REVIEW ARTICLE

The effects of metformin on endogenous androgens and SHBG in women: a systematic review and meta-analysis

Maddalena Barba*, Holger J. Schünemann*†‡, Francesca Sperati*, Elie A. Akl†, Felice Musicco§, Gordon Guyatt‡ and Paola Muti*

*Department of Epidemiology, Italian National Cancer Institute Regina Elena, Rome, Italy, †Department of Medicine, State University of New York at Buffalo, Buffalo, New York, USA, ‡Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada and \$Pharmacological Service, Italian National Cancer Institute Regina Elena, Rome, Italy

Summary

Objectives Elevated circulating androgens are risk factors for several chronic, metabolic and reproductive disorders. Metformin is an insulin-sensitizing agent that may lower androgen levels. To evaluate the effects of metformin on endogenous androgens and SHBG levels in women, we conducted a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing metformin with placebo or no treatment.

Data source We used OVID to search MEDLINE, EMBASE and CENTRAL until March 2007.

Review methods Two reviewers independently extracted data on methodological quality, participants, interventions and outcomes of interest. Our a priori primary outcome was post-treatment measurements. In a secondary analysis, we evaluated the difference between the pre- and post-treatment levels. We computed the weighted mean difference (WMD) as a measure of effect for each outcome using the DerSimonian–Laird random effects method. We used the I^2 statistic to assess heterogeneity and explored its causes in subgroup analyses of features related to participants' characteristics and study design. Based on a regression model, we conducted sensitivity analyses by investigating the use of placebo as a predictor of effect size.

Results Twenty RCTs fulfilled the inclusion criteria. Pooled WMDs in post-treatment levels between the metformin and control group were -0.31 nmol/l (95% CI -0.65 to 0.03) for total testosterone (TT), 0.10 pmol/l (95% CI -0.89 to 1.10) for free testosterone (FT), $0.14 \mu \text{mol/l}$ (95% CI -0.34 to 0.62) for dehydroepiandrosteronesulfate (DHEAS), -0.60 nmol/l (95% CI -1.67 to 0.46) for androstenedione (AND) and 5.88 nmol/l (95% CI 2.01-9.75) for SHBG. Pooled WMDs of the pre- to post-treatment differences (i.e. with adjustment for baseline hormone levels) were -0.38 (95% CI -0.51

to -0.25) for TT, -2.71 (95% CI -10.35 to 4.93) for FT, -0.50 (95% CI -0.83 to -0.16) for DHEAS, -1.39 (95% CI -2.30 to -0.49) for AND and 6.63 (95% CI 2.32-10.94) for SHBG. In subgroup analyses, features related to the administered treatment (i.e. metformin as a single agent or as part of combined regimens) partly explained the heterogeneity. Sensitivity analyses of studies using placebo showed similar results to those not using placebo.

Conclusions Our systematic review and meta-analysis provides evidence of metformin-induced changes in circulating androgens and SHBG levels in women but the quality of evidence is not high. However, there are no data from RCTs regarding these effects in postmenopausal women or healthy premenopausal women. Highquality RCTs are required to evaluate whether metformin has effects on surrogate markers and patient-important outcomes in these patient groups.

(Received 24 January 2008; returned for revision 21 February 2008; finally revised 6 August 2008; accepted 13 October 2008)

Introduction

Metformin is an insulin-sensitizing agent with several mechanisms of action. It decreases hepatic glucose production and insulin secretion, enhances peripheral glucose uptake by muscles, and increases glucose oxidation by adipose tissue.^{1,2} These mechanisms combined improve insulin resistance and blood glucose control.^{1,3,4} The clinical indications for metformin therapy include several disorders, such as type 2 diabetes mellitus^{5–7} and polycystic ovary syndrome (PCOS), for which insulin resistance represents a key pathological mechanism.^{5–10}

PCOS is a common disorder of premenopausal women characterized by hyperandrogenism and substantial peripheral insulin resistance.^{8,9} Hyperandrogenism results from increased androgen biosynthesis and decreased SHBG synthesis, both associated with hyperinsulinaemia and increased androgen bioavailability.^{2,8,11,12} Hyperandrogenism may itself contribute to the development and maintenance of the

Correspondence: Holger Schünemann, Department of Epidemiology, Italian National Cancer Institute Regina Elena, Rome, Italy. Tel.: +39 0652665102; Fax: +39 0652662732; E-mail: hjs@buffalo.edu

insulin resistance state, which precedes and accompanies hyperinsulinaemia and represents the probable link between the metabolic syndrome, cardiovascular diseases and type 2 diabetes.^{2,13}

Several reviews report large numbers of trials investigating the effects of metformin administration in women diagnosed with PCOS.^{14–20} The most recent review, published in 2003, included trials mostly uncontrolled and with small numbers of participants.^{14–20} These focused on outcomes such as fertility, weight, blood pressure, serum concentration of cholesterol and triglycerides, glycaemia and circulating insulin.

Although some of these latter outcomes have led to metformin use for the treatment of endocrinological diseases, the mechanisms of action and the impact on endocrine hormones are not completely understood. To our knowledge, no systematic review has evaluated the extent to which metformin affects endogenous hormones other than insulin. We conducted a systematic review and metaanalysis of randomized controlled trials (RCTs) evaluating the effect of metformin on endogenous hormone levels.

Methods

Literature search and selection

We used the OVID platform to search MEDLINE (January 1966 onwards), EMBASE (January 1980 onwards) and the Cochrane Central Register of Controlled Trials Register (CENTRAL) (The Cochrane Library, latest issue) until March 2007. The search strategy combined terms for metformin with a search filter for RCTs (available from the authors upon request). We also used the 'Related Articles' feature in PubMed to identify additional articles and screened the reference lists of included studies without language restriction.

Included studies fulfilled the following criteria: RCTs investigating metformin effects in women, and metformin given as a single agent or as part of combined regimens including drugs other than metformin and/or lifestyle modifications, as long as the administrated co-interventions were the same in all groups within each trial compared with placebo or no treatment. We included RCTs reporting at least one post-treatment measure of blood and/ or urinary and/or salivary concentrations of at least one of the following primary outcomes: total testosterone (TT), free testosterone (FT), dehydroepiandrosteronesulfate (DHEAS), androstenedione (ANDS) and SHBG. Secondary outcomes were fasting glycaemia and insulinaemia. We excluded studies in pregnant or lactating women and those with a loss to follow-up of more than 20%.

For trials with a cross-over design, we only included the first post-intervention measurement (i.e. prior to cross-over). For multi-arm RCTs, we included all pairwise comparisons for which the two arms differed by metformin use only. For RCTs including more than one population differing by indication for metformin treatment, we considered the different populations separately.

Data extraction and quality assessment

Two reviewers independently screened the titles and abstracts of the identified articles for potential eligibility, applying sensitive criteria to the first evaluation. Because of poor agreement, a third investigator evaluated all titles and abstracts that only a single reviewer had judged as eligible. Two reviewers independently screened the full text articles judged potentially eligible and then used a piloted form for data extraction and methodological quality assessment. They resolved disagreements by discussion with a third reviewer. The data collected related to participants, intervention and outcomes of interest. Methodological quality criteria included: concealment of allocation, blinding, intention-to-treat (ITT) analyses, and percentage of follow-up. If data were incomplete or unclear, we made at least two attempts to contact the study investigators. We included abstracts only if information related to methodological aspects and study results were available.

Data analysis

We used the kappa statistic (κ) to evaluate the degree of agreement between the two reviewers for titles and abstracts screening. We then assessed raw agreement between the two reviewers for full text eligibility and data extraction.²¹

A priori, we defined the unadjusted analysis of post-treatment measurements as primary analysis and the analysis adjusted for baseline values as secondary analysis. For each of the outcomes we calculated effect estimates using SI units (corresponding forest plot figures available from the authors upon request).

We calculated the I² statistic^{22,23} to assess heterogeneity across trial results, applying the following interpretation for I² (J. Higgins, personal communication): 0-50 = low; 50-80 = moderate and worthy of investigation; 80-100 = severe and worthy of understanding; 95-100 = aggregate with major caution. We explored heterogeneity using preplanned subgroup analyses. The subgroups were defined based on two different features, namely required evidence of clinical and/or biochemical hyperandrogenism and metformin administration as a single agent or as part of combined regimens.

We conducted regression analyses to evaluate the effect on the results of the use (ν s. no use) of placebos and adjusted for baseline values. We assessed publication bias by visual inspection of funnel plots (available from the authors upon request) that graphically display the magnitude of each study effect estimates against the inverse of the variance.²⁴ We used Revman 4·2·7 and Stata version 8·2 (Stata Corp., College Station, TX, USA) for statistical analyses, considering the weighted mean difference (WMD) as a measure of effect for each outcome using the DerSimonian–Laird random effects method.

Results

Systematic review flow

Figure 1 shows the trial flow. Twenty RCTs met the eligibility criteria,^{25–44} accounting for 848 women. The degree of agreement between the two reviewers was 0.435 (κ) for potential eligibility (based on highly sensitive titles and abstracts screening) and 97% (raw agreement) for full text eligibility and data extraction.

All the included trials reported measuring exclusively blood concentration of the variables of interest. None of the included

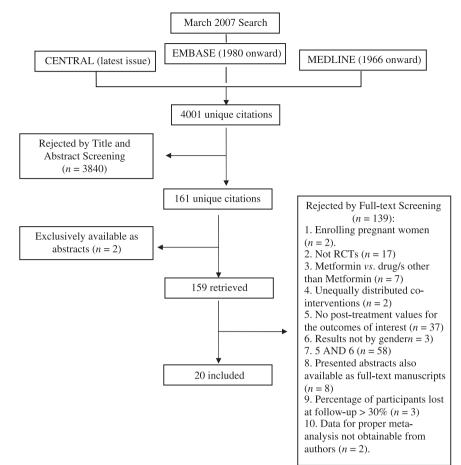


Fig. 1 Flow diagram of the trial selection process.

studies reported on outcomes measured on saliva or urine. Table 1 shows the characteristics of the included studies.

Methodological quality of included RCTs

The methodological quality varied among the included studies. All but five of them reported on the randomization method.^{29,36,37,39,40} Three RCTs provided no details regarding blinding,^{34,36,39} seven reported blinding patients,^{29,30,37,38,40,42,44} two reported blinding patients and investigators,^{25,26} two reported blinding patients and caregivers,^{27,43} one reported blinding patients and outcome assessors,²⁸ one reported blinding investigators, caregivers, patients, outcome assessors and manuscript writer,³⁵ one reported blinding investigators, caregivers, patients and outcome assessors,⁴¹ and one reported blinding investigators.³³ The remaining RCTs had an open-label design.^{31,32} Only eight trials reported conducting ITT analyses.^{28,31–34,37,39,43} The overall methodological quality was judged as acceptable.

Quantitative data synthesis

Pooling the WMDs for the post-treatment measurements from 11 studies, $^{27-34,36-38}$ we found that metformin increased the circulating levels of SHBG (WMD: 5.88 nmol/l, 95% CI 2.01–9.75, I²: 60.0%) (Fig. 2). The effects of metformin on the other variables were not statistically significant. Heterogeneity decreased

(WMD: 9·04 nmol/l, 95% CI 1·05–17·03, I²: 28·3%) in subgroup analyses including RCTs administering metformin as a single agent.^{25,26,31–33,37,43,44}

Pooling the WMDs of the pre- to post-treatment changes²⁵⁻⁴⁴, metformin decreased the circulating levels of TT (-0.38 nmol/l, 95% CI -0.51 to -0.25, I²: 9.4%), DHEAS (-0.50μ mol/l, 95% CI -0.83 to -0.16, I²: 0%) and ANDS (-1.39 nmol/l, 95% CI -2.30 to -0.49, I²: 38.6%), and increased the circulating levels of SHBG (6.63 nmol/l, 95% CI 2.32-10.94, I²: 43.6%). The results were not statistically significant for FT. Heterogeneity was statistically significant only for SHBG (I²: 43.6, P = 0.04). Subgroup analyses by administered treatment and by required evidence of hyperandrogenism at the study entrance reduced heterogeneity for SHBG (WMD: 12.30, 95% CI 6.30–8.30, I²: 0, P = 0.0001 in subgroup analyses by administered treatment). We also found evidence of a very slight decrease in fasting glycaemia (-0.02 mmol/l, 95% CI -0.03 to -0.01, I²: 0).

Sensitivity analyses of studies using placebo showed similar results to those not using placebo. We produced funnel plots of the RCTs for each of the investigated outcomes.

Discussion

In this systematic review, we found that, in both the primary and secondary meta-analyses, metformin administration increased

Study	Sample size	Total metformin dosage (mg/day)	Control arm*	Duration of treatment (days)	Participants' characteristics		
Baillargeon et al. (2004) ²⁵	128	1700	Placebo	180	Age range 17–40 PCOS ⁷	$BMI \le 27 \text{ kg/m}^2$	Normal glucose tolerance
					Not currently on OC or medications affectin	g insulin sensitivity	
Chou et al. (2003) ²⁶	32	1500	Placebo	90	Age range 16–42 PCOS ⁸	$BMI \le 30 \text{ kg/m}^2$	Normal glucose tolerance
					Non-smokers Not on medications with	in the previous 3 months	
Cibula et al. (2005) ²⁷	30	1500	OC^1	180	Age range 18–28 PCOS ²⁰	-	
					No secondary endocrine disorder or contrair	idications to OC use	
Elter et al. (2002) ²⁸	40	1500	OC ¹ and diet	120	Age range 16–36 PCOS ⁹	$BMI \le 26 \text{ kg/m}^2$	Normal glucose tolerance
					Not on medications affecting carbohydrates	or lipid metabolism within the previ	ious 6 months
Gambineri et al. (2004) ²⁹	40	1700	Flutamide ²	180	Age range 21–33 PCOS ⁹	$BMI \le 28 \text{ kg/m}^2$	Normal glucose tolerance
			and diet		Not on medications within the previous 3 m	onths	Not on diet in previous 3 months
					No significant body weight modifications in	the previous 3 months	
Gambineri et al. (2006) ³⁰	80	1700	Flutamide ²	360	Age range 21–31 PCOS ¹⁷	$BMI \le 28 \text{ kg/m}^2$	Reproductive age range 18–45
			and diet		Waist circumference $> 88 \text{ cm}^{19}$		
			Placebo and diet				
Ibanez et al. (2004) ³¹	24	850	No treatment	360	Age range 10–14 Low birthweight ¹⁰	$BMI \le 26 \text{ kg/m}^2$	Precocious pubarche ¹¹
					Hyperinsulinaemia on a standard test ¹²		Normal glucose tolerance
					No personal or familial history of diabetes m	ellitus	Subclinical ovarian hyperandrogenism ¹³
					Not currently on OC or any medication affect	ting gonadal function or carbohydr	ate metabolism
Ibanez et al. (2004) ³³	33	425	No treatment	180	Age range 7–8 Low birthweight ¹⁰	$BMI \le 21 \text{ kg/m}^2$	Precocious pubarche ¹¹
					Hyperinsulinaemia on a standard test ¹²		Subclinical ovarian hyperandrogenism ¹³
					No personal or familial history of diabetes m	ellitus	Normal glucose tolerance
					Not currently on OC or any medication affect	ting gonadal function or carbohydr	ate metabolism
Ibanez et al. (2006) ³²	38	425	No treatment	720	Age (mean) 8 Low birthweight ¹⁰	$BMI \le 22 \text{ kg/m}^2$	Precocious pubarche ¹⁷
Khorram <i>et al.</i> (2006) ³⁴	31	1500	CC^3	21	Age range 26–28 PCOS ⁹	$BMI > 29 \text{ kg/m}^2$	Normal glucose tolerance
					Desire for fertility	No previous assumption of CC	
Kocak <i>et al.</i> (2002) ³⁵	56	1700	Placebo	60	Age range 22–30 PCOS ⁹		Normal glucose tolerance
			and CC^4		Documented history of resistance to CC ¹⁴		
					Not on OC or any medication affecting gona	dal function or carbohydrate metab	olism within the previous 3 months
Lv et al. (2005) ³⁶	50	500	CA^5	180	Age range 16–36 PCOS ⁹	$BMI \le 25 \text{ kg/m}^2$	Normal glucose tolerance
					Not on CC or any medications within the pr		
Nestler <i>et al.</i> (1998) ³⁷	61	1500	Placebo	35	Age range 27–30 PCOS ⁹	$BMI > 28 \text{ kg/m}^2$	Normal glucose tolerance
					Not on CC or any medications within the pr	evious 2 months	

Table 1. Continued

Study	Sample size	Total metformin dosage (mg/day)	Control arm*	Duration of treatment (days)	Participants' characteristics		
Pasquali <i>et al.</i> (2000) ³⁸	40†	1700	Placebo	180	Age range 23–38 PCOS ⁹	$BMI > 28 \text{ kg/m}^2$	
			and diet		Not on CC or any medications within the previous 3	months	
Refaie et al. (2005) ³⁹	55	1500	CC^{6}	180	Age range 22–33 PCOS ⁹		
Sturrock <i>et al.</i> $(2002)^{40}$	26	1500	Placebo and CC ⁶	180	Age range 18–40 PCOS ⁹	Documented history of resistance to C	C^{14}
Tang et al. (2006) ⁴¹	143	1700	Placebo,	180	Age range: 18–39 PCOS ⁹	$BMI > 30 \text{ kg/m}^2$	Normal glucose tolerance
			physical		Desire for fertility	No previous ovulation induction thera	ру
			exercise		No previous ovulation induction therapy	-	
			and diet		Not on hormone therapy currently/within the previou	1s 6 weeks	
Vandermolen et al. (2001) ⁴²	27	1500	Placebo	49	Age range 18–35 PCOS ⁹		
			and CC ⁶		Documented history of resistance to CC ¹⁴		
van Santbrink <i>et al.</i> $(2005)^{43}$	20	1700	Placebo	35	Age range 18–37 Desire for fertility	Normal serum oestriol and FSH conce	ntrations
					Severe oligomenorrhoea or amenorrhoea	Insulin resistance ¹⁵	
					Documented history of resistance to CC ¹⁴		
Yarali <i>et al.</i> (2002) ⁴⁴	32	1700	Placebo	42	Age range 23–35 PCOS ⁹	Documented history of resistance to C	C^{14}
					No previous exogenous gonadotrophin treatment	Normal glucose tolerance	
					Normal semen analysis	No previous genital surgery	
					Normal hysterosalpingography and/or laparoscopy wi	1 0 0 1	

*In each of the included RCTs, the control arm/s and the intervention arm/s differs/differ exclusively by metformin use.

†Recruited participants include 20 women diagnosed with PCOS, whose characteristics are described in this table and 20 controls comparable for age and weight, with regular menses and no evidence of hyperandrogenism.

¹Oral contraceptive: ethinyl oestradiol (EE), 35 ng, and cyproterone acetate (CA), 2 mg for 21 days per month; ²flutamide at 500 mg/day; ³clomiphene citrate (CC), 100 mg/day on cycle days 5–9 only; ⁴CC 100 mg/day on cycle days 3–7 only; ⁵CP, 1 tablet/day for 21 days/month from the first day of menstruation or progestin-induced bleeding; ⁶CC, 50 mg/day on cycle days 2–6 only; ⁷PCOS as defined by oligomenorrhoea and hyperandrogenaemia; ⁸PCOS as defined by oligomenorrhoea and hyperandrogenism; ⁹PCOS as defined by (i) ultrasound examination; (ii) oligomenorrhoea; (iii) manifestations of hyperandrogenaemia; ¹⁰birthweight < –1.5 SD (corresponding to 2.7 kg at term in Catalonian girls); ¹¹defined as having pubic hair at < 8 years of age; ¹²defined on a standard 2-h oral glucose tolerance test; ¹³defined as excessive response in terms of 17-hydroxyprogesterone to leuprolide acetate administration; ¹⁴documented history of resistance to CC ranging from 50 to 150 mg/day for 5 days; ¹⁵defined as fasting glucose–insulin ratio < 4.5 mg/10⁻⁴ U; ¹⁶PCOS as defined by oligomenorrhoea or amenorrhoea and also at least one of the criteria of hyperandrogenism including a hirsutism score of > 7 (according to Ferriman and Gallway) and/or an elevated serum concentration of free testosterone (> 4 ng/dl); ¹⁷attributed to exaggerated adrenarche; ¹⁸the diagnosis of PCOS included: chronic anovulation or severe oligomenorrhoea, hirsutism or total testosterone levels > 0.72 ng/ml; and polycystic ovarian morphology at ultrasound; ¹⁹consistent with an abdominal fat distribution phenotype; ²⁰PCOS as defined by oligomenorrhoea, increased concentration of at least one androgen above the upper reference limit and clinical manifestation of hyperandrogenism.

666 *M. Barba* et al.

