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Zusammenfassung

Minimal- und CMC-Immersionen kompakter Riemannscher Flächen in der 3-Sphäre lassen sich

anhand der Familie der ihnen zugeordneten flachen SL(2,C)-Zusammenhänge auf einem Rang-2

holomorphen Vektorbündel E ! M untersuchen. Allerdings ist die Beschreibung der Familie

flacher Zusammenhänge für Riemannsche Flächen mit einem Genus g � 2 komplizierter. Es ist

in diesem Fall einfacher, eine verwandte Familie meromorpher flacher Verbidungen zu betrachten

und daraus die assoziierte Familie der Immersion zu rekonstruieren. Das Ziel dieser Arbeit ist es,

die Möglichkeit der Definition meromorpher flacher Zusammenhänge auf einer Klasse von CMC-

Flächen f : M ! S
3 mit einer Gruppe von Symmetrien zu zeigen, welche endlich ist und deren

Flächenquotient die Riemannsche Kugel CP1 ist. Gezeigt wird, dass die von Lawson 1970 sowie

von Karcher, Pinkall und Sterling 1988 konstruierten Flächen zu der gleichen Klasse von Flächen

gehören. Zunächst wird ein holomorphes Vektorbündel Ẽ auf CP1 mit parabolischer Struktur

definiert. Anschliessend betrachten wir eine Familie logarithmischer flacher Zusammenhänge r̃�

auf Ẽ und zeigen, dass r̃� eine festgelegte Asymptote für � = 0 hat. Der Hauptsatz der Arbeit

zeigt, dass r̃� dazu genutzt werden kann, ein DPW-Potential auf der CMC-Fläche zu definieren,

welches die notwendigen Bedingungen erfüllt, um anhand einer Schleifen-Gruppenfaktorisation

die Immersion f : M ! S
3 zu rekonstruieren.
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Introduction

A natural variational problem in the geometry of surfaces is the Isoperimetric problem which

consists in finding the surface of minimum area among all the surfaces enclosing a fixed volume.

The answer is, of course, the round sphere, and a proof of this has been known for a long time.

A more general question in Di↵erential Geometry of surfaces in a space form is to determine

the surfaces whose area is critical either under deformations which keep the volume unchanged or

under deformations with no constrains on the volume. The di↵erential equation characterizing

the first class of surfaces is H = constant, where H is the mean curvature, and are called

constant mean curvature surfaces (CMC). The second class is characterized by the equation

H = 0 and these surfaces are known as minimal surfaces.

Although the theory of non compact minimal or CMC surfaces in R
3 is very rich and has

been a driving force for the development of many beautiful theories, the class of compact surfaces

embedded in R
3, minimally or CMC, contains only one example: the round sphere. Indeed, since

the corresponding immersion of a minimal surface is given by a harmonic function, a maximum

principle argument shows that there exist no compact minimal surfaces in R
3 whether they are

embedded or not.

As for CMC surfaces in R
3, in 1956 Hopf [41] proved that the only compact CMC surface

of genus 0 immersed in R
3 is the round sphere. Later, in 1958, Alexandrov [1] proved that

the only compact CMC surface embedded in R
3 is the round sphere. The situation is di↵erent

for surfaces embedded in S
3. In fact, in 1970, Lawson [48] proved the existence of compact

surfaces minimally embedded in S
3 for every genus g. In 1988 Karcher, Pinkall and Sterling

[44] provided other examples of compact surfaces minimally embedded in S
3.

In 1998 Dorfmeister, Pedit and Wu [22] introduced a method (called the DPW method)

which allows the construction of CMC immersions of simply connected Riemann surfaces in S
3

given a holomorphic sl(2,C)-valued 1-form ⇠(z,�) with series expansion of the form

⇠(z,�) =
1X

i=�1

⇠i(z)�
i
. (1)
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In order to find the immersion f : M ! S
3 it is necessary to solve the ODE

d (z,�) =  (z,�)⇠(z,�) (2)

with respect to the variable z. A solution  : M ⇥ C
⇤
! SL(2,C) can be decomposed via the

Iwasawa decomposition [42] as

 (z,�) = F (z,�)B(z,�). (3)

The element F (z,�) is called the unitary component of  (z,�). A CMC immersion f :

M ! S
3 is obtained from the Sym-Bobenko formula [9]

f(z) = F (z, ⌘�)F�1(z,�) (4)

for every ⌘,� 2 S
1, with ⌘ 6= 1. The mean curvature of f is given by

H = i
1 + ⌘

1� ⌘
. (5)

Although the DPW method was first meant to construct simply connected surfaces the

method has been used for surfaces with more complicated topology. In this case, it is necessary

to impose additional conditions to ensure that the immersed surface closes along non trivial

loops on the surface ([56], [12], [46], [59]).

Hitchin and Bobenko, ([37], [9]) in the early ’90s studied minimal and CMC immersions

of compact surfaces of genus 1 in S
3 using integrable system methods. They introduced the

associated family of flat SL(2,C)-connections of an immersion f : M ! S
3 on a topologically

trivial rank 2 vector bundle E ! M , given by

r
� = r+ �

�1�� ��⇤ (6)

where � 2 H
0(M,End0(E)⌦K) is a nilpotent 1-form called the Higgs field.

Moreover, it was proven that, given a family of flat SL(2,C)-connections r
�, of the form

(6), such that

• for � 2 S
1 the connection r

� is unitary;

• there exist �1,�2 2 S
1 such that r�i is the trivial connection;

• the residue of r� at � = 0 is a nilpotent and nowhere vanishing Higgs field �,
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it is possible to reconstruct the associated immersion as the gauge transformation between the

trivial connections r�1 and r
�2 (cf. Section 3.1).

Hitchin [37] studied in detail the case of M being a torus. He classified all the families of

flat connections r� and parametrized the associated CMC immersions f : M ! S
3.

ForM being a torus the connectionsr� split into a direct sum of flat line bundle connections,

for generic � 2 C
⇤. Thus, the associated family of flat SL(2,C)-connections can be described

in terms of a corresponding family of flat line bundles on M .

Unfortunately, this is no longer applicable for higher genus surfaces. In fact, in this case

flat SL(2,C)-connections, generically, do not decompose as a direct sum of flat line bundle

connections. In 2013 Heller [35] considered the Lawson surface ⌃2,1 of genus 2 and proved that

its associated family of flat connections can be determined by a family of flat connections on

the four punctured sphere.

Heller used the fact that the Lawson surface ⌃2,1 of genus 2 has several symmetries, including

a Z3 symmetry, such that the quotient ⌃2,1/Z3 is the Riemann sphere CP
1 and the covering

map ⇡ : ⌃2,1 ! CP
1 has four branch points. Heller [35, Theorem 4.2] proved that the associated

family of holomorphic flat connections r� of ⌃2,1 is gauge equivalent to a holomorphic family of

meromorphic flat connections r̂� with prescribed singularities, where the gauge transformation

is singular at the branch points of the covering ⇡ : ⌃2,1 ! CP
1. Moreover, using the symmetries

of ⌃2,1 Heller [35, Theorem 4.3] proved that the holomorphic family r̂
� is gauge equivalent to

the holomorphic family of meromorphic connections d + ⌘(�), where the meromorphic 1-form

⌘(�) is given by the pullback of a meromorphic 1-form ⇠(�) on CP
1 under ⇡ : ⌃2,1 ! CP

1.

The 1-form ⇠(�) is completely determined up to two unknown holomorphic functions in

�, called the accessory parameters. The connection 1-form ⌘(�) gives a meromorphic DPW

potential on ⌃2,1 from which it is possible to reconstruct the minimal immersion f : ⌃2,1 ! S
3.

Even though this approach can be used for other CMC or minimal surfaces in S
3 of genus

g > 2, it is more di�cult to describe explicitly the corresponding family of flat connections on

the four punctured sphere, and has not been carried out so far.

The aim of this thesis is to show that there exists a DPW potential for every CMC embedding

f : M ! S
3, of a compact Riemann surface M with genus g � 2, such that

(i) there exists a finite subgroup G ⇢ SO(4), with a presentation of the form

G = hg1, g2, g3, g4 | g1 · · · g4 = 1i, (7)

where 1 denotes the identity element of G, which acts faithfully on f(M) ' M by orien-
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tation preserving automorphisms;

(ii) the quotient M/G is the Riemann sphere CP
1;

(iii) the covering map ⇡ : M ! M/G ' CP
1 is a |G|-fold covering, branched at four points

z1, . . . , z4 2 CP
1.

We will call a Riemann surface which satisfies (i) � (iii) a symmetric CMC surfaces (cf.

Definition 4.1). In Section 2.5 and Section 2.6 we will show that the Lawson’s surfaces ⌃k,l and

the surfaces found by Karcher, Pinkall and Sterling are examples of symmetric CMC surfaces.

The first step, in order to construct a DPW potential for a symmetric CMC surface, consists

in consider a lift of the action G⇥M ! M to an action �⇥M ! M where � ⇢ SU(2)⇥SU(2)

is a finite group double covering G (cf. Section 4.1). The action of � on M can be lifted

to an action on the holomorphic vector bundle E ! M where the associated family of flat

SL(2,C)-connections of the immersions f : M ! S
3 is defined (cf. Section 4.2)

In order to define the appropriate vector bundle on CP
1 (cf. Section 4.3), which we will use

to construct a DPW potential for M , we need a faithful action of � on M . Since this is not the

case in our situation, we prove in Proposition 4.1 that there exists an abstract Riemann surface

M̃ , double covering M , on which � acts faithfully. Moreover, the surface M̃ is such that the

quotient M̃/� is the Riemann sphere CP
1 and the covering map ⇡̃ : M̃ ! M̃/� is branched at

the points z1, . . . , z4.

Then, we consider the pullback bundle Ẽ = ⌧
⇤
E ! M̃ , where ⌧ : M̃ ! M is an appro-

priately chosen double covering, branched at z1, . . . , z4 2 CP
1. The pullback of the associated

family of flat connections r
� under the map ⌧ gives a family of �-equivariant connections on

the bundle Ẽ ! M̃ (cf. Proposition 4.2)

We are in the right position to state the main result of the thesis.

Theorem. 4.1. Let M be a symmetric CMC surface with symmetry group G ⇢ SO(4) from

the Table (4.3). Let r
�
be the associated family of flat SL(2,C)-connections of the immersion

f : M ! S
3
. Then, there exists a holomorphic family of logarithmic connections

r̃
� = �

�1�̃+ r̃+ higher order terms in �

on the four punctured sphere CP
1
, singular at the four branch points z1, . . . , z4 of ⇡ : M !

M/G = CP
1
, where �̃ is a nilpotent sl(2,C)-valued complex linear 1-form, which satisfies the

following:

7



(i) there exists a flat connection r̂ on M with Z2-monodromy representation, such that the

families of connections r
�
and ⇡

⇤
r̃

�
⌦ r̂ are gauge equivalent via a family of gauge

transformations g(�) which extends holomorphically at � = 0;

(ii) there is an open neighborhood U of � = 0 such that r̃
�
can be represented by a �-family

of Fuchsian systems for � 2 U . More specifically, for � 2 U , we have

r̃
� = d+ ⌘(z,�) = d+

1X

j=�1

⌘j(z)�
j
,

where, for every j, ⌘j(z) is a sl(2,C)-valued 1-form with simple poles at the branch points

z1, . . . , z4 and holomorphic on CP
1
r{z1, . . . , z4};

(iii) the map � 7! ⌘(z,�) extends meromorphically to C
⇤
and the connection r̃

� = d+ ⌘(z,�)

has unitarizable monodromy representation for every � 2 S
1
such that ⌘(z,�) does not

have a pole;

(iv) the eigenvalues of the local residues of r̃
�
are given by the eigenvalues (of the first or

second factor in SU(2) ⇥ SU(2)) of the four generators �1, . . . , �4 of the finite group

� ⇢ SU(2)⇥ SU(2) which double covers G.

In particular, all of these CMC surfaces can be constructed from a meromorphic DPW potential

on the four punctured sphere.

In order to prove Theorem 4.1 we will first use the correspondence between orbifold bundles

and parabolic vector bundles introduced by Biswas [6] in 1997.

Given a vector bundle Ẽ ! M̃ , equipped with a �-action, we consider the push-forward

bundle ⇡̃⇤Ẽ ! CP
1 (cf. Subsection 1.4.3). The appropriate vector bundle on CP

1, necessary to

define the DPW potential for M , is given by the �-invariant sub-bundle of ⇡̃⇤Ẽ, denoted with

(⇡̃⇤Ẽ)� (cf. Section 4.3).

Biswas [6] showed that it is possible to define a parabolic structure on (⇡̃⇤Ẽ)� (cf. Section

4.3). Parabolic structures on vector bundles, first introduced by Mehta and Seshandri [51] in

1980, allow to understand the behaviour of a vector bundle defined over a space with singular

points, for example Riemann surfaces with cusps. In our situation, the singular locus is given

by the set of branch points of the covering ⇡̃ : M̃ ! CP
1.

Following the work of Biswas and Heu [8], we show that given a �-equivariant connection r

on Ẽ ! M̃ there exists a logarithmic connection r̃ on (⇡̃⇤Ẽ)� whose pull-back under ⇡̃ is gauge

equivalent to r (cf. Section 4.4). A logarithmic connection is a connection whose connection

8



1-form has logarithmic singularities at the points of a prescribed subspace D of the base space

(cf. Definition 4.6).

It is possible to define a parabolic structure on (⇡̃⇤Ẽ)� using the logarithmic connection r̃

(cf. Subsection 4.4.2), which turns out to be equivalent to the parabolic structure defined by

the Biswas’s approach (cf. Proposition 4.5). This equivalence allows to define a �-family of

parabolic structures on (⇡̃⇤Ẽ)� which extends to � = 0 (cf. Subsection 4.4.3).

The next step is to show that the Higgs field � on E induces a Higgs field �̃ on (⇡̃⇤Ẽ)�

such that it is nilpotent, preserves the parabolic structure and makes (⇡̃⇤Ẽ)� a strictly stable

parabolic Higgs bundle (cf. Section 4.5). The family of logarithmic connections r̃
� can be

written as

r̃
� = �

�1�̃+ r̃+ higher order terms in �. (8)

The pullback of r̃� under ⇡̃ gives a meromorphic DPW potential on Ẽ which is gauge equivalent

to the �-family of connections ⌧⇤r�.

The thesis is organised as follows: Chapter 1 contains some background material about the

theory of Riemann surfaces, group actions on Riemann surfaces and holomorphic vector bundle.

In Chapter 2 we introduce some of the most relevant results about CMC and minimal

immersions in a three dimensional manifold. Section 2.5 and Section 2.6 contain the description

of the Lawson’s surfaces [48] and the surfaces constructed by Karcher, Pinkall and Sterling [44].

We also show that those surfaces are symmetric CMC surfaces in the above sense.

The gauge theoretical formalism for CMC surfaces in S
3 is introduced in Chapter 3, where

we describe the construction of the associated family of flat SL(2,C)-connections. In Section

3.2 we explain how Heller [35] used the DPW method to describe the Lawson’s surface of genus

2.

The last chapter contains the main results of this thesis. In Section 4.1 we show how to lift

the SO(4)-action on a symmetric CMC surface M to a SU(2)⇥SU(2)-action and in Proposition

4.1 we prove the existence of the Riemann surface M̃ on which the SU(2) ⇥ SU(2)-action is

faithful. The Subsections 4.1.1, 4.1.2 and 4.1.3 contains the description of the action of the

finite group � ⇢ SU(2)⇥SU(2) for the Lawson surfaces ⌃d�1,1, ⌃k�1,l�1 and some of the KPS

surfaces.

Section 4.2 contains the description of the action of � on the holomorphic vector bundle

E ! M and the action of � on sections and connections.

The �-invariant vector bundle (⇡̃⇤Ẽ)� ! CP
1 is described in Section 4.3, together with the

parabolic structure on (⇡̃⇤Ẽ)� defined by Biswas in [6].
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In Section 4.4 we prove, following the work of Biswas and Heu in [8], the existence of a

logarithmic connection r̃ on (⇡̃⇤Ẽ)� ! CP
1. We also describe the parabolic structure on

(⇡̃⇤Ẽ)� induced by r̃ and Proposition 4.5 shows the equivalence of this parabolic structure

with the parabolic structure defined by Biswas. In Subsection 4.4.3 we describe how it is

possible to define a �-family of parabolic structured on (⇡̃⇤Ẽ)� and Proposition 4.6 gives a

description of the admissible holomorphic structure on (⇡̃⇤Ẽ)� for � 6= 0.

Section 4.5 deals with the study of the residue in � = 0 of the family of logarithmic connec-

tions r̃� defined by using the family of �-equivariant connections ⌧⇤r� on Ẽ ! M̃ . We show

how to define a Higgs field on (⇡̃⇤Ẽ)� and we prove in Proposition 4.8 that it is a nilpotent

parabolic Higgs field, with non vanishing residues at the branch points , which makes (⇡̃⇤Ẽ)� a

stable parabolic Higgs bundle. In Subsection 4.5.2 and 4.5.3, we study which holomorphic bun-

dles on CP
1 admit a nilpotent, nowhere vanishing, parabolic stable Higgs field and we conclude

that the only possibility is that the bundle (⇡̃⇤Ẽ)�, at � = 0, is the bundle O(�2) � O(�2).

We conclude with some final remarks and the proof of the main Theorem 4.1.
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Chapter 1

Preliminary Theory

1.1 Riemann surfaces

We begin this chapter with some preliminary definitions and results about Riemann surfaces.

We will mainly refer to [21], [52], [31] and [27].

Definition 1.1. A Riemann surface is given by a Hausdor↵ topological space M together with

an open covering {U↵} of M and a collection {'↵} of homeomorphisms '↵ : U↵ ! Ũ↵ to an

open set Ũ↵ ⇢ C, such that the composition

'↵ � '
�1
�

: '�(U↵ \ U�) ! '↵(U↵ \ U�) (1.1)

is a holomorhic function, for every ↵,� with U↵ \ U� 6= ;.

The maps {'↵} are called local charts and sometimes we will denote them with z↵ = x↵+iy↵.

A function f : M ! C on a Riemann surface is called holomorphic (resp. meromorphic)

around a point p 2 M if the function f � '
�1 is a holomorphic (resp. meromorphic) function,

where ' is a local chart around p. In a similar way, identifying C ' R
2, one says a function

f : M ! C is smooth if f �'�1 is a smooth function (with respect to the coordinate (x, y) given

by the real and imaginary parts of the complex coordinate z).

Definition 1.2. Let M and N be Riemann surfaces. A map F : M ! N is called holomorphic

if the composition

'↵ � F �  
�1
�

:  �1
�

(U↵ \ F
�1(V�)) ! Ṽ� (1.2)

is a holomorphic function for every chart (U↵,'↵) of M and (V� , �) of N .

The Riemann surfaces M and N are said to be equivalent if there exists a holomorphic map

F : M ! N with holomorphic inverse.

11



Let F : M ! N be a non constant holomorphic map between Riemann surfaces. For every

point p in M there exists a local chart around p and a local chart around F (p) such that F is

locally represented by the map

z 7! z
k
, (1.3)

for an integer k = kp � 1, called the multiplicity of F at p ([21, Proposition 5 p. 43]).

Definition 1.3. Let F : M ! N be a non constant holomorphic map between Riemann

surfaces and R ⇢ M the set of points of M such that F has multiplicity k > 1 at them. The

set B := F (R) ⇢ N is called the set of branch points of F .

If F is proper, that is the preimage under F of a compact set of N is a compact set in M ,

the set B is discrete and the preimage F
�1(q) is a finite set for every q 2 N ([21, Proposition 6

p. 44]).

The degree of the map F : M ! N at a point q 2 N is given by

d(q) :=
X

p2F�1(q)

kp. (1.4)

If M and N are connected the degree of F does not depend on the point q 2 N ([21, Proposition

7 p. 44]).

Given a Riemann surface M and a point p 2 M , let f : U ! C be a function defined on

the domain of a local chart (U,') aroun p. If ' = z = x + iy we can consider the function f

as a function on the real variables (x, y) and it is possible to consider the derivatives of f with

respect to x and y

@f/@x, @f/@y. (1.5)

The tangent space of M at p is the vector space of R-linear derivations on the ring of smooth

functions on a local chart (U,') around p, which can be represented by

TpM := R

⇢
@

@x
,
@

@y

�
. (1.6)

Analogously, the complex tangent space TC,pM of M at p is the vector space of C-linear

derivations on the ring of smooth complex valued functions on U :

TC,pM := C

⇢
@

@z
,
@

@z̄

�
. (1.7)

The complex cotangent space of M at p is given by the dual T ⇤
C,p

M of TC,pM . A basis for T ⇤
C,p

M

is given by the elements dz, dz̄ which are the dual elements of @

@z
and @

@z̄
respectively.
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A di↵erential 1-form ! on M is a map ! : M ! T
⇤
C,p

M , which can be written in local

coordinates as

! = !1dz + !2dz̄, (1.8)

where !1,!2 : M ! C are smooth functions.

We will refer to [21, Chapter 5] and [52, Chapter 4] for more details about di↵erential forms

on a Riemann surface. Here we just recall that the space ⌦1(M) of 1-forms on M can be

decomposed as

⌦1(M) = ⌦1,0(M)� ⌦0,1(M), (1.9)

where the elements of ⌦1,0(M) can be written locally as ! = !1dz and the elements of ⌦0,1(M)

as ⌘ = ⌘1dz̄ for !1, ⌘1 complex valued functions.

1.2 Finite group actions on Riemann surfaces

Let G be a finite group and M a Riemann surface. We recall the notion of group action on a

Riemann surface:

Definition 1.4. An action of G on M is a map G ⇥ M ! M , which we will denote by the

multiplicative notation, (g, p) 7! g · p, such that

• (gh) · p = g · (h · p), for all g, h 2 G and all p 2 M ;

• e · p = p for any p 2 M and e the identity element of G.

The orbit of a point p 2 M is the set G · p = {g · p | g 2 G} ⇢ M (sometimes we will denote the

orbit of p with [p]). The stabilizer of a point p 2 M is the subgroup Gp = {g 2 G | g·p = p} ⇢ G.

Sometimes the stabilizer of a point p 2 M is called the isotropy subgroup of G at p.

The action is said to be continuous (resp. holomorphic) if for every g 2 G the bijection

sending p ! g · p is a continuous (resp. holomorphic) map from M to itself. Moreover, if the

kernel of the action K = {g 2 G | g · p = p, for all p 2 M} is trivial we will say that the action

is e↵ective or faithful.

The quotient space M/G is the set of orbits and there is a natural quotient map ⇡ : M !

M/G sending a point to its orbit. We considerM/G having the quotient topology. The following

result shows under which hypothesis the quotient M/G is a Riemann surface:

Theorem 1.1 ([52, Theorem 3.4 p. 78]). Let G be a finite group acting holomorphically and

e↵ectively on a Riemann surface M . Then it is possible to define a system of local charts on

13



M/G which makes M/G into a Riemann surface. Moreover, the quotient map ⇡ : M ! M/G

is holomorphic of degree |G|, and kp(⇡) = |Gp| for any point p 2 M .

Theorem 1.1 implies the following result, which describe how a finite group acts, locally, on

a Riemann surface.

Corollary 1.1 ([52, Corollary 3.5 p. 79]). Let G be a finite group acting holomorphically and

e↵ectively on a Riemann surface M . Fix a point p 2 M with nontrivial stabilizer of order m

and let g 2 Gp generate the stabilizer subgroup. Then there is a local coordinate z on M centered

at p such that g(z) = �z, where � is a primitive m�th root of unity. Moreover, by a suitable

choice of a di↵erent generator g of Gp, it is possible to assume � = e
2⇡i
m .

1.3 Monodromy representation of holomorphic maps between

Riemann surfaces

1.3.1 Covering spaces and the fundamental group

We will introduce the notion of covering map between topological spaces and we will briefly

describe how this notion is related to the theory of Riemann surfaces. Since Riemann surfaces

are locally homeomorphic to a disc in the complex plane, in what follows we will consider

topological spaces which are Hausdor↵, second countable and locally pathwise connected, even

if the results hold for more general spaces.

Definition 1.5. Let F : P ! Q be a map between topological spaces. F is a covering map if,

around each point q 2 Q there is an open neighbourhood V such that F�1(V ) is a disjoint union

of open sets U↵ in P and F|U↵
is a homeomorphism from U↵ to V . Two coverings F : P ! Q

and F
0 : P 0

! Q are equivalent if there is a homeomorphism g : P ! P
0 such that F = F

0
� g.

If P and Q are connected, for any two points q0, q1 2 Q the number of points in F
�1(q0)

and in F
�1(q1) is the same ([25, Theorem 4.16 p. 26]). This number is called the degree of the

covering map F : P ! Q.

The relation between the notion of covering map and the theory of Riemann surfaces is

given by the following result

Lemma 1.1 ([52, Lemma 4.7 p. 89]). Let F : M ! N be a covering map where N is a

Riemann surface and M is a connected topological space. Then, there is a unique Riemann

surface structure on M such that F is a holomorphic map.

14



In general a non constant proper holomorphic map between connected Riemann surfaces

has ramification points, thus it is not exactly a covering map in the sense of Definition 1.5.

However, the number of points in the preimage F
�1(q) counted with the multiplicities of F at

these points is constant ([21, Proposition 7 p. 44]). Thus, the degree of F as a non constant,

proper, holomorphic map is equal to the degree of F as a covering map.

Definition 1.6. A path in a Riemann surface M is a continuous map � : [0, 1] ! M . A path

� such that �(0) = �(1) is called a loop.

Definition 1.7. Let M be a Riemann surface and p0, p1 2 M . Two paths �1, �2 : [0, 1] ! M

with �1(0) = �2(0) = p0 and �1(1) = �2(1) = p1 are called homotopic if there exists a continuous

map A : [0, 1]⇥ [0, 1] ! M with the following properties:

(i) A(t, 0) = �1(t), 8t 2 [0, 1];

(ii) A(t, 1) = �2(t), 8t 2 [0, 1];

(iii) A(0, t) = p0 and A(1, t) = p1, 8t 2 [0, 1].

It is possible to prove that the notion of homotopy is an equivalence relation on the set of

all paths in a Riemann surface M which connects a point p0 to a point p1, we refer to [25,

Theorem 3.2 p. 14] for a proof in the general case of topological spaces.

In order to define a group structure on the set of homotopy classes of loops on a Riemann

surface, based at a given point p0 2 M we first recall the definition of the product of two generic

paths on M : Let p0, p1 and p2 be three points in a Riemann surface M , �1 a path in M from

p0 to p1 and �2 a path in M from p1 to p2. The product path �1 · �2 is the path from p0 to p2

defined by

�1 · �2(t) :=

8
><

>:

�1(2t), for 0  t 
1
2

�2(2t� 1), for 1
2  t  1.

(1.10)

The inverse path �
� : [0, 1] ! M of a path � on M is defined as

�
�(t) := �(1� t), 8t 2 [0, 1]. (1.11)

The following result defines the fundamental group of a Riemann surface:

Theorem 1.2 ([25, Theorem 3.8 p. 17]). Let M be a Riemann surface and p0 2 M . The set

⇡1(M,p0) of homotopy classes of loops based at p0 forms a group under the operation induced

by the above definitions of product and inverse of paths. This group is called the fundamental

group of M based in p0.
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We conclude this subsection describing the relation between a non constant, proper holo-

morphic maps F : M ! N between Riemann surfaces and subgroups of the fundamental group

of N .

Given a covering map F : M ! N and a path � in N a path �̃ in M is a lift of � if � = F � �̃.

Given a path � in N there always exists a lift �̃ in M and if two lifts of � coincide at one point

then they are the same path ([25, Theorem 4.14 p. 25], [25, Theorem 4.8 p. 22]). Moreover, it

is possible to also lift homotopy classes of paths in N with starting point q0 2 N to homotopy

classes of paths in M starting at some p0 2 F
�1(q0) ([25, Theorem 4.10 p. 23]).

Thus, the covering map F : M ! N induces a map F⇤ : ⇡1(M,p0) ! ⇡1(N, q0). The map

F⇤ is injective and the image subgroup F⇤(⇡1(P, p0)) consists of the homotopy classes of loops

in N , based at q0 whose lifts in M , starting at p0, are loops (we refer to [31, Proposition 1.31

p. 61] for a proof). The degree of the covering map F : M ! N is equal to the index of the

subgroup F⇤(⇡1(M,p0)) in ⇡1(N, q0) ([31, Proposition 1.32 p. 61]).

The following result shows that it is possible to go in the other direction, that is find a

covering map of a given Riemann surface starting from a subgroup of its fundamental group:

Proposition 1.1 ([31, Proposition 1.36 p.66]). Let N be a Riemann surface. Then for every

subgroup H ⇢ ⇡1(N, q0) there is a connected Riemann surface MH and a covering map F :

MH ! N such that

H = F⇤(⇡1(MH , p0)) (1.12)

for a suitably chosen base point p0 2 MH .

The correspondence between connected covering spaces of finite degree of a Riemann surface

M and subgroup H ⇢ ⇡1(M,p0) of index d is called Galois correspondence and it is summarized

by the following:

Theorem 1.3 (Galois correspondence). Let N be a connected Riemann surface and q0 2 N a

base point. Then there is a bijection between the set of isomorphism classes of covering maps

F : M ! N fixing the point q0 and conjugacy classes of subgroups of ⇡1(N, q0), obtained by

associating the subgroup F⇤(⇡1(M,p0)) to the covering map F : M ! N .

