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ABSTRACT 

Long non-coding RNAs (lncRNAs) constitute a heterogeneous class of RNAs with limited 

coding potential, united by an arbitrarily placed cut off of >200 ntd. The past decade has seen 

the emergence of lncRNAs as versatile regulators of gene expression, amidst skepticism 

regarding the biological usefulness of pervasive genomic transcription and its non-coding 

RNA products prevalent in most eukaryotes. A significant portion of lncRNAs operate in the 

development and functioning of the mammalian CNS. Oligodendrocytes (OLs) are the 

myelinating cells of the CNS that are essential for efficient saltatory conduction and axonal 

survival. They are derived from OL precursors (OPCs) and progress into transcriptomically 

heterogeneous OL sub-populations along the differentiation pathway to produce mature OLs, 

capable of myelination. These epigenetic transitions between different OL subpopulations are 

carefully regulated, spatially and temporally, by a network of transcription factors, chromatin 

modulators and lncRNAs. In demyelinating diseases like multiple sclerosis (MS), patients 

suffer immune mediated attacks against myelin. Eventually, remyelination strategies fail due 

to deficits in OPC migration and OL differentiation at the site of lesions. Thus, understanding 

molecular mechanisms governing OL differentiation and myelination is crucial not only  for 

understanding OL function in health but also in disease, in order to develop suitable 

therapeutic interventions.    

The investigations presented in this thesis explore the role of lncRNAs and RNA-binding 

proteins in neurodevelopment, particularly in embryonic stem cells (ESCs) and cells of the 

OL lineage.  

Article 1 provides a resource for the protein interactome of a key pioneering transcription 

factor, Sox2, in different nuclear fractions of mouse ESCs. We found Sox2 to be a multi-

faceted regulator forming interactions with HP1 family of proteins, whose members perform 

as both activators and repressors in a context dependent manner. In addition to interacting 

with RBPs involved in post-transcriptional processes, Sox2 also interacted with Rn7sk, a 

well-known ncRNA involved in the regulation of transcriptional elongation at promoters and 

enhancers. Although they did not influence each other‘s recruitment to the chromatin, this 

interaction opens up the possibility for ncRNA mediated modulation of ES transcriptional 

programs dependent on Sox2.  

Article 2 draws important insights regarding lncRNAs from a broad transcriptomic resource 

established from single cell- as well as bulk RNA- sequencing of OL lineage cells from 

different developmental stages. From a subset of lncRNAs which were found to be specific 

for certain OL subpopulations, we investigated the role of 2610035D17Rik in modulating the 

expression of its neighboring gene, Sox9, a transcription factor essential for OPC 

specification. We decoupled the role of lncRNA transcript from its genomic locus using 

various loss-of-function strategies and found that the regulation of Sox9 was dependent on 

the regulatory elements and/or ongoing transcription at the 2610035D17Rik locus, rather than 

the transcript itself. 



In Article 4, we investigated a hitherto unexplored RNA-binding function of myelin gene 

expression factor 2 (Myef2), a known transcriptional repressor of myelin basic protein 

(MBP). To this end, we uncovered the RNA interactome of Myef2 in a mouse 

oligodendroglial cell line with individual nucleotide resolution CLIP (iCLIP) followed by 

sequencing. We show that Myef2 interacts with CUG motifs located within introns and 

3‘UTRs of protein-coding genes, a finding which implicates Myef2 in post-transcriptional 

processes like splicing and RNA stability.   

Finally, in Article 3 we have identified disease specific transcriptomic profiles of OL lineage 

cells through single-cell RNA sequencing of OPCs and OLs derived from experimental 

autoimmune encephalomyelitis (EAE) mice, a model that recapitulates several aspects of MS. 

EAE specific OPC and OL clusters were enriched for genes involved in antigen processing 

and presentation (MHC class I/II). We could demonstrate that OPCs can phagocytose myelin 

debris and MHC-II-expressing OPCs can activate memory and effector CD4-positive T cells. 

These findings show OL lineage cells as active participants in MS pathology than passive 

targets. Further, the findings of Article 2 implicate 2610035D17Rik as a regulator of 

immunomodulatory properties of oligodendroglia, as 2610035D17Rik KO cells showed 

reduced expression of IFNγ responsive genes and elevated expression of those involved in 

antigen presentation, compared to the controls, following IFNγ stimulation. 
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1 INTRODUCTION TO LONG NON-CODING RNAS 

1.1 HISTORICAL OVERVIEW 

Concepts making up the framework of RNA biology have undergone tremendous changes 

since its conception; certain fundamental assumptions have been overturned in the process of 

attaining current insights regarding the pivotal role of RNA in shaping gene expression. The 

involvement of house-keeping non-coding RNAs (ncRNAs) such as ribosomal RNA (rRNA) 

and transfer RNAs (tRNAs) in protein synthesis were well established as early as 1950s. The 

discovery of catalytically active ribozymes and small nuclear RNAs (snRNAs) involved in 

intron excision (Kruger et al., 1982; Lerner et al., 1980) came nearly three decades after and 

strengthened the possibility of RNA acting as a catalytic entity of ribosomal unit (Steitz and 

Jakes, 1975). These discoveries added to the growing speculation that RNA could be 

something more than a passive purveyor of genetic information. Further, the discovery of a 

short RNA in C.elegans that could base-pair imperfectly with its target mRNA and down-

regulate it during development (Lee et al., 1993) and its similarity with the 20-22 ntd RNA-

mediated silencing observed in worms and plants (Fire et al., 1998; Hamilton and 

Baulcombe, 1999), now called miRNAs and siRNAs respectively, gave an unprecedented 

impetus to the field and paved the way towards understanding a RNA dependent post-

transcriptional regulatory mechanism widespread in eukaryotes. Other classes of small 

ncRNA regulators that have been identified since are small nucleolar RNAs (snoRNAs) that 

aid in chemical modification of other RNAs (Bachellerie et al., 1995) and piwi-interacting 

RNAs (piRNAs) that maintain genomic integrity by repressing retrotransposition of repeat 

elements (Siomi et al., 2011). Most recent addition to this list are a heterogeneous class of 

ncRNAs called the long non-coding RNAs (lncRNAs) which are distinguished from above 

said small ncRNAs with an arbitrarily placed cut off of >200 ntd. 

1.2 FUNCTIONAL PRODUCT OR TRANSCRIPTIONAL NOISE? 

Recent advances in transcriptomic profiling, especially microarray/tiling and deep sequencing 

technologies, made it possible to look at mammalian RNA species in much greater detail. 

Global genomics consortia such as FANTOM and ENCODE started in early 2000 revealed 

protein coding genes accounted for only a small fraction of the genome, making ncRNAs a 

major component of mammalian transcriptomes (Carninci et al., 2005; ENCODE Project 

Consortium et al., 2007; Okazaki et al., 2002). Later projects uncovered a comprehensive 

catalogue of transcription start and termination sites, with promoters also mapped within 

exons and 3‘UTRs of coding genes (Carninci et al., 2006; Katayama et al., 2005). Usage of 

different combinations of exons and polyA sites seemed commonplace, with even non-coding 

transcripts producing alternative forms (Ravasi et al., 2006). This unexpected transcriptomic 

complexity generated an interest regarding the possibility of non-coding RNA based 

regulatory systems principally driving organismal complexity (Mattick, 2004). But despite 

pervasive transcription and such diversity, only a small number of non-coding transcripts 

have known functions, lncRNAs being the least understood products of transcription. 
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A pertinent question that arises in the light of such a discovery is whether these 

transcriptional products are biologically meaningful or constitute mere ‗transcriptional noise‘. 

It is known that the transcriptional machinery is slippery and open chromatin could be easily 

transcribed into products that serve no purpose (Struhl, 2007), some of which could also be 

capped and spliced out of chance and tolerated because of minimal fitness cost to the cell. 

Some transcripts may be produced coincidentally with the act of transcription that occurs at 

certain regulatory DNA elements in the genome and may not be functional by themselves 

(Kornienko et al., 2013). The possibility remains that a substantial fraction of the non-coding 

transcriptome might indeed be non-functional but with growing lncRNA numbers and their 

associated functional diversity (Ramilowski et al.,bioArxiv 2019),  it seems increasingly 

likely that they are biologically important. 

1.3 CLASSIFICATION  

Annotation for a disparate class of molecules united by an arbitrary cut off size of > 200 ntd 

has just begun and hence there is a need for a universal standardized system of lncRNA 

classification. The HUGO Gene Nomenclature Committee (HGNC) guidelines (Wright, 

2014) recommend naming a lncRNA as an abbreviation of a descriptive name, preferably 

based on its function (E.g. NEAT1 - nuclear paraspeckle assembly transcript 1). LncRNAs 

with no known function are named based on their genomic context, in relation to adjacent 

protein-coding genes. For example, Overlapping (OT) lncRNAs encompass a protein coding 

gene or parts of it within them, on the sense or antisense (AS) strand, respectively. Intronic 

(IT) lncRNAs come from within an intron of a protein coding gene and do not overlap with 

any exons. Antisense Upstream (AU) or bidirectional lncRNA and a protein coding gene are 

transcribed divergently from the same or closely situated TSS. Intergenic or Long Intervening 

ncRNAs (LINC) lie between protein coding loci. 

In addition to above classification, other lncRNA classes associated with promoters are found 

in literature, and are distinguished based on their length. For example, the shortest amongst 

them (<100 ntd) are called transcription start site associated RNAs (TSSa-RNA) and are 

likely to be degradation products of nascent RNA (Valen et al., 2011). Longer transcripts 

produced divergently from a productive Pol II elongation are called promoter upstream 

transcripts (PROMPTs) and they undergo degradation by nuclear exosome (Kapranov et al., 

2007). Transcripts arising from regulatory enhancer regions are enhancer RNAs (eRNAs) and 

activating ncRNAs (ncRNA-a) (Santa et al., 2010). 

1.4 ORIGIN 

LncRNAs are thought to originate via several mechanisms. Homologous lncRNAs are born 

when there is duplication of sequence containing a functional lncRNA locus. It is possible for 

a duplicated protein coding gene to undergo metamorphosis by accumulating mutations that 

disrupt the ancestral open reading frame to give rise to a pseudogene, which when transcribed 

produces a lncRNA (Pei et al., 2012; Zheng et al., 2007). Such pseudogenisation can also 

occur on unitary protein coding genes resulting in a lncRNA with no apparent protein-coding 
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homologue (Marques et al., 2012). Yet another mechanism of lncRNA birth is the integration 

of RNA derived from transposable elements into non-coding genes. Mostly defunct 

transposable elements are found within lncRNAs, with retrotransposons contributing to 

almost two thirds of mature mouse and human lncRNA sequences (Kapusta et al., 2013). 

They are more likely to provide functional cis-elements such as a transcription start site, 

polyadenylation and splice sites to lncRNA genes compared to protein coding loci (Kapusta 

et al., 2013). LncRNAs can also arise de-novo when pervasive transcription from non-coding 

DNA results in cryptic RNAs and if they pass through evolutionary selection, become 

transcripts with novel functions (Heinen et al., 2009). 

1.5 EVOLUTIONARY CONSERVATION 

Generally, genomic sequences of lncRNAs have low evolutionary constraints, unlike protein 

coding genes (Kowalczyk et al., 2012). Criterion based on primary sequence conservation has 

given rise to considerable skepticism regarding the biological significance of lncRNAs but 

this consideration alone might be restrictive. Indeed, lncRNAs show more conservation in 

their exons and splice sites than repeat elements under neutral evolutionary pressure 

(Ponjavic et al., 2007). In fact, lncRNA promoters were found to be as conserved as those of 

protein coding genes (Derrien et al., 2012; Guttman et al., 2009).  LncRNAs that do share 

such limited homology amongst vertebrates are the lincRNA subfamily, often found to be 

actively regulated with similar expression patterns as protein coding genes involved in tissue 

specific functions (Hezroni et al., 2015; Necsulea et al., 2014). Those with no detectable 

sequence conservation still show conserved genomic locations or synteny (Ulitsky et al., 

2011). Thus low conservation might be a result of rapid turnover of lncRNAs, given their 

shallow evolutionary origin compared to protein-coding genes or it could be due to 

evolutionary constraints acting over a small region buried within a long transcript.  