Review:	Metformin effects on Endogenous Androgens in Women
Comparison:	TREATMENT vs CONTROL
Outcome:	Total Testosterone

Study or sub-category	N	TREATMENT Mean (SD)	N	CONTROL Mean (SD)			0 (random) 95% Cl	Weight %	WMD (random) 95% Cl
Baillergeon, 2004(25)	28	1.28(0.73)	30	4.16(0.76)		-		5.87	-2.88 [-3.26, -2.50]
Chou, 2003(26)	14	1.60(0.67)	16	2.25(0.87)			-	5.44	-0.65 [-1.20, -0.10]
Cibula, 2005(27)	13	3.92(1.16)	15	3.49(1.49)				4.16	0.43 [-0.55, 1.41]
Elter, 2002(28)	20	1.59(1.62)	20	1.63(1.40)		_		4.29	-0.04 [-0.98 , 0.90]
Gambineri, 2004(29)c	10	1.71(0.96)	8	1.36(0.46)				5.08	0.35 [-0.33, 1.03]
Gambineri, 2004(29)d	10	1.35(0.62)	9	2.00(0.71)			<u> </u>	5.30	-0.65 [-1.25, -0.05]
Gambineri, 2006(30)e	20	1.73(0.94)	19	1.56(0.48)				5.67	0.17 [-0.30, 0.64]
Gambineri, 2006(30)f	17	1.49(0.69)	20	1.73(0.59)				5.79	-0.24 [-0.66, 0.18]
banez, 2004(31)	12	1.80(0.69)	12	3.20(1.04)			_	4.99	-1.40 [-2.11, -0.69]
Ibanez, 2004(32)	16	0.90(0.42)	17	1.11(0.57)		_		5.96	-0.21 [-0.55, 0.13]
Ibanez, 2004(32)	19	0.97(0.29)	19	1.28(0.30)			_	6.21	-0.31 [-0.50, -0.12]
Khorram, 2006(34)	16	1.80(1.39)	15	1.58(0.79)			-	4.74	0.22 [-0.57, 1.01]
	25		25				1	4 · /4	
_V Liqun, 2005(36)		1.19(1.32)		1.23(1.42)		-	- <u>-</u>		-0.04 [-0.80, 0.72]
Nestler, 1998(37)	35	2.29(1.01)	26	2.05(1.06)				5.51	0.24 [-0.29, 0.77]
Pasqua l i, 2000(38)a		1.25(0.38)	9	1.14(0.35)			-	5.94	0.11 [-0.24, 0.46]
Pasquali, 2000(38)b	10	1.70(0.87)	8	1.63(0.45)			<u> </u>	5.24	0.07 [-0.55, 0.69]
Refaie, 2005(39)	20	1.50(0.59)	14	1.90(0.21)		-	+	6.07	-0.40 $[-0.68, -0.12]$
Tang, 2006(41)	56	1.90(0.60)	66	2.30(0.70)			+	6.16	-0.40 [-0.63, -0.17]
Yarali, 2002(44)	16	5.84(1.56)	16	5.16(2.74)		-		2.77	0.68 [-0.86, 2.22]
otal (95% CI) est for heterogeneity: Chi ² = 2		18 (<i>P</i> < 0·00001), I ² = 91·	364 3%				•	100.00	-0.31 [-0.65, 0.03]
est for overall effect: $Z = 1.77$	(P = 0.08)								
					-4 Favours tr	-2 reatment	0 2 Favours control	4	
utcome: Free Testoste	rone							%	95% Cl
Elter, 2002(28)	20	233.71(88.47)	20	256.19(117.00)				→ 0.02	-22.48 [-86.77, 41.81]
Gambineri, 2004(29)c	10	0.89(0.53)	8	0.55(0.28)	•			39.17	0.34 [-0.04, 0.72]
Gambineri, 2004(29)d	10	0.46(0.18)	9	0.78(0.39)			5	40.25	-0.32 [-0.60, -0.04]
Khorram, 2006(34)	16	3.57(2.30)	15	3.37(3.12)			1	16.18	0.32 [-1.74, 2.14]
	35		26			-			
Nestler, 1998(37)		230.55(170.03)		172.91(146.97)	•	-			57.64 [-22.14, 137.42]
Vandermolen, 2001(42)	11 16	38.00(7.40) 34.58(11.53)	14 16	35.00(2.60) 103.75(66.28)		-		4·27 0·09	3.00 [-1.58, 7.58] -69.17 [-102.13, -36.2]
Yarali, 2002(44)	10	34.28(TT.23)	10	103.12(00.58)	٩			0.09	-09.1/ [-102.13, -30.21
Total (95% CI) Test for heterogeneity: Chi ² = 2^{-1} Test for overall effect: Z = 0·21		$(P < 0.0001), I^2 = 79.1\%$	108				•	100.00	0.10 [-0.89, 1.10]
					_10	5	0 5	10	
utcome: DHEAS									
	28	7 • 97 (5 • 4 3)	30	10.31(4.61)				2.85	-2.34 [-4.94. 0.26]
Baillergeon, 2004(25)		7·97(5·43) 9·70(3·80)		10·31(4·61) 6·41(2·20)			+		-2·34 [-4·94, 0·26] 3·29 [0·94, 5·64]
Baillergeon, 2004(25) Cibula, 2005(27)	13	9.70(3.80)	15	6.41(2.20)				3.37	3.29 [0.94, 5.64]
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28)	13 20	9·70(3·80) 7·15(2·74)	15 20	6·41(2·20) 7·80(2·90)				3·37 5·27	3·29 [0·94, 5·64] -0·65 [-2·40, 1·10]
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Gambineri, 2004(29)c	13 20 10	9 · 70 (3 · 80) 7 · 15 (2 · 74) 4 · 62 (2 · 87)	15 20 8	6 · 41 (2 · 20) 7 · 80 (2 · 90) 3 · 47 (1 · 41)				3·37 5·27 4·24	3.29 [0.94, 5.64] -0.65 [-2.40, 1.10] 1.15 [-0.88, 3.18]
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Gambineri, 2004(29)c Gambineri, 2004(29)d	13 20 10 10	9 · 70 (3 · 80) 7 · 15 (2 · 74) 4 · 62 (2 · 87) 5 · 67 (3 · 64)	15 20 8 9	$6 \cdot 41 (2 \cdot 20) 7 \cdot 80 (2 \cdot 90) 3 \cdot 47 (1 \cdot 41) 3 \cdot 32 (1 \cdot 22)$		-		3·37 5·27 4·24 3·27	$3 \cdot 29$ [0.94, 5.64] -0.65 [-2.40, 1.10] 1.15 [-0.88, 3.18] 2.35 [-0.04, 4.74]
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Gambineri, 2004(29)c Gambineri, 2004(29)d Gambineri, 2006(30)e	13 20 10 10 20	9 · 70 (3 · 80) 7 · 15 (2 · 74) 4 · 62 (2 · 87) 5 · 67 (3 · 64) 6 · 05 (1 · 58)	15 20 8 9 19	$6 \cdot 41 (2 \cdot 20) 7 \cdot 80 (2 \cdot 90) 3 \cdot 47 (1 \cdot 41) 3 \cdot 32 (1 \cdot 22) 6 \cdot 31 (3 \cdot 16)$				3·37 5·27 4·24 3·27 6·04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Gambineri, 2004(29)c Gambineri, 2004(29)d Gambineri, 2006(30)e Gambineri, 2006(30)f	13 20 10 10 20 17	$9 \cdot 70 (3 \cdot 80) 7 \cdot 15 (2 \cdot 74) 4 \cdot 62 (2 \cdot 87) 5 \cdot 67 (3 \cdot 64) 6 \cdot 05 (1 \cdot 58) 4 \cdot 47 (3 \cdot 16)$	15 20 8 9 19 20	$6 \cdot 41 (2 \cdot 20) 7 \cdot 80 (2 \cdot 90) 3 \cdot 47 (1 \cdot 41) 3 \cdot 32 (1 \cdot 22) 6 \cdot 31 (3 \cdot 16) 3 \cdot 95 (1 \cdot 84)$				3 · 37 5 · 27 4 · 24 3 · 27 6 · 04 5 · 46	3.29 [0.94, 5.64] -0.65 [-2.40, 1.10] 1.15 [-0.88, 3.18] 2.35 [-0.04, 4.74] -0.26 [-1.84, 1.32] 0.52 [-1.18, 2.22]
Baillergeon, 2004(25) Eller, 2005(27) Eller, 2002(28) Gambineri, 2004(29)c Gambineri, 2004(29)d Gambineri, 2006(30)e Gambineri, 2006(30)f banez, 2004(31)	13 20 10 10 20 17 12	$9 \cdot 70 (3 \cdot 80) 7 \cdot 15 (2 \cdot 74) 4 \cdot 62 (2 \cdot 87) 5 \cdot 67 (3 \cdot 64) 6 \cdot 05 (1 \cdot 58) 4 \cdot 47 (3 \cdot 16) 5 \cdot 40 (0 \cdot 69)$	15 20 8 9 19 20 12	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 3 \cdot 95 \left(1 \cdot 84\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \end{array}$				3 · 37 5 · 27 4 · 24 3 · 27 6 · 04 5 · 46 11 · 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Bambineri, 2004(29)c Bambineri, 2004(29)d Bambineri, 2006(30)e Bambineri, 2006(30)f banez, 2004(31) banez, 2004(32)	13 20 10 10 20 17 12 16	$\begin{array}{c} 9\cdot70\ (3\cdot80)\\ 7\cdot15\ (2\cdot74)\\ 4\cdot62\ (2\cdot87)\\ 5\cdot67\ (3\cdot64)\\ 6\cdot05\ (1\cdot58)\\ 4\cdot47\ (3\cdot16)\\ 5\cdot40\ (0\cdot69)\\ 2\cdot58\ (1\cdot16) \end{array}$	15 20 8 9 19 20 12 17	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 3 \cdot 95 \left(1 \cdot 84\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \\ 3 \cdot 05 \left(0 \cdot 97\right) \end{array}$			 + +	$3 \cdot 37$ $5 \cdot 27$ $4 \cdot 24$ $3 \cdot 27$ $6 \cdot 04$ $5 \cdot 46$ $11 \cdot 13$ $12 \cdot 51$	$\begin{array}{ccccc} 3\cdot 29 & [0\cdot 94, \ 5\cdot 64] \\ -0\cdot 65 & [-2\cdot 40, \ 1\cdot 10] \\ 1\cdot 15 & [-0\cdot 88, \ 3\cdot 18] \\ 2\cdot 35 & [-0\cdot 04, \ 4\cdot 74] \\ -0\cdot 26 & [-1\cdot 84, \ 1\cdot 32] \\ 0\cdot 52 & [-1\cdot 18, \ 2\cdot 22] \\ -0\cdot 10 & [-0\cdot 97, \ 0\cdot 77] \\ -0\cdot 47 & [-1\cdot 20, \ 0\cdot 26] \end{array}$
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Sambineri, 2004(29)c Sambineri, 2004(29)d Sambineri, 2006(30)e Sambineri, 2006(30)f banez, 2004(31) banez, 2004(32)	13 20 10 10 20 17 12	$9 \cdot 70 (3 \cdot 80) 7 \cdot 15 (2 \cdot 74) 4 \cdot 62 (2 \cdot 87) 5 \cdot 67 (3 \cdot 64) 6 \cdot 05 (1 \cdot 58) 4 \cdot 47 (3 \cdot 16) 5 \cdot 40 (0 \cdot 69)$	15 20 8 9 19 20 12	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 3 \cdot 95 \left(1 \cdot 84\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \end{array}$				3 · 37 5 · 27 4 · 24 3 · 27 6 · 04 5 · 46 11 · 13	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Bambineri, 2004(29)c Bambineri, 2006(30)e Bambineri, 2006(30)f banez, 2004(31) banez, 2004(32) banez, 2004(33)	13 20 10 10 20 17 12 16	$\begin{array}{c} 9\cdot70\ (3\cdot80)\\ 7\cdot15\ (2\cdot74)\\ 4\cdot62\ (2\cdot87)\\ 5\cdot67\ (3\cdot64)\\ 6\cdot05\ (1\cdot58)\\ 4\cdot47\ (3\cdot16)\\ 5\cdot40\ (0\cdot69)\\ 2\cdot58\ (1\cdot16) \end{array}$	15 20 8 9 19 20 12 17	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 3 \cdot 95 \left(1 \cdot 84\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \\ 3 \cdot 05 \left(0 \cdot 97\right) \end{array}$				$3 \cdot 37$ $5 \cdot 27$ $4 \cdot 24$ $3 \cdot 27$ $6 \cdot 04$ $5 \cdot 46$ $11 \cdot 13$ $12 \cdot 51$	$\begin{array}{ccccc} 3\cdot 29 & [0\cdot 94, \ 5\cdot 64] \\ -0\cdot 65 & [-2\cdot 40, \ 1\cdot 10] \\ 1\cdot 15 & [-0\cdot 88, \ 3\cdot 18] \\ 2\cdot 35 & [-0\cdot 04, \ 4\cdot 74] \\ -0\cdot 26 & [-1\cdot 84, \ 1\cdot 32] \\ 0\cdot 52 & [-1\cdot 18, \ 2\cdot 22] \\ -0\cdot 10 & [-0\cdot 97, \ 0\cdot 77] \\ -0\cdot 47 & [-1\cdot 20, \ 0\cdot 26] \end{array}$
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Bambineri, 2004(29)c Bambineri, 2004(29)d Bambineri, 2006(30)e Bambineri, 2006(30)f banez, 2004(31) banez, 2006(33) Kocak, 2002(35)	13 20 10 20 17 12 16 19	$\begin{array}{c} 9 \cdot 70 \ (3 \cdot 80) \\ 7 \cdot 15 \ (2 \cdot 74) \\ 4 \cdot 62 \ (2 \cdot 87) \\ 5 \cdot 67 \ (3 \cdot 64) \\ 6 \cdot 05 \ (1 \cdot 58) \\ 4 \cdot 47 \ (3 \cdot 16) \\ 5 \cdot 40 \ (0 \cdot 69) \\ 2 \cdot 58 \ (1 \cdot 16) \\ 3 \cdot 29 \ (1 \cdot 49) \\ 9 \cdot 13 \ (2 \cdot 71) \end{array}$	15 20 8 9 19 20 12 17 19 28	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 3 \cdot 95 \left(1 \cdot 84\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \\ 3 \cdot 05 \left(0 \cdot 97\right) \\ 4 \cdot 00 \left(1 \cdot 38\right) \\ 9 \cdot 51 \left(3 \cdot 02\right) \end{array}$				$3 \cdot 37$ $5 \cdot 27$ $4 \cdot 24$ $3 \cdot 27$ $6 \cdot 04$ $5 \cdot 46$ $11 \cdot 13$ $12 \cdot 51$ $10 \cdot 76$	$\begin{array}{ccccccc} 3\cdot 29 & [0\cdot 94, \ 5\cdot 64] \\ -0\cdot 65 & [-2\cdot 40, \ 1\cdot 10] \\ 1\cdot 15 & [-0\cdot 88, \ 3\cdot 18] \\ 2\cdot 35 & [-0\cdot 04, \ 4\cdot 74] \\ -0\cdot 26 & [-1\cdot 84, \ 1\cdot 32] \\ 0\cdot 52 & [-1\cdot 18, \ 2\cdot 22] \\ -0\cdot 10 & [-0\cdot 97, \ 0\cdot 77] \\ -0\cdot 47 & [-1\cdot 20, \ 0\cdot 26] \\ -0\cdot 71 & [-1\cdot 62, \ 0\cdot 20] \\ -0\cdot 38 & [-1\cdot 90, \ 1\cdot 14] \end{array}$
Baillergeon, 2004(25) Cibula, 2005(27) Etter, 2002(28) Bambineri, 2004(29)c Bambineri, 2006(30)e Bambineri, 2006(30)f Banez, 2004(31) banez, 2004(32) banez, 2006(33) Kocak, 2002(35) V Liqun, 2005(36)	13 20 10 20 17 12 16 19 27 25	$\begin{array}{c}9\cdot70(3\cdot80)\\7\cdot15(2\cdot74)\\4\cdot62(2\cdot87)\\5\cdot67(3\cdot64)\\6\cdot05(1\cdot58)\\4\cdot47(3\cdot16)\\5\cdot40(0\cdot69)\\2\cdot58(1\cdot16)\\3\cdot29(1\cdot49)\\9\cdot13(2\cdot71)\\7\cdot65(2\cdot74)\end{array}$	15 20 8 9 19 20 12 17 19 28 25	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 3 \cdot 95 \left(1 \cdot 84\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \\ 3 \cdot 05 \left(0 \cdot 97\right) \\ 4 \cdot 00 \left(1 \cdot 38\right) \\ 9 \cdot 51 \left(3 \cdot 02\right) \\ 7 \cdot 80 \left(2 \cdot 86\right) \end{array}$				$3 \cdot 37$ $5 \cdot 27$ $4 \cdot 24$ $3 \cdot 27$ $6 \cdot 04$ $5 \cdot 46$ $11 \cdot 13$ $12 \cdot 51$ $10 \cdot 76$ $6 \cdot 38$ $6 \cdot 19$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Bambineri, 2004(29)c Bambineri, 2006(30)e Bambineri, 2006(30)f banez, 2004(31) banez, 2004(32) banez, 2006(33) Kocak, 2002(35) -V Liqun, 2005(36) Vestler, 1998(37)	13 20 10 20 17 12 16 19 27 25 35	$\begin{array}{c}9 \cdot 70 (3 \cdot 80)\\7 \cdot 15 (2 \cdot 74)\\4 \cdot 62 (2 \cdot 87)\\5 \cdot 67 (3 \cdot 64)\\6 \cdot 05 (1 \cdot 58)\\4 \cdot 47 (3 \cdot 16)\\5 \cdot 40 (0 \cdot 69)\\2 \cdot 58 (1 \cdot 16)\\3 \cdot 29 (1 \cdot 49)\\9 \cdot 13 (2 \cdot 74)\\7 \cdot 65 (2 \cdot 74)\\5 \cdot 29 (3 \cdot 11)\end{array}$	15 20 8 9 19 20 12 17 19 28 25 26	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 3 \cdot 95 \left(1 \cdot 84\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \\ 3 \cdot 05 \left(0 \cdot 97\right) \\ 4 \cdot 00 \left(1 \cdot 38\right) \\ 9 \cdot 51 \left(3 \cdot 02\right) \\ 7 \cdot 80 \left(2 \cdot 86\right) \\ 4 \cdot 08 \left(1 \cdot 88\right) \end{array}$				$3 \cdot 37$ $5 \cdot 27$ $4 \cdot 24$ $3 \cdot 27$ $6 \cdot 04$ $5 \cdot 46$ $11 \cdot 13$ $12 \cdot 51$ $10 \cdot 76$ $6 \cdot 38$ $6 \cdot 19$ $7 \cdot 96$	$\begin{array}{ccccc} 3\cdot 29 & [0\cdot 94, 5\cdot 64] \\ -0\cdot 65 & [-2\cdot 40, 1\cdot 10] \\ 1\cdot 15 & [-0\cdot 88, 3\cdot 18] \\ 2\cdot 35 & [-0\cdot 04, 4\cdot 74] \\ -0\cdot 26 & [-1\cdot 84, 1\cdot 32] \\ 0\cdot 52 & [-1\cdot 18, 2\cdot 22] \\ -0\cdot 10 & [-0\cdot 97, 0\cdot 77] \\ -0\cdot 47 & [-1\cdot 20, 0\cdot 26] \\ -0\cdot 71 & [-1\cdot 62, 0\cdot 20] \\ -0\cdot 38 & [-1\cdot 90, 1\cdot 14] \\ -0\cdot 15 & [-1\cdot 70, 1\cdot 40] \\ 1\cdot 21 & [-0\cdot 05, 2\cdot 47] \end{array}$
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Gambineri, 2004(29)c Gambineri, 2006(30)e Gambineri, 2006(30)f banez, 2004(31) banez, 2006(33) Kocak, 2002(35) JV Liqun, 2005(36) Vestler, 1998(37) Pasquali, 2000(38)a	13 20 10 20 17 12 16 19 27 25 35 8	$\begin{array}{c} 9 \cdot 70 \ (3 \cdot 80) \\ 7 \cdot 15 \ (2 \cdot 74) \\ 4 \cdot 62 \ (2 \cdot 87) \\ 5 \cdot 67 \ (3 \cdot 64) \\ 6 \cdot 05 \ (1 \cdot 58) \\ 4 \cdot 47 \ (3 \cdot 16) \\ 5 \cdot 40 \ (0 \cdot 69) \\ 2 \cdot 58 \ (1 \cdot 16) \\ 3 \cdot 29 \ (1 \cdot 49) \\ 9 \cdot 13 \ (2 \cdot 71) \\ 7 \cdot 65 \ (2 \cdot 74) \\ 5 \cdot 29 \ (3 \cdot 11) \\ 3 \cdot 60 \ (2 \cdot 45) \end{array}$	15 20 8 9 19 20 12 17 19 28 25 26 9	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 3 \cdot 95 \left(1 \cdot 84\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \\ 3 \cdot 05 \left(0 \cdot 97\right) \\ 4 \cdot 00 \left(1 \cdot 38\right) \\ 9 \cdot 51 \left(3 \cdot 02\right) \\ 7 \cdot 80 \left(2 \cdot 86\right) \\ 4 \cdot 08 \left(1 \cdot 88\right) \\ 3 \cdot 47 \left(1 \cdot 97\right) \end{array}$				$3 \cdot 37$ $5 \cdot 27$ $4 \cdot 24$ $3 \cdot 27$ $6 \cdot 04$ $5 \cdot 46$ $11 \cdot 13$ $12 \cdot 51$ $10 \cdot 76$ $6 \cdot 38$ $6 \cdot 19$ $7 \cdot 96$ $3 \cdot 93$	$\begin{array}{ccccccc} 3\cdot 29 & [0\cdot 94, 5\cdot 64] \\ -0\cdot 65 & [-2\cdot 40, 1\cdot 10] \\ 1\cdot 15 & [-0\cdot 88, 3\cdot 18] \\ 2\cdot 35 & [-0\cdot 04, 4\cdot 74] \\ -0\cdot 26 & [-1\cdot 18, 2\cdot 22] \\ -0\cdot 10 & [-0\cdot 97, 0\cdot 77] \\ -0\cdot 47 & [-1\cdot 20, 0\cdot 26] \\ -0\cdot 71 & [-1\cdot 62, 0\cdot 20] \\ -0\cdot 38 & [-1\cdot 90, 1\cdot 14] \\ -0\cdot 15 & [-1\cdot 70, 1\cdot 40] \\ 1\cdot 21 & [-0\cdot 05, 2\cdot 47] \\ 0\cdot 13 & [-2\cdot 00, 2\cdot 26] \end{array}$
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Sambineri, 2004(29)c Sambineri, 2006(30)e Sambineri, 2006(30)f banez, 2004(31) banez, 2004(32) banez, 2004(32) banez, 2004(33) Kocak, 2002(35) V Liqun, 2005(36) Nestler, 1998(37) Pasquali, 2000(38)a Pasquali, 2000(38)b	13 20 10 20 17 12 16 19 27 25 35 35 8 10	$\begin{array}{c}9 \cdot 70 \left(3 \cdot 80\right)\\7 \cdot 15 \left(2 \cdot 74\right)\\4 \cdot 62 \left(2 \cdot 87\right)\\5 \cdot 67 \left(3 \cdot 64\right)\\6 \cdot 05 \left(1 \cdot 58\right)\\4 \cdot 47 \left(3 \cdot 16\right)\\5 \cdot 40 \left(0 \cdot 69\right)\\2 \cdot 58 \left(1 \cdot 16\right)\\3 \cdot 29 \left(1 \cdot 49\right)\\9 \cdot 13 \left(2 \cdot 71\right)\\7 \cdot 65 \left(2 \cdot 74\right)\\5 \cdot 29 \left(3 \cdot 11\right)\\3 \cdot 60 \left(2 \cdot 45\right)\\4 \cdot 37 \left(2 \cdot 53\right)\end{array}$	15 20 8 9 19 20 12 17 19 28 25 26 9 8	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \\ 3 \cdot 05 \left(0 \cdot 97\right) \\ 4 \cdot 00 \left(1 \cdot 38\right) \\ 9 \cdot 51 \left(3 \cdot 02\right) \\ 7 \cdot 80 \left(2 \cdot 86\right) \\ 4 \cdot 08 \left(1 \cdot 88\right) \\ 3 \cdot 47 \left(1 \cdot 97\right) \\ 3 \cdot 42 \left(0 \cdot 55\right) \end{array}$				$3 \cdot 37$ $5 \cdot 27$ $4 \cdot 24$ $3 \cdot 27$ $6 \cdot 04$ $5 \cdot 46$ $11 \cdot 13$ $12 \cdot 51$ $10 \cdot 76$ $6 \cdot 38$ $6 \cdot 19$ $7 \cdot 96$ $3 \cdot 93$ $5 \cdot 88$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Gambineri, 2004(29)c Gambineri, 2006(30)e Gambineri, 2006(30)f Ibanez, 2004(31) Ibanez, 2004(32) Ibanez, 2004(33) Kocak, 2002(35) LV Liqun, 2005(36) Nestler, 1998(37) Pasquali, 2000(38)b Vandermolen, 2001(42)	13 20 10 20 17 12 16 19 27 25 35 8 10 11	$\begin{array}{c}9 \cdot 70 \left(3 \cdot 80\right) \\7 \cdot 15 \left(2 \cdot 74\right) \\4 \cdot 62 \left(2 \cdot 87\right) \\5 \cdot 67 \left(3 \cdot 64\right) \\6 \cdot 05 \left(1 \cdot 58\right) \\4 \cdot 47 \left(3 \cdot 16\right) \\5 \cdot 40 \left(0 \cdot 69\right) \\2 \cdot 58 \left(1 \cdot 16\right) \\3 \cdot 29 \left(1 \cdot 49\right) \\9 \cdot 13 \left(2 \cdot 71\right) \\7 \cdot 55 \left(2 \cdot 74\right) \\5 \cdot 29 \left(3 \cdot 11\right) \\3 \cdot 60 \left(2 \cdot 45\right) \\4 \cdot 37 \left(2 \cdot 53\right) \\7 \cdot 68 \left(6 \cdot 73\right) \end{array}$	15 20 8 9 19 20 12 17 19 28 25 26 9 8 14	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \\ 3 \cdot 05 \left(0 \cdot 97\right) \\ 4 \cdot 00 \left(1 \cdot 38\right) \\ 9 \cdot 51 \left(3 \cdot 02\right) \\ 7 \cdot 80 \left(2 \cdot 86\right) \\ 4 \cdot 08 \left(1 \cdot 88\right) \\ 3 \cdot 47 \left(1 \cdot 97\right) \\ 3 \cdot 42 \left(0 \cdot 55\right) \\ 7 \cdot 00 \left(4 \cdot 13\right) \end{array}$				$3 \cdot 37$ $5 \cdot 27$ $4 \cdot 24$ $3 \cdot 27$ $6 \cdot 04$ $5 \cdot 46$ $11 \cdot 13$ $12 \cdot 51$ $10 \cdot 76$ $6 \cdot 38$ $6 \cdot 19$ $7 \cdot 96$ $3 \cdot 93$ $5 \cdot 88$ $1 \cdot 05$	$\begin{array}{ccccccc} 3\cdot 29 & [0\cdot 94, 5\cdot 64] \\ -0\cdot 65 & [-2\cdot 40, 1\cdot 10] \\ 1\cdot 15 & [-0\cdot 88, 3\cdot 18] \\ 2\cdot 35 & [-0\cdot 04, 4\cdot 74] \\ -0\cdot 26 & [-1\cdot 84, 1\cdot 32] \\ 0\cdot 52 & [-1\cdot 18, 2\cdot 22] \\ 0\cdot 10 & [-0\cdot 97, 0\cdot 77] \\ -0\cdot 47 & [-1\cdot 20, 0\cdot 26] \\ -0\cdot 71 & [-1\cdot 62, 0\cdot 20] \\ -0\cdot 38 & [-1\cdot 90, 1\cdot 14] \\ -0\cdot 15 & [-1\cdot 70, 1\cdot 40] \\ 1\cdot 21 & [-0\cdot 05, 2\cdot 47] \\ 0\cdot 13 & [-2\cdot 00, 2\cdot 26] \\ 0\cdot 95 & [-0\cdot 66, 2\cdot 56] \\ 0\cdot 68 & [-3\cdot 85, 5\cdot 21] \end{array}$
Dutcome: DHEAS Baillergeon, 2004(25) Cibula, 2005(27) Elter, 2002(28) Gambineri, 2004(29)c Gambineri, 2004(29)d Gambineri, 2004(30)f Ibanez, 2004(31) Ibanez, 2004(32) Ibanez, 2004(33) Kocak, 2002(35) LV Liqun, 2005(36) Nestler, 1998(37) Pasquali, 2000(38)a Pasquali, 2000(38)a Pasquali, 2000(38)b Vandermolen, 2001(42) Yarali, 2002(44)	13 20 10 20 17 12 16 19 27 25 35 35 8 10	$\begin{array}{c}9 \cdot 70 \left(3 \cdot 80\right)\\7 \cdot 15 \left(2 \cdot 74\right)\\4 \cdot 62 \left(2 \cdot 87\right)\\5 \cdot 67 \left(3 \cdot 64\right)\\6 \cdot 05 \left(1 \cdot 58\right)\\4 \cdot 47 \left(3 \cdot 16\right)\\5 \cdot 40 \left(0 \cdot 69\right)\\2 \cdot 58 \left(1 \cdot 16\right)\\3 \cdot 29 \left(1 \cdot 49\right)\\9 \cdot 13 \left(2 \cdot 71\right)\\7 \cdot 65 \left(2 \cdot 74\right)\\5 \cdot 29 \left(3 \cdot 11\right)\\3 \cdot 60 \left(2 \cdot 45\right)\\4 \cdot 37 \left(2 \cdot 53\right)\end{array}$	15 20 8 9 19 20 12 17 19 28 25 26 9 8	$\begin{array}{c} 6 \cdot 41 \left(2 \cdot 20\right) \\ 7 \cdot 80 \left(2 \cdot 90\right) \\ 3 \cdot 47 \left(1 \cdot 41\right) \\ 3 \cdot 32 \left(1 \cdot 22\right) \\ 6 \cdot 31 \left(3 \cdot 16\right) \\ 5 \cdot 50 \left(1 \cdot 38\right) \\ 3 \cdot 05 \left(0 \cdot 97\right) \\ 4 \cdot 00 \left(1 \cdot 38\right) \\ 9 \cdot 51 \left(3 \cdot 02\right) \\ 7 \cdot 80 \left(2 \cdot 86\right) \\ 4 \cdot 08 \left(1 \cdot 88\right) \\ 3 \cdot 47 \left(1 \cdot 97\right) \\ 3 \cdot 42 \left(0 \cdot 55\right) \end{array}$				$3 \cdot 37$ $5 \cdot 27$ $4 \cdot 24$ $3 \cdot 27$ $6 \cdot 04$ $5 \cdot 46$ $11 \cdot 13$ $12 \cdot 51$ $10 \cdot 76$ $6 \cdot 38$ $6 \cdot 19$ $7 \cdot 96$ $3 \cdot 93$ $5 \cdot 88$	$\begin{array}{cccccc} 3\cdot 29 & [0\cdot 94, 5\cdot 64] \\ -0\cdot 65 & [-2\cdot 40, 1\cdot 10] \\ 1\cdot 15 & [-0\cdot 88, 3\cdot 18] \\ 2\cdot 35 & [-0\cdot 04, 4\cdot 74] \\ -0\cdot 26 & [-1\cdot 84, 1\cdot 32] \\ 0\cdot 52 & [-1\cdot 18, 2\cdot 22] \\ -0\cdot 10 & [-0\cdot 97, 0\cdot 77] \\ -0\cdot 47 & [-1\cdot 20, 0\cdot 26] \\ -0\cdot 71 & [-1\cdot 62, 0\cdot 20] \\ -0\cdot 38 & [-1\cdot 90, 1\cdot 14] \\ -0\cdot 15 & [-1\cdot 70, 1\cdot 40] \\ 1\cdot 21 & [-0\cdot 05, 2\cdot 47] \\ 0\cdot 13 & [-2\cdot 00, 2\cdot 26] \\ 0\cdot 95 & [-0\cdot 66, 2\cdot 56] \end{array}$