A proof of this Theorem for more general topological spaces is given in [31, Theorem 1.38

p. 67].
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1.3.2 Monodromy representation

Let F : P ! Q be a covering map between connected topological spaces of finite degree d. Let

q 2 Q and {p1, . . . , pd} the set of points in F
�1(q) ⇢ P . As we recalled in Subsection 1.3.1,

every loop � in Q based at q can be lifted to d paths �̃1, . . . , �̃d, where �̃j is the unique lift of

� starting at pj . The endpoints �̃1(1), . . . , �̃d(1) lie over q, that is F (�̃j(1)) = q, and they form

the entire set {p1, . . . , pd}. Thus, there exists a permutation � of {1, . . . , d} such that

�̃j(1) = p�(j), j = 1, . . . , d. (1.13)

The permutation � depends only on the homotopy class of � (cf. [52, Chapter 3 p. 86]) and

the map

⇢ : ⇡1(Q, q) ! Sd

[�] 7! �

(1.14)

where Sd is the space of permutations on d elements, is well defined. Given two elements

[�1], [�2] 2 ⇡1(Q, q), the definition of product of paths (1.10) implies

⇢([�1][�2]) = �1�2, (1.15)

where �j = ⇢([�j ]). This means that ⇢ is a group homomorphism and we can give the following:

Definition 1.8. Let F : P ! Q be a covering map between connected topological spaces of

finite degree d. The group homomorphism ⇢ : ⇡1(Q, q) ! Sd defined in (1.14) is called the

monodromy representation of F : P ! Q.

The image H⇢ of ⇢ in Sd is a transitive subgroup of Sd, that is for every pair of indices

j, l 2 {1, . . . , d} there exists a permutation � 2 H⇢ such that �(j) = l ([52, Lemma 4.4 p.87]).

Conversely, given a connected topological spaceQ, a point q 2 Q and a group homomorphism

⇢ : ⇡1(Q, q) ! Sd with transitive image, it is possible to define a covering space F : P ! Q such

that its monodromy representation coincides with ⇢. We briefly describe how this construction

works: Fix an element in {1, . . . , d} , for example 1, and let H ⇢ ⇡1(Q, q) be the subgroup

H := {[�] 2 ⇡1(Q, q) | ⇢([�])(1) = 1}. (1.16)

The index of H is d and, by the results in Subsection 1.3.1, it is possible to define a covering

space F : P ! Q associated to H. Moreover, the monodromy representation of this covering

space coincide with the map ⇢ (we refer to [52, Chapter 3 pp. 88-89] and [31, Chapter 1 pp.

68-70] for more details).
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We can now describe how it is possible to define a monodromy representation of a non

constant holomorphic map between compact Riemann surfaces with finite degree d. Let F :

M ! N be such a map and B ⇢ N the set of branch points of F (cf. Definition 1.3).

The restriction of F to M r F
�1(B) ! N r B is a holomorphic map without ramification

points and branch points and it can be considered as a covering map in the sense of Definition

1.5. Therefore, there exists a monodromy representation ⇢ : ⇡1(N r B, q) ! Sd associated

to F|MrF�1(B), where q 2 N r B is a fixed base point. The map ⇢ is called the monodromy

representation of the holomorphic map F : M ! N .

Given a compact Riemann surface N , a finite subset B ⇢ N , the next result shows that it

is possible to construct a compact Riemann surface M and a non constant holomorphic map

F : M ! N of finite degree d, with branch points lying in B from a group homomorphism

⇢ : ⇡1(N rB, q) ! Sd with transitive image.

Theorem 1.4 (Riemann’s existence Theorem, [21, Theorem 2 p. 49]). Let N be a compact and

connected Riemann surface and B a finite subset of N . Given d � 1 and a group homomorphism

⇢ : ⇡1(N rB, q) ! Sd with transitive image, there exists a compact Riemann surface M and a

non constant holomorphic map F : M ! N which realizes ⇢ as its monodromy representation.

Moreover, F and M are unique up to equivalence.

We conclude this section with an example which we will use in Chapter 4.

Example 1.1. Let M be a compact Riemann surface and G a finite group acting faithfully on

M , generated by a finite number k of elements, which satisfy

⇧jgj = 1. (1.17)

Moreover, assume that the quotient M/G is the Riemann sphere CP
1 and the quotient map

⇡ : M ! CP
1 is a holomorphic map of degree d, branched over the points z1, . . . , zk 2 CP

1.

Given a point z0 2 CP
1
r{z1, . . . , zk}, let �j be a simple loop based at z0 around the points zj .

The fundamental group ⇡1(CP
1
r{z1, . . . , zk}, z0) is generated by the loops �j with the relation

[�1] · · · [�k] = 1, (1.18)

where 1 is the identity element of ⇡1(CP
1
r{z1, . . . , zk}, z0).

Let ⇢ : ⇡1(CP
1
r{z1, . . . , zk}, z0) ! Sd be the monodromy represenation of ⇡ : M ! CP

1

and �j := ⇢([�j ]). Since ⇢ is a group homomorphism we have

⇢([�1] · · · [�k]) = ⇢([�1]) · · · ⇢([�k]) = �1 · · ·�k = IdSd (1.19)
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Thus, the monodromy representation ⇢, in this case, can be determined by choosing d permu-

tations �1, . . . ,�d such that �1 · · ·�k = 1. The image of ⇢ is the subgroup of Sd generated by

the �j ’s.

The preimage ⇡�1(z0) consists of d distinct points p1, . . . , pd of M . For every generator gj of

G, the set gj ·⇡�1(z0) := {gj ·p1, . . . , gj ·pd} contains the same elements of ⇡�1(z0) by definition.

Thus,

gj · pl = p�j(l)

for some permutation �j 2 Sd. From the relation g1 · · · gk = 1 we have that �1 · · ·�k = 1.

Therefore, we can consider the monodromy representation ⇢ as the group homomorphism

⇢ : ⇡1(CP
1
r{z1, . . . , zk}, z0) ! G

[�j ] 7! gj .

(1.20)

1.4 Complex and holomorphic vector bundles

As we will see in Chapter 3, it is possible to study CMC and minimal surfaces immersed in the

3-sphere (cf. Chapter 2) using holomorphic bundles over the surfaces and linear connections.

In this section we will introduce these notions and we will recall some standard results.

1.4.1 Complex vector bundles over Riemann surfaces

Definition 1.9. Let M be a Riemann surface, a C
1

complex vector bundle (or, simply, a com-

plex vector bundle) on M consists of a family {Ep}p2M of complex vector spaces parametrized

by M , together with a C
1 manifold structure on E = [p2MEp such that:

• The projection map ⇡ : E ! M taking Ep to p is C1;

• For every p0 2 M there exists an open set U in M containing p0 and a di↵eomorphism

�U : ⇡�1(U) ! U ⇥ C
k

taking the vector space Ep isomorphically onto {p}⇥ C
k for each p 2 U . The map �U is

called a trivialization of E over U . An open set U ⇢ M is called a trivializing set if there

exists a trivialization map defined on U .

The dimension of the fibers Ep of E is called the rank of E. A rank 1 vector bundle is called a

line bundle.
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Definition 1.10. Let ⇡1 ! M and ⇡2 ! N be complex vector bundles over the Riemann

surfaces M and N . A complex vector bundle map (or morphism) is given by a pair of smooth

maps f̃ : E1 ! E2 and f : M ! N such that:

• f � ⇡1 = ⇡2 � f̃ ;

• The restriction of f̃ on each fiber, f̃ : E1|p ! E2|f(p) is C-linear for every p 2 M .

Two complex vector bundles ⇡1 : E1 ! M and ⇡2 : E2 ! M are called isomorphic if

there exists a vector bundle morphism f̃ : E1 ! E2 such that it is a di↵eomorphism between

di↵erentiable manifolds.

Given two trivializing sets U↵ and U� of a rank k complex vector bundle ⇡ : E ! M with

U↵ \ U� 6= ;, the map

�↵ � �
�1
�

: (U↵ \ U�)⇥ C
k
! (U↵ \ U�)⇥ C

k
, (1.21)

is linear on each fiber. Thus,

�↵ � �
�1
�

(p, v) = (p, g↵�(p)v), (1.22)

where g↵� : U↵ \U� ! GL(k,C) is called the transition function of the complex vector bundle

⇡ : E ! M on U↵ \ U� .

The transition function g↵� describes how the trivialization maps �↵ and �� are related in

the intersection U↵ \ U� . Moreover, for every trivializing sets U↵, U� and U� of M with non

empty intersection, the transition functions g↵� , g�� and g�↵ satisfy the cocycle conditions :

g↵� · g�↵ = Id, on U↵ \ U� ;

g↵� · g�� · g�↵ = Id, on U↵ \ U� \ U� .

(1.23)

The transition functions characterize completely the vector bundle E. More precisely, given

an open cover {U↵} of M and smooth maps g↵� : U↵ \ U� ! GL(k,C) satisfying the cocycle

conditions for every ↵ and � with U↵ \ U� 6= ;, there exists a unique complex vector bundle

E ! M with transition functions {g↵�} (for more details we refer to [15, Chapter 1 p. 2]).

Definition 1.11. A section s of a vector bundle ⇡ : E ! M over U ⇢ M is a smooth map

s : U ! E, such that s(p) 2 Ep for every p 2 U . A local frame for E over U is a collection

s1, . . . , sk of sections of M over U such that {s1(p), . . . , sk(p)} is a basis for Ep, for all p 2 U .

The space of sections over U ⇢ M is denoted with �(U,E).
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Given a trivialization �U of a vector bundle E ! M over an open set U ⇢ M , every section

s of E over U can be represented uniquely as a smooth vector valued function f = (f1, . . . , fk)

by

s(p) =
X

j

fj(p)�
�1
U

(p, ej) =
X

j

�
�1
U

(p, fj(p)ej).

Let U↵, U� be two trivializing sets of E ! M with trivializing maps �↵ and �� , respectively.

A section s of E ! M defined on U↵ \ U� , is represented by the function f = (f1, . . . fk) with

respect to �↵ and by f
0 = (f 0

1, . . . f
0
k
) with respect to �� . Then, the following holds ([27, Chapter

0.5 p. 69]):

f(p) = g↵�(p)f
0(p), 8p 2 U↵ \ U� . (1.24)

Thus, given an open cover {U↵} of M of trivializing sets for a rank k complex vector

bundle E ! M with trivializing maps {�↵}, the sections of E ! M correspond to collections

{f
↵ = (f↵

1 , . . . , f
↵

k
) : U↵ ! C

k
} of vector valued functions such that

f
↵ = g↵�f

�
, on U↵ \ U�

for all ↵ and � with U↵ \ U� 6= ;, where {g↵�} is the collection of the transition functions of

E ! M relative to {�↵}.

Definition 1.12. A complex structure on a complex vector bundle E ! M is given by a bundle

map J : E ! E, such that on each fiber Ep of E, the linear map Jp : Ep ! Ep satisfies

J
2
p = � Id . (1.25)

Definition 1.13. A subbundle F ⇢ E of a bundle ⇡ : E ! M is a collection {Fp ⇢ Ep}p2M of

subspaces of the fibers Ep such that F =
S

p2M Fp ⇢ E is a submanifold and ⇡|F : F ! M is

still a vector bundle.

Example 1.2 (Trivial bundle). Let M be a Riemann surface. The product M ⇥ C
k together

with the projection to the first factor, given by ⇡(p, v) = p, is called the trivial complex vector

bundle of rank k. Sometimes we will denote it with ⇡ : Ck
! M .

Example 1.3 (Tangent and cotangent bundle). Let M be a Riemann surface with local charts

(U↵,'↵), TCM :=
S

p2M TC,pM (cf. Equation (1.7)) and ⇡ : TCM ! M the projection to the

first factor. The collection {g↵�}:

g↵� := JR('↵ � '
�1
�

) : U↵ \ U� ! GL(2,C) (1.26)
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where JR is the Jacobian with respect to the real variables x� , y� , satisfies the cocycle conditions

1.23 and gives ⇡ : TCM ! M the structure of complex vector bundle of rank 2 called the complex

tangent bundle of M .

In analogous way it is possible to define the complex cotangent bundle T
⇤
C
(M) of M , where

T
⇤
C
(M) :=

S
p2M T

⇤
C,p

M and the transition functions {h↵�} are given by

h↵� = (JR('↵ � '
�1
�

)�1)t. (1.27)

The space of local sections on T
⇤
C
(M) over a local chart U↵ is the space of 1-forms ⌦1(U↵).

We will briefly recall some operations on vector bundles. Let E ! M and F ! M be two

complex vector bundles of rank k and l, respectively, with transition functions {g↵�} and {h↵�}:

• Dual bundle([27, Chapter 0.5 p. 66]):

The dual bundle E
⇤
! M has fibers given by E

⇤
p = (Ep)⇤ and transition functions

j↵�(p) = (g�1
↵�

)t.

• Direct sum bundle([27, Chapter 0.5 p. 67]):

The rank (k + l) complex vector bundle E � F is given by the transition functions

j↵�(p) =

0

@g↵�(p) 0

0 h↵�(p)

1

A 2 GL(k + l,C). (1.28)

• Tensor product bundle([27, Chapter 0.5 p. 67]):

The tensor product bundle E ⌦ F having rank kl is defined by the transition functions

j↵�(p) = g↵�(p)⌦ h↵�(p) 2 GL(kl,C).

• Alternating product bundle([27, Chapter 0.5 p. 67]):

The bundle
V

r
E is given by the transition functions

j↵�(p) =
r^
g↵�(p).

In particular if r = k,
V

k
E is a line bundle called the determinant bundle having transition

functions

j↵�(p) = det(g↵�(p)).
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Let f : M ! N be a smooth map between manifolds and ⇡ : E ! N a complex vector

bundle. It is possible to define a complex vector bundle over M induced by f as follows ([27,

Chapter 0.5 p. 68]): Let f⇤
E := {(p, v) 2 M ⇥ E | f(p) = ⇡(v)} ⇢ M ⇥ E equipped with the

subspace topology. The projection map ⇡0 : f⇤
E ! M given by the projection to the first factor

is a complex vector bundle of the same rank as ⇡ : E ! N called the pull-back bundle of E by

f . If (U,') is a local trivialization for ⇡ : E ! N then, (f�1(U), ) is a local trivialization for

⇡
0 : f⇤

E ! M defined by

 (p, v) = (p,⇡2('(v))), (1.29)

where ⇡2 denotes the projection to the second factor.

It is also possible to consider di↵erential k-forms on a Riemann surface M with values on a

complex vector bundle ⇡ : E ! M :

Definition 1.14. A E-valued di↵erential k-form ! on U ⇢ M is a section of the complex vector

bundle E ⌦
V

k
T
⇤
C
U . We denote the space of E-valued di↵erential k-forms with ⌦k(U,E) (or

simply ⌦k(E) when the domain of definition is M).

Definition 1.15. Let E ! M be a rank k complex vector bundle over a Riemann surface M .

A hermitian metric on E is a hermitian inner product h, i on each fiber Ep varying smoothly

with p 2 M . More, precisely, if s = (s1, . . . , sk) is a frame for E ! M over an open set U ⇢ M ,

the function

hjl = hsj , sli, j, l = 1, . . . , k (1.30)

is smooth in p 2 U . A complex vector bundle E ! M together with a hermitian metric is

called hermitian vector bundle.

1.4.2 Holomorphic vector bundles

Definition 1.16. A rank k complex vector bundle ⇡ : E ! M on a Riemann surface M is

called holomorphic if the trivialization maps {�↵} are holomorphic. It follows that the transition

functions g↵� = �↵ � �
�1
�

of a holomorphic vector bundle are holomorphic.

A section s 2 �(U,E) of a rank k holomorphic vector bundle E ! M , represented (with

respect to a local holomorphic frame) by k functions (f1, . . . , fk), fj : U ! C, is a holomorphic

section if every fj is holomorphic. The space of holomorphic sections of E ! M on an open

set U ⇢ M is denoted with H
0(U,E).
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Definition 1.17. A meromorphic section of a holomorphic vector bundle E ! M is a section

s, such that the the function f = (f1, . . . , fk) : M ! C
k representing s with respect to a given

trivialization is a meromorphic function. The order of s at a point p 2 M is given by the order

of f = (f1, . . . , fk) at p.

Given a Riemann surface, it is always possible to define the following holomorphic line

bundle on it:

Definition 1.18. Let M be a Riemann surface. The canonical bundle K ! M is the line

bundle, where

K :=
[

p2M
{p}⇥ T

0⇤
C,p

(M), (1.31)

and T
0⇤
C,p

(M) is the complex vector space spanned by the element dz, for z being a local coor-

dinate around p. The space of sections �(U,K) of K ! M on an open set U ⇢ M is given by

the space ⌦1,0(U) of (1, 0)-forms on U . Given two local charts (U↵, z↵) and (U� , z�) on M with

U↵ \ U� 6= ;, the transition function for the line bundle K ! M on U↵ \ U� is given by

g↵,�(p) =
dz�

dz↵
(p), (1.32)

which is holomorphic in its domain of definition.

Similarly, the anti-canonical bundle K̄ ! M is the complex line bundle over M given by,

K̄ :=
[

p2M
{p}⇥ T

00⇤
C,p

(M), (1.33)

where T
00⇤
C,p

(M) is the complex vector space spanned by the element dz̄. The space of sections

�(U, K̄) of K̄ ! M on an open set U ⇢ M is given by the space ⌦0,1(U) of (0, 1)-forms on U .

Given two local charts (U↵, z↵) and (U� , z�) on M with U↵\U� 6= ;, the transition function

for the anti-canonical bundle K̄ ! M on U↵ \ U� is given by

h↵,�(p) =
dz̄�

dz̄↵
(p), (1.34)

Given a complex vector bundle E ! M , let ⌦1(U,E) be the space of C1 1-forms on U ⇢ M

with values in E. It is possible to decompose the space ⌦1(U,E) as

⌦1(U,E) = ⌦1,0(U,E)� ⌦0,1(U,E), (1.35)

where ⌦1,0(U,E) = �(U,K ⌦ E) and ⌦0,1(U,E) = �(U, K̄ ⌦ E) ([27, Chapter 0.5 p.73]).

Given a rank k holomorphic vector bundle E ! M it is possible to define an operator

@̄ : �(U,E) ! �(U, K̄ ⌦ E) on a trivializing open set U ⇢ M as follows: Let s 2 �(U,E) be a
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section represented by the functions (f1, . . . , fk) on U . The element @̄s 2 �(U, K̄ ⌦ E) is the

section on U represented by the functions (@f1
@z̄

, . . . ,
@fk
@z̄

) where z is a local coordinate for M on

U . If s 2 H
0(U,E) it follows that

@̄s = 0. (1.36)

From the fact that the transition functions of a holomorphic vector bundle E ! M are

holomorphic it follows that the @̄-operator defined above is well defined on the intersection of

any two trivializing sets U↵, U� ⇢ M of E with U↵ \ U� 6= ;.

The operator @̄ is called a holomorphic structure of the holomorphic vector bundle E ! M

(we refer to [15, Chapter 1] and [27, Chapter 0.5] for more details about holomorphic structures).

We briefly recall the relation between divisors on a compact Riemann surface M and holo-

morphic line bundles L ! M .

Definition 1.19. A divisor D on a compact Riemann surface M is a finite formal sum

D =
kX

j=1

njpj , pj 2 M,nj 2 Z . (1.37)

The degree of a divisor D is defined as
P

j
nj . A divisor D such that nj > 0 for all j is called

e↵ective.

Given a divisor D =
P

j
njpj on a compact Riemann surface M it is possible to define a

holomorphic line bundle L = L(D) ! M ([53, Chapter 6 p. 29]). The space of holomorphic

sections of the line bundle L(D) is denoted with O(D). The holomorphic line bundle L(D)

admits a meromorphic section s = sD such that sD has a zero (resp. pole) of order |nj | at the

point pj , if nj > 0 (resp. nj < 0).

Conversely, given a holomorphic line bundle L ! M , there exists a divisor D on M such

that L = L(D) ([53, Chapter 6], [27, Chapter 1 pp. 129-135]).

Definition 1.20. Given a holomorphic line bundle L ! M on a compact Riemann surface the

degree of L is the degree of the corresponding divisor D on M . Given a rank k holomorphic

vector bundle E ! M , the degree of E is defined as the degree of its determinant bundle
V2

E ! M .

Let M be a compact Riemann surface and D =
P

j
njpj an e↵ective divisor on M . Given a

holomorphic vector bundle E ! M , the space of holomorphic sections of the holomorphic vector

bundle E ⌦ O(D) is given by the space of meromorphic sections of E having a pole of order

at most nj at the point pj . Analogously, the space of holomorphic sections of the holomorphic
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vector bundle E ⌦O(�D) is given by the space of sections of E having a zero of order at least

nj at the point pj ([27, Chapter 1 p. 138]).

As examples that we will encounter in the next chapters we want to give an explicit descrip-

tion of the holomorphic vector bundles over the Riemann sphere CP
1.

Example 1.4 (Holomorphic vector bundles over CP
1). Let CP

1 denote the set of complex 1-

dimensional subspace of C2. If (z, w) is a nonzero vector in C
2, then the 1-dimensional subspace

generated by (z, w) is a point of CP1 denoted with [z : w]. Every point of CP1 can be written

as [z : w] with z and w both not equal to zero. Moreover, we have

[z : w] = [�z : �w], 8� 2 C
⇤
.

Let (U0, 0) and (U1, 1) be the two local charts on CP
1 where U0 = {[z : w] 2 CP

1
|z 6= 0},

U1 = {[z : w] 2 CP
1
|w 6= 0} and

 0 : U0 ! C

[z : w] 7!
w

z
,

(1.38)

 1 : U1 ! C

[z : w] 7!
z

w
.

(1.39)

The tautological line bundle of CP1 is obtained by attaching to each point p 2 CP
1 the

one-dimensional subspace of C2 associated to p as a fiber. This bundle is denoted with ⇡ :

O(�1) ! CP
1. The local trivialization �0 on U0 is given by �0([1 : z], (�,�z)) = ([1 : z],�) and

the local trivialization �1 on U1 is given by �1([w : 1], (�w,�)) = ([w : 1],�). Thus,

�0 � �
�1
1 ([1 : w�1],�) = �0([1 : w�1], (�w,�)) = ([1 : w�1],�w),

and the transition function g01 : U0 \ U1 ! C is given by

g01([1 : z]) = w = z
�1

,

which is holomorphic because z cannot be zero in U0 \ U1.

The dual bundle of O(�1) is denoted by O(1) and its transition function is given by

g
⇤
01([1 : z]) = w

�1 = z.

The holomorphic line bundle O(n) ! CP
1, for n 2 Z, is defined as the repeated tensor products

of O(±1).

An important result about holomorphic vector bundles on CP
1 is given by the following:
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Theorem 1.5 (Grothendieck splitting, [28, Theorem 2.1 p. 126]). Let E ! CP
1
be a rank r

holomorphic vector bundle, then there exist r holomorphic line bundles O(ni), with ni 2 Z such

that

E = O(n1)� · · ·�O(nr)

and deg(E) =
P

r

i=1 ni.

1.4.3 Sheaves and Push-forward bundle

It is well known that there exists a relation between the theory of sheaves and the theory of

vector bundles. We briefly recall this relation in order to introduce the push-forward bundle (we

refer to [53, Chapter 5] or [62, Chapter 13.1] for more details about the theory of sheaves and

the relation with the theory of vector bundles).

Definition 1.21. Let P be a topological space. A pre-sheaf F associates to every open set

U ⇢ P a set F(U). Moreover, for every pair of open subset U, V ⇢ P with U ⇢ V there exists

a map, called restriction map, rV,U : F(V ) ! F(U) such that:

(i) The map rU,U = IdF(U), for every open subset U ⇢ P ;

(ii) Given three open subsets U, V,W of P with U ⇢ V ⇢ W we have

rW,U = rW,V � rV,U . (1.40)

The elements of F(U) are called the sections of F over U ⇢ P .

Definition 1.22. A pre-sheaf F over a topological space P is a sheaf if it satisfies the two

additional conditions:

(1) Let U be an open subset of P . If {U↵} is an open cover of U and s1, s2 2 F(U) are such

that rU,U↵(s1) = rU,U↵(s2) for every ↵, then s1 = s2.

(2) Let U be an open subset of P and {U↵} an open cover of U . Given s↵ 2 F(U↵) for every

↵ such that

rU↵,U↵\U� (s↵) = rU� ,U↵\U� (s�), 8↵,� with U↵ \ U� 6= ;

then, there exists a section s 2 F(U) such that

rU,U↵(s) = s↵, 8↵.
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It is possible to consider a sheaf F such that the sets F(U) have an additional structure,

for example group structure, ring structure or module structure, for every open subset U of P .

In this case we refer to the sheaf F as a sheaf of groups, rings, modules etc.

Example 1.5. Let ⇡ : E ! M be a holomorphic vector bundle on a Riemann surface M and

OU the space of holomorphic functions on an open set U ⇢ M . The map F which associate to

every open subset U ⇢ M the OU -module H
0(U,E) of local holomorphic sections of E over U

is a sheaf of OU -modules.

The previous example shows that we can associate to every holomorphic vector bundle

⇡ : E ! M a sheaf of OM -modules. Conversely, given a locally free sheaf F of rank n on a

manifold M , that is a sheaf such that for every p 2 M there exists a neighbourhood U of p with

F(U) = O
n

U = OU � · · ·�OU , (1.41)

there exists a rank n holomorphic vector bundle ⇡ : E ! M such that

F(U) = H
0(U,E), 8 open subsets U ⇢ M. (1.42)

Thus, there is a 1 � 1 correspondence between locally free sheaves of rank n and holomorphic

vector bundles of rank n ([30, Chapter 5 p. 128]).

We want to use this correspondence to define the push-forward bundle on a Riemann surface.

Definition 1.23. Let f : M ! N be a holomorphic map between compact Riemann surfaces

of degree d and ⇡ : E ! M a holomorphic vector bundle of rank n. The push-forward bundle

of E ! M under the map f is the rank dn holomorphic vector bundle f⇤E ! N associated to

the locally free sheaf ([11, Section 4 p.179]) F of ON -modules with

F(U) = H
0(f�1(U), E), 8 open subsets U ⇢ N (1.43)

We will need the following properties of the push-forward bundle in the rest of this thesis:

• Let f : M ! N be a holomorphic map between Riemann surfaces and E ! M and

Ẽ ! N holomorphic vector bundles. Then

f⇤(E ⌦ f
⇤(Ẽ)) = f⇤E ⌦ Ẽ, (1.44)

for a proof see [39, Proposition 4.2 p. 33];
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• Let f : M ! N be a holomorphic map between compact Riemann surfaces and E1 ! M

and E2 ! M two holomorphic vector bundles on M . Given a holomorphic vector bundle

map � : E1 ! E2 it is possible to define a holomorphic vector bundle map f⇤� : f⇤E1 !

f⇤E2 as follows: The map � induces a map �̃ between the sheaves of local sections of E1

and E2

�̃ : H0(U,E1) ! H
0(U,E2)

s 7! �̃(s) := � � s

(1.45)

for every open subset U ⇢ M which trivializes both E1 and E2. Given an open subset

V ⇢ N we recall that H0(V, f⇤E1) = H
0(f�1(V ), E1) and H

0(V, f⇤E2) = H
0(f�1(V ), E2)

from Definition 1.23. The map f⇤�̃ is given by

f⇤�̃ : H0(V, f⇤E1) = H
0(f�1(V ), E1) ! H

0(f�1(V ), E2) = H
0(V, f⇤E2)

s 7! f⇤�̃(s) := �̃(s).
(1.46)

Moreover, for every holomorphic function h : V ! C, s 2 H
0(V, f⇤E1), q 2 V and

p 2 f
�1(q) we have

f⇤�̃(hs)(q) = �̃((h � f)(p)s)(p)

= (h � f)(p)�̃(s)(p)

= h(q)f⇤�̃(s)(q).

(1.47)

We provide an example to show more precisely how this construction works.

Example 1.6. Let M be a compact Riemann surface and ' : M ⇥ Z3 ! M an e↵ective

group action. Suppose that the quotient M/Z3 is the Riemann sphere CP
1 and the map

f : M ! CP
1, given by the projection to the quotient, is a holomorphic map between Riemann

surfaces of degree 3, branched at four points z1, . . . , z4 2 CP
1.

Consider a rank 2 holomorphic vector bundle E ! M . We want to describe the rank 6

push-forward bundle f⇤E ! CP
1 by defining its transition functions.

We need to consider three di↵erent cases.

Case 1) U ⇢ CP
1 open set not containing any branch point of the map f .

Since U does not contain any branch point, its preimage f
�1(U) is given by the disjoint

union of three open sets of M :

f
�1(U) = U1 t U2 t U3, U1, U2, U3 ⇢ M. (1.48)
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From the Definition 1.23, the space of holomorphic sections H
0(U, f⇤E) is given by the

space of holomorphic sections of E on the open set f�1(U) ⇢ M . Let sj , tj be a holomor-

phic local frame of E over the open set Uj ⇢ M, j = 1, 2, 3. Then, a local frame for f⇤E

over U is given by the sections

(s1 � 0� 0, t1 � 0� 0, 0� s2 � 0, 0� t2 � 0, 0� 0� s3, 0� 0� t3). (1.49)

Let Ũ ⇢ CP
1 be an open set not containing branch point of f and such that U \ Ũ 6= ;.

The preimage of Ũunder f is given by the disjoint union of three open set Ũ1, Ũ2, Ũ3 ⇢ M .

Let s̃j , t̃j be a holomorphic local frame for E over Ũj ⇢ M, j = 1, 2, 3.