1.6 BIOGENESIS AND PROCESSING 

Most eukaryotic lncRNAs are transcribed by RNA pol II, from open chromatin/DNase 

hypersensitive regions, and require canonical transcriptional machinery. Accordingly, histone 

signatures include H3K4me3 at linc promoters and H3K36me3 over the transcript body, 

which is similar to what is observed for protein coding genes (Guttman et al., 2009). 

LncRNA genes that overlap with enhancers exhibit H3K27ac epigenetic mark and a higher 

ratio of H3K4me1/ H3K4me3 in their transcription initiation regions (Kim et al., 2015). 

PROMPTs however are predominant at CpG rich promoters, do not extend into nucleosome 

depleted regions and are generally devoid of transcription initiation factors such as TAFI, 

TAFII p250 and E2F1 (Preker et al., 2011). 

Many lncRNAs are capped at the 5‘ end, although intronic lncRNAs comprise a higher 

percentage of uncapped transcripts (Ayupe et al., 2015). While mRNAs undergo robust co-

transcriptional splicing and polyadenylation, lncRNAs show decreased splicing and are 

biased towards having two exons and longer introns (Derrien et al., 2012). Decreased splicing 

in lincRNAs may be due to the presence of weaker 3‘ splice signals and less binding by the 
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splicing factor U2AF65 (Melé et al., 2017). Furthermore, transcription termination mark in 

the form of phosphorylated Thr4 on RNA pol II CTD seems to be found across entire 

lincRNA transcriptional units (Schlackow et al., 2017). A study has also reported an 

asymmetric enrichment in polyadenylation sites (PASs) in antisense lincRNAs transcribed 

from bidirectional promoters, which would favour their premature transcription termination 

(Almada et al., 2013). LncRNAs may or may not possess a 3‘ poly-adenylated tail and in 

some cases could even be bimorphic and exist in both polyA+ and polyA- forms (Yang et al., 

2011). Additionally, they exhibit a wide range of half-lives, with the median lncRNA half-life 

(3.5 hours) being slightly less than that of mRNAs (5.1 hours) (Clark MB, Genome Res 

2012). Amongst different lncRNA classes, intergenic and cis-antisense transcripts were found 

to be more stable than intronic lncRNAs and PROMPTs (Clark et al., 2012). Thus, splicing, 

poly-adenylation and specific 3‘ structures such as the triple helix accord higher stability to 

lncRNAs (Clark et al., 2012; Wilusz, 2016). LncRNAs are lowly expressed, the median 

expression being almost a tenth of mRNAs‘ (Cabili et al., 2011; Ulitsky et al., 2011) but their 

expression seems more restricted to a particular tissue/cell type or developmental stage 

(Batista and Chang, 2013).  

Most lncRNAs lack robust ORFs (Mercer et al., 2009). Data from ribosome profiling 

however shows a considerable fraction of lncRNAs to be associated with ribosomes (Bazzini 

et al., 2014; Ingolia et al., 2011),  in a pattern indicative of their potential to produce short 

peptides. Bioinformatic analysis of ribosome profiling data from two cell-lines has identified 

translated ORFs in over 500 lncRNAs (Ji et al., 2015).  However, it has been pointed out that 

ribosome occupancy alone cannot distinguish non-coding from protein coding transcripts, as 

classical ncRNAs also engage the ribosomes at their 5‘UTR. Further, non-coding RNAs do 

not show ribosome release from any of their ORFs, an event that occurs consistently at the 

stop codons of protein coding genes (Guttman et al., 2013).  Although the proportion of  

lncRNAs that can encode peptides is debatable, it has become clear that some lncRNAs 

harbour short ORFs (sORFs) that are translatable into micropeptides of < 100 aa (Mumtaz 

and Couso, 2015), examples of which have recently come to light (Choi et al.). 
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2 LNCRNA FUNCTION 

Only a fraction of lncRNAs have been well characterized; they are very heterogeneous in 

their mode of action and are known to operate at multiple levels of gene expression 

regulation. 

2.1 TRANSCRIPTIONAL REGULATION 

Many lncRNAs localize to the nucleus preferentially (Quinodoz and Guttman, 2014; Vance 

and Ponting, 2014). Though the global determinants of lncRNA nuclear localization is still 

unclear, it has been mainly linked to inefficient splicing (Zuckerman and Ulitsky, 2019) and 

presence of integrated Alu elements along with HNRNPK binding (Lubelsky and Ulitsky, 

2018). In addition, specific motifs have been identified in individual lncRNAs that play a role 

in their nuclear retention (Miyagawa et al., 2012; Zhang et al., 2014a). 

The mode of lncRNA action in the nucleus could be dependent on the act of transcription 

rather than the transcript itself, where transcription of lncRNA induces local chromosomal 

remodelling affecting the binding of regulatory factors which could in turn influence gene 

expression in the vicinity (Camblong et al., 2007). Alternatively, the lncRNA transcript could 

directly recruit multiple regulatory complexes by making use of its discreet domains or larger 

structure, targeting them to a specific DNA locus. In the latter case, lncRNA can act either in 

–cis (at/near the site of its transcription) or in –trans (away from the site of its transcription), 

though the three-dimensional (3D) scape of the genome sometimes blurs this distinction. 

2.1.1 Imprinting 

During early mammalian gametogenesis, some protein coding genes are epigenetically 

marked such that their expression occurs in a parent of origin specific manner in a process 

known as genomic imprinting. LncRNAs expressed from differentially methylated 

―imprinting control regions‖ usually enact imprinting on gene clusters via cis-regulatory 

mechanisms. For example, the expression of nuclear localized lncRNA Kcnq1ot1 is restricted 

to the paternal chromosome and upon its transcription recruits chromatin and DNA 

methyltransferases (G9a, DNMT1) to silence the Kcnq1/Cdkn1c gene cluster in cis, while 

their maternal alleles continue to be expressed (Kanduri, 2016). 

One of the best-studied examples of imprinting is that of 17kb lncRNA Xist that dramatically 

silences one of the female X chromosomes (Xi) from which it is expressed (Jonkers et al., 

2008), thereby providing dosage compensation. Other lncRNA partners involved in mouse X-

chromosome inactivation (XCI) are Xist activators, Jpx and Ftx, along with Tsix, a Xist 

repressor. Tsix is transcribed anti-sense to Xist on the active X chromosome (Xa), thereby 

protecting it from ectopic XCI (Gayen et al., 2015). While Jpx lncRNA acts in either cis or 

trans to bind and remove the insulator protein, CTCF, from repressing Xist (Sun et al., 

2013b), transcription in the Ftx lncRNA locus leads to expression of Xist in cis (Furlan et al., 

2018). This establishment of monoallelic Xist expression triggers a cascade of events where 

Xist gradually spreads from its transcription locus by binding to a scaffold attachment factor, 
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drawing in more distant regions on XI while using its modular domains to recruit multiple 

epigenetic regulators (HDAC3, PRC2/1, SETDB1) that help in initiating and maintaining 

transcriptional repression through histone deacetylation and methylation, respectively (Cerase 

et al., 2015).  

2.1.2 Enhancer mediated regulation 

Enhancers are decompacted DNA elements capable of binding transcription factors and co-

activator complexes; they drive gene expression independently of the distance and orientation 

of their target promoters and are epigenetically marked with a higher H3K4me1/ H3K4me3 

ratio (Li et al., 2016). Active enhancers often give rise to bi-directional, unspliced, non-

polyadenylated transcripts (Kim et al., 2015) and sometimes relatively more directional, 

polyadenylated transcripts (Koch et al., 2011), termed as enhancer RNAs (eRNAs) and 

activating ncRNAs (ncRNA-a), respectively. The production of eRNAs is highly regulated 

and often precedes the induction of adjacent mRNAs in response to a certain stimulus (Kim 

et al., 2015; Li et al., 2016; Wang et al., 2011). However, successful eRNA induction seems 

to be dependent on the RNA endonuclease activity of the Integrator complex, which is 

involved in 3‘ cleavage of the eRNA transcript (Lai et al., 2015).  

The activating function of eRNAs sometimes appears to be sequence specific as reported by 

enhanced gene expression in a plasmid reporter system in which eRNAs were tethered 

upstream of its minimal promoter (Lam et al., 2013). In other cases, they seem to stabilize 

and strengthen enhancer-promoter looping through cohesin (Li et al., 2013) and the mediator 

complex (Kagey et al., 2010; Lai et al., 2015) as well as facilitate RNA pol II loading or 

productive elongation at the target gene promoter (Mousavi et al., 2013; Schaukowitch et al., 

2014). Thus eRNAs and/or active enhancer transcription regulates genomic accessibility, 

transcription machinery availability, chromatin conformation locally and in highly specific 

ways to drive cell type and activity dependent expression programs. 

2.1.3 Modulation of transcriptional machinery  

LncRNAs can directly act on the transcriptional machinery. In one case, a lncRNA generated 

from short interspersed elements (SINEs) during heat shock blocks transcription by binding 

to RNA pol II, by entering into transcriptional complexes at promoters (Mariner et al., 2008). 

Alternatively, lncRNAs can form stable triplexes with promoters and regulate binding of 

transcriptional activators or inhibitors in trans, as in the case of lncRNA Khps1 that forms a 

triplex with a homopurine stretch upstream of SPHK1 (Sphingosine kinase 1) promoter and 

activates it by recruiting histone acetyl transferase p300/CBP54 (Postepska-Igielska et al., 

2015).  They can also interact with transcription factors and help in their recruitment to 

specific gene sets as in the case of lncRNA RMST (rhabdomyosarcoma 2-associated 

transcript) and SOX2 co-regulating neural stem cell fate (Ng et al., 2013). 
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2.1.4 Nuclear architecture 

Recent studies have shown that lncRNAs actively assemble and maintain nuclear domains. 

Paraspeckles are transcription dependent dynamic foci that are enriched with RNA-binding 

proteins (RBPs) involved in RNA splicing, editing and DNA unwinding (Bond and Fox, 

2009). Though their function is not entirely known, it is possible that they provide an ordered 

pool of their component proteins and help in directing their activity when required (Schuldt, 

2002). Along with RBPs, they also harbour lncRNA NEAT1 that is crucial for paraspeckle 

structural integrity, so much so that knock down of NEAT1 results in paraspeckle dispersion 

(Clemson et al., 2009) and an artificial tethering of NEAT1 to a genomic location is sufficient 

for paraspeckle formation (Shevtsov and Dundr, 2011). Interestingly, paraspeckle formation 

also seems to be dependent on ongoing NEAT1 transcription, and not just the presence of the 

lncRNA (Mao et al., 2011). Further, some adenosine-to-inosine edited mRNAs, along with 

those that contain Alu repeats, associate with paraspeckles and it is speculated that NEAT1 

might play a role in their nuclear retention (Chen and Carmichael, 2009). Another lncRNA 

called MALAT1/NEAT2 is a part of nuclear speckles; a storehouse for pre-mRNA processing 

proteins (Lamond and Spector, 2003). Although MALAT1 is not required for nuclear speckle 

integrity, it seems to have a role in ensuring proper localization of some nuclear speckle 

proteins involved in splicing (Tripathi et al., 2010). It has been proposed that MALAT1 

scaffolds actively transcribing genes (West et al., 2014) to nuclear speckles and its contents to 

influence gene expression (Engreitz et al., 2016)  

LncRNAs can also be involved in modulating higher order nuclear architecture. For example, 

lncRNA Firre localises across a X chromosome domain that escapes inactivation and forms 

high-affinity interactions with DNA loci on different mouse chromosomes (Hacisuleyman et 

al., 2014). This trans-chromosomal co-localisation brings genes involved in energy 

metabolism and/or adipogenesis together in 3D space to facilitate their co-regulation (Sun et 

al., 2013a). The capacity of lncRNAs to passively diffuse while acting as bridging molecules 

between transcribing DNA and different proteins combined with the ability of certain self-

interacting RBPs to segregate into phase separated bodies, most likely drives nuclear 

compartmentalization (Kato et al., 2012; Yamazaki et al., 2018). 

2.2 POST-TRANSCRIPTIONAL REGULATION 

lncRNAs also function as effective modulators of post-transcriptional processes like pre-

mRNA splicing, mRNA decay, and translation, in addition to their roles as transcriptional 

regulators. 