Fig. 2 Meta-analysis of weighted mean differences in post-treatment circulating androgens and SHBG.

SHBG circulating levels. In the secondary analysis, metformin administration also lowered the circulating levels of TT, DHEAS and ANDS.

This systematic review has the following strengths. We followed the Cochrane Collaboration methods for conducting systematic reviews and meta-analyses, including an extensive and systematic search to identify all relevant trials without language restrictions. However, we were unable to include two eligible trials in the meta-analyses^{45,46} because relevant data were incompletely reported or not provided by the authors.

There are some limitations to this review. All included participants were premenopausal women, who were either at high risk of developing, or had been diagnosed with, disorders affecting the sexual steroid axis. Thus, our results limit inference regarding metformin effects on circulating androgens and SHBG concentrations in healthy women.

utcome: Androstened									
Cibula, 2005(27)	13	7.80(3.50)	15	7.10(5.80)				5.41	0.70 [-2.80, 4.20]
Iter, 2002(28)	20	3.34(1.21)	20	6.06(2.86)				10.70	-2.72 [-4.08, -1.36]
ambineri, 2004(29)c	10	15.10(3.90)	8	12.20(2.60)		-	_	6.36	2.90 [-0.11, 5.91]
ambineri, 2004(29)d	10	11.20(5.00)	9	8.90(3.50)			-	4.81	2.30 [-1.55, 6.15]
ambineri, 2006(30)e	20	9.16(5.99)	19	8.43(3.27)				6.37	0.73 [-2.28, 3.74]
ambineri, 2006(30)f	17	8.99(4.11)	20	7.80(2.79)			_	8.07	1.19 [-1.11, 3.49]
anez, 2004(31)	12	6.20(2.77)	12	10.60(3.46)	-			7.54	$-4 \cdot 40 \ [-6 \cdot 91, -1 \cdot 89]$
anez, 2004(32)	16	3.07(0.97)	17	3.43(1.29)		_		12.14	-0.36 [-1.14, 0.42]
/ Ligun, 2005(36)	25	3.44(1.20)	25	6.22(2.31)				11.59	-2.78 [-3.80, -1.76]
estler, 1998(37)	35	7.32(3.71)	26	6.97(3.55)		_	_	9.36	0.35 [-1.49, 2.19]
	11	6.27(1.85)	14	6.97(1.95)		_		10.33	-0.70 [-2.20, 0.80]
andermolen, 2001(42)									
arali, 2002(44)	16	7.66(2.09)	16	8 · 36 (4 · 88)			_	7.31	-0.70 [-3.30, 1.90]
tal (95% CI) st for heterogeneity: $Chi^2 = 1$ st for overall effect: $Z = 1.11$		1 (<i>P</i> < 0.00001), l ² = 75.4	201			•		100.00	-0.6 [-1.67, 0.46]
					-10	-5 0	5	10	
tcome: SHBG									
ibula, 2005(27)	13	143.12(9.03)	15	139.93(12.85)			-	→ 9・44	3.19 [-4.96, 11.34]
ter, 2002(28)	20	114.70(32.70)	20	84.80(23.67)				▶ 3.70	29.90 [12.21, 47.59]
ambineri, 2004(29)c	10	19.30(16.30)	8	21.90(11.40)	←			→ 5.83	-2.60 [-15.42, 10.22]
ambineri, 2004(29)d	10	33.40(21.90)	9	28.50(11.20)	-			4.54	4.90 [-10.52, 20.32]
ambineri, 2004(29)d ambineri, 2006(30)e	20	22.10(12.50)	19	22.60(17.90)			-	8.00	-0.50 [-10.24, 9.24]
					•	_			
ambineri, 2006(30)f	17	26.40(12.90)	20	28.40(11.30)		-		9.70	-2.00 [-9.88, 5.88]
anez, 2004(31)	12	38.30(13.84)	12	26.30(11.07)				7.77	12.00 [1.97, 22.03]
anez, 2004(32)	16	62.50(27.78)	17	48.61(14.24)				4 · 63	13.89 [-1.31, 29.09]
anez, 2006(33)	19	48.61(15.14)	19	41.67(15.14)				→ 8.10	6.94 [-2.69, 16.57]
norram, 2006(34)	16	25.40(2.10)	15	19.90(2.90)				15.66	5.50 [3.71, 7.29]
/ Liqun, 2005(36)	25	116.67(30.90)	25	84·72(23·61)				▲·61	31.95 [16.71, 47.19]
estler, 1998(37)	35	93 • 75 (82 • 29)	26	125.00(88.54)	←			→ 0 · 75	-31.25 [-74.86, 12.36]
asquali, 2000(38)a	8	28.92(16.51)	9	28.12(14.71)				4.75	0.80 [-14.14, 15.74]
asquali, 2000(38)b	10	16.71(8.10)	8	13.81(2.06)	•		-	12.52	2.90 [-2.32, 8.12]
.5994an, 2000(30)D	TO	TO \T/0.TO)	D	T2 01/2.00)			_	20.22	[ک۲۰۵ , ۵۲۰۵ , ۵۰ ۵
al (95% Cl)	231		222					▶ 100.00	5.88 [2.01, 9.75]
est for heterogeneity: Chi ² = est for overall effect: Z = 2.98					-10	-5 0	5	10	
est for overall effect: $Z = 2.98$						-5 0	5	10	
st for overall effect: Z = 2.98 tcome: Glycaemia	B (<i>P</i> = 0.003)				-10	-5 0	5		
st for overall effect: Z = 2.98 tcome: Glycaemia aillergeon, 2004(25)	8 (<i>P</i> = 0.003)	4.68(0.70)	30	4 • 44 (0 • 73)	-10	-5 0	+ 5 -	10.23	0.24 [-0.13, 0.61]
st for overall effect: Z = 2.98 tcome: Glycaemia aillergeon, 2004(25)	B (<i>P</i> = 0.003)		30 15	4 · 44 (0 · 73) 4 · 58 (0 · 45)	-10	-5 0			0·24 [-0·13, 0·61] -0·16 [-0·51, 0·19]
st for overall effect: $Z = 2.98$ tcome: Glycaemia aillergeon, 2004(25) ibula, 2005(27)	8 (<i>P</i> = 0.003)	4.68(0.70)			-10	_5 0	5	10.23	
tst for overall effect: $Z = 2.98$ tcome: Glycaemia aillergeon, 2004(25) ibula, 2005(27) tter, 2002(28)	8 (P = 0.003)	$4 \cdot 68 (0 \cdot 70) 4 \cdot 42 (0 \cdot 50) 4 \cdot 34 (0 \cdot 62)$	15 20	4 · 58 (0 · 45) 4 · 68 (0 · 70)	10	-5 0	5	10·23 10·50 9·40	-0·16 [-0·51, 0·19] -0·34 [-0·75, 0·07]
t for overall effect: Z = 2-98 come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c	28 28 13 20 10	$4 \cdot 68 (0 \cdot 70) 4 \cdot 42 (0 \cdot 50) 4 \cdot 34 (0 \cdot 62) 4 \cdot 72 (0 \cdot 41)$	15 20 8	4 · 58 (0 · 45) 4 · 68 (0 · 70) 5 · 06 (0 · 56)	-10	-5 0	-	10·23 10·50 9·40 8·42	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.12]
t for overall effect: Z = 2-96 come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d	8 (P = 0.003) 28 13 20 10 10	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 4\cdot 72\ (0\cdot 41)\\ 4\cdot 48\ (0\cdot 62)\end{array}$	15 20 8 9	4 · 58 (0 · 45) 4 · 68 (0 · 70) 5 · 06 (0 · 56) 4 · 87 (0 · 42)	-10	-5 0		10.23 10.50 9.40 8.42 8.28	$\begin{array}{c} -0.16 & [-0.51, 0.19] \\ -0.34 & [-0.75, 0.07] \\ -0.34 & [-0.80, 0.12] \\ -0.39 & [-0.86, 0.08] \end{array}$
t for overall effect: Z = 2-96 tcome: Glycaemia aillergeon, 2004(25) ibula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d horram, 2006(34)	28 13 20 10 10	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 82) \end{array}$	15 20 8 9 15	4 • 58 (0 • 45) 4 • 68 (0 • 70) 5 • 06 (0 • 56) 4 • 87 (0 • 42) 5 • 18 (0 • 60)	-10	5 0	-	10·23 10·50 9·40 8·42 8·28 7·76	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.12] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37]
tor overall effect: Z = 2-96 torme: Glycaemia aillergeon, 2004(25) ibula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d norram, 2006(34) coak, 2002(35)	28 13 20 10 10 16 27	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 4\cdot 72\ (0\cdot 41)\\ 4\cdot 48\ (0\cdot 62)\\ 5\cdot 05\ (0\cdot 82)\\ 4\cdot 37\ (0\cdot 43)\end{array}$	15 20 8 9 15 28	$4 \cdot 58 (0 \cdot 45)$ $4 \cdot 68 (0 \cdot 70)$ $5 \cdot 06 (0 \cdot 56)$ $4 \cdot 87 (0 \cdot 42)$ $5 \cdot 18 (0 \cdot 60)$ $3 \cdot 84 (1 \cdot 07)$	-10	-5 0	- -	$ \begin{array}{c} 10 \cdot 23 \\ 10 \cdot 50 \\ 9 \cdot 40 \\ 8 \cdot 42 \\ 8 \cdot 28 \\ 7 \cdot 76 \\ 9 \cdot 06 \end{array} $	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.12] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96]
t for overall effect: Z = 2-96 come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d norram, 2006(34) tocak, 2002(35)	28 13 20 10 10	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 82) \end{array}$	15 20 8 9 15 28 25	4 • 58 (0 • 45) 4 • 68 (0 • 70) 5 • 06 (0 • 56) 4 • 87 (0 • 42) 5 • 18 (0 • 60)	-10	-5 0	- -	10·23 10·50 9·40 8·42 8·28 7·76	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.12] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37]
tor overall effect: Z = 2-98 come: Glycaemia aillergeon, 2004(25) ibula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d norram, 2006(34) ocak, 2002(35) / Liqun, 2005(36)	28 13 20 10 10 16 27	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 4\cdot 72\ (0\cdot 41)\\ 4\cdot 48\ (0\cdot 62)\\ 5\cdot 05\ (0\cdot 82)\\ 4\cdot 37\ (0\cdot 43)\end{array}$	15 20 8 9 15 28	$4 \cdot 58 (0 \cdot 45)$ $4 \cdot 68 (0 \cdot 70)$ $5 \cdot 06 (0 \cdot 56)$ $4 \cdot 87 (0 \cdot 42)$ $5 \cdot 18 (0 \cdot 60)$ $3 \cdot 84 (1 \cdot 07)$	-10		- - -	$ \begin{array}{c} 10 \cdot 23 \\ 10 \cdot 50 \\ 9 \cdot 40 \\ 8 \cdot 42 \\ 8 \cdot 28 \\ 7 \cdot 76 \\ 9 \cdot 06 \end{array} $	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.12] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96]
ti for overall effect: Z = 2-98 come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d norram, 2004(29)d norram, 2004(36) ycak, 2002(35) / Liqun, 2005(36) setter, 1998(37)	28 13 20 10 10 16 27 25 35	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 62) \\ 4 \cdot 37 \ (0 \cdot 62) \\ 4 \cdot 52 \ (0 \cdot 52) \\ 4 \cdot 49 \ (0 \cdot 52) \\ \end{array}$	15 20 8 9 15 28 25 26	$\begin{array}{c} 4\cdot 58\ (0\cdot 45)\\ 4\cdot 68\ (0\cdot 70)\\ 5\cdot 06\ (0\cdot 56)\\ 4\cdot 87\ (0\cdot 42)\\ 5\cdot 18\ (0\cdot 60)\\ 3\cdot 84\ (1\cdot 07)\\ 4\cdot 88\ (0\cdot 72)\\ 4\cdot 22\ (0\cdot 57)\\ \end{array}$	-10	-5 0	5	$ \begin{array}{c} 10 \cdot 23 \\ 10 \cdot 50 \\ 9 \cdot 40 \\ 8 \cdot 42 \\ 8 \cdot 28 \\ 7 \cdot 76 \\ 9 \cdot 06 \\ 10 \cdot 63 \\ 9 \cdot 75 \\ \end{array} $	$\begin{array}{c} -0\cdot16 & [-0\cdot51, \ 0\cdot19] \\ -0.34 & [-0.75, \ 0.07] \\ -0.34 & [-0.80, \ 0.12] \\ -0.39 & [-0.86, \ 0.08] \\ -0.13 & [-0.63, \ 0.37] \\ 0.53 & [0.10, \ 0.96] \\ -0.34 & [-0.69, \ 0.01] \\ 0.27 & [-0.12, \ 0.66] \end{array}$
ti for overall effect: Z = 2-96 come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)d ambineri, 2004(29)d orram, 2006(34) ocak, 2002(35) / Liqun, 2005(36) estler, 1998(37) asquali, 2000(38)a	28 13 20 10 10 16 27 25 35 8	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 4\cdot 72\ (0\cdot 41)\\ 4\cdot 48\ (0\cdot 62)\\ 5\cdot 05\ (0\cdot 82)\\ 4\cdot 37\ (0\cdot 43)\\ 4\cdot 54\ (0\cdot 52)\\ 4\cdot 49\ (0\cdot 98)\\ 4\cdot 94\ (0\cdot 72)\end{array}$	15 20 8 9 15 28 25 26 9	$\begin{array}{c} 4\cdot 58\ (0\cdot 45)\\ 4\cdot 68\ (0\cdot 70)\\ 5\cdot 06\ (0\cdot 56)\\ 4\cdot 87\ (0\cdot 42)\\ 5\cdot 18\ (0\cdot 60)\\ 3\cdot 94\ (1\cdot 07)\\ 4\cdot 88\ (0\cdot 72)\\ 4\cdot 22\ (0\cdot 57)\\ 5\cdot 16\ (0\cdot 94) \end{array}$	-10		- - -	$ \begin{array}{c} 10 \cdot 23 \\ 10 \cdot 50 \\ 9 \cdot 40 \\ 8 \cdot 42 \\ 8 \cdot 28 \\ 7 \cdot 76 \\ 9 \cdot 06 \\ 10 \cdot 63 \\ 9 \cdot 75 \\ 4 \cdot 41 \\ \end{array} $	$\begin{array}{cccccc} -0.16 & [-0.51, & 0.19] \\ -0.34 & [-0.75, & 0.07] \\ -0.34 & [-0.80, & 0.12] \\ -0.39 & [-0.86, & 0.08] \\ -0.13 & [-0.63, & 0.37] \\ 0.53 & [0.10, & 0.96] \\ -0.34 & [-0.69, & 0.01] \\ 0.27 & [-0.12, & 0.66] \\ -0.22 & [-1.01, & 0.57] \end{array}$
ti for overall effect: Z = 2-96 come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d norram, 2006(34) norram, 2006(34) socak, 2002(35) / Liqun, 2005(36) sstler, 1998(37) asquali, 2000(38)a saquali, 2000(38)b	28 28 13 20 10 10 16 27 25 35 8 10	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 4\cdot 72\ (0\cdot 41)\\ 4\cdot 48\ (0\cdot 62)\\ 5\cdot 05\ (0\cdot 82)\\ 4\cdot 37\ (0\cdot 43)\\ 4\cdot 54\ (0\cdot 52)\\ 4\cdot 49\ (0\cdot 52)\\ 4\cdot 49\ (0\cdot 72)\\ 4\cdot 99\ (0\cdot 94) \end{array}$	15 20 8 9 15 28 25 26 9 8	$\begin{array}{c} 4\cdot 58\ (0\cdot 45)\\ 4\cdot 68\ (0\cdot 70)\\ 5\cdot 06\ (0\cdot 56)\\ 4\cdot 87\ (0\cdot 42)\\ 5\cdot 18\ (0\cdot 60)\\ 3\cdot 94\ (1\cdot 07)\\ 4\cdot 88\ (0\cdot 72)\\ 4\cdot 22\ (0\cdot 57)\\ 5\cdot 16\ (0\cdot 94)\\ 5\cdot 27\ (0\cdot 61) \end{array}$	-10		- - -	$10 \cdot 23$ $10 \cdot 50$ $9 \cdot 40$ $8 \cdot 42$ $8 \cdot 28$ $7 \cdot 76$ $9 \cdot 06$ $10 \cdot 63$ $9 \cdot 75$ $4 \cdot 41$ $5 \cdot 04$	$\begin{array}{c} -0\cdot16 & [-0\cdot51, \ 0\cdot19] \\ -0\cdot34 & [-0\cdot75, \ 0\cdot07] \\ -0\cdot34 & [-0\cdot80, \ 0\cdot02] \\ -0\cdot39 & [-0\cdot86, \ 0\cdot08] \\ -0\cdot13 & [-0\cdot63, \ 0\cdot37] \\ 0\cdot53 & [0\cdot10, \ 0\cdot96] \\ -0\cdot34 & [-0\cdot69, \ 0\cdot01] \\ 0\cdot27 & [-0\cdot12, \ 0\cdot66] \\ -0\cdot22 & [-1\cdot01, \ 0\cdot57] \\ -0\cdot28 & [-1\cdot00, \ 0\cdot44] \end{array}$
tt for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d orram, 2006(34) bocak, 2002(35) / Liqun, 2005(36) setter, 1998(37) asquali, 2000(38)a asquali, 2000(38)b andermolen, 2001(42)	28 13 20 10 10 16 27 25 35 8	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 4\cdot 72\ (0\cdot 41)\\ 4\cdot 48\ (0\cdot 62)\\ 5\cdot 05\ (0\cdot 82)\\ 4\cdot 37\ (0\cdot 43)\\ 4\cdot 54\ (0\cdot 52)\\ 4\cdot 49\ (0\cdot 98)\\ 4\cdot 94\ (0\cdot 72)\end{array}$	15 20 8 9 15 28 25 26 9 8 14	$\begin{array}{c} 4\cdot 58\ (0\cdot 45)\\ 4\cdot 68\ (0\cdot 70)\\ 5\cdot 06\ (0\cdot 56)\\ 4\cdot 87\ (0\cdot 42)\\ 5\cdot 18\ (0\cdot 60)\\ 3\cdot 94\ (1\cdot 07)\\ 4\cdot 88\ (0\cdot 72)\\ 4\cdot 22\ (0\cdot 57)\\ 5\cdot 16\ (0\cdot 94) \end{array}$	-10		- - -	$ \begin{array}{c} 10 \cdot 23 \\ 10 \cdot 50 \\ 9 \cdot 40 \\ 8 \cdot 42 \\ 8 \cdot 28 \\ 7 \cdot 76 \\ 9 \cdot 06 \\ 10 \cdot 63 \\ 9 \cdot 75 \\ 4 \cdot 41 \\ \end{array} $	$\begin{array}{cccccc} -0.16 & [-0.51, & 0.19] \\ -0.34 & [-0.75, & 0.07] \\ -0.34 & [-0.80, & 0.12] \\ -0.39 & [-0.86, & 0.08] \\ -0.13 & [-0.63, & 0.37] \\ 0.53 & [0.10, & 0.96] \\ -0.34 & [-0.69, & 0.01] \\ 0.27 & [-0.12, & 0.66] \\ -0.22 & [-1.01, & 0.57] \end{array}$
