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The liver is considered a preferential tissue for NK cells residency. In humans, almost

50% of all intrahepatic lymphocytes are NK cells that are strongly imprinted in a

liver-specific manner and show a broad spectrum of cellular heterogeneity. Hepatic

NK (he-NK) cells play key roles in tuning liver immune response in both physiological

and pathological conditions. Therefore, there is a pressing need to comprehensively

characterize human he-NK cells to better understand the related mechanisms regulating

their effector-functions within the dynamic balance between immune-tolerance and

immune-surveillance. This is of particular relevance in the liver that is the only solid

organ whose parenchyma is constantly challenged on daily basis by millions of foreign

antigens drained from the gut. Therefore, the present review summarizes our current

knowledge on he-NK cells in the light of the latest discoveries in the field of NK cell

biology and clinical relevance.

Keywords: tissue immunity, liver, Natural Kill cell, homeostais, homeostasis

INTRODUCTION

The liver is the largest solid organ in our body receiving every day more than 2,000 liters of blood
from dual blood supply. Nearly 80% of blood derive from the gastrointestinal tract via the portal
vein, thus being constantly filled of large amounts of foreign antigens. The remaining 20% of blood
is supplied from the hepatic artery that together with the portal vein terminates into the capillary
system of the liver, sinusoids, and leaves liver parenchyma through the hepatic vein.

This large inflow of antigens makes the liver an important immunological organ in which a
uniquemicroenvironment shapes both innate and adaptive immune responses in order tomaintain
a correct balance between immune tolerance and immune activation (1, 2). Dysregulation of
immune cells in the liver is critical in the pathogenesis of several hepatic diseases, including viral
hepatitis, autoimmune disorders and tumors. Liver immune compartment consist in diverse innate
populations such as Natural Killer (NK) cells, Natural Killer T (NKT) cells, gamma delta (γδ) T
cells, and adaptive lymphocytes, such as αβ T cells and B cells (1, 3). On the other hand, liver
parenchyma is composed by hepatocytes that represent two-thirds of the total liver cells. Other
non-parenchymal cells include liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs) (i.e.,
liver-resident macrophages), cholangiocytes, biliary cells, and hepatic stellate cells (HSCs) (3).

Among the immune compartment, hepatic NK (he-NK) cells that contain both liver resident
(lr-NK) or either transient through the adult liver conventional NK (cNK) cells, are particularly
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abundant and can account up to 50% of total hepatic lymphocytes
(Figure 1). These innate immune effectors play key roles in
order to retain a certain degree of unresponsiveness to “non-
self ” antigens, while are ready to attack and eliminate the true
dangers to the host (2, 4, 5). Since their discovery in the early
1980s, NK cells have been valued for rapid recognition and
clearance of viral-infected, tumor-transformed and stressed cell
targets in the absence of antigen specificity (6). Cytotoxicity
and interferon(IFN)-γ production represent the main effector-
functions of mature NK cells and are controlled by a dynamic
balance exerted by an array of inhibitory (iNKRs) and activating
(aNKRs) receptors differently expressed on the cell surface (7).
The dominant mechanism regulating the priming and activation
of resting NK cells is based on the engagement of several iNKRs
that bind several alleles of the major histocompatibility complex
class I (MHC-I) expressed on the surface of autologous cells.
This recognition spares from NK cell killing all “self ” targets,
thus ensuring a perfect NK cell tolerance toward our own
cells. These iNKRs include inhibitory Killer Ig-like receptors
(iKIRs) that recognize classical MHC-I alleles and the C-type
lectin like receptor NKG2A that forms a heterodimer with
the CD94 molecule (CD94/NKG2A), binding HLA-E, a non-
classical MHC-I complex (8, 9). Either the decreased expression
or the absence of MHC-I on target cells triggers NK cell
killing, a phenomenon known as “missing-self hypothesis,” via
the employment of aNKRs that, in turn, bind their putative
ligands expressed on viral-infected, malignant or stressed cells.
The Natural Cytotoxicity Receptors (NCRs) NKp30, NKp46 and
NKp44, the C-type lectin receptors NKG2D and CD94/NKG2C
heterodimer, DNAM-1, SLAM family receptors such as 2B4, and
activating KIRs (aKIRs) are the main aNKRs inducing NK cell
cytotoxicity (7, 10, 11).

