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ABSTRACT 

Defining gene expression profiles and mapping complex interactions between molecular 

regulators and proteins is a key for understanding biological processes and the functional 

properties of cells, which is therefore, the focus on numerous experimental studies. Small-scale 

biochemical analyses deliver high-quality data, but lack coverage, whereas high throughput 

sequencing reveals thousands of interactions which can be error-prone and require proper 

computational methods to discover true relations. Furthermore, all these approaches usually focus 

on one type of interaction at a time. This makes experimental mapping of the genome-wide network 

a cost and time-intensive procedure.  

In the first part of the thesis, I present the developed network analysis tools for exploring large-

scale datasets in the context of a global network of functional coupling.  

 Paper I introduces NEArender, a method for performing pathway analysis and determines 

the relations between gene sets using a global network. Traditionally, pathway analysis did not 

consider network relations, thereby covering a minor part of the whole picture. Placing the gene 

sets in the context of a network provides additional information for pathway analysis, which reveals 

a more comprehensive picture. 

  Paper II presents EviNet, a user-friendly web interface for using NEArender algorithm. The 

user can either input gene lists or manage and integrate highly complex experimental designs via 

the interactive Venn diagram-based interface. The web resource provides access to biological 

networks and pathways from multiple public or users’ own resources. The analysis typically takes 

seconds or minutes, and the results are presented in a graphic and tabular format.  

 Paper III describes NEAmarker, a method to predict anti-cancer drug targets from 

enrichment scores calculated by NEArender, thus presenting a practical usage of network 

enrichment tool. The method can integrate data from multiple omics platforms to model drug 

sensitivity with enrichment variables. In parallel, alternative methods for pathway enrichment 

analysis were benchmarked in the paper. 

The second part of the thesis is focused on identifying spatial and temporal mechanisms that govern 

the formation of neural cell diversity in the developing brain. High-throughput platforms for RNA- 

and ChIP-sequencing were applied to provide data for studying the underlying biological 

hypothesis at the genome-wide scale.  

 In Paper IV, I defined the role of the transcription factor Foxa2 during the specification 

and differentiation of floor plate cells of the ventral neural tube. By RNA-seq analyses of Foxa2-

/- cells, a large set of candidate genes involved in floor plate differentiation were identified. 

Analysis of Foxa2 ChIP-seq dataset suggested that Foxa2 directly regulated more than 250 genes 

expressed by the floor plate and identified Rfx4 and Ascl1 as co-regulators of many floor plate 

genes. Experimental studies suggested a cooperative activator function for Foxa2 and Rfx4 and 

a suppressive role for Ascl1 in spatially constraining floor plate induction.  

 Paper V addresses how time is measured during sequential specification of neurons from 

multipotent progenitor cells during the development of ventral hindbrain. An underlying timer 

circuitry which leads to the sequential generation of motor neurons and serotonergic neurons has 

been identified by integrating experimental and computational data modeling.  
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“Data do not give up their secrets easily. They must be tortured to confess”  
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1 INTRODUCTION 

Different types of specialized cells in multicellular organisms share the same genetic 

information but differ in their morphology and function, since different gene expression 

programs are active in the different cell types. Transcription factors (TFs) constitute a large 

group of proteins that can bind to specific DNA sequences and regulates genes by activating 

or repressing gene expression. Transcription factors, together with histones and other 

chromatin-associated proteins, dictate patterns of gene activation in different types of cells 

(Coulon et al., 2013). Therefore, the challenge here is to understand how these molecular 

interactions operate in a cell and regulate the gene regulatory network at the systems level. The 

field of systems biology has evolved to understand these complex biological interactions.  

 Systems biology is an interdisciplinary field of biology that attempts to use new 

perspectives in order to comprehensively and systematically analyze complex interactions in 

biological systems, thereby prioritizing holism over reductionism. It applies a wide range of 

computational techniques to analyze the data sets of varying sizes and types in order to build 

descriptive or even predictive models (Tavassoly et al., 2018). Two strategies are employed in 

the model building: 

a) Top-down approach: This approach departs from a big picture and then descends to 

smaller segments. The datasets from high throughput (‘-omics’) profiling, such as next-

generation sequencing, contain vast amounts of information and are meant to describe 

the genome, proteome, transcriptome etc. However, mining this data requires advanced 

analytical approaches. Here, modeling techniques, if chosen appropriately, can help to 

identify key pathways and mechanisms underlying biological processes. This analysis 

can also provide an insight into the organization, as well as relations among the 

components (Kitano, 2001; Tavassoly et al., 2018). 

 

b) Bottom-up approach: It is mechanistic, contrary to the top-down approach, and starts 

by modeling cell parts and sub-networks. It usually employs data from small-scale 

experiments, such as biochemical or molecular biology assays. The experiments can 

measure key system variables as functions of time or space. Therefore, a bottom-up 

approach is particularly suited when most of the genes/proteins and their relationships 

are already known, which enables finding the last few missing pieces to the puzzle or 

specify the detailed parameters of their interaction. A typical workflow of a bottom-up 

approach would thus be: i) to build a simulation model that can be used to analyze the 

dynamical properties of the system by changing parameters that cannot be manipulated 
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in the actual system. ii) to validate the results generated through simulation and its 

consistency with the experimental data (Kitano, 2001; Tavassoly et al., 2018). 

The major part of this thesis is concentrated on a top-down approach, where I applied 

topological analysis to explore large-scale, omics data in the context of global networks of 

functional coupling. To this end, I developed network analysis tools for testing underlying 

biological hypotheses. Paper V shows an example where a bottom-up approach has been 

employed using mathematical modeling to define timer motif (feed-forward loop) underlying 

the sequential generation of motor neurons (MNs) and serotonergic neurons (5HTNs) by neural 

progenitor stem cells in the brainstem. 
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2 BACKGROUND 

 HIGH THROUGHPUT SEQUENCING 

“...[A] knowledge of sequences could contribute much to our understanding of living matter” 

                 - Frederick Sanger  

The discovery of DNA in 1869 by Friedrich Miescher, development of classical genetics by 

Mendel and research on how the human body orchestrates its function led us to this point in 

history: the human genome sequencing. 

 History of genome sequencing  

Sequencing (or DNA sequencing) refers to the precise determination of its base pairs (A, T, 

C, G) in a DNA sample. Around 1977, two methods: chain termination method by Sanger 

and Coulson (Sanger et al., 1977), chemical cleavage procedure developed by Maxam and 

Gilbert (Maxam et al., 1977) transformed the field of genomics. The first whole genome of 

an organism (Bacteriophage ΦX174) was sequenced in 1977 (Sanger et al., 1977), which 

used gel electrophoresis and manual calling bases for DNA sequencing. After years of 

developments, Sanger sequencing introduced capillary electrophoresis, which allowed to 

sequence longer fragments with automated base calls. The first automated DNA Sanger 

sequencing was introduced by Applied Biosystems (invented by Lyold M. Smith) in 1987 

(Cook Deegan et al., 2014). The Sanger (or first-generation) sequencing was widely used for 

three decades, but the cost and time were major stumbling blocks to sequence complex 

genomes.  

 Since 2005, Next Generation Sequencing (NGS) (or second-generation) technologies, 

namely 454, ABI SOLID, Illumina arrived at the market (Shendure et al., 2008). With such 

advancements as speed, rapid sequencing of millions of nucleotides (reads) in a single run, 

low cost, better genome coverage and accuracy, the NGS technologies have in no time 

incorporated into the modern research world (Shendure et al., 2017). This generation uses 

either sequencing by synthesis (454, Illumina) or sequencing by ligation (ABI/SOLID). The 

NGS technologies employ a PCR amplification step to obtain a DNA library of a sufficient 

amount for loading into the sequencer. Technically, this step is expensive in terms of time 

and money. Another caveat of NGS technologies is shorter reads (50-700 bp) (Genohub), 

which creates problems while assembling larger, mostly diploid genomes, especially in the 

repetitive regions or for very similar gene alleles (Roberts et al., 2013). Promising to 

overcome these drawbacks, third-generation (or long-read) sequencers based on single-

molecule real-time sequencing (SMRT) approach from PacBio, Illumina True-Seq Synthetic 
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Long-Read, and the Oxford Nanopore technologies entered the market. They are based on 

single-molecule templates and can sequence longer fragments (between 5000-15000bp, with 

some reads exceeding 100000 bp).  

 High throughput sequencing techniques have been widely used to study different ‘-

omes’ such as genomes, transcriptomes, proteomes, and metabolomes. Numerous sequencing 

protocols were developed to address various technical biological questions (Table 1). Among 

these, I focus in this thesis on the RNA- and ChIP-sequencing (Papers II, IV, V). Respective 

large-scale datasets have been derived, analyzed and applied to address the concrete 

biological questions. In parallel, research consortia such as ENCODE (ENCODE Project 

Consortium et al., 2012), TCGA (Cancer Genome Atlas Research Network et al., 2013), 

GEO (Barrett et al., 2012), FANTOM (Lizio et al., 2015) etc. characterized biological 

systems at multiple levels by generating omics datasets with various platforms and made 

them publicly available. For Paper I and Paper III in this thesis, I also integrated datasets 

from such open-resource projects. 

Table 1: List of few sequencing approaches developed to identify epigenetic and transcriptional 

regulation  (source: Enseqlopedia).  
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 BIOLOGICAL NETWORKS 

Networks are indispensable in representing complex relationships between the molecular 

components of a cell that govern various biological functions. At a conceptual level, a network 

is a graph (G) where V vertices (nodes) represent molecular components (genes, proteins etc.) 

that are connected by E edges, i.e. functional links, between pairs of nodes. The nodes and 

edges together, thus form a network G (V, E).  

 There exist numerous versions and representations of species-specific (e.g. human) 

global networks. Nodes and edges can be differently “colored” according to certain properties 

shared by subsets of nodes or edges. Depending on the nature of interactions and the purpose 

of network modeling, the graphs can be directed (when link direction is defined) or undirected 

(undefined direction). Truly undirected network edges would be physical interactions 

representing protein complex formation (Figure 1A). For comparison, in gene regulatory 

networks, the information flow should be directed from a transcription factor to the regulated 

gene (Figure 1B). Additionally, edges may have weight attributes specifying either statistical 

confidence or interaction strength (Figure 1C). A common usage of signaling networks is 

quantitative modeling with e.g. differential equation tools. This bottom-up approach, however, 

requires precisely knowing all/most of the nodes and edge components in the sub-network, 

while the latter is very limited in size. 

 The network modeling can also be classified by specific topological patterns. Bipartite 

graphs consist of two node sets so that edges are considered only across, i.e. between nodes 

from the different sets, but not within a set. This approach is used in network enrichment 

analysis described further in chapter 2.3.2.4 (Figure 1D). Alternatively, collections of multiple 

gene sets, such as Gene Ontology, can be hierarchically ordered into Directed Acyclic Graphs 

(DAGs) where specificity of the biological function increases down the DAG tree (Figure 1E). 

Contrary to the bipartite graphs mentioned above, nodes in DAGs necessarily overlap, while 

edges are formed by functional annotations assigned externally (e.g. from experiments) rather 

than via gene-gene links of the global network. In addition, the feed-forward loop (FFL) (or 

the three-node motif) is a pattern that is often observed in gene regulatory networks. Two of 

the FFL nodes represent transcription factors a and b (Figure 1F), regulating each other, 

whereas both then jointly affect a target gene c (R.Milo et al., 2002). An FFL is coherent when 

the direct effect a→c is the same as the net indirect effect a→b→c, in which both links can be 

either positive or negative (Figure 1G). Otherwise, it is referred to as an incoherent feed-

forward loop (IFFL) (Figure 1H).                 
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Figure 1: Types of network representation. Nodes with different attributes are color-coded (red, green, grey, 

orange) and labeled alphabetically (a, b, c, d). A) Undirected graph B) Directed version of the same graph; 

edge labels denote confidence scores. C) Directed graph where node state and edge weight attributes are 

used for color coding: red-repression; green-activation; blue- no effect. D) Bipartite graph of gene nodes 

where A and B are gene set attributes. E) Directed acyclic graph where the nodes are sets of genes of related 

function; arrows denote narrowing functional annotation. F) Feed-forward loop G) Coherent feed-forward 

loop H) Incoherent feed-forward loop. 

 Network Topology 

The number of links a node has to the other nodes in the network, is called node degree (k). 

The probability that a randomly chosen node has degree k defines the degree distribution P(k) 

of a network. Nodes with high degrees are often referred to as hubs. The degree distribution 

allows to distinguish different network classes. For most of the known versions of the global 

biological network such as yeast-to-hybrid protein interaction networks (PPIs), networks 

predicted from data integration (FunCoup) etc., the degree distribution follows the power law, 

meaning that many nodes in the network have few links and few nodes have many links (i.e. 

are hubs). Networks possessing this property are termed scale-free networks (Barabasi et al., 

1999).  

P(k) ~ k -                - (power-law distribution) 

 

Here  refers to the degree exponent, with its value for most networks between 2 and 3 (2 <  

< 3). The justification of why a biological network should have a power-law distribution or a 

scale-free property was explained by the preferential attachment model (Barabasi et al., 1999). 

The proposed modeling (growth process) started with a smaller network and expanded it by 

creating new nodes and connecting them to already existing nodes with a probability 

proportional to the node degrees of the latter. Thus, highly connected nodes were more likely 
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to gain links to new nodes, which allowed their node degrees to increase faster (i.e., preferential 

attachment). In the context of PPIs, the phenomenon gene duplication1 (paralogy), which is 

wide-spread in the complex eukaryotic genomes, ought to be the key mechanism supporting 

the proposed model (Barabási et al., 2004). Another notable property of scale-free networks is 

robustness, i.e. tolerance to attacks. It means that removing a randomly picked node in the 

scale-free network would have a negligible effect, whereas deleting a hub with high 

betweenness-centrality2 would collapse the network topology – and thereby functionality. By 

simulating attacks on protein nodes in PPIs, one could predict the candidate drug targets (Yu 

et al., 2007; Azevedo et al., 2015).  

