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Abstract

Background: Infections of the ears, paranasal sinuses, nose and throat are very common and represent a serious
issue for the healthcare system. Bacterial biofilms have been linked to upper respiratory tract infections and antibiotic
resistance, raising serious concerns regarding the therapeutic management of such infections. In this context, novel
strategies able to fight biofilms may be therapeutically beneficial and offer a valid alternative to conventional
antimicrobials. Biofilms consist of mixed microbial communities, which interact with other species in the
surroundings and communicate through signaling molecules. These interactions may result in antagonistic effects,
which can be exploited in the fight against infections in a sort of “bacteria therapy”. Streptococcus salivarius and
Streptococcus oralis are a-hemolytic streptococci isolated from the human pharynx of healthy individuals. Several
studies on otitis-prone children demonstrated that their intranasal administration is safe and well tolerated and is able
to reduce the risk of acute otitis media. The aim of this research is to assess S. salivarius 24SMB and S. oralis 89a for the
ability to interfere with biofilm of typical upper respiratory tract pathogens.

Methods: To investigate if soluble substances secreted by the two streptococci could inhibit biofilm development of
the selected pathogenic strains, co-cultures were performed with the use of transwell inserts. Mixed-species biofilms
were also produced, in order to evaluate if the inhibition of biofilm formation might require direct contact. Biofilm
production was investigated by means of a spectrophotometric assay and by confocal laser scanning microscopy.

Results: We observed that S. salivarius 24SMB and S. oralis 89a are able to inhibit the biofilm formation capacity of
selected pathogens and even to disperse their pre-formed biofilms. Diffusible molecules secreted by the two
streptococci and lowered pH of the medium revealed to be implied in the mechanisms of anti-biofilm activity.

Conclusions: S. salivarius 24SMB and S. oralis 89a possess desirable characteristics as probiotic for the treatment
and prevention of infections of the upper airways. However, the nature of the inhibition appear to be multifactorial
and additional studies are required to get further insights.
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Background

Despite the presence of mechanical barriers and host im-
mune defenses, the upper respiratory tract offers an easy
access to pathogens involved in acute and chronic infec-
tions of ears, paranasal sinuses, nose and throat. The ma-
jority of upper respiratory tract infections (URTIs) are
commonly mild and caused by viruses; however, URTIs
can also be mediated by bacteria, representing a clinical
challenge related to a higher morbidity and a chronic pro-
gress of the disease [1]. Moreover, URTIs have been asso-
ciated with the presence of microbial biofilm, which
results in chronic infections characterized by remitting
course and resistance to medical management [2, 3]. Bio-
film is defined as a “structured community of microorgan-
isms enveloped in a self-produced polymeric matrix,
adherent to an inert or living surface” [4]. Once the bio-
film is established, the infection becomes more and more
difficult to eradicate, because the microbes residing into
the matrix are protected from host immune system and
antibiotics [5]. Consequently, the microbial biofilm makes
infections persistent and more refractory to treatments.

Biofilms usually consist of mixed microbial communities
able to interact with other species in the surroundings and
to communicate through signaling molecules [6]. These
interspecies interactions may result in either mutualistic
or antagonistic effects [7, 8]. The importance of the nor-
mal microbiota in the protection against URTIs has been
widely demonstrated. However, an imbalance in the
physiological flora composition may lead to the
colonization and infection of the mucosae by opportunis-
tic pathogens.

For instance, it has been noted that otitis-prone children
were characterized by a significantly lower number of
a-hemolytic streptococci in their nasopharyngeal flora
than non-otitis-prone ones [9, 10], opening the possibility
to administer living microorganisms as probiotics to con-
fer health benefits to the host [11]. Indeed, the use of bac-
terial species deriving from healthy human oral
microbiota as a probiotic for the treatment of URTIs has
been proposed as a valid alternative to antibiotics, contrib-
uting to the re-establishment of a balanced flora while re-
ducing or preventing the adhesion and colonization of
potential pathogens.