For every j = 1, 2, 3, the transition function of the bunde E ! M over Uj \ Ũj is given by

g
j : Uj \ Ũj ! GL(2,C)

p 7!

0

@g
j

11 g
j

12

g
j

21 g
j

22

1

A
(1.50)

and they are such that

(s̃j , t̃j) = g
j(sj , tj). (1.51)

Thus, the transition function for the bundle f⇤E ! CP
1 over U \ Ũ is given by the map

g : U \ Ũ ! GL(6,C), where

g =

0

BBBBBBBBBBBB@

g
1
11 g

1
12 0 0 0 0

g
1
21 g

1
22 0 0 0 0

0 0 g
2
11 g

2
12 0 0

0 0 g
2
21 g

2
22 0 0

0 0 0 0 g
3
11 g

3
12

0 0 0 0 g
3
21 g

3
22

1

CCCCCCCCCCCCA

. (1.52)

Case 2) U ⇢ CP
1 containing one branch point of f , which is assumed to be z = 0 2 CP

1.

By the Local normal form Theorem ([21, Proposition 5 p. 43]) there exists a local coor-

dinate w on f
�1(U) ⇢ M and a local coordinate z on U ⇢ CP

1 such that

w
3 = z. (1.53)

As in the previous case, consider a holomorphic local frame s, t of E over the open set

f
�1(U) ⇢ M . Then, the sections s, t, ws, wt, w2

s, w
2
t considered as holomorphic sections
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of the pushforward bundle f⇤E ! CP
1 over U , are linearly independent and they define

a holomorphic local frame for f⇤E over U .

Let Ũ ⇢ CP
1 be an open set containing the branch point z = 0 (and no other branch

points of the map f). Given a holomorphic local frame s̃, t̃ of E over f�1(Ũ), we can write

s̃ = a1(z)s+ a2(z)ws+ a3(z)w
2
s,

t̃ = b1(z)t+ b2(z)wt+ b3(z)w
2
t,

(1.54)

where the complex valued functions a1, a2, a3, b1, b2, b3 on U\Ũ ⇢ CP
1 satisfy the following

relations (obtained from the factorization in prime factors of the expression w
3):

a1(z)a2(z)a3(z) = 1,

a1(z) + a2(z) + a3(z) = 0,

a1(z)a2(z) + a1(z)a3(z) + a2(z)a3(z) = 0,

b1(z)b2(z)b3(z) = 1,

b1(z) + b2(z) + b3(z) = 0,

b1(z)b2(z) + b1(z)b3(z) + b2(z)b3(z) = 0.

(1.55)

In this example we will consider

a1(z) = b1(z) = 1, a2(z) = b2(z) = ↵, a3(z) = b3(z) = ↵
2
, (1.56)

where ↵ = e
2⇡i
3 .

The sections ws̃, wt̃, w2
s̃, w

2
t̃ can be written as

(ws̃, wt̃) = (↵2
zs+ ws+ ↵w

2
s,↵

2
zt+ wt+ ↵w

2
t)

(w2
s̃, w

2
t̃) = (↵zs+ ↵

2
zws+ w

2
s,↵zt+ ↵

2
zwt+ w

2
t).

(1.57)

The transition function g : U \ Ũ ! GL(6,C) for f⇤E ! CP
1 is given by

g =

0

BBBBBBBBBBBB@

1 0 ↵
2
z 0 ↵z 0

0 1 0 ↵
2
z 0 ↵z

↵ 0 1 0 ↵
2
z 0

0 ↵ 0 1 0 ↵
2
z

↵
2 0 ↵ 0 1 0

0 ↵
2 0 ↵ 0 1

1

CCCCCCCCCCCCA

(1.58)

whose determinant in U \ Ũ is non zero.
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Case 3) Let U ⇢ CP
1 an open set containing a branch point of f : M ! CP

1, which we assume

to be z = 0.

Consider an open set Ũ ⇢ U such that 0 62 Ũ . Thus, the set Ũ does not contain any

branch point and

f
�1(Ũ) = Ũ1 t Ũ2 t Ũ3, (1.59)

where Ũj ⇢ M is an open set for j = 1, 2, 3.

Let s, t be a holomorphic local frame of E over f�1(U) ⇢ M . A local frame for f⇤E over

U is given by (s, t, ws, wt, w2
s, w

2
t), as in Case 2.

Let w̃ : Ũ ! C be the function defined by

w̃([p]) = w(p), p 2 Ũ , (1.60)

where [p] is the orbit of the points p 2 U under the action of Z3.

A holomorphic local frame for f⇤E over the open set Ũ is given by the direct sum of the

following holomorphic local frames defined, respectively, over Ũ1, Ũ2 and Ũ3

(s1, t1) =
1

3w̃2
(w̃2

s+ w̃ws+ w
2
s, w̃

2
t+ w̃wt+ w

2
t)

(s2, t2) =
1

3w̃2
(w̃2

s+ ↵w̃ws+ ↵
2
w

2
s, w̃

2
t+ ↵w̃wt+ ↵

2
w

2
t)

(s3, t3) =
1

3w̃2
(w̃2

s+ ↵
2
w̃ws+ ↵w

2
s, w̃

2
t+ ↵

2
w̃wt+ ↵w

2
t),

(1.61)

where ↵ = e
2⇡i
3 .

It is possible to write the sections (s, t, (ws,wt, w2
s, w

2
, t) in terms of the sections (s1, t1, s2, t2, s3, t3)

as follows:

(s, t) = (s1, t1) + (s2, t2) + (s3, t3)

(ws,wt) = w̃
2(s1, t1) + ↵

2
w̃

2(s2, t2) + ↵w̃
2(s3, t3)

(w2
s, w

2
t) = w̃

2(s1, t1) + ↵w̃
2(s2, t2) + ↵

2
w̃

2(s3, t3).

(1.62)

The transition function g for f⇤E over the set Ũ = U \ Ũ is given by

g =

0

BBBBBBBBBBBB@

1 0 w̃
2 0 w̃

2 0

0 1 0 w̃
2 0 w̃

2

1 0 ↵
2
w̃

2 0 ↵w̃
2 0

0 1 0 ↵
2
w̃

2 0 ↵w̃
2

1 0 ↵w̃
2 0 ↵

2
w̃

2 0

0 1 0 ↵w̃
2 0 ↵

2
w̃

2

1

CCCCCCCCCCCCA

, (1.63)
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and the determinant of g is non zero in Ũ .

The above description gives a system of transition functions for the push-forward bundle

f⇤E ! CP
1, which determine the bundle uniquely up to vector bundle isomorphism (cf. Sub-

section 1.4.1).

1.4.4 Connections on complex vector bundles

A connection on a complex vector bundle E ! M is an object used to define the derivative of

sections. We briefly give the definition of a connection and recall some important results. For

more details about the theory of connections on complex vector bundles we refer to [27, pp.

71-80] and [64, Chapter 3]

Definition 1.24. Let E ! M be a rank k complex vector bundle over a Riemann surface M .

A connection r on E over an open set U ⇢ M is a linear operator

r : �(U,E) ! ⌦1(U,E), (1.64)

which satisfies the Leibniz rule

r(fs) = fr(s) + dfs, (1.65)

for every function f : U ! C and section s 2 �(U,E).

Let E ! M be a complex vector bundle and s = (s1, . . . , sk) a local frame over an open set

U ⇢ M . A connection r on E over the set U can be written, with respect to the local frame s

as

rsj =
X

l

✓jlsl (1.66)

where ! = (✓jl) is a matrix valued 1-form called the connection 1-form of r.

Example 1.7. Let Ck = M ⇥C
k be the rank k trivial bundle over M . The space �(U,Ck) can

be considered as the space of complex valued functions on U ⇢ M . The di↵erential of these

functions are elements of ⌦1(U) which correspond to the space ⌦1(U,Ck). Thus, we obtain a

connection d : �(U,Ck) ! ⌦1(U,Ck) on C
k.

The connection d is called the trivial connection and it is possible to define d, locally, on

every complex vector bundle E ! M since every such bundle is locally isomorphic to the trivial

bundle via the trivialization maps.
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Given a connection r on E ! M over U ⇢ M , it is possible to define another operator

r̂ : ⌦1(U,E) ! ⌦2(U,E) which satisfies

r̂(f!) = df ^ ! + fr̂!, f : U ! C,! 2 ⌦1(U,E). (1.67)

The composition of r with r̂ gives an operator r
2 : �(U,E) ! ⌦2(U,E) ([27, Chapter 0 p.

74]). The connections r is called a flat connection if r2
⌘ 0 (sometimes the curvature of a

connection r is denoted with F
r). The operator r̂ is called the exterior derivative of the

connection r.

Given a holomorphic vector bundle E ! M , from the decomposition of di↵erential 1-forms

on E over an open set U ⇢ M , given by (cf. (1.35))

⌦1(U,E) = ⌦1,0(U,E)� ⌦0,1(U,E), (1.68)

it follows that it is possible to decompose a connection r on E ! M as r = r
0 +r

00, where

r
0 : �(U,E) ! ⌦1,0(U,E), r

00 : �(U,E) ! ⌦0,1(U,E). (1.69)

The component r
00 gives a holomorphic structure on E ! M . Moreover, if @̄ is the holo-

morphic structure of E ! M on U , the connection r is called compatible with the holomorphic

structure of E ! M if r00 = @̄.

The following result shows that given a hermitian holomorphic vector bundle E ! M (cf.

Definition 1.15) on a Riemann surface it is possible to find a canonical connection on it:

Lemma 1.2 ([27, Chapter 0.5 p. 73 ]). Let E ! M be a hermitian holomorphic vector bundle

on a Riemann surface with holomorphic structure @̄ and hermitian metric h, i. There exists a

unique connection r on E ! M such that

• r is compatible with the holomorphic structure @̄;

• r is compatible with the hermitian product on E, that is

rhs, ti = hrs, ti+ hs,rti. (1.70)

for sections s and t of E ! M .

We conclude this subsection recalling the definition of holonomy of a connection r on a

vector bundle E ! M .
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Definition 1.25. Let E ! M be a complex vector bundle, r be a connection on E and

� : [0, 1] ! M be a smooth curve. A section s of E along �, is called parallel if

r�̇(t)s = 0, t 2 [0, 1]. (1.71)

Let p = �(0) and v0 2 Ep, the parallel transport of v0 along � is the unique solution to the

di↵erential system 8
><

>:

r�̇s = 0

s(p) = v0.

(1.72)

More generally, it is possible to define a linear isomorphism between the fibers of E at points

along a curve � : [0, 1] ! M by

P
r
� : E�(0) ! E�(1), (1.73)

which is called the parallel transport associated to �.

Let � be a loop in M based at a point p, the parallel transport P
r
� defines an element of

the group of automorphisms of the fiber Ep, GL(Ep). The holonomy group of the connection

r based at p is defined as

Holp(r) := {P
r
� 2 GL(Ep) | � is a loop based at p}. (1.74)

The holonomy group depends on the base point p only up to conjugation by GL(2,C) since

M is connected ([47, Chapter 4]).
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Chapter 2

CMC and minimal surfaces in R
3

and S
3

2.1 Immersed surfaces

In this chapter we will introduce the definition and some results about immersed surfaces in a

three dimensional manifold. We will refer to [18, Chapter 1] for the first part.

Definition 2.1. Let M be a surface and N
3 a three dimensional manifold. A di↵erentiable

map f : M ! N
3 is an immersion if the di↵erential df(p) : TpM ! Tf(p)N

3 is injective for all

p 2 M . The map f is called an embedding if it is a homeomorphism to its image f(M), with

respect to the induced topology.

Definition 2.2. Let f : M ! N
3 be an immersion of a surface M in a three dimensional

manifold N
3. Let h, iN be a metric on N

3 and h, iM a metric on M . The map f is called an

isometric immersion if the following holds:

hX,Y iM = hdfp(X), dfp(Y )iN , 8X,Y 2 TpM,p 2 M. (2.1)

Given an immersion f : M ! N
3 into a Riemannian manifold (N3

, h, iN ), it is possible to

define an induced metric on M by setting at each point p 2 M

hX,Y iM := hdf(X), df(Y )iN , X, Y 2 TpM. (2.2)

The immersion f , with respect to the metrics h, iM on M and h, iN on N
3 is an isometric

immersion.
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Let f : M ! N
3 be an isometric immersion, then for every p 2 M there exists a neighbour-

hood U ⇢ M such that f is an embedding when restricted to U . Thus, it is possible to identify

U and f(U).

It follows that the tangent bundle of N3 at a point p 2 M can be decomposed as

TpN
3 = TpM � (TpM)?, (2.3)

where (TpM)? is the orthogonal complement of TpM in TpN
3 with respect to the metric on

N
3.

Definition 2.3. The disjoint union TM
? :=

S
p2M{p}⇥ (TpM)?, together with the projection

to the first factor ⇡ : TM?
! M is called the normal bundle of M in N

3.

The Levi-Civita connection on N
3 is the unique connection r̃ on TN

3 such that it is

compatible with the metric (cf. 1.70) and satisfies

r̃XY � r̃Y X � [X,Y ] = 0, 8X,Y 2 �(TN3) (2.4)

(we refer to [47, Chapter 4.2 pp. 158-162] for more details about the Levi-Civita connection on

a Riemannian manifold).

According to the decomposition (2.3) it is possible to decompose the connection r̃ as

r̃XY = (r̃XY )> + (r̃XY )?. (2.5)

From the uniqueness of the Levi-Civita connection on a Riemannian manifold ([47, Theorem

2.2 p. 158]) it follows that (r̃)> is the Levi-Civita connection on M with respect to the metric

(2.2) induced by f .

Definition 2.4. Given an isometric immersion f : M ! N
3 of a surface M , the second

fundamental form of f is the bilinear and symmetric operator � : �(TM)⇥�(TM) ! �((TM)?)

given by

�(X,Y ) := r̃XY � (r̃XY )>, (2.6)

where r̃ and r̃
> are as above.

The shape operator S : �(TM)⇥ �(TM?) ! �(TM) of f is defined by

S(X, ⇠) = S⇠(X) := (r̃X⇠)
>
. (2.7)

The shape operator of an isometric immersion f : M ! N
3 satisfies the following properties

([18, Chapter 1 p. 3]):
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(i)

hS⇠X,Y i = h�(X,Y ), ⇠i, (2.8)

where h, i is the metric on N ;

(ii) S is a bilinear and symmetric operator.

Remark 2.1. Since we are interested in the study of Riemann surfaces, which are always

oriented ([63, Theorem 2.2.1 p. 23]), immersed in the three sphere S
3, in what follows we will

assume that the surface M and the Riemannian manifold N
3 are oriented.

Given an oriented surfaceM isometrically immersed in a three dimensional oriented manifold

N
3, it is possible to define a unique vector field ⌘ 2 (TM)? such that it has unit norm and it

forms a positive oriented basis of TpN
3 together with the positive basis of TpM for every p 2 M .

We will denote by S = S⌘ the shape operator of an isometric immersion f : M ! N
3 with

respect to this unique unit vector field ⌘ 2 �(TM?).

Definition 2.5. Let f : M ! N
3 be an isometric immersion of a surface M and S the shape

operator of f . The quantities

K := det(S), H :=
1

2
tr(S) (2.9)

are called, respectively, the Gauss curvature and the mean curvature of f at a given point

p 2 M .

The mean curvature vector field is the vector field ~H 2 �(TM?) given by

~H(p) :=
1

2

2X

j=1

�(Xj , Xj), (2.10)

where X1, X2 2 TpM form an orthonormal frame of TpM for every p 2 M .

From (2.8) it follows that the mean curvature H of Definition 2.5 coincides with

h ~H, ⌘i, (2.11)

where ⌘ is the unit normal vector field considered to define the shape operator S of the isometric

immersion f .

Definition 2.6. An isometric immersion f : M ! N
3 of a surface M is called minimal if H ⌘ 0

and CMC (constant mean curvature) if H = const. 6= 0, where H is the mean curvature of f .
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Remark 2.2. Sometimes we will call a surface M minimal (resp. CMC) meaning that there

exists a minimal (resp. CMC) immersion f : M ! N
3, from M to a three dimensional

Riemannian manifold N
3.

We conclude this section with a brief description of the fundamental equations of an isometric

immersion of a Riemann surface M into a three dimensional space form N
3(c), that is N3(c) =

R
3
, S

3 or H3.

In this situation it is possible to write the metric on M and the second fundamental form

of an isometric immersion f : M ! N
3(c), on an open set U ⇢ M with local coordinate z, as

(for more details in the case of N3(c) = R
3 we refer to [40, Chapter 6], which can be easily

generalized to the other three dimensional space forms S3 and H
3)

g := 4e2udzdz̄,

� := Qdz
2 + 4e2uHdzdz̄ + Q̄dz̄

2
,

(2.12)

where u : U ! R is a smooth function, H is the mean curvature of the immersion f and

Q : U ! C is called the coe�cient of the Hopf di↵erential Qdz
2. An immersion f : U ! N

3(c)

such that the induced metric g can be written as in (2.12) is called a conformal immersion.

The metric g and the second fundamental form b satisfy the following equations ([26, Section

5 p. 95])

4uzz̄ + 4e2u(H + c)�QQ̄e
�2u = 0, (2.13)

Qz̄ = 2e2uHz, (2.14)

where c is the sectional curvature of the ambient space N
3(c) ( c = 0 corresponds to R

3, c > 0

to S
3 and c < 0 to H

3). Equation (2.13) is called the Gauss equation and equation 2.14 the

Codazzi equation.

The fundamental theorem for immersed surfaces ([18, Theorem 1.1 p.7]) shows that on a

surface M , given a metric g and a 2 form � on any simply connected domain U ⇢ M , which

satisfy the Gauss and Codazzi equations, there exists an isometric immersion f : U ! N
3(c)

(unique up to isometries of the ambient space) such that g corresponds to the induced metric

of f and � to the second fundamental form of f .

2.2 Harmonic maps

We will recall the notion of harmonic maps into a Riemannian manifold N and briefly describe

the relation with minimal and CMC immersions of a surfaces. We will manly refer to [4, Chapter

3.3 pp. 71-81], [20, Chapter 2 pp. 53-58].
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Let f : M ! N be a smooth map between Riemannian manifold.

Definition 2.7. The energy density of the map f : M ! N is defined by

|dfp|
2 :=

2X

j=1

hdfp(Xj), dfp(Xj)iN , 8p 2 M, (2.15)

where X1, X2 2 TpM forms an orthonormal basis and h, iN is the Riemannian metric on N .

For any compact sect U ⇢ M , the energy of f on U is

EU (f) :=
1

2

Z

U

|df |
2
dV, (2.16)

where dV is the volume form of M .

Given " > 0, a smooth variation of f : M ! N is a smooth map

' : (�", ")⇥M ! N

(t, p) 7! 't(p)
(2.17)

such that the map 't : M ! N is smooth for every t 2 (�", ") and '0 = f .

The variation vector field of ' is defined by

 '(p) :=
@

@t
't(p)��

t=0
2 Tf(p)N. (2.18)

In [4, Chapter 3 p. 72] the authors show that, given a vector filed  on N along f , it is

possible to define a smooth variation of f such that  is its variation vector field.

Definition 2.8. A smooth map f : M ! N between Riemannian manifold is called harmonic

if
d

dt
EU ('t)��

t=0
= 0 (2.19)

for all compact sets U ⇢ M and smooth variations 't of f such that

't = f, on M r Int(U), 8t. (2.20)

The first variation formula for the energy is given by ([4, Proposition 3.3.3 p. 72])

d

dt
EU ('t)��

t=0
= �

Z

U

h⌧(f), 'idV, (2.21)

where  ' is the variation vector field of the smooth variation ' of f and

⌧(f) := trrdf (2.22)

is called the tension field of f .

As an implication of the first variation formula for the energy there is the following:
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Theorem 2.1 ([24, Section 2 p. 116]). Let f : M ! N be a smooth map. Then, f is harmonic

if and only if ⌧(f) = 0.

In the situation where f : M ! N
3 is an isometric immersion of a surface M in a three

dimensional Riemannian manifold N
3, the tension field and the mean curvature vector (2.10)

of f are related. In fact, a direct computation shows that

⌧(f) = 2 ~H. (2.23)

In particular, an isometric immersionf is harmonic if and only if it is minimal.

There exists an analogous characterization for CMC isometric immersions of a surface in R
3

or S3, which involves the Gauss map of the immersion ( we refer to [18, Chapter 7 p .122] for

the definition of the Gauss map)

In [57, Theorem pp. 571-572] the authors proved that, given an isometric immersion f :

M ! R
3 with Gauss map g : M ! S

2, the following holds:

⌧(g) = r ~H, (2.24)

where r is the Levi-Civita connection on N . Thus, the isometric immersion f is CMC if and

only if its Gauss map g is harmonic.

In the case of an isometric immersion f : M ! S
3 it has been proven the following:

Theorem 2.2 ([49, Theorem 1 p. 85]). Let f : M ! S
3
be an isometric immersion with Gauss

map g : M ! S
2
. Then, f is a CMC immersion if and only if g is a harmonic map.

In order to prove Theorem 2.2, the author identified the three sphere S
3 with the Lie group

SU(2). The Gauss map of the isometric immersion f : M ! S
3 can be defined as the map

g : M ! S
2

p 7! (dLf(p)�1)(⌘),
(2.25)

where Lq is the left translation by the element q 2 M ⇢ SU(2) and ⌘ is the unique unit normal

vector field to M (cf. Remark 2.1).

2.3 Minimal and CMC immersions into R
3

In this section we will recall the variational description of minimal and CMC immersions of a

surface M in the euclidean three space R
3, together with some important results.
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Let f : M ! R
3 be an isometric immersion of a surface M and ⌘ the unique unit normal

vector field to M (cf. Remark 2.1).

Let ' : (�", ") ⇥M ! R
3 be a smooth variation of f such that 't is an immersion for all

t 2 (�", ") and 't ⌘ 0 on M r U for a compact set U ⇢ M .

The variation vector field of ' is given by h⌘ 2 TM
?, where h : M ! R is a smooth

function. This follows from the fact that ⌘ gives a global frame for TM?.

Definition 2.9. The area and volume functionals are defined, respectively, by

A(t) :=

Z

U

dMt, V (t) :=

Z

[0,t]⇥U

'
⇤
t (dVR

3), (2.26)

where dMt is the area element of the metric on M induced by the immersion 't and '⇤
t (dVR

3)

is the pullback under 't of the standard volume form of R3.

It is proved, in [20, Chapter 2 p. 56], that the first variation formula for the area and volume

functionals are given by

A
0(0) = �

Z

U

2HhdM, V
0(0) =

Z

U

hdM, (2.27)

where H is the mean curvature of the immersion f : M ! R
3.

Using the above description, the following results gives a variational characterization of

minimal and CMC immersions of surfaces in R
3 in terms of the area functionals.

Theorem 2.3 ([20, Theorem 1 p. 56]). Let f : M ! R
3
be an isometric immersion of a surface

M . Then the immersion f is minimal if and only if it is a critical point for the area functional

A(t).

Moreover, considering volume preserving variations of f , that is V (t) = const, it is possible

to obtain the analogous characterization for CMC surfaces:

Proposition 2.1 ([5, Proposition 2.3 p. 126]). Let f : M ! R
3
be an isometric immersion,

then f has constant mean curvature if and only if f is a critical point of the area functional

A(t) for every volume preserving variation of f .

In the last centuries mathematicians provided a huge variety of examples and results about

minimal surfaces. On the other hand the study of CMC surfaces was not so prolific. In 1841

Delaunay [19] proved that the only CMC surfaces of revolution in R
3 are the surfaces obtained

by rotating the roulettes of the conics, which are called unduloids and nodoids.
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In 1956 Hopf [41] proved that the only compact CMC surface of genus 0 immersed in R
3

with constant mean curvature is the round sphere. In 1958 Alexandrov [1] proved that the only

embedded compact CMC surface in R
3 is the round sphere.

As a consequence of the latter result, it was conjectured that the only compact CMC surface

immersed in R
3 is the round sphere. It was in 1984 that Wente [65] provided the first example

of a compact surface of genus 1, called the Wente torus, immersed in R
3 with constant mean

curvature.

During the last decades the use of new techniques allowed mathematicians to provide more

examples. For example, Kapouleas, Mazzeo and Pollack ([43], [50]) proved that it is possible

to glue together spheres and pieces of Delaunay surfaces to obtain new complete CMC surfaces

immersed in R
3.

In this thesis we are interested in studying CMC immersions of compact surfaces, and due to

the results of Hopf [41] and Alexandrov [1] there are no CMC embeddings of compact surfaces

in R
3 except for the round sphere. In the next section we will show that for S3 as ambient space

the situation is di↵erent and there is a huge variety of compact surfaces minimally or CMC

embedded in S
3.

2.4 Minimal and CMC surfaces into S
3

Let f : M ! S
3 be an isometric immersion of a surface M into the three dimensional sphere.

It is possible to give a variational characterization of minimal and CMC immersions into S
3,

analogous to the characterization of immersions in R
3 (cf. Section 2.3):

Proposition 2.2 ([5, Proposition 2.3 p. 126]). Let f : M ! S
3
be an isometric immersion of

a surface M . Then f is minimal if and only if A
0(0) = 0 for every variation of f , where A(t)

is the area functional. While, f is a CMC immersion if and only if A
0(0) = 0 for every volume

preserving variation of f .

In 1970, Lawson [48] proved that there exist compact surfaces minimally immersed in S
3 for

every genus g (cf. Section 2.5). Karcher, Pinkall and Sterling [44] proved in 1988, the existence

of other surfaces minimally embedded in S
3 (cf. Section 2.6).

Lawson [48] showed also that there exists a local correspondence between immersions in

R
3 with mean curvature H = 1, in S

3 with mean curvature H = const and in H
3 with mean

curvature H such that |H| > 1. In fact, given a simply connected domain U ⇢ M of a Riemann

surface M and a conformal CMC immersion f : U ! R
3 (resp. S3), the first fundamental form
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g and the shape operator � of f satisfy the Gauss and Codazzi equations (cf. Equations (2.13)

and (2.14)) in R
3 (resp. S3).

Lawson proved that the two di↵erential forms g̃ := g and �̃ := kg+ � satisfy the Gauss and

Codazzi equations in H
3 (resp. R3), where k is a constant depending on the mean curvature H

of f . Therefore, there exists a conformal immersion f̃ : U ! H
3 (resp. R

3) with metric g̃ and

shape operator �̃. Moreover, f̃ has constant mean curvature given by H + k ([26, Section 5 p.

93])

In the case of genus 1, Lawson conjectured [48] that the Cli↵ord torus is the only minimally

embedded surface in S
3. In 2012 Brendle [14] proved this conjecture using a maximum principle

argument. Andrews and Li [2] extended this result to CMC embeddings, showing that the only

embedded CMC tori in S
3 are the unduloidal rotational Delaunay tori and the homogeneous

tori.

Around 1990 Hitchin, Bobenko, Pinkall and Sterling ([37], [9], [55]) used integrable system

methods to describe compact minimal and CMC tori immersed in S
3, using the so called asso-

ciated family of flat connections (cf. Section 3.1). In more recent years S. Heller, L. Heller and

Schmitt ([35], [33], [34]) extended those arguments to the case of higher genus compact surfaces

embedded minimally or with constant mean curvature in S
3 (cf. Section 3.2).

2.5 Lawson’s surfaces

We briefly recall the general method of constructing minimal surfaces in S
3 due to Lawson ([48,

Section 4 pp. 341-346]). Since this method relies on a solution of a Plateau problem, we first

recall what a Pleateau problem is:

Let N be a Riemannian manifold and � a closed curve in N . The Plateau problem consists

of finding a surface M immersed in N , such that

• � bounds the surface M , that is @M = �;

• the surface M minimizes the area of all surfaces having � as boundary.

Let � ⇢ S
3 be a convex geodesic polygon with vertices v0, . . . , vn = v0 and edges �0, . . . , �n =

�0, such that the edge �j meets the edge �j�1 at an angle ⇡

kj+1 , where kj 2 N
+ for j = 1, . . . , n.

Let  : U ! S
3 be a solution of the Plateau problem for � ⇢ S

3 and M� =  (U) ⇢ S
3.

The surface M� can be reflected about the edges �1, . . . , �n in order to obtain a complete,

non singular surface M� embedded in S
3 ([48, Section 4 pp. 342-345]), under the assumptions

(A)� (D) on the curve � in [48, Section 4 p. 341].
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If r�j : S3 ! S
3 denotes the reflection about the edge �j and G� the subgroup of O(4)

generated by these reflections, the surface M� is given by

M� =
[

g2G�

g(M�). (2.28)

Moreove, the surface M� is a compact surface if and only if the group G� is finite ([48,

Section 4 p. 345]).

2.5.1 The Lawson’s ⌃kl surfaces

We describe one family of minimal surfaces discovered by Lawson in [48], with the construction

method we have recalled in Section 2.5.

Let S3 = {(z, w) 2 C
2
| |z|

2 + |w|
2 = 1} and C1, C2 ⇢ S

3 be the great circles given by

C1 := {(0, w) | |w|2 = 1}, C2 := {(z, 0) | |z|2 = 1}. (2.29)

Given two positive integers k, l 2 N
+, let P1, P2 2 C1 and Q1, Q2 2 C2 such that

dist(P1, P2) =
⇡

l + 1
, dist(Q1, Q2) =

⇡

k + 1
, (2.30)

and �kl the closed geodesic convex polygon in S
3 with vertices P1, Q1, P2, Q2.