 Data integration and biological network prediction 

The development of high-throughput interaction assays (such as yeast 2-hybrid, co-

immunoprecipitation, mass-spectrometry) and curated databases has generated high-quality 

datasets for a considerable number of organisms – first and foremost for the human and its 

mammal models. The associations between genes and/or proteins are derived from these 

datasets. The datasets thus serve information for rather an accurate prediction of edges in the 

true biological network. Before the edge prediction, most methods convert raw experimental 

data into quantitative scores. Each type of experimental evidence, such as co-expression, co-

occurrence in the subcellular domains, orthologous, phylogenetic profiling, protein domain 

interactions, literature reports etc. – would require a special association metric (linear 

correlation, mutual entropy etc.). Further, the association scores are benchmarked, i.e. 

compared by their prevalence in well known (gold standard, well-annotated) sets of functional 

associations, such as e.g. KEGG pathway maps or literature-derived interactions versus non-

interacting gene pairs. This procedure generates a likelihood space with regard to functional 

coupling. Finally, a summary likelihood value is reported for each putative edge. STRING 

reports interaction scores, which report estimated edge confidence given all the available 

evidence for the gene pair (Szklarczyk et al., 2015). Alternatively in FunCoup, these values, 

combined in a naïve Bayesian network as log-linear sums of individual (up to 50) likelihood 

values, are called Final Bayesian scores (FBS) (Alexeyenko et al., 2009; Schmitt et al., 2014). 

 Biological Network Databases 

Using different evidence types, data sets, and prediction algorithms, several resources were 

developed during the last 10-15 years. Table 2 summarizes some of the most popular databases, 

which were collectively used for Paper II in this thesis. 

                                                 
1  Gene duplication in the genome produces identical proteins that would in the beginning interact with the 

same protein partners and may later diverge - both functionally and topologically. 
2 Propensity of a node to be found on a shortest path between two randomly picked nodes 
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Database Description Supporting 
species 

Evidences Algorithm 
and scores 

Reference 

STRING 
Search Tool 
Retrieval of 
Interacting 
Genes/Proteins 

Protein-protein 
interactions 
containing both 
physical and 
functional 
associations 

5090 species Gene Neighbourhood, 
gene fusion, gene 
cooccurrence, co-
expression, databases, 
Text mining 

Probabilistic 
confidence 
score 

https://strin
g-db.org/ 
(Szklarczyk 
et al., 2015) 

GeneMANIA 
Multiple 
Association 
Network 
Integration 
Algorithm 

Gene function 
prediction 

6 species 
(human, 
mouse, yeast, 
fly, plant and 
roundworm) 

Genetic and protein 
interactions, pathways, 
co-expression, co-
localization and domain 
similarity 

Gaussian 
field label 
propagation 

https://gene
mania.org/ 
(Warde-
Farley et al., 
2010) 

FunCoup 
Functional 
Coupling 

Prediction of 
functional 
association 
between 
genes/proteins 

17 species Protein-protein 
interactions, coexpression, 
subcellular localization, 
metabolic and signaling 
interactions, phylogenetic 
associations 

Naive 
Bayesian 
integration 
 

http://funco
up.sbc.su.se/ 
(Alexeyenko 
et al., 2009; 
Schmitt et al., 
2014) 

CORUM 
Comprehensiv-
e resource of 
mammalian 
protein 
complexes 

Reference 
dataset of 
mammalian 
protein complex 
information 
(complexome) 

human, 
mouse, rat 

Highly quality data for 
protein complex function, 
localization, subunit 
composition from 
individual experiments 
and literature references 

Manual 
curation 

https://mips.
helmholtz-
muenchen.de
/corum/# 
( Ruepp et al. 
2007; 
Giurgiu et al. 
2019;) 

BioGrid 
Biological 
General 
Repository for 
Interaction 
Datasets 

Database access 
for protein, 
genetic, chemical 
interactions 

71 species Gene-protein interactions, 
Protein-drug interactions, 
gene-phenotype and gene-
gene interactions 

Interaction 
Management 
Systems 

https://thebi
ogrid.org/ 
(Stark et al., 
2006; 
Oughtred et 
al., 2019) 

I2D 
Interlogous 
Interaction 
Database 

Known and 
predicted 
protein-protein 
interactions 

5 species 
(human, rat, 
mouse, fly, 
roundworm) 
 

Domain-domain 
cooccurrence, gene co-
expression, GO terms 

Orthology 
domain co-
occurrence, 
GO similarity  

http://ophid.
utoronto.ca/
ophidv2.204
/ 
(Brown et al., 
2005, 2007) 

Innate DB 
Innate immune 
response 
database 

Interactions and 
signaling 
responses 
involved in 
mammalian 
innate immunity 

3 species 
(human, 
mouse, 
cattle) 

Protein-DNA, protein-
protein interactions 
collected from various 
databases such as MINT, 
Intact, BIOGRID, BID, DIP 

Manual 
curation 
from 
literature 
studies. 
Bovine 
interactions 
are predicted 
via 
orthology. 

https://www
.innatedb.co 
(Breuer et al., 
2013) 

Pathway 
Commons 

Integrates 
biological 
pathway and 
molecular 
interaction data 
from 9 public 
databases 

human Protein-protein 
interactions from low-
throughput or high-
throughput studies 
aggregated from various 
resources such as 
Reactome, NCI Pathways, 
PhosphoSite, HumanCyc 
etc.  

Manual and 
computation
al prediction 

http://www.
pathwaycom
mons.org/ 
(Cerami et 
al., 2011) 

Table 2: Summary of biological network databases used in paper II (evinet.org)  

https://string-db.org/
https://string-db.org/
https://genemania.org/
https://genemania.org/
http://funcoup.sbc.su.se/help/
http://funcoup.sbc.su.se/help/
https://mips.helmholtz-muenchen.de/corum/
https://mips.helmholtz-muenchen.de/corum/
https://mips.helmholtz-muenchen.de/corum/
https://mips.helmholtz-muenchen.de/corum/
https://thebiogrid.org/
https://thebiogrid.org/
http://ophid.utoronto.ca/ophidv2.204/
http://ophid.utoronto.ca/ophidv2.204/
http://ophid.utoronto.ca/ophidv2.204/
http://ophid.utoronto.ca/ophidv2.204/
https://www.innatedb.co/
https://www.innatedb.co/
http://www.pathwaycommons.org/
http://www.pathwaycommons.org/
http://www.pathwaycommons.org/
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 Applications of biological networks 

Analysis using biological networks have been applied to a number of different topics in life 

science research. Besides supporting and illustrating experimentally derived results, networks 

have also been used to study outcomes helping to interpret highly complex systems. 

Furthermore, the predicted associations have been used as input for sophisticated methods 

evaluating network properties and setting them within a biological context. Four examples 

where applications of biological networks have been applied are described below.  

 

Network browsing: retrieval and investigation of small sub-networks 

Biological networks are mostly used by the scientific community as a look-up context to find 

genes/gene sets of interest and identify possible interaction partners. This can help designing 

experiments, revealing new insight into experimental outcomes or providing additional 

information for drawing conclusions. Databases like FunCoup and STRING (Table 2) have 

been designed to provide high usability and ease of access to biological networks. Tools like 

Cytoscape (Shannon et al., 2003) has been developed to provide platforms to further analyze 

and visualize biological networks (Figure 2).  

Figure 2: Network query for ‘Shh’ gene in STRING database reveals its interaction partners. Links 

represent the associations between the nodes with various evidence codes. 

Gene and pathway annotations 

Network-based pathway annotation uses the networks as additional evidence sources to 

reveal relations between pathways and gene sets. This form of application is discussed in 

Section 2.3.2.4. 
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Discovery and evaluation of novel functional modules 

Modules are a group of highly interconnected genes; which are assumed to perform similar 

functions (Tornow et al., 2003). Distinct algorithms have been developed to identify functional 

modules in protein interaction networks. For example, methods like MGClus (Merge Gain 

Clustering) (Frings et al., 2013) determine clusters with a strongly interconnected 

neighborhood in a given biological network. Weighted correlation network analysis (WGCNA) 

finds modules of highly correlated genes using the eigengene network methodology (i.e. 

considering the module eigengene or an intramodular hub gene) in order to relate modules to 

one another and to external sample traits (Langfelder et al., 2008). DIAMOND uses 

connectivity significance to identify the full disease module around a set of known disease 

proteins (Ghiassian et al., 2015). 

 

Gene prioritization with regard of causing a disease or as potential biomarkers 

Gene prioritization algorithms assume an input set of known disease (or pathway, or functional 

term) genes as a reference and attempt to identify related genes by ranking them as candidate 

members to the given reference set via links in the biological network. These approach in 

finding associated genes based on the network connectivity is called “guilt-by-association” 

(GBA) (Erten et al., 2011; Guney et al., 2012; Winter et al., 2012). The paradigm considers 

network adjacency as evidence of functional relatedness. The common problem with using the 

GBA approach is that good benchmarking results are usually obtained only for best 

characterized (i.e. already well known) genes (Gillis et al., 2012). Also, in the absence of 

additional biological knowledge, GBA leads to prohibitively high false-positive rates. Indeed, 

each functional set is likely to acquire hundreds of high scoring gene candidates based on 

network connectivity scores per se. In this context, involving independent experimental 

evidence from dedicated studies allows reducing false discovery rates to acceptable levels 

(Hong et al., 2010; Reynolds et al., 2010; Bennet et al., 2011) 
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 BIOLOGICAL PATHWAYS 

A biological pathway is a process-oriented set of molecules that interact while performing 

certain actions in the cell or extracellular space, such as eye sensitivity to direct sunlight or 

repairing damaged tissue. Any disruptions in these pathways would either be lethal or lead to 

diseases such as cancer, neural degeneration, or diabetes. According to the National Human 

Genome Research Institute (NIH 2015), most well-known biological pathways can be 

classified as involved in metabolism, gene regulation, and signal transduction. 

Metabolic pathways: A cascade of biochemical reactions occurring within a cell, where the 

metabolites are the intermediates in the reaction catalyzed by enzymes, and the product of an 

enzymatic reaction acts as a substrate for another reaction. In a graph representation, nodes 

represent biochemical reactions and edges describe compounds driving that reaction. In a 

metabolic pathway, genes encode enzymes that drive the biochemical reaction and edges refer 

to the reaction or reaction products. 

Gene regulatory pathways: Interactions between transcription factors, DNA and recruitment 

of co-factors in the cell that directly govern the process of transcription. Also, other proteins 

such as chromatin remodelers, histone acetyltransferases, histone deacetylases, kinases and 

methylases are essential for gene regulation. 

Signal transduction pathways: A cascade of molecular events, by which a physical or 

chemical signal is transmitted through a cell to invoke a cellular response. Here one 

distinguishes between first and second messengers. First messengers are molecules like ligands 

binding to the cell membrane while second messengers (such as cyclic-AMP, calcium, nitric 

oxide) are chemical relays which carry out the intracellular signal.  

 Pathway Databases 

A pathway database contains high confidence datasets in a highly organized form for 

convenient retrieval and usage (Zhang et al., 2012). Currently, pathguide 

(http://www.pathguide.org/), an encyclopedia of pathway databases, reports 702 biological 

pathways and molecular interaction related online resources. Although regularly updated, the 

information provided in these resources is by no means complete and may contain false 

pathway members. In the following section, I discuss the most well-known resources, where 

functional gene sets (FGS) for network enrichment analysis (evinet.org) are readily available.  

 

 

 

http://www.pathguide.org/
http://evinet.org/
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Gene Ontology (GO) 

GO is an accessible resource, which provides a structured and controlled vocabulary for 

describing gene and gene product functions. The primary motivation behind the initial efforts 

of GO consortium was based on the hypothesis that similar genes (paralogs and orthologs) 

often have conserved functions across species. So, the integration of information from all 

organisms in one central repository enabled knowledge sharing and inferring functionalities for 

newly discovered genes. An ontology consists of a set of well-defined terms with well-defined 

relationships between the terms. In GO, the terms are categorized into three non-overlapping 

ontologies such as; Biological Process (BP), Molecular Function (MF) and Cellular 

Component (CC). The biological process refers to a biological objective to which the gene or 

gene product contributes (e.g., signal transduction, cell growth, and maintenance). Molecular 

Function defines the biochemical activities of a gene product (e.g. catalysis, transporter 

activity). Cellular component relates to the location in the cell where a gene product is active 

(e.g., Nucleus, Cytoplasm) (Ashburner et al., 2000). GO terms are structured as a directed 

cyclic graph, where nodes represent GO terms and relationships between terms indicates the 

edges (as mentioned in Figure 1F). The initial paralogy approach has developed into broad 

usage of increasingly available experimental evidence. The 18 codes in GO stand for evidence 

from literature, experimental, database, or computational methods to date.  It is essential to note 

that most GO terms (98%) are annotated without curators (du Plessis et al., 2011), and are 

recurrent with child terms in the DAG. Using GO Slims was proposed for reducing the full 

collection to a few general/universal terms and is optimal for providing a view over the range 

of functions or processes in a given organism.  