Alpha-hemolytic streptococci (i.e. Streptococcus salivar-
ius and Streptococcus oralis) isolated from human pharynx
are known to be early colonizers of upper respiratory mu-
cosae and their numeric predominance is suggestive of a
healthy flora [12, 13]. Furthermore, these species possess
desirable characteristics, such as production of bacteriocin
like Colicin V and bacteriocin-like peptides [14, 15] and
both act as pioneer colonizer. Nonetheless, S. salivarius
and S. oralis own a high affinity to human mucosae, pro-
tecting epithelial cells from pathogen adherence, internal-
ization, and potential cytotoxic effects. For this reason,
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these a-hemolytic streptococci represent the predominant
species in the upper respiratory healthy flora and they can
selectively influence the composition of the microbiota
[16-19]. In the past decades, several studies have demon-
strated the intranasal administration of S. salivarius and S.
oralis as safe and well-tolerated strategy to reduce the risk
of new episodes of acute otitis media in otitis-prone chil-
dren and to decrease middle ear fluids amount in children
with secretory otitis media [19-23].

In this study, we tested the hypothesis that S. salivarius
24SMB and S. oralis 89a, both isolated from a commercial
product (Rinogermina®’, DMG Italia Srl, Pomezia, Italy),
are able to interfere with biofilm formation in vitro and to
eradicate pre-formed biofilm of typical upper respiratory
tract pathogens, such as Streptococcus pyogenes, Strepto-
coccus pneumoniae, Moraxella catarrhalis, Staphylococcus
aureus, Staphylococcus epidermidis and Propionibacter-
ium acnes. In addition, the mechanisms underlying the
anti-biofilm activity of the probiotic streptococci were
speculated.

Methods

Bacterial strains and culture media

Clinically relevant upper respiratory tract pathogens
were isolated from patients with URTIs at the Labora-
tory of Clinical Chemistry and Microbiology of IRCCS
Galeazzi Institute, where they were routinely collected
and stored. In particular, biofilm-producing strains of S.
aureus, S. epidermidis, S. pyogenes, S. pneumoniae, M.
catarrhalis and P. acnes were selected. The identification
of the isolates was carried out by means of the Vitek2
Compact (BioMerieux, Marcy L’Etoile, France) and fur-
ther confirmed by pyrosequencing (PSQ96RA, Diatech,
Jesi, Italy), as described elsewhere [24]. Biofilm produc-
tion was assessed by means of the spectrophotometric
assay described by Christensen et al. [25]. S. salivarius
24SMB and S. oralis 89a were isolated from the manu-
factured product and identified by biochemical assays
and pyrosequencing, as described above. All strains were
stored at —80°C in proper broths enriched with 10%
glycerol (VWR Chemicals, Leuven, Belgium) until test-
ing. Brain Heart Infusion broth (BHI, bioMérieux, Marci
L'Etoile, France) was used for the culture of staphylo-
cocci, BHI plus 5% of defibrinated blood (Liofilchem,
Roseto degli Abruzzi, Italy) for streptococci and M. cat-
arrhalis, and thioglycollate broth (TH, Oxoid, Rodano,
Italy) for P. acnmes. When performing transwell and
mixed species experiments (see below), S. oralis and S.
salivarius were grown in the same medium needed for
the tested pathogenic strain. Before the beginning of the
study, the biofilm formation ability of S. salivarius
24SMB and S. oralis 89a was assessed in each of the
above-mentioned culture media, finding no significant
differences among them (data not shown).
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Interaction between S. salivarius 24SMB and S. oralis 89a
To evaluate whether the reciprocal interactions between
S. salivarius 24SMB and S. oralis 89a could inhibit their
biofilm production, co-cultures were performed with the
aid of transwell inserts (microporous PET membranes
with pore diameter of 0.4 um, 1.6 x 10° pores/cm?) de-
signed for 24-well plates (Falcon’, Corning, New York,
NY, USA), as described elsewhere [26]. Wells were inocu-
lated with 800 pL of S. salivarius 24SMB suspension and
200 pL of S. oralis 89a suspension were dispensed in the
upper compartment of transwell inserts, and vice versa.
Thereafter, mixed dual-species biofilms were also pro-
duced by inoculating 1 mL of a mixture of the two pro-
biotic strains. In all the aforementioned experimental
settings, S. salivarius and S. oralis were cultured in a 98:2
ratio (about 1.5 x 10” CFU/mL of S. salivarius and 3 x 10°
CFU/mL of S. oralis), as that of the manufactured product.
Mono-species biofilms of each strain were produced as
positive controls, while medium alone was used as nega-
tive control. The experiment was performed in triplicate.
Strains were incubated at 37 °C in proper conditions, and
after 72 h the biofilm formation was evaluated.