2.2.1 mRNA splicing and stability 

There has been a growing appreciation of the ways in which chromatin status and 

transcription is coupled to splicing events (Montes et al., 2012) and lncRNAs seem to play a 

role in bridging these regulatory systems. For example, a nuclear anti-sense lncRNA from the 

FGFR2 locus was shown to promote alternative splicing of FGFR2 mRNA into an epithelial-

specific isoform by recruiting polycomb proteins and histone demethylase (KDM2a), which 
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impair mesenchymal-specific splicing by abrogating the binding of a repressive chromatin-

splicing adaptor complex (Gonzalez et al., 2015). In addition, lncRNAs can influence splicing 

outcomes by sequestering RNA-binding proteins involved in splicing regulation. One such 

example is a new class of intron-derived lncRNAs, called sno-lncRNAs, which are flanked 

by small nucleolar RNA (snoRNA) sequences and lack 5‘ cap and polyA tail. Particularly, 

those derived from the 15q11-q13 human chromosomal region implicated in Prader-Willi 

syndrome (Duker et al., 2010), harbour multiple binding sites for the alternative splicing 

regulator FOX2 and act as a molecular sink to prevent its binding to other mRNA targets 

(Yin et al., 2012).  

LncRNAs can act as both positive and negative regulators of mRNA stability. For example, 

Alu-repeat containing lncRNAs form imperfect base pairing with the Alu elements in the 3‘ 

UTRs of their target mRNAs which is recognized by Staufen 1 (STAU1) to induce staufen-

mediated decay (Gong and Maquat, 2011). By contrast, a lncRNA transcribed antisense to 

beta-secretase producing BACE1 mRNA, forms a duplex with the mRNA and abrogates miR-

485-5p induced repression, thereby stabilizing its target mRNA (Faghihi et al., 2010). 

2.2.2 Translation 

The mouse ubiquitin carboxyterminal hydrolase L1 (Uchl1) mRNA encodes an enzyme with 

roles in brain development and shares complementarity at its 5‘ end with a neuron specific, 

nuclear enriched, antisense (AS) Uchl1 lncRNA. Upon mTORC1 inhibition, it was found that 

Uchl1-AS translocates to the cytoplasm, and through overlapping complementarity, enhanced 

the formation of active polysomes on its target mRNA and therefore its translation (Carrieri 

et al., 2012). 

2.2.3 Encoding small peptides 

Some lncRNAs harbor sORFs that are translatable, and a few of the resulting peptides have 

been reported to be biologically active. SPAR is a lncRNA encoded small peptide <100 aa 

that inhibits mTORC1 activation necessary for muscle regeneration (Matsumoto et al., 2017).  

Minion, another sORF peptide was found to be critical for the induction of mononuclear 

progenitor fusion into multinuclear myotubes during skeletal muscle development (Zhang et 

al., 2017b). In addition to peptides functioning in muscles, a cancer related peptide, HOXB-

AS3, inhibits hnRNPA1 mediated splicing of pyruvate kinase M (PKM) and suppresses 

glucose metabolism needed for supplying energy to tumors (Huang et al., 2017). 

2.2.4 Regulatory sponges 

Circular RNAs (circRNAs) are created when a splice donor at the 3‘ exon end is joined to a 

5‘ splice acceptor of an upstream exon in a non-canonical splicing event called ‗backsplicing‘ 

(Memczak et al., 2013; Salzman et al., 2012). CircRNAs are stable and accumulate in the 

cytoplasm without associating with ribosomes (Guo et al., 2014), however exceptions have 

been reported recently. CircRNAs were found to undergo translation especially in response to 

stimuli that interferes with cap dependent translation (Legnini et al., 2017; Pamudurti et al., 
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2017). Known functions of circRNAs till date include their ability to act as miRNA sponges. 

For example, cerebellar degeneration-regulated protein 1 anti-sense RNA (CDR1-AS) 

contains more than seventy miR-7 binding sites and is resistant to miRNA mediated 

destabilization, resulting in an increased expression of miR-7 targets (Hansen et al., 2013). 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Modes of lncRNA action 

From left to right– LncRNAs can regulate transcription in the nucleus by mediating enhancer looping, by acting 

as scaffolds for chromatin modifying complexes, modulating activity of transcription factors and by influencing 

spatial conformation of chromosomes. In the cytoplasm, circRNAs can sequester miRNAs, some cytoplasmic 

lncRNAs carry small ORFs that can be translated into biologically active small peptides and they can regulate 

mRNA stability or translation. (Adapted from Moralando et al.,2015)  
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3 TECHNOLOGICAL ADVANCES 

3.1 IDENTIFICATION OF LNCRNAS 

Deep sequencing methodologies in the last decade have revolutionized the way we 

understand the transcriptomic output of cells and consequently their functional states. 

Predictably, the most commonly employed technique to discover novel lncRNAs and 

quantify their expression is bulk RNA-sequencing (RNA-seq) Usually rRNA-depleted 

transcriptomes from large cell populations are reverse transcribed with random primers into a 

pool of cDNAs, which are then sequenced. The total RNA-seq libraries thus obtained are 

enriched for both polyadenylated and non-polyadenylated transcripts and the resulting data is 

representative of average gene expression pattern across millions of cells. Given that 

heterogeneity of gene expression is observed even within same cell populations and could 

harbour biologically relevant information, single-cell RNA sequencing (scRNA-seq) was 

developed to address this concern (2014).  Broadly, this technique involves isolating single 

cells via fluorescence activated cell sorting (FACS) or microfluidics followed by capturing 

and barcoding their transcripts. Reverse transcription and amplification of cDNAs then 

generate libraries in which the transcripts can be mapped back to individual cells.  Cap 

analysis of gene expression (CAGE) is another high-throughput method that relies on the 

presence of 5‘ cap on RNAs to identify active promoter regions and TSS driven by Pol II, as 

such excludes non-capped transcripts and circRNAs (Shiraki et al., 2003). While RNA-seq 

and CAGE measure steady state RNA levels, methods like global run-on sequencing (GRO-

seq) target nascent RNA transcription from actively engaged polymerases (Lopes et al., 

2017). This genome wide snapshot of transcription is particularly suited for lncRNAs that 

have a high decay rate (Chu et al., 2015). 

3.2 LNCRNA FUNCTION 

Subcellular localization of lncRNAs can potentially hold clues about their function. In-situ 

hybridization (ISH) techniques can detect and localize target RNAs within cells by using 

complementary probes. This is followed by visualization with fluorescence microscopy, 

either with direct labeling of probes with fluorophores (single molecule RNA FISH) (Kwon, 

2013) or with signal amplification schemes (RNAscope) (Wang et al., 2012). Recently 

developed technologies like fluorescent in situ RNA-seq (FISSEQ) (Lee et al., 2014) have 

combined transcriptomic data from sequencing with spatial information from ISH to achieve 

cell or tissue specific visualization of lncRNA expression and localization. 

As discussed above, many lncRNAs function by interacting with protein partners. One of the 

methods to investigate RNA-protein complexes in-vivo with high positional resolution is to 

use UV mediated crosslinking and immunoprecipitation followed by high throughput 

sequencing (CLIP-seq) (Ule et al., 2003). Any interacting RNA covalently fixed to the 

protein of interest is partially digested and this complex is pulled down using an antibody 

against the protein. Following immunoprecipitation, RNA is reverse transcribed and the 

protein content is digested before the preparation of cDNA libraries for sequencing. One of 
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the limitations of CLIP is the loss of a large fraction of truncated cDNAs lacking the 5‘ 

adapter due to reverse transcriptase stalling at the peptide residue left at the site of cross-

linking while proceeding from the 3‘ adapter end.  A particular variant of CLIP called 

individual nucleotide resolution CLIP (iCLIP) (König et al., 2010) resolves this problem by 

circularizing cDNAs containing cleavable adapters which when linearized generates 

templates that can be captured for PCR amplification. These techniques have been widely 

used to generate transcriptome wide binding maps for many RBPs, particularly those 

involved in post-transcriptional gene regulation, in order to characterize their molecular 

function.  

LncRNAs also function by interacting with DNA directly or through protein intermediates. 

Thus many genomic-context based methodologies have been developed to unravel lncRNA 

chromatin occupancy that differ in their cross-linking strategies and probe design. Cells are 

cross-linked with glutaraldehyde or formaldehyde or both, sonicated to generate smaller 

DNA fragments, hybridized with biotin conjugated DNA probes complementary to RNA of 

interest, and then the tertiary protein-DNA-RNA complex is purified with streptavidin beads. 

Upon cross-link reversals, the resulting DNA can be sequenced or the associated proteins 

could be analyzed by mass spectrometry. Specifically, chromatin isolation and purification 

(ChIRP) (Chu et al., 2011) uses a pool of 20nt long probes that tile the entire length of the 

lncRNA while capture hybridization analysis of RNA targets (CHART) (Simon et al., 2011) 

relies on using probes designed to target accessible binding sites with the help of RNase H 

mapping. Similarly, RNA-RNA interactions can be studied by using a variety of cross-linking 

chemicals that target both direct and indirect interactions, namely 4'aminomethyltrioxalen 

(AMT) that captures direct RNA-RNA interactions through uridine cross-links and a 

combined treatment of formaldehyde and disuccinimidyl glutarate (FA-DSG) that captures 

RNA interactions occurring via multiple protein intermediates (Engreitz et al., 2014) 

3.3 LNCRNA STRUCTURE 

LncRNAs could harbour relatively more conserved secondary structures that are important 

for their function. Despite challenges in structural analyses due to their size, RNA structural 

profiling methods that utilize chemical and enzymatic probing techniques have been 

developed. For example, selective 2′ -hydroxyl acylation by primer extension (SHAPE) 

(Wilkinson et al., 2006) relies on certain chemicals to modify more accessible regions of 

RNA like single strands and loops by adding 2‘-O-adducts while the highly structured 

regions are shielded. Modified regions are extended by target specific primers until the 

adduct and the extension length is used to build a secondary structure map. Using specific 

nucleases that cleave single stranded regions and then sequencing the resulting RNA 

fragments allows for a genome wide reconstruction of RNA secondary structure (Kertesz et 

al., 2010; Underwood et al., 2010). Therefore, these techniques hold a lot of potential in terms 

of linking lncRNA structure with its functionality. 
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Figure 2: Schematics of chromosome isolation by RNA purification (ChIRP) and individual nucleotide 

resolution, cross-linking and immunoprecipitation (iCLIP).  

Workflow of ChIRP involves cross-linking chromatin to RNA:protein in-vivo, tiling the lncRNA of interest with 

biotinylated probes, using streptavidin beads to bull down the chromatin complex and elute the lncRNA- DNA 

or protein complex with a mixture of RNase H and A. (Adapted from Chu et al.,2011) 

iCLIP workflow involves cross-linking RNA:protein through UV which results in a covalent bond at the site of 

contact. RNA is partially digested and the protein of interest is immunoprecipitated using an antibody. RNA is 

ligated with an adapter at 3’ end and for visualisation, labelled with radioactivity at the 5’ end. After running 

the complex on a SDS-PAGE gel followed by transfer onto a nitrocellulose membrane, the expected size is cut 

out and protein is digested with proteinase K. Reverse transcription is performed with two cleavable adapter 

regions and barcodes. After removing free RT primers through size-selection, cDNA is circularised and an 

oligonucleotide with a restriction enzyme site is annealed to it. Subsequent cleavage linearizes the cDNA and 

generates suitable template for PCR amplification and sequencing. (Adapted from Huppertz et al.,2014).  
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4 NEURODEVELOPMENT 

4.1 EMBRYONIC STEM CELLS 

Mouse embryonic stem cells (mESCs) are derived from the inner cell mass (ICM) of the pre-

implantation blastocyst. These cells would normally develop into the epiblast and eventually 

produce all adult tissues in-vivo while the outer trophoblast layer generates extra-embryonic 

tissue like the placenta (Evans and Kaufman, 1981). ESCs are defined by pluripotency and 

extended self-renewal properties. The molecular network that establishes and maintains these 

unique properties is driven by the combined action of three pioneering transcription factors 

essential for early development, namely Sox2, Nanog and Oct4 (Boyer et al., 2005). In 

addition to being critical for ES cell identity; Sox2 and Oct4 also orchestrate germ layer fate 

selection into neuroectoderm and mesendoderm, respectively (Thomson et al., 2011). The 

above-mentioned transcription factors are known to co-occupy hundreds of target loci 

resulting in feed-forward and auto-regulatory circuits (Boyer et al., 2005; Chen et al., 2008). 