Under the stererographic projection from S
3 to R

3, it is possible to obtain the following

picture:

Q1

Q2

P1

P2

Figure 2.1: The stereographic projection of the geodesic polygon �kl (in red), with angles

P1
cQ1P2 = P1

cQ2P2 =
⇡

l+1 and Q1
cP1Q2 = Q1

cP2Q2 =
⇡

k+1

The geodesic polygon �kl ⇢ S
3 is mapped to the region of R3 bounded by the red curves in

Figure 2.1.
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The polygon �kl satisfies the hypothesis of Theorem 1 in [48, Section 4 p. 345], therefore

there exists a complete, non singular minimal surfaces determined by �kl according to the

Lawson construction (cf. Section 2.5), which we will denote by ⌃kl.

In order to show how the surface ⌃kl is obtained from the polygon �kl, Lawson ([48, Section

6]) considered the surface M�kl , solution to the Plateau problem for �kl in S
3 and the surface

M̃�kl obtained from M�kl by reflection across the edge P1Q1 of �kl.

The surface ⌃kl is obtained as the image of the action of the group G := Zk+1⇥Zl+1 on

M̃�kl , generated by the rotations ([48, Section 6 p. 349])

Rk : S3 ! S
3

(z, w) 7! (e
2⇡i
k+1 z, w),

(2.31)

and

Rl : S
3
! S

3

(z, w) 7! (z, e
2⇡i
l+1w).

(2.32)

The finiteness of G implies that the surface ⌃kl is compact ([48, Section 4 p. 345]). The

genus g of ⌃kl can be computed as ([48, Proposition 4.4 p. 345]):

2� 2g = 2(k + 1)(l + 1)

✓
1�

k

k + 1
�

l

l + 1

◆
= 2� 2kl =) g = kl. (2.33)

We conclude this subsection with the description of the map

⇡ : ⌃kl ! ⌃kl/(Zk+1⇥Zl+1). (2.34)

Let P1, . . . , P2k+2 2 ⌃kl be the points on the great circle C1 in (2.29), such that dist(Pj , Pj+1) =

⇡

l+1 and Q1, . . . , Q2l+2 2 ⌃kl the points on the great circle C2 in (2.29) such that dist(Qi, Qi+1) =

⇡

k+1 . The points P1, . . . , P2k+2 are the fixed points for the Zl+1-action on ⌃kl generated by the

map Rl in (2.32).

The quotient ⌃kl/Zl+1 admits a unique Riemann surface structure such that the projection

to the quotient

⇡l+1 : ⌃kl ! ⌃kl/Zl+1 (2.35)

is a holomorphic map between Riemann surfaces, branched at the points pj := ⇡l+1(Pj), j =

1, . . . , 2k + 2 ( cf. Lemma 1.1). The branch order of each point pj can be computed as follows

([52, Lemma 3.6 p. 80]):

b⇡l+1(pj) =
|Zl+1 |

| Stab(pj)|
(| Stab(pj)|� 1) = l, j = 1, . . . , 2k + 2, (2.36)
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where Stab(pj) denotes the stabilizer group of pj (cf. Definition 1.4), which in this case coincides

with Zl+1. The Riemann-Hurwitz formula ([52, Corollary 3.7 p. 80]) implies that the quotient

⌃kl/Zl+1 is the Riemann sphere CP
1 (cf. Example 1.4).

The set of points {Q1, . . . , Q2l+2}, which are the fixed point for the Zk+1-action on ⌃kl

(and on ⌃kl/Zl+1) generated by the map Rk in (2.31), is mapped under ⇡l+1 to the two points

q�, q+ 2 CP
1. There are exactly two points q�, q+ because the Zk+1-action and the Zl+1-action

commute.

The map ⇡k+1 : ⌃kl/Zl+1 ! (⌃kl/Zl+1)/Zk+1 is a holomorphic map between Riemann

surfaces (cf. Lemma 1.1) and the Riemann-Hurwitz formula implies that (⌃kl/Zl+1)/Zk+1 is

the Riemann sphere CP
1, since the branch points ⇡k+1(q±) have branch order k (from [52,

Lemma 3.6 p. 80]). The points p1, . . . , p2k+2 are mapped to two points p�, p+.

Therefore, we obtain that, the map

⇡ : ⌃kl

⇡l+1
���! ⌃kl/Zl+1

⇡k+1
���! (⌃kl/Zl+1)/Zk+1 ' CP

1 (2.37)

is a branched covering of degree (k+1)(l+1) branched at the four points p�, p+, q�, q+ 2 CP
1.

It is possible to show that the points p± have branch order l(k + 1) and the points q± have

branch order k(l + 1) ([52, Lemma 3.6 p. 80]).

2.6 KPS surfaces

In 1998 Karcher, Pinkall and Sterling [44] constructed minimal embeddings of compact surfaces

in S
3, which we will call KPS surfaces. We briefly recall the construction of the KPS surfaces

and we will give a description of their symmetry groups.

Let � be a tessellation of S
3 such that each cell of � has the symmetries of a platonic

solid in R
3 ( we refer to [17, Chapter 4] for more details about regular tessellations of S3). By

subdividing one cell of � with respect to its planes of symmetry one obtains a tetrahedron,

whose dihedral angles are given by ([44, Section 1 p. 169])

⇡

2
,
⇡

2
,
⇡

2
, ⌘,�1,�2. (2.38)

The following table lists the data of the tessellations of S3 which the authors in [44] considered

([44, Table 1 p. 169])
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⌘,�1,�2 Cell type # cells in tasselation

⇡

3 ,
⇡

3 ,
⇡

3 Tetrahedral (self-dual) 5

⇡

4 ,
⇡

3 ,
⇡

3 Octahedral (self-dual) 24

⇡

3 ,
⇡

3 ,
⇡

4 Tetrahedral (Cubical) 16 (8)

⇡

3 ,
⇡

3 ,
⇡

5 Tetrahedral (Dodecahedral) 600 (120)

⇡

3 ,
⇡

2 ,
⇡

3 Tetrahedral 2

⇡

3 ,
⇡

2 ,
⇡

4 Cubical 2

⇡

3 ,
⇡

2 ,
⇡

5 Dodecahedral 2

⇡

4 ,
⇡

2 ,
⇡

3 Octahedral 2

⇡

5 ,
⇡

2 ,
⇡

3 Icosahedral 2

(2.39)

Let � be a tessellation of S3 corresponding to the dihedral angles ⌘,�1,�2 in Table 2.39

and T one of the tetrahedrons obtained by subdividing a cell of � with its planes of symmetry.

The idea is to find a minimal surface M obtained as the solution of a Plateau problem in the

tetrahedron T such that M intersects all faces of T perpendicularly and meets the edges of T

corresponding to the dihedral angles ⇡

2 ,
⇡

2 ,
⇡

2 , ⌘.

In order to find such a surface M , Karcher, Pinkall and Sterling in [44] considered a geodesic

quadrilateral Q = ABCD in S
3 with angles ⇡

2 ,
⇡

2 ,
⇡

2 , ⌘ at A,B,C and D, respectively. The

quadrilateral Q is completely determined by the lengths of the edges l1, l2 in A, since the other

two edges are uniquely determined by l1, l2 and the angle ⌘.

A
B

C

D

⇡

2
⇡

2

⇡

2

⌘

Figure 2.2: The geodesic quadrilateral bounding the surface M̃(l1, l2, ⌘).

Let M̃ = M̃(l1, l2, ⌘) be the minimal surface obtained as the solution to the Plateau problem

for the geodesic quadrilateral Q in S
3. The conjugated minimal surface M = M(l1, l2, ⌘) of
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M̃(l1, l2, ⌘) is the minimal surface obtained from the fundamental theorem of immersed surfaces

[18, Theorem 1.1 p. 7] considering the same metric of M̃(l1, l2, ⌘) and the shape operator (cf.

2.7)

S := R⇡
2
� S̃, (2.40)

where S̃ is the shape operator of M̃(l1, l2, ⌘) and R⇡
2
is a rotation of ⇡/2 in the tangent space

TpM̃ for all p 2 M̃(l1, l2, ⌘).

The surface M(l1, l2, ⌘) determines a tetrahedron having dihedral angles ⇡

2 ,
⇡

2 ,
⇡

2 , ⌘, �1, �2

([44, Section 2 p. 173]). It is possible to choose the values l1, l2 such that the dihedral angles

�1, �2 coincides with the dihedral angles �1,�2 corresponding to the angle ⌘ in Table 2.39.

In fact, let F (l1, l2) be the function to R
2 which gives the dihedral angles �1, �2 in terms of

l1 and l2. Using a maximum principle argument, it is possible to prove that the function F is

continuous ([44, Lemma 4 p. 175]). Moreover, the value (�1,�2) is contained in the range of

the function F as proved in [44, Theorem p. 178].

Therefore, there exists a choice of l1, and l2 such that the surface M is a minimal surface

contained in the tetrahedron T obtained by subdividing a cell of the tessellation � of S3, for all

the tessellation considered by Karcher, Pinkall and Sterling in [44].

In order to construct a compact, minimal surface in S
3 from the simply connected surface

M , the surface M is reflected across the faces of the tetrahedron T which are not contained

in the faces of the corresponding cell of �. The resulting surface B is called a bone for the

compact, non singular minimal surface ⌃ in S
3 generated by reflecting B across the faces of all

the cells in � [44, Section 1 p. 169 and Proposition 8 p. 183].

2.6.1 Symmetries of the KPS surfaces

In this subsection we consider the KPS surfaces corresponding to the tessellations of S3 whose

cells have the symmetries of the platonic solid in R
3. We will call these surfaces platonic KPS

surfaces and they correspond to the last five rows in Table 2.39.

Proposition 2.3. Let ⌃ be a platonic KPS surface. There exists a finite subgroup G ⇢ SO(4)

acting on ⌃, such that the quotient map ⇡ : ⌃ ! ⌃/G is a |G|-fold covering to the Riemann

sphere CP
1
, branched at four points.

Proof. Let ⌃ be a KPS surface and � the corresponding tessellation of S3 used to construct ⌃.

The tessellation � is obtained as the image of the action of a finite subgroup � ⇢ SU(2)⇥SU(2)

of one cell of � ([23, Chapter 3 and 4]).
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From the construction described in Section 2.6, the surface ⌃ is obtained as the image of

the action of � on the bone B of ⌃. The idea is to consider a larger fundamental piece for ⌃

such that ⌃ is obtained as the image of the action of a subgroup G ⇢ � of such fundamental

piece, which does not contain reflections.

Let M̃ be the simply connected, minimal surface in S
3, bounded by the quadrilateral Q with

angles ⇡

2 ,
⇡

2 ,
⇡

2 , ⌘ (cf. Section 2.6). By reflecting M̃ across the edge AB (cf. Figure 2.2), we

obtain a minimal surface Ñ bounded by a quadrilateral with angles ⇡

2 ,
⇡

2 , ⌘, ⌘ (cf. Figure 2.3).

A = Ã

D̃

C̃

B = B̃

C

D

⇡

2

⌘

⌘

⇡

2

Figure 2.3: The geodesic quadrilateral bounding the surface Ñ .

The conjugate minimal surface of Ñ is a minimal surface N in S
3 bounded by a geodesic

quadrilateral inside a tetrahedron with dihedral angles ⇡

2 ,
⇡

2 , ⌘, ⌘,�1,�2, where �1,�2 are the

dihedral angles corresponding to ⌘ in Table 2.39.

The surface ⌃ is then obtained as the image of the action of G ⇢ � of N , where G is the

subgroup of � consisting of all the rotations in �. Under the 2-fold covering SU(2)⇥ SU(2) !

SO(4) ([23, Chapter 3.17]), the group G can be identified with a finite subgroup of SO(4).

The quotient ⌃/G corresponds to the surface N , which is a four punctured sphere with

punctures at the points corresponding to the vertices of the quadrilateral bounding N . In fact,

in the geodesic quadrilateral bounding the conjugate minimal surface Ñ of N , the vertex C is

identified with the vertex C̃ and the vertex D with the vertex D̃. The other two punctures are

given by the vertices A = Ã and B = B̃ (cf. Figure 2.3).
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Let ⇡ : ⌃ ! ⌃/G the projection to the quotient. There exists a unique Riemann surface

structure on ⌃/G such that the map ⇡ is a holomorphic map between Riemann surfaces (cf.

Lemma 1.1). Let z1, . . . , z4 2 ⌃/G be the points corresponding to the vertices of the quadrilat-

eral bounding the surface N with angles ⇡

2 , ⌘,
⇡

2 , ⌘ respectively.

The branch orders of the points z1, . . . , z4 are given by ([52, Lemma 3.6 p. 80]):

b⇡(z1) = b⇡(z3) =
d

2
, (2.41)

b⇡(z2) = b⇡(z4) = d�
d

n
, (2.42)

where d = |G| = |�|
2 and n 2 N

+ is such that ⌘ = ⇡

n
. Finally, the Riemann-Hurwitz formula

([52, Corollary 3.7 p. 80]) implies that the Riemann surface ⌃/G is the Riemann sphere CP
1,

for all the platonic KPS surfaces.

Let An be the alternating group and Sn the symmetric group. The following table lists

the platonic KPS surfaces together with the genus and the corresponding finite subgroup G ⇢

SO(4):

⌘,�1,�2 Cell type genus SO(4)-subgroup

⇡

3 ,
⇡

2 ,
⇡

3 Tetrahedral 3 A4

⇡

4 ,
⇡

2 ,
⇡

3 Octahedral 7 S4

⇡

3 ,
⇡

2 ,
⇡

4 Cubical 5 S4

⇡

3 ,
⇡

2 ,
⇡

5 Dodecahedral 11 A5

⇡

5 ,
⇡

2 ,
⇡

3 Icosahedral 19 A5

(2.43)

We expect that Proposition 2.3 holds also for the KPS surfaces corresponding to the first four

rows of Table 2.39. However, the finite subgroup � ⇢ SU(2)⇥ SU(2) acting on these surfaces

is more complicated. We didn’t have the time to carry out all the details and understand the

corresponding finite subgroup of SO(4).
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Chapter 3

Integrable system methods for

minimal and CMC immersions into

S
3

In this chapter we will describe the gauge theoretic formalism for minimal and CMC immersions

of compact Riemann surfaces into S
3.

In 1989, Hitchin [37] described harmonic maps from a compact Riemann surfaces of genus

1 into S
3 in terms of algebro geometric data. Since minimal immersions into S

3 and the Gauss

maps of CMC immersions into S
3 are harmonic maps (cf. Section 2.2), the approach of Hitchin

yields a description of minimal and CMC tori in S
3.

Unfortunately, this approach cannot be generalized to surfaces of higher genus, due to the

fact that it relies on the feature that the fundamental group of the surface is abelian.

In 2013 Heller [35] proved that it is possible to reconstruct a CMC immersion of a compact

Riemann surface of genus 2 applying a version of the DPW method, introduced by Dorfmeister,

Pedit and Wu in 1998 [22].

More recently, Heller, Heller and Schmitt in [33] showed a way to generalize Hitchin’s ap-

proach for compact, minimal or CMC immersions into S
3 of compact Riemann surfaces of genus

g � 2.
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3.1 Gauge theoretic formalism for minimal and CMC immer-

sions in S
3

We briefly describe a way of studying minimal and CMC immersions into S
3 using flat con-

nections defined on an appropriate complex vector bundle. We will mainly refer to [35], [37,

Section 1] and [33].

We first recall the definition of gauge transformation

Definition 3.1. Let E ! M be a complex vector bundle. A gauge transformation g is a

section of the endomorphism bundle End(E) which is invertible everywhere. If E ! M is a

holomorphic vector bundle we will say that a gauge transformation g is holomorphic if it is an

element of the space of holomorphic section of End(E), that is, g 2 H
0(M,End(E)).

The set of gauge transformations on a complex vector bundle E ! M forms a group with

respect to the composition, denoted with GE .

Given a connection r on a complex vector bundle E ! M it is possible to define the action

of a gauge transformation g 2 GE on r as follows:

r · g := g � r � g
�1

. (3.1)

Consider the three sphere S
3 identified with the compact Lie group SU(2) via the map

S
3
! SU(2)

(z, w) 7!

0

@z �w̄

w z̄

1

A z, w 2 C, |z|
2 + |w|

2 = 1.
(3.2)

The tangent bundle of S3 is trivial ([13, Chapter 10 p. 89]) and it is possible to write it,

with respect to the trivializations given by left translations, as

T S
3 = S

3
⇥ ImH, (3.3)

where ImH ' R
3 is the space of pure quaternions.

With respect to the same trivializations of T S
3, the Levi-Civita connection on T S

3 (cf.

Section 2.1) is given by

r̃ = d+
1

2
!, (3.4)

where ! 2 ⌦1(S3, ImH) is the Maurer-Cartan form which acts on ImH via the adjoint repre-

sentation [35, Section 2 p. 747].
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It is possible to define a hermitian vector bundle on S
3 by

Ẽ := S
3
⇥H ! S

3
, (3.5)

where H ' C
2 is the space of quaternions. The complex structure on Ẽ (cf. Definition 1.12) is

given by the right multiplication by i 2 H and the hermitian metric h, i by the trivializations

and the identification H ' C
2 ([35, Section 2 p. 747]). It is possible to consider the connection

r̃ on the hermitian vector bundle Ẽ, where the 1-form ! acts on H by left multiplication.

In this way, the tangent bundle T S
3 is identified with the bundle End0(Ẽ) of skew-symmetric,

trace free, complex linear endomorphisms of Ẽ ([35, Section 2 p. 747]).

Let M be a compact Riemann surface and f : M ! S
3 a conformal immersion (cf. Section

2.1). We first consider the case of f being a minimal immersion. Let E := f
⇤
Ẽ the pullback

bundle of Ẽ under f and

r := f
⇤
r̃ = d+

1

2
� (3.6)

the pullback of the Levi-Civita connection defined on Ẽ. The 1-form � 2 ⌦1(M, ImH) acts on

ImH via the adjoint representation.

The connection 1-form � satisfies the equation

d
r
� = 0, (3.7)

where d
r is the exterior derivative of r (cf. Subsection 1.4.4). The minimality of f translates

into the equation ([37, Equation 1.2 p. 632])

d
r
⇤ � = 0, (3.8)

where ⇤ : ⌦1(M) ! ⌦1(M) is the Hodge star operator defined, with respect to a local coordinate

z : U ⇢ M ! C, by

⇤ dz = idz, ⇤dz̄ = �idz̄. (3.9)

Using the identification of T S
3 with the bundle End0(Ẽ) it is possible to consider the 1-form

� as an element of ⌦1(M,End0(E)). Therefore, � can be decomposed into its (1, 0) and (0, 1)

components (cf. Equation 1.35):
1

2
� = �� �⇤

, (3.10)

where � 2 �(M,K⌦End0(E)) is called the Higgs field of the immersion f and �⇤ is the adjoint

operator of �, with respect to the metric on M induced by h, i.

The equations (3.7) and (3.8) imply

r
00� = 0, (3.11)
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wherer00 is the (0, 1) part of the connectionr on E ! M , which defines a holomorphic structure

on E (cf. Equation (1.69)). With respect to this holomorphic structure, the (1, 0)-form � is an

element of H0(M,K ⌦ End0(E)).

From the fact that the connection r �
1
2� = d is trivial, it is possible to obtain another

equation, which can be locally (on simply connected subsets of M) written as ([37, Equation

1.7 p. 633])

F
r
� [� ^ �⇤] = 0, (3.12)

where F
r is the curvature of the connection r (cf. Subsection 1.4.4).

In [37, Proposition 1.8 p. 635] it is proven that the Higgs field � of a conformal, minimal

immersion f : M ! S
3 from a compact Riemann surface M , is a nilpontent, nowhere vanishing,

with zero determinant, holomorphic (1, 0)-form with values in End0(E).

Thus, given a conformal minimal immersion f : M ! S
3 is is possible to define a connection

r on the hermitian vector bundle E ! M and a Higgs field � which satisfy the system of

di↵erential equations 8
><

>:

r
00� = 0

F
r = [� ^ �⇤].

(3.13)

Conversely, Hitchin proved ([37, Section 1 p. 641]) that, on simply connected subsets of M ,

it is possible to reconstruct the immersion f : U ! M from a connection r on E ! M and

a nilpotent, nowhere vanishing Higgs field � which satisfy the system (3.13). In fact, in this

case the immersion f is given by the gauge transformation between the two trivial connections

r� � and r+ �, where 1
2� := �� �⇤.

We can now introduce the associated family of flat connections of a conformal minimal

immersion into S
3.

Definition 3.2. Let f : M ! S
3 be a conformal, minimal immersion of a compact Riemann

surface M into S
3. Let r be the connection defined in (3.6) and � the Higgs field of the

immersion f (cf. Equation (3.10)). The associated family of SL(2,C)-connections of f : M !

S
3, defined on the complex vector bundle E ! M , is given by

r
� := r+ �

�1�� ��⇤
, � 2 C

⇤
. (3.14)

From the equations (3.13) it follows that the connections r
� are flat for every � 2 C

⇤.

Moreover, the connections r
1 = r + � � �⇤ = r + 1

2� and r
�1 = r � � + �⇤ = r �

1
2�

are trivial and the immersion f (on simply connected subset of M) is given by the gauge

transformation between r
1 and r

�1 ([35, Section 2 p. 748]).
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Thus, the associated family of flat SL(2,C)-connections of a conformal, minimal immersion

f : M ! S
3 contains all the information of the immersion.

Let f : M ! S
3 be a conformal CMC immersion of a compact Riemann surface M into S

3,

with mean curvature H 6= 0. In this case the map f is no longer harmonic. However, the fact

that its Gauss map is harmonic (cf. Theorem 2.2) allows the definition of an associated family

of flat connections of the immersion f as follows.

Consider the 1-form � := f
�1

df on the hermitian vector bundle E ! M , as in the case of

minimal immersion. It is possible to decompose � into its (1, 0) and (0, 1) components as ([33,

Section 1 p. 417])

� =  � ⇤
. (3.15)

Let � and �⇤ be defined by

� :=
�2

1 + �2
 , �⇤ :=

1

1 + �2
 ⇤

, (3.16)

where �2 :=
�iH+1
iH+1 2 S

1
⇢ C

⇤. It is possible to define a flat connection on the hermitian vector

bundle E ! M by

r := d+ �� �⇤
. (3.17)

The associated family of SL(2,C)-connections of the immersion f : M ! S
3 is given by

r
� := r+ �

�1�� ��⇤
, � 2 C

⇤
. (3.18)

Analogously to the minimal case, the connections r� are flat for every � 2 C
⇤, the 1-form

� 2 �(M,K ⌦ End0(E)) is nilpotent, nowhere vanishing and it is holomorphic with respect

to the holomorphic structure on E induced by the connection r. Moreover, the connections

r
�1 = d and r

�2 = d+ � are trivial ([33, Section 1 p. 418]).

The following Theorem (due to Bobenko [9] and Hitchin [37]) shows that it is possible

to reconstruct the CMC immersion f : M ! S
3 from its associated family of flat SL(2,C)-

connections as in the minimal case:

Theorem 3.1 ([33, Theorem 1.1 p. 418]). Let f : M ! S
3
be a conformal CMC immersion

of mean curvature H 6= 0. Then, its associated family of flat SL(2,C)-connections r�
given by

(3.18), is unitary for � 2 S
1
and trivial for �1 6= �2 2 S

1
.

Conversely, given such a family of flat SL(2,C)-connections with nilpotent �, the immersion

f , given by the gauge transformation between r
�1 and r

�2, is conformal and of constant mean

curvature

H = i
�1 + �2

�1 � �2
. (3.19)

56



Moreover, the associated family of the immersion obtained in this way coincides with the family

r
�
.

The points �1,�2 in Theorem 3.1, are called the Sym points. The existence of the Sym

points is the extrinsic closing condition and the unitarity of the connections r� for � 2 S
1 the

intrinsic closing condition for the immersion f .

In [37] Hitchin considered the case of M being a torus. He classified all the families of flat

connections r
� and parametrized the associated minimal and CMC immersions f : M ! S

3.

He showed that it is possible to define an algebraic curve ⌃ associated to a solution (r,�) of

(3.13). Moreover, given such an algebraic curve ⌃ it is possible to find a solution of (3.13)

associated to a conformal harmonic map in S
3 or to a harmonic map to a totally geodesic

2-sphere in S
3 depending on the properties the curve ⌃ satisfies ([37, Theorem 8.20]).

3.2 The DPW approach for higher genus surfaces

In 1998, Dorfmeister, Pedit and Wu [22] introduced a method (which we will call DPW method)

that allows the construction (or reconstruction) of all harmonic maps f : U ! G/K from a

simply connected subset U ⇢ M of a Riemann surface into a symmetric space G/K (we refer

to [47, Chapter 11.2] for the definition and more details about symmetric spaces).

The initial data for the DPW method is given by a holomorphic (or, in some situations,

meromorphic) sl(2,C)-valued 1-form ⇠(z,�) which depends on a local coordinate z on U ⇢ M

and a parameter � 2 C
⇤.

We have recalled in Section 2.2 that there exists a correspondence between harmonic maps

from a Riemann surface M into R
3 or S3 and minimal immersions f : M ! R

3
, S

3. Therefore,

the DPW method gives a way to reconstruct all such immersions, if one considers G/K = R
3

or S3.

CMC immersions in R
3 or S3 can also be obtained via the DPW method considering G/K =

S
2. In fact, the harmonic maps g : U ⇢ M ! S

2 constructed via the DPW method can be

considered as the Gauss maps of CMC immersions f : U ⇢ M ! R
3
, S

3 (cf. Section 2.2).

If one wants to construct minimal or CMC immersions of a non simply connected surface M

via the DPW method, one has to ensure that the immersions of two di↵erent simply connected

domains in M patch together. In [45] it has been shown how to obtain CMC immersions of the

thrice punctured sphere in R
3 via DPW method. The surfaces obtained are called trinoids with

Delaunay ends.
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For compact surfaces of genus g � 2, the situation is more complicated. Heller, Heller and

Schmitt in [33] proved that, in this case, it is more appropriate to consider holomorphic families

of flat connections, defined on a hermitian vector bundle E ! M , up to gauge equivalence (cf.

Definition 3.1).

Let M be a compact Riemann surface and A
2(M) the moduli space of flat connections (for

more details about the moduli space of flat connections we refer to [29, Chapter 9]), defined

on the hermitian vector bundle E ! M described in Section 3.1. Heller, Heller and Schmitt

proved the following theorem, which can be considered as a generalization of the DPW method

for compact surfaces of genus g � 2, minimally or CMC immersed in S
3.

Theorem 3.2 ([33, Theorem 1.2 p. 419]). Let M be a compact Riemann surface of genus g � 2

and D : C⇤
! A

2(M) a holomorphic map satisfying

(1) the unit circle S
1
⇢ C

⇤
is mapped into the set consisting of gauge equivalence classes of

unitary flat connections;

(2) around � = 0, there exists a local lift r̃
�
of D with an expansion in �

r̃
�
⇠ �

�1 + r̃
0 + higher order terms in � (3.20)

for a nilpotent  2 �(M,K ⌦ End0(E));

(3) there are two distinct points �1,�2 2 S
1
⇢ C

⇤
such that D(�j) j = 1, 2 represents the

trivial gauge equivalence class.

Then, there exists a (possibly branched) CMC immersion f : M ! S
3
inducing the map D as

the family of gauge equivalence classes

D(�) = r
�
, � 2 C

⇤
, (3.21)

where r
�
is the associated family of flat connections of f (cf. Equation (3.18)). The branch

points of f are given by the zeros of  . Conversely, every CMC immersion determines a

holomorphic C
⇤
-curve into A

2(M) via (3.21).

The CMC immersions f : M ! S
3 obtained by Theorem 3.2 are not uniquely determined

by the map D. The immersions corresponding to the same D are related by the so-called

dressing transformations (we refer to [16] or [26, Section 4] for more details about dressing

transformations).
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The idea is to find a holomorphic family of flat connections on E ! M , of the form

d+ ⇠(z,�) (3.22)

which is gauge equivalent to the associated family of flat connections of f and satisfies the

conditions of Theorem 3.2. Moreover, ⇠(z,�) (which is called DPW potential) must be a holo-

morphic family of meromorphic 1-forms with values in sl(2,C) with expansion series in � given

by

⇠(z,�) =
1X

j=�1

⇠j(z)�
j
dz, (3.23)

where ⇠j(z) is a function with values in sl(2,C) for every j and ⇠�1(z) is nilpotent and upper

triangular.

The immersion f : M ! S
3 can be reconstructed via the DPW method, which can be

summarized in the following steps ([26, Section 2]):

(i) solve the ODE for the variable �(z,�)

d�(z,�) = �(z,�)⇠(z,�) (3.24)

with respect to z, where �(z,�) 2 SL(2,C);

(ii) Apply the Iwasawa decomposition [22, Theorem 2.2 p. 638] to �, to obtain a decomposi-

tion of the form

�(z,�) = F (z,�)B(z,�), (3.25)

where F (z,�) 2 SU(2) for all � 2 S
1 and the expansion series of B(z,�) in � does not

contains negative powers in �. Moreover, B(z,�) is holomorphic in � for � in D1 := {� 2

C
⇤
| |�| < 1};

(iii) The Sym-Bobenko formula [10, Chapter 3] for S3, given by

f(z,�) = F (z, ⌘�)F�1(z,�), (3.26)

gives an immersion f : M ! S
3 for every ⌘ 2 S

1
, ⌘ 6= 1 and � 2 S

1. Moreover, the mean

curvature of f(z,�) is constant and it is given by

H = i
1 + ⌘

1� ⌘
. (3.27)

The fact that the family of flat connections (3.22) satisfies the conditions of Theorem 3.2,

guarantees that the immersion f(z,�) in (3.26) closes up around non trivial loops on the surface

M .
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For the Lawson surface ⌃2,1 (cf. Subsection 2.5.1), Heller [35] described explicitly a DPW

potential, up to two unknown functions depending on the parameter � 2 C
⇤. He used the fact

that there is a Z3-action on ⌃2,1 such that the quotient ⌃2,1/Z3 ' CP
1 and the projection

⇡ : ⌃2,1 ! CP
1 is a holomorphic map between Riemann surfaces, branched at four points

z1, . . . , z4 2 CP
1 (cf. Subsection 2.5.1).