Interference on biofilm formation

To investigate if soluble substances secreted by the pro-
biotic bacteria S. salivarius 24SMB and S. oralis 89a
could inhibit biofilm formation by the tested strains,
co-cultures were performed with the use of transwell in-
serts, as described above. Wells were inoculated with
800 pL of the target bacterial species (1.5 x 10’ CFU/mL)
and 200 pL of a mixture of S. salivarius and S. oralis in a
98:2 ratio were inoculated in the transwell inserts (about
1.5 x 10’ CFU/mL of S. salivarius and 3 x 10> CFU/mL
of S. oralis). Thereafter, mixed species biofilms were also
produced in order to evaluate if the biofilm formation by
the selected pathogens requires a direct contact with the
two probiotic strains to be inhibited. Mono-species bio-
films of each strain were used as positive controls, while
medium alone was used as negative control. The experi-
ment was performed in triplicate for each strain. Plates
were incubated at 37 °C in proper conditions. After 24,
48 and 72h, transwell inserts and liquid medium were
removed, and the amount of biofilm was evaluated by a
spectrophotometric assay as described below.

Interference on pre-formed biofilm

To investigate whether the probiotic strains were able to
break an existing biofilm down, biofilm of each target
strain was grown for 72 h in proper conditions and then
incubated in the presence of S. salivarius and S. oralis
for an additional time (24, 48 and 72h), as previously
described. Mono-species biofilm of each strain was pro-
duced as positive control, while medium alone was used
as negative control. The experiment was performed in
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triplicate for each tested strain. At each time point, the
amount of biofilm was evaluated spectrophotometrically
as described below, and expressed as percentage in re-
spect to pre-treatment level.

Spectrophotometric assay

The amount of biofilm was quantified by means of the
spectrophotometric assay developed by Christensen et al.
[25], adjusting the volume of reagents for 24-well plates.
Briefly, at the end of each incubation time, the culture
medium was removed, and two washes with sterile saline
were performed in order to remove non-adherent bacteria.
After air-drying, each well was stained with 1 mL of 1%
crystal violet solution (Merck, Darmstadt, Germany) for
10 min and the dye excess removed with three washes of
sterile saline. Once dried, 1 mL of absolute ethanol was
added to each well to solubilize the dye attached to the
biofilm. An aliquot of the solubilized dye was finally trans-
ferred into a 96-wells plate for spectrophotometric reading
which was performed at a wavelength of 595 nm using a
microplate reader (Multiskan FC; Thermo Scientific,
Milan, Italy).