tor overall effect: Z = 2-98 torme: Glycaemia aillergeon, 2004(25) bubla, 2005(27) ter, 2002(28) ambineri, 2004(29)d norram, 2004(29)d norram, 2006(34) porram, 2006(34) porram, 2005(36) setter, 1998(37) asquali, 2000(38)a asquali, 2000(38)b andermolen, 2001(42) al (95% CI)	28 28 13 20 10 10 16 27 35 8 0 11 213	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 5\cdot 05\ (0\cdot 82)\\ 4\cdot 37\ (0\cdot 41)\\ 4\cdot 38\ (0\cdot 52)\\ 4\cdot 37\ (0\cdot 43)\\ 4\cdot 52)\\ 4\cdot 49\ (0\cdot 52)\\ 4\cdot 49\ (0\cdot 72)\\ 4\cdot 99\ (0\cdot 74)\\ 4\cdot 38\ (0\cdot 83)\\ \end{array}$	15 20 8 9 15 28 25 26 9 8	$\begin{array}{c} 4\cdot 58\ (0\cdot 45)\\ 4\cdot 68\ (0\cdot 70)\\ 5\cdot 06\ (0\cdot 56)\\ 4\cdot 87\ (0\cdot 42)\\ 5\cdot 18\ (0\cdot 60)\\ 3\cdot 94\ (1\cdot 07)\\ 4\cdot 88\ (0\cdot 72)\\ 4\cdot 22\ (0\cdot 57)\\ 5\cdot 16\ (0\cdot 94)\\ 5\cdot 27\ (0\cdot 61) \end{array}$	-10		- - -	$10 \cdot 23$ $10 \cdot 50$ $9 \cdot 40$ $8 \cdot 42$ $8 \cdot 28$ $7 \cdot 76$ $9 \cdot 06$ $10 \cdot 63$ $9 \cdot 75$ $4 \cdot 41$ $5 \cdot 04$	$\begin{array}{c} -0\cdot16 & [-0\cdot51, \ 0\cdot19] \\ -0\cdot34 & [-0\cdot75, \ 0\cdot07] \\ -0\cdot34 & [-0\cdot80, \ 0\cdot02] \\ -0\cdot39 & [-0\cdot86, \ 0\cdot08] \\ -0\cdot13 & [-0\cdot63, \ 0\cdot37] \\ 0\cdot53 & [0\cdot10, \ 0\cdot96] \\ -0\cdot34 & [-0\cdot69, \ 0\cdot01] \\ 0\cdot27 & [-0\cdot12, \ 0\cdot66] \\ -0\cdot22 & [-1\cdot01, \ 0\cdot57] \\ -0\cdot28 & [-1\cdot00, \ 0\cdot44] \end{array}$
st for overall effect: <i>Z</i> = 2·98	28 (P = 0.003) 28 13 20 10 10 16 27 35 8 8 11 213 23.98, df = 1	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 5\cdot 05\ (0\cdot 82)\\ 4\cdot 37\ (0\cdot 41)\\ 4\cdot 38\ (0\cdot 52)\\ 4\cdot 37\ (0\cdot 43)\\ 4\cdot 52)\\ 4\cdot 49\ (0\cdot 52)\\ 4\cdot 49\ (0\cdot 72)\\ 4\cdot 99\ (0\cdot 74)\\ 4\cdot 38\ (0\cdot 83)\\ \end{array}$	15 20 8 9 15 28 25 26 9 8 14	$\begin{array}{c} 4\cdot 58\ (0\cdot 45)\\ 4\cdot 68\ (0\cdot 70)\\ 5\cdot 06\ (0\cdot 56)\\ 4\cdot 87\ (0\cdot 42)\\ 5\cdot 18\ (0\cdot 60)\\ 3\cdot 94\ (1\cdot 07)\\ 4\cdot 88\ (0\cdot 72)\\ 4\cdot 22\ (0\cdot 57)\\ 5\cdot 16\ (0\cdot 94)\\ 5\cdot 27\ (0\cdot 61) \end{array}$			- 	$10 \cdot 23$ $10 \cdot 50$ $9 \cdot 40$ $8 \cdot 42$ $8 \cdot 28$ $7 \cdot 76$ $9 \cdot 06$ $10 \cdot 63$ $9 \cdot 75$ $4 \cdot 41$ $5 \cdot 04$ $6 \cdot 53$ $100 \cdot 00$	$\begin{array}{c} -0\cdot16 & [-0\cdot51, \ 0\cdot19] \\ -0.34 & [-0.75, \ 0.07] \\ -0.34 & [-0.80, \ 0.12] \\ -0.39 & [-0.86, \ 0.08] \\ -0.13 & [-0.63, \ 0.37] \\ 0.53 & [0.10, \ 0.96] \\ -0.34 & [-0.69, \ 0.01] \\ 0.27 & [-0.12, \ 0.66] \\ -0.22 & [-1.01, \ 0.57] \\ -0.28 & [-1.00, \ 0.44] \\ -0.61 & [-1.20, \ -0.02] \end{array}$
tt for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d norram, 2006(34) pocram, 2005(36) setler, 1998(37) asquali, 2000(38)a asquali, 2000(38)a asquali, 2000(38)b andermolen, 2001(42) al (95% CI) tt for heterogeneity: Chi ² = 1 tt for overall effect: $Z = 1.21$	28 (P = 0.003) 28 13 20 10 10 16 27 35 8 8 11 213 23.98, df = 1	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 5\cdot 05\ (0\cdot 82)\\ 4\cdot 37\ (0\cdot 41)\\ 4\cdot 38\ (0\cdot 52)\\ 4\cdot 37\ (0\cdot 43)\\ 4\cdot 52)\\ 4\cdot 49\ (0\cdot 52)\\ 4\cdot 49\ (0\cdot 72)\\ 4\cdot 99\ (0\cdot 74)\\ 4\cdot 38\ (0\cdot 83)\\ \end{array}$	15 20 8 9 15 28 25 26 9 8 14	$\begin{array}{c} 4\cdot 58\ (0\cdot 45)\\ 4\cdot 68\ (0\cdot 70)\\ 5\cdot 06\ (0\cdot 56)\\ 4\cdot 87\ (0\cdot 42)\\ 5\cdot 18\ (0\cdot 60)\\ 3\cdot 94\ (1\cdot 07)\\ 4\cdot 88\ (0\cdot 72)\\ 4\cdot 22\ (0\cdot 57)\\ 5\cdot 16\ (0\cdot 94)\\ 5\cdot 27\ (0\cdot 61) \end{array}$	-10		- - - - - -	$10 \cdot 23$ $10 \cdot 50$ $9 \cdot 40$ $8 \cdot 42$ $8 \cdot 28$ $7 \cdot 76$ $9 \cdot 06$ $10 \cdot 63$ $9 \cdot 75$ $4 \cdot 41$ $5 \cdot 04$ $6 \cdot 53$	$\begin{array}{c} -0\cdot16 & [-0\cdot51, \ 0\cdot19] \\ -0.34 & [-0.75, \ 0.07] \\ -0.34 & [-0.80, \ 0.12] \\ -0.39 & [-0.86, \ 0.08] \\ -0.13 & [-0.63, \ 0.37] \\ 0.53 & [0.10, \ 0.96] \\ -0.34 & [-0.69, \ 0.01] \\ 0.27 & [-0.12, \ 0.66] \\ -0.22 & [-1.01, \ 0.57] \\ -0.28 & [-1.00, \ 0.44] \\ -0.61 & [-1.20, \ -0.02] \end{array}$
t for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d orram, 2006(34) ocak, 2002(35) / Liqun, 2005(36) setter, 1998(37) asquali, 2000(38)a asquali, 2000(38)b andermolen, 2001(42) al (95% Cl) t for heterogeneity: Chi ² = 1 t for overall effect: $Z = 1.21$ come: Insulin	28 28 13 20 10 10 16 27 25 35 8 10 11 213 23.98, df = 1 1 (<i>P</i> = 0.23)	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 88 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 82) \\ 4 \cdot 37 \ (0 \cdot 43) \\ 4 \cdot 54 \ (0 \cdot 52) \\ 4 \cdot 49 \ (0 \cdot 98) \\ 4 \cdot 94 \ (0 \cdot 72) \\ 4 \cdot 99 \ (0 \cdot 94) \\ 4 \cdot 38 \ (0 \cdot 83) \end{array}$	15 20 8 9 15 28 25 26 9 8 14 207	$\begin{array}{c} 4\cdot 58\ (0\cdot 45)\\ 4\cdot 68\ (0\cdot 70)\\ 5\cdot 06\ (0\cdot 56)\\ 4\cdot 87\ (0\cdot 42)\\ 5\cdot 18\ (0\cdot 60)\\ 3\cdot 64\ (1\cdot 07)\\ 4\cdot 88\ (0\cdot 72)\\ 4\cdot 22\ (0\cdot 57)\\ 5\cdot 16\ (0\cdot 94)\\ 5\cdot 27\ (0\cdot 61)\\ 4\cdot 99\ (0\cdot 62) \end{array}$			- 	10.23 10.50 9.40 8.42 8.28 7.76 9.06 10.63 9.75 4.41 5.04 6.53 100.00	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.12] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07]
at for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d horram, 2006(34) bock, 2002(35) / Liqun, 2005(36) asquali, 2000(38)a asquali, 2000(38)a andermolen, 2001(42) al (95% C1) tt for overall effect: $Z = 1.21$ come: Insulin bula, 2005(27)	28 28 13 20 10 10 16 27 35 35 8 10 11 213 23.98, df = 1 1 (<i>P</i> = 0.23)	$4 \cdot 68 (0 \cdot 70) 4 \cdot 42 (0 \cdot 50) 4 \cdot 34 (0 \cdot 62) 4 \cdot 72 (0 \cdot 41) 4 \cdot 48 (0 \cdot 62) 5 \cdot 05 (0 \cdot 82) 4 \cdot 52) 4 \cdot 44 (0 \cdot 52) 4 \cdot 49 (0 \cdot 98) 4 \cdot 94 (0 \cdot 72) 4 \cdot 99 (0 \cdot 94) 4 \cdot 38 (0 \cdot 83) 1 (P = 0.01), I2 = 54.1% 104 \cdot 86 (34 \cdot 03)$	15 20 8 9 15 28 25 26 9 8 14 207	$\begin{array}{c} 4\cdot 58 \ (0\cdot 45) \\ 4\cdot 68 \ (0\cdot 70) \\ 5\cdot 06 \ (0\cdot 56) \\ 4\cdot 87 \ (0\cdot 42) \\ 5\cdot 18 \ (0\cdot 60) \\ 3\cdot 94 \ (1\cdot 07) \\ 4\cdot 88 \ (0\cdot 72) \\ 4\cdot 22 \ (0\cdot 57) \\ 5\cdot 16 \ (0\cdot 94) \\ 5\cdot 27 \ (0\cdot 61) \\ 4\cdot 99 \ (0\cdot 62) \end{array}$			- 	10.23 10.50 9.40 8.42 8.28 7.76 9.06 10.63 9.75 4.41 5.04 6.53 100.00	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.02] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] 2.08 [-27.86, 32.02]
t for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d norram, 2006(34) nocak, 2002(35) / Liqun, 2005(36) sstler, 1998(37) asquali, 2000(38)a asquali, 2000(38)a asquali, 2000(38)b andermolen, 2001(42) al (95% Cl) t for heterogeneity: Chi ² = . t for overall effect: $Z = 1.21$ come: Insulin bula, 2005(27) ter, 2002(28)	28 28 13 20 10 16 27 25 35 8 11 213 23.98, df = 1 1 (<i>P</i> = 0.23)	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 62) \\ 4 \cdot 57 \ (0 \cdot 43) \\ 4 \cdot 54 \ (0 \cdot 52) \\ 4 \cdot 99 \ (0 \cdot 98) \\ 4 \cdot 94 \ (0 \cdot 72) \\ 4 \cdot 99 \ (0 \cdot 94) \\ 4 \cdot 38 \ (0 \cdot 83) \end{array}$ $1 \ (P = 0.01), \ I^2 = 54.1\%$	15 20 8 9 15 28 25 26 9 8 14 207	$\begin{array}{c} 4\cdot 58 \ (0\cdot 45) \\ 4\cdot 68 \ (0\cdot 70) \\ 5\cdot 06 \ (0\cdot 56) \\ 4\cdot 87 \ (0\cdot 42) \\ 5\cdot 18 \ (0\cdot 60) \\ 3\cdot 84 \ (1\cdot 07) \\ 4\cdot 88 \ (0\cdot 72) \\ 4\cdot 22 \ (0\cdot 57) \\ 5\cdot 16 \ (0\cdot 94) \\ 5\cdot 27 \ (0\cdot 61) \\ 4\cdot 99 \ (0\cdot 62) \end{array}$			- 	10.23 10.50 9.40 8.42 8.28 7.76 9.06 10.63 9.75 4.41 5.04 6.53 100.00	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.76, 0.07] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07]
t for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d noram, 2006(34) nocak, 2002(35) / Liqun, 2005(36) sstler, 1998(37) asquali, 2000(38)a asquali, 2000(38)b andermolen, 2001(42) al (95% Cl) t for heterogeneity: Chi ² = : t for overall effect: $Z = 1.21$ come: Insulin bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c	28 (P = 0.003) 28 13 20 10 10 10 16 27 25 8 10 11 213 23.98, df = 1 1 (P = 0.23) 13 20 10 10 10 10 10 10 10 10 10 1	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 4\cdot 72\ (0\cdot 41)\\ 4\cdot 48\ (0\cdot 62)\\ 4\cdot 37\ (0\cdot 43)\\ 4\cdot 37\ (0\cdot 43)\\ 4\cdot 54\ (0\cdot 52)\\ 4\cdot 49\ (0\cdot 98)\\ 4\cdot 94\ (0\cdot 72)\\ 4\cdot 99\ (0\cdot 94)\\ 4\cdot 38\ (0\cdot 83)\\ 1\ (P=0\cdot 01),\ I^2=54\cdot 1\%\\ \hline \\ 104\cdot 86\ (34\cdot 03)\\ 81\cdot 84\ (36\cdot 79)\\ 153\cdot 00\ (251\cdot 00)\\ \end{array}$	15 20 8 9 15 26 9 8 14 207 15 207	$\begin{array}{c} 4 \cdot 58 \ (0 \cdot 45) \\ 4 \cdot 68 \ (0 \cdot 70) \\ 5 \cdot 06 \ (0 \cdot 56) \\ 4 \cdot 87 \ (0 \cdot 42) \\ 5 \cdot 18 \ (0 \cdot 60) \\ 3 \cdot 94 \ (1 \cdot 07) \\ 4 \cdot 88 \ (0 \cdot 72) \\ 4 \cdot 22 \ (0 \cdot 57) \\ 5 \cdot 16 \ (0 \cdot 94) \\ 5 \cdot 27 \ (0 \cdot 61) \\ 4 \cdot 99 \ (0 \cdot 62) \end{array}$			- 	10 · 23 10 · 50 9 · 40 8 · 42 8 · 28 7 · 76 9 · 06 10 · 63 9 · 75 4 · 41 5 · 04 6 · 53 100 · 00 4 4 7 · 89 7 · 83 2 · 04	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.02] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] 2.08 [-27.86, 32.02] -36.76 [-67.67, -5.85] 80.00 [-78.40, 238.40]
t for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d noram, 2006(34) nocak, 2002(35) / Liqun, 2005(36) sstler, 1998(37) asquali, 2000(38)a asquali, 2000(38)b andermolen, 2001(42) al (95% Cl) t for heterogeneity: Chi ² = : t for overall effect: $Z = 1.21$ come: Insulin bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c	28 28 13 20 10 16 27 25 35 8 11 213 23.98, df = 1 1 (<i>P</i> = 0.23)	$4 \cdot 68 (0 \cdot 70) 4 \cdot 42 (0 \cdot 50) 4 \cdot 34 (0 \cdot 62) 4 \cdot 72 (0 \cdot 41) 4 \cdot 48 (0 \cdot 62) 5 \cdot 05 (0 \cdot 82) 4 \cdot 37 (0 \cdot 43) 4 \cdot 54 (0 \cdot 52) 4 \cdot 49 (0 \cdot 98) 4 \cdot 94 (0 \cdot 72) 4 \cdot 99 (0 \cdot 94) 4 \cdot 38 (0 \cdot 83) 1 (P = 0.01), I2 = 54.1% 104 \cdot 86 (34 \cdot 03) 81 \cdot 94 (36 \cdot 79) 153 \cdot 00 (251 \cdot 00) 72 \cdot 00 (31 \cdot 00)$	15 20 8 9 15 28 25 26 9 8 14 207	$\begin{array}{c} 4\cdot 58 \ (0\cdot 45) \\ 4\cdot 68 \ (0\cdot 70) \\ 5\cdot 06 \ (0\cdot 56) \\ 4\cdot 87 \ (0\cdot 42) \\ 5\cdot 18 \ (0\cdot 60) \\ 3\cdot 84 \ (1\cdot 07) \\ 4\cdot 88 \ (0\cdot 72) \\ 4\cdot 22 \ (0\cdot 57) \\ 5\cdot 16 \ (0\cdot 94) \\ 5\cdot 27 \ (0\cdot 61) \\ 4\cdot 99 \ (0\cdot 62) \end{array}$			- 	10.23 10.50 9.40 8.42 8.28 7.76 9.06 10.63 9.75 4.41 5.04 6.53 100.00	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.75, 0.07] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.20, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07]
t for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d norram, 2006(34) nocak, 2002(35) / Liqun, 2005(36) astler, 1998(37) asquali, 2000(38)a asquali, 2000(38)a andermolen, 2001(42) al (95% Cl) t for heterogeneity: Chi ² = : t for overall effect: $Z = 1.21$ come: Insulin bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c	28 (P = 0.003) 28 13 20 10 10 10 16 27 25 8 10 11 213 23.98, df = 1 1 (P = 0.23) 13 20 10 10 10 10 10 10 10 10 10 1	$\begin{array}{c} 4\cdot 68\ (0\cdot 70)\\ 4\cdot 42\ (0\cdot 50)\\ 4\cdot 34\ (0\cdot 62)\\ 4\cdot 72\ (0\cdot 41)\\ 4\cdot 48\ (0\cdot 62)\\ 4\cdot 37\ (0\cdot 43)\\ 4\cdot 37\ (0\cdot 43)\\ 4\cdot 54\ (0\cdot 52)\\ 4\cdot 49\ (0\cdot 98)\\ 4\cdot 94\ (0\cdot 72)\\ 4\cdot 99\ (0\cdot 94)\\ 4\cdot 38\ (0\cdot 83)\\ 1\ (P=0\cdot 01),\ I^2=54\cdot 1\%\\ \hline \\ 104\cdot 86\ (34\cdot 03)\\ 81\cdot 84\ (36\cdot 79)\\ 153\cdot 00\ (251\cdot 00)\\ \end{array}$	15 20 8 9 15 26 9 8 14 207 15 207	$\begin{array}{c} 4\cdot 58 \ (0\cdot 45) \\ 4\cdot 68 \ (0\cdot 70) \\ 5\cdot 06 \ (0\cdot 56) \\ 4\cdot 87 \ (0\cdot 42) \\ 5\cdot 18 \ (0\cdot 60) \\ 3\cdot 94 \ (1\cdot 07) \\ 4\cdot 88 \ (0\cdot 72) \\ 4\cdot 22 \ (0\cdot 57) \\ 5\cdot 16 \ (0\cdot 94) \\ 5\cdot 27 \ (0\cdot 61) \\ 4\cdot 99 \ (0\cdot 62) \end{array}$			- 	10 · 23 10 · 50 9 · 40 8 · 42 8 · 28 7 · 76 9 · 06 10 · 63 9 · 75 4 · 41 5 · 04 6 · 53 100 · 00 4 4 7 · 89 7 · 83 2 · 04	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.02] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] 2.08 [-27.86, 32.02] -36.76 [-67.67, -5.85] 80.00 [-78.40, 238.40]