In [35, Theorem 4.2 p. 754] and [35, Theorem 4.3 p. 756] it is shown that the associate

family of flat connections of the minimal immersion f : ⌃2,1 ! S
3 is gauge equivalent to the

pull-back of the family of flat connections on CP
1
d+ ⇠(z,�), where

⇠(z,�) =

0

@�
4
3

z
3

z4�1 + A(�)
z

�
�1 +B(�)z2

G(�)
z4�1 + �H(�)

z2(z4�1)
4
3

z
3

z4�1 �
A(�)
z

1

A dz, (3.28)

and the branch points z1, . . . , z4 of ⇡ : ⌃2,1 ! CP
1 are chosen to be 1, i,�1,�i.

The functions A,B,G,H are holomorphic in � 2 C
⇤ and they are called the accessory

parameters of the family of flat connections d+ ⇠(z,�).

The symmetries on CP
1, induced from the orientation preserving symmetries of ⌃2,1 imply

the following relations on the accessory parameters ([35, Theorem 4.3 p. 756])

H = A+A
2

B = �
1

G

✓
�

1

3
+A+ (

1

3
�A)2

◆
.

(3.29)

Thus, the family of flat connections d+⇠(z,�) is determined up to two holomorphic function

A(�) and G(�) in � 2 C
⇤.

The connection 1-form of the pull-back connection d + ⇡
⇤
⇠(z,�) on the surface ⌃2,1 is a

meromorphic 1-form which is a DPW potential for ⌃2,1 ([35, Theorem 4.3 p. 756]). The

minimal immersion f : ⌃2,1 ! S
3 can be reconstructed via the DPW method using the poten-

tial ⇡⇤⇠(z,�), after an appropriate choice of the accessory parameters that guarantee that the

immersion f is well defined.

In the next chapter, we will show that there exists a DPW potential for other compact

surfaces immersed in S
3 of genus g � 2.
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Chapter 4

DPW potentials for symmetric

CMC surfaces in S
3

The aim of this chapter is to show that there exists a DPW potential (cf. Section 3.2) for every

compact CMC surface M in S
3 which satisfies appropriate properties (cf. Definition 4.1 below).

Therefore, it is possible to reconstruct the CMC immersion f : M ! S
3 via the DPW method

described in Section 3.2.

We first define the class of surfaces we will consider.

Definition 4.1. Let M be a compact Riemann surface. We say that M is a symmetric CMC

surface if there exists a CMC embedding f : M ! S
3 and the following conditions are satisfied:

(i) There exists a finite subgroup G ⇢ SO(4) with a presentation of the form

G = hg1, . . . , g4 | g1 · · · g4 = 1i, (4.1)

which acts faithfully (cf. Definition 1.4) on M , where 1 denotes the identity element of

G;

(ii) The quotient M/G is the Riemann sphere CP
1;

(iii) The projection to the quotient ⇡ : M ! CP
1 is a holomorphic map between Riemann

surfaces of degree |G|, branched at four points z1, . . . , z4 2 CP
1.

Remark 4.1. The group G acts transitively on the set ⇡�1(z) for each z 2 CP
1, that is, for

every two points p, p̃ 2 ⇡
�1(z) there exists an element g 2 G such that

g · p = p̃. (4.2)
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A covering map which satisfies this property is called a Galois covering and G the Galois

group of the covering map (we refer to [61, Chapter 2] for more details on the theory of Galois

coverings).

The following table lists the surfaces we will consider, together with their symmetry group

G ⇢ SO(4):

Surface Genus SO(4)-symmetry group

Lawson’s surface ⇠(g�1,1) g � 1 Zg ⇥Z2

Lawson’s surface ⇠(k�1,l�1) (k � 1)(l � 1) Zk ⇥Zl

KPS Tetrahedral 3 A4

KPS Octahedral 7 S4

KPS Cubical 5 S4

KPS Icosahedral 19 A5

KPS Dodecahedral 11 A5

Octahedral join 11 S4

Icosahedral join 29 A5

(4.3)

We saw in Sections 2.5 and 2.6 that the Lawson’s surfaces and the platonic KPS surfaces

satisfy conditions (i)� (iii) of Definition 4.1.

The Octahedral join surface can be constructed using the method of Karcher, Pinkall and

Sterling (cf. Section 2.6) using a tessellation of S3 with symmetry group S4 (the symmetric

group of order 4) and dihedral angle ⌘ used to construct it (cf. Subsection 2.6) equal to ⇡

12 .

Analogously, the Icosahedral join surface can be constructed using a tessellation of S
3 with

symmetry group A5 (the alternating group of order 5) and dihedral angle ⌘ equal to ⇡

30 .

In the rest of this Chapter (unless otherwise stated) we will consider only the symmetric

CMC surfaces of Table 4.3.

4.1 Lifting the SO(4)-action to a SU(2)⇥ SU(2)-action

Let M be a symmetric CMC surface with symmetry group G ⇢ SO(4). In order to construct

a DPW potential for M , we will need to lift the group action of G on a rank 2 holomorphic

vector bundle E ! M which induces an action on flat SL(2,C)-connections on E. Therefore,
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it is better to consider the action of a subgroup � ⇢ SU(2) ⇥ SU(2) on the surface M which

acts as the group G.

This can be realized as follows: Let " : SU(2) ⇥ SU(2) ! SO(4) the 2-fold spin convering

of SO(4) ([23, Section 3.17]). An element g 2 G acts on M as

g · p 7! apb, (4.4)

for some a, b 2 SU(2) and p 2 M ⇢ S
3
' SU(2).

The finite subgroup � := "
�1(G) ⇢ SU(2) ⇥ SU(2) acts on M in the same way as G.

However, the �-action on M is not faithful (for example � Id 2 � acts as the identity element of

G). We will need a faithful action to construct a DPW potential for the immersion f : M ! S
3.

We want to show that it is possible to define a Riemann surface M̃ , related to M , on which

� acts faithfully.

Let G be the Galois group of the covering map ⇡ : M ! CP
1, with a presentation

G = hg1, . . . , g4 | g1 · · · g4 = 1i. (4.5)

Consider z0 2 CP
1
r{z1, . . . , z4}, where z1, . . . , z4 are the branch points of ⇡, and let

⇢ : ⇡1(CP
1
r{z1, . . . , z4}, z0) ! G (4.6)

be its monodromy representation (cf. Example 1.1). A simple loop ⌘j around the point zj is

mapped to the generator gj of G, for j = 1, . . . , 4.

Geometrically, we can interpretate this as follows: If dj is the order of the element gj 2 G,

the loop ⌘
dj

j
in CP

1 is lifted to a closed loop around the points in ⇡�1(zj). Thus, the surface M

closes, locally around each of the point in ⇡�1(zj), after dj rotations of angle 2⇡
dj
.

Let �j 2 "
�1(gj), j = 1, . . . , 4, we can define a group homomorphism

⇢̃ : ⇡1(CP
1
r{z1, . . . , z4}, z0) ! � (4.7)

which maps the simple loop ⌘j around zj to the element �j . Moreover, after an appropriate

choice of the elements �1, . . . , �4, we have

�1 · · · �4 = 1, (4.8)

where 1 is the identity element of �.

Proposition 4.1. Let M be a symmetric CMC surface, G ⇢ SO(4) its symmetry group and

⇢̃ : ⇡1(CP
1
r{z1, . . . , z4}, z0) ! � the group homomorphism defined in (4.7). There exists a

Riemann surface M̃ such that:
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(1) The group � acts faithfully on M̃ and the quotient M̃/� is the Riemann sphere CP
1
;

(2) The holomorphic map ⇡̃ : M̃ ! M̃/� is branched at the points z1, . . . , z4 2 CP
1
and its

monodromy representation is given by ⇢̃;

(3) There exists a holomorphic covering map ⌧ : M̃ ! M of degree 2, branched at the fixed

points of the action of G on M .

Proof. The existence of the Riemann surface M̃ and the conditions (1) and (2) come from the

Riemann’s existence Theorem 1.4 and its proof (see, for example, [52, Chapter 3 pp. 90-91]).

Condition (3) comes from the definition of the surface M via the Riemann’s existence

Theorem using the group homomorphism ⇢ in (4.6) and from the fact that the group � ⇢

SU(2)⇥ SU(2) double covers the group G ⇢ SO(4).

In the next Subsections we will consider the symmetric surfaces of Table 4.3. We will describe

the group � ⇢ SU(2) ⇥ SU(2) acting on each of them and the monodromy representation of

the holomorphic map ⇡̃ : M̃ ! CP
1 defined in Proposition 4.1.

4.1.1 Lawson’s (d� 1, 1) surfaces

Let M be the Lawson’s surface ⌃d�1,1 of genus g = d � 1 (cf. Subsection 2.5.1). We consider

the action of the group Zd ⇢ SO(4) on M . The group � ⇢ SU(2)⇥ SU(2) double covering G

is the cyclic group Z2d. We denote with P1, . . . , P4 2 M the fixed points of the action of Zd on

M .

Let ⇢ : ⇡1(CP
1
r{z1, . . . , z4}, z0) ! Zd be the monodromy representation of the covering

map ⇡ : M ! CP
1, branched at the points z1, . . . , z4 2 CP

1. We denote with gj 2 Zd the image

under ⇢, of a simple loop ⌘j based in z0 around the point zj , for j = 1, . . . 4.

From the construction of the surface M in Subsection 2.5.1, it follows that the elements

g1, . . . , g4 2 Zd satisfy the following conditions

g2 = g
�1
1 , g3 = g1, g4 = g

�1
1 . (4.9)

We first assume that d is an even number. Let ⌧ : M̃ ! M be the double covering map of

Proposition 4.1. It is possible to find a local coordinate around the point P1 2 M and a local

coordinate w around the point P̃1 := ⌧
�1(P1) such that w2 = z ([21, Proposition 5 p. 43]).

We can assume that g1 acts, locally around P1, as

g1(z) = e
2⇡i
d z. (4.10)
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If �̃1, �1 are the preimages of g1 in Z2d, they both have order 2d and one of them, for example

�̃1, acts around P̃1 as

�̃1(w) = e
2⇡i
2d w. (4.11)

Around the point P2 2 M , the element g1 acts as a rotation of and angle 2⇡
d

in the opposite

direction of the rotation around P1 (cf. Equation (4.9)), that is

g1(z̃) = e
2⇡i(d�1)

d z̃ (4.12)

where z̃ is a local coordinate on M around P2. Therefore, �̃1 act around P̃2 := ⌧
�1(P2) as

�̃1(w̃) = e
2⇡i(d�1)

2d w̃, (4.13)

where w̃ is a local coordinate on M̃ around P̃2 such that w̃2 = z̃.

Up to rotations and sign, we can consider the representation of � in SU(2) ⇥ SU(2) such

that (on the first factor)

�̃1 7!

0

@e
2⇡i
2d 0

0 e
� 2⇡i

2d

1

A . (4.14)

From the properties of the covering map " : SU(2) ⇥ SU(2) ! SO(4), the element �1 2

"
�1(g1) is mapped, under the same representation, to the element whose first factor is given by

�1 7! �

0

@e
2⇡i
2d 0

0 e
� 2⇡i

2d

1

A =

0

@e
2⇡i(d+1)

2d 0

0 e
2⇡i(d�1)

2d

1

A . (4.15)

Because Z2d is a cyclic group generated by �̃1, Equation (4.15) implies that �1 = �̃
d�1.

Therefore, �1 acts around P̃1 as

�1(w) = e
2⇡i(d�1)

2d w, (4.16)

and around P̃2 as

�1(w̃) = e
2⇡i(d+1)

2d w̃. (4.17)

After analogous consideration on the action of Zd around the points P3 and P4 and the

action of Z2d around the points P̃3 := ⌧
�1(P3) and P̃4 := ⌧

�1(P4), we define the monodromy

representation ⇢̃ : ⇡1(CP
1
r{z1, . . . , z4}, z0) ! Z2d such that it maps simple loops ⌘1, . . . , ⌘4

around the points z1, . . . , z4 to the elements �1, �
�1
1 , �1, �

�1
1 , respectively,

Let now d be an odd number and g1 one of the generator of Zd. The preimages �̃1, �1 of g1

in Z2d are such that one has order 2d and the other has order d. Without loss of generality, we

assume that �̃1 has order 2d and �1 order d.
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Thus, there is a 1:1 correspondence between Zd ⇢ SO(4) and a subgroup of Z2d ⇢ SU(2)⇥

SU(2), obtained by mapping the generators gj of Zd to the elements �j 2 Z2d having the same

order d.

Up to rotations and sign, we can consider the representation of Z2d in SU(2)⇥ SU(2) such

that (on the first factor)

�̃1 7!

0

@e
2⇡i
2d 0

0 e
� 2⇡i

2d

1

A , �1 7!

0

@e
2⇡i(d+1)

2d 0

0 e
2⇡i(d�1)

2d

1

A (4.18)

Therefore, �1 is given by �̃d�1
1 and the monodromy representation ⇢̃ : ⇡1(CP

1
r{z1, . . . , z4}, z0) !

Z2d is defined in the same way as for the case of d being even.

The local eigenvalues of the monodromy representation ⇢̃ at the points z1, . . . , z4 are given

by
d� 1

2d
, and

d+ 1

2d
. (4.19)

4.1.2 Lawson’s (k, l) surfaces

Let M be the Lawson’s surface ⌃k�1,l�1 of genus (k � 1)(l � 1) equipped with the action of

the group Zk ⇥Zl ⇢ SO(4) (cf. Subsection 2.5.1). Let P1, . . . , P2l+2 2 M be the points with

stabilizer group Zk and Q1, . . . , Q2k+2 2 M the points with stabilizer group Zl.

From the construction of M in Subsection 2.5.1, it follows that the generator g1 for the

stabilizer group of one point P2r+1, r = 0, . . . , l acts locally as a rotation around them. The

generator g2 for the stabilizer group of the points P2r+2, r = 0, . . . , l acts locally as g
�1
1 . The

same holds for the generators g3 and g4 for the stabilizer groups of the points Q2s+1 and Q2s+2,

s = 0, . . . , k, respectively.

We consider the presentation of Zk ⇥Zl given by

Zk ⇥Zl = hg1, . . . , g4 | g
k

1 = g
k

2 = g
l

3 = g
l

4 = 1, g1 · · · g4 = 1i, (4.20)

where g2 = g
�1
1 and g4 = g

�1
3 .

Let ⌧ : M̃ ! M be the double covering defined in Proposition 4.1. The map ⌧ is branched at

the points Pr and Qs for r = 1, . . . , 2l+2 and s = 1, . . . , 2k+2. The group � ⇢ SU(2)⇥SU(2)

double covering Zk ⇥Zl is given by the group Z2k ⇥Z2l.

Assume that k is an odd number and l is an even number. The preimages �̃1, �1 2 Z2k ⇥Z2l

of the generators g1 for the stabilizer group of the point P1 (the situation for the points P2r+1,

r = 1, . . . , l is analogous) satisfy

�̃
2k
1 = �

k

1 = 1. (4.21)
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An argument analogous to the one used in Subsection 4.1.1, shows that there is a 1:1

correspondence between the stabilizer group of P1 and a subgroup of the stabilizer group Z2k ⇢

Z2k ⇥Z2l of the point P̃1 := ⌧
�1(P1) 2 M̃ .

Let z be a local coordinate around P1 and w a local coordinate around P̃1 such that w2 = z.

The element g1 acts around P1 as

g1(z) = e
2⇡i
k z (4.22)

and the element �̃1 acts around P̃1 as

�̃1(w) = e
2⇡i
2k w. (4.23)

Up to rotations and sign, we can consider the representation of Z2k ⇥Z2l in SU(2)⇥SU(2)

such that (on the first factor)

�̃1 7!

0

@e
2⇡i
2k 0

0 e
� 2⇡i

2k

1

A . (4.24)

Therefore, the element �1 is mapped to the element whose first factor is given by

�1 7! �

0

@e
2⇡i
2k 0

0 e
� 2⇡i

2k

1

A =

0

@e
2⇡i(k+1)

2k 0

0 e
2⇡i(k�1)

2k

1

A . (4.25)

Since g2 = g
�1
1 , the preimages �̃2, �2 2 Z2k ⇥Z2l of g2 are such that �2 is mapped, under

the representation of Z2k ⇥Z2l in SU(2)⇥ SU(2), to the element whose first factor is given by

�2 7!

0

@e
2⇡i(k�1)

2k 0

0 e
2⇡i(k+1)

2k

1

A . (4.26)

The local eigenvalues of the monodromy representation ⇢̃ : ⇡1(CP
1
r{z1, . . . , z4}, z0) !

Z2k ⇥Z2l mapping the simple loops ⌘1, ⌘2 around z1, z2 respectively to �1, �2, are given by

k + 1

2k
, and

k � 1

2k
. (4.27)

Consider now the generator g3 of the stabilizer group of the point Q1 (the situation for the

points Q2s+1, s = 1, . . . , k is analogous). Its preimages �̃3, �3 2 Z2k ⇥Z2l satisfy

�̃
2l
3 = �

2l
3 = 1. (4.28)

Let z be a local coordinate around Q1 and w a local coordinate around Q̃1 := ⌧
�1(Q1) 2 M̃ ,

such that w2 = z. The element g3 acts, locally around Q1, as

g3(z) = e
2⇡i
l z. (4.29)
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Then, the element �̃3 acts around Q̃1 as

�̃3(w) = e
2⇡i
2l w. (4.30)

Moreover, the element �̃3 acts as a rotation of the same angle, but in the opposite direction,

around Q̃2 := ⌧
�1(Q2) 2 M̃ (and around the points Q̃2s+2 := ⌧

�1(Q2s+2) for s = 1, . . . , k in

the same way ):

�̃3(w̃) = e
2⇡i(2l�1)

2l w̃, (4.31)

where w̃ is a local coordinate around Q̃2.

Up to rotations and sign, we can consider the representation of Z2k ⇥Z2l in SU(2)⇥SU(2)

such that (on the first factor)

�̃3 7!

0

@e
2⇡il
2l 0

0 e
� 2⇡il

2l

1

A . (4.32)

Under the same representation, we obtain

�3 7!

0

@e
2⇡i(l+1)

2l 0

0 e
2⇡i(l�1)

2l

1

A (4.33)

and the element �4 2 "
�1(g4) is mapped to the same element as ��1

3 .

The local eigenvalues of the monodromy representation ⇢̃ mapping the simple loops ⌘3, ⌘4

around the points z3, z4 2 CP
1 to the elements �3, �4 2 Z2k ⇥Z2l, respectively, are given by

l + 1

2l
, and

l � 1

2l
. (4.34)

The computations for the case of k and l being both odd (or both even) numbers can be

carry out analogously and the local eigenvalues of the monodromy representation ⇢̃ are given

by (4.27) and (4.34).

4.1.3 Platonic KPS surfaces

We consider now the platonic KPS surfaces described in Section 2.6. We will carry out the

computations for the platonic KPS surface M of genus 3 with symmetry group A4 ⇢ SO(4)

(the alternating group of order 4) of order 12. The computations for the other platonic KPS

surfaces can be done in an analogous way.

We consider the presentation of A4 given by

A4 = ha, b|a
3 = b

3 = (ab)2 = 1i. (4.35)
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Let g1 = a, g2 = a
�1

, g3 = ab, g4 = (ab)�1, which give a presentation of A4 of the form

hg1, . . . , g4|g1 · · · g4 = 1i. (4.36)

The finite subgroup � ⇢ SU(2) ⇥ SU(2) which double covers A4 is the binary tetrahedral

group A
⇤
4 of order 24, having a presentation

A
⇤
4 = hx, y|x

3 = y
3 = (xy)2 = �1i. (4.37)

Let ⇡ : M ! CP
1 be the 12 : 1 covering map branched at the points z1, . . . , z4 2 CP

1. From

the construction of the platonic KPS surfaces in Section 2.6 we have

⇡
�1(z1) = {P1, P3, P5, P7}

⇡
�1(z2) = {P2, P4, P6, P8}

⇡
�1(z3) = {Q1, Q3, Q5, Q7, Q9, Q11}

⇡
�1(z4) = {Q2, Q4, Q6, Q8, Q10, Q12},

(4.38)

where the points Pr have branch order 2, r = 1, . . . , 8 and the points Qs have branch order 1,

s = 1, . . . , 12.

The stabilizer group of the points Pr acts locally around Pr as a cyclic group of order 3.

The stabilizer group of the points Qs acts locally as a cyclic group of order 2.

Let ⌧ : M̃ ! M be the double covering map defined in Proposition 4.1. The map ⌧ is

branched at the points Pr, r = 1, . . . , 8 and at the points Qs, s = 1, . . . , 12.

Consider the point P1 2 M (for the other points P3, P5, P7 the situation is the same) and

let z be a local coordinate around it and w a local coordinate around P̃1 := ⌧
�1(P1) 2 M̃ such

that w2 = z. The element g1 2 A4 acts around P1 as

g1(z) = e
2⇡i
3 z. (4.39)

The preimages �̃1, �1 2 A
⇤
4 of g1, under the double covering " : SU(2)⇥SU(2) ! SO(4) satisfy

�̃
6
1 = �

3
1 = 1. (4.40)

The element �̃1 acts around P̃1 as

�̃1(w) = e
2⇡i
6 w. (4.41)

We can choose the element �̃1 to be the element x in the presentation (4.37) of A⇤
4, and �1 to

be the element x2 2 A
⇤
4 of order 3.
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Up to rotations and sign, we can consider the representation of the stabilizer group of P̃1 in

SU(2)⇥ SU(2) such that (on the first factor)

�̃1 7!

0

@e
2⇡i
6 0

0 e
� 2⇡i

6

1

A . (4.42)

From the properties of the covering map ", the element �1 is mapped to the element in

SU(2)⇥ SU(2) whose first factor is given by

�1 7! �

0

@e
2⇡i
6 0

0 e
� 2⇡i

6

1

A =

0

@e
4⇡i
3 0

0 e
2⇡i
3

1

A . (4.43)

Since the element g2 acts, locally around the point P2 (the same holds for the points

P4, P6, P8 2 M), as g
�1
1 , the preimage �2 2 A

⇤
4 of g2 has order 3 and acts as ��1

1 . There-

fore, under the representation in SU(2) ⇥ SU(2), the element �2 is mapped to the element,

whose first factor is given by

�2 7!

0

@e
2⇡i
3 0

0 e
4⇡i
3

1

A . (4.44)

Consider the point Q1 (for the other points Q2s+1, s = 1, . . . , 5 the situation is analogous)

and the action of the element g3 around it. After an appropriate choice of a local coordinate z

around Q1, we can assume that g3 acts locally as

g3(z) = e
2⇡i
2 z. (4.45)

Let �̃3, �3 2 A
⇤
4 be the preimages of g3 under ", which satisfy

�̃
4
3 = �

4
3 = 1. (4.46)

We can assume that either �̃3 or �3 is the element xy in the presentation (4.37) of A⇤
4. Let

�3 be such element. The element �̃3 acts around Q̃1 := ⌧
�1(Q1) as

�̃3(w) = e
2⇡i
4 w. (4.47)

Up to rotations and sign, we can consider the representation of the stabilizer group of Q̃1

in SU(2)⇥ SU(2) such that (on the first factor)

�̃3 7!

0

@e
2⇡i
4 0

0 e
� 2⇡i

4

1

A . (4.48)

The element �3 is then mapped to the element whose first factor is given by

�3 7! �

0

@e
2⇡i
4 0

0 e
� 2⇡i

4

1

A =

0

@e
6⇡i
4 0

0 e
2⇡i
4

1

A . (4.49)
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From the construction of the surface M (cf. Section 2.6), the element g4 2 A4 acts around

the point Q2 (the same holds for the points Q2s+2, s = 1, . . . , 5) as the element g
�1
3 . Thus,

around the point Q̃2 := ⌧
�1(Q2) 2 M̃ the preimage �4 2 A

⇤
4 of g4 acts as ��1

3 and it is mapped

to the element of SU(2)⇥ SU(2) whose first factor is given by

�4 7!

0

@e
2⇡i
4 0

0 e
6⇡i
4

1

A . (4.50)

We can conclude that the local eigenvalues of the monodromy representation

⇢̃ : ⇡1(CP
1
r{z1, . . . , z4}, z0) ! A

⇤
4 (4.51)

which maps a simple loop ⌘j around the point zj to the element �j described above, for j =

1, . . . , 4, are given by 8
><

>:

1
3 ,

2
3 at z1, z2

1
4 ,

3
4 at z3, z4.

(4.52)

It is possible to write the local eigenvalues of ⇢̃ in the same form of the local eigenvalues

of the monodromy representation of the Lawson’s surfaces described in Subsections 4.1.1 and

4.1.2:
dj � 1

2dj
and

dj + 1

2dj
, (4.53)

where dj is the order of the stabilizer group of the points in ⇡̃�1(zj), j = 1, . . . , 4.

Moreover, the elements �1, . . . , �4 2 A
⇤
4 generates the whole group and satisfy �1 · · · �4 = 1.

Therefore, we obtain a presentation of A⇤
4 of the form

h�1, . . . , �4|�1 · · · �4 = 1i. (4.54)

The same arguments used above can be applied to the other platonic KPS surfaces and to the

Octahedral and Icosahedral join surfaces. For the surfaces having symmetry group S4 ⇢ SO(4),

it is possible to consider the presentation

S4 = ha, b|a
3 = b

4 = (ab)2 = 1i. (4.55)

The subgroup � ⇢ SU(2) ⇥ SU(2) double covering S4 is the binary octahedral group S
⇤
4

which has a presentation given by

S
⇤
4 = hx, y|x

3 = y
4 = (xy)2 = �1i. (4.56)
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For the surfaces having symmetry group A5 ⇢ SO(4), it is possible to consider the presen-

tation

A5 = ha, b|a
3 = b

5 = (ab)2 = 1i. (4.57)

The subgroup � ⇢ SU(2) ⇥ SU(2) double covering A5 is the binary icosahedral group A
⇤
5

which has a presentation given by

A
⇤
5 = hx, y|x

3 = y
5 = (xy)2 = �1i. (4.58)

4.2 The action of � on holomorphic vector bundles and connec-

tions

Let M be a symmetric CMC surface, G ⇢ SO(4) its symmetry group and f : M ! S
3 the

CMC immersion of M into S
3. Consider the group action � ⇥M ! M , where � = "

�1(G) ⇢

SU(2) ⇥ SU(2) (cf. Section 4.1) and the rank 2 complex vector bundle E ! M where the

associated family of flat SL(2,C)-connections r
� of the immersion f is defined (cf. Section

3.1).

For every element � 2 � there is a biholomorphic map, which we denote with the same

symbol, � : M ! M , where

�(p) := � · p, p 2 M. (4.59)

It is possible to lift the action of � on M to an action of � on the complex vector bundle

E ! M as follows: for each � 2 � we consider the pullback bundle �⇤E ! M of E, which is

isomorphic to E. Thus, there is a representation of the group � into the gauge group G (cf.

Definition 3.1) of the complex vector bundle E ! M , given by

�! G

� 7! g� ,

(4.60)

where g� : E ! �
⇤
E ' E.

The complex vector bundle E ! M , together with the action � ⇥ E ! E, is called an

orbifold bundle (we refer to [60] and [58] for more details about orbifold bundles).

The action of � on E ! M induces an action of � on the space of sections of E. In fact, let

s be a section of E, then

(� · s)(p) := g��1(p)s(p), p 2 M. (4.61)
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From the fact that (4.60) is a representation, the following hold:

g1 = Id

g�1,�2 = g�1g�2 , 8�1, �2 2 �.
(4.62)

Therefore, (4.61) is a well-defined �-action on the space of sections of E.

Definition 4.2. A section s 2 �(U ⇢ M,E) is �-invariant if

s(p) = (� · s)(p), 8p 2 U, � 2 �. (4.63)

We now consider the associated family of flat connections r
� of the CMC immersion f :

M ! S
3. We first give the following

Definition 4.3. Let E ! M a orbifold bundle over a compact Riemann surface M with

symmetry group �. A flat connection r on E ! M is �-equivariant if, for every � 2 � the

gauge transformation g� 2 G given by the image of � under the representation (4.60) satisfies

�
⇤
r = r · g� . (4.64)

Let M be a symmetric CMC surface with symmetry group G. Consider the rank 2 complex

vector bundle E ! M described in Section 3.1 and the flat SL(2,C)-connectionr = d+ 1
2f

�1
df ,

where f : M ! S
3 is the CMC immersion of M into S

3.

Let p 2 M be a point with non trivial stabilizer group with respect to the action of � =

"
�1(G) ⇢ SU(2) ⇥ SU(2) on M . It is possible to normalize the immersion f : M ! S

3 such

that

f(p) = Id 2 S
3
' SU(2). (4.65)

Consider the action of � 2 � on a neighbourhood of p 2 M , we obtain (cf. (4.4))

Id = f(p) = (� � f)(p) = af(p)b�1 = ab
�1

) a = b, a, b 2 SU(2). (4.66)

Therefore, locally around a point p with non trivial stabilizer group, � acts on M by the

conjugation of an element b 2 SU(2).