 

Kyoto Encyclopedia of Genes and Genomes (KEGG) 

KEGG is a collective database resource consisting of 18 databases dealing with biological 

pathways, genes and genomes, diseases, drugs and enzymes (Kanehisa et al., 2000). In general, 

the database provides for the most pathways, a manually curated map which can also include 

and link to other pathways and is downloadable in XML format. KEGG database is regularly 

updated and as of May 2019, supporting 5923 species, including the four species (human, 

mouse, rat and plant) available in evinet.org. 

 

Molecular Signatures Database (MSigDB)  

MSigDB is one of the most popular repositories of gene sets initially developed for use with 

Gene Set Enrichment Analysis (Subramanian et al., 2005) but later employed by many similar 

approaches. The latest version of MSigDB consists of eight collections (C1-C7, and H), which 

include genes grouped by their location in the human genome (C1), canonical pathways and 

experimental signatures curated from publications (C2), genes sharing conserved cis-

http://evinet.org/
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regulatory motifs up- or downstream of their coding sequences (C3), clusters of genes co-

expressed in microarray compendia (C4), genes grouped according to GO categories (C5), 

signatures of oncogenic pathway activation (C6), and a large collection of immunological 

conditions (C7). The hallmark gene sets (H) are derived by summarizing many MSigDB gene 

sets to represent 50 most specific, well-defined and the least overlapping biological processes 

and in addition displays a coherent expression of member genes in human samples. The 

MSigDB gene sets are reviewed, curated, and manually annotated by the MSigDB curators 

(Liberzon et al., 2015). These annotations are available for human only. 

 

Reactome 

Reactome is a free, open-source, manually curated and peer-reviewed database providing 

information about the biological pathway, proteins, reactions, small molecules, and drugs. All 

shreds of evidence are tracked by primary literature, making the annotations more reliable 

(Joshi-Tope et al., 2004). It is one of the popular resources, where information from its database 

is extensively cross-referenced to different online resources such as NCBI Gene, STRING, 

Pubmed literature database etc. Currently, it supports human along with 15 other non-human 

species. However, the annotations from human pathways are projected onto other species based 

on orthology (Reactome, 2019).  

 

WikiPathways 

WikiPathways is a resource for biological pathways maintained by and for the scientific 

community. The idea here is that any registered researcher can browse, create, or edit a 

pathway, such that the information is useful for other researchers (Pico et al., 2008). Currently, 

it supports 25 species (including human, mouse, rat and plant) and the database is updated 

monthly. 

 

Protein Analysis Through Evolutionary Relationships (PANTHER) 

PANTHER is an online resource for a comprehensive protein evolutionary and functional 

classification of proteins (and their genes) (Mi et al., 2019). The classification of proteins is 

done according to the groups of related evolutionary proteins (at the family level) and those 

related proteins with similar functions into subfamilies. Like in GO, the proteins are 

categorized either into molecular function or biological processes based on the functional 

context, i.e., the function of a protein at the biochemical level (e.g. protein kinase) or the cellular 

level (e.g. mitosis). PANTHER also comprises Pathways which explicitly specifies the 

relationships between the interacting molecules. For our functional gene set collection in 

evinet.org, we utilized the data from PANTHER Pathways for human, which contains 

http://evinet.org/
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information about 177 regulatory and metabolic pathways. In general, the database 

comprehends information about 132 species.  

 

MetaCyc 

MetaCyc is a resource for metabolic pathways involved in primary and secondary metabolism 

and contains information about associated metabolites, reactions, enzymes and genes. 

Annotations are highly curated based on literature studies and experimental validations. It is 

one such resource where the information is linked to other databases such as NCBI-Gene, 

STRING, KEGG, Interpro etc. Currently, the database contains 2722 pathways and supports 

3009 species including human (Caspi et al., 2018). 

 

NetPath 

NetPath is a resource of signal transduction pathways. NetPath provides detailed maps of 

several immune signaling pathways, which include approximately 1600 reactions annotated 

from the literature and more than 2800 instances of transcriptionally regulated genes, all linked 

to over 5500 published articles. NetPath allows biomedical scientists to visualize, process and 

manipulate data about signaling pathways (Kandasamy et al., 2010). The information is only 

available for human. 

 

Pathway Interaction Database (PID) 

PID is a joint initiative of the US National Cancer Institute and Nature Publishing Group. The 

database provides information about curated and peer-reviewed molecular signaling pathways, 

regulatory events, and key cellular processes. PID differs from REACTOME, in that it is 

focused on signaling and regulatory pathways and does not attempt to cover metabolic 

processes or generic mechanisms such as transcription, translation, etc. (Schaefer et al., 2009). 

The annotations are available for human only. 

 

 Small Molecule Pathway database (SMPdb) 

SMPDB contains small molecule pathways found in human. The pathways provide 

information on human metabolic, drug metabolism, drug action, physiological activity and 

metabolic disease pathways.  The database contains information for human-only (Jewison et 

al., 2014). 
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2.4 ENRICHMENT/PATHWAY ANALYSIS 

“Imperfect prediction, despite being imperfect, can be valuable for decision-making purposes” 

            - Michael Kattan 

With the onset of omics era, large volumes of biomolecular data are being generated by modern 

research and screening projects. Typically, this should expose reduced sets of genes or proteins 

which have changed their state or abundance in a certain experimental or pathological 

condition. I refer here to such sets as Altered Gene Sets, AGS.  Potentially, each of the genes 

in these lists may acquire a specific role in research or a clinical application. However, 

considering these genes as a plain list fails to provide mechanistic insights into the underlying 

biology being studied. On the other hand, selecting only familiar genes tend to leave less 

characterized ones outside the users’ interest. To overcome these challenges and to extract 

meaningful information from the data, researchers came up with the idea of linking AGS to 

functionally annotated sets, such as pathways3 (further referred to as Functional Gene Sets, 

FGS). An essential advantage of coupling FGS to AGS is that, it is often simpler and more 

relevant to see relations to known functions presented as a wholesome property of an earlier 

characterized gene set, than to de novo perceive roles of individual gene/proteins or the whole 

AGS list (Khatri et al., 2012). Such annotation via using functional relations is known as 

enrichment analysis. The detection of enrichment of a certain functional category is feasible, 

given the FGS is sufficiently large – according to requirements of the chosen enrichment 

method.  

A plethora of algorithms has been developed in the past years to perform this task. 

Broadly, they are categorized into three classes: (i) Over-representation analysis on shorter 

(less-than-complete) lists (ii) Functional class scoring using full gene lists, ranked by a score 

(iii) methods using network edges – usually topology within known pathways (Huang et al., 

2009; Khatri et al., 2012). However, a number of recent methods attempted to integrate 

information from biological networks into the enrichment analysis, giving rise to a new class 

called network enrichment analysis (NEA).  

 Classification of Enrichment Analysis Methods 

 Over-Representation Analysis (ORA)  

ORA is the state-of-the-art approach, initially developed to analyze microarray datasets. The 

principle behind this class of tools is to quantify the gene overlap between the AGS and FGS 

(traditionally from GO, KEGG). The input AGS gene list is obtained by applying certain cutoff 

                                                 
3 Gene sets whose function is well characterized and available in public databases (as described in chapter 2.3.1) 

e.g., GO, KEGG 
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thresholds, for example, a set of differentially expressed (DE) genes. Thereafter, for each 

pathway (or a functional category) in FGS, input genes that belong to the pathway are counted. 

The same is repeated with the background gene lists (e.g., non-DE genes). In the end, the 

assessment is done by applying a statistical test such as Fisher’s exact or hypergeometric test) 

to evaluate the significance of the overlap between two gene sets, which produces a score of 

enrichment for the given AGS-FGS pair. The most popular tools of this class are DAVID 

(Huang et al., 2007), BINGO (Maere et al., 2005) and GORILLA (Eden et al., 2009) etc. 

 Functional Class Scoring (FCS) 

FCS methods accept the full list of genes and are independent of the choice of a cutoff. All 

FCS methods vary in their framework, but the general principle remains the same 

(Subramanian et al., 2005; Barbie et al., 2009; Tarca et al., 2012). First, gene-level statistics 

evaluate the importance/significance of each gene within an experimental condition or an 

experimental contrast. Second, gene-level statistics measured for all genes that belong to a 

given pathway are aggregated into the single, cumulative pathway score, which may or may 

not be assessed for significance with regard to probability of null hypothesis through 

permutation tests. The most popular method of this class is Gene Set Enrichment Analysis 

(Subramanian et al., 2005): 

Gene Set Enrichment Analysis (GSEA) 

In this approach, genes from the experimental data are ranked (L) based on their 

correlation between expression levels of two experimental conditions. Then enrichment 

score is calculated for a given FGS as a running statistic, i.e. by descending along the 

ranked list L. When the next gene from L is a hit (member of the FGS), the score 

increases and decreases otherwise. The significance of enrichment score is calculated 

(using Kolmogorov–Smirnov (KS) statistic) in comparison to the permuted data, which 

is generated by swapping the samples condition labels. Finally, the enrichment scores 

for each gene set are normalized and the p-values are adjusted for multiple testing.  

GSEA is used for analyzing gene rankings from multiple samples with 

replicates. However, while dealing with a single sample (generally the case with patient 

samples), this method cannot be applied. Barbie et al. (Barbie et al., 2009) proposed a 

‘single sample’ extension of GSEA (ssGSEA). The method is similar to GSEA, but the 

gene list is ranked (L) by their absolute expression in a single sample from high to low. 

Next, instead of using the Kolmogorov-Smirnov statistics for estimating the score 

profiles, the scores are calculated using the Empirical Cumulative Distribution 

Functions (ECDF) for the genes that belong to the FGS versus the complement (genes 

that do not belong to FGS). The enrichment scores are calculated for each AGS-FGS 
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pair. The sample sizes normalize enrichment scores and reports significant estimates in 

the end. The GSEA and ssGSEA methods are benchmarked in Paper III.   

 Pathway Topology (PT) 

Both ORA and FCS methods consider the number of genes in a pathway or gene correlations 

to identify the significant pathways and ignores interactions between genes (Khatri et al., 

2012). This limitation is addressed by PT methods, which incorporate the topology of the 

gene network to estimate the significant statistics (Tarca et al., 2009). PT methods primarily 

rely on detailed maps from pathway databases such as KEGG (Kanehisa et al., 2000) or 

Reactome (Joshi-Tope et al., 2004). The limitation of PT algorithms is that they only work 

if a detailed, accurate pathway map is known. Tools such as Impact Factor (IF) (Draghici et 

al., 2007), SPIA (Tarca et al., 2009) and METACORE (Clarivate Analytics) belongs to this 

class of methods. 

Signaling Pathway Impact Analysis (SPIA) 

SPIA (Tarca et al., 2009) measures the pathway perturbation taking into account known 

intra-pathway topology.  Impact analysis is carried out in two steps: calculation of p-

values from PNDE (an enrichment analysis of differentially expressed genes in a given 

pathway, so that either of ORA or FCS methods can be applied) and PPERT, which 

compares the perturbation factor for a particular gene to that of all other genes in the 

given pathway. These two channels of evidence are combined into a global probability 

value, which is then used for pathway ranking and testing the null hypothesis (i.e. the 

one that the pathway is not significantly perturbed in a given condition). In Paper III, 

SPIA is benchmarked along with a range of other methods. 

 Network Enrichment Analysis (NEA) 

A major drawback of ORA and FCS methods is that functional annotations are highly 

incomplete, this means that the overlap with known pathways is often minimal, resulting in a 

large number of false negatives (i.e., low coverage). Here, the statistical assumption is that all 

genes are independent of each other and equally important for the analysis (Subramanian et al., 

2005). However as emphasized above, genes within a pathway are known to interact with each 

other. The PT methods could somewhat improve the situation by using known interactions 

between genes within a pathway (Khatri et al., 2012). In order to precisely follow the ideas of 

modern cell biology and systems biology, the pathway-based analysis can be improved by 

using global networks as an additional information input. 

A more advanced network-based approach is to analyze the network cross-connectivity 

between AGS and FGS, for which methods of network enrichment analysis have been 
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proposed (Alexeyenko et al., 2010, 2012; Glaab et al., 2012; Mccormack et al., 2013; Jeggari 

et al., 2017). Here, one assumes that a pathway is enriched if a significant number of network 

edges are found between any genes of AGS and any genes of FGS. The approach is based on 

the fundamental assumption that the network consists of functional associations between genes 

of the same types that may be found within a pathway. The performance of these methods 

depends mainly on two factors. First, it is the quality of the network– if it has low coverage 

(high false-negative rate of edges) or poor biological relevance (respectively, high false-

positive rate), then it will not provide enough statistical power to detect enrichment. Second, it 

is the relevance of the statistical model, meaning that the ability of a method to distinguish 

spurious from biologically relevant observations by estimating enrichment significance in an 

unbiased manner. The NEA methods differ in the method of calculating the enrichment scores, 

in that it accounts for node degrees of the AGS and FGS genes, and by the amount of 

computational time required to estimate the null model. 

EnrichNet 

The EnrichNet method first maps the AGS onto a global network. The network nodes 

corresponding to the AGS genes are used as seed nodes to compute the network 

distances between AGS and FGS. The distance scores are calculated between the genes 

in AGS and the pathways in FGS, using the random walk with restart algorithm. The 

network-based association score (Xd-score) is relative to the average distance to all 

pathways and represents a positive or negative deviation from the average distance. The 

Xd-score is correlated with a classical over-representation scores (q-values) and is 

presented in a regression plot, for setting an empirical user cutoff (Glaab et al., 2012). 

While this approach reports the enrichment scores, it does not assess the statistical 

significance of enrichment. 

 

How to determine the statistical properties of a given biological network? 