Under homeostatic conditions, human circulating cNK
cells represent about 5–15% of circulating lymphocytes and
are subdivided into two main subsets defined on the basis
of their differential expression of CD56 and CD16, namely
CD56bright/CD16neg (CD56bright) and CD56dim/CD16pos

(CD56dim) NK cells (12). It is largely accepted that CD56bright

NK cells are the precursors of the more mature CD56dim

NK cells, however, the developmental relationship between
the different types of human NK subsets has not been finally
clarified (13, 14). In this context, a recent study proposes
for two CD56bright and CD56dim NK cell subsets distinct
ontologies (14). The low amounts of intracellular cytotoxic
granules (i.e., Perforin and Granzymes A-B) parallel the
poor cytotoxic potential of CD56bright NK cells that are also
unable to perform the antibody (Ab)-dependent cellular
cytotoxicity (ADCC) in line with their undetectable expression
of CD16 (12). On the other hand, this latter subpopulation
exerts important regulatory functions through secretion of
chemokines and pro-inflammatory cytokines [i.e., IFN-γ, Tumor
Necrosis Factor(TNF)-α] in response to different stimuli [i.e.,
interleukin (IL)-1β, IL-2, IL-12, IL-15, and/or IL-18] delivered
by surrounding cells at tissue sites [i.e., macrophages, dendritic
cells (DCs), and T lymphocytes] (6, 15, 16). CD56bright NK
cells likely give rise to terminally differentiated CD56dim NK
cells as they represent the largest population in blood (up to

90%), mostly express lower levels of NKp46 and CD94/NKG2A
and higher amounts of iKIRs and CD94/NKG2C heterodimer
(17). This population exerts both high cytotoxicity and ADCC
given its high constitutive expression of CD16 in response to
activation by IL-12, IL-15, and IL-18 (18). Moreover, it has
been reported that CD56dim NK cells can also rapidly produce
IFN-γ in response to stimulation with IL-2 and/or IL-15
(19). Hence, CD56bright and CD56dim NK cell subsets fulfill
distinct roles in immunity, with the first one serving more as
immune-modulator and the second population acting mainly
as cytotoxic effector. An additional NK cell subset identified on
the basis of CD56 and CD16 surface expression is represented
by anergic CD56neg/CD16pos (CD56neg) cells that are present
at very low frequency under physiologic conditions, while
pathologically expanded during the course of several disorders,
such as viral infections and autoimmune diseases (20, 21). More
recently, an unconventional population of CD56dim/CD16neg

(unCD56dim) NK cells has been described. This latter subset can
exert potent cytotoxicity and is extremely rare in healthy donors,
while representing the main cNK cell population in the first
weeks after haploidentical hematopoietic stem cell transplants
(haplo-HSCT). This high frequency of unCD56dim NK cells
in aplastic patients affected by hematologic malignancies
and receiving haplo-HSCT suggests novel pathways of NK
cell ontogenesis and differentiation that are currently being
investigated (22, 23).

The distribution of NK cell subsets in human tissues is very
peculiar and differs from what we observe in peripheral blood.
Notably, CD56dim NK cells are found in high amounts in bone
marrow, lung, spleen, subcutaneous adipose tissue and breast
tissue. Instead, CD56bright NK cells are present at high frequency
in lymph nodes, gut, liver, uterus, visceral adipose tissue, adrenal
gland and kidney (24, 25). Hence, other than the phenotypic
and functional diversities of these latter two subsets in peripheral
blood, the spectrum of human NK cell populations in tissues is
much broader and likely depends on specific imprinting given by
local microenvironments and by the chronic exposure to foreign
antigens/inflammatory stimuli.

Here, we review our current knowledge in regard to he-NK
cells with a particular focus on the breadth and generation of he-
NK cell heterogeneity, under both homeostatic conditions and
during the course of liver diseases.

HETEROGENEITY OF LIVER RESIDENT
NK CELLS

The liver is populated by both transient cNK cell subsets and lr-
NK cells that are phenotypically and functionally distinguished
(Figure 1). The first identification of tissue resident NK cells
occurred in murine livers and rapidly expanded in other
tissues (26). Lr-NK cells soon displayed heterogenous phenotypic
profiles in different species with unique anatomical identities that
reflect the impact of this peculiar tissue-niche in generating either
cytotoxic or tolerogenic lymphocytes.