Let ! = f
�1

df be the connection 1-form of the connection r on E ! M . Around the point

p 2 M , � acts on ! as

�
⇤
! = (� � f)�1

d(� � f)

= bf
�1

b
�1

bdfb
�1

= bf
�1

dfb
�1

= b!b
�1

.

(4.67)
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Thus, the local action of � on the connection r is given by the constant gauge

� ·r = r · b = brb
�1

. (4.68)

Let �,�⇤ be the normalized (1, 0) and, respectively, (0, 1) components of the 1-form ! (cf.

(3.16)):

� =
�2

1 + �2
(! � i ⇤ !), �⇤ =

1

1 + �2
(! + i ⇤ !), �2 2 S

1
. (4.69)

Using (4.67) it is possible to conclude that � acts, locally, on the associated family of flat

SL(2,C)-connections r� = r+ �
�1�� ��⇤ of the CMC immersion f : M ! S

3 as

� ·r
� = r

�
· b. (4.70)

Therefore, we have proved the first part of the following

Proposition 4.2. Let M be a symmetric CMC surface with symmetry group G, � = "
�1(G) ⇢

SU(2) ⇥ SU(2). The associated family of flat SL(2,C)-connections r
�
of the immersion f :

M ! S
3
is �-equivariant.

Moreover, the pullback connections ⌧
⇤
r

�
is �-equivariant, where ⌧ : M̃ ! M is the holo-

morphic map of degree 2 defined in Proposition 4.1.

Proof. The only thing left to prove is the second part of the statement. From the construction

of the holomorphic map ⌧ and the Riemann surface M̃ , we have the following commutative

diagram

�⇥ M̃ M̃

�⇥M M

(Id,⌧)

�

⌧

�

(4.71)

Given � 2 �, from the commutativity of the diagram (4.71), the equation (4.70) and the

properties of the pullback we obtain

�
⇤(⌧⇤r�) = (⌧ � �)⇤r� = (� � ⌧)⇤r�

= ⌧
⇤(�⇤r�) = ⌧

⇤(r�
· b)

= ⌧
⇤(b�1

r
�
b) = b

�1
⌧
⇤
r

�
b

= (⌧⇤r�) · b.

(4.72)
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4.3 A parabolic bundle on CP
1 associated to E ! M

In this Section we will follow the work of Biswas in [6] and define a parabolic bundle over the

Riemann sphere CP
1 associated to the orbifold bundle E ! M described in Section 4.2.

We will use this construction to define a �-family of parabolic bundles on CP
1, for � 2 C,

on which it is possible to define a �-family of Fuchsian systems (we refer to [3] for more details

on Fuchsian systems on Riemann surfaces). Moreover, we will show how this family is related

to the associated family of flat SL(2,C)-connections of the symmetric CMC surface M .

We first give the following ([6, Definition 2.1 p. 306]):

Definition 4.4. Let E ! M be a holomorphic vector bundle over a compact Riemann surface

M and D an e↵ective divisor on M (cf. Definition 1.19). A quasi-parabolic structure on E, with

respect to D, is a filtration of sub-bundles

E = F1(E) � F2(E) � · · · � Fl(E) � Fl+1(E) = E(�D), (4.73)

where E(�D) is the bundle described in Subsection 1.4.2. The integer l is called the length of

the parabolic filtration (4.73).

A parabolic structure on E is given by a quasi-parabolic structure together with a system of

parabolic weights {↵1, . . . ,↵l}, such that

0  ↵1 < · · · < ↵l < 1. (4.74)

The weight ↵j corresponds to the sub-bundle Fj(E) ⇢ E.

A holomorphic vector bundle E equipped with a parabolic structure is called a parabolic

bundle.

Let E ! M be a parabolic bundle. It is possible to define a continuous version of its

parabolic filtration as follows ([6, Section 2.1 pp. 306-307]): For any t 2 R consider the sub-

bundle

Et = Fj(E)(�btcD), (4.75)

where btc is the integral part of t and the index j is such that

↵j�1 < t� btc  ↵j , j = 2, . . . l, ↵0 = ↵l � 1 and ↵l+1 = 1. (4.76)

The set {Et}t2R gives a decreasing filtration of sub-bundles of E. In fact

Et ⇢ Et0 , for t � t
0
. (4.77)
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The parabolic filtration given by {Et} is also left continuous, that is, there exists a ✏ > 0

such that

Et�✏ = Et 8t 2 R. (4.78)

Moreover, Et+1 = Et(�D) ([6, Section 2.a]).

Definition 4.5. The filtration {Et} is said to have a jump in t 2 R if, for any ✏ > 0

Et+✏ 6= Et. (4.79)

From the construction, it follows that the parabolic filtration {Et} has a jump if and only if

t� btc = ↵j , for some j = 1, . . . , l. (4.80)

Let M be a symmetric CMC surface with symmetry group G ⇢ SO(4) and ⌧ : M̃ ! M

the holomorphic map between Riemann surfaces defined in Proposition 4.1. Consider the rank

2 holomorphic vector bundle Ẽ := ⌧
⇤
E ! M̃ , where E ! M is the holomorphic vector bundle

where the associated family of flat SL(2,C)-connections of M is defined (cf. Section 3.1).

From Proposition 4.1, there exists a holomorphic map ⇡̃ : M̃ ! M̃/� = CP
1 of degree

2d := |�|, where � = "
�1(G) ⇢ SU(2)⇥ SU(2).

The push-forward bundle of Ẽ under the map ⇡̃ is a holomorphic vector bundle ⇡̃⇤Ẽ ! CP
1

of rank 4d (cf. Subsection 1.4.3).

The action of � on Ẽ (cf. Section 4.2) induces an action of � on ⇡̃⇤Ẽ as follows: Let U ⇢ CP
1

be an open set not containing any branch point of the map ⇡̃ and U1, . . . , U2d the disjoint open

subsets of M̃ covering U . A holomorphic local frame for ⇡̃⇤Ẽ over U is given by (with abuse of

notation, cf. (1.49))

(s1, t1)� · · ·� (s2d, t2d), (4.81)

where (sj , tj) is a local frame for Ẽ ! M̃ over the set Uj , j = 1, . . . , 2d.

The action of � 2 � on the local frame (4.81) is given by

� · ((s1, t1)� · · ·� (s2d, t2d)) = (g��1s1, g��1t1)� · · ·� (g��1s2d, g��1t2d), (4.82)

where g� 2 G is the image of the element � under the representation 4.60.

Let now U ⇢ CP
1 be an open set containing a branch point of ⇡̃, which we denote with

z1. There exists a local coordinate z on CP
1 around z1 and a local coordinate w on M̃ around

p1 2 ⇡̃
�1(z1) such that ([21, Proposition 5 p. 43])

w
2d1 = z, (4.83)
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where 2d1 is the order of the stabilizer group �p1 of p1 2 M̃ (cf. Section 4.1).

Let (s, t) 2 H
0(⇡̃�1(U), Ẽ) be a holomorphic local frame. Then, a holomorphic local frame

for ⇡̃⇤Ẽ over U is given by (cf. Example 1.6)

(s, t, ws, wt, . . . , w2d1�1
s, w

2d1�1
t). (4.84)

The stabilizer group �p1 acts on U ⇢ M̃ as a cyclic group of order 2d1. It is possible to write

the action of a generator � of �p1 on the sections s and t as (see the proof of [8, Proposition

2.2])

� · s(p) = ↵s(��1
· p)

� · t(p) = ↵
�1

s(��1
· p),

(4.85)

for every p 2 U , where ↵ = e

2⇡i(d1�1)
2d1 .

Therefore, the action of � on the holomorphic local frame (4.84) is given by

� · (s,t, ws, wt, . . . , w2d1�1
s, w

2d1�1
t)(q) :=

= (↵s(��1
· p),↵�1

t(��1
· p), . . . ,↵2d1�1

w
2d1�1

↵s(��1
· p),↵2d1�1

w
2d1�1

↵
�1

t(��1
· p)),

(4.86)

where q = ⇡̃(p).

Following [6], we want to define a rank 2 sub-bundle of ⇡̃⇤Ẽ on which it is possible to define

a parabolic structure.

Consider the vector bundle map ⌦ : ⇡̃⇤Ẽ ! ⇡̃⇤Ẽ given, on each fiber, by

⌦p : (⇡̃⇤Ẽ)p ! (⇡̃⇤Ẽ)p

v 7!

X

�2�
� · v.

(4.87)

From the definition, it follows that ⌦ satisfies

⌦2 = |�|⌦, (4.88)

which implies

Im⌦ \Ker⌦ = {0}. (4.89)

In fact, if s 2 �(U, ⇡̃⇤Ẽ) is a local section with s 2 Im⌦\Ker⌦, there exists another section

t such that s = ⌦(t). The following computation

0 = ⌦(s) = ⌦(⌦(t)) = ⌦2(t)

= |�|⌦(t) = |�|s,
(4.90)
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implies s = 0.

It is also possible to prove that the bundle ⇡̃⇤Ẽ is given by the direct sum

⇡̃⇤Ẽ = Im⌦�Ker⌦, (4.91)

by writing a section s of ⇡̃⇤Ẽ as

s =
⌦(s)

|�|
+

✓
s�

⌦(s)

|�|

◆
(4.92)

where ⌦(s)
|�| 2 Im⌦ and s�

⌦(s)
|�| 2 Ker⌦.

The image of ⌦ is generated by the �-invariant sections of ⇡̃⇤Ẽ (cf. Definition 4.2). The

sheaf of �-invariant sections of ⇡̃⇤Ẽ is locally free of rank 2 ([6, Section 2.c]). Therefore, Im⌦

is a �-invariant rank 2 sub-bundle of ⇡̃⇤Ẽ, which we will denote with (⇡̃⇤Ẽ)�.

Biswas in [6], considered the rank 2 vector bundle (⇡̃⇤Ẽ)� ! CP
1 and defined the parabolic

structure on it, given by the parabolic filtration

Ẽt :=

 
⇡̃⇤

✓
Ẽ ⌦ L

⇣ 4X

j=1

b�2tdjc⇡̃
�1(zj)

⌘◆!�

, t 2 R, (4.93)

where z1, . . . , z4 2 CP
1 are the branch points of the map ⇡̃ : M̃ ! CP

1. The number 2dj is the

order of the stabilizer group �
p
k
j
of the points pk

j
2 ⇡̃

�1(zj) ⇢ M̃ .

The action of � on the second factor of (4.93) can be described as follows: LetD =
P

n

j=1 njzj

be an e↵ective divisor on CP
1 and s�D the meromorphic frame of the line bundle L(�D) (cf.

Subsection 1.4.2). Locally, around the point zj , � acts on s�D as

� · s�D = �s�D(�
�1

· z), (4.94)

where � = e

2⇡i
kj , � is a generator of the stabilizer group �zj of the point zj and kj = |�zj |.

The parabolic weights ↵0, . . . ,↵l of the parabolic structure on (⇡̃⇤Ẽ)� given by (4.93) are

given by the values of t 2 R such that {Ẽt} has a jump (cf. Definition 4.5).

In the next Section we will show that this parabolic structure on (⇡̃⇤Ẽ)� is equivalent to

another parabolic structure defined using a singular connection r̃ on (⇡̃⇤Ẽ)�.

4.4 Logarithmic connections and parabolic structures on (⇡̃⇤Ẽ)� !

CP
1

Following the work of Biswas and Heu [8], we want to define a logarithmic connection on the

holomorphic vector bundle (⇡̃⇤Ẽ)� ! CP
1 defined in Section 4.3, starting from a �-equivariant

connection on Ẽ (cf. Definition 4.3).
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We first recall the following ([8, Section 2])

Definition 4.6. Let E ! M be a holomorphic vector bundle on a compact Riemann surfaceM ,

U ⇢ M a trivializing open set for E ! M and KM the canonical bundle of M . A logarithmic

connection r, singular over an e↵ective divisor D of M , is given by a linear map

r : H0(U,E) ! H
0(U,E ⌦KM ⌦ L(D)), (4.95)

which satisfies the Leibniz rule

r(fs) = frs+ sdf, (4.96)

for every holomorphic function f : U ! C and section s 2 H
0(U,E).

Consider a symmetric CMC surface M and the holomorphic map between Riemann surfaces

⇡̃ : M̃ ! CP
1 defined in Proposition 4.1. Let ⌧⇤r be the �-equivariant connection on the

holomorphic vector bundle Ẽ ! M̃ described in Section 4.3.

We consider ⌧⇤r as a linear map, which satisfies the Leibniz rule

⌧
⇤
r : H0(U, Ẽ) ! H

0(U, Ẽ ⌦K
M̃
), (4.97)

where U ⇢ M̃ is an open set.

There exists an inclusion map ([8, Lemma 2.1])

H
0(U,K

M̃
) ,! H

0(U, ⇡̃⇤(K
CP

1 ⌦ L(D))), (4.98)

where D = z1 + · · ·+ z4 is the branch divisor of the map ⇡̃ : M̃ ! CP
1.

In fact, let {P j

1 , . . . , P
j

kj
} = ⇡̃

�1(zj), j = 1, . . . , 4, be the ramification points of ⇡̃ and dj the

branch order of the points P j

l
, l = 1, . . . , kj .

The di↵erential d⇡̃ can be considered as a section of the holomorphic vector bundle Hom(⇡̃⇤K
CP

1 ,K
M̃
),

whose divisor is given by

D̃ = d1

k1X

j=1

P
1
j + d2

k2X

j=1

P
2
j + d3

k3X

j=1

P
3
j + d4

k4X

j=1

P
4
j . (4.99)

The holomorphic line bundles ⇡̃⇤K
CP

1⌦L(D̃) and K
M̃

are isomorphic, since they correspond

to the same divisor on M̃ (Subsection 1.4.2). In fact, the divisor of ⇡̃⇤K
CP

1 is equal to �2d (where

d is the degree of the holomorphic map ⇡̃ : M̃ ! CP
1) and the Riemann Hurwitz formula ([52,

Corollary 3.7 p. 80]) implies that the divisor of K
M̃

is given by

2g̃ � 2 = b� 2d, (4.100)
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where g̃ is the genus of the Riemann surface M̃ and b is the total branch order of the map ⇡̃.

Moreover, the pullback bundle ⇡̃⇤(L(D)) is given by the holomorphic line bundle L(D̂),

where

D̂ = (d1 + 1)
k1X

j=1

P
1
j + (d2 + 1)

k2X

j=1

P
2
j + (d3 + 1)

k3X

j=1

P
3
j + (d4 + 1)

k4X

j=1

P
4
j . (4.101)

Therefore, we obtain

K
M̃

' ⇡̃
⇤
K

CP
1 ⌦ L(D̃),

⇡̃
⇤(K

CP
1 ⌦ L(D)) = ⇡̃

⇤
K

CP
1 ⌦ ⇡̃

⇤
L(D) ' ⇡̃

⇤
K

CP
1 ⌦ L(D̂),

(4.102)

and the inclusion map

H
0(U,K

M̃
) ,! H

0(U, ⇡̃⇤(K
CP

1 ⌦ L(D)))) (4.103)

is the map whose divisor is given by

k1X

j=1

P
1
j +

k2X

j=1

P
2
j +

k3X

j=1

P
3
j +

k4X

j=1

P
4
j . (4.104)

We can now prove the following (for a proof in sheaf theoretic terms see [8, Lemma 2.1]).

Proposition 4.3. Let M be a symmetric CMC surface and ⇡̃ : M̃ ! M̃/� = CP
1
the holo-

morphic map defined in Proposition 4.1. There exists a logarithmic connection r̃ on the vector

bundle (⇡̃⇤Ẽ)� ! CP
1
described in Section 4.3.

Proof. Let U ⇢ M̃ be an open set and ⌧
⇤
r : H0(U, Ẽ) ! H

0(U, Ẽ ⌦ K
M̃
) the �-equivariant

connection on the holomorphic vector bundle Ẽ ! M̃ described in Section 4.3.

The composition of ⌧⇤r with the inclusion map (4.103) gives a map

h : H0(U, Ẽ) ! H
0(U, Ẽ ⌦ ⇡̃

⇤(K
CP

1 ⌦ L(D))), (4.105)

where D = z1 + · · ·+ z4 is the branch divisor of the map ⇡̃.

From (1.46), it follows that the map h induces a map

⇡̃⇤(⌧
⇤
r) : H0(Ũ , ⇡̃⇤Ẽ) ! H

0(Ũ , ⇡̃⇤(Ẽ ⌦ ⇡̃
⇤(K

CP
1 ⌦ L(D)))), (4.106)

where Ũ ⇢ CP
1 is an open set such that ⇡̃(U) = Ũ .

Using (1.44), we obtain

H
0(Ũ , ⇡̃⇤(Ẽ ⌦ ⇡̃

⇤(K
CP

1 ⌦ L(D)))) = H
0(Ũ , ⇡̃⇤Ẽ ⌦K

CP
1 ⌦ L(D)). (4.107)
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We can conclude that the map

⇡̃⇤(⌧
⇤
r) : H0(Ũ , ⇡̃⇤Ẽ) ! H

0(Ũ , ⇡̃⇤Ẽ ⌦K
CP

1 ⌦ L(D)) (4.108)

satisfies the Leibniz rule, since ⌧⇤r satisfies it and gives a logarithmic connection on the holo-

morphic vector bundle ⇡̃⇤Ẽ.

Finally, the logarithmic connection ⇡̃⇤(⌧⇤r) induces a logarithmic connection on the �-

invariant bundle (⇡̃⇤Ẽ)�. In fact, let s 2 H
0(Ũ , ⇡̃⇤Ẽ) be a �-invariant section and � 2 �,

then

⇡̃⇤(⌧
⇤
r)(s) = ⇡̃⇤(⌧

⇤
r)(� · s) = ⌧

⇤
r(� · s)

= �
⇤(⌧⇤r)(s) = �

⇤(⇡̃⇤(⌧
⇤
r))(s),

(4.109)

where we have used the fact that s can be considered as a section of Ẽ and that ⌧⇤r is �-

equivariant.

We denote with r̃ the logarithmic connection on (⇡̃⇤Ẽ)� induced by the connection ⇡̃⇤(⌧⇤r).

4.4.1 The local residues of the connection r̃

Let M be a symmetric CMC surface and ⇡̃ : M̃ ! M̃/� = CP
1 the holomorphic map between

Riemann surfaces defined in Proposition 4.1, where � ⇢ SU(2) ⇥ SU(2) is the finite group

acting on M and M̃ .

We want to determine the local residues of the logarithmic connection r̃ on the �-invariant

vector bundle (⇡̃⇤Ẽ)� ! CP
1 (cf. Proposition 4.3) at the branch points z1, . . . , z4 of the map ⇡̃.

Let p1 2 ⇡̃
�1(z1) ⇢ M̃ be a point with branch order 2d1 � 1 (cf. Section 4.1). There exists

a local coordinate w around p1 and a local coordinate around z1 such that

w
2d1 = z. (4.110)

Up to shrinking the domain of the coordinate w on M̃ , we can consider w defined on a

trivializing set U ⇢ M̃ for the holomorphic vector bundle Ẽ ! M̃ . Therefore, over U we can

consider Ẽ to be the trivial bundle C
2
! U , together with the �-equivariant trivial connection

d (cf. Example 1.7).

Let (s, t) be a holomorphic local frame for C
2
! U . The stabilizer group �p1 of the point

p1 2 M̃ acts on U as the cyclic group Z2d1 (cf. Subsections 4.1.1, 4.1.2, 4.1.3). The action of a

generator � of �p1 on (s, t) is given by

� · (s(p), t(p)) = (↵s(��1
· p),↵�1

t(��1
· p)), (4.111)
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where ↵ = e

2⇡i(d1�1)
2d1 (cf. (4.85)).

A local frame for the vector bundle (⇡̃⇤C)
Z2d1 around the point z1 2 CP

1 is given by (cf.

(4.84))

(s, t, ws, wt, . . . , w2d1�1
s, w

2d1�1
t). (4.112)

The following computation shows that the sections wd1�1
s and w

d1+1
t are both �p1-invariant

� · (wd1�1
s(p), wd1+1

t(p)) = (↵d1�1
↵w

d1�1
s(��1

· p),↵d1+1
↵
�1

w
d1+1

t(��1
· p))

= (↵d1w
d1�1

s(��1
· p),↵d1w

d1+1
t(��1

· p))

= (wd1�1
s(��1

· p), wd1+1
t(��1

· p)).

(4.113)

Therefore, (wd1�1
s, w

d1+1
t) gives a local frame around z1 2 CP

1 for the �-invariant vector

bundle (⇡̃⇤Ẽ)� ! CP
1.

The logarithmic connection r̃ on (⇡̃⇤Ẽ)�, induced by the trivial connection d over the open

set U ⇢ M̃ , is such that

r̃(wd1�1
s, w

d1+1
t) = d(wd1�1

s, w
d1+1

t)

= ((d1 � 1)wd1�2
s, (d1 + 1)wd1t)dw

= ((d1 � 1)wd1�1
s, (d1 + 1)wd1+1

t)
dw

w
.

(4.114)

Thus, with respect to the local frame (wd1�1
s, w

d1+1
t), the connection r̃ is given by

r̃ = d+

0

@(d1 � 1)dw
w

0

0 (d1 + 1)dw
w

1

A . (4.115)

The 1-form dw

w
has residue 1

2d1
at the point z1 2 CP

1. Therefore, the local residue of the

connection r̃ at z1 is given, with respect to the local frame (wd1�1
s, w

d1+1
t), by

Resz1 r̃ =

0

@
(d1�1)
2d1

0

0 (d1+1)
2d1

1

A . (4.116)

Analogous computations shows that the residues of r̃ at the other branch points z2, z3, z4 2

CP
1 of the map ⇡̃ are given by

Reszj r̃ =

0

@
(dj�1)
2dj

0

0 (dj+1)
2dj

1

A , j = 2, 3, 4, (4.117)

where 2dj � 1 is the branch oder of the points in ⇡̃�1(zj).

Let U ⇢ M̃ be the set given by

U :=
4[

j=1

⇡̃
�1(zj). (4.118)
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Consider the regular connections ⌧⇤r and ⇡̃⇤r̃ on M̃ r U and a point p0 2 M̃ r U . It is

possible to obtain two representations of the fundamental group ⇡1(M̃ r U, p0) into GL(2,C)

via the parallel transport of ⌧⇤r and ⇡̃
⇤
r̃ along loops in ⇡1(M̃ r U, p0) (cf. (1.73)). Let ⇢1

(resp. ⇢2) be the representation corresponding to ⌧⇤r (resp. ⇡̃⇤r̃).

From the construction of the connection r̃ (cf. Proposition 4.3), it follows that the repre-

sentations ⇢1 and ⇢2 are equivalent up to conjugation. Therefore, the Riemann-Hilbert corre-

spondence ([36, Theorem 3.6]) implies that there exists a gauge transformation g̃ such that

⌧
⇤
r = ⇡̃

⇤
r̃ · g̃, (4.119)

where g̃ is defined on M̃ r U ([36, Theorem 3.11]).

Moreover, [36, Corollary 3.13] implies that it is possible to extend the connection ⇡̃⇤r̃ on

M̃ such that it is still gauge equivalent to ⌧⇤r.

We can summarize the above argument with the following

Proposition 4.4. The connection ⌧
⇤
r on the holomorphic vector bundle Ẽ ! M̃ , described

in Section 4.3, is gauge equivalent to the pullback connection ⇡̃
⇤
r̃ of the logarithmic connection

defined on the �-invariant vector bundle (⇡̃⇤Ẽ)� ! CP
1
, under the holomorphic map ⇡̃ : M̃ !

CP
1
.

4.4.2 The parabolic structure on (⇡̃⇤Ẽ)� ! CP
1 induced by the connection r̃

It is possible to define a parabolic structure on the vector bundle (⇡̃⇤Ẽ)� ! CP
1 using the

logarithmic connection r̃ given by Proposition 4.3 ([32, Section 2]).

Let Reszj r̃ 2 End((⇡̃⇤Ẽ)�)zj be the local residue of r̃ at the branch point zj 2 CP
1,

j = 1, . . . , 4, of the holomorphic map ⇡̃ : M̃ ! CP
1.

The eigenvalues of Reszj r̃ are given, with respect to an appropriate local frame (cf. (4.116)),

by

µ
j

1 =
dj � 1

2dj
, µ

j

2 =
dj + 1

2dj
. (4.120)

The eigenline Lj of Reszj r̃, corresponding to the higher eigenvalue µ
j

2, is given by

Lj := Ker(Reszj r̃ � µ
j

2 Id). (4.121)

The line Lj is contained in the fiber of the vector bundle (⇡̃⇤Ẽ)� ! CP
1 at the point zj and

we obtain a filtration

0 ⇢ Lj ⇢ ((⇡̃⇤Ẽ)�)zj . (4.122)
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This filtration, together with the system of weights {µ
j

1, µ
j

2} gives a parabolic structure on

(⇡̃⇤Ẽ)� ([32, Section 2.1]).

We want to show that the parabolic structure on (⇡̃⇤Ẽ)� defined via (4.122) is equivalent

to the parabolic structure defined by Biswas in [6], using the parabolic filtration (4.93).

We consider the Lawson’s surface M = ⌃k�1,l�1 (cf. Subsection 2.5.1). The computations

for the other symmetric CMC surfaces in Table 4.3 can be done in an analogous way.

Let M̃ be the Riemann surface double covering M and � = Z2k ⇥Z2l ⇢ SU(2)⇥SU(2) the

group acting faithfully on M̃ .

Consider the branch points z1, . . . , z4 2 CP
1 of the holomorphic map ⇡̃ : M̃ ! CP

1 of degree

4kl (cf. Proposition 4.1). We recall that

⇡̃
�1(z1) = {P1, P3, . . . , P2l+1}

⇡̃
�1(z2) = {P2, P4, . . . , P2l+2}

⇡̃
�1(z3) = {Q1, Q3, . . . , Q2k+1}

⇡̃
�1(z4) = {Q2, Q4, . . . , Q2k+2},

(4.123)

where the points Pr, r = 1, . . . , 2l + 2, have stabilizer group Z2k and the points Qs, s =

1, . . . , 2k + 2, have stabilizer group Z2l.

The parabolic filtration for the vector bundle (⇡̃⇤Ẽ)� ! CP
1 defined by Biswas is given by

(cf. (4.93))

(⇡̃⇤Ẽ)�t =

 
⇡̃⇤

✓
Ẽ⌦L

⇣ lX

j=0

b�2ktcP2j+1+
lX

j=0

b�2ktcP2j+2+
kX

j=0

b�2ltcQ2j+1+
kX

j=0

b�2ltcQ2j+2

⌘◆!�

,

(4.124)

for t 2 R.

We study in detail the situation around the points P2r+1. For the points P2r+2 the compu-

tations are the same and for the points Qs it is only su�cient to use the integer l instead of

k.

There are three cases, according to the value of t 2 R, to consider

• �
k�1
2k < t 

k�1
2k

(⇡̃⇤Ẽ)�t1 =

 
⇡̃⇤

✓
Ẽ ⌦ L

⇣ lX

r=0

�(k � 1)P2r+1

⌘◆!�

. (4.125)

The bundle (⇡̃⇤Ẽ)�t1 is generated by the sections of ⇡̃⇤Ẽ which are �P2r+1-invariant and

have at least a (k � 1)-order zero at the points P2r+1 when considered as sections of the

holomorphic vector bundle Ẽ.
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We can consider the local frame, around the point z1 2 CP
1, of (⇡̃⇤Ẽ)�t1 given by

(wk�1
s, w

k+1
t), (4.126)

where (s, t) is a holomorphic local frame of Ẽ ! M̃ around P2r+1.

A local frame for (⇡̃⇤Ẽ)� around z1 2 CP
1 is given by (wk�1

s, w
k+1

t) (cf. Subsection

4.4.1). Therefore, the bundles (⇡̃⇤Ẽ)� and (⇡̃⇤Ẽ)�t1 coincides.

•
k�1
2k < t 

k+1
2k

(⇡̃⇤Ẽ)�t2 =

 
⇡̃⇤

✓
Ẽ ⌦ L

⇣ lX

r=0

�(k + 1)P2r+1

⌘◆!�

. (4.127)

Similarly to the previous case, the bundle (⇡̃⇤Ẽ)�t2 is generated by the �P2r+1-invariant

sections of ⇡̃⇤Ẽ having at least a (k + 1)-order zero at P2r+1 when considered as sections

of the bundle Ẽ.

We can consider the local frame for (⇡̃⇤Ẽ)�t2 given by

(w2k
s, w

k+1
t), (4.128)

where (s, t) is a holomorphic local frame for Ẽ around P2r+1.

Comparing the local frame (4.126) for (⇡̃⇤Ẽ)�t1 with the local frame (4.128) for (⇡̃⇤Ẽ)�t2 ,

we observe that we have an inclusion of vector bundles

(⇡̃⇤Ẽ)�t2 ⇢ (⇡̃⇤Ẽ)�t1 . (4.129)

Moreover, the parabolic line (the fiber of (⇡̃⇤Ẽ)�t2) at the point z1 2 CP
1 is given, with

respect to these local frames, by

[0 : t̃(z1)], (4.130)

where t̃ := w
k+1

t.