t for overall effect: $Z = 2.98$ come: Glycaemia illergeon, 2004(25) oula, 2005(27) er, 2002(28) imbineri, 2004(29)c imbineri, 2004(29)c imbineri, 2004(29)d iorram, 2006(34) cak, 2002(35) Liqun, 2005(36) stater, 1998(37) isquali, 2000(38)a isquali, 2000(38)a isquali, 2000(38)a isquali, 2000(38)b indermolen, 2001(42) It for heterogeneity: Chi ² = 1 t for overall effect: $Z = 1.21$ come: Insulin Dula, 2005(27) ier, 2002(28) imbineri, 2004(29)c imbineri, 2004(29)c imbineri, 2004(29)c imbineri, 2004(29)c	28 (P=0.003) 28 13 20 10 10 16 27 35 8 10 11 213 23.98, df = 1 1 (P=0.23) 13 20 10 10 10 11 21.3 23.98, df = 1 1 (P=0.23) 10 10 10 10 10 10 10 10 10 10	$4 \cdot 68 (0 \cdot 70) 4 \cdot 42 (0 \cdot 50) 4 \cdot 34 (0 \cdot 62) 4 \cdot 72 (0 \cdot 41) 4 \cdot 48 (0 \cdot 62) 5 \cdot 05 (0 \cdot 82) 4 \cdot 37 (0 \cdot 43) 4 \cdot 54 (0 \cdot 52) 4 \cdot 49 (0 \cdot 98) 4 \cdot 94 (0 \cdot 72) 4 \cdot 99 (0 \cdot 94) 4 \cdot 38 (0 \cdot 83) 1 (P = 0.01), I2 = 54.1% 104 \cdot 86 (34 \cdot 03) 81 \cdot 94 (36 \cdot 79) 153 \cdot 00 (251 \cdot 00) 72 \cdot 00 (31 \cdot 00)$	15 20 8 9 15 28 25 26 9 8 14 207 15 207	$\begin{array}{c} 4 \cdot 58 \ (0 \cdot 45) \\ 4 \cdot 68 \ (0 \cdot 70) \\ 5 \cdot 06 \ (0 \cdot 56) \\ 4 \cdot 87 \ (0 \cdot 42) \\ 5 \cdot 18 \ (0 \cdot 60) \\ 3 \cdot 94 \ (1 \cdot 07) \\ 4 \cdot 88 \ (0 \cdot 72) \\ 4 \cdot 22 \ (0 \cdot 57) \\ 5 \cdot 16 \ (0 \cdot 94) \\ 5 \cdot 27 \ (0 \cdot 61) \\ 4 \cdot 99 \ (0 \cdot 62) \end{array}$			- 	10 · 23 10 · 50 9 · 40 8 · 42 8 · 28 7 · 76 9 · 06 10 · 63 9 · 75 4 · 41 5 · 04 6 · 53 100 · 00 4 7 · 89 7 · 80 6 · 01 6 · 01 6 · 01 6 · 01 7 · 80 6 · 01 7 · 80 7 · 8	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.02] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] -0.12 [-0.32, 0.07] -0.12 [-0.32, 0.07]
t for overall effect: $Z = 2.98$ come: Glycaemia illergeon, 2004(25) ula, 2005(27) er, 2002(28) imbineri, 2004(29)c imbineri, 2004(29)d oram, 2006(34) cak, 2002(35) 'Liqun, 2005(36) steler, 1998(37) squali, 2000(38)a squali, 2000(38)a squali, 2000(38)a squali, 2000(38)a i for heterogeneity: Chi ² = 1 come: Insulin come: Insulin c	28 (P = 0.003) 28 13 20 10 10 16 27 25 8 10 11 213 23.98 df = 1 1 (P = 0.23) 13 20 10 10 10 10 10 10 10 10 10 1	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 82) \\ 4 \cdot 37 \ (0 \cdot 43) \\ 4 \cdot 54 \ (0 \cdot 52) \\ 4 \cdot 49 \ (0 \cdot 98) \\ 4 \cdot 94 \ (0 \cdot 72) \\ 4 \cdot 99 \ (0 \cdot 94) \\ 4 \cdot 38 \ (0 \cdot 83) \\ \end{array}$	15 20 8 9 15 26 9 8 14 207 15 207	$\begin{array}{c} 4\cdot 58 \left(0\cdot 45\right) \\ 4\cdot 68 \left(0\cdot 70\right) \\ 5\cdot 06 \left(0\cdot 56\right) \\ 4\cdot 87 \left(0\cdot 42\right) \\ 5\cdot 18 \left(0\cdot 60\right) \\ 3\cdot 94 \left(1\cdot 07\right) \\ 4\cdot 88 \left(0\cdot 72\right) \\ 4\cdot 22 \left(0\cdot 57\right) \\ 5\cdot 16 \left(0\cdot 94\right) \\ 5\cdot 27 \left(0\cdot 61\right) \\ 4\cdot 99 \left(0\cdot 62\right) \end{array}$			- 	10 ⋅ 23 10 ⋅ 50 9 ⋅ 40 8 ⋅ 42 8 ⋅ 28 7 ⋅ 76 9 ⋅ 06 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 100 ⋅ 00 4 7 ⋅ 89 7 ⋅ 83 2 ⋅ 04 6 ⋅ 01 8 ⋅ 38	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.02] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] -0.12 [-0.32, 0.07] -36.76 [-67.67, -5.85] 80.00 [-78.40, 238.40 -23.00 [-82.38, 36.38] -6.95 [-26.64, 12.74] 6.94 [-13.21, 27.09]
t for overall effect: $Z = 2.98$ come: Glycaemia illergeon, 2004(25) jula, 2005(27) er, 2002(28) imbineri, 2004(29)c imbineri, 2004(29)d orram, 2006(34) cak, 2002(35) Liqun, 2005(36) istler, 1998(37) squali, 2000(38)b ndermolen, 2001(42) al (95% Cl) t for heterogeneity: Chi ² = : for overall effect: $Z = 1.21$ come: Insulin coula, 2005(27) er, 2002(28) imbineri, 2004(29)c imbineri, 2004(29)c imbineri, 2004(29)d imbineri, 2006(30)e imbineri, 2006(30)f innez, 2006(33)	8 (P = 0.003) 28 13 20 10 10 16 27 35 8 10 11 213 23.98, df = 1 1 (P = 0.23) 13 20 10 10 10 10 10 10 10 10 10 1	$4 \cdot 68 (0 \cdot 70)$ $4 \cdot 42 (0 \cdot 50)$ $4 \cdot 34 (0 \cdot 62)$ $4 \cdot 72 (0 \cdot 41)$ $4 \cdot 48 (0 \cdot 62)$ $5 \cdot 05 (0 \cdot 82)$ $4 \cdot 37 (0 \cdot 43)$ $4 \cdot 52)$ $4 \cdot 49 (0 \cdot 52)$ $4 \cdot 94 (0 \cdot 72)$ $5 \cdot 55 (27 \cdot 78)$ $8 \cdot 33 (30 \cdot 28)$	15 20 8 9 15 28 25 26 9 8 14 207 15 20 8 9 19 20 19	$\begin{array}{c} 4\cdot 58 \ (0\cdot 45) \\ 4\cdot 68 \ (0\cdot 70) \\ 5\cdot 06 \ (0\cdot 56) \\ 4\cdot 87 \ (0\cdot 42) \\ 5\cdot 18 \ (0\cdot 60) \\ 3\cdot 94 \ (1\cdot 07) \\ 4\cdot 88 \ (0\cdot 72) \\ 4\cdot 22 \ (0\cdot 57) \\ 5\cdot 16 \ (0\cdot 94) \\ 5\cdot 27 \ (0\cdot 61) \\ 4\cdot 99 \ (0\cdot 62) \end{array}$			- 	10 ⋅ 23 10 ⋅ 50 9 ⋅ 40 8 ⋅ 42 8 ⋅ 28 7 ⋅ 76 9 ⋅ 906 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 100 ⋅ 00 4 7 ⋅ 89 7 ⋅ 89 7 ⋅ 89 7 ⋅ 89 7 ⋅ 83 8 ⋅ 37	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.80, 0.012] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] -0.12 [-0.31, 44, 7.04] -0.4 [-13.21, 27.09] -13.20 [-33.44, 7.04]
t for overall effect: $Z = 2.98$ come: Glycaemia illergeon, 2004(25) Jula, 2005(27) er, 2002(28) mbineri, 2004(29)c mbineri, 2004(29)d orram, 2006(34) cak, 2002(35) Liqun, 2005(36) steler, 1998(37) squali, 2000(38)b ndermolen, 2001(42) It for heterogeneity: Chi ² = : for overall effect: $Z = 1.21$ come: Insulin Dula, 2005(27) er, 2002(28) Imbineri, 2004(29)c Imbineri, 2004(29)c Imbineri, 2004(29)c Imbineri, 2004(29)c Imbineri, 2004(30)f Innez, 2006(34)	28 (P=0.003) 28 13 20 10 10 16 27 35 8 11 213 23.98, df = 1 1 (P=0.23) 1 (P=0.23) 1 3 20 10 10 10 11 213 23.98, df = 1 1 (P=0.23) 1 3 20 10 10 10 10 11 21 21 21 21 21 21 21 21 21	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 84 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 62) \\ 4 \cdot 37 \ (0 \cdot 43) \\ 4 \cdot 54 \ (0 \cdot 52) \\ 4 \cdot 49 \ (0 \cdot 98) \\ 4 \cdot 94 \ (0 \cdot 72) \\ 4 \cdot 99 \ (0 \cdot 94) \\ 4 \cdot 38 \ (0 \cdot 83) \\ \end{array}$ $1 \ (P = 0.01), l^2 = 54.1\%$ $104 \cdot 86 \ (34 \cdot 03) \\ 81 \cdot 84 \ (36 \cdot 79) \\ 153 \cdot 00 \ (251 \cdot 00) \\ 72 \cdot 00 \ (31 \cdot 00) \\ 69 \cdot 44 \ (34 \cdot 72) \\ 55 \cdot 55 \ (27 \cdot 78) \\ 83 \cdot 33 \ (30 \cdot 28) \\ 96 \cdot 53 \ (66 \cdot 67) \\ \end{array}$	15 20 8 9 15 28 25 26 9 8 14 207 15 200 8 9 19 20 9 15	$\begin{array}{c} 4\cdot 58 \ (0\cdot 45) \\ 4\cdot 68 \ (0\cdot 70) \\ 5\cdot 06 \ (0\cdot 56) \\ 4\cdot 87 \ (0\cdot 42) \\ 5\cdot 18 \ (0\cdot 60) \\ 3\cdot 84 \ (1\cdot 07) \\ 4\cdot 88 \ (0\cdot 72) \\ 4\cdot 22 \ (0\cdot 57) \\ 5\cdot 16 \ (0\cdot 94) \\ 5\cdot 27 \ (0\cdot 61) \\ 4\cdot 99 \ (0\cdot 62) \end{array}$			- 	10 ⋅ 23 10 ⋅ 50 9 ⋅ 40 8 ⋅ 42 8 ⋅ 28 7 ⋅ 76 9 ⋅ 06 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 100 ⋅ 00 4 7 ⋅ 89 7 ⋅ 89 7 ⋅ 83 2 ⋅ 04 8 ⋅ 40 8 ⋅ 40 8 ⋅ 42 8 ⋅ 28 8 ⋅ 76 9 ⋅ 06 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 10 0 ⋅ 00 4 7 ⋅ 89 7 ⋅ 89 7 ⋅ 89 7 ⋅ 89 7 ⋅ 89 7 ⋅ 89 8 ⋅ 37 6 ⋅ 94 8 ⋅ 37 6 ⋅ 94 8 ⋅ 37 6 ⋅ 94 8 ⋅ 37 6 ⋅ 94 8 ⋅ 37 8 ⋅ 37 8 ⋅ 37 8 ⋅ 37 8 ⋅ 37 8 ⋅ 37 8 ⋅ 40 8 ⋅ 37 6 ⋅ 94	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.75, 0.07] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] -0.12 [-0.32, 0.07]
t for overall effect: $Z = 2.98$ come: Glycaemia illergeon, 2004(25) ulla, 2005(27) er, 2002(28) mbineri, 2004(29)c mrbineri, 2004(29)d orram, 2006(34) cak, 2002(35) Liqun, 2005(36) stler, 1998(37) squali, 2000(38)b ndermolen, 2001(42) dl (95% Cl) tor heterogeneity: Chi ² = 1 tor overall effect: $Z = 1.21$ come: Insulin coula, 2005(27) er, 2002(28) umbineri, 2004(29)c umbineri, 2004(29)c umbineri, 2004(29)c umbineri, 2006(30)f innez, 2006(30)f innez, 2006(34) caram, 2006(34) cak, 2002(35)	28 (P = 0.003) 28 13 20 10 10 16 27 25 8 10 11 213 23.98, df = 1 1 (P = 0.23) 1 1 (P = 0.23) 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 82) \\ 4 \cdot 37 \ (0 \cdot 43) \\ 4 \cdot 54 \ (0 \cdot 52) \\ 4 \cdot 99 \ (0 \cdot 98) \\ 4 \cdot 94 \ (0 \cdot 72) \\ 4 \cdot 99 \ (0 \cdot 94) \\ 4 \cdot 38 \ (0 \cdot 83) \\ \end{array}$ $1 \ (P = 0.01), \ P = 54.1\%$ $104 \cdot 86 \ (34 \cdot 03) \\ 81 \cdot 84 \ (36 \cdot 79) \\ 153 \cdot 00 \ (251 \cdot 00) \\ 72 \cdot 00 \ (31 \cdot 00) \\ 72 \cdot 00 \ (31 \cdot 00) \\ 72 \cdot 00 \ (31 \cdot 02) \\ 55 \cdot 55 \ (27 \cdot 78) \\ 83 \cdot 33 \ (30 \cdot 28) \\ 96 \ (55 \ (66 \cdot 67) \\ 147 \cdot 92 \ (206 \cdot 25) \\ \end{array}$	15 20 8 9 15 26 9 8 14 207 15 207 15 20 8 9 9 19 20 19 15 28	$\begin{array}{c} 4\cdot 58 \left(0\cdot 45\right) \\ 4\cdot 68 \left(0\cdot 70\right) \\ 5\cdot 06 \left(0\cdot 56\right) \\ 4\cdot 87 \left(0\cdot 42\right) \\ 5\cdot 18 \left(0\cdot 60\right) \\ 3\cdot 94 \left(1\cdot 07\right) \\ 4\cdot 88 \left(0\cdot 72\right) \\ 4\cdot 22 \left(0\cdot 57\right) \\ 5\cdot 16 \left(0\cdot 94\right) \\ 5\cdot 27 \left(0\cdot 61\right) \\ 4\cdot 99 \left(0\cdot 62\right) \end{array}$			- 	10 · 23 10 · 50 9 · 40 8 · 42 8 · 28 7 · 76 9 · 06 10 · 63 9 · 75 4 · 41 5 · 04 6 · 53 100 · 00 4 7 · 89 7 · 83 2 · 04 6 · 01 8 · 38 8 · 37 6 · 94 3 · 46	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.75, 0.07] -0.39 [-0.86, 0.02] -0.39 [-0.86, 0.03] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] -0.12 [-0.32, 0.07] -0.12 [-0.32, 0.07] -36.76 [-67.67, -5.85] 80.00 [-78.40, 238.40 -23.00 [-82.38, 36.38] -6.95 [-26.64, 12.74] 6.94 [-13.21, 27.09] -13.20 [-33.44, 7.04] -20.14 [-65.36, 25.08] -6.94 [-114.490, 101.0
t for overall effect: $Z = 2.98$ come: Glycaemia illergeon, 2004(25) sula, 2005(27) er, 2002(28) imbineri, 2004(29)c imbineri, 2004(29)d orram, 2006(34) cak, 2002(35) Liqun, 2005(36) istler, 1998(37) squali, 2000(38)b ndermolen, 2001(42) al (95% Cl) t for heterogeneity: Chi ² = : for overall effect: $Z = 1.21$ come: Insulin coula, 2005(27) er, 2002(28) imbineri, 2004(29)c imbineri, 2004(29)c imbineri, 2004(29)c imbineri, 2004(29)c imbineri, 2004(30)e imbineri, 2006(30)f inoram, 2006(34) cak, 2002(35) Liqun, 2005(36)	8 (P = 0.003) 28 13 20 10 10 16 27 35 8 10 11 213 23.98, df = 1 1 (P = 0.23) 13 20 10 10 11 23.98, df = 1 1 (P = 0.23) 13 20 10 10 20 11 23.98, df = 1 1 (P = 0.23) 10 20 20 20 21 21 21 21 21 21 21 21 21 21	$4 \cdot 68 (0 \cdot 70)$ $4 \cdot 42 (0 \cdot 50)$ $4 \cdot 34 (0 \cdot 62)$ $4 \cdot 72 (0 \cdot 41)$ $4 \cdot 48 (0 \cdot 62)$ $5 \cdot 05 (0 \cdot 82)$ $4 \cdot 37 (0 \cdot 43)$ $4 \cdot 54 (0 \cdot 52)$ $4 \cdot 49 (0 \cdot 98)$ $4 \cdot 94 (0 \cdot 72)$ $4 \cdot 99 (0 \cdot 94)$ $4 \cdot 38 (0 \cdot 83)$ $1 (P = 0.01), I^2 = 54.1\%$ $104 \cdot 86 (34 \cdot 03)$ $81 \cdot 84 (36 \cdot 79)$ $153 \cdot 00 (251 \cdot 00)$ $72 \cdot 00 (31 \cdot 00)$ $69 \cdot 44 (34 \cdot 72)$ $55 \cdot 55 (27 \cdot 78)$ $83 \cdot 33 (30 \cdot 28)$ $96 \cdot 53 (66 \cdot 67)$ $147 \cdot 92 (206 \cdot 25)$ $61 \cdot 99 (38 \cdot 82)$	15 20 8 9 15 28 25 26 9 8 14 207 15 20 8 9 19 15 20 8 9 19 15 28 25	$\begin{array}{c} 4\cdot 58(0\cdot 45)\\ 4\cdot 68(0\cdot 70)\\ 5\cdot 06(0\cdot 56)\\ 4\cdot 87(0\cdot 42)\\ 5\cdot 18(0\cdot 60)\\ 3\cdot 94(1\cdot 07)\\ 4\cdot 88(0\cdot 72)\\ 4\cdot 22(0\cdot 57)\\ 5\cdot 16(0\cdot 94)\\ 5\cdot 27(0\cdot 61)\\ 4\cdot 99(0\cdot 62)\\ \end{array}$			- 	10 ⋅ 23 10 ⋅ 50 9 ⋅ 40 8 ⋅ 42 8 ⋅ 28 7 ⋅ 76 9 ⋅ 906 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 100 ⋅ 00 4 7 ⋅ 89 7 ⋅ 89 7 ⋅ 83 8 ⋅ 38 8 ⋅ 37 6 ⋅ 94 8 ⋅ 38 8 ⋅ 37 6 ⋅ 94 6 ⋅ 57 8 ⋅ 38 8 ⋅ 37 6 ⋅ 94 8 ⋅ 38 8 ⋅ 37 8 ⋅ 38 8 ⋅ 38 8 ⋅ 37 8 ⋅ 38 8 ⋅ 38 8 ⋅ 37 8 ⋅ 38 8 ⋅	$\begin{array}{c} -0.16 & [-0.51, \ 0.19] \\ -0.34 & [-0.75, \ 0.07] \\ -0.34 & [-0.80, \ 0.12] \\ -0.39 & [-0.86, \ 0.08] \\ -0.13 & [-0.63, \ 0.37] \\ 0.53 & [0.10, \ 0.96] \\ -0.34 & [-0.69, \ 0.01] \\ 0.27 & [-0.12, \ 0.66] \\ -0.22 & [-1.01, \ 0.57] \\ -0.28 & [-1.00, \ 0.44] \\ -0.61 & [-1.20, \ -0.02] \\ -0.12 & [-0.32, \ 0.07] \\ \end{array}$