When determining the statistical properties of a biological network, the choice of an appropriate 

network null model is indispensable. In network analysis, it was proposed to generate the null 

(reference) model by randomizing the real biological network through systematically swapping 

edges between the node pairs (Maslov et al. 2002; McCormack et al. 2013). This has been 

shown to accurately preserve the node degree distribution, scale-freeness and other first-order 

topological properties of the network. Patterns (such as an AGS-FGS relation) in the actual 

network are compared to those in the randomized network to calculate the mean expected 

number of links and variance, as well as respective p-values.  

 The reference model is crucial for the given reason. As discussed in chapter 2.2, most 

biological networks follow the scale-free property. Therefore, a hub gene could have some 
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links to genes of a certain module simply by chance, whereas for a gene with a modest number 

of connections, the same number of links would indicate a significant biological pattern 

(Mccormack et al., 2013). Without considering the node degree, it does not make sense to treat 

network hubs equal to sparsely connected genes. Consecutively, genes with very different node 

degrees present in AGS and FGS should contribute differently to the enrichment score and its 

significance. 

 

NEA-2012 and CrosstalkZ 

The advantage of the NEA-2012 (Alexeyenko et al. 2012) and Crosstalkz (McCormack 

et al. 2013) compared to EnrichNet (Glaab et al., 2012) is that the assessment of 

enrichment significance accounts for the genes’ node degrees. Calculation of 

enrichment scores in both algorithms is done by randomizing the network. Multiple 

runs of network randomizations are performed by edge rewiring in the original network, 

by which mean and standard deviation of the number of connecting links is estimated 

and are further used for calculating the z-scores and p-values. The statistical assumption 

to calculate the network enrichment score is considered to be normal distributed under 

“true null”, i.e. assumption of no enrichment between the AGS and FGS. Both methods 

evaluated statistical significance by z-scores but differed in the randomization 

algorithms. NEA-2012 represented the network as a binary adjacency matrix, which is 

symmetrical, with margin representing the degree distribution of nodes. The 

randomization is achieved through permutation of matrix elements. NEA-2012 is 

capable of processing the fully ranked lists as like FCS, which significantly increases 

the CPU load and might not be essential to consider full gene lists for most of the 

applications. Further, Crosstalkz (Mccormack et al., 2013) implemented and 

benchmarked four network randomization strategies: edge permutation, node 

permutation, edge assignment and edge assignment with second-order preservation. 

The edge permutation randomly swapped edges in the network. This alternative is used 

for the calculation of mean, standard deviation, z, and p as described above. The node 

permutation swapped node labels between nodes with similar degree. The edge 

assignment started with an unconnected (empty) network and randomly added nodes 

according to the node degree distribution of the original network until all the node 

degrees are recovered. Node degree of the neighbouring nodes is preserved by edge 

assignment with second-order conservation. 

McCormack et al. demonstrated that in this randomization procedure higher-

order topological properties, such as the propensity of high-degree nodes to avoid 

connections with other high-degree nodes, could still be biased. The removal of higher-

order topological biases is not always justified and the decision to apply this over-
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randomization should depend on a particular research question. Also, multiple network 

randomizations while dealing with bigger networks or large AGS and/or FGS 

collections are very CPU-intense tasks. Another limitation by these methods 

(Alexeyenko et al. 2012 and McCormack et al. 2013) is that the test statistic is based 

on a normal approximation for the reference distribution, which is an integer and non-

negative by its nature. Mccormack et al. showed that approximating by the normal 

distribution would be inaccurate when the expected number of links between AGS and 

FGS is small – which may lead to high false rates for smaller FGS. These limitations 

were taken into account and addressed in the new implementation of NEArender. 

 

NEArender 

The NEArender algorithm evaluates the enrichment statistics based on the assumption 

that the underlying network edges are binomial distribution. The calculations are 

briefed in the Methods and discussed in Paper I. 
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 MECHANISMS OF DEVELOPING NERVOUS SYSTEM 

The vertebrate central nervous system (CNS) is the most complex and intriguing tissue in the 

human body, comprising hundreds or even thousands of functionally distinct types of neurons 

that establish selective synaptic connectivity with each other and to form functional neural 

circuits. The diversity of neurons is identifiable by their morphology, functional properties, 

connectivity, mode of neurotransmission and gene expression patterns (Osseward et al., 2019). 

The different neuronal subtypes are generated from mitotically active immature neural stem 

cells (NSCs) at specific positions and at defined time points during development of the neural 

tube, i.e. embryonic anlagen of the brain and spinal cord. The CNS also contains 

oligodendrocytes and astrocytes, which are non-neuronal support cells that are generated 

subsequent to neurons in the developing CNS. Oligodendrocytes form myelin sheets that 

enwrap and insulate axonal processes that facilitate the rapid conduction of electrical impulses. 

Oligodendrocytes also produce trophic growth factors that support neuronal survival. 

Astrocytes, in turn, provide structural support, modulate synaptic activity and contribute to 

maintain the blood-brain barrier (Rowitch et al., 2010). 

 Neural Induction 

The vertebrate CNS is derived from the dorsal ectoderm at gastrula stages of the early 

developing embryo and involves activation or deactivation of several signaling pathways, 

including FGFs, Wnts and BMPs (Claudio D. Stern, 2005). The neural plate initially forms an 

epithelial sheet that starts to invaginate and its dorsal edges merge and detach from the 

ectoderm to form the neural tube (Figure 3A). The neural tube which is located below the 

epidermis on the “back-side” of the developing embryo. The neural tube is subdivided along 

two major axes, the anterior-posterior (AP) axis (also termed rostro-caudal) that runs from the 

head to tail, and the dorsal-ventral (DV) axis from the back to belly (Figure 3B). The anterior 

part of the neural plate/neural tube, which is fated to give rise to a different subdivision of the 

brain is specified first, while the caudal spinal cord tissue is progressively added along with the 

caudal extension of the body axis (Sasai et al., 2014). Already at the early neural plate stage, 

NSCs at different positions are exposed to different patterning signals that impose unique 

positional identities to cells along the AP- and DV-axis of the neural tube, and enables cells to 

differentiate into distinct subtypes of neurons when NSCs leave the cell cycle and differentiate 

into post-mitotic neurons. Neurogenesis, in turn, involves the activity of Notch signaling 

pathway and the activity of a family of basic helix-loop-helix (bHLH) transcription factors. 

This activity further regulates the balance of cells to choose either between undifferentiated 

neural precursors or differentiating into neurons (Louvi et al., 2006). Thus, mechanisms that 

mediate positional patterning of NSCs are integrated with pan-neuronal factors regulating 

neurogenesis. 
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Figure 3: A) Formation of the neural tube. Neural progenitors originate from ectoderm as a sheet of cells 

called neural plate. During development the axial and paraxial mesoderm cells, develops into notochord and 

somite, causing the folding of the neural tube (Adapted from Sanja Kurdija). B) Mouse embryo where large 

subdivisions of the CNS are indicated. Anterior-Posterior (AP) patterning and Dorso-Ventral (DV) 

patterning. C) Dorso-ventral patterning of the neural tube. Distinct progenitor domains are formed along 

the DV axis. Transcriptional regulatory code of class I (repressed) and class II (induced) TFs. Adapted from 

(Peterson et al., 2012) 

 

 Anterior-Posterior patterning of the neural tube 

 Patterning of cells along the AP axis is initiated at early stages and underlies the regionalization 

of the neural tube into forebrain (FB), midbrain (MB), hindbrain (HB) and spinal cord (SC) 

regional territories (Figure 3B). After this, secondary signaling centers are established at 

specific boundaries of gene expression that enables further diversification (or patterning) of 

cells along the AP-axis (Wurst et al., 2001; Lim et al., 2007). During neural induction, the 

newly formed NSCs acquire a FB identity by default unless exposed to signals that impose a 

progressively more posterior identity to NSCs (MB, HB and SC, respectively). A dynamic and 

combination of spatiotemporal signaling by FGF from the caudally regressing node; Wnt and 

retinoic acid (RA) signaling from the paraxial mesoderm or the somite induces progressively 

caudal MB, HB and SC-identities, and with an increased requirement for prolonged exposure 

or higher concentration of Wnt signaling induces caudal-most spinal cord identities (Nordström 

et al., 2006). 
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 Dorsal-Ventral patterning of the neural tube 

The neural tube is also patterned along the DV-axis in response to locally acting morphogen 

signals emerging from signaling centers located at the dorsal and ventral extremes of the neural 

tube, which diffuse and form opposing concentration-gradients along the DV-axis (Figure 3C). 

In the dorsal neural tube, BMP signals initially produced by the ectoderm abutting the dorsal 

edge of the neural plate and later by roof plate cells at the dorsal midline of the neural tube 

diffuse into the dorsal neural tube and induce the specification of different subtypes of dorsal 

interneurons depending on concentration and/or time of BMP exposure, in part through local 

induction of bHLH-type or homeodomain (HD) transcription factor proteins that promote 

different dorsal fates of differentiation (Liem et al., 1997; Chesnutt et al., 2004; Louvi et al., 

2006). Wnt signaling has also been implicated in patterning and growth of cells in the dorsal 

neural tube (Ulloa et al., 2009).  

 In the ventral neural tube, cells are patterned in response to the graded morphogen 

activity of Shh, initially produced by the notochord underlying the forming neural tube and 

later by the floor plate (FP) induced at the ventral midline of the neural tube (Roelink et al., 

1995). Apart from inducing the FP, the graded activity of Shh accounts for the induction of 

five cardinal progenitor domains, each generating different classes of motor neurons (MNs) or 

subtypes of interneurons (Ericson et al., 1997; Wijgerde et al., 2002). Patterning of cells in the 

ventral neural tube by graded Shh signaling is a paradigm form of morphogen signaling in 

neural pattern formation (Figure 3C). Below I discuss the Shh pathway and regulation of the 

downstream network that translates the graded information of Shh into discrete ventral 

progenitor domains downstream of Shh in further detail. 

Together, patterning of cells along the DV-axis of the neural tube engage at two 

opposing signaling activities that also seems to intersect with each other, as Shh-induced 

ventral domains extend dorsally when BMP signaling is inhibited (Liem et al., 2000), while 

ventral fates are suppressed in response to ectopic BMP or Wnt signaling (Liem et al., 1997; 

Ulloa et al., 2009). In addition to these signaling activities, RA signaling by somites promotes 

intermediate cell fates (Pierani et al., 1999) possibly by counteracting the ventral Shh and 

dorsal BMP gradients at intermediate positions of the neural tube (Oosterveen et al., 2013). 

 The Shh signaling pathway 

Shh signaling functions as a true morphogen4 in the patterning of the ventral neural tube, but 

an important question remains how the extracellular concentration gradient of the Shh 

signaling is translated into the intracellular specification of multiple cell identities? 

                                                 
4 Signaling molecule that acts directly on the cells to produce specific cellular response depending on its 

concentration gradient. 
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The Shh receptor/transduction complex consists of two transmembrane proteins 

including Patched1 (Ptc1), to which Shh binds, and Smoothened (Smo) which initiates the 

intracellular Shh signaling cascade. Ptc1 regulates the activity of Smo. In the absence of Shh, 

Ptc1 is localized in the cilium5 and prevents the accumulation of Smo in this structure. 

Conversely, binding of Shh to Ptc1 results in the removal of Ptc1 from the cilium and 

concomitant accumulation of Smo (Corbit et al., 2005; Haycraft et al., 2005; Rohatgi et al., 

2007). Ultimately, Smo regulates the activity of bifunctional Gli (Gli1-3) transcription 

factors. In the absence of Shh, Gli2 and Gli3 proteins are processed to generate a 

transcriptional repressor (GliR). While in the presence of Shh, both proteins are stabilized in 

their full-length activator form (GliA). Gli1 only works as an activator and is induced by Gli2 

and Gli3 downstream of Shh (Figure 4). As a result, the extracellular gradient of Shh is 

translated into opposing intracellular gradients of Gli activator and Gli repressor activities 

along the DV axis of the neural tube (Fuccillo et al., 2006).  

 

 

Figure 4: Schematic illustration of Shh signaling pathway A) In the absence of Shh, Ptc1 localizes to the 

cilium and inhibits the activity of Smo in the cilium. Under these conditions, Gli proteins are completely 

degraded or truncated into repressor form (GliR) that translocate to the nucleus and inhibits the 

transcription of target genes. Binding of Shh to Ptc1 releases inhibition of Smo. Ptc1 is removed from the 

cilium with the concomitant ciliary accumulation of Smo. The activation of Smo inhibits proteolytic 

processing of Gli proteins resulting in the accumulation of GliA (activator form), which translocates to the 

nucleus and activates the target genes (Adapted from JM Dias).  

 

 Graded Shh signaling regulates the regional expression of a group of transcription 

factors, that are characterized by the presence of homeodomain (HD) DNA binding motifs or 

                                                 
5 Cilia are extensions of cell membrane that contain a core microtubule structure and exhibit intra-flagellar 

transport. Primary cilia play an important role in the Shh signal transduction. 
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bHLH sequences.  Class I genes such as Pax6, Irx3, Dbx1 and Dbx2 are repressed, while class 

II genes, including Foxa2, Nkx2.2, Nkx2.9, Olig2, Nkx6.1 and Nkx6.2, are induced by Shh-Gli 

signaling (Figure 3C). Different thresholds of Shh signaling are required for the repression or 

activation of individual class I and class II genes, resulting in a nested expression pattern of 

these genes along the DV axis in the spinal cord (or hindbrain). Furthermore, class I and class 

II genes cross-repress each other to establish the p0, p1, p2, pMN, p3 and FP domains along 

the neural tube. In turn, each progenitor domain gives rise to distinct neuronal (V0, V1, V2, V3 

interneurons and MNs) and non-neuronal FP subtypes (Figure 3C) (Briscoe et al., 2000; 

Jessell, 2000; Dessaud et al., 2008). 