We recall that (cf. Subsection 4.4.1) the local residue of the logarithmic connection r̃ on

(⇡̃⇤Ẽ)� at the point z1 can be written as

Resz1 r̃ =

0

@
(k�1)
2k 0

0 (k+1)
2k

1

A (4.131)

with respect to the local frame (s̃, t̃) = (wk�1
s, w

k+1
t) of (⇡̃⇤Ẽ)� around z1 2 CP

1.
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Therefore, the parabolic line L1 given by (4.121), is the line [0 : t̃(z1)]. We can conclude

that the parabolic line at z1 for the parabolic structures on (⇡̃⇤Ẽ)� defined via (4.93) and

via the logarithmic connection r̃ are the same.

•
k+1
2k < t  1 + k�1

2k

(⇡̃⇤Ẽ)�t3 =

 
⇡̃⇤

✓
Ẽ ⌦ L

⇣ lX

r=0

�2k̃P2r+1

⌘◆!�

, k̃ � k. (4.132)

In this case we have to consider �P2r+1-invariant sections of (⇡̃⇤Ẽ) which have at least a

2k-order zero at P2r+1 when considered as sections of Ẽ.

A local frame for (⇡̃⇤Ẽ)�t3 is given by

(w2k
s, w

2k
t), (4.133)

where (s, t) are as above.

We recall that the local coordinates w and z satisfy w
2k = z. Therefore, the bundle

(⇡̃⇤Ẽ)�t3 is locally generated by the sections (zs, zt), which give a holomorphic local frame

for the bundle (cf. Subsection 1.4.2)

(⇡̃⇤Ẽ)� ⌦ L(�z1) = (⇡̃⇤Ẽ)�(�z1). (4.134)

We can conclude that the parabolic filtration, given by {(⇡̃⇤Ẽ)�ti}, 1 = 1, . . . , 3, at the branch

points z1, . . . , z4 2 CP
1 of the holomorphic map ⇡̃ : M̃ ! CP

1, is given by

((⇡̃⇤Ẽ)�)zj ⇢ Lj ⇢ ((⇡̃⇤Ẽ)�(�zj))zj , j = 1, . . . , 4, (4.135)

where Lj is the parabolic line defined in (4.121).

In order to obtain a global parabolic structure on (⇡̃⇤Ẽ)�, it is su�cient to relate the local

frames for the bundles (⇡̃⇤Ẽ)�tj , j = 1, 2, 3, around the points z1, . . . , z4 2 CP
1. This can be

done considering the restriction of the transition functions of the holomorphic vector bundle

⇡̃⇤Ẽ (cf. Example 1.6), on the �-invariant sub-bundle (⇡̃⇤Ẽ)� ⇢ ⇡̃⇤Ẽ.

We summarize the above construction with the following

Proposition 4.5. Let M be a symmetric CMC surface and ⇡̃ : M̃ ! M̃/� = CP
1
the holo-

morphic map between Riemann surfaces defined in Proposition 4.1.

The logarithmic connection r̃ on the �-invariant vector bundle (⇡̃⇤Ẽ)� ! CP
1
given by

Proposition 4.3, induces a parabolic structure on (⇡̃⇤Ẽ)� via the parabolic filtration (4.122),
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with parabolic weights given by the eigenvalues of the local residues of r̃ at the branch points

z1, . . . , z4 of the map ⇡̃.

Moreover, this parabolic structure is equivalent to the parabolic structure defined by Biswas

[6] using (4.93), with jumps at the values of t equal to the eigenvalues of the local residues of

the connection r̃ at the points z1, . . . , z4.

4.4.3 The �-family of parabolic bundles on CP
1 induced by the associated

family of flat connections

Let M a symmetric CMC surface and r
� the associated family of flat SL(2,C)-connections of

the CMC immersion f : M ! S
3.

If ⌧ : M̃ ! M is the holomorphic map of degree 2, defined in Proposition 4.1, it is possible

to consider the �-family of �-equivariant flat connections ⌧⇤r� on the vector bundle Ẽ ! M̃

(cf. Section 4.3), for � 2 C
⇤.

From Proposition 4.3, it is possible to define a �-family of logarithmic connection r̃
�, � 2 C

⇤,

on the �-invariant vector bundle (⇡̃⇤Ẽ)� ! CP
1. Moreover, the family r̃

� induces a �-family

of parabolic structures on (⇡̃⇤Ẽ)� (cf. Subsection 4.4.2).

We denote with (⇡̃⇤Ẽ)�,� the parabolic bundle given by (⇡̃⇤Ẽ)� together with the holomor-

phic structure (cf. Subsection 1.4.4) and the parabolic structure induced by the connection

r̃
�.

Proposition 4.5 ensures that it is possible to extends the �-family of parabolic bundles

(⇡̃⇤Ẽ)�,� at � = 0. In fact, the construction due to Biswas of the parabolic structure given by

(4.93) does not depend on �.

We will study the situation at � = 0 more in details in the next Section.

We conclude this Subsection showing that, for � 6= 0, there are only two possible holomorphic

structures on (⇡̃⇤Ẽ)�,�.

Proposition 4.6. Given a symmetric CMC surface M , let M̃ be the Riemann surface double

covering M given by Proposition 4.1 and r
�
the associated family of flat SL(2,C)-connections

of the immersion f : M ! S
3
.

The holomorphic vector bundle (⇡̃⇤Ẽ)�,� ! CP
1
, for � 6= 0, with holomorphic structure

given by @̄
� := (r̃�)0,1 (cf. Subsection 1.4.4), can be only one of the following two bundles

(⇡̃⇤Ẽ)�,�

8
><

>:

O(�2)�O(�2)

O(�1)�O(�3).
(4.136)

87



Proof. Let z1, . . . , z4 be the branch points of the holomorphic map ⇡̃ : M̃ ! CP
1 (cf. Proposition

4.1) and 2dj , j = 1, . . . , 4, the order of the stabilizer group of the points p 2 ⇡̃
�1(zj) under the

action of � ⇢ SU(2)⇥ SU(2) on M̃ .

In Subsection 4.4.1, we showed that the eigenvalues of the local residues of the connection

r̃
� at the points z1, . . . , z4 do not depends on � and are given by

µ
j

1 =
dj � 1

2dj
, µ

j

2 =
dj + 1

2dj
, j = 1, . . . , 4. (4.137)

The degree of the holomorphic vector bundle (⇡̃⇤Ẽ)�,� ! CP
1 can be computed using the

formula ([7, Proposition 1.2])

deg((⇡̃⇤Ẽ)�,�) = �

4X

j=1

(µj

1 + µ
j

2) = �4. (4.138)

Therefore, the Grothendieck Splitting Theorem 1.5 implies

(⇡̃⇤Ẽ)�,� = O(n)�O(m), � 2 C
⇤
, (4.139)

with m+ n = �4.

Suppose that n 2 N and m  �4 (or viceversa). The logarithmic connection r̃
� induces a

logarithmic connection on the line sub-bundle O(m) ! CP
1.

Let ↵1, . . . ,↵4 be the local residues of such logarithmic connection on O(m), which must

satisfies

� 4 � m = �

4X

j=1

↵j . (4.140)

However, the values ↵1, . . . ,↵4 are induced by the local residues of the connection r̃
� and

must be contained in the interval (0, 1) since the values µj

1, µ
j

2 are contained in the same interval.

Hence, we obtain

�

4X

j=1

↵j > �4 (4.141)

which gives a contraddiction.

We conclude that the only two possibilities for the values of m and n are given by

8
><

>:

n = m = �2

n = �1,m = �3.
(4.142)
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4.5 The parabolic Higgs field on (⇡⇤Ẽ)�

In this section we will study the residue at � = 0 of the �-family of logarithmic connections r̃�

defined on the parabolic vector bundle (⇡̃⇤Ẽ)� ! CP
1 in Subection 4.4.3.

We first recall the definitions of parabolic sub-bundle and parabolic degree.

Definition 4.7. Let E and V be parabolic bundles over a compact Riemann surface M and

{Et}, {Vt} the corresponding parabolic filtrations (cf. (4.75)). The parabolic bundle V is a

parabolic sub-bundle of E if the following conditions hold:

(1) V is a vector sub-bundle of E;

(2) Vt ✓ Et, 8t 2 R;

(3) for s, t 2 R with t > s, if Vs ✓ Et then Vs = Vt.

Definition 4.8. Let E ! M be a parabolic bundle over a compact Riemann surface M . The

parabolic degree of E is given by

par-deg(E) :=

Z 0

�1
deg(Et)dt, (4.143)

where {Et} is the parabolic filtration of E.

Let E ! M be a rank 2 parabolic bundle over a compact Riemann surface M . If there

exists a logarithmic connection r̃ on E, it is possible to define the parabolic degree of E using

r̃ ([32, Section 2.1]).

Let µj

1, µ
j

2 with µ
j

2 � µ
j

1, be the eigenvalues of the local residues of r̃ at the singular point

pj 2 M , j = 1, . . . , n. Then, the parabolic degree of E is given by

par-deg(E) = deg(E) +
nX

j=1

µ
j

1 + µ
j

2. (4.144)

Moreover, for every parabolic line sub-bundle V of E, the parabolic degree of V is given by

par-deg(V ) = deg(V ) +
nX

j=1

↵j , (4.145)

where

↵j =

8
><

>:

µ
j

2 if Vpj = Lj

µ
j

1 otherwise
(4.146)

and Lj is the parabolic line of E ! M at the point pj 2 M (cf. (4.121)).
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Definition 4.9. A parabolic bundle E ! M on a compact Riemann surface M is called

parabolic semi-stable (resp. parabolic stable) if for every parabolic sub-bundle V of E with

0 < rank(V ) < rank(E)

par-deg(V )

rank(V )


par-deg(E)

rank(E)

✓
resp.

par-deg(V )

rank(V )
<

par-deg(E)

rank(E)

◆
. (4.147)

The formula for the parabolic degree (4.144) implies the following

Lemma 4.1. Let M be a symmetric CMC surface, (⇡̃⇤Ẽ)�,� ! CP
1
the parabolic bundle defined

in Section 4.4.3 together with the family of logarithmic connections r̃
�
. The parabolic degree of

(⇡̃⇤Ẽ)�,� is equal to zero.

Proof. The eigenvalues of the local residues of r̃� at the branch points z1, . . . , z4 of the map

⇡̃ : M̃ ! CP
1 are of the form (cf. (4.116))

µ
j

1 =
dj � 1

2dj
, µ

j

2 =
dj + 1

2dj
. (4.148)

Moreover, from (4.138), the degree of (⇡̃⇤Ẽ)�,� is equal to �4.

Therefore, equation (4.144) implies

par-deg((⇡̃⇤Ẽ)�,�) = �4 +
4X

j=1

µ
j

1 + µ
j

2 = �4 + 4 = 0. (4.149)

4.5.1 The induced Higgs field on (⇡̃⇤Ẽ)�,� from the Higgs field � of M

Let M be a symmetric CMC surface, r� the associated family of flat SL(2,C)-connections of

the immersion f : M ! S
3 and � 2 H

0(M,End0(E) ⌦KM ) the Higgs field of M (cf. Section

3.1).

The pullback of � under the map ⌧ : M̃ ! M , defined in Proposition 4.1, can be considered

as a map

⌧
⇤� : H0(U, Ẽ) ! H

0(U, Ẽ ⌦K
M̃
), (4.150)

where U ⇢ M̃ is an open set and Ẽ ! M̃ is the holomorphic vector bundle defined in Section

4.3.

In Section 4.4, we described the inclusion map

H
0(U,K

M̃
) ,! H

0(U, ⇡̃⇤(K
CP

1 ⌦ L(D))), (4.151)

where D = z1 + · · ·+ z4 is the branch divisor of the map ⇡̃ : M̃ ! CP
1.
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The composition of ⌧⇤� with the inclusion map (4.151) gives a map

h : H0(U, Ẽ) ! H
0(U, Ẽ ⌦ ⇡̃

⇤(K
CP

1 ⌦ L(D))). (4.152)

Similarly to the construction of the logarithmic connection r̃ on (⇡̃⇤Ẽ)� (cf. Proposition

4.3), from the formulas (1.44) and (1.46) we obtain a map

⇡̃⇤(⌧
⇤�) : H0(Ũ , ⇡̃⇤Ẽ) ! H

0(Ũ , ⇡̃⇤Ẽ ⌦K
CP

1 ⌦ L(D)), (4.153)

where Ũ ⇢ CP
1 is an open set such that ⇡̃(U) = Ũ .

We can now prove the following

Proposition 4.7. Given a symmetric CMC surface M with associated family of flat SL(2,C)-

connections r
� = r+��1����⇤

, the map ⇡̃⇤(⌧⇤�), given by (4.153) described above, induces a

Higgs field �̃ 2 H
0(Ũ ,End0((⇡̃⇤Ẽ)�)⌦K

CP
1⌦L(D)) on the �-invariant vector bundle (⇡̃⇤Ẽ)� !

CP
1
.

Proof. Let s 2 H
0(Ũ , ⇡̃⇤Ẽ) be a �-invariant section, where � ⇢ SU(2) ⇥ SU(2) is the finite

group acting faithfully on the surface M̃ (cf. Section 4.1).

Let � 2 �, then

⇡̃⇤(⌧
⇤�)(s) = ⇡̃⇤(⌧

⇤�)(� · s) = ⌧
⇤�(� · s)

= �
⇤(⌧⇤�)(s) = �

⇤(⇡̃⇤(⌧
⇤�))(s),

(4.154)

where we have used the fact that ⌧⇤� is �-equivariant (cf. Proposition 4.2) and that s can

be considered as a section of Ẽ ! M̃ . Therefore, we obtain a well-defined Higgs field �̃

on (⇡̃⇤Ẽ)� ! CP
1 and the �-family of logarithmic connections r̃

� on (⇡̃⇤Ẽ)�,� ! CP
1 (cf.

Subsection 4.4.3) has the form

r̃
� = �

�1�̃+ r̃+ higher order terms in �. (4.155)

The next Proposition shows some properties of the Higgs field �̃ defined in Proposition 4.7.

Proposition 4.8. The Higgs field �̃ 2 H
0(CP1

,End0((⇡̃⇤Ẽ)�) ⌦ K
CP

1 ⌦ L(D)) defined in

Proposition 4.7 satisfies the following:

(i) �̃ is nilpotent, that is, �̃2 = 0;

(ii) �̃j := Reszj (�̃) 6= 0, for j = 1, . . . , 4;
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(iii) �̃ is a parabolic Higgs field, that is

Lj 2 Ker(�̃j), j = 1, . . . , 4, (4.156)

where Lj is the parabolic line of (⇡̃⇤Ẽ)� at zj given by (4.121);

(iv) for every holomorphic line sub-bundle L ⇢ (⇡̃⇤Ẽ)� with �̃(L) ⇢ L⌦K the following holds

par-deg(L) < par-deg((⇡̃⇤Ẽ)�) = 0. (4.157)

If this condition is satisfied we say that ((⇡̃⇤Ẽ)�, �̃) is a parabolic Higgs stable bundle.

Proof. (i) Let Ũ ⇢ CP
1 be an open set and s 2 H

0(Ũ , (⇡̃⇤Ẽ)�). From the construction of �̃,

we have

�̃(s) = ⌧
⇤�(s), (4.158)

where, in the right hand side, we consider s as a local section of the holomorphic vector

bundle Ẽ on an open set U ⇢ M̃ such that ⇡̃(U) = Ũ . Since ⌧⇤� is nilpotent, it follows

that �̃ is nilpotent.

(ii) Consider the local frame (wdj�1
s, w

dj+1
t) of (⇡̃⇤Ẽ)� around one branch point zj 2 CP

1

of the map ⇡̃ : M̃ ! CP
1, where (s, t) is a local frame for Ẽ on an open set U ⇢ M̃ (cf.

Subsection 4.4.1).

It is possible to write the Higgs field ⌧⇤�, locally on U , as ⌧⇤� = A(w)dw, where

A(w) =

0

@a(w) b(w)

c(w) �a(w)

1

A , (4.159)

for some functions a, b, c : U ! C. Therefore,

⌧
⇤�(s) = (a(w)s+ c(w)t)dw

⌧
⇤�(t) = (b(w)s� a(w)t)dw.

(4.160)

Writing ⌧⇤� with respect to the local frame (wdj�1
s, w

dj+1
t), we obtain

⌧
⇤�(wdj�1

s) = (a(w)wdj�1
s+ c(w)wdj�1

t)dw = (a(w)wdj�1
s+

c(w)

w2
w

dj+1
t)dw

⌧
⇤�(wdj+1

t) = (b(w)wdj+1
s� a(w)wdj+1

t)dw = (w2
b(w)wdj�1

s� a(w)wdj+1
t)dw.

(4.161)
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Hence, the Higgs field �̃, with respect to the local frame (wdj�1
s, w

dj+1
t) on the open set

Ũ = ⇡̃(U), is given by �̃ = Ã(w)dw, where

Ã(w) =

0

@a(w) w
2
b(w)

c(w)
w2 �a(w)

1

A . (4.162)

We can conclude that the function c(w) must have a simple zero at w = 0 and there are

no conditions on the functions a(w) and b(w). Therefore, the residue of �̃ at the point zj

is given by 0

@ 0 0

c0 0

1

A , c0 2 C
⇤
, (4.163)

which is non vanishing.

(iii) Let µ1
1, µ

1
2 be the eigenvalues of the local residues of the �-family of logarithmic connections

r̃
� on (⇡̃⇤Ẽ)� ! CP

1 (cf. (4.116)).

The parabolic line L1 at the branch point z1 2 CP
1 of the map ⇡̃ : M̃ ! CP

1, is given by

(cf. (4.121))

L1 = Ker(Resz1 r̃
� + µ

1
2 Id). (4.164)

From the discussion in Subsection 4.4.2, we have that, with respect to the local frame

(wd1�1
s, w

d1+1
t) of (⇡̃⇤Ẽ)� around z1, the parabolic line L1 is given by

L1 = [0 : wd1+1
t(z1)]. (4.165)

From (ii), the residue of �̃ at z1 is given, with respect to the same local frame, by

�̃1 =

0

@ 0 0

c0 0

1

A , c0 2 C
⇤
. (4.166)

Therefore, we obtain 0

@ 0 0

c0 0

1

A

0

@ 0

w
d1+1

t(z1)

1

A =

0

@0

0

1

A , (4.167)

which implies L1 2 Ker(�̃1). Analogous computations can be made for the parabolic lines

at the other branch points z2, z3, z4 2 CP
1.

(iv) Since the holomorphic vector bundle Ẽ ! M̃ is stable ([38]), this follows from [54, Theor.

3.1].
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The existence of a parabolic Higgs field �̃ allows the description of the admissible holomor-

phic structures on (⇡̃⇤Ẽ)�,� at � = 0.

Proposition 4.9. Let M be a symmetric CMC surface and (⇡̃⇤Ẽ)�,� ! CP
1
the parabolic

bundle defined in Subsection 4.4.3. The holomorphic structure of (⇡̃⇤Ẽ)�,�, induced by the �-

family of logarithmic connections r̃
�
(cf. Subsection 4.4.3), at � = 0 can be either O(�2) �

O(�2) or O(�1)�O(�3).

Proof. Analogously to the proof of Proposition 4.6, we have that (⇡̃⇤Ẽ)�,� at � = 0 is given by

O(n)�O(m) with n+m = �4. Suppose that n � 0 and m  �4.

Let (s, t) be a frame for O(n) � O(m), where s has divisor n · 0 and t divisor m · 0, for

0 2 CP
1. If we write the parabolic Higgs field locally as

�̃(w) =

0

@a(w) b(w)

c(w) �a(w)

1

A dw, (4.168)

for some complex-valued functions a, b, c, we have

�̃(s) = (as+ ct)dw. (4.169)

Equation (4.169) and the assumption on m and n imply that the function c must be zero

and �̃ is upper triangular. From (i) of Proposition 4.8, �̃ is nilpotent. Therefore, the function

a must be also zero and �̃ is given locally by

�̃(w) =

0

@0 b(w)

0 0

1

A dw, (4.170)

From the fact that the Higgs field ⌧⇤� on the holomorphic vector bundle Ẽ ! M̃ is nowhere

vanishing (because the Higgs field � on M is nowhere vanishing, cf. Section 3.1), it follows that

�̃ must be nowhere vanishing. But the Higgs field �̃ of the form (4.170) admits points where it

vanishes and we obtain a contradiction.

We conclude that the only possibilities for the values of m and n are
8
><

>:

n = m = �2

n = �1,m = �3
. (4.171)

In the next subsections we will investigate which parabolic structures on O(�2) � O(�2)

and on O(�1) �O(�3) admit a nilpotent parabolic Higgs field �̃ with non vanishing residues

at the points z1, . . . , z4 such that the pair ((⇡̃⇤Ẽ)�, �̃) is parabolic Higgs stable.
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4.5.2 The case of O(�2)�O(�2)

Up to Möbius transformation on CP
1, it is possible to assume that the branch points z1, . . . , z4

of the holomorphic map ⇡̃ : M̃ ! CP
1 are given by

z1 = 0, z2 = 1, z3 = �1, z4 = m, m 2 Cr {0, 1,�1}. (4.172)

Let U0 = C, U1 = CP
1
r{0} be two open sets of CP1 which gives a trivializing cover for

O(�2)�O(�2) ! CP
1 (cf. Example 1.4). Let s = (s1, s2) be a local frame on U0 and t = (t1, t2)

a local frame on U1. The transition function between s and t is given by

g =

0

@z
�2 0

0 z
�2

1

A (4.173)

and t = gs.

We check under which conditions the Higgs field �̃ on (⇡̃⇤Ẽ)� ! CP
1, defined in Proposition

4.7, can be extended holomorphically to infinity. With respect to the local frame s, �̃ can be

written as

�̃(z) =

0

@a(z) b(z)

c(z) �a(z)

1

A dz, (4.174)

where a, b, c : U0 ! C are meromorphic functions with simple poles at the branch points

z1, . . . , z4 (that is, they are rational functions in z).

Around infinity, it is possible to write �̃, with respect to the local frame t, as

g�̃(z)g�1 =

0

@a(z) b(z)

c(z) �a(z)

1

A dz. (4.175)

Since it is not possible to use the local coordinate z around infinity, we consider the coordi-

nate w = 1
z
and we obtain

g�̃(1/w)g�1 =

0

@a(1/w) b(1/w)

c(1/w) �a(1/w)

1

A dw

w2
. (4.176)

Therefore, the functions a, b and c must vanish to order two at w = 0.

With respect to the frame s, it is possible to write �̃ as

�̃(z) =
4X

j=1

�̃j
dz

z � zj
+A(z)dz, (4.177)

where

�̃j = Reszj �̃ =

0

@aj bj

cj �aj

1

A , A(z) =

0

@p(z) q(z)

r(z) �p(z)

1

A , (4.178)
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for some complex numbers aj , bj , cj and polynomials p(z), q(z) and r(z).

Consider the upper left entry of �̃, given by

a(z) =
a1

z
+

a2

z � 1
+

a3

z + 1
+

a4

z �m
+ p(z). (4.179)

For z going to infinity, the first four summands in (4.179) vanish. Since a(z) must vanish

at infinity (cf. (4.176)), it follows that p(z) must vanish at infinity as well. Thus, p(z) is a

polynomial with a zero at infinity, which implies p(z) ⌘ 0.

Looking at the series expansion of a(z) at z = 1, using the coordinate w = 1
z
, we observe

that the condition that a(z) must vanish to second order at w = 0 translates to

4X

j=1

aj = 0. (4.180)

Analogous arguments can be applied to the other entries of the Higgs field �̃. We conclude

that for (⇡̃⇤Ẽ)� = O(�2)�O(�2), the matrix A(z) is identically zero and the residues �̃j of �̃

at the branch points z1, . . . , z4 satisfy

4X

j=1

�̃j = 0. (4.181)

We now check which parabolic structures on O(�2) � O(�2) admit a nilpotent, parabolic

Higgs field �̃ of the form (4.177), with non vanishing residues satisfying condition (4.181).

Let the parabolic lines be (with respect to a local frame)

Lj := C

0

@vj

wj

1

A , vj , wj 2 CP
1
. (4.182)

An automorphism of O(�2)�O(�2) is given by a SL(2,C)-matrix

T =

0

@a b

c d

1

A , ad� bc = 1. (4.183)

We want to see in which ways it is possible to normalize the parabolic lines Lj in O(�2)�

O(�2). For example, we can ask if it is possible to have one parabolic line contained in the

first O(�2) summand and none in the second O(�2) summand or if three parabolic lines can

be contained in one summand and none in the other one, and so on.

Here we consider the case where the parabolic lines can be normalized to correspond to four

di↵erent points of CP1. Therefore, after the composition with an automorphism of the form

(4.183), we can write

L1 =

0

@1

0

1

A , L2 =

0

@0

1

1

A , L3 =

0

@1

1

1

A , L4 =

0

@u

1

1

A , (4.184)
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where u 2 CP
1.

The strictly parabolicity of the Higgs field �̃ (cf. (iii) Proposition 4.8) implies

�̃jLj = 0, j = 1, . . . , 4. (4.185)

Thus, the residues �̃j at the points z1, . . . , z4 are of the form

�̃1 =

0

@0 b1

0 0

1

A , �̃2 =

0

@ 0 0

c2 0

1

A , �̃3 =

0

@a3 �a3

a3 �a3

1

A , �̃4 =

0

@a4 �a4u

a4
u

�a4

1

A . (4.186)

From the condition (4.181) on the residues �̃1, . . . , �̃4, we obtain the linear system

8
>>>>><

>>>>>:

a3 + a4 = 0

b1 � a3 � a4u = 0

c2 + a3 +
a4
u

= 0.

(4.187)

Therefore, the Higgs field �̃ can be written as

�̃(z) =

0

@0 a4(u� 1)

0 0

1

A dz

z
+

0

@ 0 0

a4(u�1)
u

0

1

A dz

z � 1
+

+

0

@�a4 a4

�a4 a4

1

A dz

z + 1
+

0

@a4 �a4u

a4
u

�a4

1

A dz

z �m
, a4 2 C

⇤
.

(4.188)

The nilpotency of �̃ gives

�̃2 =

0

@
a
2
4(u�1)(1+m(2u�1))
u(m�z)z(z2�1) 0

0
a
2
4(u�1)(1+m(2u�1))
u(m�z)z(z2�1)

1

A =

0

@0 0

0 0

1

A , (4.189)

which implies that u can only be either 1 or m�1
2m .

It remains to check the cases for u = 0 and u = 1. For u = 0, the parabolic line L4

corresponds to the point [0 : 1] 2 CP
1 and the residues �̃4 is given by

�̃4 =

0

@ 0 0

c4 0

1

A . (4.190)

The condition (4.181) implies a3 = 0, thus �̃3 = 0 which is not admissible since the residues

of �̃ must be non vanishing (cf. (ii) Proposition 4.8). Analogous computations shows that the

case u = 1 is not admissible as well.
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Finally, for u = 1 the residues �̃1 and �̃2 vanish (cf. (4.188)) and we conclude that the only

admissible possibility is given by u = m�1
2m and the Higgs field �̃ has the expression

�̃(z) =

0

@0 �a4
1+m

2m

0 0

1

A dz

z
+

0

@ 0 0

a4
1+m

1�m
0

1

A dz

z � 1
+

+

0

@�a4 a4

�a4 a4

1

A dz

z + 1
+

0

@ a4 �a4
m�1
2m

2a4m
m�1 �a4

1

A dz

z �m
, a4 2 C

⇤
.

(4.191)

The last thing to check is if the Higgs field �̃ of the form (4.191) makes the bundle O(�2)�

O(�2) parabolic Higgs stable (cf. (iv) Proposition 4.8). The only �̃-invariant sub-bundles

of (⇡̃⇤Ẽ)� are Ker(�̃) and Im(�̃). Since the residues �̃j of �̃ are non vanishing and satisfy

�̃jLj = 0, all the parabolic lines are contained in Ker(�̃).

Moreover, from the nilpotency of �̃, it follows

Im(�̃) ⇢ Ker(�̃), (4.192)

thus, it is enough to compute the parabolic degree of Ker(�̃) and check if it is less than the

parabolic degree of (⇡̃⇤Ẽ)�, which is equal to zero (cf. Lemma 4.1).

The degree of Ker(�̃) can be computed counting the order of the zeros of the composition

Ker(�̃) ,! O(�2)�O(�2)
⇡
2

�! O(�2), (4.193)

where ⇡2 is the projection to the second summand.

We have

�̃

0

@c

d

1

A =

0

@
a4(1+m)(d(z�1)�2cz)

2z(m�z)(1+z)

a4(1+m)(d(z�1)�2cz
(m�z)(z2�1)

1

A . (4.194)

A simple computation shows that (c, d) 2 Ker(�̃) only if d has a simple zero. Therefore, Ker(�̃)

has degree equal to �3.

Using the formula (4.145), we can compute the parabolic degree of Ker(�̃) for the symmetric

CMC surfaces in Table 4.3.

• Lawson’s surfaces ⌃k�1,1

The eigenvalues of the local residues of the �-family of logarithmic connections r̃
� on

(⇡̃⇤Ẽ)� at the points z1, . . . , z4 are given by k�1
2k , k+1

2k (cf. Subsection 4.1.1). Thus,

par-degKer �̃ = �3 +
k + 1

2k
+

k + 1

2k
+

k + 1

2k
+

k + 1

2k
=

= �3 +
2k + 2

k
=

�3k + 2k + 2

k
=

2� k

k

(4.195)
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which is always negative since k > 2.

• Lawson’s surfaces ⌃k�1,l�1

The eigenvalues of the local residues of the �-family of logarithmic connections r̃
� on

(⇡̃⇤Ẽ)� are given by k�1
2k , k+1

2k at the points z1, z2 and l�1
2l ,

l+1
2l at the points z3, z4 (cf.