t for overall effect: $Z = 2.98$ come: Glycaemia iillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d iorram, 2006(34) iocak, 2002(35) / Liqun, 2005(36) estler, 1998(37) isquali, 2000(38)b indermolen, 2001(42) al (95% Cl) t for heterogeneity: Chi ² = : t for overall effect: $Z = 1.21$ come: Insulin bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c	28 (P = 0.003) 28 13 20 10 10 16 27 35 8 11 213 23.98, df = 1 1 (P = 0.23) 1 (P = 0.23	$4 \cdot 68 (0 \cdot 70)$ $4 \cdot 42 (0 \cdot 50)$ $4 \cdot 34 (0 \cdot 62)$ $4 \cdot 72 (0 \cdot 41)$ $4 \cdot 48 (0 \cdot 62)$ $5 \cdot 05 (0 \cdot 82)$ $4 \cdot 37 (0 \cdot 43)$ $4 \cdot 54 (0 \cdot 52)$ $4 \cdot 94 (0 \cdot 52)$ $4 \cdot 94 (0 \cdot 72)$ $4 \cdot 99 (0 \cdot 98)$ $4 \cdot 38 (0 \cdot 83)$ $1 (P = 0.01), I^2 = 54.1\%$ $104 \cdot 86 (34 \cdot 03)$ $81 \cdot 84 (36 \cdot 79)$ $153 \cdot 00 (251 \cdot 00)$ $72 \cdot 00 (31 \cdot 00)$ $69 \cdot 44 (34 \cdot 72)$ $55 \cdot 55 (27 \cdot 78)$ $83 \cdot 33 (30 \cdot 28)$ $96 \cdot 53 (66 \cdot 67)$ $147 \cdot 92 (206 \cdot 25)$ $61 \cdot 39 (38 \cdot 82)$ $97 \cdot 22 (82 \cdot 22)$	15 20 8 9 15 28 25 26 9 8 14 207 15 20 8 9 19 20 9 19 20 9 15 28 25 26	$\begin{array}{c} 4\cdot 58 \left(0\cdot 45\right)\\ 4\cdot 68 \left(0\cdot 70\right)\\ 5\cdot 06 \left(0\cdot 56\right)\\ 4\cdot 87 \left(0\cdot 42\right)\\ 5\cdot 18 \left(0\cdot 60\right)\\ 3\cdot 84 \left(1\cdot 07\right)\\ 4\cdot 88 \left(0\cdot 72\right)\\ 4\cdot 22 \left(0\cdot 57\right)\\ 5\cdot 16 \left(0\cdot 94\right)\\ 5\cdot 27 \left(0\cdot 61\right)\\ 4\cdot 99 \left(0\cdot 62\right)\\ \end{array}$			- 	10 ⋅ 23 10 ⋅ 50 9 ⋅ 40 8 ⋅ 42 8 ⋅ 28 7 ⋅ 76 9 ⋅ 06 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 100 ⋅ 00 4 7 ⋅ 89 7 ⋅ 89 7 ⋅ 83 2 ⋅ 04 8 ⋅ 40 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 28 7 ⋅ 76 6 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 8 ⋅ 40 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 27 6 ⋅ 69 4 ⋅ 41 8 ⋅ 27 8 ⋅ 40 8 ⋅ 40 8 ⋅ 40 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 80 7 ⋅ 80 7 ⋅ 80 7 ⋅ 80 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 80 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 80 7 ⋅ 60 8 ⋅ 40 8 ⋅ 80 8 ⋅ 80 6 ⋅ 94 3 ⋅ 40 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 8 ⋅ 80 6 ⋅ 94 3 ⋅ 40 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 8 ⋅ 80 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 8 ⋅ 8	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.75, 0.07] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] -0.12 [-0.32, 0.07] -0.14 [-0.536, 25.08] -0.94 [-114.90, 101.0] -0.14 [-0.70.00, -24.72 6.94 [-42.15, 56.03]
t for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d norram, 2006(34) norram, 2006(34) nocak, 2002(35) / Liqun, 2005(36) estler, 1998(37) asquali, 2000(38)b andermolen, 2001(42) al (95% Cl) t for heterogeneity: Chi ² = : t for overall effect: $Z = 1.21$ come: Insulin bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2005(30)c amb	8 (P = 0.003) 28 13 20 10 10 16 27 35 8 10 11 213 23.98, df = 1 1 (P = 0.23) 13 20 10 10 11 23.98, df = 1 1 (P = 0.23) 13 20 10 10 20 11 23.98, df = 1 1 (P = 0.23) 10 20 20 20 21 21 21 21 21 21 21 21 21 21	$4 \cdot 68 (0 \cdot 70)$ $4 \cdot 42 (0 \cdot 50)$ $4 \cdot 34 (0 \cdot 62)$ $4 \cdot 72 (0 \cdot 41)$ $4 \cdot 48 (0 \cdot 62)$ $5 \cdot 05 (0 \cdot 82)$ $4 \cdot 37 (0 \cdot 43)$ $4 \cdot 54 (0 \cdot 52)$ $4 \cdot 49 (0 \cdot 98)$ $4 \cdot 94 (0 \cdot 72)$ $4 \cdot 99 (0 \cdot 94)$ $4 \cdot 38 (0 \cdot 83)$ $1 (P = 0 \cdot 01), I^2 = 54 \cdot 1\%$ $104 \cdot 86 (34 \cdot 03)$ $81 \cdot 64 (36 \cdot 79)$ $153 \cdot 00 (251 \cdot 00)$ $72 \cdot 00 (31 \cdot 00)$ $69 \cdot 44 (34 \cdot 72)$ $55 \cdot 55 (27 \cdot 78)$ $83 \cdot 33 (30 \cdot 28)$ $96 \cdot 53 (66 \cdot 67)$ $147 \cdot 92 (206 \cdot 25)$ $61 \cdot 99 (38 \cdot 82)$	15 20 8 9 15 28 25 26 9 8 14 207 15 20 8 9 19 15 20 8 9 19 15 28 25	$\begin{array}{c} 4\cdot 58(0\cdot 45)\\ 4\cdot 68(0\cdot 70)\\ 5\cdot 06(0\cdot 56)\\ 4\cdot 87(0\cdot 42)\\ 5\cdot 18(0\cdot 60)\\ 3\cdot 94(1\cdot 07)\\ 4\cdot 88(0\cdot 72)\\ 4\cdot 22(0\cdot 57)\\ 5\cdot 16(0\cdot 94)\\ 5\cdot 27(0\cdot 61)\\ 4\cdot 99(0\cdot 62)\\ \end{array}$			- 	10 ⋅ 23 10 ⋅ 50 9 ⋅ 40 8 ⋅ 42 8 ⋅ 28 7 ⋅ 76 9 ⋅ 906 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 100 ⋅ 00 4 7 ⋅ 89 7 ⋅ 89 7 ⋅ 83 8 ⋅ 38 8 ⋅ 37 6 ⋅ 94 8 ⋅ 38 8 ⋅ 37 6 ⋅ 94 6 ⋅ 57 8 ⋅ 38 8 ⋅ 37 6 ⋅ 94 8 ⋅ 38 8 ⋅ 37 8 ⋅ 38 8 ⋅ 38 8 ⋅ 37 8 ⋅ 38 8 ⋅ 38 8 ⋅ 37 8 ⋅ 38 8 ⋅	$\begin{array}{c} -0.16 & [-0.51, \ 0.19] \\ -0.34 & [-0.75, \ 0.07] \\ -0.34 & [-0.80, \ 0.12] \\ -0.39 & [-0.86, \ 0.08] \\ -0.13 & [-0.63, \ 0.37] \\ 0.53 & [0.10, \ 0.96] \\ -0.34 & [-0.69, \ 0.01] \\ 0.27 & [-0.12, \ 0.66] \\ -0.22 & [-1.01, \ 0.57] \\ -0.28 & [-1.00, \ 0.44] \\ -0.61 & [-1.20, \ -0.02] \\ -0.12 & [-0.32, \ 0.07] \\ \end{array}$
t for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)d iorram, 2006(34) iocak, 2002(35) / Liqun, 2005(36) sstler, 1998(37) asquali, 2000(38)a asquali, 2000(38)b andermolen, 2001(42) and (95% Cl) t for heterogeneity: Chi ² = : t for overall effect: $Z = 1.21$ come: Insulin bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)d ambineri, 2006(30)f anez, 2006(34) poram, 2006(34) poram, 2006(34) porak, 2002(35) / Liqun, 2005(36) astler, 1998(37) tsquali, 2000(38)a	28 (P = 0.003) 28 13 20 10 10 16 27 35 8 11 213 23.98, df = 1 1 (P = 0.23) 1 (P = 0.23	$4 \cdot 68 (0 \cdot 70)$ $4 \cdot 42 (0 \cdot 50)$ $4 \cdot 34 (0 \cdot 62)$ $4 \cdot 72 (0 \cdot 41)$ $4 \cdot 48 (0 \cdot 62)$ $5 \cdot 05 (0 \cdot 82)$ $4 \cdot 37 (0 \cdot 43)$ $4 \cdot 54 (0 \cdot 52)$ $4 \cdot 94 (0 \cdot 52)$ $4 \cdot 94 (0 \cdot 72)$ $4 \cdot 99 (0 \cdot 98)$ $4 \cdot 38 (0 \cdot 83)$ $1 (P = 0.01), I^2 = 54.1\%$ $104 \cdot 86 (34 \cdot 03)$ $81 \cdot 84 (36 \cdot 79)$ $153 \cdot 00 (251 \cdot 00)$ $72 \cdot 00 (31 \cdot 00)$ $69 \cdot 44 (34 \cdot 72)$ $55 \cdot 55 (27 \cdot 78)$ $83 \cdot 33 (30 \cdot 28)$ $96 \cdot 53 (66 \cdot 67)$ $147 \cdot 92 (206 \cdot 25)$ $61 \cdot 39 (38 \cdot 82)$ $97 \cdot 22 (82 \cdot 22)$	15 20 8 9 15 28 25 26 9 8 14 207 15 20 8 9 19 20 9 19 20 9 15 28 25 26	$\begin{array}{c} 4\cdot 58 \left(0\cdot 45\right)\\ 4\cdot 68 \left(0\cdot 70\right)\\ 5\cdot 06 \left(0\cdot 56\right)\\ 4\cdot 87 \left(0\cdot 42\right)\\ 5\cdot 18 \left(0\cdot 60\right)\\ 3\cdot 84 \left(1\cdot 07\right)\\ 4\cdot 88 \left(0\cdot 72\right)\\ 4\cdot 22 \left(0\cdot 57\right)\\ 5\cdot 16 \left(0\cdot 94\right)\\ 5\cdot 27 \left(0\cdot 61\right)\\ 4\cdot 99 \left(0\cdot 62\right)\\ \end{array}$			- 	10 ⋅ 23 10 ⋅ 50 9 ⋅ 40 8 ⋅ 42 8 ⋅ 28 7 ⋅ 76 9 ⋅ 06 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 100 ⋅ 00 4 7 ⋅ 89 7 ⋅ 89 7 ⋅ 83 2 ⋅ 04 8 ⋅ 40 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 28 7 ⋅ 76 6 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 8 ⋅ 40 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 27 6 ⋅ 69 4 ⋅ 41 8 ⋅ 27 8 ⋅ 40 8 ⋅ 40 8 ⋅ 40 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 80 7 ⋅ 80 7 ⋅ 80 7 ⋅ 80 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 80 8 ⋅ 37 6 ⋅ 94 3 ⋅ 40 8 ⋅ 80 7 ⋅ 60 8 ⋅ 40 8 ⋅ 80 8 ⋅ 80 6 ⋅ 94 3 ⋅ 40 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 8 ⋅ 80 6 ⋅ 94 3 ⋅ 40 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 8 ⋅ 80 8 ⋅ 80 7 ⋅ 60 8 ⋅ 80 8 ⋅ 8	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.75, 0.07] -0.39 [-0.86, 0.08] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] -0.12 [-0.32, 0.07] -0.14 [-0.536, 25.08] -0.94 [-114.90, 101.0] -0.14 [-0.70.00, -24.72 6.94 [-42.15, 56.03]
aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c aster, 1998(37) asquali, 2000(38)a asquali, 2000(38)a asquali, 2000(38)a andermolen, 2001(42) al (95% CI) tf or heterogeneity: Chi ² = : tcome: Insulin bula, 2005(27) ter, 2002(28) ambineri, 2000(38)b andermolen, 2001(42) al (95% CI) tf or overall effect: $Z = 1-21$ come: Insulin bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)d ambineri, 2006(30)f anz, 2006(33) norram, 2006(34) codi(35) / Liqun, 2005(36) sequali, 2000(38)a asquali, 2000(38)a	8 (P = 0.003) 28 13 20 10 10 16 27 35 8 10 11 23.98, df = 1 1 (P = 0.23) 13 20 10 10 10 11 23.98, df = 1 1 (P = 0.23) 13 20 10 10 20 11 23.98, df = 1 1 (P = 0.23) 10 10 25 35 8 10 11 23.98, df = 1 1 (P = 0.23) 10 10 20 10 20 10 10 20 10 21 23.98, df = 1 1 (P = 0.23) 10 20 20 20 20 20 20 20 20 20 2	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 82) \\ 4 \cdot 37 \ (0 \cdot 43) \\ 4 \cdot 54 \ (0 \cdot 52) \\ 4 \cdot 49 \ (0 \cdot 98) \\ 4 \cdot 94 \ (0 \cdot 72) \\ 4 \cdot 99 \ (0 \cdot 94) \\ 4 \cdot 38 \ (0 \cdot 83) \end{array}$ $1 \ (P = 0 \cdot 01), \ I^2 = 54 \cdot 1\%$ $104 \cdot 86 \ (34 \cdot 03) \\ 81 \cdot 64 \ (36 \cdot 7) \\ 134 \cdot 436 \ (7) \\ 153 \cdot 00 \ (251 \cdot 00) \\ 72 \cdot 00 \ (31 \cdot 00) \\ 69 \cdot 44 \ (34 \cdot 72) \\ 55 \cdot 55 \ (27 \cdot 78) \\ 83 \cdot 33 \ (30 \cdot 28) \\ 96 \cdot 53 \ (66 \cdot 67) \\ 147 \cdot 92 \ (226 \cdot 25) \\ 61 \cdot 39 \ (38 \cdot 82) \\ 97 \cdot 22 \ (82 \cdot 22) \\ 99 \cdot 30 \ (59 \cdot 03) \\ 150 \cdot 00 \ (216 \cdot 67) \end{array}$	15 20 8 9 15 28 25 26 9 8 14 207 15 207 15 20 8 9 9 20 19 15 28 25 26 6 9	$\begin{array}{c} 4 \cdot 58 \ (0 \cdot 45) \\ 4 \cdot 68 \ (0 \cdot 70) \\ 5 \cdot 06 \ (0 \cdot 56) \\ 4 \cdot 87 \ (0 \cdot 42) \\ 5 \cdot 18 \ (0 \cdot 60) \\ 3 \cdot 94 \ (1 \cdot 07) \\ 4 \cdot 88 \ (0 \cdot 72) \\ 4 \cdot 22 \ (0 \cdot 57) \\ 5 \cdot 16 \ (0 \cdot 94) \\ 5 \cdot 27 \ (0 \cdot 61) \\ 4 \cdot 99 \ (0 \cdot 62) \end{array}$			- 	10 ⋅ 23 10 ⋅ 50 9 ⋅ 40 8 ⋅ 42 8 ⋅ 28 7 ⋅ 76 9 ⋅ 06 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 100 ⋅ 00 4 4 7 ⋅ 89 7 ⋅ 83 8 ⋅ 38 8 ⋅ 37 6 ⋅ 94 6 ⋅ 51 8 ⋅ 40 8 ⋅ 42 7 ⋅ 89 7 ⋅ 89 7 ⋅ 83 8 ⋅ 38 8 ⋅ 37 6 ⋅ 94 6 ⋅ 51 8 ⋅ 40 8 ⋅ 42 7 ⋅ 89 7 ⋅ 89 7 ⋅ 89 7 ⋅ 89 7 ⋅ 83 8 ⋅ 37 6 ⋅ 94 6 ⋅ 51 8 ⋅ 30 8 ⋅ 37 6 ⋅ 94 6 ⋅ 51 8 ⋅ 30 8 ⋅ 37 6 ⋅ 94 6 ⋅ 51 8 ⋅ 30 8 ⋅ 37 6 ⋅ 94 6 ⋅ 51 7 ⋅ 89 7 ⋅ 83 8 ⋅ 37 6 ⋅ 94 6 ⋅ 51 8 ⋅ 30 8 ⋅ 38 8 ⋅ 37 6 ⋅ 94 6 ⋅ 57 7 ⋅ 75 7 ⋅ 89 7 ⋅ 83 7 ⋅ 83 7 ⋅ 83 7 ⋅ 83 7 ⋅ 83 7 ⋅ 83 8 ⋅ 37 6 ⋅ 94 6 ⋅ 51 7 ⋅ 61 8 ⋅ 30 8 ⋅ 38 8 ⋅ 37 6 ⋅ 57 7 ⋅ 75 7 ⋅ 77 7 ⋅ 75 7 ⋅ 75 7 ⋅ 75 7 ⋅ 77 7 ⋅ 75 7	$\begin{array}{c} -0.16 & [-0.51, \ 0.19] \\ -0.34 & [-0.75, \ 0.07] \\ -0.34 & [-0.80, \ 0.12] \\ -0.39 & [-0.86, \ 0.08] \\ -0.13 & [-0.63, \ 0.37] \\ 0.53 & [0.10, \ 0.96] \\ -0.34 & [-0.69, \ 0.01] \\ 0.27 & [-0.12, \ 0.66] \\ -0.22 & [-1.01, \ 0.57] \\ -0.28 & [-1.00, \ 0.44] \\ -0.61 & [-1.20, \ -0.02] \\ -0.12 & [-0.32, \ 0.07] \\ \end{array}$
aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d horram, 2006(34) bock, 2002(35) / Liqun, 2005(36) asquali, 2000(38)a asquali, 2000(38)b andermolen, 2001(42) al (95% CI) tf or overall effect: $Z = 1.21$ come: Insulin bula, 2005(27) ter, 2002(28) ambierri, 2004(29)c ambineri, 2004(30)f norram, 2006(30) norram, 2006(31) nock nock an	28 (P = 0.003) 28 13 20 10 10 16 27 35 8 0 11 213 23.98, df = 1 1 (P = 0.23) 1 3 20 10 10 11 213 23.98, df = 1 1 (P = 0.23) 1 1 20 10 20 10 10 20 10 10 25 35 8 10 20 10 10 10 10 10 10 10 10 10 1	$4 \cdot 68 (0 \cdot 70) 4 \cdot 42 (0 \cdot 50) 4 \cdot 34 (0 \cdot 62) 4 \cdot 72 (0 \cdot 41) 4 \cdot 48 (0 \cdot 62) 5 \cdot 05 (0 \cdot 82) 4 \cdot 52 (0 \cdot 42) 4 \cdot 52 (0 \cdot 42) 4 \cdot 94 (0 \cdot 52) 4 \cdot 94 (0 \cdot 52) 4 \cdot 94 (0 \cdot 72) 4 \cdot 99 (0 \cdot 94) 4 \cdot 38 (0 \cdot 83) 1 (P = 0.01), I2 = 54.1% 104 \cdot 86 (34 \cdot 03) 81 \cdot 84 (36 \cdot 79) 153 \cdot 00 (25 \cdot 100) 72 \cdot 00 (31 \cdot 00) 69 \cdot 44 (34 \cdot 72) 55 \cdot 55 (27 \cdot 78) 83 \cdot 33 (30 \cdot 28) 96 \cdot 53 (66 \cdot 67) 147 \cdot 92 (206 \cdot 25) 61 \cdot 39 (38 \cdot 62) 97 \cdot 22 (82 \cdot 22) 99 \cdot 33 (59 \cdot 03) 150 \cdot 00 (216 \cdot 67) 74 \cdot 30 (30 \cdot 55) $	15 20 8 9 15 28 25 26 9 8 14 207 15 20 8 9 19 20 9 19 20 9 15 28 25 26 9 8 14	$\begin{array}{c} 4 \cdot 58 (0 \cdot 45) \\ 4 \cdot 68 (0 \cdot 70) \\ 5 \cdot 06 (0 \cdot 56) \\ 4 \cdot 87 (0 \cdot 42) \\ 5 \cdot 18 (0 \cdot 60) \\ 3 \cdot 84 (1 \cdot 07) \\ 4 \cdot 88 (0 \cdot 72) \\ 4 \cdot 22 (0 \cdot 57) \\ 5 \cdot 16 (0 \cdot 94) \\ 5 \cdot 27 (0 \cdot 61) \\ 4 \cdot 99 (0 \cdot 62) \end{array}$			- 	10 · 23 10 · 50 9 · 40 8 · 42 8 · 28 7 · 76 9 · 06 10 · 63 9 · 75 4 · 41 5 · 04 6 · 53 100 · 00 4 7 · 89 7 · 83 2 · 04 6 · 01 8 · 40 8 · 37 6 · 94 3 · 46 8 · 27 6 · 69 5 · 77 2 · 19 8 · 46	$\begin{array}{c} -0.16 & [-0.51, \ 0.19] \\ -0.34 & [-0.75, \ 0.07] \\ -0.34 & [-0.80, \ 0.12] \\ -0.39 & [-0.86, \ 0.08] \\ -0.13 & [-0.63, \ 0.37] \\ 0.53 & [0.10, \ 0.96] \\ -0.34 & [-0.69, \ 0.01] \\ 0.27 & [-0.12, \ 0.66] \\ -0.22 & [-1.01, \ 0.57] \\ -0.28 & [-1.00, \ 0.44] \\ -0.61 & [-1.20, \ -0.02] \\ -0.12 & [-0.32, \ 0.07] \\ \end{array}$