Some of these multifactor-binding genes are expressed in ESCs but tend to be down regulated 

upon differentiation (Kim et al., 2008), which points to their significant role in maintaining 

ESC phenotype. In addition, the transcription factor triad interacts extensively with chromatin 

modulators such as histone deacetylases (HDACs), polycomb repressive complexes (PRCs) 

and SWI/SNF ATPase dependent remodeling components (Boland et al., 2014) to use 

repressive pathways for either silencing differentiation-promoting genes (Petell et al., 2016) 

or keep them transcriptionally poised with bivalent chromatin marks (Bernstein et al., 2006).   

4.2 NEUROGLIOGENESIS 

Further during mammalian embryo development, the ICM undergoes differentiation into 

germ layers consisting of ectoderm, endoderm and mesoderm through the process of 

gastrulation (Kiecker et al., 2016). While mesoderm gives rise to skeletal muscles, bone, 

cartilage and connective tissue; endoderm forms visceral organs like stomach and intestines. 

Ectoderm develops into surface ectoderm (epidermis, hair, nails), peripheral and central 

nervous systems (Kiecker et al., 2016). Early neurodevelopment comprises of the following 

sequential events (Zirra et al., 2016): the neuroepithelial cells or neural stem cells (NSCs) of 

the ectoderm proliferate to specify the neural plate through a process called neural induction. 

The neural plate eventually invaginates generating the neural tube. Here, the apical-basal 

polarization of neuroepithelial cells is followed by patterning of the neural tube into spatially 

and functionally distinct regions along the rostrocaudal (R-C) and dorsoventral (D-C) axes 

(Stern et al., 2006). Precursors for forebrain, midbrain, hindbrain and spinal cord are formed 

according to the R-C axis through interplay of different factors, some of which mark the 

barriers between different regions by their mutually exclusive expression pattern (Wilson and 

Maden, 2005). On the other hand, primary dorsal morphogenic cues is provided by bone 

morphogenetic protein 4 (BMP4) and Wnt mediated signaling while sonic hedgehog (Shh) 

and retinoic acid (RA) signaling is required ventrally and in the intermediate zone of the D-V 

axis, respectively (Wilson and Maden, 2005). Thus, distinct neuronal subtypes and glial cells 

are generated from discrete domains formed through opposing D-V morphogenic gradients. 
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4.3 OLIGODENDROGENESIS 

The glial population of the vertebrate nervous system consists of oligodendrocytes, astrocytes 

and microglia. Oligodendrocytes (OL) spirally wrap neuronal axons through their myelin 

containing membranes. Insulating properties of myelin allows for fast and efficient impulse 

transmission between neurons through saltatory conduction, which is crucial for meeting the 

energy demands of a higher order nervous system (Simons and Nave, 2015). In addition, OLs 

aid long term axonal integrity and survival by supplying energy metabolites to axons 

(Fünfschilling et al., 2012). 

4.3.1 Oligodendrocyte specification 

OLs are derived from oligodendrocyte precursor cells (OPCs), which in turn, arise from 

neuroepithelial cells lining the spinal cord canal and the ventricles of the embryonic brain 

(Richardson et al., 2006). 

Specifically, the first wave of precursors from a discrete ventral pMN domain in the spinal 

cord gives rise to motor neurons (E9-10.5) and subsequently (E12.5) to platelet-derived 

growth factor alpha-receptor (PDGFRα) positive OPCs (Richardson et al., 2000). As 

discussed above, Shh signaling is necessary for the establishment of ventrally derived OPC 

fate and acts through homeodomain transcription factors (Nkx6) and basic helix-loop-helix 

proteins (Olig2/1) (Lu et al., 2000; Vallstedt et al., 2005). Later during development (E15), a 

second wave of dorsally derived OPCs occurs, presumably through a Shh independent route 

(Cai et al., 2005). Ventrally derived OPCs are highly migratory and account for 

approximately 80% of spinal cord OPCs, while the remainder comes from dorsally derived 

OPCs (Fogarty et al., 2005; Vallstedt et al., 2005). 

The forebrain develops from the embryonic telencephalon where the OPCs arise sequentially 

in three spatio-temporal waves (Kessaris et al., 2006). The first wave appears at E12.5 in the 

ventricular/sub-ventricular zone from the medial ganglionic eminence (MGE) defined by the 

expression of homeobox protein, Nkx2.1. The second one marked by homeobox protein, 

Gsx2, occurs in the lateral-to-caudal ganglionic eminences (LGE/CGE) at E15.5 and the final 

wave expressing homeobox protein, Emx1, occurs postnatally in the cortex. Although, these 

precursors account for nearly all OL lineage cells in telencephalon at birth, Nkx2.1 

expressing precursors plummet and eventually disappear in adulthood (Kessaris et al., 2006). 
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4.3.2 Neuron-Glial switch 

During CNS development, gliogenesis requires a developmental switch from neurogenic 

programs to those that produce OLs and astrocytes. In the pMN domain, this is mainly 

facilitated by ongoing activity of Shh and Olig2 (Ravanelli and Appel, 2015) with Olig2 

presumably switching binding partners to initiate transition from motor neuron to OPC 

production (Li et al., 2011). This is accompanied by down regulation of proneural factors like 

neurogenin 2 (Ngn2) and promotion of a gliogenic phase by delta-like-NOTCH signaling 

(Zhou et al., 2001) with concomitant induction of transcriptional programs regulated by SRY-

box 9 (Sox9) and nuclear factor I (NF1) proteins (Kang et al., 2012). In the embryonic 

forebrain, the precise domain of OPC specification is not well understood.  Proneural factors, 

Ngn2 and Mash1 show mutual exclusion in the dorsal and ventral telencephalon, respectively 

(Ma et al., 1997). Astrocytic progenitor cells seem to derive from Ngn2 positive dorsal 

domain while early OPCs might develop from a MGE region with overlapping expression of 

Dlx2, Mash1 and Olig2/1, with an eventual co-operation of the latter two proteins (Parras et 

al., 2007). 

4.3.3 Myelination 

Following specification, OPCs proliferate and migrate throughout the CNS during early 

postnatal period, which is characterized by prolific myelination. Peptide mitogens like 

homodimeric PDGF-AA synthesized by neurons and astrocytes along with insulin growth 

factor-1 (IGF-1) and fibroblast growth factor-2 (FGF-2) enhance OPC proliferation and 

migration (Gard and Pfeiffer, 1993; Milner et al., 1997; Pang et al., 2007) by activating 

pathways that inhibit apoptosis and aid OPC survival (Frederick TJ., 2007). OPCs use spatial 

gradients of signaling molecules like BMP, Shh and Wnt to chemotactically migrate to their 

destination (Choe et al., 2014; Simpson and Armstrong, 1999), in addition to other local cues 

Figure 3: Multiple waves of OPCs are specified during the development of mammalian CNS 

a)  Three OPC waves arise in the forebrain ventricular zone during development; OPC 1 at E12.5 in the medial 

ganglionic eminence, OPC2 at E15.5 from lateral-to-caudal ganglionic eminences and OPC3 at birth from the 

cortex. b) Similarly, in the ventrally located pMN domain of the developing spinal cord, the first OPC1 wave 

arises at E12.5. The second OPC2 wave occurs dorsally at E15.5. A third OPC3 wave occurs at birth but its 

origin remains unclear.  (Adapted from Rowitch and Kriegstein, 2010) 
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of axonal guidance (Okada et al., 2007; Zhang et al., 2004), extracellular matrix components 

(Bribián et al., 2008; Garcion et al., 2001) and vascularization (Tsai et al., 2016). Notch and 

Wnt signals also inhibit premature OPC differentiation (Givogri et al., 2002; Guo et al., 2015) 

through downstream transcription factors like inhibitor of differentiation 2 (Id2), Id4 and 

Hes5.  

Proliferating OPCs exit cell cycle and start differentiating into oligodendrocytes due to both 

intrinsic and extrinsic cues. Intrinsic myelination programs involve successful induction of 

transcription factors that promote differentiation (Sox10, YY1, Tcf7l2, Myrf) and 

simultaneous dis-inhibition of differentiation (Id2, Hes5, Sox6) (Emery and Lu, 2015). 

Certain chromatin remodelers and transcription factors act as both repressors and activators 

of differentiation, depending on the developmental stage. For example, Tcf7l2 partners up 

with β-catenin during the late OPC stage to form a transcriptional complex that inhibits OL 

differentiation (Ye et al., 2009). Following downregulation of Wnt signaling (and β-catenin), 

Tcf7l2 interacts with  histone deacetylases 1/2  (HDAC1/2)  to repress the expression of OL 

differentiation inhibitors (Ye et al., 2009). Similarly, HDAC2 in conjunction with co-

repressor, NCOR, represses expression of Sox10 in NSCs (Castelo-Branco et al., 2014), 

while HDAC1 promotes differentiation by acting alongside transcription factor YY1 to 

relieve OL differentiation inhibition in OPCs (He et al., 2007). 

OL mediated myelination is capable of responding to external clues such as both axonal 

number and size (Almeida et al., 2011; Lee et al., 2012). Indiscriminate myelination is mostly 

avoided with inhibitory cues present on the axon and they include ligands such as jagged, 

PSA-NCAM and LINGO-1 (Jakovcevski et al., 2007; Mi et al., 2005). In addition to 

inhibitory axonal ligands, myelination could also be driven directly (Gautier et al., 2015; 

Stevens et al., 2002) or indirectly (Ishibashi et al., 2006) by neuronal activity. However, in 

the absence of neuronal activity, myelination still occurs but at slower rates (Lundgaard et al., 

2013). 

OPCs continue to cycle in the adult brain, post developmental myelination. Apart from 

maintaining a steady stem cell pool (Hughes et al., 2013), these OPCs play important roles in 

adaptive myelination or during injury to correct myelin deficits. Recent studies have shown 

that OPCs indeed generate new oligodendrocytes in response to neuronal plasticity that 

requires remodeling existing myelinated axons or production of new myelin (Gibson et al., 

2014; Sampaio-Baptista et al., 2013; Young et al., 2013. Further, OPCs proliferate and are 

capable of migrating to demyelinating lesions to ensure an efficient replacement of 

myelinating OLs (Gudi et al., 2014). 

Thus myelination is a process that harnesses OLs‘ underlying capacity to produce myelin and 

fine-tunes it by integrating a variety of region specific environmental cues in the CNS. 

4.3.4 Oligodendrocyte lineage heterogeneity 

As discussed above, it is clear that OPC populations exhibit a spatiotemporal developmental 

heterogeneity. However, ablation of each of the OPC population resulted in the remaining 
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OPCs repopulating the CNS without significant differences in myelination (Kessaris et al., 

2006). This finding was supported by a recent transcriptomic study, which reported a 

transcriptional convergence of post-natal PDGFRα positive OPCs irrespective of their 

developmental origin (Marques et al., 2018). Although this indicates a gross functional and 

transcriptomic equivalence between the populations, it is still unclear if they continue to 

maintain heterogeneity in other more nuanced ways to suit their local environmental needs. 

For example, postnatal OPCs from spinal cord produce higher myelin sheet length than those 

from the cortex (Bechler et al., 2015). Further, CNS is made up of two kinds of tissue: white 

matter (WM) which largely consists of long-range myelinated axons and grey matter (GM) 

which is made up of neuronal cell bodies, synapses and relatively fewer myelinated axons. 

Consistent with this observation, adult OPCs in white matter and grey matter exhibit different 

self-renewal capacities (Hill et al., 2013). The former has shorter cell cycle time and rapid 

proliferative capacity (Maki, 2017). WM OPCs were also found to have a higher propensity 

for differentiation into mature OLs compared to GM OPCs (Dimou et al., 2008). 

Furthermore, OPCs express glutamate receptors and can receive depolarizing synaptic inputs 

from axons (Káradóttir et al., 2005; Kukley et al., 2010; Spitzer et al., 2016). They also 

express voltage-gated sodium and potassium channels (FIELDS, 2008). The onset and 

expression of such electrophysiological properties in OPCs are reported to vary, both within 

and between brain regions and age (Chittajallu et al., 2004; Spitzer et al., 2019). In addition, 

electrophysiological properties seem to make OPCs more vulnerable to ischemic injury 

(Káradóttir et al., 2008). 