Subsection 4.1.2). Thus,

par-degKer �̃ = �3 +
k + 1

2k
+

k + 1

2k
+

l + 1

2l
+

l + 1

2l
=

=
�3kl + kl + l + kl + k

kl
=

�kl + l + k

kl

(4.196)

which is always negative since k and l are greater than 2.

• Platonic KPS surfaces

The eigenvalues of the local residues of the �-family of logarithmic connections r̃
� on

(⇡̃⇤Ẽ)� are of the form k�1
2k , k+1

2k at the points z1, z2 and 1
4 ,

3
4 at the points z3, z4 (cf.

Subsection 4.1.3). Thus,

par-degKer �̃ = �3 +
d+ 1

2d
+

d+ 1

2d
+

3

4
+

3

4
=

=
2� d

2d

(4.197)

which is always negative since d > 2.

Appendix A.1 contains the computations for the other parabolic structures on O(�2) �

O(�2) and it is shown that there are no other parabolic structures which admits a nilpotent,

parabolic Higgs field �̃ with non zero residues such that (⇡̃⇤Ẽ)� is parabolic Higgs stable.

4.5.3 The case of O(�1)�O(�3)

As in Subsection 4.5.2, we consider the branch points z1, . . . , z4 2 CP
1 of the map ⇡̃ : M̃ ! CP

1,

to be

z1 = 0, z2 = 1, z3 = �1, z4 = m, m 2 Cr {0, 1,�1}. (4.198)

Let U0 = C, U1 = CP
1
r{0} be two open sets of CP1 which give a trivializing cover for

O(�1)�O(�3) ! CP
1 and s (resp. t) a local frame on U0 (resp. U1). The transition function

between s and t is given by

g =

0

@z
�1 0

0 z
�3

1

A , (4.199)

and t = gs.
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We check under which conditions the Higgs field �̃(z) can be extended holomorphically to

infinity. We write �̃, with respect to the local frame s, as

�̃(z) =

0

@a(z) b(z)

c(z) �a(z)

1

A dz, (4.200)

for some meromorphic functions a, b, c on U0, with simple poles at the points z1, . . . , z4 2 CP
1.

Using the transition function g, it is possible to write �̃ with respect to the local frame t as

g�̃(z)g�1 =

0

@ a(z) b(z)
z2

z
2
c(z) �a(z)

1

A dz. (4.201)

In order to study the behaviour of �̃ around infinity, we use the coordinate w = 1
z
, and we

obtain

g�̃(1/w)g�1 =

0

@a(1/w) w
2
b(1/w)

c(1/w)
w2 �a(1/w)

1

A dw

w2
. (4.202)

Therefore, the function a(1/w) must vanish to second order at w = 0, b(1/w) can take any

values in C
⇤ at w = 0 and c(1/w) must vanish to fourth order at w = 0.

It is possible to write �̃, with respect to the frame s, as

�̃(z) =
4X

j=1

�̃j
dz

z � zj
+A(z)dz, (4.203)

where

�̃j = Reszj �̃ =

0

@aj bj

cj �aj

1

A , A(z) =

0

@p(z) q(z)

r(z) �p(z)

1

A , (4.204)

for some complex numbers aj , bj , cj and polynomials p(z), q(z) and r(z).

In the following, we describe the conditions that each entry of �̃(z) of the form (4.203) must

satisfy:

• Upper left and lower right entries

a(z) =
a1

z
+

a2

z � 1
+

a3

z + 1
+

a4

z �m
+ p(z). (4.205)

For z going to infinity, the first four summands in (4.205) vanish. Since a(z) must vanish

at infinity (cf. (4.202)), it follows that p(z) must vanish at infinity as well, thus p(z) ⌘ 0.

As in Subsection 4.5.2, the values a1, . . . , a4 must satisfy the condition

4X

j=1

aj = 0. (4.206)

100



• Upper right entry

b(z) =
b1

z
+

b2

z � 1
+

b3

z + 1
+

b4

z �m
+ q(z). (4.207)

For z going to infinity the function b does not vanish and we have b(z) ⌘ q(z). The

polynomial q does not have a pole at infinity, thus it is a nonzero constant which we will

denote with b (with abuse of notation).

• Lower left entry

c(z) =
c1

z
+

c2

z � 1
+

c3

z + 1
+

c4

z �m
+ r(z). (4.208)

An argument similar to the one used for the upper left entry implies that r(z) ⌘ 0. Looking

at the series expansion of the function c(z) at z = 1, using the coordinate w = 1
z
, we

observe that the condition that c(z) vanishes to fourth order at w = 0 translates into the

linear system 8
>>>>><

>>>>>:

c2 = ic1

c3 = �c1

c4 = �ic1

, c1 2 C
⇤
. (4.209)

We conclude that �̃ can be written as

�̃(z) =
4X

j=1

�̃j
dz

z � zj
+

0

@0 b

0 0

1

A dz, (4.210)

where the residues �̃1, . . . , �̃4 satisfy the conditions described above.

We now check which parabolic structures on O(�1) � O(�3) admit a nilpotent parabolic

Higgs field of the form (4.210), with non vanishing residues.

Assume that the parabolic lines L1, . . . , L4 are contained in the O(�1) summand of O(�1)�

O(�3). The strictly parabolicity of �̃ (cf. (iii) Proposition 4.8) implies

�̃jLj = 0, j = 1, . . . , 4. (4.211)

Therefore, the residues of �̃ at the points z1, . . . , z4 are given by

�̃1 =

0

@0 b1

0 0

1

A , �̃2 =

0

@0 b2

0 0

1

A , �̃3 =

0

@0 b3

0 0

1

A , �̃4 =

0

@0 b4

0 0

1

A . (4.212)
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It follows that there are no additional conditions on the residues of �̃ and we can write the

parabolic Higgs field as

�̃(z) =

0

@0 b1

0 0

1

A dz

z
+

0

@0 b2

0 0

1

A dz

z � 1
+

0

@0 b3

0 0

1

A dz

z + 1
+

0

@0 b4

0 0

1

A dz

z �m
+

0

@0 b

0 0

1

A dz,

(4.213)

which is nilpotent for every values of b1, b2, b3, b4 and b 2 C
⇤.

The last thing to check is if the Higgs field �̃(z) of the form (4.213) makes the bundle

O(�1)�O(�3) parabolic Higgs stable (cf. (iv) Proposition 4.8).

As in the case of O(�2)�O(�2), we need to consider only the bundle Ker(�̃), whose degree

can be computed counting the zeros of the composition

Ker �̃ ,! O(�1)�O(�3)
⇡
1

�! O(�1), (4.214)

, where ⇡1 denotes the projection to the first summand.

We have

�̃(z)

0

@c

d

1

A =

0

@d(b+ b1
z
+ b2

z�1 + b3
z+1 + b4

z�m

0

1

A , (4.215)

and it is immediate to conclude that Ker(�̃) = O(�1) and has degree �1.

Using the formula (4.145), we compute the parabolic degree of Ker(�̃) for the symmetric

CMC surfaces in Table 4.3.

• Lawson’s surfaces ⌃k�1,1

The eigenvalues of the local residues of the �-family of logarithmic connections r̃
� on

(⇡̃⇤Ẽ)� at the points z1, . . . , z4 are given by k�1
2k , k+1

2k (cf. Subsection 4.1.1). Thus,

par-degKer �̃ = �1 +
k + 1

2k
+

k + 1

2k
+

k + 1

2k
+

k + 1

2k
=

= �1 +
2k + 2

k
=

k + 2

k

(4.216)

which is always positive since k > 2.

• Lawson’s surfaces ⌃k�1,l�1

The eigenvalues of the local residues of the �-family of logarithmic connections r̃
� on

(⇡̃⇤Ẽ)� are given by k�1
2k , k+1

2k at the points z1, z2 and l�1
2l ,

l+1
2l at the points z3, z4 (cf.

Subsection 4.1.2). Thus,

par-degKer �̃ = �1 +
k + 1

2k
+

k + 1

2k
+

l + 1

2l
+

l + 1

2l
=

= �1 +
k + 1

k
+

l + 1

l
=

l + kl + k

kl

(4.217)
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which is always positive.

• Platonic KPS surfaces

The eigenvalues of the local residues of the �-family of logarithmic connections r̃
� on

(⇡̃⇤Ẽ)� are of the form k�1
2k , k+1

2k at the points z1, z2 and 1
4 ,

3
4 at the points z3, z4 (cf.

Subsection 4.1.3). Thus,

par-degKer �̃ = �1 +
d+ 1

2d
+

d+ 1

2d
+

3

4
+

3

4
=

=
3d+ 2

2d

(4.218)

which is always positive.

Therefore, the parabolic structure we considered does not admit a nilpotent parabolic Higgs

field which makes the bundle O(�1)�O(�3) parabolic Higgs stable. Analogous computations

shows that there is no parabolic structure on O(�1)�O(�3) which admits a nilpotent parabolic

Higgs field, with nonzero residues, such that the pair ((⇡̃⇤Ẽ)�, �̃) is parabolic Higgs stable. (see

Appendix A.2).

The above computations in the case of (⇡̃⇤Ẽ)� = O(�2)�O(�2) or O(�1)�O(�3), together

with the Appendices A.1 and A.2, prove the following

Proposition 4.10. Let M be a symmetric CMC surface and (⇡̃⇤Ẽ)�,� ! CP
1
, the parabolic

vector bundle defined in Subsection 4.4.3. The only possible holomorphic structure on (⇡̃⇤Ẽ)�,�

at � = 0 is O(�2)�O(�2).

4.6 Main result

LetM be a symmetric CMC surface andr
� the associated family of flat SL(2,C)-connections of

the immersion f : M ! S
3 (cf. Section 3.1). In this section we want to prove that the �-family

of logarithmic connections r̃� defined on the �-invariant parabolic bundle (⇡̃⇤Ẽ)�,� ! CP
1 (cf.

Subsection 4.4.3), gives a DPW potential on the four punctured Riemann sphere, from which

it is possible to reconstruct the immersion f : M ! S
3 (cf. Section 3.2).

The following diagram shows the various objects we introduced in this Chapter, together

with the maps between them:
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(Ẽ = ⌧
⇤
E, ⌧

⇤
r

�) (E,r
�) ((⇡̃⇤Ẽ)�,�, r̃�)

M̃ M CP
1

⇡̃⇤

⌧
⇤

⇡
⇤

⌧

⇡̃

⇡

The next result shows that it is possible to find a DPW potential for the symmetric CMC

surfaces in Table (4.3).

Theorem 4.1. Let M be a symmetric CMC surface with symmetry group G ⇢ SO(4) from

the Table (4.3). Let r
�
be the associated family of flat SL(2,C)-connections of the immersion

f : M ! S
3
. Then, there exists a holomorphic family of logarithmic connections

r̃
� = �

�1�̃+ r̃+ higher order terms in �

on the four punctured sphere CP
1
, singular at the four branch points z1, . . . , z4 of ⇡ : M !

M/G = CP
1
, where �̃ is a nilpotent sl(2,C)-valued complex linear 1-form, which satisfies the

following:

(i) there exists a flat connection r̂ on M with Z2-monodromy representation, such that the

families of connections r
�
and ⇡

⇤
r̃

�
⌦ r̂ are gauge equivalent via a family of gauge

transformations g(�) which extends holomorphically at � = 0;

(ii) there is an open neighborhood U of � = 0 such that r̃
�
can be represented by a �-family

of Fuchsian systems for � 2 U . More specifically, for � 2 U , we have

r̃
� = d+ ⌘(z,�) = d+

1X

j=�1

⌘j(z)�
j
, (4.219)

where, for every j, ⌘j(z) is a sl(2,C)-valued 1-form with simple poles at the branch points

z1, . . . , z4 and holomorphic on CP
1
r{z1, . . . , z4};

(iii) the map � 7! ⌘(z,�) extends meromorphically to C
⇤
and the connection r̃

� = d+ ⌘(z,�)

has unitarizable monodromy representation for every � 2 S
1
such that ⌘(z,�) does not

have a pole;

(iv) the eigenvalues of the local residues of r̃
�
are given by the eigenvalues (of the first or

second factor in SU(2) ⇥ SU(2)) of the four generators �1, . . . , �4 of the finite group

� ⇢ SU(2)⇥ SU(2) which double covers G.
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In particular, all of these CMC surfaces can be constructed from a meromorphic DPW potential

on the four punctured sphere.

Proof. In Subsection 4.4.3 we have defined a holomorphic family of logarithmic connections r̃�

on the parabolic vector bundle (⇡̃⇤Ẽ)�. We want to prove that r̃� satisfies conditions (i)� (iv).

(i) Let ⌧ : M̃ ! M be the holomorphic map between Riemann surfaces defined in Proposition

4.1, branched at the fixed points of the action of G ⇢ SO(4) on M .

From the Riemann’s existence Theorem 1.4, ⌧ is uniquely determined by a monodromy

representation

⇢ : ⇡1(M r {P1, . . . , Pk}, P0) ! Z2, (4.220)

where P1, . . . , Pk are the fixed points of the action G⇥M ! M and P0 2 Mr{P1, . . . , Pk}.

The representation ⇢ determines a flat connections r̂ on M via the Riemann-Hilbert

correspondence ([36, Theorem 3.5]). Moreover, the constructions of ⌧ and M̃ imply that

the pullback connection ⌧⇤r̂ on M̃ is trivial.

From Proposition 4.4 and Subsection 4.4.3, it follows that the �-family of flat connections

⌧
⇤
r

� and ⇡̃⇤r̃� are gauge equivalent. Therefore, if we consider the associated family of

flat connections r� on M and the pullback under the map ⇡ : M ! CP
1 of the �-family of

logarithmic connections r̃� on CP
1, an argument similar to the one used in the discussion

prior to Proposition 4.4, shows that there only two possible cases:

(1) r
� is gauge equivalent to ⇡̃⇤r̃� under a holomorphic family of meromorphic gauge

transformations g(�), which extends to � = 0;

(2) r
� is gauge equivalent to ⇡̃⇤r̃�

⌦ r̂ under a holomorphic family of meromorphic

gauge transformations g(�), which extends to � = 0.

Case (1) cannot occur due to the choice for the eigenvalues of the local residues of the

family of logarithmic connections r̃
� at the points z1, . . . , z4 2 CP

1 we have made (cf.

Subsection 4.4.1). Therefore, it remains only the situation given in case (2).

(ii) Proposition 4.10 shows that the underlying holomorphic vector bundle of the parabolic

bundle (⇡̃⇤Ẽ)�,� ! CP
1 at � = 0 is given by O(�2)�O(�2).

Since the generic holomorphic rank 2 vector bundle of degree �4 on CP
1 is O(�2)�O(�2),

it is possible to find an open neighbourhood U ⇢ C
⇤ of � = 0 such that

(⇡̃⇤Ẽ)�,� = O(�2)�O(�2), for every � 2 U. (4.221)
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The expression (4.219) for the �-family of logarithmic connections r̃�, for � 2 U , can be

obtained by writing the connection 1-form of r̃� with respect to the frame

✓
1

(z � z1)(z � z3)
e1,

1

(z � z1)(z � z3)
e2

◆
, (4.222)

where (e1, e2) is the meromorphic frame for O(�2)�O(�2) such that e1, e2 have simple

poles at the branch points z2, z4 2 CP
1.

(iii) Since for a generic � 2 C
⇤ the underlying holomorphic vector bundle of the parabolic

bundle (⇡̃⇤Ẽ)�,� ! CP
1 is O(�2)�O(�2), the values of � 2 C such that this not happens

form a discrete subset Ũ ⇢ C
⇤.

By parametrizing the �-family of logarithmic connections r̃� of the form (4.219) similarly

to [32, Section 2.3], it follows that the entries of the �-family of 1-forms ⌘(z,�) cannot

have essential singularities. Therefore, it is possible to extends holomorphically to C
⇤ the

map

� 7! ⌘(z,�). (4.223)

The unitarizability of r̃� = d+ ⌘(z,�) for � 2 S
1 comes from the construction of r̃� and

from the fact that the connection r
� is unitary for � 2 S

1 (cf. Theorem 3.1).

(iv) This follows from the computations in Subsections 4.1.1, 4.1.2 and 4.1.3 and the description

of the local residues of r̃� in Subsection 4.4.1 (cf. (4.116)).

The CMC immersion f : M ! S
3 can be constructed via the DPW method using the family

of 1-forms ⌘(z,�) in (4.219). There are two cases to consider:

(a) for all � 2 D1 = {� 2 C
⇤
| |�|  1} the underlying holomorphic vector bundle of

(⇡̃⇤Ẽ)�,� ! CP
1 is O(�2)�O(�2).

In order to obtain a closed immersion along non trivial loops in M , the monodromy

matrices of ⌘(z,�) must be simultaneously unitarizable (see for example [59, Section 7]).

It is possible to find a unitarizer for the monodromy matrices of ⌘(z,�) for all � 2 D1

([59, Theorem 4]).

Therefore, the immersion f : M ! S
3 constructed using the steps of the DPW method

described in Section 3.2, is well-defined.

(b) There exists a discrete subset Ũ ⇢ D1 such that the underlying holomorphic vector bundle

of (⇡̃⇤Ẽ)�,� ! CP
1 is O(�1)�O(�3).
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Similarly to case (a), [59, Theorem 4] gives a unitarizer for the monodromy matrices of

⌘(z,�), which is singular at the values of � 2 Ũ .

In order to obtain a well-defined immersion f : M ! S
3, in this case it is necessary to

apply the Iwasawa factorization (step (ii) of the DPW method in Section 3.2) on a disc

Dr of radius r < 1 such that ([59, Section 3.1])

Dr \ Ũ = ;. (4.224)

Since Ũ is a discrete subset, there exists a r < 1 such that (4.224) holds. Therefore, the

immersion f : M ! S
3 constructed via the DPW method is well defined.
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Appendix A

A.1 Other parabolic structures for O(�2)�O(�2)

The following computations shows that there are no parabolic structure on O(�2) � O(�2)

which admits a nilpotent parabolic Higgs field �̃ with non vanishing residues at the points

z1, . . . , z4 except the one provided in Subsection 4.5.2. We denote with S1 the first O(�2)

summand and with S2 the second summand in O(�2)�O(�2). Let L1, . . . , L4 be the parabolic

lines at the branch points z1, . . . , z4 of the map ⇡̃ ! M̃ ! CP
1

• L1 2 S1, L2, L3 2 S2, L4 not contained in S1 nor in S2

After normalization we can consider

L1 =

0

@1

0

1

A , L2 =

0

@0

1

1

A , L3 =

0

@0

1

1

A , L4 =

0

@u

1

1

A . (A.1)

Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@0 b1

0 0

1

A , �̃2 =

0

@ 0 0

c2 0

1

A , �̃3 =

0

@ 0 0

c3 0

1

A , �̃4 =

0

@a4 �a4u

a4
u

�a4

1

A . (A.2)

From the fact that the sum of the residues is zero we get the linear system
8
>>>>><

>>>>>:

a4 = 0

b1 � a4u = 0

c2 + c3 +
a4
u

= 0

(A.3)

which implies that a4 = b1 = 0 and c2 = �c3. Even if �̃(z) in this case is nilpotent,

we will exclude this parabolic structure since a Higgs field with vanishing residues is not

admissible in our situation.
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• L1 2 S2, L2, L3, L4 not contained in S1 nor in S2

After normalization we can consider

L1 =

0

@0

1

1

A , L2 =

0

@1

1

1

A , L3 =

0

@1

1

1

A , L4 =

0

@u

1

1

A . (A.4)

Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@ 0 0

c1 0

1

A , �̃2 =

0

@a2 �a2

a2 �a2

1

A , �̃3 =

0

@a3 �a3

a3 �a3

1

A , �̃4 =

0

@a4 �a4u

a4
u

�a4

1

A . (A.5)

From the fact that the sum of the residues is zero we get the linear system
8
>>>>><

>>>>>:

a2 + a3 + a4 = 0

�a2 � a3 � a4u = 0

c1 + a2 + a3 +
a4
u

= 0

(A.6)

which implies c1 = 0, a2 = �a3, a4 = 0 . Even if �̃(z) in this case is nilpotent, we will

exclude this parabolic structure since a Higgs field with vanishing residues is not admissible

in our situation.

• L1, L2 2 S1, L3, L4 not contained in S1 nor in S2

After normalization we can consider

L1 =

0

@1

0

1

A , L2 =

0

@1

0

1

A , L3 =

0

@1

1

1

A , L4 =

0

@u

1

1

A . (A.7)

Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@0 b1

0 0

1

A , �̃2 =

0

@0 b2

0 0

1

A , �̃3 =

0

@a3 �a3

a3 �a3

1

A , �̃4 =

0

@a4 �a4u

a4
u

�a4

1

A . (A.8)

From the fact that the sum of the residues is zero we get the linear system
8
>>>>><

>>>>>:

a3 + a4 = 0

b1 + b2 � a3 � a4u = 0

a3 +
a4
u

= 0

(A.9)
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and from the first and the third equations we get a3 = a4 = 0 . Even if �̃(z) in this case

is nilpotent, we will exclude this parabolic structure since a Higgs field with vanishing

residues is not admissible in our situation.

• L1, L2 2 S1, L3 2 S2 and L4 not contained in S1 nor in S2

After normalization we can consider

L1 =

0

@1

0

1

A , L2 =

0

@1

0

1

A , L3 =

0

@0

1

1

A , L4 =

0

@u

1

1

A . (A.10)

Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@0 b1

0 0

1

A , �̃2 =

0

@0 b2

0 0

1

A , �̃3 =

0

@ 0 0

c3 0

1

A , �̃4 =

0

@a4 �a4u

a4
u

�a4

1

A . (A.11)

From the fact that the sum of the residues is zero we get the linear system

8
>>>>><

>>>>>:

a4 = 0

b1 + b2 � a4u = 0

c3 +
a4
u

= 0

(A.12)

which implies a4 = 0, c3 = 0, b1 = �b2 . Even if �̃(z) in this case is nilpotent, we will

exclude this parabolic structure since a Higgs field with vanishing residues is not admissible

in our situation.

• L1, L2, L3 2 S1, L4 not contained in S1 nor in S2

After normalization we can consider

L1 =

0

@1

0

1

A , L2 =

0

@1

0

1

A , L3 =

0

@1

0

1

A , L4 =

0

@u

1

1

A . (A.13)

Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@0 b1

0 0

1

A , �̃2 =

0

@0 b2

0 0

1

A , �̃3 =

0

@0 b3

0 0

1

A , �̃4 =

0

@a4 �a4u

a4
u

�a4

1

A . (A.14)
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From the fact that the sum of the residues is zero we get the linear system

8
>>>>><

>>>>>:

a4 = 0

b1 + b2 + b3 � a4u = 0

a4
u

= 0

(A.15)

which implies a4 = 0, b1 = �b2� b3 . Even if �̃(z) in this case is nilpotent, we will exclude

this parabolic structure since a Higgs field with vanishing residues is not admissible in our

situation.

• L1, L2 2 S2, L3, L4 not contained in S1 nor in S2

After normalization we can consider

L1 =

0

@0

1

1

A , L2 =

0

@0

1

1

A , L3 =

0

@1

1

1

A , L4 =

0

@u

1

1

A . (A.16)

Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@ 0 0

c1 0

1

A , �̃2 =

0

@ 0 0

c2 0

1

A , �̃3 =

0

@a3 �a3

a3 �a3

1

A , �̃4 =

0

@a4 �a4u

a4
u

�a4

1

A . (A.17)

From the fact that the sum of the residues is zero we get the linear system

8
>>>>><

>>>>>:

a3 + a4 = 0

�a3 � a4u = 0

c1 + c2 + a3 +
a4
u

= 0

(A.18)

and from the first and from the second equations we have that a3 = a4 = 0 and so c1 = �c2

. Even if �̃(z) in this case is nilpotent, we will exclude this parabolic structure since a

Higgs field with vanishing residues is not admissible in our situation.

• L1, L2, L3 2 S2, L4 not contained in S1 nor in S2

After normalization we can consider

L1 =

0

@0

1

1

A , L2 =

0

@0

1

1

A , L3 =

0

@0

1

1

A , L4 =

0

@u

1

1

A . (A.19)
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Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@ 0 0

c1 0

1

A , �̃2 =

0

@ 0 0

c2 0

1

A , �̃3 =

0

@ 0 0

c3 0

1

A , �̃4 =

0

@a4 �a4u

a4
u

�a4

1

A . (A.20)

From the fact that the sum of the residues is zero we get the linear system

8
>>>>><

>>>>>:

a4 = 0

c1 + c2 + c3 +
a4
u

= 0

�a4u = 0

(A.21)

which implies a4 = 0, c1 = �c2� c3 . Even if �̃(z) in this case is nilpotent, we will exclude

this parabolic structure since a Higgs field with vanishing residues is not admissible in our

situation.

A.2 Other parabolic structures for O(�1)�O(�3)

The following computation shows that there are no parabolic structure on O(�1)�O(�3) which

admits a nilpotent parabolic Higgs field �̃ with non vanishing residues at the points z1, . . . , z4

like the one considered in Subsection 4.5.3. Let L1, . . . L4 be the parabolic lines at the branch

points z1, . . . , z4 of the map ⇡̃ : M̃ ! CP
1.

• L1, L2, L3 2 O(�3) and L4 not contained in O(�3) nor in O(�1)

Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@ 0 0

c1 0

1

A , �̃2 =

0

@ 0 0

c2 0

1

A , �̃3 =

0

@ 0 0

c3 0

1

A , �̃4 =

0

@a4 �a4u

a4
u

�a4

1

A . (A.22)

Since the residues of �̃must satisfies the condition described in Subsection 4.5.3, we obtain

the linear system: 8
>>>>>>>>><

>>>>>>>>>:

a4 = 0

c2 = ic1

c3 = �c1

a4
u

= �ic1

(A.23)
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Thus, even if �̃(z) in this case is nilpotent, we will exclude this parabolic structure since

the all the residues are vanishing and this is not admissible.

• L1, L2, L3, L4 2 O(�3)

Using the condition �̃jLi = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@ 0 0

c1 0

1

A , �̃2 =

0

@ 0 0

c2 0

1

A , �̃3 =

0

@ 0 0

c3 0

1

A , �̃4 =

0

@ 0 0

c4 0

1

A . (A.24)

Since the residues of �̃must satisfies the condition described in Subsection 4.5.3, we obtain

the linear system: 8
>>>>><

>>>>>:

c2 = ic1

c3 = �c1

c4 = �ic1

(A.25)

Thus the parabolic Higgs field �̃ is given by

�̃(z) =

0

@ 0 0

c1 0

1

A dz

z � 1
+

0

@ 0 0

ic1 0

1

A dz

z � i
+

0

@ 0 0

�c1 0

1

A dz

z + 1
+

0

@ 0 0

�ic1 0

1

A dz

z + i
+

0

@0 b

0 0

1

A dz.

(A.26)

We can now check for which values of b and c1 the parabolic Higgs field �̃ is nilpotent.

�̃2(z) =

0

@4bc1 0

0 4bc1

1

A dz

z4 � 1
. (A.27)

Thus, the only possibilities are b = 0 or c1 = 0, which contradicts the fact that b and c1

are non zero constant. We conclude that this parabolic structure on O(�1) � O(�3) is

not admissible.

• L1, L2, L3 2 O(�3) and L4 2 O(�1)

Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@ 0 0

c1 0

1

A , �̃2 =

0

@ 0 0

c2 0

1

A , �̃3 =

0

@ 0 0

c3 0

1

A , �̃4 =

0

@0 b4

0 0

1

A . (A.28)
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Since the residues of �̃must satisfies the condition described in Subsection 4.5.3, we obtain

the linear system: 8
>>>>><

>>>>>:

c2 = ic1

c3 = �c1

0 = �ic1

(A.29)

Thus, c1 = 0 and we obtain that the residues �̃1, �̃2 and �̃3 are vanishing which makes

the parabolic structure non admissible.

• L1, L2 2 O(�3) and L3, L4 2 O(�1)

Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@ 0 0

c1 0

1

A , �̃2 =

0

@ 0 0

c2 0

1

A , �̃3 =

0

@0 b3

0 0

1

A , �̃4 =

0

@0 b4

0 0

1

A . (A.30)

Since the residues of �̃must satisfies the condition described in Subsection 4.5.3, we obtain

the linear system: 8
>>>>><

>>>>>:

c2 = ic1

0 = �c1

0 = �ic1

(A.31)

Thus, c1 = c2 = 0 and we obtain that the residues �̃1 and �̃2 are vanishing which makes

the parabolic structure non admissible.

• L1, L2, L3 2 O(�1) and L4 2 O(�3)

Using the condition �̃jLj = 0, j = 1, . . . , 4 we obtain that the residues of the Higgs field

�̃ have the form:

�̃1 =

0

@0 b1

0 0

1

A , �̃2 =

0

@0 b2

0 0

1

A , �̃3 =

0

@0 b3

0 0

1

A , �̃4 =

0

@ 0 0

c4 0

1

A . (A.32)

Since the residues of �̃must satisfies the condition described in Subsection 4.5.3, we obtain

the linear system: 8
>>>>><

>>>>>:

c2 = ic1

c3 = �c1

c4 = �ic1

(A.33)
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Thus, c4 = 0 and we obtain that the residues �̃4 is vanishing which makes the parabolic

structure non admissible.
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Tübingen and the University of Hannover for hosting me and the Department of Mathematics

and Computer Science of Cagliari and the people working there for being almost a second home

to me.

My sincere thanks also goes to my colleagues Simone, Luca, Nicola, Federica, Ali and Max,

with whom I’ve spent both fun and stressful times.

Thanks to Martina, Gabriele, Davide, Francesco, Carlo and Giulia for all the time spent
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