Confocal laser scanning microscopy assay

The inhibition of biofilm formation was evaluated by con-
focal laser scanning microscopy (CLSM) assay. Specific-
ally, biofilms were cultured on uncoated 10 mm diameter
glass microscope coverslip (VWR International Srl, Mi-
lano, Italy) in 24-well plates for 72 h using the same set-up
described for transwell experiments. After 72 h of incuba-
tion at proper conditions, biofilms were gently washed
with sterile saline and stained with Filmtracer™
LIVE/DEAD™ Biofilm Viability Kit (Thermo Fisher
Diagnostics SpA, Rodano, Italy), according to manufac-
turer’s instructions. Briefly, the staining solution was pre-
pared by adding 3 pL of SYTO9 and 3 pL of propidium
iodide to 1 mL of filter-sterilized water. Biofilm samples
were stained by incubation with 20 pL of staining solution
for 15 min at room temperature in the dark. After incuba-
tion, samples were washed with sterile saline and exam-
ined with an upright TCS SP8 (Leica Microsystems CMS
GmbH, Mannheim, Germany) using a 20x dry objective
(HC PL FLUOTAR 20x/0.50 DRY) plus a 2x electronic
zoom. A 488nm laser line was used to excite SYTOOY,
while a 552 nm laser line was used to excite propidium
iodide. Sequential optical sections of 1.27 pm were col-
lected along the z-axis over the complete thickness of the
sample. Images from at least three randomly selected
areas were acquired for each coverslip. The obtained im-
ages were processed with Las X (Leica Microsystems
CMS GmbH, Mannheim, Germany) and analyzed with Fiji
software (Fiji, Image], Wayne Rasband National Institutes
of Health). The following parameters were evaluated: a)
the overall volume to provide an estimation of the total
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biomass of the biofilm; b) the live/dead cells ratio; c) the
substratum coverage, as the percentage of substrate area
occupied by the biofilm.

Cell-free extract interference on biofilm formation

To investigate the nature of the inhibition of pathogens
biofilm formation by S. salivarius 24SMB and S. oralis
89a, a cell-free extract (CFE) of the supernatant was ob-
tained. Briefly, as described above, the probiotic strains
were cultured in the upper compartment of the transwell,
concomitantly with each of the tested bacterial species.
After 24 h of incubation (48 h for P. acnes), the medium
from both the well and the upper chamber of the trans-
well was collected in a 15 ml tube (Falcon®, Corning, New
York, NY, USA), centrifuged for 10 min at 4200 rpm and
filtered through a 0.2 um filter (ClearLine®, Biosigma S.r.l,,
Cona, Italy). The resulting CFE was divided in three vials:
one was not treated to assess the effect of CFE on bacterial
biofilm formation; the second was neutralized to a pH
value of 7.0 using NaOH 1 M; the third was heated at 100
°C for 10 min to assess the contribution of thermolabile
molecules to biofilm inhibition.

To determine the activity of CFEs, biofilm formation
assay was carried out on 96-well polystyrene plates (Bio-
sigma S.r.l, Cona, Italy) by growing the pathogenic spe-
cies in fresh BHI alone (for positive control) or adding %
(v/v) or % (v/v) of both treated and untreated CFE. Pro-
duction of biofilm was then measured by spectrophoto-
metric assay as described above.

Statistical analysis

Results were expressed as mean + standard deviation and
analysed for statistical significance with PRISM5 soft-
ware (GraphPad, San Diego, CA, USA) using unpaired t
test for CLSM assays, one-way analysis of variance
(ANOVA) for the interaction between S. salivarius and
S. oralis and the cell-free extract tests, two-way ANOVA
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the spectrophotometric assays. One-way ANOVA and
two-way ANOVA were followed by Bonferroni post hoc cor-
rection. A P-value <0.05 was used as the significance level.

Results

Interaction between S. salivarius 24SMB and S. oralis 89a
The reciprocal interaction between the two probiotic
strains led to an increase in biofilm production of both
S. salivarius (21%) and S. oralis (24%), compared to bio-
film produced when cultured separately (Fig. 1a and b).
When the two species were put in direct contact (mixed)
in dual-species biofilms, a significant increase of the bio-
film formation was also observed, although the contribu-
tion of each strain could not be discriminated.