at for overall effect: $Z = 2.98$ come: Glycaemia aillergeon, 2004(25) bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c andpineri, 2004(29)d oraram, 2006(34) ocak, 2002(35) / Liqun, 2005(36) sstuler, 1998(37) asquali, 2000(38)b andermolen, 2001(42) al (95% Cl) tf for overall effect: $Z = 1.21$ come: Insulin bula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2006(30) andermoles, 2006(31) ooraram, 2006(34) oocak, 2002(35) / Liqun, 2005(36) setter, 198(37) asquali, 2000(38)a asquali, 2000(38)a asquali, 2000(38)a asquali, 2000(38)a asquali, 2000(38)a	28 (P = 0.003) 28 13 20 10 10 16 27 25 35 8 10 11 213 23.98, df = 1 1 (P = 0.23) 1 1 (P = 0.23) 10 10 20 10 10 21 21 23 23 20 10 10 10 21 21 21 21 21 21 21 21 21 21	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 82) \\ 4 \cdot 37 \ (0 \cdot 43) \\ 4 \cdot 54 \ (0 \cdot 52) \\ 4 \cdot 49 \ (0 \cdot 98) \\ 4 \cdot 94 \ (0 \cdot 72) \\ 4 \cdot 99 \ (0 \cdot 94) \\ 4 \cdot 38 \ (0 \cdot 83) \\ \end{array}$ $1 \ (P = 0 \cdot 01), \ l^2 = 54 \cdot 1\% \\ \begin{array}{c} 104 \cdot 86 \ (34 \cdot 03) \\ 81 \cdot 64 \ (36 \cdot 79) \\ 153 \cdot 00 \ (251 \cdot 00) \\ 72 \cdot 00 \ (31 \cdot 00) \\ 69 \cdot 44 \ (34 \cdot 72) \\ 55 \cdot 55 \ (27 \cdot 78) \\ 83 \cdot 33 \ (30 \cdot 28) \\ 96 \cdot 53 \ (66 \cdot 67) \\ 147 \cdot 92 \ (206 \cdot 25) \\ 61 \cdot 39 \ (38 \cdot 22) \\ 97 \cdot 22 \ (82 \cdot 22) \\ 99 \cdot 30 \ (59 \cdot 03) \\ 150 \cdot 00 \ (216 \cdot 67) \\ 74 \cdot 30 \ (30 \cdot 55) \\ 72 \cdot 22 \ (48 \cdot 40) \\ \end{array}$	15 20 8 9 15 26 9 8 14 207 15 20 8 9 20 19 15 28 25 26 6 9 8 9 9 19	$\begin{array}{c} 4 \cdot 58 \ (0 \cdot 45) \\ 4 \cdot 68 \ (0 \cdot 70) \\ 5 \cdot 06 \ (0 \cdot 56) \\ 4 \cdot 87 \ (0 \cdot 42) \\ 5 \cdot 18 \ (0 \cdot 60) \\ 3 \cdot 94 \ (1 \cdot 07) \\ 4 \cdot 88 \ (0 \cdot 72) \\ 4 \cdot 22 \ (0 \cdot 57) \\ 5 \cdot 16 \ (0 \cdot 94) \\ 5 \cdot 27 \ (0 \cdot 61) \\ 4 \cdot 99 \ (0 \cdot 62) \end{array}$			- 	10 · 23 10 · 50 9 · 40 8 · 42 8 · 28 7 · 76 9 · 06 10 · 63 9 · 75 4 · 41 5 · 04 6 · 53 100 · 00 4 7 · 89 7 · 83 2 · 04 6 · 01 8 · 40 8 · 38 8 · 37 6 · 94 3 · 46 8 · 37 6 · 99 4 · 41 8 · 40 8 · 38 8 · 37 6 · 94 3 · 46 8 · 37 6 · 94 3 · 46 8 · 37 6 · 94 3 · 46 8 · 37 7 · 77 8 · 46 8 · 37 6 · 94 3 · 46 8 · 37 6 · 94 3 · 46 8 · 37 6 · 97 8 · 46 8 · 37 7 · 77 8 · 46 8 · 37 8 · 40 8 · 37 8 · 40 8 · 37 8 · 46 8 · 37 8 · 46 8 · 37 7 · 6 · 94 4 · 46 8 · 46 8 · 27 7 · 77 8 · 46 8 · 46 8 · 46 8 · 57 7 · 77 8 · 46 8 · 46 8 · 69 7 · 77 8 · 46 8 · 77 8 · 46 8 · 46 8 · 77 8 · 46 7 · 77 8 · 46 8 · 77 8 · 46 7 · 77 8 · 77 8 · 46 7 · 77 8	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.75, 0.07] -0.39 [-0.86, 0.02] -0.39 [-0.86, 0.03] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] -0.12 [-0.32, 0.07] -13.20 [-33.44, 7.04] -6.94 [-114.90, 101.0 -47.36 [-70.00, -24.72, 6.94 [-42.15, 56.03] -0.70 [-63.83, 62.43] 18.05 [-133.07, 169.13]
tor overall effect: $Z = 2.98$ tcome: Glycaemia aillergeon, 2004(25) ibula, 2005(27) Iter, 2002(28) iambineri, 2004(29)c iambineri, 2004(29)c iambineri, 2004(29)d horram, 2006(34) ocak, 2002(35) V Liqun, 2005(36) lestler, 1998(37) asquali, 2000(38)a asquali, 2000(38)a andermolen, 2001(42) tal (95% Cl) st for heterogeneity: Chi ² = 1 st for overall effect: $Z = 1.21$	28 (P = 0.003) 28 13 20 10 10 16 27 35 8 0 11 213 23.98, df = 1 1 (P = 0.23) 1 3 20 10 10 11 213 23.98, df = 1 1 (P = 0.23) 1 1 20 10 20 10 10 20 10 10 25 35 8 10 20 10 10 10 10 10 10 10 10 10 1	$4 \cdot 68 (0 \cdot 70) 4 \cdot 42 (0 \cdot 50) 4 \cdot 34 (0 \cdot 62) 4 \cdot 72 (0 \cdot 41) 4 \cdot 48 (0 \cdot 62) 5 \cdot 05 (0 \cdot 82) 4 \cdot 52 (0 \cdot 42) 4 \cdot 52 (0 \cdot 42) 4 \cdot 94 (0 \cdot 52) 4 \cdot 94 (0 \cdot 52) 4 \cdot 94 (0 \cdot 72) 4 \cdot 99 (0 \cdot 94) 4 \cdot 38 (0 \cdot 83) 1 (P = 0.01), I2 = 54.1% 104 \cdot 86 (34 \cdot 03) 81 \cdot 84 (36 \cdot 79) 153 \cdot 00 (25 \cdot 100) 72 \cdot 00 (31 \cdot 00) 69 \cdot 44 (34 \cdot 72) 55 \cdot 55 (27 \cdot 78) 83 \cdot 33 (30 \cdot 28) 96 \cdot 53 (66 \cdot 67) 147 \cdot 92 (206 \cdot 25) 61 \cdot 39 (38 \cdot 62) 97 \cdot 22 (82 \cdot 22) 99 \cdot 33 (59 \cdot 03) 150 \cdot 00 (216 \cdot 67) 74 \cdot 30 (30 \cdot 55) $	15 20 8 9 15 28 25 26 9 8 14 207 15 20 8 9 19 20 9 19 20 9 15 28 25 26 9 8 14	$\begin{array}{c} 4 \cdot 58 (0 \cdot 45) \\ 4 \cdot 68 (0 \cdot 70) \\ 5 \cdot 06 (0 \cdot 56) \\ 4 \cdot 87 (0 \cdot 42) \\ 5 \cdot 18 (0 \cdot 60) \\ 3 \cdot 84 (1 \cdot 07) \\ 4 \cdot 88 (0 \cdot 72) \\ 4 \cdot 22 (0 \cdot 57) \\ 5 \cdot 16 (0 \cdot 94) \\ 5 \cdot 27 (0 \cdot 61) \\ 4 \cdot 99 (0 \cdot 62) \end{array}$			- 	10 · 23 10 · 50 9 · 40 8 · 42 8 · 28 7 · 76 9 · 06 10 · 63 9 · 75 4 · 41 5 · 04 6 · 53 100 · 00 4 7 · 89 7 · 83 2 · 04 6 · 01 8 · 40 8 · 37 6 · 94 3 · 46 8 · 27 6 · 69 5 · 77 2 · 19 8 · 46	$\begin{array}{c} -0.16 & [-0.51, \ 0.19] \\ -0.34 & [-0.75, \ 0.07] \\ -0.34 & [-0.80, \ 0.12] \\ -0.39 & [-0.86, \ 0.08] \\ -0.13 & [-0.63, \ 0.37] \\ 0.53 & [0.10, \ 0.96] \\ -0.34 & [-0.69, \ 0.01] \\ 0.27 & [-0.12, \ 0.66] \\ -0.22 & [-1.01, \ 0.57] \\ -0.28 & [-1.00, \ 0.44] \\ -0.61 & [-1.20, \ -0.02] \\ -0.12 & [-0.32, \ 0.07] \\ \end{array}$
tcome: Glycaemia aillergeon, 2004(25) ibula, 2005(27) Iter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)d horram, 2006(34) ocak, 2002(35) V Liqun, 2005(36) estler, 1998(37) asquali, 2000(38)a asquali, 2000(38)a andermolen, 2001(42) al (95% Cl) st for heterogeneity: Chi ² = st for overall effect: $Z = 1.21$ tcome: Insulin ibula, 2005(27) Iter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)d ambineri, 2004(29)d ambineri, 2006(30) horram, 2006(34) ocak, 2002(35) V Liqun, 2005(36) estler, 1998(37) asquali, 2000(38)a asquali, 2000(38)a asquali, 2000(38)a asquali, 2000(38)a	28 (P = 0.003) 28 13 20 10 10 16 27 25 35 8 10 11 213 23.98, df = 1 1 (P = 0.23) 1 1 (P = 0.23) 10 10 20 10 10 21 21 23 23 20 10 10 10 21 21 21 21 21 21 21 21 21 21	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 82) \\ 4 \cdot 37 \ (0 \cdot 43) \\ 4 \cdot 54 \ (0 \cdot 52) \\ 4 \cdot 49 \ (0 \cdot 98) \\ 4 \cdot 94 \ (0 \cdot 72) \\ 4 \cdot 99 \ (0 \cdot 94) \\ 4 \cdot 38 \ (0 \cdot 83) \\ \end{array}$ $1 \ (P = 0 \cdot 01), \ l^2 = 54 \cdot 1\% \\ \begin{array}{c} 104 \cdot 86 \ (34 \cdot 03) \\ 81 \cdot 64 \ (36 \cdot 79) \\ 153 \cdot 00 \ (251 \cdot 00) \\ 72 \cdot 00 \ (31 \cdot 00) \\ 69 \cdot 44 \ (34 \cdot 72) \\ 55 \cdot 55 \ (27 \cdot 78) \\ 83 \cdot 33 \ (30 \cdot 28) \\ 96 \cdot 53 \ (66 \cdot 67) \\ 147 \cdot 92 \ (206 \cdot 25) \\ 61 \cdot 39 \ (38 \cdot 22) \\ 97 \cdot 22 \ (82 \cdot 22) \\ 99 \cdot 30 \ (59 \cdot 03) \\ 150 \cdot 00 \ (216 \cdot 67) \\ 74 \cdot 30 \ (30 \cdot 55) \\ 72 \cdot 22 \ (48 \cdot 40) \\ \end{array}$	15 20 8 9 15 26 9 8 14 207 15 20 8 9 20 19 15 28 25 26 6 9 8 9 9 19	$\begin{array}{c} 4 \cdot 58 \ (0 \cdot 45) \\ 4 \cdot 68 \ (0 \cdot 70) \\ 5 \cdot 06 \ (0 \cdot 56) \\ 4 \cdot 87 \ (0 \cdot 42) \\ 5 \cdot 18 \ (0 \cdot 60) \\ 3 \cdot 94 \ (1 \cdot 07) \\ 4 \cdot 88 \ (0 \cdot 72) \\ 4 \cdot 22 \ (0 \cdot 57) \\ 5 \cdot 16 \ (0 \cdot 94) \\ 5 \cdot 27 \ (0 \cdot 61) \\ 4 \cdot 99 \ (0 \cdot 62) \end{array}$			- 	10 · 23 10 · 50 9 · 40 8 · 42 8 · 28 7 · 76 9 · 06 10 · 63 9 · 75 4 · 41 5 · 04 6 · 53 100 · 00 4 7 · 89 7 · 83 2 · 04 6 · 01 8 · 40 8 · 38 8 · 37 6 · 94 3 · 46 8 · 37 6 · 99 4 · 40 8 · 38 8 · 37 6 · 94 3 · 46 8 · 37 6 · 94 3 · 46 8 · 37 6 · 94 3 · 46 8 · 37 6 · 97 8 · 46 8 · 37 6 · 94 3 · 46 8 · 37 6 · 94 3 · 46 8 · 37 6 · 97 8 · 46 8 · 40 8 · 38 8 · 37 6 · 94 3 · 46 8 · 40 8 · 38 8 · 37 7 · 77 8 · 46 8 · 37 6 · 94 3 · 46 8 · 46 8 · 37 7 · 77 8 · 46 8 · 40 8 · 38 8 · 37 7 · 77 8 · 46 8 · 37 6 · 94 4 · 40 8 · 46 8 · 37 7 · 77 8 · 46 8 · 40 8 · 37 6 · 94 4 · 40 8 · 46 8 · 37 7 · 6 · 94 4 · 40 8 · 46 8 · 27 7 · 7 8 · 46 8 · 46 8 · 27 7 · 2 · 19 8 · 46 8 · 46 8 · 46 8 · 46 7 · 77 2 · 19 8 · 46 7 · 77 2 · 19 8 · 46 7 · 77 8 · 46 8 · 40 7 · 77 7 · 19 8 · 46 7 · 77 7 · 19 8 · 46 7 · 77 7 · 19 8 · 46 7 · 77 7 · 19 7 · 76 7 · 77 7 · 76 7 · 77 7 · 77 8 · 46 7 · 77 7 · 77 8 · 46 7 · 77 7 · 77 8 · 46 7 · 77 8 · 46 7 · 77 7 · 77 8 · 46 7 · 77 7 · 77 8 · 46 7 · 77 8 · 47 7 · 77 8 · 47 7 · 77 8 · 77 8 · 47 7 · 77 8 · 77 8 · 77 8 · 77 7 · 77 8 · 77 8 · 77 7 · 77 8 · 77 7 · 77 8 · 77 8 · 77 8 · 77 7 · 77 8 · 77 8 · 77 7 · 77 8 · 77 8 · 77 7 · 77 8 · 77 7 · 77	-0.16 [-0.51, 0.19] -0.34 [-0.75, 0.07] -0.34 [-0.75, 0.07] -0.39 [-0.86, 0.02] -0.39 [-0.86, 0.03] -0.13 [-0.63, 0.37] 0.53 [0.10, 0.96] -0.34 [-0.69, 0.01] 0.27 [-0.12, 0.66] -0.22 [-1.01, 0.57] -0.28 [-1.00, 0.44] -0.61 [-1.20, -0.02] -0.12 [-0.32, 0.07] -0.12 [-0.32, 0.07] -13.20 [-33.44, 7.04] -6.94 [-114.90, 101.0 -47.36 [-70.00, -24.72, 6.94 [-42.15, 56.03] -0.70 [-63.83, 62.43] 18.05 [-133.07, 169.13]
st for overall effect: $Z = 2.98$ tcome: Glycaemia aillergeon, 2004(25) biola, 2005(27) tter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c asquali, 2000(38)a asquali, 2000(38)a asquali, 2000(38)a asquali, 2000(38)b andermolen, 2001(42) al (95% CI) st for overall effect: $Z = 1.21$ tcome: Insulin bibula, 2005(27) ter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2006(30)f anez, 2006(33) horram, 2006(34) bocak, 2002(35) / Liqun, 2005(36) estler, 198(37) asquali, 2000(38)a asquali, 2000(38)b asquali, 2000(38)b asquali, 2000(38)b asquali, 2000(38)b asquali, 2000(38)b asqu	8 (P = 0.003) 28 13 20 10 10 16 27 25 8 11 213 23.98, df = 1 1 (P = 0.23) 13 20 10 10 11 213 23.98, df = 1 1 (P = 0.23) 13 20 10 10 10 10 11 21 23 25 8 13 20 10 10 10 10 10 10 10 10 10 1	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 82) \\ 4 \cdot 37 \ (0 \cdot 43) \\ 4 \cdot 54 \ (0 \cdot 52) \\ 4 \cdot 99 \ (0 \cdot 98) \\ 4 \cdot 94 \ (0 \cdot 72) \\ 4 \cdot 99 \ (0 \cdot 94) \\ 4 \cdot 38 \ (0 \cdot 83) \\ \end{array}$ $\begin{array}{c} 1 \ (P = 0.01), \ P = 54.1\% \\ \end{array}$ $\begin{array}{c} 1 \ (P = 0.01), \ P = 54.1\% \\ \hline (P = 0.01),$	15 20 8 9 15 28 25 26 9 8 14 207 15 20 8 9 20 19 15 28 25 26 6 9 8 4 14 14 16 225	$\begin{array}{c} 4 \cdot 58 \ (0 \cdot 45) \\ 4 \cdot 68 \ (0 \cdot 70) \\ 5 \cdot 06 \ (0 \cdot 56) \\ 4 \cdot 87 \ (0 \cdot 42) \\ 5 \cdot 18 \ (0 \cdot 60) \\ 3 \cdot 94 \ (1 \cdot 07) \\ 4 \cdot 88 \ (0 \cdot 72) \\ 4 \cdot 22 \ (0 \cdot 57) \\ 5 \cdot 16 \ (0 \cdot 94) \\ 5 \cdot 27 \ (0 \cdot 61) \\ 4 \cdot 99 \ (0 \cdot 62) \end{array}$			- 	10 ⋅ 23 10 ⋅ 50 9 ⋅ 40 8 ⋅ 42 8 ⋅ 28 7 ⋅ 76 9 ⋅ 06 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 100 ⋅ 00 4 7 ⋅ 89 7 ⋅ 83 2 ⋅ 04 6 ⋅ 61 8 ⋅ 40 8 ⋅ 37 6 ⋅ 94 3 ⋅ 46 8 ⋅ 27 6 ⋅ 69 5 ⋅ 77 4 ⋅ 21 9 ⋅ 46 5 ⋅ 72 3 ⋅ 59 10 ⋅ 63 10 ⋅ 64 6 ⋅ 53 10 ⋅ 64 6 ⋅ 53 10 ⋅ 69 8 ⋅ 37 6 ⋅ 94 3 ⋅ 46 8 ⋅ 27 6 ⋅ 69 5 ⋅ 77 4 ⋅ 41 8 ⋅ 46 8 ⋅ 37 6 ⋅ 72 3 ⋅ 59	$\begin{array}{c} -0.16 & [-0.51, \ 0.19] \\ -0.34 & [-0.75, \ 0.07] \\ -0.34 & [-0.80, \ 0.12] \\ -0.39 & [-0.86, \ 0.08] \\ -0.13 & [-0.63, \ 0.37] \\ 0.53 & [0.10, \ 0.96] \\ -0.34 & [-0.69, \ 0.01] \\ 0.27 & [-0.12, \ 0.66] \\ -0.22 & [-1.01, \ 0.57] \\ -0.28 & [-1.00, \ 0.44] \\ -0.61 & [-1.20, \ -0.02] \\ -0.12 & [-0.32, \ 0.07] \\ \end{array}$
torowerall effect: $Z = 2.98$ tcome: Glycaemia aillergeon, 2004(25) ibula, 2005(27) tter, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)d horram, 2006(34) ocak, 2002(35) V V Liqun, 2005(36) estler, 1998(37) asquali, 2000(38)b andermolen, 2001(42) al (95% CI) st for heterogeneity: Chi ² = : st for overall effect: $Z = 1-21$ tormbineri, 2004(29)c ambineri, 2002(28) ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2004(29)c ambineri, 2006(30)f annez, 2006(31) horram, 2006(34) ock4, 2002(35) V Liqun, 2005(36) v Liqun, 2005(36) estler, 1998(37) asquali, 2000(38)b esquali, 2000(38)b efaie, 2005(39) andermolen, 2001(42) arali, 2002(44) arali, 2002(44)	8 (P = 0.003) 28 13 20 10 10 16 27 35 8 10 11 213 23.98, df = 1 1 (P = 0.23) 13 20 10 10 11 23.98, df = 1 1 (P = 0.23) 13 20 10 10 10 23.98, df = 1 1 (P = 0.23) 10 10 25 35 8 10 11 23.98, df = 1 1 (P = 0.23) 10 10 20 10 20 11 23.98, df = 1 10 20 20 20 21 23.98, df = 1 10 20 20 21 23.98, df = 1 10 20 20 21 23.98, df = 1 10 20 20 20 20 21 23.98, df = 1 20 20 20 20 20 20 20 20 20 20	$\begin{array}{c} 4 \cdot 68 \ (0 \cdot 70) \\ 4 \cdot 42 \ (0 \cdot 50) \\ 4 \cdot 34 \ (0 \cdot 62) \\ 4 \cdot 72 \ (0 \cdot 41) \\ 4 \cdot 48 \ (0 \cdot 62) \\ 5 \cdot 05 \ (0 \cdot 82) \\ 4 \cdot 37 \ (0 \cdot 43) \\ 4 \cdot 54 \ (0 \cdot 52) \\ 4 \cdot 99 \ (0 \cdot 98) \\ 4 \cdot 94 \ (0 \cdot 72) \\ 4 \cdot 99 \ (0 \cdot 94) \\ 4 \cdot 38 \ (0 \cdot 83) \\ \end{array}$ $\begin{array}{c} 1 \ (P = 0.01), \ P = 54.1\% \\ \end{array}$ $\begin{array}{c} 1 \ (P = 0.01), \ P = 54.1\% \\ \hline (P = 0.01),$	15 20 8 9 15 28 25 26 9 8 14 207 15 20 8 9 20 19 15 28 25 26 6 9 8 4 14 14 16 225	$\begin{array}{c} 4 \cdot 58 \ (0 \cdot 45) \\ 4 \cdot 68 \ (0 \cdot 70) \\ 5 \cdot 06 \ (0 \cdot 56) \\ 4 \cdot 87 \ (0 \cdot 42) \\ 5 \cdot 18 \ (0 \cdot 60) \\ 3 \cdot 94 \ (1 \cdot 07) \\ 4 \cdot 88 \ (0 \cdot 72) \\ 4 \cdot 22 \ (0 \cdot 57) \\ 5 \cdot 16 \ (0 \cdot 94) \\ 5 \cdot 27 \ (0 \cdot 61) \\ 4 \cdot 99 \ (0 \cdot 62) \end{array}$			- 	10 ⋅ 23 10 ⋅ 50 9 ⋅ 40 8 ⋅ 42 8 ⋅ 28 7 ⋅ 76 9 ⋅ 06 10 ⋅ 63 9 ⋅ 75 4 ⋅ 41 5 ⋅ 04 6 ⋅ 53 100 ⋅ 00 4 7 ⋅ 89 7 ⋅ 83 2 ⋅ 04 6 ⋅ 61 8 ⋅ 40 8 ⋅ 37 6 ⋅ 94 3 ⋅ 46 8 ⋅ 27 6 ⋅ 69 5 ⋅ 77 4 ⋅ 21 9 ⋅ 46 5 ⋅ 72 3 ⋅ 59 10 ⋅ 63 10 ⋅ 64 6 ⋅ 53 10 ⋅ 64 6 ⋅ 53 10 ⋅ 69 8 ⋅ 37 6 ⋅ 94 3 ⋅ 46 8 ⋅ 27 6 ⋅ 69 5 ⋅ 77 4 ⋅ 41 8 ⋅ 46 8 ⋅ 37 6 ⋅ 72 3 ⋅ 59	$\begin{array}{c} -0.16 & [-0.51, \ 0.19] \\ -0.34 & [-0.75, \ 0.07] \\ -0.34 & [-0.80, \ 0.12] \\ -0.39 & [-0.86, \ 0.08] \\ -0.13 & [-0.63, \ 0.37] \\ 0.53 & [0.10, \ 0.96] \\ -0.34 & [-0.69, \ 0.01] \\ 0.27 & [-0.12, \ 0.66] \\ -0.22 & [-1.01, \ 0.57] \\ -0.28 & [-1.00, \ 0.44] \\ -0.61 & [-1.20, \ -0.02] \\ -0.12 & [-0.32, \ 0.07] \\ \end{array}$

