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a b s t r a c t 

In this research, we propose a novel registration method for three-dimensional (3D) reconstruction from 

serial section images. 3D reconstructed data from serial section images provides structural information 

with high resolution. However, there are three problems in 3D reconstruction: non-rigid deformation, 

tissue discontinuity, and accumulation of scale change. To solve the non-rigid deformation, we propose 

a novel non-rigid registration method using blending rigid transforms. To avoid the tissue discontinuity, 

we propose a target image selection method using the criterion based on the blending of transforms. 

To solve the scale change of tissue, we propose a scale adjustment method using the tissue area before 

and after registration. The experimental results demonstrate that our method can represent non-rigid 

deformation with a small number of control points, and is robust to a variation in staining. The results 

also demonstrate that our target selection method avoids tissue discontinuity and our scale adjustment 

reduces scale change. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Understanding the three-dimensional (3D) structure of biologi-

al tissue is crucial for gaining structural insights in physiology and

athology. Histological section images have a much higher resolu-

ion and contrast compared with MR and CT images. Additionally, a

pecific biological structure is emphasized using staining in a his-

ological image. Therefore, a 3D model constructed from section

mages provides more detailed structural information for the anal-

sis of shape and volume. 

Fig. 1 shows each process of 3D reconstruction from histological

ection images. First, we conduct sectioning from biological sam-

les. Second, we conduct the fixation of sectioned samples to a

lass slide. Third, we stain the samples to emphasize a specific bi-

logical structure. Forth, we acquire images using light microscopy.

owever, each aforementioned process has distortions of sections

hat make 3D reconstruction difficult [1] . The sectioning process
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auses the destruction of tissue, such as stretching, bending, and

earing. The fixation process causes tissue destruction, such as

olding. The staining process generates staining variations among

amples. Image acquisition causes rotation, translation (shifting),

nd variation in illumination. Because of these deformations, 3D

econstruction by only stacking the section images generates dis-

ontinuous tissue ( Fig. 1 (5)). Therefore, we align these images us-

ng image registration and acquire a smooth 3D model, as shown

n Fig. 1 (6). The image registration process aligns a source image

nto a target image. Image registration is essential for the recon-

truction of a smooth 3D model from section images. 

Among the serial section images, we focus on the Kyoto collec-

ion, which has a large number of human embryo serial section

mages [2] . The 3D reconstruction from section images in the Ky-

to collection provides detailed structural information at various

evelopmental phases. However, this dataset has several difficul-

ies for 3D reconstruction. First, the number of sections is large.

or example, a small sample has more than 100 section images

nd a large sample has more than 10 0 0 section images. Therefore,

he accumulation of registration errors cannot be ignored, as dis-

ussed later. Second, the histological image dataset has no corre-

ponding CT/MRI image. Therefore, we need to reconstruct a 3D
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Each process of 3D reconstruction from serial sections: (1) sectioning the 

samples into thin sections; (2) fixing the sections to a slide glass; (3) staining the 

sections; (4) imaging the sections using microscopy; (5) stacking the images to gen- 

erate a non-smooth result because of the distortions during processes (1) to (4); (6) 

aligning the images using registration to generate a smooth 3D reconstruction re- 

sult. The result of the proposed method is shown. 

Fig. 2. Non-rigid deformation and registration of section images: source (red) and 

target (blue) image before registration (first row) and after registration (second 

row). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Discontinuous tissue caused by an accumulation of registration errors: (a) 

discontinuous tissue caused by neighbor pair image registration; (b) continuous tis- 

sue using our target selection method. 
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model from two-dimensional (2D) serial section images without

an external reference. The goal of this study is to reconstruct a 3D

model from a large number of serial sections, such as the Kyoto

collection, without an external reference. 

There are two main problems in the registration of serial sec-

tion images: (1) non-rigid deformation occurs during the section-

ing process; and (2) problems in the registration of a large number

of sections, consist of tissue discontinuity caused by registration

failure and an accumulation of scale change in sequential registra-

tion. 

First, section images have non-rigid deformation ( Fig. 2 , first

row). This is because of distortion during the sectioning process, as

discussed previously. Therefore, non-rigid registration is required

to align the deformed sections ( Fig. 2 , second row). 