Although Rio Hortega recorded morphological diversity within OLs nearly a century ago, the 

underlying transcriptional landscape instructing different OL states along the differentiation 

pathway only became clear with the advent of large scale transcriptomic and proteomic 

studies in the last decade (Cahoy et al., 2008; Sharma et al., 2015; Zhang et al., 2014b). More 

clarity was achieved when the first single-cell transcriptomic study unveiled six distinct 

subpopulations of OLs in the mouse brain (Zeisel et al., 2015). This was further 

complemented by a second study in which twelve distinct clusters could be transcriptomically 

ordered to recapitulate the OL differentiation process in mouse juvenile and adult CNS 

(Marques et al., 2016). Though post-mitotic committed OPCs (COPs) and newly formed OLs 

(NFOLs) were present in all regions, mature OLs (MOLs) showed age and location 

dependant distribution (Marques et al., 2016). Whether the abovementioned MOL 

subpopulations correspond to functional sub-types in the CNS, is yet to be determined.  

 

 

 

 

 

Figure 4: Model of OL lineage 

progression based on single cell RNA-

seq datasets 

OL differentiation process is sequential 

and uniform in the CNS, until the 

myelin forming stage. Mature 

populations are heterogeneous and 

exhibit region specificity, with MOL1-4 

common in juvenile mouse and MOL5/6 

mostly present in the adult mouse. 

(Adapted from Marques et al., 2016) 
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5 MULTIPLE SCLEROSIS 

Multiple Sclerosis (MS) is a chronic inflammatory demyelinating disorder of CNS affecting 

approximately 2.3 million people worldwide (Browne et al., 2014), predominantly young 

adults (Kobelt et al., 2017). Though the underlying cause of the disease is not well 

understood, studies point towards multiple factors involving complex gene-environmental 

interactions (Ascherio, 2013; International Multiple Sclerosis Genetics Consortium (IMSGC) 

et al., 2013; Ramagopalan et al., 2010). 

MS is usually viewed as a two-stage disease: an early inflammation phase resulting in 

demyelinated lesions, characterized by reversible neurological deficits (relapse-remitting MS) 

followed by a delayed neurodegeneration phase causing progressive, permanent clinical 

disability (secondary progressive MS) (Leray et al., 2010). Accordingly, demyelination is 

followed by proliferation and activation of resident OPCs into a regenerative phenotype 

(Fancy et al., 2004). The activated OPCs migrate to the site of lesion, make axonal contacts 

and differentiate into remyelinating OLs (Franklin and Ffrench-Constant, 2008). Eventual 

remyelination failure is linked to depletion of OPCs in plaques as well as reduced OPC 

migration and differentiation (Boyd et al., 2013; Hartley et al., 2014; Kuhlmann et al., 2008), 

owing to a dysregulated pathological environment (Franklin, 2002). 

The debates surrounding MS aetiology are centered on whether the disease starts with 

primary autoimmune attack as is traditionally believed (outside-in hypothesis) or if the initial 

trigger arises from within the CNS in the form of cellular and/or myelination dysregulation 

(inside-out hypothesis). 

Outside-in hypothesis: The strongest genetic risk for MS is within the MHC locus 

(International Multiple Sclerosis Genetics Consortium (IMSGC) et al., 2013) plus MS lesions 

are characterized by large infiltrates of immune cells (Frischer et al., 2009). Therefore, the 

historical view is that MS is principally mediated by auto reactive, pro-inflammatory effector 

T cells which make their way into CNS through a breakdown of the blood-brain barrier. In 

health, auto reactive T cells that escape thymic education are kept in check at the periphery 

by a unique population of FoxP3 positive regulatory T cells (Sakaguchi et al., 2007), while in 

MS this mechanism is rendered insufficient (Viglietta et al., 2004). Auto reactive T cells are 

then re-activated by antigen presentation from B cells and myeloid cells in the periphery and 

CNS (Jelcic et al., 2018), with suspected myelin related antigens. Widely implicated are the 

IL-17 producing effector CD4+ (TH17) and CD8+ T cells in establishing inflammatory 

lesions and OL damage, by recruiting additional T cells and macrophages (Huber et al., 2013; 

Kebir et al., 2007)).  

A commonly used outside-in experimental model of MS is autoimmune encephalomyelitis 

(EAE). EAE models are of different types. The passive T-cell transfer involves transfer of T-

cells from animals sensitized with brain tissue to induce neuroinflammatory response in naïve 

recipients (Paterson, 1960), mainly via CD-4
+
 T-cells. Since the T-cells have already 

undergone expansion in the host animal, this model does not need immune activation in the 
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peripheral lymphatic tissue to induce an inflammatory response. Co-transfer models involve 

inducing brain inflammation by passive transfer of auto-reactive T cells, followed by 

injection of auto-antibodies (Linington et al., 1988). Here, the inflammatory reaction is also 

associated with widespread primary demyelination. On the other hand, active sensitization 

models require immunization with a CNS antigen, usually with the MOG35-55 peptide, 

together with a strong adjuvant (Mendel et al., 1995). In this model, acute or chronic 

inflammatory encephalopathy results with primary axonal injury, but this CD-4
+
 auto-reactive 

T-cell mediated pathology is restricted to the spinal cord (Kim et al., 2006). 

Consistent with this view, therapies have been focused on correcting or limiting contributions 

of effector T cells to the disease but anti-CD20 mediated depletion of B cells have resulted in 

lower rates of disease activity in relapse MS patients (Hauser et al., 2017; Kappos et al., 

2011; Sorensen et al., 2014). Since antibody secreting plasma cells are unharmed in these 

therapies, B cells are thought to play an important role in triggering new MS relapses through 

their antibody-independent functions. For example, B cells are able to present protein 

antigens more efficiently at low antigen levels (Pierce et al., 1988) and EAE mice with B cell 

specific MHC-II KO have been found to be resistant to disease induction via recombinant 

MOG (Molnarfi et al., 2013). Apart from antigen presentation, B cells also express a number 

of co-stimulatory molecules essential for defining primary and secondary T cell responses 

(O‘Neill et al., 2007) along with co-inhibitory molecules involved in dampening effector T 

cell response (Bodhankar et al., 2013). B cells present abnormal pro-inflammatory cytokine 

profiles in untreated MS patients (Bar-Or et al., 2010; Duddy et al., 2007; Li et al., 2015a). 

Resulting elevated levels of IL-6 and GM-CSF are involved in generating TH17 and enhanced 

myeloid inflammatory responses (Barr et al., 2012; Li et al., 2015b), respectively.  Thus an 

updated view of MS pathogenesis accounts for the above mentioned B cell contributions. 

Inside-out hypothesis: According to this hypothesis, MS could be triggered from 

oligodendrocyte death which results in myelin damage. Myelin debris could enter the 

immune system as antigens following which the immune system erroneously perceives this 

as foreign and begins a full scale attack on myelin, thus initiating MS (Stys et al., 2012). 

Recently, a study demonstrated this possibility by ablating oligodendrocytes specifically with 

diphtheria toxin in a young Plp1-CreER
T
;ROSA26-eGFP-DTA (DTA) mouse model 

(Traka et al., 2016). Following oligodendrocyte loss and demyelination that resulted in 

CD-4
+
 T-cell infiltration into the CNS, the DTA mice developed a late onset secondary 

disease characterized by severe myelin and axonal loss. Subsequent studies have strengthened 

the possibility of brain intrinsic degenerative mechanisms inducing immune activation (Baxi 

et al., 2015; Scheld et al., 2016), including altered myelin structure (Caprariello et al., 2018). 

In a cuprizone autoimmune encephalitis (CAE) model, brief cuprizone treatment was used to 

disrupt myelin ultrastructure without overt demyelination, following which an immune 

stimulus was administered without the MOG peptide (Caprariello et al., 2018). CAE mice 

developed demyelinating immune response comparable to MS, which was significantly 

driven by biochemical alterations of myelin in the form of citrullination by peptidyl arginine 

deiminases (PADs). However, in other contradicting studies oligodendrocyte death was not 
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sufficient to induce immune activation, despite axonal damage, microglial-macrophage 

activation and draining of myelin material into lymph nodes (Locatelli et al., 2012; Pohl et 

al., 2011). 

Although, the pathological responses vary with different models, it seems like a combination 

of primary oligodendrocyte damage and a permissive immune system is required for MS to 

manifest.  
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6 LNCRNAS IN NEURODEVELOPMENT 

The mammalian CNS houses trillions of cells of neuronal and glial origin which are 

intricately integrated to form the functional circuitry of the brain.  Generating such diverse 

cellular architecture during neurodevelopment and maintaining it to facilitate successful 

adaptation during growth requires a co-ordinated expression of functional components of the 

genome. This is achieved by a complex interplay of transcriptional and epigenetic control 

mechanisms mediated by transcription factors and chromatin remodellers. A third and a 

relatively novel component of this regulatory network are lncRNAs. The greatest fraction of 

lncRNA expression is intriguingly observed in the brain and testis (Necsulea et al., 2014; 

Soumillon et al., 2013), which perhaps underlies the organisational complexity of these 

tissues. 

Indeed, lncRNA loci are preferentially found in the vicinity of protein coding genes that are 

highly expressed in the brain and are involved in CNS development (Ponjavic et al., 2009), 

suggesting a possible functional co-operation between the pairs. Many lncRNAs are 

dynamically regulated within the developing brain (Mercer et al., 2008) and show a striking 

cell-specific localization, along with restricted expression patterns within distinct 

neuroanatomical loci (Belgard et al., 2011; Goff et al., 2015; Sone et al., 2007). Thus it is not 

surprising many emerging studies have reported lncRNAs to play important roles in 

pluripotency, lineage specification, fate transition and neuronal and glial cell type elaboration. 

6.1 REGULATION OF PLURIPOTENCY 

The chromatin landscape of ES cells is globally more open and transcriptionally permissive 

(Efroni et al., 2008), yet only a subset of genes are robustly expressed. Further, promoters of 

many genes, particularly those involved in lineage specification, are kept poised for 

transcription, and carry bivalent activatory and inhibitory histone marks (Mikkelsen et al., 

2007). The most prevalent cellular method of transcriptional control is RNA pol II pausing 

(Adelman and Lis, 2012) and the small nuclear non-coding RNA 7SK plays a central role in 

this process. The highly conserved 330 nt ncRNA (Marz et al., 2009) associates with proteins 

such as La-related protein 7 (LARP7), hexamethylene bis-acetamide inducible 1 mRNA 

(HEXIM) 1/2 and methylphosphate capping enzyme (Mecpe) to form a canonical small 

ribonucleoprotein (snRNP) complex (Peterlin and Price, 2006). The resulting, 

conformationally altered, 7SK snRNP is known to sequester positive transcription elongation 

factor b (P-TEFb), thereby preventing phosphorylation of RNA pol II needed for successful 

elongation (Prasanth et al., 2010). Rather than being a passive reservoir of P-TEFb in the 

nucleoplasm, several studies raised the possibility that there could be chromatin proximal 

release of P-TEFb in response to appropriate stimuli (D‘Orso, 2016; McNamara et al., 2013). 

Particularly, in ES cells, 7SK was found to supress a specific cohort of lowly expressed 

genes, enriched for bivalent and active chromatin marks (Castelo-Branco et al., 2013). 

Surprisingly, it was also found to be important for transcriptional termination and regulation 

of promoter bidirectionality. Further insights came from investigating genome wide binding 

of 7SK and its in-vivo protein partners. 7SK was found to associate with the nucleosome 
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remodelling BAF complex at enhancers to limit enhancer RNA initiation and synthesis, while 

engaging in RNA pol II pausing at promoters through its canonical partners (Flynn et al., 

2016). Thus 7SK facilitates distinct molecular mechanisms to operate at different regulatory 

DNA elements in order to maintain the unique transcriptional landscape of ES cells necessary 

for pluripotency. 

