.,
2003; Gyssels et al., 2005; Stokes et al., 2008; Nadal-Romero et al., 2014; Riebe et al., 2017). We find
a vegetation control on catchment-wide erosion rates (Figure 10). These findings have also been reported
for smaller geographic areas in both East Africa (Acosta et al., 2015) and the Himalaya (Olen et al.,
2016). However, it remains questionable why the vegetation cover is decreasing from catchment 1 to 6
(from North to South) although MAP and MAT do not show the same latitudinal variations. A possible
interpretation can be found in the difference in glacier cover and timing of deglaciation between the
catchments. Catchments that have been deglaciated earlier had potentially more time to establish
complex and dense vegetation than catchments covered by ice for a longer time. However, it is not

possible to disentangle the vegetational from glacial cover influence on erosion rates.

5.5 Synthesis

Erosion rates derived from °Be concentrations of glaciated and deglaciated catchments of northern
Patagonia show significant differences in erosion rates. Erosion rates from glaciated catchments with
lower vegetation cover in the south show higher erosion rates than catchments without ice cover and
higher vegetation density in the north (Figure 12). Based on the geomorphological setting it is not
possible to disentangle the vegetational and glacial (ice cover) influence on erosion rates. This study
identifies grain size effects on erosion rates caused by differences in transport distance. Any potential
effect on erosion rates by long wavelength tectonic impact or tectonic uplift rates varying locally cannot
be identified.
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The observations from this study are in agreement with previous reported results from Patagonia. At the
location of 53°S, Holocene erosion rates show low values in regions of high vegetation cover due to
longer ice free periods and fast erosion where glacial impact is still present (Breuer et al., 2013). Global
trends in erosion rates as a function of glacial dynamics have been previously documented by Koppes
and Montgomery (2009) and Koppes et al. (2015) and show erosion rates for Patagonia that are in the
same range as erosion rates from this study. Million-year time-scale erosion rates derived from
thermochronological ages are also in agreement with this dataset and report erosion rates varying from
0.1 mm/yr to 1.1mm/yr north of 48°S which is in the same order as the reported values from this study
(Fernandez et al., 2016).

6 Conclusion

We analyzed the latitudinal variation of catchment-wide erosion rates and the influence of differences
in glacier cover. We identify an influence of sediment transportation distance on the erosion rate that is
visible through grain size effects. In catchments with low sediment transport distance, erosion rates
derived from river pebbles are up to two times higher compared to erosion rates derived from river

sediment. The highest erosion rate of this study area reports a value of 1.89+0.32 mm/yr and is identified
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in glacier outwash. Climatic, tectonic and geomorphological parameters show no latitudinal trend for
the six catchments. Only the variation in vegetation cover has a strong correlation to the variation of
erosion rates (R?=0.7). The results show lower erosion rates (~0.3 mm/yr) for catchments that have been
deglaciated earlier north of the NPI. Faster erosion rates (~0.8 mm/yr) are found in catchments that have

been deglaciated later or are still party covered by glaciers due to the close location to the NPI.
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: Catchment data
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Fig. S1: Latitudinal variation of Apatite Helium (AHe) ages and catchment-wide erosion rates (based on topographic and
snow shielding correction). AHe ages are sampled between 0 to 500m elevation and derived from Thomson et al. (2010),
Guillaume et al. (2013) and, Georgieva et al. (2016).
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Fig. S2: In situ-produced 10Be concentrations normalized to Sea level high latitude (SLHL) are plotted versus different
catchment parameters. In each subplot samples are indicated for catchment 1 with a circle sign (), catchment 2 with an
asterisk sign (*), catchment 3 with a cross sign (x), catchment 4 with a diamond sigh (¢), catchment 5 with a square sign (m)
and catchment 6 with a plus sign (+).Uncertainties are displayed with grey bars, except for catchment area, K*", and lithology
where the uncertainty is not representative. The red line represents a linear regression. The squared Pearson correlation
coefficient (R?) and the goodness of fit (RMSE) is shown. A RMSE value of 1 represents a perfect fit of the regression.
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Appendix

Introduction to the appendix

This appendix is designed to highlight unpublished data and to show new developments in the
multivariate statistical analysis. A digital appendix is provided that contains Matlab scripts that have

been applied to the research questions of this thesis.
All data of this thesis are archived on the WG Ehlers server under:
General data and working files: esd01/docs/jstarke/