Interference on biofilm formation

Generally, the mixture of S. salivarius and S. oralis dis-
played an inhibitory activity against biofilm development
of all tested bacteria, except for S. pyogenes whose bio-
film formation was not significantly influenced by pres-
ence of the probiotic strains (Fig. 2). Biofilm production
by staphylococci was strongly affected by S. salivarius
and S. oralis: significant reductions were observed at all
time points in both transwell (76-86% for S. aureus and
84-92% for S. epidermidis) and mixed biofilms (40-74%
for S. aureus and 56—80% for S. epidermidis), compared
to controls. Significant biofilm reductions were observed
for S. pneumoniae (38—66%) and P. acnes (73-77%) after
48 h and 72h of incubation in transwell experiments,
while mixed co-cultures significantly inhibited S. pneu-
moniae biofilm production at 48 and 72 h (25-48%) and
P. acnes at 72 h (44%). Finally, S. salivarius and S. oralis
showed a significant inhibitory activity against M. catar-
rhalis at all time points in transwell experiments
(44-88%) and at 24h in mixed ones (57%), despite a
sudden biofilm reduction in controls after 24h might
have masked the true effect of the two probiotic strains.
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Fig. 1 Interaction between S. salivarius 24SMB and S. oralis 89a. Data are expressed as mean absorbance + standard deviation (n = 3). Sal = S. salivarius;
Sor=S. oralis; ** P < 0.01; *** P<0.001. Panel A shows the effect of S. oralis 89a on S. salivarius 24SMB biofilm in indirect (transwell) and direct (mixed)
contact. Panel B shows the effect of S. salivarius 24SMB on S. oralis 89a biofilm in indirect (transwell) and direct (mixed) contact
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In general, biofilm reduction was always higher in trans-
well experiments than in mixed ones, although such dif-
ference was not always statistically significant (Fig. 1).

Interference on pre-formed biofilm

The combination of S. salivarius and S. oralis was able to
significantly disrupt the pre-formed biofilm of all tested
bacteria. Conversely, S. pyogenes biofilm was only slightly
affected by the probiotic strains (Fig. 3). After 24 h of in-
cubation, almost the 50% of the mature biofilm of S. aur-
eus was eradicated because of the presence of S. salivarius

and S. oralis in both transwell and mixed experiments,
and such inhibition was maintained during time. Similarly,
M. catarrhalis biofilm was significantly reduced in experi-
ments using the transwell system, with a constant reduc-
tion of about 50% at all the time points. On the other
hand, the anti-biofilm activity of the probiotic strains
against S. epidermidis, P. acnes and S. pneumoniae seemed
to increase during time, showing the highest percentages
of biofilm reduction at 72 h (64 and 68% for S. epidermi-
dis, 46 and 47% for P. acnes and 55 and 60% for S. pneu-
moniae in transwell or mixed co-cultures, respectively).
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Fig. 3 Inhibition of pre-formed biofilm during time. Data are expressed as mean percentage in respect to the pre-treatment level + standard
deviation (n =3). Black bars = pre-treatment level; grey bars = 24 h; white bars =48 h; dashed bars =72 h; ctrl = untreated; * P < 0.05; ** P <0.01;
*** P <0001
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CLSM assay

The total biomass volume of samples incubated with S.
oralis and S. salivarius in transwell experiments was sig-
nificantly lower compared to control samples for all the
tested strains (Fig. 4a). No differences in the live and dead
cells ratio were found whit respect to treated and un-
treated biofilms (Fig. 4b). Substratum coverage was signifi-
cantly lower for samples incubated with the probiotic
strains than for control samples (Fig. 4c). As documented
by CLSM images (Figs. 5 and 6), biofilms grown in pres-
ence of S. oralis and S. salivarius looked more scattered
than control biofilms, especially those of S. epidermidis
and S. pneumoniae.

CFE influence on biofilm formation

CFE had a significant inhibitory effect on all the tested
strains with respect to the control biofilm growth, even
if a general slight concentration-dependent effect was
noticed (Fig. 7). All the other strains showed significant
biofilm biomass reductions with all the formulations
tested (45-50% and 41-51% for S. aureus, 49-77% for
M. catarrhalis, 40-80% for P. acnes, 26-45% and
29-40% for S. pneumoniae, ¥ and % v/v respectively)
with S. epidermidis being the most affected (78—86%).
Differently, S. pyogenes was more recalcitrant to CFE ad-
diction than the other tested species, with a significant
reduction in the presence of higher amounts of CFE
(CFE %v/v 35-49%). When CFEs were treated to
neutralize the pH or heated at 100°C to inactivate
thermolabile molecules, a mild impairment of CFE activ-
ity was observed, but no significant differences were de-
tected with respect to untreated CFEs (Fig. 7).
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Discussion

Local administration of commensal probiotics as a sort of
“bacteria-therapy”, able to interfere with disease-associated
disease is gaining increasing interest, finding applications in
many fields [27].