 

 Sequential specification of motor neurons and serotonergic neurons 

by Nkx2.2+ NSCs in the ventral hindbrain 

 

A pool of NSCs in the p3 domain, which is located dorsal to the FP cells expresses the 

homeodomain TF Nkx2.2 in response to high morphogen gradients of Shh signaling. During 

development, this progenitor domain sequentially generates visceral motor neurons (vMNs), 

serotonergic neurons (5HTNs) and oligodendrocyte precursors (OLPs) (Pattyn et al., 2003; 

Vallstedt et al., 2005). During the period of vMN neurogenesis, these progenitor cells express 

the paired homeobox-like TF Phox2b which acts as a temporal effector protein. The ON/OFF-

status of Phox2b expression determines whether young Nkx2.2+ NSCs will select early MN-

fate or if cells should terminate MN-production and begin to generate late-born 5HTNs 

respectively. Additionally, Tgfβ2 acts as an important temporal switch signal that triggers the 

vMN-to-5HTN fate switch by suppressing Phox2b expression and imposes “age” upon cells 

by constraining their developmental potential (Pattyn et al., 2003; Dias et al., 2014). In this 

process, Shh signaling induces Phox2b and Tgfβ2, but Tgfβ2 is induced with a temporal delay 

relative to Phox2b (Dias et al., 2014). However, it is unclear about the molecular mechanism 

underlying the late onset of Tgfβ2 and how the activity of Shh and Tgfβ2 pathways may be 

functionally interconnected in this temporal differentiation process.  

 Source of material for temporal lineage studies 

In vivo studies in model organisms provide an important basis of our understanding of cell fate 

determination in the CNS. However, quantitative limitations (very few cells of the desired type) 

prohibit high-throughput characterization of these processes. On the other hand, Embryonic 

Stem Cells (ESC) can differentiate into any cell type and provide an unlimited resource. ESCs 

are derived from the inner cell mass (ICM) of preimplantation embryos after the formation of 

a blastocyst. Further, these cells can be removed from its normal embryonic environment and 



 

26 

cultured under appropriate conditions to generate ESCs, which can differentiate to all cell 

lineages (Nishikawa et al., 2007).  

The establishment of FP, p3 domains and the sequential specification of MNs, 5HTNs 

and OLPs by Nkx2.2+ neural progenitors can be recapitulated in mouse ESC cultures by 

transiently exposing differentiating cells to all-trans retinoic acid (RA) and the Shh agonist Hh-

Ag1.3 (SAG). The temporal transitions of specification states and potency of ESC-derived 

Nkx2.2+ neural progenitors in this process have been well defined (Dias et al., 2014). This in 

vitro differentiation paradigm provides an unlimited source of material to apply for RNA and 

ChIP-sequencing. 
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3 METHODS CONSIDERED 

 RNA SEQUENCING 

RNA sequencing (RNA-seq) is an experimental technique that uses high throughput 

sequencing to reveal the presence and quantity of RNA in a biological sample at a given time-

point. With nearly ~15000 references in PubMed, it is one of the most cited high-throughput 

sequencing methods. Several groups first published the method in 2008 (Marioni et al., 2008; 

Mortazavi et al., 2008; Nagalakshmi et al., 2008; Sultan et al., 2008; Wilhelm et al., 2008). 

Before RNA-seq, the transcriptomics field was first revolutionized by the microarray 

technology. However, the latter turned out to be hampered by complex normalization 

procedures and limitations in detecting low abundance transcripts. Later on, digital transcript-

counting approaches such as Serial Analysis of Gene Expression (SAGE) (Velculescu et al., 

1995), massively parallel signature sequencing (MPSS) (Harbers et al., 2005) overcame to a 

certain extent inherent limitations of the arrays, but were expensive and could not be used for 

differential splicing analysis (Sultan et al., 2008).  

RNA-seq aims at sequencing the RNA content of cells. One crucial aspect of the 

experimental design is the RNA extraction protocol itself. In a cell, ribosomal RNA (rRNA) 

constitutes up to 90% of total RNA, while containing only 1-2% of messenger RNA, that we 

are interested in for gene expression quantification. The alternative, depending on the targeted 

study, is between whether to enrich for the mRNA fraction using poly-A selection or to deplete 

rRNA. For example, the polyA strategy is based on the fact that mRNA almost always contains 

a polyA tail that can be used to assay protein-coding transcripts only (Griffith et al., 2015). 

After RNA extraction, the assessment of RNA quality is determined by the RNA Integrity 

Number (RIN), a measure of RNA degradation in the sample (Schroeder et al., 2006). 

Typically, RIN scores ≥ 8 are considered good enough for transcriptome analysis. The RNA 

quality from RIN scores and the total amount of starting RNA are considered to be critical for 

subsequent steps such as library preparation, sequencing and computational analysis. 

The next step is the library preparation, where mRNAs are fragmented to smaller pieces 

of RNA to enable sequencing. Currently, all the available sequencing technologies require a 

DNA template for sequencing (e.g.: Illumina protocol rely on “sequencing by synthesis”). 

Therefore, it is not possible to directly sequence RNA transcripts with the same protocols. 

RNA-Seq method relies on an enzyme called reverse transcriptase (mainly found in viruses), 

to reverse-transcribe RNA into cDNA. The cDNA is fragmented and the fragments shorter than 

500 bp are selected. Then platform-specific adapter sequences, DNA barcodes and amplifying 

the DNA for sequencing conclude this step. Adding DNA barcodes to the ends of each 

fragment enables multiplexing. It means various libraries are pooled and sequenced 

simultaneously in a single sequencing run, facilitating efficient use of DNA sequencing 
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machine. Library concentration is assessed using Bioanalyzer or qRT-PCR. Finally, the cDNA 

library is ready for sequencing, usually performed in a sequencing core facility or by a service 

provider. 

Depending upon the individual research requirements, various NGS protocols are 

chosen to sequence the sample libraries. This includes factors such as sequencing depth, read-

length, single-end, or paired-end reads, and the choice depends on the biological questions one 

is aiming to address from sequencing data. For example, the sequencing depth of 5-million 

mapped reads are sufficient to quantify accurately medium to highly expressed genes, whereas 

up to 100-million mapped reads to precisely quantify low expressed genes and transcripts. The 

cheaper and short single-end reads are generally sufficient for studying gene-expression levels 

with available reference genomes – whereas expensive and longer paired-end reads are 

preferable for de-novo transcript discovery or isoform expression analysis or in-case of poorly 

annotated transcriptomes (Sims et al., 2014). In my experience from dealing with both single 

and paired-end sequencing data, single-end read sequencing is more cost-effective, but while 

dealing with PCR duplicates or short reads, which often mapped to multiple locations, it turned 

to generate spurious hits. On the other end, paired-end reads provided a more precise mapping 

to the reference genome, which reduced the number of multi-mapped reads. It is much easier 

to identify PCR duplicate reads, as fragment length and fragment locations of two paired ends 

can be easily estimated/calculated.  

 Computational processing of sequencing read data 

The sequencing of cDNA fragments from the DNA sequencer machine produces millions of 

reads. The reads pooled during the library preparation step are now separated, according to 

sample origin in our case – using the tagged DNA barcodes (demultiplexing). The 

demultiplexed reads are then aligned to the reference genome/transcriptome. Since only 

mRNAs are extracted with a polyA tail, the aligner tries to map the majority of the reads to 

exonic regions of the reference genome. Therefore, specialized algorithms that are capable of 

handling splice junctions are used for this purpose. The widely used and publicly available 

programs/tools are HISAT (Kim et al., 2015), Tophat (Trapnell et al., 2009) and STAR (Dobin 

et al., 2013). It is good to assess the quality of sequenced samples before investing time in the 

data post-processing. Some of the important quality measures include: a) Phred-scores (Q), for 

measuring the accuracy of DNA bases generated by sequencing machine; usually Q>30 is 

considered for good-quality reads b) presence of adapter or biological sample contamination c) 

over-amplification of PCR fragments (duplicates) (Patel et al., 2012). One of the most 

commonly used tools to perform initial quality measurement on sequenced data is FASTQC 

(Andrews S. (2010)). Another direct judgement could be by visualizing the distribution of 

aligned reads to the reference genome in a genome browser (e.g., IGV). It gives the clear 
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distinction of reading alignments across exons, intron and intergenic regions which can tell 

about pre-mRNA fraction (more reads in introns). Hereafter, making sense of RNA-Seq data 

depends on the research question. For example, RNA-seq data can be used for the detection 

and quantification of alternative splicing (Wang et al., 2008) and estimation of total RNA 

abundance in the cell (Gaidatzis et al., 2015). However, the primary objective in most of the 

biological studies is profiling, in order to determine differential gene expression between 

biological samples.  

 

Figure 5: Major steps followed for performing RNA-seq. Figure adapted from (Griffith et al., 2015) 

Once the reads are aligned to the reference genome, the task is to summarize and 

aggregate reads over biological units (such as exons, transcripts or genes). The most common 

approach is to count the number of reads overlapping the exons in a gene (i.e. quantify as read 

counts) (Anders et al., 2014). Since the number of reads observed for a given gene is 

proportional not just to the gene expression level but also to its gene length and the sequencing 

depth of the library, dividing each read count by the corresponding library size (in millions) 

yields counts per million (CPM) (Chen et al., 2014) gives a simple measure of reading 

abundance that can be compared across different sizes. Standardizing further by gene length 
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(in kilobases) gives a metric called FPKM (Fragments per kilobase and million mapped reads)  

(Trapnell et al., 2010) (Figure 7). 

The calculated metric values (x=counts or CPMs or FPKMs) convey the abundance of 

a gene/transcript in a particular experimental condition (x>0). However, performing 

differential expression (DE) analysis, i.e. identifying the gene expression changes across 

experimental conditions, one should employ statistical tools. This means taking a table of 

summarized count data and performing statistical testing between samples of interest. While 

fitting the correct statistical model to the data is an essential step before making inferences 

about differentially expressed genes. Earlier with microarrays, the intensities values were log-

transformed and analyzed as normally distributed random variables. The problem with the 

RNA-seq data is that the read counts possess unequal variance even upon log-transformation. 

Namely, count values positively correlate with variance, which introduces bias into DE 

significance estimates, such as p-values. To overcome this problem, accurate statistical 

modeling (or complete elimination) of the mean-variance relationship is the key to design a 

powerful method of analysis. Many models based on the negative-binomial 

distribution(Anders et al., 2013), generalized linear models (Smyth et al., 2014) has been 

presented for RNA-seq data.  

In our work, we used voom transformation from the limma R package. In this approach, 

the normalized read counts are also log-transformed considering sequencing depths (log CPM 

values as discussed above). The authors demonstrated that the mean-variance relationship is 

often rather complex and therefore suggested fitting the joint distribution with a non-linear 

function, which is then used to compute gene-wise weights for each observation (since the 

variance is modeled at the observational level, this method is dubbed as voom). Further, the 

differential expression was estimated with limma functions such as lmFit (to fit the linear 

model), eBayes (to compute moderated t-statistics for the hypothesis that the log2-fold 

change is zero), and topTable (utility function to summarize eBayes fit). 

In comparison with other DE methods, this approach requires at least three samples per 

condition to gain sufficient power to detect DE genes and is relatively unaffected by outliers 

(Soneson et al., 2013). To obtain good statistics, having several biological replicates (multiple 

samples that come from the same type of cells) for each experimental condition plays a vital 

role. RNA-seq cost has been lately drastically reduced, while experimental designs constrained 

to one or two replicates would impose difficulties in applying the statistical models. However 

in clinical cohorts, patient samples are rarely available and are usually represented with single 

samples (Cancer Genome Atlas Research Network, 2011). Although such designs usually end 

up in a regression-based estimation (where patients serve single points in the regression model), 

I also present an approach (Paper I) that can increase the robustness of non-replicated analyses 

of differential gene expression. 
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 CHIP SEQUENCING 

Chromatin (DNA and associated proteins) Immuno (use of antibodies to target specific protein) Precipitation 

(enrichment assay, where the total pool of chromatin is enriched only with the protein of interest) 

followed by high-throughput sequencing (ChIP-seq). 

 

ChIP-seq is a powerful experimental approach to identify the genome-wide binding sites of 

protein-DNA interactions. With the appropriate antibodies, this technique can be used to locate 

transcription factors binding to specific DNA sites or to capture the chromatin states involved 

in transcription regulation, notably histone proteins undergoing modifications, such as 

methylation and acetylation (Solomon et al., 1988; Barski et al., 2007; Johnson et al., 2007) 

(Figure 6). 

 The first step is to extract the chromatin from the cells under the experimental condition. 

To preserve the DNA-protein interactions the cells are fixed with formaldehyde, followed by 

cell lysis and fragmentation of the DNA to ~300-600 bp, using sonication. A part of the 

chromatin material is used as input, with the fixation reversed. The rest of the chromatin is 

incubated with magnetic beads conjugated with a specific antibody to immunoprecipitate the 

target protein, whereas the non-captured DNA is eluted. Furthermore, the protein-DNA 

complexes are reverse linked by incubation at 65°C for at least 5 hours. As just DNA is required 

for sequencing, RNA and proteins are digested with RNases and proteinase respectively. 

Subsequently, ChIP-seq libraries are constructed from the purified and precipitated DNA 

(Figure 6). The sequencing of sample libraries proceeds in the same way as discussed for RNA-

seq.  