Murine lr-NK cells carry a CD49apos/DX5neg phenotype that
differs from CD49aneg/DX5pos cNK cells in mouse (27, 28). It
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FIGURE 1 | Human hepatic and conventional NK cell subsets, distribution, and phenotype. Human blood circulating conventional NK (cNK) cells contain two main

subsets: CD56dim (cNKdim) and CD56bright (cNKbright) cells. Human hepatic NK (he-NK) cell compartment contains: liver resident NK (lr-NK) cells, memory-like NK

(ml-NK) cells and transient conventional NK (cNK) cells mainly represented by recirculating cNKdim cells through the liver blood system (gray arrow). Lr-NK and ml-NK

cell subsets show transcriptional and phenotypic differences compared to the conventional cNK cell subsets.

is still unclear how the development and differentiation of lr-
NK cells is regulated, but this latter subset seems to be more
terminally differentiated as it lacks or has decreased expression
of CD11b, Ly49, CD43, and KLRG1 (i.e., surface markers
present on mature cells) compared to murine cNK cells (27).
Several experimental findings indicated that lr-NK and cNK
cells likely develop from separated innate lymphoid cell (ILC)
lineages (29). Moreover, a common ILC progenitor subset able
to differentiate in lr-NK cells but not in cNK cells has been
described (30). Indeed, lr-NK and cNK cells rely on different
transcriptional factors for their development, since the presence
of T-bet deficiency in mice is associated with the depletion
of lr-NK cells, while Eomes is critical for the maintenance of
cNK cell homeostasis (Table 1) (31, 32). More recently, the new
transcription factors Hobit and the aryl hydrocarbon receptor
(AhR) have been reported to induce the development of different
tissue-resident NK cells, including lr-NK (33, 34).

Human lr-NK cells were first described in 1976 and were
originally called “pit cells.” Only later, they were defined as
highly cytotoxic NK cells resident in the hepatic sinusoids (35,
43, 44). Differently from murine and their human counterparts
in peripheral blood, CD56dim and CD56bright NK cells are
present at similar frequencies in liver and the latter subset
likely corresponds to the murine CD49apos/DX5neg lr-NK
cells, as they both share the same transcriptional factor T-
bet and are negative for Eomes (Table 1) (28). However,
CD49apos/CD56bright lymphocytes account for only 3% of all
humans he-NK cells and do account for all CD56bright lr-
NK cells. In this regard, it is well known that several murine
NK cell markers are not phylogenetically conserved in their
human counterparts and this largely explains the absence of
a phenotypic match between murine and human lr-NK cells.
Only recently, the phenotype of human CD56bright lr-NK cells
has been better characterized by disclosing their constitutive

expression of the chemokine receptors CXCR6 and CCR5 and
of the tissue-residency marker CD69 (28, 45, 46). As a matter
of fact, these 3 surface markers are absent on CD56dim he-
NK cells. Hence, the CD56bright/CCR5pos/CXCR6pos/CD69pos

phenotype identifies human lr-NK cells that also appear to be
more heterogeneous in their development pathways compared
to murine counterparts as they express high levels of Eomes
transcripts rather than T-bet (36, 45, 46). Indeed, only those 3%
of human CD49apos/CD56bright lr-NK cells resulted positive for
T-bet, while the transcription factor Hobit was found positive on
all CD56bright lr-NK cells (28, 37).

Very little is known about the mechanism(s) regulating both
recruitment and retention of NK cells in the liver. Within the
hepatic microenvironment, NK cell interactions with LSECs
certainly play a key role, as the masking of CD2, CD11a,
CD18, and CD54 (ICAM-1) with neutralizing monoclonal Abs
(mAbs) block their recruitment to the liver (38). Moreover,
the constitutive high surface levels of CXCR3, CXCR6, and
CCR5 on lr-NK cells are important in the retention of these
hepatic lymphocytes. Indeed, the engagement of these chemokine
receptors following the binding with their cognate ligands
(i.e., CCL3, CCL5 and CXCL16, respectively) expressed by
cholangiocytes, LSECs, hepatocytes, and KCs, is associated with
liver homing (45, 47). Sinusoidal endothelial cells also express
VAP-1 that, in turn, binds Siglec-9 expressed on cNK cells, thus
mediating theirmigration to the liver (47, 48). This latter pathway
seems a mechanism restricted to hepatic trafficking, since VAP-
1pos cNK cells do not express L-selectin (CD62L) and CCR7
receptor required for homing in secondary lymphoid tissues (27).

Another important question is whether he-NK cells stably
reside in the liver or recirculate through liver sinusoids.
Experimental evidence obtained from human transplanted liver
revealed that Eomeshigh lr-NK cells can persist for decades, thus
further supporting the idea that these cells represent a long-lived
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TABLE 1 | Comparison of NK cell subsets in humans and mice.