Apart from 7SK, other lncRNAs employ diverse mechanisms to co-operate with transcription 

factors, RNA-binding proteins, epigenetic modulators and small RNAs to regulate and fine 

tune the maintenance of ES cell identity. A large scale functional study identified more than 

130 lincRNAs whose perturbation led to loss of ES cell pluripotency and many others which 

were essential for repressing lineage specific genes (Guttman et al., 2011). Not surprisingly, 

some of the lincRNAs were regulated by the core pluripotency transcription factors and about 

30% interacted with chromatin remodellers. Another functional study identified Tcl1 

upstream neuron associated lincRNA (TUNA), amongst others necessary for pluripotency, 

and found that the lincRNA associates with RNA-binding proteins to interact with promoters 

of Nanog, Sox2 and Fgf4 (Lin et al., 2014). LincRNA, regulator of reprogramming (Linc-

ROR), is a cytoplasmic RNA that is able to sequester mir-145 and de-repress the translation 

of critical pluripotency factors in human ES cells (Wang et al., 2013). Similarly, growth 

arrest specific transcript 5 (Gas5) regulated by Oct4 and Sox2, maintains TGFb signaling by 

protecting its receptor from miRNA mediated degradation to promote mouse ES cell self-

renewal (Tu et al., 2018). The histone modifier Wdr5 also interacts with many lncRNAs 

including those involved in maintaining self-renewal of ES cells, moreover its RNA-binding 

pocket has been reported to be crucial for enforcing active chromatin state (Yang et al., 

2014). 

6.2 REGULATION OF NEUROGENESIS 

Numerous studies have identified a dynamic change in chromatin status and expression for 

thousands of lncRNAs all the way from specification and differentiation of NSCs to glial fate 

specification and oligodendrocyte maturation 

6.2.1 Neural stem cell maintenance and differentiation 

Previously discussed lncRNA mediated modes of regulation like working with key 

transcription factors, chromatin remodelers and RNA-binding proteins to enact specific 

transcriptional programs can be found in this context as well. Brain specific 

rhabdomyosarcoma 2 associated transcript (RMST) was reported to interact with SOX2 and 

was necessary to recruit the transcription factor to a host of genes implicated in neurogenesis 

(Ng et al., 2013). Some embryonically expressed lncRNAs like TUNA also control neural 

lineage commitment by targeting neural gene promoters in differentiating ES cells (Lin et al., 

2014). LncRNAs like Dali and Paupar are transcribed in the vicinity of transcription factors, 

Pou3f3 and Pax6, respectively. In addition to regulating their transcription locally, the 

lncRNAs also physically interact with these transcription factors to influence the expression 

of distal genes involved in neural differentiation (Chalei et al., 2014; Vance et al., 2014).  



 

 25 

In contrast, the nuclear enriched lncRNA Pnky restrains neurogenesis from both embryonic 

and post-natal NSCs in several ways. During development, NSCs produce transit amplifying 

cells whose division gives rise to neuroblasts from which interneurons are generated in the 

olfactory bulb (Lim and Alvarez-Buylla, 2014). Ablation of Pnky results in increased 

neuroblast formation and a drastic decrease of NSCs (Ramos et al., 2015). Furthermore, Pnky 

interacts with the splicing regulator, PTBP1, and represses the inclusion of neuronal exons in 

transcripts involved in maintaining a specific cellular phenotype (Ramos et al., 2015). 

6.2.2 Regulation of brain circuitry and function 

A balance of excitatory and inhibitory neurons is essential for brain function. The Dlx class 

of homeobox proteins regulates the developmental pathway of producing inhibitory 

GABAergic neurons from the MGE. LncRNA Evf2 is transcribed downstream to Dlx5 in 

response to Shh signalling, and encompasses Dlx6 and an ultraconserved intergenic 

regulatory region important for controlling the Dlx5/6 bigene cluster. Initially, Evf2 was 

thought to act as a transcriptional co-activator with Dlx2 to activate the Dlx5/6 enhancer 

(Feng et al., 2006). However, when Evf2 was prematurely terminated with polyA insertion, 

there was an increase in Dlx5/6 levels even though the Evf2 KO mice showed reduced 

GABAergic interneurons in the embryonic hippocampus and loss of synaptic inhibition in the 

adult hippocampus (Bond et al., 2009). In addition to the expected loss of Dlx2 recruitment at 

the enhancer, there was also reduced recruitment of the transcriptional repressor, MECP2. 

Evf2 was also found to exist in a large ribonucleoprotein complex with Brg1 and inhibit its 

ATPase mediated chromatin remodelling activity (Cajigas et al., 2015), further contributing 

to the repressive outcome. Thus Evf2 recruits both activators and repressors to modulate the 

activity of the enhancer and the expression of Dlx proteins. 

Functional interactions between neurons require axon and dendritic growth to establish 

synaptic connections which is modulated by neuronal activity. Neuronal activity can 

restructure the epigenetic landscape to induce activity dependant genes through the release of 

neurotrophic factors (Su et al., 2017). Brain-derived neurotrophic factor (BDNF) promotes 

neuronal differentiation, synaptic growth and is essential for long-term memory (Hu and 

Russek, 2008). BDNF locus is under the control of a conserved lncRNA BDNF-AS, which 

negatively regulates BDNF expression by recruiting PRC2 to its locus (Modarresi et al., 

2012). Ion channels affect neuronal excitability, similarly lncRNA KCNA2-AS negatively 

regulates KCNA2 that encodes a core potassium channel subunit in DRG neurons (Zhao et al., 

2013). Additionally, specific mRNAs need to be transported away from the neuronal cell 

body to dendritic microdomains where their translation can be controlled in response to 

neuronal activity (Job and Eberwine, 2001; Steward and Schuman, 2001). The lncRNA BC1 

transported to dendrites upon its synthesis represses translation in the synaptic microdomain 

by interacting with the initiation factor eIF4A and polyA binding protein (PABP), thereby 

preventing the association of 48S pre-initiation complex assembly with dendritic mRNAs 

(Wang et al., 2005). 
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6.3 REGULATION OF OLIGODENDROGENESIS 

Studies assessing the contribution of lncRNAs to OL biology have only begun in the last 

decade. The first systematic study in this field used microarray to study expression profiles of 

coding and non-coding RNAs during differentiation of NSCs in the embryonic forebrain 

(Mercer et al., 2010). Their developmental model examined NSC fate restriction to produce 

bipotent progenitors, oligodendrocytes lineage specification from Shh responsive progenitors 

and subsequent oligodendrocyte maturation into myelinating OLs. Similar to previous 

observations, some of the differentially expressed lncRNAs during these developmental 

transitions exhibited co-ordinated expression patterns with protein coding genes with well-

defined roles in glial lineage specification and elaboration. Further, histone deacetylation has 

been shown to be necessary for OL lineage progression (Marin-Husstege et al., 2002). 

Accordingly, following treatment with a HDAC inhibitor, majority of lncRNAs with specific 

expression profiles during oligodendrocyte differentiation were downregulated, which 

indicated their integration into a broader epigenetically regulated OL developmental program. 

A subsequent study integrated transcription factor occupancy data with glial and neuronal 

transcriptomes generated through RNA sequencing from mouse cortex to catalogue lncRNAs 

involved in OPC formation (Dong et al., 2015). This led to the identification of an OPC 

specific lncRNA, lnc-OPC, which had Olig2 binding in its upstream regulatory region. 

Further, loss of lnc-OPC resulted in reduced OPC numbers in-vitro, indicating its essential 

role in oligodendrogenesis.  

The first inclusive high quality catalog of lncRNAs in OLs came from deep sequencing 

primary mouse OPCs and oligodendrocytes that were differentiated with triiodothyronine 

(T3) for 1 day (immature OLs) and 3 days (mature OLs), respectively (He et al., 2017). This 

uncovered over 2000 oligodendrocyte specific lncRNAs, with more than 500 unannotated 

ones. Subsequent epigenetic profiling for histone marks and genomic occupancy of Sox10, an 

oligodendrocyte program inducting transcription factor, revealed these lncRNAs are 

dynamically regulated over the course of oligodendrocyte lineage progression. This led to the 

functional characterisation of lncOL1 (also termed as Pcdh17IT in Article 2) whose 

expression was highly correlated with the myeliogenic program. Accordingly, lncOL1 

deficient mice had lower OLs around birth and exhibited severe myelination deficits at the 

peak of myelination. Additionally, these deficits were also observed during remyelination 

following white matter injury. Mechanistically, lncOL1 was found to associate with Suz12 

mediated PRC2 complex to silence developmental programs that were antagonistic to OL 

differentiation, thereby allowing differentiation to proceed.  

Since this study, both bulk and single cell transcriptomic studies have expanded the repertoire 

of lncRNAs expressed in OL lineage cells (Marques et al., 2016, 2018; Zeisel et al., 2015) 

and have opened up the possibility to explore their functional contribution to glial biology. 
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7 SUMMARY OF ARTICLES INCLUDED IN THE THESIS 

7.1 INTERACTION OF SOX2 WITH RNA-BINDING PROTEINS IN MOUSE 
EMBRYONIC STEM CELLS 

Findings 

In this study, we determined the protein interactome of one of the key core pluripotency 

transcription factor, Sox2, in the chromatin and nucleoplasm fractions of mouse embryonic 

stem cells.  By using Stable Isotope Labelling by Aminoacids in Cell culture (SILAC) 

technology coupled with immunoprecipitation and mass spectrometry-based quantitative 

proteomics in a mouse embryonic cell line, we found Sox2 to be predictably interacting with 

other partner transcription factors and chromatin remodellers involved in stem cell 

maintenance. Interestingly, Sox2 also interacted with the heterochromatin 1 (HP1) family of 

highly conserved proteins, HP1 α, β, γ (Cbx5, 1 and 3) in both chromatin and nucleoplasm 

fractions. Further, this interaction was confirmed with human recombinant Sox2 or ES cell 

nucleoplasm extracts and with different modular domains of HP1.   

Gene ontology of Sox2 interactors in both the nuclear compartments indicated an enrichment 

of transcriptional regulators, a subset of which was RNA-binding proteins with known roles 

in post-transcriptional processes like splicing. Although it was shown previously that some 

Sox2 interactors like HP1a show RNA dependency in binding to chromatin (Muchardt et al., 

2002), we saw the interaction between Sox2 and HP1α/β persisted upon RNAse A treatment, 

indicating that the observed interaction is not dependent on RNA. 

In order to investigate the RNA interactome of Sox2 in the light of above findings, we 

performed immunoprecipation of Sox2 from formaldehyde cross-linked J1 ES cells, followed 

by poly(A)-neutral RNA-seq. While no lncRNAs were pulled down, there was an enrichment 

of a restricted subset of RNAs including ncRNAs, snRNA 7sk and snoRNA Snord34. 

Because 7SK regulates transcription at gene regulatory regions and Sox2 is a known pioneer 

transcription factor, we hypothesized that interaction between 7sk and Sox2 could play a role 

in their recruitment to the chromatin. To assess whether genomic recruitment of 7sk is altered 

in the absence of Sox2, we performed Chromatin Isolation by RNA Purification (ChIRP) 

with even and odd sets of probes against 7sk (Flynn et al., 2016) in a doxycycline inducible 

Sox2-knock out mES cell line and compared it with controls treated with DMSO. While 

specific and efficient pull down of 7sk was confirmed, we could not detect any changes in 

7sk binding following doxycycline mediated Sox2 KO. 

We then investigated whether 7sk could influence Sox2 binding and to this end performed 

Chromatin Immunoprecipitation (ChIP) with an endogenous Sox2 antibody in 7sk depleted 

mES cells with the help of an antisense oligonucleotide (ASO). Some of the genes that were 

found in the overlapping set between Sox2 and 7sk occupied regions (Kdm2b, Celf2 and 

Klf12) along with others known to be occupied by Sox2 (Pouf51 and Nanog) or shown to be 
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regulated upon 7SK knock down (Dll1), were chosen for qPCR assessment following ChIP. 

Though we observed specific Sox2 occupancy at these regulatory genes, knockdown of 7sk 

did not lead to significant changes in Sox2 binding.  

Therefore, snRNA 7sk and Sox2 though present in the same complex, do not influence each 

other‘s recruitment to the chromatin. 

Discussion 

Sox2 exists in multi-protein complexes, the composition of which is highly dependant on the 

cell type and purification technique. Our data, consisting of 124 proteins, provides a resource 

for the interactome of Sox2 in mESCs in different nuclear fractions. 

Some of the Sox2 interactors in the study belong to the heterochromatin 1 (HP1) family. 