ArcGIS data: esd01/share/arc/extreme/Andes/jstarke/
esd01/share/arc/chile/jstarke/

1 Unpublished data

In PAPER Il of this thesis new samples were analyzed for southern Peru from 15°S to 19°S latitude.
PAPER Il investigates °Be-derived denudation rates that are restricted to catchments draining the
Western Cordillera and for catchments that are not similar to already published literature. In Table 1 of
this appendix additional °Be concentrations, 1°Be-derived denudation rates and catchment parameters
of catchments draining the Western Cordillera and Coastal Cordillera are shown that were not used for

publication. In Table 2 unpublished 2Al concentrations and analytical values of PAPER Il are reported.

In Table 3 the unpublished °Be concentrations and 2°Al concentrations of the sample GB1 and GB2 are
presented. The samples are derived from the marine core GeoB 7136-2. The marine core GeoB 7136-2
is located in northern-central Chile at 29.7167°S and 72.0662°W. The samples GB1 and GB2 are test
samples to demonstrate that it is possible to measure in situ- produced °Be and 2°Al in marine core
samples in front of the Chilean Coast. The sample GBL1 is taken from the core section of 1.3t0 1.9 m
depth and GB2 from a core depth of 3.70 to 3.72m. The analyzed grain size spans from 50 to 100um.
Approximately 300 ug of °Be was added. Future research could focus on the calculation of denudation

rates from the calculated °Be and 2°Al concentration.
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Table 2: Unpublished %Al concentrations of PAPER Il

Lab  Sample lat long  dissolved quartz carrier Al Al ZAFAI Emor  *°AFTAl blank corr. Al conc.  Error

D name °S W g ppm mg {meas.) % blank caorr. at/gr(gtz) atoms/g(gtz)
JS53 16PE018 -18.1589 -70.6702 24 83 4166 1035 362E-13 444 361E-13 3367574 149568
JS54 16PE035 -17.6126 -70.7586 41.09 1808 7429 111E12 394 1.11E-12 4478884 176492
J561 16PE004 164671 -719536 3799 458 174 305E12 395 305E-12 3114795 123061
J5S62 16PE003  -16.5356 -72.8604 3824 1449 5542 492E13 43 491E13 1580278 68414
JS72 16PE019 -18.2931 -70.4334 43.71 850 3716 3096E-12 381 3096E-12 7508315 286087
JS76 16PE053 -15.9676 -74.0382 4212 642 2704 360E-12 383 360E-12 5152746 197372
JSB84 16PEOGS  -14.977 -74.9886 41.65 163.3 6.8 363E-13 508 362E-13 1322496 67216
JSB86 16PE0O15 -17.8786 -71.0381 41.71 1564 6525 646E-13 422 645E-13 2255783 95221

Table 3: Unpublished *°Be and %Al concentrations of marine core GeoB 7136-2

Lab dissolved carrier °Be  ""Be/®Be  Error blank corr. "Be conc.  Error carrier "Al  *“AI'Al  Error  blank corr. Al conc. Error

D quartz g g (meas.) % atoms/giqtz) oms/giqgtz) ppm (meas.) % atoms/giqtz) atoms/g(gtz)
GB1 26.21 0.8838 399E-13 349 332543 11756 335 230E-13 403 1719704 69406
GB2 3296 08844 463E13 341 307502 10597 271 259E13 379 1562971 59313

2 Developed methods and digital appendix

This thesis applies multivariate statistics to answer research questions. In PAPER | and PAPER |1 a factor
analysis was applied and further developed. In PAPER | a simple and classical form of a factor analysis
is performed which calculates the results on the basis of mean values. In contrast to PAPER I, results of
PAPER Il are calculated by a factor analysis which implements a Monte Carlo approach. The advantage
of the Monte Carlo approach is to be independent from mean values and to address uncertainties of each

value.

The factor analysis is written in Matlab. All versions of the factor analysis are attached in the digital
appendix which is archived on a CD that sticks to the last page of this thesis. The CD is structured into
the folders Simple_Factor-Analysis and MonteCarlo_Factor-Analysis. In each subfolder the source
code, functions and the database are saved. Please note that the computation time of the factor analysis
including the Monte Carlo approach can range between several hours and depends on the amount of

data analyzed and the general system speed.

The digital appendix contains all Tables from PAPER Il and PAPER Ill in the folders Paper2_Tables and

Paper3_Tables.
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