Species Subset Phenotype Precursors Transcription

factors

References

Mouse cNK CD49anegDX5pos LinnegCD27posCD107negCD244posCD122pos IL7Raneg Eomes (28–33)

Mouse lr-NK/ml-lr-NK CD49aposDX5neg PLZFposLinneg IL7RaposcKitposa4b7pos T-bet, PLZF,

Hobit, AhR

(28–35)

Human cNKdim CD56dimCD16pos CD56brightCD94posNKp80posCD16negCD57neg T-bet, Eomes (13, 14)

Human cNKbright CD56brightCD16neg LinnegCD34negCD117posCD94negCD16neg T-bet, Eomes (13, 14)

Human lr-NKbright

ml-NKbright
CCR5posCXCR6posCD69pos

CXCR6posCD94/NKG2Cpos
CD56brightEomeslowcNKbright

lr-CD49aposCD56bright
Eomeshigh,

Hobit T-bet,

Hobit

(28, 29, 36–

42)

tissue-resident subset (49). In addition, CD56bright/Eomeslow

cNK cells recruited to the liver have the potential to become
CD56bright/Eomeshigh NK cells. This last piece of data suggests
that cNK cells can also represent precursors of their liver-resident
counterparts, although the associated mechanisms involved in
this process have not yet been disclosed (49). Interestingly, the
administration of an anti-α4β1 and -α4β7 integrins mAb (i.e.,
natalizumab) in patients with multiple sclerosis is associated with
an remarkable increased frequency of NK cells in peripheral
blood, thus indicating that they can migrate across the
tissue endothelial barriers including the hepatic ones (39, 50).
However, it is important to highlight that he-CD56dim NK
cells are transcriptionally and phenotypically similar to their
circuiting counterparts and this evidence indicates that they likely
recirculate through the liver blood system without being retained
in the organ. This is not the case for lr-CD56bright NK cells that
are also transcriptionally different from their homologs in the
peripheral blood (45).

The liver is also home of peculiar and newly identified lr-
NK cells endowed with unique adaptive traits and showing
hapten-specificity (51, 52). The phenotype of these so-called
“memory like” NK (ml-NK) cells in mice is CD49apos/DX5neg

and matches with murine lr-NK cells (51, 52). It has been also
shown that CXCR6pos he-NK cells can retain an unconventional
immunologic memory versus viral antigens including inactivated
vesicular stomatitis virus (VSV), human immunodeficiency
virus (HIV) and influenza (53, 54). Most of the studies
characterizing human ml-NK cells focused their investigation on
cytomegalovirus (HCMV) infection, that induces the expansion
of “specific” CD94/NKG2Cpos NK cells able to produce a higher
amount of IFN-γ when these “adaptive” NK cells are re-
challenged with the same virus (40, 41, 55). Interestingly, it
has been reported that the small subset of CD49apos/CD56bright

lr-NK cells is characterized by a clonal-expansion of NK
cells expressing CD94/NKG2C heterodimer (28). However, the
existence of a specific viral-antigen recognized by a given NKRs
expressed on human ml-NK cells is still being debated and
never formally demonstrated. This is indeed a very hot research
topic in the field of NK cell homeostasis that requires further
experimental evidence and investigations.

Lr-NK cells are characterized by different features and can
kill different targets as well as secrete cytokines. They have
higher intracellular amounts of lytic granules (i.e., Granzymes

and Perforin) and stronger cytotoxic potentials compared to
their circulating counterparts (2, 42, 56). In particular, lr-
NK cells are characterized by higher constitutive expression
of TRAIL and FasL compared to cNK cells, thus suggesting
that the tissue resident subset employs different mechanisms
to eliminate targets (i.e., apoptosis) (57). Moreover, both cNK
cells and lr-NK cells are able to secrete large amount of IFN-
γ, but the latter population is much more efficient in the
production of TNF-α and Granulocyte-macrophage colony-
stimulating factor (GM-CSF), and in case of murine lr-NK
cells IL-2, all key players in inflammatory responses at tissue
sites (31, 32, 57).

The need of keeping an optimal degree of immune-
tolerance vs. foreign antigens while ensuring a correct immune-
surveillance against potential threats (i.e., infections, tumors,
aberrant inflammation, and autoimmunity) certainly explains
the particularly high level of heterogeneity and complexity of
he-NK cells. Indeed, these features are peculiar of the liver
microenvironment that is able to induce the non-conventional
“long-lived” and “memory like” innate immune effectors also
within NK cell compartment.