 

 
 
Figure 6: Major steps followed for performing transcription factor and histone modifications ChIP-

sequencing 
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 Analyzing genome-wide ChIP seq data 

To standardize ChIP-seq experiments and bioinformatics data analyses, ENCODE and 

modENCODE consortia have developed guidelines (Landt et al., 2012; Marinov et al., 2014). 

Unlike RNA-Seq, simpler and faster aligner programs such as Bowtie (Langmead et al., 

2009) or BWA (Li et al., 2009) can be used to align chip sequenced short reads (~35-100bp) 

to the reference genome. Some genomic regions exhibit a higher density of mapped reads. 

This pileup of reads in the enriched regions is referred to as “peaks”. Depending on the type 

of interactions, these peaks either might appear either ‘narrow’ or ‘broad’. For example, 

transcription factor proteins bind to the DNA at specific locations (4-24bp) depending on the 

sequence motifs and are thus relatively narrow. On the contrary, histone marks (Table 3) 

usually present on nucleosomes covering long stretches of DNA (~100 to 10000bp), 

corresponding to broader peaks. Different algorithms can achieve the identification of these 

peak regions (a.k.a. peak calling).  I have used MACS2 (Zhang et al., 2008; Feng et al., 2012) 

with customized parameter settings to call narrower or broader peaks. The reproducibility 

between biological replicates is assessed by the IDR method (Li et al., 2011). Various 

downstream statistical and bioinformatics analysis can be applied after the identification of 

peaks, such as motif analysis to construct putative transcription factor binding sites (Heinz et 

al., 2010; Machanick et al., 2011) or  identification of genes associated with peaks (Zhu et 

al., 2010). The most common way to represent the chip-seq analysis results is to generate the 

signal intensity profiles along the genome (Ramírez et al., 2014), which could then be 

visualized through genome browsers such as by Santa Cruz UCSC browser (Karolchik et al., 

2009) or IGV (Figure 7). 

Histone Mark Description 

H3K4me3 Active Transcription 

H3K27ac Active Enhancer 

H3K4me1 Enhancer 

H3K27me3 Repression 

Table 3: Histone Modifications included in this study 

 Identification of chromatin states 

Mapping of epigenetic marks such as histone modifications provides a powerful tool for 

genome annotation, for identifying presumptive regulatory regions, and/or estimate their 

current activity. Similarly to the TF ChIP-seq approach, individual histone marks can be 

studied in isolation through the identification of narrow or broader peaks (Zhang et al., 2008; 

Feng et al., 2012). However, additional information can be gained by summarizing the 

combinatorial pattern of multiple histone marks. Such pattern identification known as 
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‘chromatin states’ detection allows capturing known classes of genomic elements such as 

promoters, enhancers, transcribed and repressed regions etc. Methods using Hidden Markov 

Models (HMM) have been developed in recent years in order to infer combinatorial states 

expressed as patterns of presence/absence of underlying histone modifications (Ernst et al., 

2017).  The java command-line version of the ChromHMM program was used to analyze the 

histone modifications datasets. Table 3 summarizes the histone marks considered for Paper 

IV. 

Sequencing Analysis Pipeline 

 
Figure 7: Workflow of RNA-seq and ChIP-seq data analyses. 
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 NEArender 

NEArender tool was implemented as an R package (Jeggari et al., 2017) and integrated the 

core NEA functionality with various auxiliary functions for preparation and evaluation of the 

input components as well as output interpretation. Three following input components are 

required by NEArender package in order to calculate network enrichment statistics. 

 Altered Gene Set (AGS) 

AGS are sets of genes derived from a particular current experiment (or a pathological 

condition) of which function has yet to be characterized. The number of genes included in each 

AGS would be either data-driven (inclusion of all significant genes) or pre-defined by the user 

(listing N top-ranking ones regardless of significance). In the package, function sample2ags 

can create AGSs from sample columns of an R matrix using one of the five available algorithms 

described in (Jeggari et al., 2017). To deal with mutational datasets (usually data is represented 

as binary, Wildtype vs. Mutant), a special function mutations2ags is implemented to allow 

direct creation of AGS as full sample-specific sets of mutated genes.  

 Functional Gene Set (FGS) 

FGS is a set of genes whose common function is already characterized and is provided by either 

a knowledge-driven database, or literature, or by a custom expert curation. Any of the public 

knowledge resources discussed in chapter 2.3.1 can be considered. NEArender can import a 

collection of multiple FGS from a TAB-delimited file listing all members of each functional 

category using function import.gs.  

 Network (NW) 

NW represents the global network of functional associations between genes/proteins. Any of 

the networks from chapter 2.2.3 can be utilized, as well as a new, custom network submitted 

as a network file. The latter can be imported using function import.net. We note that the 

parametric calculation chosen by NEArender for the reasons of speed and absence of bias from 

smaller gene sets might produce correct estimates of the null-model AGS-FGS connectivity 

only in scale-free networks. Therefore, in order to evaluate the topology of a chosen network 

for scale-freeness and second-order dependencies, R package is equipped with auxiliary 

functions connectivity and topology2nd respectively. To test the ability of a chosen 

network to perform well in a NEA, the function benchmark is employed. It implements 

‘guilty-by-association’ approach, i.e. tests networks by their ability to convey membership of 

known FGS via network enrichment statistics. It systematically executes a series of multiple 

individual tests for each member of FGS (as positive cases) and other nodes of NW (randomly 
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picked genes with node connectivity values matching to the FGS members – as negative cases). 

For each gene, the procedure tests the null hypothesis of the gene not being an FGS member. 

This procedure produces true positive (TP), false positives (FP), true negatives (TN) and false 

negative (FN) rates if the positive/negative gene cases receive a NEA score above or below a 

certain threshold, respectively. The counts of alternative test outcomes TN, FP, TN, FP allow 

plotting of a ROC curve with function roc, by applying sequential cutoff values of the NEA 

z-statistic.  

 Calculation of network enrichment scores 

Upon the above three input components prepared, network enrichment analysis can be run 

using the core function nea.render. The enrichment statistics is based on the chi-square 

statistics estimated with a binomial (i.e. 2-class) formula, where AGS-FGS enrichment was 

compared against the reference, i.e. the “nonAGS-nonFGS” connectivity (Equation 1). We 

note that this approach is focused on considering only AGS-FGS relations and therefore ignores 

indirect links (i.e. network paths of length>1) and cannot evaluate higher-order topologies as 

well as not capable of estimating other popular network statistics.  

 

χ2 =
(𝑛AGS−FGS−𝑛̂AGS−FGS)2

𝑛̂AGS−FGS  
+

(!𝑛AGS−FGS−!𝑛̂AGS−FGS)2

!𝑛̂AGS−FGS 
      --------------------------- (1) 

 

where !n means “complement to n”, i.e. all global network edges that did not belong to NAGS-

FGS. The number of links expected under the true null, i.e. by chance, was determined by: 

 

𝑛̂AGS−FGS  =  
𝑁𝐴𝐺𝑆∗𝑁𝐹𝐺𝑆

2∗𝑁𝑡𝑜𝑡𝑎𝑙
 

 

 NAGS and NFGS refer to the sums of connectivity values (node degrees) of member nodes of 

AGS and FGS, respectively, NAGS-FGS is the number of network edges between AGS and FGS 

genes, and Ntotal is the number of edges in the whole network.  

 

Since nea.render accepts multiple AGSs and multiple FGSs as input vectors, its output is 

matrices (outer products) of the relevant statistics: the chi-square score, the corresponding 

normally distributed z-score (preferred for linear modeling in downstream analyses), the p- and 

q (p-value adjusted for multiple testing) values as well as the numbers of links connecting AGS 

and FGS. Function nea.render can engage multiple CPUs by using R package ‘parallel’. 

Meanwhile, function gsea.render can compute trivial ORA statistics using the same input, 

except NW and produce output in a format maximally unified with nea.render. 
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4 RESULTS AND DISCUSSIONS 

 Paper I - NEArender: an R package for functional interpretation 

of ‘omics’ data via network enrichment analysis 

 

Pathway annotation tools are indispensable to provide biological insights to the experimental 

datasets. As discussed in the pathway analysis session, gene enrichment analysis (GEA) tools 

traditionally considered an overlap between the experimental list and a pathway while ignoring 

the functional associations. Network enrichment analysis (NEA) implemented the strategy of 

integrating biological networks into GEA, thereby improving the sensitivity of GEA methods. 

It provides statistical scores to assess whether the members of AGS are enriched in a given 

FGS or not, considering the edges from the global network. Compared to GEA, the pathway 

score matrix from NEA is less sparse due to its higher sensitivity and therefore can be 

efficiently used in downstream analyses for e.g. predicting disease outcomes and phenotype 

modeling. To achieve this, the employed method should, beyond the higher statistical power, 

estimate the biological relevance by rendering the original data into the space of pathway scores 

in a faster, more convenient, and less biased procedure. Earlier NEA algorithms such as NEA-

2012 and CrossTalk (Alexeyenko et al., 2012; Mccormack et al., 2013) estimated the 

probability of a null AGS-FGS model based on randomizations of the global network. By doing 

so, these versions suffered from problems associated with the statistical model and excessive 

computational time.  

 Considering the limitations of various pathway analysis tools as discussed above in Paper 

I, we introduce a new NEArender algorithm, which is based on a parametric approach using a 

chi-square formula for the null model estimation. This method produces unbiased estimates 

only in scale-free networks. However, networks that are artificially constructed from, for 

example, ChIP-seq based collections of transcription factor binding events, do not fit the 

power-law distribution and the network randomization approach needs to be employed while 

analyzing such networks. Here, the approach is to compare the p-value distributions between 

the previous implementations of network randomization (NRZ, an equivalent of NEA-2012) 

versus the current chi-square binomial (CSB, i.e. NEArender) approach. To evaluate this, 

network randomization runs with NRZ (N=3; 10; 30; 100; 300) was performed and compared 

the correlation of p-values with those from CSB. The estimates of enrichment from the NRZ 

procedure were apparently biased and could sufficiently converge to respective CSB values for 

smaller gene set sizes only at a very large, impractical number of randomizations, such as 

N(rand)=100…300. As mentioned above, these randomizations require excessive time. 

Calculating 100 randomizations on a Linux server using Perl software in NZB mode takes 

around 2300 min, while the parametric mode requires only less than 15 min using the same 

Perl software, with the CPU usage of 300-400MB RAM in both instances. Another possibility 
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to minimize the randomization task also is to reduce the number of AGS and/or FGS. However, 

for predicting features in phenotype modeling where large AGS and FGS collections are 

required, these could negatively impact the analyses. Using the R package NEArender in its 

solely parametric mode required less than 5 min of processing time and used less than 200 MB 

RAM; thus, considering saving the computational time.  

 Additionally, the behavior of NEA in comparison to the default differential expression 

analysis of individual genes and ORA is investigated by simulating lack of experimental 

replicates (e.g. patient samples in clinical cohorts). The potential use of ORA and NEA is the 

ability to measure enrichment and summarize individual genes to the level of pathways and 

biological processes. However, this feature suggests a potential increase in the robustness of 

conclusions in experiments that lack replicates. The robustness of using single-gene expression 

values between ORA and NEA under replicated versus non-replicated design has been 

evaluated by the cell transcriptome data from FANTOM5 CAGE-sequencing dataset of the 

normal human tissue samples (Lizio et al., 2015). The models were estimated via correlations 

of DE p-values from different sample sets or single samples obtained through DE analysis on 

raw gene profiles, ORA and NEA. The latter two were run on the same AGS and FGS 

collections. The results demonstrated that in the absence of replicates, the performance of NEA, 

i.e. preservation of significant findings was superior over the gene-wise analysis and ORA in 

terms of robustness. NEA has also enabled higher sensitivity compared to ORA. However, the 

advantages of sensitivity and robustness of NEA should not justify avoiding replicated designs. 

Furthermore, this approach is unlikely to identify an individual deregulated gene while being 

optimal in summarizing biological information at the pathway level.  

 In summary, the NEArender algorithm allowed avoiding the network randomization step 

while providing an unbiased parametric estimation of network connectivity. Output pathway 

scores in the simple matrix format can be integrated into bioinformatics pipelines as input for 

predicting disease outcomes and phenotype modeling. One such practical application is 

discussed in Paper III. On the other hand, the most popular pathway annotation tool in current 

research is DAVID (Huang et al., 2007), which considers the gene overlap to known pathways 

as evidence. As discussed previously, though this approach has a lower sensitivity (true positive 

rate), many research studies rely on it. The reasons may be attributed to its simplicity, usability 

or affordable computational time. Although, NEArender thoroughly optimized in terms of 

computational time and high sensitivity, users still require prior knowledge of R programming. 

Thus, the major advantage of DAVID (Huang et al., 2007) and similar resources is the 

availability of a user-friendly online interface. Therefore, a web interface to NEArender called 

EviNet (Jeggari et al., 2018) is implemented, which is discussed in Paper II. 
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 Paper II: EviNet: a web platform for network enrichment 

analysis of flexibly defined gene sets 

The purpose of the web resource EviNet (Evidence-based Network Enrichment Test) is to 

provide a programming-free and user-friendly interface for exploring novel, experimentally 

defined gene sets. EviNet possesses unique functionalities for obtaining enrichment statistics 

integrated with interactive visualizations at the level of AGS-FGS and underlying subnetworks.  

 The web interface is created using jQuery functionality, while the HTML and JavaScript 

code is dynamically provided by Perl scripts via AJAX interface. The back-end employs 

PostgreSQL database engine and custom R scripts for accessing e.g. the core functionality of 

NEArender package and Venn diagrams. EviNet requires three input components, as described 

in the methods section 3.3. The users can submit their AGS and FGS either by directly pasting 

the gene list or uploading it as a file in the AGS menu tab. In addition, large FGS collections 

are available from the server by selection from the precompiled menu. A similar menu provides 

access to precompiled network versions for a few eukaryotic organisms, including human.  