While it is well known that HP1 co-localises with H3K9 methyl-transferase, Su(var)3-9, in 

heterochromatic regions to confer transcriptional repression (Hiragami and Festenstein, 

2005), it can also trigger repressive chromatin structures at specific promoters within 

euchromatic regions (Vandel et al., 2001). Further, HP1 and H3K9me3 were found on active 

genes within coding regions, where the localisation of HP1 was dependant on RNA pol II 

elongation (Vakoc et al., 2005). In the context of pluripotency, a study found that knock 

down of HP1γ enhances reprogramming of somatic cells into induced pluripotent stem cells 

(iPSCs) (Sridharan et al., 2013). Accordingly, HP1γ was found to bind upstream of Nanog 

TSS in intermediate pre-iPSCs and repress its expression, in conjunction with H3K9me3 

function. In contrast, HP1γ binding was also found within highly transcribed genes in both 

pre-iPSCs and ES cells, albeit with a distinct binding profile between the two cell types.  

Thus, there is a possibility wherein Sox2 can aid HP1‘s specificity in binding to the genome 

or participate in stabilization of transcription or elongation indicated to be supportive of in-

vivo HP1 binding within active euchromatic region in ES cells. 

Our data also indicates Sox2 to interact with ncRNAs, 7sk and Snord34. Interestingly, 

snoRNAs have been recently shown to exhibit genomic occupancy (Sridhar et al., 2017) and 

regulate chromatin/nuclear structure (Schubert et al., 2012). While Sox2 and 7sk might not 

modulate each other‘s recruitment to chromatin, they could be associated functionally in 

other ways. For example, poly ADP-ribose polymerase 1 (PARP-1), a Sox2 interactor in our 

study, was not only shown to stabilize Sox2 binding to chromatin (Liu and Kraus, 2017),  but 

also inhibited the negative elongation factor (NELF) by post-translational modification, 

thereby allowing transcriptional elongation to proceed (Gibson et al., 2016). The interaction 

between Sox2 and 7sk could be mediated by RBPs, namely Srsf1 and hnRNAPA2/B1, which 

are Sox2 interacting partners. While Srsf proteins recruit 7sk to promoters and mediate 

transcriptional pause release (Ji et al., 2013), hnRNPA2/B1 is involved in dynamic 

remodeling of 7SK snRNP in the nucleoplasm (Barrandon et al., 2007; Van Herreweghe et 

al., 2007). 

Alternatively, it remains a possibility that the association between Sox2 and the RNAs 

reported here is a consequence of their proximity on DNA and nucleoplasm and not 
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necessarily due to any functional relationship. Future investigations might unveil whether the 

presence of Sox2 in ribonucleoprotein complex carries any significance either to the 

functionality of Sox2 or its partner RNAs. 
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7.2 ROLE OF LNCRNAS PCDH17IT AND 2610035D17RIK IN 
OLIGODENDROCYTE LINEAGE PROGRESSION 

Findings 

LncRNAs are known to carry out diverse roles in cellular functions, yet their role in OL 

function remains unexplored. We have established a broad transcriptomic resource from two 

datasets. They correspond to single cell RNA sequencing on 5072 cells of the OL lineage 

from mouse juvenile and adult CNS together with both bulk and single cell RNA sequencing 

on Pdfgrα positive cells from E13.5 and P7 mouse brain and spinal cord. As discussed earlier, 

these datasets revealed a spatial and transcriptomic convergence of Pdfgrα positive OPCs 

during development (Marques et al., 2018) and also identified several well defined 

populations of OL cells reflecting unique stages along the process of differentiation and 

myelination (Marques et al., 2016). Therefore, we took advantage of these datasets and 

identified 938 annotated ncRNAs to be differentially regulated in the bulk RNA-seq dataset, 

between postnatal OPCs in the brain/spinal cord versus those from embryonic 13.5 

brain/spinal cord. Analysis of the single-cell RNA-sequencing dataset led to the identification 

of 267 ncRNAs differentially expressed between different OL sub populations, with a subset 

of these overlapping between the two datasets. Co-expression analysis between protein 

coding genes and non-coding RNAs resulted in four distinct clusters enriched for gene 

ontological terms associated with OL biology and function, such as myelination, synapse 

assembly or cell division. 

Further, we identified cluster 1 specific lncRNA 9630013A20Rik (also referred to as lncOL1 

in He et al., 2017) to be specific for the post-mitotic committed OPC (COP) and newly 

formed oligodendrocyte (NFOL) sub-populations. We named it Pcdh17IT (localised to the 

intron of Pcdh17 gene) in accordance with the HUGO nomenclature (Wright, 2014). While a 

knock down of Pcdh17IT in the mouse oligodendrocyte lineage cell-line olineu did not 

change the expression of Pcdh17 gene, it led to the downregulation of Tcf7l2, a transcription 

factor specifically expressed in NFOLs. In line with previous results, we also observed 

decreased expression of Mog, which is expressed in later stages of oligodendrocyte 

differentiation and an increase of Egr1, a repressor of oligodendrocyte differentiation that is 

downregulated in COPs.  

Similarly, another COP and mostly NFOL specific lincRNA 2610035D17Rik was found to 

co-localise with Itpr2, a marker for COPs, but not with cd140a, which largely labels OPCs in 

primary mouse OPC cultures differentiated for 48h. This lincRNA is transcribed from a 

region between Sox9 and Slc39a11 genes on chrm 11. Sox9 is a transcription factor with an 

important role in OL specification (Stolt et al., 2003) and more importantly, we found the 

expression of Sox9 mRNA and 2610035D17Rik transcript to be anti-correlated in postnatal 

primary OPCs.  Because lincRNAs are known to regulate their neighboring genes, often 

through cis mediated mechanisms, we decided to further investigate any role 2610035D17Rik 

might have in Sox9 regulation. 
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To this end, we performed Chromatin Isolation by RNA Purification (ChIRP) with even and 

odd sets of probes against 2610035D17Rik transcript in oli-neu resulting in a successful 

pulldown of 2610035D17Rik. qRT-PCR of ChIRP DNA indicated  that  2610035D17Rik 

interacts with the Sox9 genomic locus. However, siRNA mediated knockdown of both 

2610035D17Rik and its positionally conserved human homologue, Linc00673 (SLNCR1), did 

not significantly affect the expression of SOX9 mRNA. Thus the partial loss of 

2610035D17Rik RNA or its human homolog does not affect the expression of their 

neighboring gene Sox9, despite our finding that this lincRNA interacts with the Sox9 locus. 

In order to differentiate between the effects of transcription/DNA locus from the transcript 

itself, we created a 2610035D17Rik KO oli-neu cell line by deleting a portion corresponding 

to lincRNA exon 1 using CRISPR-Cas technology. Strikingly, we also observed an 

upregulation of Sox9 mRNA and Sox9 protein in the KO cell lines, while no changes were 

observed on the expression of the other neighboring gene, Slc39a11. Further, ectopic 

expression of 2610035D17Rik from a plasmid in the KO cells did not return Sox9 to its 

baseline expression. Chromatin immunoprecipitation (ChIP) with H3K4me3 showed an 

enrichment of the active transcriptional epigenetic mark on Sox9 promoter compared to the 

control. Thus the observed upregulation of Sox9 in the KO cell line is partly achieved 

through epigenetic modification of Sox9 promoter via H3K4me3. 

In order to understand the global transcriptional effects of the KO of 2610035D17Rik, we 

performed total RNA-sequencing on control and three 2610035D17Rik KO clones. 

Differential gene expression and gene ontology analysis indicated an enrichment of 

upregulated genes involved in interferon response while there was trend for those involved in 

antigen processing and presentation to be downregulated in the KO cells compared to the 

control. We have recently shown that interferon gamma (IFNγ) can induce oligodendroglia to 

acquire immunological properties (Falcão et al., 2018). Accordingly, stimulation of KO and 

control oli-neu cells with IFNγ for 24h followed by qRT-PCR confirmed downregulation of  

Interferon Regulatory Factor I (IRF1) and Interferon Induced with Helicase C Domain 1 

(Ifih1) genes in KO oli-neu. In contrast, induction of genes associated with MHC-II 

(histocompatibility 2, class II antigen A (H2-aa)) and class II major histocompatibility 

complex transactivator (Ciita) was stronger in KO oli-neu cells in comparison with the 

control. These results suggest 2610035D17Rik also has a role in regulating immune responses 

of oligodenroglia in response to IFNγ stimulation. 

In sum, we have drawn on insights regarding lncRNAs from a broad transcriptomic resource 

established from single cell- as well as bulk RNA- sequencing of OL lineage cells from 

different developmental stages. We have pursued candidate lncRNAs whose expression was 

found to be specific for certain OL subpopulations and report two lncRNAs with distinct 

roles in OL lineage progression. 
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Discussion 

LncRNAs from this study were found to be dynamically expressed throughout the process of 

OL differentiation, with a cohort showing highly restricted expression to specific OL 

subpopulations, of which Pcdh17IT and 2610035D17Rik are examples. Pcdh17IT was shown 

to regulate Tcf7l2, a transcription factor with similar expression profile as the lncRNA. 

Further, knockdown of Pcdh17IT led to decrease of Mog, a myelin component, and increase 

of Egr1, an OL differentiation repressor, which is consistent with its role in regulating the 

onset of myelination program as reported in He et al., 2017. LincRNA 2610035D17Rik is 

transcribed 200kb downstream of the transcription factor Sox9 and is anti-correlated with its 

expression. We show that rather than the 2610035D17Rik transcript, the DNA locus from 

which it is transcribed or the act of transcription is involved in regulating Sox9 expression in 

oli-neu cells. Consistent with this observation is the presence of H3K27ac, a hallmark of 

active enhancers, within the 2610035D17Rik locus.  

Further, models of gene expression regulation have graduated from centering only 

transcription factors and regulatory DNA elements to include the full context of chromatin. 

Therefore, chromatin interactions occurring in three dimensional nuclear space, along with 

architectural proteins and RNAs that facilitate them have gained further focus.  The CCCTC-

binding factor (CTCF) is a unique DNA binding protein that can insulate DNA regulatory 

regions from one another (Bell et al., 1999). It can also be seen demarcating the boundaries 

between distinct active and repressive chromatin states (Cuddapah et al., 2009) as well as 

self-interacting, highly conserved, genomic regions called topologically associated domains 

(TADs). TADs are thought to facilitate interactions between regulatory elements within, than 

across TADs (Dixon et al., 2012). Another architectural protein that co-localises with CTCF 

and mediates long range genomic interactions is cohesin (Parelho et al., 2008; Rubio et al., 

2008). The heterodimeric subunits of cohesin form a ring-shaped structure that can 

encompass two chromatin fibres (Nasmyth and Haering, 2009). While strong cohesin sites 

overlap with CTCF binding, there are many weaker sites that overlap with active promoters, 

enhancers along with mediator complexes and tissue-specific transcription factors bound to 

these regions (Faure et al., 2012; Schmidt et al., 2010). Further, transcription has been 

reported to evict CTCF from chromatin (Lefevre et al., 2008) and displace cohesin by making 

it slide along the gene (Borrie et al., 2017).  

We find CTCF binding sites within 2610035D17Rik intron and preliminary investigation of 

Hi-C data in NSCs (Bonev et al., 2017) indicates the presence of a TAD that encompasses the 

region between 2610035D17Rik intron and Sox9. Given how the act of ncRNA transcription 

along with accompanying chromatin modifications can profoundly affect chromatin 

conformation and hence gene expression (Hirota et al., 2008), we are currently exploring a 

possible interplay between enhancers within the 2610035D17Rik locus and architectural 

proteins, CTCF and cohesin, in regulating Sox9 expression. During development, Sox9 is 

expressed in neural and OPCs before being downregulated at the onset of OL differentiation 

(data from Marques et al., 2016; Rosenberg et al., 2018) when 2610035D17Rik starts to be 

expressed. Accordingly, we hypothesize that chromatin contacts are made within the 
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abovementioned TAD, between enhancers at the 2610035D17Rik locus and Sox9, to facilitate 

Sox9 expression in NSCs and during OPC specification. Stable transcription of 

2610035D17Rik in NFOLs during differentiation, either evicts CTCF from the lincRNA 

locus or results in a local displacement of cohesin thereby disrupting the enhancer-Sox9 

contacts, leading to downregulation of Sox9. 
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7.3 DISEASE SPECIFIC OLIGODENDROCYTE LINEAGE CELLS ARISE IN 
MULTIPLE SCLEROSIS 

Findings 

Multiple Sclerosis (MS) is characterized my immune mediated attack on myelin, which is 

produced by OLs. In order to investigate whether this attack is directed towards specific OL 

populations, we isolated single cells from the spinal cord of control and EAE mice. OL 

lineage cells were collected at the peak of disease (score=3) via sorting for GFP+ cells from 

EAE-induced Pdgfra-H2B-GFP transgenic mice and Pdgfra-Cre-LoxP-GFP7, enriching for 

OPC and OL populations, respectively. Smart-seq2 single cell RNA-seq and clustering 

analysis revealed thirteen OL clusters (four OPC, one COP, one NFOL and 8 MOL clusters). 