Probiotics own different mechanisms that interfere with
the activity of pathogenic bacteria, including: the produc-
tion of antagonistic substances (e.g., bacteriocins, fatty
acids, hydrogen peroxide and lactic acid), generation of
environment conditions unfavorable for pathogens (e.g.,
competition for nutrients or pH alteration) and the com-
petitive adhesion to human tissues preventing the
colonization by harmful bacteria. Among bacterial species
recently recognize as probiotic, S. salivarius 24SMB and S.
oralis 89a isolated from the rhinopharynx of healthy chil-
dren are suggestive strains of a healthy flora. S. salivarius
24SMB and S. oralis 89a are administered in a ratio of
98:2 by means of a nasal spray are present, with the aim of
preventing ear, nose and throat diseases. The abundance
of S. salivarius in the solution is due to its primary and
predominant presence in the upper respiratory tract sur-
faces of humans and because its non-pathogenic behavior
in healthy individuals [28]. In particular, the strain 24SMB
was isolated in 2012 and selected as a promising probiotic
due to the absence of virulence traits and antibiotic resist-
ance genes and its ability to inhibit S. pneumoniae growth
[21]. Santagati et al. demonstrated its safety and tolerabil-
ity, and its capability to colonize the rhinopharynx when
administrated as a nasal spray [22].

Conversely, S. oralis 89a was isolated from a recalci-
trant healthy child during a tonsillitis outbreak and it
was found to be able to inhibit the growth of group A
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Fig. 5 Representative images of S. epidermidis, S. aureus and S. pneumoniae biofilms obtained by CSLM. Panels A, C and E show control biofilms,
while panels B, D and F show biofilms co-cultured in presence of the probiotic strains by means of transwell inserts. Green = live cells; red = dead

streptococci in vitro [29]. Since then, this strain has been
used in in vitro and in vivo studies to evaluate its clinical
effects on streptococcal tonsillitis and otitis media [19, 20,
30-32]. The whole genome of this strain was recently se-
quenced, identifying the gene encoding for the bacteriocin
Colicin V and for tolerance to Colicin E2 [14].

As a preliminary step, the reciprocal interaction between
S. salivarius 24SMB and S. oralis 89a was assessed. Using
the transwell device, the two strains were physically sepa-
rated by a membrane that permitted only the passage of
diffusible molecules form one compartment to the other.
In both cases, a significant increase in biofilm formation
was observed, suggesting a possible positive synergistic ef-
fect between the two strains. Furthermore, when S. sali-
varius 24SMB and S. oralis 89a were simultaneously
cultured in direct contact, the resulting biofilm appeared
to be like the sum of the two strains grown individually.
Unfortunately, the contribution of a single strains in
mixed biofilms was not evaluated, being the used

staining technique not species-specific, representing a
limit of the study.

Then, the anti-biofilm activity resulting from the combin-
ation of S. salivarius 24SMB and S. oralis 89a against path-
ogens of the upper airways was investigated. In particular,
the anti-biofilm activity was tested against S. pneumoniae,
S. pyogenes and M. catarrhalis being the most common
bacterial pathogens causing acute otitis media and bacterial
pharyngotonsillitis [33, 34]. Moreover, the anti-biofilm ef-
fect was assessed on S. aureus, involved in 50% of recalci-
trant chronic rhinosinusitis [35], and coagulase negative
staphylococci and anaerobes, including P. acnes [36].