 A unique feature of EviNet is the dynamic redefinition of AGS by changing the 

confidence and fold-change thresholds. This idea was developed due to the need in analyzing 

RNA-seq datasets to obtain DE gene lists with different, often very complex, combinations of 

experimental contrasts. Many biologists would be interested in overlapping DE lists from 

different experimental conditions by accounting for values associated with potential biological 

significance.   

 To address this, a Venn diagram functionality is implemented to quickly visualize and 

select gene lists that emerge from the relationships between experimental conditions. The 

server-side script reads the user-provided input file with DE values and generates lists of genes 

that satisfy each of the contrast-specific sets of filtering conditions. Each such list corresponds 

to one ellipse in the Venn diagram. Further, all possible overlaps in Venn diagrams (3, 7, and 

15 in 2, 3 and 4-contrast analyses, respectively) are accompanied by corresponding gene lists, 

which pop up on the screen upon mouse clicks at the intersection areas. The list tables also 

contain DE values and can be investigated by sorting, gene ID search etc. Users can change 

filtering criteria, followed by the regeneration of the Venn diagram and the gene lists. Finally, 

the user chooses an arbitrary number of intersection gene lists for NEA. The lists will be treated 

as AGSs, while the user can proceed to the successive FGS and NW tabs, and then execute 

NEA.  Figure I in the paper summarizes the workflow implementation of EviNet.  

 FGS collected from various resources (chapter 2.3.1) is readily available to the users. As 

these resources are updated on a timely basis, available back-end scripts are able to regenerate 

these files to provide updated versions. The upload option for FGS terms and collections creates 

a flexible environment for defining user-specific FGS. For example, FGS related to particular 
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terms such as neuron or axon can be extracted from the full collection of GO-BP file, and the 

subset of terms can be used as a custom FGS collection. The global networks from various 

databases, mentioned in Table 2 are available, too. The output results are presented in both 

visual and tabular formats using jQuery libraries. A project management system is also 

implemented for the registered users, where both input files and analysis results can be privately 

shared between project members. Each user can log in and use the project space with uploaded 

files stored in a separate directory with a unique project name.  

 A practical demonstration of EviNet is shown in this paper, by analyzing the 

transcriptome dynamics upon mouse embryonic stem cell (mESC) differentiation. Mouse 

embryonic stem cells are pluripotent stem cells, which can give rise to ectodermal, endodermal, 

and mesodermal cell lineages when cultured in appropriate differentiation conditions. Although 

mESCs were treated with the same morphogen cocktail, a large diversification occurred in the 

cell population. Both cell identities in this population and the signaling cascades that govern 

this process are unknown. Therefore, this aspect was studied by analyzing the transcriptome 

differences between mESCs in non-differentiating and differentiating conditions. Multiple 

differential expression criteria were combined for performing network analysis on the resulting 

gene lists. The analysis detected both known and revealed novel signaling genes and pathways 

that would be potentially important for maintaining stem cell pluripotency, differentiation, and 

diversification towards lineage specification.   

 PAPER III: Prediction of response to anti-cancer drugs becomes 

robust via network integration of molecular data  

 

Regardless of the research field (cancer genomics, developmental biology, neuroscience), most 

biomedical studies aim is to understand the disease mechanisms and to discover novel 

biomarkers. Despite the widening range of high-throughput platforms and exponential growth 

of generated data volumes, biomarker discovery from large-scale data is a challenging task. 

For example, in cancer research, several endeavors to collect and analyze tumor specimens 

from cancer patients have resulted in the development of large public resources such as TCGA 

(Cancer Genome Atlas Research Network et al., 2013) and CCLE (Barretina et al., 2012). 

These consortia generated data from in vitro cancer cell lines and tumor samples using a range 

of omics assays (such as exome sequencing, copy number variation, DNA methylation, and 

RNA-seq). TCGA also provided information on clinical data (such as patient survival rate, 

administration of anti-cancer treatments etc.). These resources have created an unprecedented 

opportunity to study the underlying oncogenic molecular signatures for various cancer types. 

However, this is not an easy task. The mere feasibility of finding valid biomarkers from a large 

pool of potentially useful molecular signatures has been impeded by statistical and biological 

challenges such as excessive data dimensionality, imperfect analytical tools, the heterogeneity 
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of cancer genomes, and the downstream diversity of regulation and expression patterns (Crystal 

et al., 2014). Apparently, any ‘omics’ data analysis would face such challenges. While the 

NEArender algorithm is capable of rendering any molecular profile into the pathway space 

(applications presented in Paper I and Paper II), here the focus is on the biomarker discovery. 

The logic behind selecting the large datasets is to validate the usefulness of the newly developed 

algorithm and assess its robustness in other applications, including basic research data.  

 The additional challenge here is to identify patient sub-categories responsive to a 

treatment rather than one-dimensional drug sensitivity or survival analyses. A practical method 

should profile individuals across the cohort so that the profiles can be fit to clinical variables 

and covariates. Therefore, a crucial feature for biomarker discovery would be the ability to 

assign scores to individual samples rather than to derive feature-pathway associations from the 

whole data collection. A more challenging task is to identify the conservation of associated 

pathway-level features between the in vitro drug screens and the clinical application of the 

same drugs. 

  In Paper III, we present the new algorithm NEAmarker, a method for finding sensitive 

and robust biomarkers at the pathway level. Here large omics datasets are summarized into 

pathway scores, which are then used for evaluating the drug correlations. This strategy can also 

be implemented via any other enrichment analysis method (discussed in chapter 2.3.2), which 

is capable of reporting enrichment scores.  However, the statistical power of different pathway 

analysis methods to detect the correlation with the related drug screens needs to be tested. 

 Previously, GSEA enrichment scores were used to analyze correlations between drug 

sensitivity and molecular features. The pathway enrichment scores represented correlates of 

drug sensitivity over the whole screened collections rather than characterized individual cell 

lines (Haibe-Kains et al., 2013). SPIA, an approach that considers pathway topology into 

account is capable of calculating sample-specific pathway scores. However, their scores were 

based on gene expression values, which excluded the usage of other data types (e.g. point 

mutation datasets). Considering these specific features and accounting for their complexity, 

applicability to different experimental designs and the ability to analyze individual samples 

rather than the whole cohort, we modified the usage and output from the tools and evaluated a 

number of other enrichment analysis methods (ORA, GSEA, ssGSEA, ZGSEA, EGSEA and 

SPIA) that could be potentially useful in the proposed framework. The data analysis procedure 

included the method-specific steps for sample/patient characterization, enrichment analysis, 

and phenotype modeling.  

 To test NEAmarker along with other alternative enrichment methods, we took advantage 

of publicly available omics datasets (such as gene expression, copy number variation and point 

mutation) for cancer cell lines (in vitro) and primary tumor samples (clinical) from CCLE and 

TCGA respectively. The large datasets were processed in order to obtain sample/cell-line 
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specific AGS. Running enrichment analyses on the AGS lists versus an FGS collection (mostly 

KEGG) allowed transforming the original, gene-wise omics data spaces into lower-

dimensional pathway spaces (AGSxFGS score matrices). Further, the in vitro screens and 

clinical follow-up observations provided information on anti-cancer drug response in cell lines 

and patients, respectively. These variables, together with AGSxFGS matrix scores, were finally 

used to evaluate the drug versus feature correlations. 

 The benchmark results proved the superiority of NEA in comparison to the original gene 

profiles and benchmarked enrichment methods both within and across the in vitro and clinical 

domains in terms of- (i) level of correlation with drug sensitivity in cancer cell lines (ii) 

consistency of the discovered correlates in independent drug screens (iii) ability to explain the 

differential survival of patients and (iv) ability of the in vitro correlates to predict survival of 

patients who received the same drug. A new screen of four anti-cancer compounds validated 

the performance of the multivariate models of cancer cell sensitivity.  

 The poor performance of the original gene profiles and alternative enrichment methods 

could be explained by the excessive dimensionality of the former and reduced sensitivity of the 

latter. In addition, the ability to use smaller and hence more specific AGSs could have provided 

extra advantage of NEA over ORA and GSEA. On the other hand, NEA could also deteriorate 

on AGS of insufficient size when using sparser networks (around 104 - 105 edges) and networks 

with many missing nodes. These potential limitations were known from previous research and 

we tried to avoid them in the present work by using the denser network from data integration. 

Future implementation of NEA might adopt advantages of the alternative enrichment methods 

by employing full gene lists (as in GSEA) and intra-pathway topology (as in SPIA).  

 PAPER IV: Genome-wide characterization of floor plate 

transcription reveals cooperative activator function of Foxa2 

and Rfx4 and a suppressive role for Ascl1 to spatially constrain 

floor plate induction in the neural tube 

 

Graded Shh signaling by the axial mesoderm and the floor plate (FP) underlies the positional 

specification of five ventral progenitor domains and induction of the floor plate at the ventral 

midline (Jessell, 2000) (Figure 3C). The winged-helix transcription factor (TF) Foxa2 is 

induced in ventral midline cells in direct response to Shh signaling (Placzek et al., 2005) and 

the forced expression of Foxa2 is sufficient to induce ectopic FP cells in the neural tube (Sasaki 

et al., 1994). Foxa2 is required for the early specification of axial mesoderm (Weinstein et al., 

1994) and it has therefore been difficult to resolve if Foxa2 is required for FP differentiation. 

In addition to the FP, Foxa2 is also expressed at low levels in neurogenic p3-progenitors located 

immediately dorsal to the FP, and which are defined by their expression of the homeodomain 

protein Nkx2.2 (Jacob et al., 2007). Once induced by Shh, Foxa2 promotes its expression 
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through positive feedback and activates expression of Shh differentiating FP cells (Sasaki et 

al., 1994, 1996; Metzakopian et al., 2012). Shh and Foxa2 thereby form a positive feedback 

circuitry that must be interrupted over time to prevent a continuous spread of FP induction and 

to allow the establishment of the overlying Nkx2.2+ p3-domain. This is at least partly achieved 

through temporal modulation in the responsiveness of cells to Shh over time (Lek et al., 2010; 

Dias et al., 2014; Sasai et al., 2014) but how this is regulated at the molecular level remain 

poorly resolved. 

 To define the role of Foxa2 during the specification of FP cells and Nkx2.2+ p3-

progenitors, we examined the fate of differentiating Foxa2-/- embryonic stem cells (ESCs) 

exposed to the Shh-agonist SAG, and could show that Foxa2 is absolutely required for FP 

differentiation. We compared the transcriptome profiles of Foxa2-/- ESCs versus wild-type cells 

and defined 405 genes that are differentially expressed between these two conditions. The 

identified gene list includes already known FP markers such as Shh, Arx, Corin, Slits. Network 

enrichment analysis on the full list of identified FP genes shows enrichment for pathways such 

as axon-guidance, cell-adhesion, signal transduction. It is known that FP expresses secreted 

and transmembrane proteins that regulate the growth of commissural axons that cross the 

midline (Brose and Tessier-Lavigne, 2000). The subnetwork of the FP genes associated with 

the axon-guidance pathway reveals many known and novel genes. One such module shows the 

cluster of genes such as Slit ligands (Slit1, Slit2, Slit3) interacting with its receptors 

Roundabouts (Robo1, 2, 3)(Long et al., 2004). Three other genes, namely Negr1, App and Dlg4 

contains the highest node degrees (hub genes) connecting many other FP genes in the 

subnetwork. Also, this subnetwork of axon-guidance could help to understand how members 

of Shh pathway genes are also involved in this process. For instance, the FP genes (Cdon, Shh, 

Gpc3, Bmp7, Wnt4, Sfrp2) have functional links associated with other known Shh pathway 

genes (Figure 2B in the Paper IV manuscript).  

 Foxa2 TF ChIP-seq data analysis revealed that Foxa2 directly binds in the proximity of 

at least 250 genes expressed by the FP. We also compared our dataset of Foxa2-bound regions 

in FP and Nkx2.2+ NSCs with previously published Foxa2 ChIP-seq data (Metzakopian et al., 

2012) in midbrain progenitors that generate dopamine neurons. We found that only ~43% 

overlap of Foxa2 bound regions overlapped between the two datasets, indicating that the 

genome-wide binding profile of Foxa2 differs significantly between different subtypes of 

Foxa2-expressing cells in the ventral neural tube. 

 Histone modification data adds another dimensionality to define the chromatin states, 

identification of presumptive regulatory regions and estimate their changing activity across 

different conditions/cell types. By defining the chromatin states of four histone marks 

H3K4me1, H3K4me3, H3K27ac and H3K27me3 in wild-type and Foxa2-/- cells isolated at 

3.5 and 5.5 DDC using ChromHMM (Ernst et al., 2017), we looked at the acquisition of 
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epigenetic state (promoters, active enhancers, transcribed or repressed genes) in/around the 

regions bound by Foxa2. The chromatin state analysis predicted that Foxa2-bound regions 

associated with FP expressed genes were scored as active enhancers in wild-type samples at 

5.5DDC. The vast majority of these regions were transformed into weak enhancers or acquired 

a quiescent state in Foxa2-/- cells at 5.5DDC, supporting that Foxa2 acts as a master regulator 

by directly binding and regulating/activating hundreds of genes during the specification and 

differentiation of FP cells.   