NK CELLS IN LIVER TOLERANCE
AND HOMEOSTASIS

Human liver developed a high degree of immune tolerance
as demonstrated by the clinical evidence indicating that liver
allografts are less likely to be rejected than other transplanted
organs (58). Several actors play different and fundamental roles
in the maintenance of liver tolerogenic NK cells (Figure 2). KCs
produce high doses of IL-10 which was observed to be critical in
the control of mice intrahepatic NK cell-mediated alloreactivity
(59). Indeed, an impaired ability of liver macrophages to produce
this anti-inflammatory cytokine boost the IFN-γ-dependent
priming of he-NK cells in response to double strand RNA
exposure (60, 61). Moreover, the interplay between cNK cells
co-cultured with human hepatic cells, and DCs induces the
expansion of tolerogenic T cells (Tregs) via the engagement
of CD94/NKG2A, which is a mechanism able to trigger the
production of both transforming growth factor-β (TGF-β) and
IL-10 (62, 63). Interestingly, in vitro stimulation of human cNK
cells with apoptotic cells develops tolerance in these innate
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FIGURE 2 | Involvement of he-NK cells in the maintenance of hepatic

tolerance and homeostasis. NK cells promote hepatic tolerance by interplaying

with hepatocytes via CD94/NKG2A that in a TGF-β-mediated manner

modulate DCs that further prompt expansion of tolerogenic CD4posCD25pos

Treg cells. On the other hand, Treg cells along with hepatic KCs and apoptotic

cells contribute to the production of immunosuppressive factors IL-10 and

TGF-β that can induce tolerogenic he-NK cells. Green arrows show stimulatory

connection and red lines inhibition.

effector cells via the secretion of TGF-β that, in turn, suppresses
their autocrine IFN-γ production (64).

Different studies demonstrated that he-NK cells are also
important in regulating the unique capacity of liver to regenerate
itself after tissue damage (65, 66). In this regard, in the in vivo
model interaction of cNK cells with surrounding different liver-
resident cells (i.e., KCs, fibroblast, and stem cells) induces
the secretion of growth factors, hormones, cytokines, and
chemokines able to induce the proliferation/regeneration of
hepatic tissue (67). In particular, the activation of he-NK cells is
associated with a de novo production of CXCL7, CXCL2, CCL5
and IL-8 that, in turn, can recruit and differentiate mesenchymal
stem cells substantially contributing to the so-called “restitutio ad
integrum” of this organ (65). This is a process that needs to be
finely tuned and regulated since paradoxically over-stimulation
of mouse he-NK cells can inhibit, rather than promoting, liver
regeneration through the aberrant signaling pathway exerted by
IFN-γ on those factors (i.e., STAT1, IRF-1, and p21cip1/waf1)
regulating hepatocyte proliferation (68, 69). This is the case of
in vivo activation with high doses of the immuno-stimulant
Polyinosinic:polycytidylic acid (Poly I:C) (70).

NK CELLS IN THE PATHOGENESIS OF
AUTOIMMUNE LIVER DISEASES

Those mechanisms that make it possible for the liver to develop
immunologic tolerance also expose this organ to the onset
of immunological diseases. In this context, the presence of
dysfunctional he-NK cells can actively contribute to the breach of
immunological tolerance and in the appearance of autoimmune-
liver diseases including autoimmune hepatitis (AIH), primary

biliary cholangitis (PBC), and primary sclerosing cholangitis
(PSC) (2, 71).