Biofilms are comprised of microorganisms enclosed in a
hydrated self- produced polymeric matrix attached to a
solid surface. They represent an important cause of
chronic infectious diseases of the upper airways, including
recurrent middle ear diseases, chronic rhinosinusitis and
recurrent pharyngotonsillitis [2], but also teeth or in
implant-associated infections. Biofilm-related infections
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Fig. 6 Representative images of S. pyogenes, M. catarrhalis and P. acnes biofilms obtained by CLSM. Panels A, C and E show control biofilms, while
panels B, D and F show biofilms co-cultured in presence of the probiotic strains by means of transwell inserts. Green = live cells; red = dead cells;

are often resistant to antibiotic therapy, posing serious
concerns about the infection control. Frequent antibiotic
intakes may have deleterious effects due to the depletion
of the commensal microbiome and the subsequent
colonization by microorganisms that are less susceptible
to the prescribed antibiotics [37]. In this context, the use
of probiotics able to disperse pathogens biofilm may be
therapeutically beneficial and may offer a valid alternative
or a coadjuvant treatment to conventional antimicrobials.
With the aim to test the aforementioned hypothesis, in
the present study, co-culture experiments by means of the
direct or indirect culture of the probiotic strains with the
respiratory tract pathogens was performed. The combin-
ation of probiotics was able to both inhibit the biofilm de-
velopment and to disperse the already established biofilms
of all the tested pathogens with the exception of S. pyo-
genes. This behavior is not surprising; the inhibitory activ-
ity of S. salivarius 24SMB against S. pyogenes depends on
the choice of the growth media [21]. Indeed, Santagati and

co-workers described how S. salivarius was not able to in-
hibit S. pyogenes in Todd Hewitt broth supplemented with
blood, while an increase in the inhibitory activity was ob-
served on Columbia blood agar. In our experimental set-
ting, the lack of activity against S. pyogenes could also be
explained by the lack of supplementation of yeast extract,
glucose or calcium salts in the growth medium, which are
necessary supplement for an optimal production of bacte-
riocins [38, 39].

A more detailed investigation was carried out by CLSM
analysis, which considered additional outcome variables as
live/dead cells ratio and percentage of substratum cover-
age. Specifically, the total biomass volume was signifi-
cantly lower when the tested pathogens were incubated
with probiotics compared to that of controls. Differently
to what observed in the spectrophotometric assay, the
higher sensitivity of the CLSM analysis allowed to appreci-
ate a significant biomass reduction also for S. pyogenes. In-
deed, while the spectrophotometric assay allows the
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S. aureus S. epidermidis M. catarrhalis

&

NT = untreated cell-free extract *P<0.05
pH = neutralized cell-free extract *>* P <0.01
TH = heat inactivated cell-free extract *** P <0.001

Fig. 7 Inhibition of biofilm formation by cell-free extracts. Data are expressed as mean percentage in respect to biofilm growth control in fresh
BHI broth. Black bars = control; grey tone bars = untreated cell-free extract (NT); slanted lines bars = pH neutralized cell-free extract (pH); dotted

bars = heat inactivated cell-free extract (TH). * P < 0.05; ** P <0.01; ** P < 0.001

semi-quantitative measurement of the air-dried biofilm
biomass, CLSM gives the possibility to collect
three-dimensional images of hydrated biological structures
without fixation [40]. This non-destructive technique has
radically transformed optical imaging in biology and
microbiology, providing a useful tool for the examination
of the structure of biofilms.

Concerning the live to dead cells ratio, no differences be-
tween treated and untreated samples were found, indicating
a prevalent inhibitory effect rather than a potential bacteri-
cidal activity of the probiotic strains. On the contrary, sub-
stratum coverage was significantly lower in treated biofilms,
with particular regard to that of S. epidermidis and S. aur-
eus, which appeared more scattered than controls.