A subset of the OPC (OPCcyc, OPC2,3) and OL (MOL1/2, MOL5/6a and b) subpopulations 

were enriched in EAE mice and showed distinct expression profiles compared to healthy 

controls. More importantly, decomposition of datasets resulted in two gene modules uniquely 

associated with EAE, and consisted of genes involved in interferon response pathways, 

MHC-I and II genes (module 1) and Plin4, Hif3a and Fam107a restricted to MOL5/6 EAE 

population (module 13). Further, specific isoforms of genes involved in myelination like 

Mbp, Mobp, Pdgfa and Ifih1 were found in EAE, some of which have been previously 

reported in MS associated polymorphisms (Capello et al., 1997; Enevold et al., 2009). 

MHC-I molecules are found on surface of cells and are used to display non-self peptides from 

within the cytosol to cytotoxic T-cells to trigger an immune response (Hewitt, 2003). Some of 

the genes involved in this process (H2-K1, H2-D1, B2m, Tap1/2) were elevated upon EAE 

induction in OLs as well as OPCs, which makes them a potential target for cytotoxic T-cells. 

On the other hand, MHC-II expression is restricted to immune cells (microglia, macrophages) 

and are used to present processed exogenous antigens to CD-4
+
 T-cells (Holling et al., 2004). 

Surprisingly, a subset of OPCs and OLs expressed genes required for a MHC-II mediated 

response (H2-aa, H2-ab1, H2-eb1, cd74) and those involved in interferon response (Ciita, 

Nlrc5, Ifih1 etc). 

In order to understand the mechanisms triggering MHC-II expression, OPCs were co-

cultured with CD45
+ 

immune cells from spinal cord of EAE mice. 72h of co-culturing 

resulted in about 4% OPCs expressing MHC-II, pointing towards factors secreted by immune 

cells influencing MHC-II expression. Since MHC-II induction was previously reported in rat 

OPCs treated with dexamethasone and IFN γ ((Bergsteindottir et al., 1992), we treated mouse 

OPCs with IFN γ and/or dexamethasone for 3d and observed that just IFN γ treatment was 

sufficient to induce MHC-II expression. 

Further, we treated OPCs with 1μM fluorescent microspheres for 24h and observed OPCs 

could internalize several microspheres and this uptake was sensitive to cytochalasin, a 

phagocytosis inhibitor. This observation was also extended to the uptake of pHrodo-labeled 

myelin (a pH-sensitive fluorogenic dye that fluoresce red in acidic phagosomes). These 

findings suggest that OPCs are capable of phagocytosis with implications of myelin debris 

intake in a disease context. 
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To assess the impact of MHC-II expressing OPCs on T-cells, OPCs (controls, IFNγ and/or 

MOG35-55 treated) were co-cultured with CD4+ T cells (naïve, memory and effector) derived 

from 2D2 mice, where T cells express the T cell receptor for the MOG35-55 peptide. This was 

followed with flow cytometric analysis of T cells for survival, proliferation and cytokine 

production. While there was no effect on naïve T-cells in any of the conditions, we observed 

enhanced survival and proliferation of memory CD4+ T cells in presence of both non- and 

pre-IFNγ stimulated OPCs and the MOG peptide. Similarly, we observed that effector CD4+ 

T cells proliferated more in the presence of both non- and pre- IFNγ stimulated OPCs and 

MOG peptide. Effects mediated by non-stimulated OPC on T cells in the above mentioned 

cases could be explained by increased cytokine production in the presence of MOG peptide 

for memory T-cells and just the presence of OPCs for effector T cells.  

In sum, we have identified new biomarkers for EAE specific OL lineage cells and 

strengthened the possibility of OL lineage cells being active participants in inflammatory 

demyelinating pathology through immunomodulatory properties like phagocytosis and 

antigen-presentation.  

Discussion 

According to inside-out hypothesis, MS could be triggered from within the CNS with 

oligodendrocyte death or myelin dysregulation as discussed previously (Traka et al., 2016). 

Whether the EAE specific OL lineage cells presented here play any role in triggering an 

immunologic attack by antigen-presentation remains to be investigated.  

Another complementary study has recently investigated the role of cytokine signaling on 

OPC function (Leslie K et al., bioRxiv 2018). While both IFNγ and IL-17 (cytokines secreted 

by effector CD4+ T cells) inhibited OPC differentiation, IFNγ additionally induced the 

expression of MHC-I and II along with immunoproteasome subunits in-vitro and in-vivo. 

Immunoproteasome usually expressed by immune cells is involved in processing of antigens 

for presentation through MHC-I, to facilitate surveillance by the adaptive immune system 

(Ferrington and Gregerson, 2012). Futher, OPCs were capable of engulfing and processing an 

exogenous OVA peptide or the whole protein and present it with MHC-I molecule through 

the transporter associated with antigen processing (TAP1) pathway, following IFNγ 

stimulation. OPCs with OVA loaded MHC-I complex could also activate OVA specific 

CD8+ T cells. Consequently, CD8+ T cells induced contact dependent apoptosis of their 

target OPCs through upregulated Fas ligand on their surface. In our study, we see that even 

healthy OPCs are capable of internalizing particles from their environment which probably is 

a part of their homeostatic function. One possibility is the co-option of this function in a 

complex inflammatory milieu to activate CD8+ T cells in the CNS, thus becoming targets of 

depletion, as is documented in MS.  

The transcriptomic haul that occurs during EAE points towards lncRNAs as being possible 

contributors to the disease, given their role as gene expression regulators. Indeed, aberrant 

lncRNA expression has been detected in serum (includes NEAT1, 7SK) and blood cells of 
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relapse remitting MS patients (Eftekharian et al., 2017; Santoro et al., 2016). LncRNAs have 

also been reported to be involved in MS pathogenesis in microglia and T-cells (Sun et al., 

2017; Zhang et al., 2017a). In article 2 of this thesis, we implicate 2610035D17Rik lincRNA 

in regulation of immunomodulatory properties of oli-neu. 2610035D17Rik KO cells show 

decreased expression of IFNγ responsive genes and an increased expression of MHC-II 

related genes, in response to IFNγ stimulation. These two responses have been co-occurring 

in EAE specific OPCs and OLs, so it remains to be seen what the lincRNA mediated 

differential regulation of these events means in the disease context. Interestingly, in a 

transcriptomic profiling of spinal cord contusion (Chen et al., 2013), we observe Sox9 

expression increases at 2d post-lesion (dpl) and returns to base-line at 7dpl during 

regeneration, while the expression of 2610035D17Rik remains down by about 30% during 

these periods. Therefore, 2610035D17Rik mediated Sox9 regulation could also be important 

in the remyelination process. 
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7.4  MYEF2 INTERACTS WITH RNAS WITH CUG MOTIFS IN 
OLIGODENDROCYTES 

Findings 

Myelin gene expression factor 2 (Myef2) is a transcriptional repressor of Myelin Basic 

Protein (MBP) and hence plays an important role in regulating the timing of myelination at 

the onset of oligodendrocyte differentiation. It also harbours three RNA Recognition Motifs 

(RRMs) whose contribution to protein function in oligodendrocytes is largely unknown. In 

this study, we investigated the mechanism of action of Myef2 in the oligodendrocyte lineage. 

Using individual nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) 

followed by sequencing, we characterized the RNA interactome of Myef2 in the 

oligodendrocyte cell line, oli-neu, from the two bands on the autoradiograph — an expected 

lower band at 70KDa, corresponding to the molecular weight of Myef2 and an unexpected 

upper band. We obtained 641 and 143 peaks which could be mapped to a single genomic 

position for Myef2 upper and lower bands, respectively. About 65% and 33% of peaks from 

Myef2 upper band and lower band were found to be unique. Myef2 was observed to cross-

link to 64.58% of transcripts from protein coding genes. Significant peaks from the upper and 

lower Myef2 bands were found mostly within introns and 3‘UTRs of protein-coding genes. 

Gene Ontology (GO) on genes bound by Myef2 implicates it in biological processes such as 

cell adhesion, transcriptional regulation and mRNA processing. We could also find a 

predominant CUG motif within the hexamers from the sequences bound by peaks from both 

the upper and lower Myef2 bands. 

Discussion 

Myelin gene expression factor 2 (Myef2) acts as a transcriptional repressor of Myelin Basic 

Protein (MBP) by binding to its proximal DNA regulatory element and hence plays an 

important role in regulating the timing of myelination during development. It also harbours 

RNA binding domains in the form of three RNA Recognition Motifs (RRMs), whose 

contribution to Myef2 function has not been explored. A study from our lab identified Myef2 

in the protein interactome of Peptidyl Arginine Deiminase 2 (PADI2) which was found to 

play a role in modulating oligodendrocyte differentiation (Falcão et al., 2019). Interestingly, 

an arginine residue near the second RRM of Myef2 was citrullinated by PADI2. In order to 

understand the role of Myef2 in oligodendrocytes from the perspective of a RNA binding 

protein, we used individual nucleotide resolution CLIP (iCLIP) to capture the RNA 

interactome of Myef2. We find that Myef2 is capable of binding transcriptome-wide, 

especially within introns and 3‘UTRs of protein-coding genes, implicating it in post-

transcriptional processes like splicing and RNA stability. Known post-transcriptional 

regulators like poly-pyrimidine tract-binding protein and hnRNP C are reported to bind to 

43% and 55% annotated genes , respectively (König et al., 2010; Xue et al., 2009) indicating 

a similar post-transcriptional role for Myef2. Furthermore, a CUG motif occurs 

predominantly amongst hexamers from the sequences bound by Myef2. Currently, we are in 

the process of sequencing Oli-neu cells in which Myef2 has either been knocked down or 
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over-expressed to explore the levels or splicing patterns of those genes which Myef2 binds, in 

our iCLIP data. 

 

8 CONCLUSION 

My doctoral thesis has covered a wide range of topics from characterization of long non-

coding RNAs and RNA-binding proteins in different cell types using genome wide, high-

throughput techniques to single cell transcriptomic analysis of OL lineage cells in a mouse 

model of Multiple sclerosis (MS).  

A couple of insights gained from workings of lncRNAs are as follows: Combined action of a 

ncRNA involved in generic transcriptional control and a pioneering transcription factor with 

specialized role in maintaining pluripotency, provides a versatile way to adapt universal gene 

regulatory programs into cell- specific contexts. Also, a subset of lncRNAs restricted to 

certain sub-populations within a lineage, mediate transitions between different epigenetic 

states by forming regulatory networks with transcription factors and chromatin remodelers. 

Further, it is becoming increasingly clear that long and short range chromatin interactions are 

not only necessary for genomic organization but such an organization underscores many key 

gene regulatory principles. As such, lincRNA 2610035D17Rik mediated regulation of Sox9 

in OLs could shed more light on the complex teamwork operating between chromatin 

topology, non-coding loci and induction of development-specific gene expression programs.  

OL lineage cells have revealed themselves to be much more versatile in function, both in 

health and disease, than previously imagined. Immunomodulatory properties of OPCs in EAE 

mice involve antigen presentation and processing, along with activating memory and effector 

T cells. The expression of MHC-I/II genes can also be induced in-vitro by IFN γ treatment of 

OPCs. Interestingly, treatment with IFNγ results in the downregulation of lincRNA 

2610035D17Rik in WT OPCs. This dynamic could somewhat change in the 2610035D17Rik 

KO cells, which might manifest as immunological properties that are different than the 

WT/controls.  The functional implications of such a change need further investigation. 

.Normal OPCs are capable of phagocytosing 1 µm beads in a process that is sensitive to 

inhibition of actin polymerization, while internalization of myelin debris is intriguingly 

immune to it. These observations suggest OPCs have multiple ways of up taking material 

from their environment.. Future studies are needed to address the dynamics of OPC mediated 

phagocytosis and clearance of the internalized material and its subsequent effect on OPC 

function, during development and disease.  
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