Participants were obese women not affected by PCOS Participants were obese women affected by PCOS a. b.

Participants randomly allocated to Metformin and diet OR Placebo and diet

c. d. Participants randomly allocated to Metformin, Flutamide and diet OR Flutamide and diet

Participants randomly allocated to Metformin and diet OR Placebo and diet

e. f. Participants randomly allocated to Metformin, Flutamide and diet OR Flutamide and diet

Fig. 2 Continued.

We observed low to moderate heterogeneity. The factors we specified a priori as potential effect modifiers (required evidence of clinical and/or biochemical hyperandrogenism, metformin administration as a single agent or as part of combined regimens, and use vs. no use of placebos) explained some of the observed heterogeneity. The analysis of the characteristics of included studies revealed additional factors that varied across studies and could potentially explain heterogeneity. These factors include both characteristics of the populations (i.e. diagnosis of PCOS, body mass index (BMI) at inclusion) and of study design (i.e. methodology for measuring circulating androgens, metformin therapy dosage and duration). In fact, overweight and obese PCOS women are more likely to exhibit severe hyperandrogenism and lower SHBG levels when compared to their normal weight counterpart.47 Direct radioimmunoassay (RIA) methods tend to show higher TT levels when compared to studies using extraction and chromatography in conjunction with RIA.^{29,41,48–50} There is also evidence that analoguebased free testosterone RIA is highly unreliable. We conducted post-hoc subgroup analyses based on these additional factors but none of them reduced the heterogeneity.

Considerable experimental and epidemiological evidence supports the association between circulating androgens and SHBG levels and several life-threatening conditions in women. Elevated serum levels of androgens are positively associated with breast cancer risk, while SHBG levels are inversely associated with risk.^{51,52} Thus, metformin could, by decreasing androgens levels and increasing SHBG levels, have a potential role in the chemoprevention of breast cancer. However, no clinical evidence is currently available to support this hypothesis.

Androgens and SHBG have been also linked to adverse cardiovascular risk factors in women, with increased testosterone levels and decreased SHBG levels strongly associated with central adiposity, increased triglycerides, and decreased high density lipoprotein (HDL) cholesterol levels. In fact, metformin has been shown to decrease those cardiovascular risk factors such as blood pressure and low density lipoprotein (LDL) cholesterol in PCOS.¹⁴ Although we could not locate studies in non-diabetic patients, a systematic review in patients with diabetes showed that metformin may prevent some vascular complications, and mortality.⁵³

Low levels of SHBG have also been associated with higher rates of diabetes.⁵⁴ This suggests a potential role of metformin in preventing diabetes. Indeed, a systematic review has found evidence that metformin may reduce the occurrence of type 2 diabetes.⁵⁵

In summary, our systematic review and meta-analysis provides evidence of metformin-induced changes in circulating androgens and SHBG levels in women. The information is helpful for explaining mechanisms related to metformin. The review indicates that a fairly large amount of data from RCTs administering metformin in women affected by PCOS or at risk of developing PCOS is currently available, although the overall methodological quality is moderate. Conversely, there are no data from RCTs regarding the effects of metformin in healthy women. We thus suggest the use of metformin in future RCTs focusing on patient-important outcomes, such those related to the role of androgens as breast cancer promoters and potential mediators of cardiovascular risk in women. We would further add the need for highquality studies, designed primarily to address the latter outcomes.

References

- Mattheis, S., Stumvoll, M., Kellerer, M. *et al.* (2000) Pathophysiology and pharmacological treatment of insulin resistance. *Endocrine Reviews*, 21, 585–618.
- 2 Björntorp, P. (1993) Hyperandrogenicity in women a prediabetic condition? *Journal of Internal Medicine*, **234**, 579–583.
- 3 Stolar, M.W. (2002) Insulin resistance, diabetes, and the adipocyte. *American Journal of Health-System Pharmacy*, **59**, S3–S8.
- 4 Giannarelli, R., Aragona, M., Coppelli, A. *et al.* (2003) Reducing insulin resistance with metformin: the evidence today. *Diabetes and Metabolism*, **68**, 2330.
- 5 Tankova, T. (2003) Current indications for metformin therapy. *Romanian Journal of Internal Medicine*, **41**, 215–225.
- 6 Krentz, A.J. & Bailey, C.J. (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. *Drugs*, **65**, 385–411.
- 7 Zanella, M.T., Kohlmann, O. Jr & Ribeiro, A.B. (2001) Treatment of obesity hypertension and diabetes syndrome. *Hypertension*, **38**, 705– 708.
- 8 Nestler, J.E., Powers, L.P., Matt, D.W. *et al.* (1991) A direct effect of hyperinsulinemia on serum sex hormone-binding globulin levels in obese women with the polycystic ovary syndrome. *Journal of Clinical Endocrinology and Metabolism*, **72**, 83–89.
- 9 Pasquali, R. & Filicori, M. (1998) Insulin sensitizing agents and polycystic ovary syndrome. *European Journal of Endocrinology*, 138, 253–254.
- 10 Kolodziejczyk, B., Duleba, A., Spaczynski, R. *et al.* (2000) Metformin therapy decreased hyperandrogenism and hyperinsulinemia in women with polycystic ovary syndrome. *Fertility and Sterility*, **73**, 1149– 1153.
- 11 Adashi, E.Y., Resnick, C.E., D'Ercole, A.J. et al. (1985) Insulin-like growth factors as intraovarian regulators of granulosa cell growth and function. *Endocrine Reviews*, 6, 400–420.
- 12 Barbieri, R.L., Makris, A., Randall, R.W. *et al.* (1986) Insulin stimulates androgen accumulation in incubations of ovarian stroma obtained from women with hyperandrogenism. *Journal of Clinical Endocrinology and Metabolism*, **62**, 904–910.
- 13 Essah, P.A., Wickham, E.P. & Nestler, J.E. (2007) The metabolic syndrome in PCOS. *Clinical Obstetrics and Gynecology*, 50, 205–225.
- 14 Lord, J.M., Flight, I.H. & Norman, R.J. (2003) Metformin in polycystic ovary syndrome: systematic review and meta-analysis. *British Medial Journal*, **327**, 951–953.
- 15 Costello, M.F. & Eden, J.A. (2003) A systematic review of the reproductive system effects of metformin in patients with polycystic ovary syndrome. *Fertility and Sterility*, **79**, 1–13.
- 16 Harborne, L., Fleming, R., Lyall, H. *et al.* (2003) Descriptive review of the evidence for the use of metformin in polycystic ovary syndrome. *Lancet*, 361, 1869–1901.
- 17 Homburg, R. (2002) Should patients with polycystic ovarian syndrome be treated with metformin? A note of cautious optimism. *Human Reproduction*, 17, 853–856.
- 18 Nestler, J.E., Stovall, D., Akhter, N. *et al.* (2002) Strategies for the use of insulin-sensitizing drugs to treat infertility in women with polycystic ovary syndrome. *Fertility and Sterility*, 77, 209–215.
- 19 Seli, E. & Duleba, A. (2002) Should patients with polycystic ovarian syndrome be treated with metformin? *Human Reproduction*, 17, 2230–2236.
- 20 Stadmauer, L.A., Wong, B. & Oehninger, S. (2002) Should patients with polycystic ovary syndrome be treated with metformin? Benefits of insulin sensitizing drugs in polycystic ovary syndrome – beyond ovulation induction. *Human Reproduction*, **17**, 3016–3026.

- 21 Ludbrook, J. (2002) Statistical techniques for comparing measurers and methods of measurement: a critical review. *Clinical and Experimental Pharmacology and Physiology*, **29**, 527–536.
- 22 DerSimonian, R. & Laird, N. (1986) Meta-analysis in clinical trials. *Controlled Clinical Trials*, **7**, 177–188.
- 23 Higgins, J.P. & Thompson, S. (2002) Quantifying heterogeneity in a meta-analysis. *Statistics in Medicine*, **21**, 11539–11558.
- 24 Sutton, A.J., Abrams, R.K., Jones, D.R. et al. (2000). Methods for Meta-Analysis in Medical Research, Wiley, New York.
- 25 Baillargeon, J.P., Jacubowicz, D.J., Iuorno, M.J. *et al.* (2004) Effects of metformin and rosiglitazone, alone and in combination, in non-obese women with polycystic ovary syndrome and normal indices of insulin sensitivity. *Fertility and Sterility*, 82, 893–902.
- 26 Chou, K.H., Corleta, H., Capp, E. et al. (2003) Clinical, metabolic and endocrine parameters in response to metformin in obese women with polycystic ovary syndrome: a randomized, double-blind and placebo-controlled trial. *Hormone and Metabolic Research*, 35, 86–91.
- 27 Cibula, D., Fanta, M., Vrbikova, J. *et al.* (2005) The effect of combination therapy with metformin and combined oral contraceptives (COC) versus COC alone on insulin sensitivity, hyperandrogenaemia, SHBG and lipids in PCOS patients. *Human Reproduction*, **20**, 180–184.
- 28 Elter, K., Imir, G. & Durmusoglu, F. (2002) Clinical, endocrine and metabolic effects of metformin added to ethinyl estradiol-cyproterone acetate in non-obese women with polycystic ovary syndrome: a randomized controlled study. *Human Reproduction*, **17**, 1729– 1737.
- 29 Gambineri, A., Pelusi, C., Genghini, S. *et al.* (2004) Effect of flutamide and metformin administered alone or in combination in dieting obese women with polycystic ovary syndrome. *Clinical Endocrinology*, **60**, 241–249.
- 30 Gambineri, A., Patton, L., Vaccina, A. *et al.* (2006) Treatment with flutamide, metformin, and their combination added to hypocaloric diet in overweight-obese women with polycystic ovary syndrome: a randomized, 12-month, placebo-controlled study. *Journal of Clinical Endocrinology and Metabolism*, **91**, 3970–3980.
- 31 Ibanez, L., Ferrer, A., Ong, K. *et al.* (2004) Insulin sensitization early after menarche prevents progression from precocious pubarche to polycystic ovary syndrome. *Journal of Pediatrics*, 144, 23–29.
- 32 Ibanez, I., Ong, K., Valls, C. *et al.* (2006) Metformin treatment to prevent early puberty in girls with precocious pubarche. *Journal of Clinical Endocrinology and Metabolism*, **91**, 2888–2891.
- 33 Ibanez, L., Valls, C., Marcos, M.V. *et al.* (2004) Insulin sensitization for girls with precocious pubarche and with risk for polycystic ovary syndrome: effects of prepubertal initiation and postpubertal discontinuation of metformin treatment. *Journal of Clinical Endocrinology and Metabolism*, **89**, 4331–4337.
- 34 Khorram, O., Helliwell, J., Katz, S. *et al.* (2006) Two weeks of metformin improves clomiphene citrate-induced ovulation and metabolic profiles in women with polycystic ovary syndrome. *Fertility and Sterility*, 85, 1448–1451.
- 35 Kocak, M., Caliskan, E., Simsir, C. *et al.* (2002) Metformin therapy improves ovulatory rates, cervical scores and pregnancy rates in clomiphene-resistant women with polycystic ovary syndrome. *Fertility and Sterility*, **77**, 101–106.
- 36 Lv, L., Liu, Y., Sun, Y. *et al.* (2005) Effects of metformin combined with cyproterone acetate on clinical features, endocrine and metabolism on non-obese women with polycystic ovary syndrome. *Journal of Huazhong University of Science and Technology*, 25, 194–197.
- 37 Nestler, J.E., Jakubowicz, D., Evans, W.S. et al. (1998) Effects of metformin on spontaneous and clomiphene-induced ovulation in

the polycystic ovary syndrome. *New England Journal of Medicine*, **338**, 1876–1880.

- 38 Pasquali, R., Gambineri, A., Biscotti, D. *et al.* (2000) Effect of longterm treatment with metformin added to hypocaloric diet on body composition, fat distribution, and androgen and insulin levels in abdominally obese women with and without the polycystic ovary syndrome. *Journal of Clinical Endocrinology and Metabolism*, **85**, 2767–2774.
- 39 Refaie, A.M., Ibrahim, G. & Oash, S.A. (2005) Characteristics of polycystic ovary syndrome with and without insulin resistance and the role of insulin sensitizing drug (metformin) in its management. *Middle East Fertility Society Journal*, **10**, 142–149.
- 40 Sturrock, N.D., Lannon, B. & Fay, T.N. (2002) Metformin does not enhance ovulation induction in clomiphene resistant polycystic ovary syndrome in clinical practice. *British Journal of Clinical Pharmacology*, **53**, 46–63.
- 41 Tang, T., Glanville, J., Hayden, C.J. *et al.* (2006)) Combined lifestyle modification and metformin in obese patients with polycystic ovary syndrome. A randomized, placebo-controlled double-blind multi-centre study. *Human Reproduction*, **21**, 80–89.
- 42 Vandermolen, D.T., Ratts, V., Evans, W.S. *et al.* (2001) Metformin increases the ovulatory rate and pregnancy rate from clomiphene citrate in patients with polycystic ovary syndrome who are resistant to clomiphene citrate alone. *Fertility and Sterility*, **74**, 310–315.
- 43 van Santbrinck, J.P., Hohmann, F., Eijkemans, M.J. et al. (2005) Does metformin modify ovarian responsiveness during exogenous FSH ovulation induction in normogonadotropic anovulation? A placebo-controlled double-blind assessment. European Journal of Endocrinology, 152, 611–617.
- 44 Yarali, H., Yildiz, B., Demirol, A. *et al.* (2002) Co-administration of metformin during rFSH treatment in patients with clomipheneresistant polycystic ovarian syndrome: a prospective randomized trial. *Human Reproduction*, **17**, 289–294.
- 45 Moghetti, P., Castello, R., Negri, C. *et al.* (2000) Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. *Journal of Clinical Endocrinology and Metabolism*, 85, 139–146.
- 46 Onalan, G., Goktolga, U., Ceyhan, T. *et al.* (2005) Predictive value of glucose-insulin ratio in PCOS and profile of women who will benefit from metformin therapy: obese, lean, hyper or normo-insulinemic? *European Journal of Obstetrics & Gynecology and Reproductive Biology*, **123**, 204–211.
- 47 Gambineri, A., Pelusi, C., Vicennati, V. *et al.* (2002) Obesity and the polycystic ovary syndrome. *International Journal of Obesity and Related Metabolic Disorders*, **26**, 883–896.
- 48 Taieb, J., Mathian, B., Millot, F. *et al.* (2003) Testosterone measured by 10 immunoassays and by isotope dilution gas chromatography– mass spectrometry in sera from 116 men, women and children. *Clinical Chemistry*, **49**, 1381–1395.
- 49 Stanczyk, F.Z. (2006) Diagnosis of hyperandrogenism: biochemical criteria. Best Practice and Research. Clinical Endocrinology and Metabolism, 20, 177–191.
- 50 Stanczyk, F.Z., Cho, M., Endres, D.B. *et al.* (2003) Limitation of direct estradiol and testosterone immunoassay kits. *Steroids*, 68, 1173–1178.
- 51 Kaaks, R., Rinaldi, S., Key, T.J. (2005) Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. *Endocrine-Related Cancer*, 12, 1071–1082.

Journal compilation © 2009 Blackwell Publishing Ltd, Clinical Endocrinology, 70, 661-670

- **670** *M. Barba* et al.
- 52 Key, T., Appleby, P., Barnes, I. *et al.* (2002) Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. *Journal of the National Cancer Institute*, 94, 606–616.
- 53 Saenz, A., Fernandez-Esteban, I., Mataix, A. *et al.* (2005) Metformin monotherapy for type 2 diabetes mellitus. *Cochrane Database of Systematic Reviews*, **3**, CD002966.
- 54 Sutton-Tyrrell, K., Wildman, R.P., Matthews, K.A. *et al.* (2005) Sex hormone-binding globulin and free androgen index area related to cardiovascular risk factors in multiethnic premenopausal and perimenopausal women enrolled in the Study of Women Across the Nation (SWAN). *Circulation*, **111**, 1242–1249.
- 55 Hess, A.M. & Sullivan, D.L. (2004) Metformin for prevention of type 2 diabetes. *Annals of Pharmacotherapy*, 38, 1283–1285.