Recent studies shown that chemical interactions through
secretion of molecules by different microbial species may
affect spatial biofilm structure, regulating both its forma-
tion and dispersion [41-43]. Recently, Santagati et al. de-
scribed the presence of a blpU-like bacteriocine cassette in
the genome of S. salivarius 24SMB, which has been shown
to mediate intra- and interspecies competition with inhibi-
tory activity against S. pyogenes and S. pneumoniae and
also to provide competitive advantage in colonization in
vivo [15, 44]. However, no other genes responsible for pro-
duction of bacteriocine (i.e. salivaricins, commonly pro-
duced by other S. salivarius strains) were identified
throughout the genome [15]. Similarly, S. oralis 89a pos-
sess a locus for the production of a Colicin V, a

proteolitically processed peptide antibiotic, which kills sen-
sitive cells by disrupting membrane potential [45]. Inter-
estingly, S. oralis 89a is characterized by the presence of
luxS gene, responsible for the production of the quorum-
sensing molecule AI-2, involved in cell-to-cell communi-
cation and able to influence the expression of virulence
factors, motility and biofilm formation [46]. In particular,
controlled concentrations of AI-2 are able to promote mu-
tualistic biofilm formation and to influence structure and
composition of other commensal streptococcal species
biofilm [47, 48]. Unluckily, the genome sequence of S. sali-
varius 24SMB is not available in public databases and no
information on the presence of quorum-sensing clusters
involved in biofilm formation and regulation (e.g, Rgg
transcriptional regulators family) are available.

Nonetheless, signaling is restricted only to those species
with appropriate receptors, suggesting that other kind of
unspecific interactions may play an important role in deter-
mining biofilm spatial structure [49]. For example, meta-
bolic end products like lactic acid and hydrogen peroxide
produced by streptococci,

can act with a broader spectrum by cause acid and
oxidative stress, respectively. As expected, the presence
of S. salivarius 24SMB and S. oralis 89a in the
co-cultures slightly lowered the pH in all the cases ex-
cept for S. pyogenes and S. pneumoniae (data shown in
Additional file 1). Since the inhibitory activity was ob-
served also for the two streptococci, it can be supposed
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that alteration in pH is not the only mechanism of ac-
tion, but other specific interactions might occur.

Finally, a high reduction of biofilm biomass in transwell
co-cultures was observed. This event might suggest that
the anti-biofilm activity of the probiotic mixture is medi-
ated by diffusible molecules secreted by the probiotic
strains, rather than depending on a mechanism requiring
physical contact. This was confirmed by supplementation
of the cell-free extract to the medium, displaying an effect
comparable to that observed in the transwell co-culture.
In the attempt to elucidate the nature of the inhibition,
the cell-free extracts were neutralized to a pH of 7.0, to
evaluate the contribution of the acidic environment result-
ing from the streptococcal fermentation or were heated,
to eliminate all the thermolabile secreted molecules. Even
though, both the treatments did not completely impair
the inhibitory effect of the cell-free extract, indicating a
likely multifactorial and strain-specific strategy. Further-
more, the contribution to biofilm formation between
pathogenic and probiotic strains in mixed species biofilms
was not discriminated. Indeed, mixed biofilms were not
analyzed by confocal microscopy, because of the lack of
species-specific dyes able to differentiate the presence of
different microbes. Stains able to discriminate among dif-
ferent bacteria should be used in future studies in order to
investigate the role of probiotic strains in the biofilm pro-
duction by pathogenic bacteria.

As the goal of the probiotics tested in this study is to
create a barrier against pathogens, an interesting issue
would be to investigate if pathogens are able to invade
and establish within pre-existing probiotic biofilms.

Conclusions

In this preliminary study, we demonstrated the capability
of S. salivarius and S. oralis to interfere with the biofilm
formation capacity of the upper airways pathogens and
disperse their pre-formed biofilms. The nature of inhib-
ition seems to be multifactorial, involving both specific
and unspecific mechanisms. However, additional studies
are required to get further insights into the mechanisms
underlying these interactions at molecular level.

Additional files

Additional file 1: Broth pH after 72 h. Culture medium pH measurement
after 72 h of growth. (DOCX 12 kb)
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