Although T cells have been reported to play a prominent role
in the pathogenesis of AIH, several lines of evidence showed that
also autoreactive he-NK cells are expanded in this autoimmune
liver disorder (72). Indeed, the in vivo administration of Poly
I:C in mice induces the onset of AIH in which activated
intrahepatic NK cells actively contribute to liver damage (73).
Additionally, the low frequency of the inhibitory KIR/KIR-
ligand combinations KIR3DL1/HLA-Bw4 and KIR2DL3/HLA-
C1 coupled to the high frequency of the HLA-C2 high affinity
ligands for KIR2DS1 may contribute to unwanted NK cell
autoreactivity in AIH (74). The expansion of aberrant NK cells
able to kill autologous cholangiocytes represents also one of
the pathogenic mechanisms present during the course of PBC
(75, 76). Indeed, the frequency of he-CD56dim NK cells in
PBC is higher compared to that of healthy livers. However,
it is still unclear whether the expansion of autoreactive he-
NK cells targeting autologous biliary epithelial cells is directly
associated with breach of liver immune tolerance or if this is a
secondary event linked to the high degrees of immune activation
and inflammation present in PBC (77). Another mechanism
employed by cNK cells to lyse “self ” cholangiocytes relies on
the engagement of TRAIL pathway. As a matter of fact, the
downstream death signal delivered by TRAIL receptor 5 is
higher in PBC patients and induces cholestatic liver injury
(78, 79). Another study also reported a protective role of
intrahepatic NK cells in PBC patients, as the presence of low
NK cell/cholangiocytes ratio is associated with higher IFN-γ
production. This can induce or increases the expression ofMHC-
I and -II on cholangiocytes that are, in turn, spared from the
lysis exerted by autoreactive NK cells. This latter protective
mechanism is particularly relevant in the initial stages of PBC,
since it can slow its progression to liver failure (80).

Among the three main liver autoimmune diseases, PSC
represents the one whose pathogenesis is still largely unknown.
However, the presence of certain HLA alleles or genetic variants
of the NKG2D ligand MIC-A had been associated with higher
risks of developing PBC. Indeed, both these molecular patterns
regulate NK cell recognition of cholangiocytes (81). Similar to
AIH and PBC, an increase of he-NK cell frequency was detected
in PSC patients (82, 83). The most prominent current working
hypothesis postulates that, similar to PBC, the engagement
of TRAIL could induce the he-NK-mediated destruction of
cholangiocytes in PSC patients (42, 79). Finally, another study
reported that lr-NK cells from PSC patients are impaired in their
cytotoxicity due to the high levels of local TNF-α production
(84). Taken together, these contradictory data and speculations in
regard to PSC pathogenesis reflect our general lack of knowledge
in regard to the mechanistic roles and clinical impact of he-NK
cells in liver autoimmune diseases.

NK CELLS IN LIVER CANCER

Hepatocellular carcinoma (HCC) is the most common leading
cause of liver-cancer related death worldwide (85). Among
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the main predisposing risk factors of HCC, there are chronic
viral infections by hepatitis B virus (HBV) and hepatitis C
virus (HCV), alcohol related cirrhosis and non-alcoholic steato-
hepatitis (86). The liver is also the first site of colorectal
cancer (CRC) metastatic dissemination (87). NK cells had been
first discovered due to their ability to kill tumor-transformed
cells (i.e., immune surveillance) and are able to provide
protection in hematological malignancies, solid primary cancers
and metastatic lesions (88, 89). This important feature is also
valid for HCC as human cNK cells were shown to be highly
cytotoxic against HepG2 hepatocellular carcinoma cells (2, 42,
56). Moreover, it has been reported that higher numbers of
total tumor infiltrating CD56pos he-NK cells predict a better
outcome for HCC in terms of patient overall survival (OS) (90–
92). Other retrospective studies showed that high frequencies of
the specific intra-tumor NK cell subsets slow the progression
of liver cancer, as demonstrated for human NKp46pos he-NK
cells in CRC metastatic disease and for CD11bneg/CD27neg he-
NK cells in HCC (93, 94). In addition, the selective engagement
of NKG2D in both mice and human enhances NK cell anti-
tumor activity against HCC since the transcriptional modulation
or the interferon-induced expression of this aNKR boosts
he-NK cell cytotoxicity and blocks tumor growth (95, 96).
This potent anti-tumor NK cell effector-function against HCC
seems to be more effective in the early stages of the tumor
and decreases as soon as the disease progresses (Figure 3).
Indeed, lower frequencies of anergic/dysfunctional CD56dim and
CD56bright NK cells, characterizes end-stages HCC patients both
in peripheral blood and at a tumor site, a phenomenon that is also
associated with a parallel expansion of CD4pos/CD25pos Tregs
and increased secretion of IL-10 (92, 97, 98). Several mechanisms
have been proposed to explain, at least in part, the functional
impairments of NK cells in advanced HCC. These include the
increased expression on tumor infiltrating NK cell surface of
inhibitory checkpoints [i.e., programmed cell death protein (PD-
1) and NKG2A] as well as the higher surface levels of PD-1
ligands (PD-1Ls) and MHC-I on malignant cells. Both strategies
simultaneously employed byHCC both on immune-effectors and
targets have the same aim of evading human NK cell immune-
surveillance, thus sparing tumor cells from NK cell killing (99–
102). It has been also reported that in advanced HCC patients
he-NK cells express a specific inhibitory NKp30 splice variant
(Ih-NKp30), thus resulting in a deficiency of NKp30-mediated
NK cell activation and function. Interestingly, the soluble form
of NKp30 ligand (NKp30L) B7-H6 is increased in late stages
of HCC (103). Another mechanism contributing to cNK cell
impairment in HCC patients relies on their aberrant interactions
with tumor infiltrating macrophages, inducing a rapid NK cell
exhaustion both via the engagement of CD48/2B4 and NKp30
pathways (98, 104, 105). Additionally, several alterations in the
cytokine milieu of neoplastic HCC tissue can influence cNK
cell cytotoxicity and cytokine production. These include soluble
immune-modulators such as TGF-β, prostaglandin E2 (PGE2) or
indoleamine 2,3-dioxygenase (IDO) (105–107). More recently,
it has been reported that IL-1R8 (TIR-8) can serve as another
important checkpoint able to inhibit anti-tumor NK cell effector-
functions in liver cancer murine models. Indeed, its blockade