 Motif enrichment analysis on a subset of Foxa2-bound regions associated with FP genes 

identified the binding sites for the transcription factors Rfx4 and Ascl1. Also, our analysis of 

Rfx4 mutant mice suggests that Rfx4 works together with Foxa2 to promote expression of 

Foxa2-bound FP genes during the differentiation of FP cells. Ascl1 is not expressed by FP cells 

but is expressed in dorsally abutting Nkx2.2+ NSCs, implying that Ascl1 contributes to 

constrain FP induction through direct suppression of FP genes. Analysis of Ascl1 ChIP-seq 

data indicates that Ascl1 binds directly to a cohort of FP genes, including Foxa2, and analysis 

of Ascl1-/- cells indicate that an increased fraction of ESC-derived NSCs adopts a FP fate. 

Conversely, Foxa2 binds to Ascl1 and analysis of epigenetic marks indicate that the Ascl1 loci 

acquire a more active state in Foxa2-/- NSCs. Thus, this data suggests that a cross-repressive 

interaction between Foxa2 and Ascl1 in balancing the positional specification of FP cells and 

Nkx2.2+ NSCs.  

 To summarize, using genome-wide data we were able to identify factors and a 

mechanism involved in restricting the induction of FP fate in the developing neural tube. The 

study provides an increased understanding of the gene regulatory network underlying FP 

differentiation and identifies a novel role for Ascl1 as a suppressor of FP fate downstream of 

Shh.  

 PAPER V: A SHH/GLI-driven three-node timer motif controls 

temporal identity and fate of neural stem cells  
 

Temporal patterning of neurons contributes to the generation of neural cell diversity at all axial 

levels of the CNS, but how time is encoded in these processes has not been resolved in any 

temporal lineage of the CNS (Kohwi et al., 2013; Syed et al., 2017). To define the composition 

and functional properties of time-measuring gene regulatory networks, we examined a 

relatively well-defined lineage in the ventral hindbrain that sequentially produces motor 

neurons (MNs), serotonergic neurons (5HTNs) and oligodendrocyte precursors (OPCs) (Pattyn 

et al., 2003; Vallstedt et al., 2005). The lineage is induced by Shh and defined by the expression 

of the TF Nkx2.2 (Pattyn et al., 2003). Previous studies have shown that young Nkx2.2+ NSCs 

co-express early- and late-acting fate determinants (Pattyn et al., 2000, 2003, 2004; Jacob et 
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al., 2007; Dias et al., 2014), but the activity of the TF Phox2b predominates by specifying MN 

fate (Pattyn et al., 2000; Dias et al., 2014). Once Phox2b is downregulated or genetically 

ablated; MN production is terminated and 5HTNs are generated by default (Pattyn et al., 2003) 

suggesting that Phox2b functions as temporal effector output. Activators of Phox2b have not 

been defined, but a self-sustained and temporally delayed activation of Tgfβ2 operates as an 

extrinsic signal that triggers MN-to-5HTN fate switch by repressing Phox2b (Dias et al., 2014). 

Thus, Phox2b and Tgfβ2 constitute important regulatory components of a timer circuitry, but 

to understand how time is set by the network, it is necessary to define activators of Phox2b and 

resolve how the temporally gated activation of Tgfβ2 is mechanistically implemented. 

We hypothesized that activators driving Phox2b are progressively lost over time since 

Phox2b becomes downregulated and cells undergo an MN-to-5HTN fate switch in the absence 

of Tgfβ2 signaling, but this occurs on a delayed temporal schedule (Dias et al., 2014). To 

identify candidate activators, we defined the transcriptome of ESC-derived Nkx2.2+ NSCs 

isolated at different time points by RNA-sequencing and defined genes that were extensively 

downregulated during the phase of MN-production. By this approach, we identified Gli1-3 as 

candidate activators of Phox2b and could show that ongoing Shh signaling was required for 

sustained expression of Phox2b in the Nkx2.2+ lineage in vitro. 

Biochemical analyses revealed that the progressive downregulation of Gli1-3 genes 

was translated into a parallel temporal decline of GliA (Gli2A+Gli3A+Gli1) and GliR 

(Gli2R+Gli3A) activities over time, and that the amount of GliR generated at a given time was 

determined by the level of Gli2/3 transcription and not by Ptch1-mediated feedback inhibition 

of the Shh pathway. To define the effect of constant GliA input on temporal output, we 

generated mice in which Gli1 was constitutively expressed in the Nkx2.2+ lineage (termed 

Gli1ON mice). Unexpectedly, our analysis revealed that constant GliA input had only a minor 

effect on Phox2b expression, and cells underwent a MN-to-5HTN fate switch an almost normal 

temporal schedule. Importantly, we found that Tgfβ2 was notably upregulated in Gli1ON mice, 

suggesting a feedforward activation of Tgfβ2 by GliA. This suggested a three-node circuitry 

forming an incoherent feedforward loop (IFFL), whereby GliA activates Phox2b but also the 

suppressive Tgfβ-node negatively regulating Phox2b. In strong support for this, we could show 

that the window of MN production was dramatically extended when Gli1 was overexpressed 

and when the Tgfβ pathway concurrently inactivated. Our genetic analyses in vivo further 

established that Tgfβ2 predominates over the Shh pathway by suppressing Phox2b even if cells 

express GliA at levels sufficient to sustain Phox2b transcription, and provided experimental 

support to the notion that delayed MN-to-5HTN switch in Tgfbr1 mutant mice (Dias et al., 

2014) reflects the downregulation of Phox2b due to depletion of GliA. 

The fact that GliA promotes expression of both Phox2b and Tgfβ2 raised the key 

question of how activation of the Tgfβ2-node is circumvented at early stages when GliA 
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expression in cells peak? Detailed analyses of wild type and Gli1ON mice revealed that young 

progenitors which express Gli2/3 are refractory for Tgfβ2 induction by GliA, while Tgfβ2 

responded in a GliA dose-dependent manner in old cells that ceased to express Gli2/3 and 

thereby lost capacity to produce GliR. We could also show by the epistasis experiment that 

GliR acted dominant-negative over GliA by suppressing Tgfβ2 expression induced in response 

to forced expression of GliA and Nkx2.2. Collectively, these data suggested a GliR inhibitor-

titration regulation of Tgfβ2, whereby a high GliR-sensitivity prohibits GliA-mediated gene 

activation until GliR has been titrated, thereby establishing a delayed activation of the Tgfβ-

node. In other genetic experiments, we could also show that Gli1 was required for the late 

induction of Tgfβ2 and for prompt suppression of Phox2b and termination of MN-production. 

This establishes that the GliA threshold required for Tgfβ2 induction is higher than the 

threshold necessary to sustain Phox2b expression, and show that the feedforward activation of 

Gli1 by Gli2/3 mediate a function to boost GliA input late in the temporal differentiation 

process. Collectively, our data outline a three-node IFFL circuitry in which GliA promotes 

Phox2b expression and MN fate, but also accounts for a delayed activation of a suppressive 

Tgfβ-node that triggers an MN-to-5HTN fate switch by repressing Phox2b. Since the amount 

of GliR generated is coupled to Gli transcription, an altered decay-rate of Gli genes will change 

time-output by regulatory circuitry and therefore, conceptually explains how time is encoded 

by the circuitry.  

Our biochemical analyses reveal notable fluctuation of Gli1 and Gli2 in cells at a given 

time point examined, revealing the noisy expression of Gli proteins in temporal lineage 

progression. Data further suggest that the production of GliA and GliR are coupled and thereby 

inflexible, and the theoretical part of our study suggest that decay of Gli proteins alone cannot 

counterbalance noise. However, our computational analyses reveal that the diffusible and self-

activating properties of Tgfβ2, in combination with hysteresis, produces prompt suppression 

of Phox2b and a coordinated switch at the population level. Integration of the Tgfβ-node into 

the Shh/Gli-driven circuitry thereby acts to counterbalances noise and generates a more precise 

timer mechanism as compared to a timer-based only on Gli decay. The community features 

mediated by Tgfβ2 are not attainable with temporal networks based exclusively on intrinsic 

transcriptional regulators. Our study, therefore, provides a functional basis for the intrinsically 

programmed activation of extrinsic switch signals in temporal patterning processes of the 

vertebrate CNS. 
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5 CONCLUSIONS AND FUTURE PERSPECTIVES 

The first part of the thesis introduced the network-based pathway analysis (NEA) as a key tool 

to comprehend a genome-wide pattern of interactions between multiple genes and their 

products that would emerge from high throughput datasets. Available biological network 

resources, as well as the most popular approaches in the pathway analysis field, have been 

discussed. The most important difference between the network-based and network-free 

analyses is that, the latter can only employ and study genes which already belong to the 

functional term. On the contrary, NEA can identify and use those that are both in and around, 

including potentially novel, never annotated genes. Previously developed network-based 

methods suffered from problems with the statistical model correctness and/or excess 

computational time. The scope of this thesis includes the development of the NEArender tool, 

which integrates biological components for the network analysis while employing– instead of 

the tedious network randomization runs – a quick analytical, parametric calculation to assess 

the statistical significance of functional associations between AGS and FGS. The specific 

features of NEArender in its current implementation are that, (i) it considers AGS of only 

limited length rather than full ranked gene lists, (ii) accounts for only direct links between AGS 

and FGS genes (iii) ignores intra-FGS and intra-AGS edges and (iv) disregards edge attributes 

and their directionality. Integrating this information is likely to give more insights into the role 

of certain interactions and leads to better performance. Therefore, future work should aim at 

implementing respective features into NEArender. 

 Even though NEArender has been optimized for speed and is suitable for integration into 

larger bioinformatics pipelines, the operation requires knowledge of R scripting and command-

line interface. Therefore, a user-friendly web interface called EviNet has been developed, 

which provides a fast and flexible solution for performing network analysis online. In the 

current world of pathway analysis, commercial databases such as Ingenuity Pathway Analysis 

(IPA) are attractive for the biological community – mainly due to their proprietary knowledge 

databases, design interface and data protection.  In comparison, EviNet is transparent in both 

the public database usage and the algorithmic details and - being still in its infancy, it 

incorporates a number of valuable and often unique features. EviNet supports using multiple 

alternative biological networks and functional gene sets collected from various public 

databases. In addition, the program incorporates a data management system and has the 

flexibility in integrating highly complex experimental designs using interactive Venn-diagram 

features. However, there is still room for future developments. For instance, EviNet integrates 

the data from multiple database resources and the output presented might contain 

heterogeneous annotation contents. Integrating an algorithm that could group the FGS 

annotations into similar clusters like in DAVID (Huang et al., 2007) functional annotation 
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clustering could reduce the burden of redundant terms and make the biological interpretation 

more focused. Also, integrating ancillary tools for gene ID format conversion, differential 

expression analysis and respective data visualization in various forms such as heatmaps, 2D 

plots etc. could enhance the usefulness of EviNet and is to be developed in the future 

implementations. 

 With the expanding range of high-throughput platforms and enormous volumes of data 

generation, the need for computational tools is essential. However, the tools should also 

generate results (biomarkers discovered from large-scale data) that are possible to validate in a 

clinical application. Previously developed network and pathway analysis tools were rarely 

applied to this task. The newly developed NEAmarker present a proof of concept as well as a 

practical application of using pathways enrichment scores from NEArender in drug response 

prediction. The method integrates data from multiple omics platforms in order to model drug 

sensitivity with enrichment variables. In this paper, the comparison has also been made with 

conventional analysis of original gene profiles and pathway enrichment methods. The analysis 

results showed that the poor performance of the individual gene analysis is due to excess data 

dimensionality, whereas, other alternative pathway enrichment methods might lack sensitivity. 

The ability to summarize information scattered over the network, and thereby use smaller and 

more specific AGS has provided an advantage to NEA, but the analysis could be deteriorated 

by using the same AGS and FGS input with sparser networks.  Employing full gene lists as in 

GSEA, or intra-pathway topology as in SPIA, while considering the above-mentioned 

limitations might help NEA to evolved towards better performance.  

The second part of the thesis is focused on identifying the regulatory factors that are governed 

by mechanisms that operate in space and over time, which account for the formation of neural 

cell diversity in developing brain. Genome-wide sequencing techniques such as ChIP-seq and 

RNA-seq aided in depicting the underlying epigenome and transcriptional regulation events. 

In Paper IV, we identified the novel role for Ascl1 as a suppressor of floor plate fate. In Paper 

V, Gli proteins were identified as the candidate activators of Phox2b expression and MN-fate 

and also accounted for the late onset of Tgfβ2, which executes the MN-to-5HTN fate switch 

by suppressing Phox2b. Further computation modeling on the input components enabled to set 

the timer motif at which the temporal fate switch is prompted. Resolving the molecular 

mechanisms and identifying the regulatory factors underlying the temporal control of 

neurogenesis and progenitor potency is of central importance for overall understanding of 

neural development. This can provide future tools for cell-reprogramming technologies that 

aim to develop specific subtypes of neural cells from human Embryonic Stem Cells (hESCs) 

or induced Pluripotent Stem Cells (iPSCs) (Mertens et al. 2016). 

 With the advent of genome sequencing technologies, we have learned how to read our 

own genome and with CRISPR-CAS9, we created a tool for writing our own instructions. A 
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major task remaining for the future is to identify novel biomarkers to determine the underlying 

molecular signatures of diseases detrimental to human health. The development of novel 

computational approaches and refinement of the existing dataset analysis tools are essential to 

progress towards this goal. In this thesis, an attempt has been made to develop a robust 

bioinformatics toolkit for network enrichment analysis. The software has been benchmarked 

and tested extensively to validate its usefulness with large datasets. Besides, integrating various 

bioinformatics approaches into custom analyses of large-scale datasets contributed to the field 

of developmental biology by helping to identify the regulatory factors. 
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