unleashes NK cell-mediated resistance to hepatic carcinogenesis
and liver metastasis of CRC (108). Moreover, using a mouse
model of cholangiocarcinoma (CCA), it has been demonstrated
that adoptive NK cell transfer limits tumor growth and improves
the prognosis of this aggressive liver cancer, although the related
mechanisms associated to NK cell control of CCA have not yet
been elucidated (109).

LIVER NK CELLS AND VIRAL INFECTION

HCV and HBV infections represent the main two infectious
diseases inducing liver inflammation and failure (110).
Controversial data are available regarding the immune status of
he-NK cells in acute and chronic liver viral infections (Figure 3).

In acute HCV infection, he-NK cells show an increased
expression of NKp46 and a high ability to degranulate and
to produce IFN-γ following a strong activation by IFN-α/β
and other cytokines (i.e., IL-12, IL-15, IL-18) (111, 112).
Although intrahepatic CD56bright/NKp46high he-NK cells
contribute to a better control of HCV replication, their
presence at high frequency is also associated with increased
degrees of liver necrosis and fibrosis following acute
infection (113). Interestingly, the livers of those patients
experiencing self-limiting HCV-1 infection were not enriched
of CD56bright/NKp46high he-NK cells, but of NK cells are
highly positive for CD57 and KIRs. These findings suggest
that terminally-differentiated NK cells can better control HCV
infection (114).

In the context of HBV infection, early cNK cell responses
contribute to the initial control of infection and to the
development of an efficient adaptive immune response through
the secretion of IFN-γ, TNF-α, GM-CSF, and TGF-β able to
inhibit viral replication or to induce the killing of infected cells
(115–117). In this context, acute HBV infected patients showed
an expansion of CD56bright cNK subset, but reduced frequencies
of CD56dim NK cells. Notably, the inflamed lobular necrotic
areas of HCV-infected livers from the same individuals were
surrounded by NKp46pos NK cells (118). In vivo experimental
studies also confirmed the presence of a strong activation of
he-NK cells in response to acute HBV infection, a mechanism
that limits viral replication. However, in these animal models the
HCV-mediated priming of NK cells was not able to induce an
antigen-specific T cells response (119–121).

When both HBV and HCV enter into their chronic stages,
the frequencies of cNK cells remarkably decrease together
with their ability of producing pro-inflammatory cytokines,
such as IFN-γ and TNF-α (122–125). Although, he-NK cells
maintain their cytotoxic potential in chronic HBV via the up-
regulation of TRAIL (126, 127), however, they pathologically
contribute to eliminate autologous HBV-specific CD8pos T cells
expressing high levels of death receptor for TRAIL. Hence,
this NK cell-mediated depletion of antigen-specific CD8pos T
cells impairs adaptive antiviral immunity in chronic HBV-
infected patients and contributes to viral persistence (128–130).
Moreover, persistent viral infections have a remarkable impact
on the cNK cell receptor repertoire and profoundly affect their
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FIGURE 3 | Dichotomy in the he-NK cell response in tumor and viral infection. Different soluble factors and cell surface receptors contribute to positive or either

negative he-NK cell response in both tumor and/or viral infection. Increased (vertical blue arrows) frequency and effector-functions of he-NK cells were observed in

early tumor and acute viral response. On the other hand, NK cell dysfunction (vertical red arrows) in late tumor or chronic infection results with lower NK cells

frequency, effector function inhibition and cell exhaustion. Arched green arrows show stimulatory connection and red lines inhibition.

effector-functions. Indeed, chronic exposure to HBV induces
TGF-β production that, in turn, reduces the expression of
NKG2D and 2B4, and their respectively, intracellular adaptor
proteins DAP10 and SAP, thus further hampering their ability
to eliminate viral infected cells (131). However, whether this
immunosuppressive mechanism plays a role in shaping he-NK
cells need to be further consolidated.

HEPATIC NK CELLS AS POTENTIAL
THERAPEUTIC TARGETS

The possibility of tuning NK cell effector-functions represents
an important therapeutic strategy for the treatment of several
liver disorders, as demonstrated for infections and other
malignancies (112, 113). Among the main methodological
approaches developed in this context, there are protocols
administering in vivo compounds targeting NK cell activation.
Indeed, the use of several cytokines that can easily reach
and activate liver endogenous NK cells has been extensively
tested in several clinical and experimental trials. IL-12 and IL-
18 have been shown to effectively inhibit liver carcinogenesis
by boosting NK cell anti-tumor functions (132). Therapies
with interferons showed anti-viral, anti-fibrotic and anti-tumor
NK cell-mediated clinical outcomes (96, 133). Two cytokines
widely adopted to enhance NK cell cytotoxicity are IL-2 and
IL-15 (134, 135). In particular, IL-15 can rescue the anti-
tumor activities of intrahepatic NK cells purified from HCC
patients (136). Interestingly, the use of recombinant/modified
IL-2 and IL-15 activates both NK and CD8pos T cells without
stimulating Tregs and these cytokines are currently being
tested also against hematological cancers (137–139). Agonists

for several aNKRs expressed on lr-NK cells, such as NKG2D
and NCRs, also represent a potential clinical therapeutic
strategy. Moreover, the expression of NKRs can be also
modulated at the transcriptional level. In this regard, the
miR-182 has been shown to increase NK cells cytotoxicity in
HCC patients by regulating the expression of NKG2D and
NKG2A (95).

In a new era of cancer immunotherapy, several inhibitory
checkpoints have been targeted also on NK cells through
the development of blocking mAbs unleashing their anti-
tumor effector-functions (13). In particular, anti-KIR mAbs
are currently being tested in different hematological cancers
alone or in combination with other treatments (140). Another
important NK cell inhibitory checkpoint is anti-NKG2A, whose
masking mAb is currently being tested in several solid tumors
and hematologic diseases (23, 141–144). More recently, it has
been also reported that NK cells can express PD-1 thus paving
the ground in the future to target NK cells also with mAbs
blocking PD-1/PD-L1 interactions (145). Further clinical trials
are required to investigate the efficacy of these compounds in
liver cancers.

Adoptive NK cell transfer therapies have been first
introduced to improve the clinical outcome of patients
affected by hematologic malignancies and undergone allogeneic
hematopoietic stem cell transplantation (allo-HSCT) (146, 147).
The great clinical outcome of this strategy in allo-HSCT together
with newly available technologies made it possible to develop
new protocols of adoptive NK cell therapies to treat both
hematologic malignancies and solid tumor (148–151). More
recently, the possibility of engineering NK cells with different
technological approaches such as the so-called bi- and tri-specific
killer engagers (BiKEs and TriKEs) (152) or chimeric antigen
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receptors (CARs) (153) improved both tumor-specificity and the
ability of NK cells to reach/infiltrate tumor tissues. Very little is
known about the efficacies of adoptive NK cell transfer therapies
in liver cancers, a gap that needs to be filled by new experimental
and clinical trials.

CONCLUDING REMARKS

Despite a great number of studies that have been focusing
on elucidating the role of he-NK cells in liver physiology and
physiopathology, several questions still remain unanswered. In
particular, given the high heterogeneity of NK cells in liver,
further studies are needed to investigate their specific role in both
homeostatic and pathological conditions. Indeed, understanding
this high degree of diversity will likely explain the several and
often opposite functions of he-NK cells. These include the
different capacities of he-NK cells either to reside in the liver
or to recirculate through this organ without being retained

and their abilities to be tolerogenic toward foreign antigens

while attacking viruses and tumors. This knowledge is key to
understand and target those mechanisms participating in the
onset of hepatic disorders.
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