In addition to non-rigid deformation, there are two other prob-

lems in 3D reconstruction from a large number of serial section

images: (1) tissue discontinuity caused by registration failure; and

(2) accumulation of scale change in sequential registration. The

first problem is tissue discontinuity caused by registration fail-

ure. For 3D reconstruction, we conduct multiple registrations by

shifting the source-target image pairs sequentially. However, dur-

ing multiple registrations, registration failure is caused by a stain-

ing variation or a destruction of tissue. Then, target image with

registration failure causes tissue discontinuity ( Fig. 3 (a)). 

The second problem is the accumulation of scale changes. By

conducting multiple non-rigid registrations, a change of scaling ac-

cumulates ( Fig. 4 (1)–(2)). This accumulation of scaling cannot be

ignored for 3D reconstruction from a large number of serial sec-

tions, such as the Kyoto collection. 

This study makes three contributions regarding non-rigid regis-

tration. First, the proposed method efficiently represents non-rigid

deformation using a small number of control points by blending of

rigid transforms, which can be estimated robustly against staining

variation. Second, our method can select proper number of con-
rol points automatically. The proper number depends on the de-

ormation between the image pair, so it is significant for the 3D

econstruction. Third, we propose the novel method to solve two

ain problems in the registration of a serial section images: tissue

iscontinuity and scale changes. 

This article is an extension of the work presented in ACPR2017

3] . The previous work proposed a non-rigid registration method

or a pair of histological images. This study extends the previ-

us method for the 3D reconstruction from the sequence of his-

ological images. The proposed method has additional processes of

egistration target selection and scale adjustment. We qualitatively

resent that they improve the quality of the 3D reconstruction sig-

ificantly. This article is organized as follows: We discuss related

ork on registration for image pairs and serial sections for 3D re-

onstruction in Section 2 . We explain our registration method in

ection 3 . We provide the details of the proposed non-rigid reg-

stration method in Section 3 . Then, we explain the registration

f serial sections for 3D reconstruction, which consists of how to

elect the target image and scale adjustment in Section 4 . Next,

e present the experimental results of the proposed method in

ection 5 . First, we present the registration results of section im-

ge pairs and their quantification analysis. Then, we present the

esults of 3D reconstruction from serial sections and its quantifica-

ion analysis. We conclude the paper with a summary, limitations,

nd future study in Section 6 . 

. Related work 

.1. Registration of image pairs 

For the registration of section images, manual registration with

ser interaction has been proposed [4,5] . However, the manual

ethod lacks accuracy and generates a non-reproducible result.

dditionally, the manual method is time-consuming and cannot be

sed for a large number of sections, such as the Kyoto collection.

herefore, various registration algorithms have been proposed. 

One type of non-rigid registration uses free-form deformation

FFD), which is an area-based approach [6–8] . Several registra-

ion methods for histological images [9,10] are based on FFD with

-spline interpolation. FFD estimates the displacement at control

oints and calculates the displacement at every point using inter-

olation, as shown in Fig. 5 (b). 

However, the descriptive power of the deformation highly de-

ends on the resolution of the grid of control points [11] . A large

umber of control points are required to represent complex non-

igid deformation. 

The feature-based approach is also popular for the global regis-

ration technique, such as the rigid or affine transform of the en-

ire image. The feature-based approach uses invariant local image
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Fig. 4. Scale change caused by registration: (1) registration to a pair of images in the bottom section causes scale change; (2) change of structure in the output 3D result 

caused by an accumulation of scale changes caused by sequential registration; (3) preservation of scale using our scale adjustment; (4) preservation of the original 3D 

structure using our scale adjustment. 

Fig. 5. Representation of deformation: (a) displacement field of FFD: each control 

point has displacement (first row) and by interpolation, a displacement field (sec- 

ond row) is generated (the arrow indicates the displacement); (b) transformation 

field of the proposed method: each control point has a rigid transform (first row) 

and by blending the transforms, a transformation field (second row) is generated 

(the arrow indicates the displacement and the color of the arrow indicates the ro- 

tational degree shown in (c)); (c) color bar of the rotational degree. We used the 

source and target image pair in Fig. 2 (first row) for the visualization. (For interpre- 

tation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 
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eatures for robust matching. This approach has been studied fre-

uently in the image processing field [12,13] and other fields [14–

6] . Several feature descriptors, such as SIFT, SURF, and ORB [17–

0] , have been proposed to be invariant to rotation, translation,

nd brightness variance, which occur in histological section im-

ges. Although using the local image feature is one of the standard

pproaches to performing global rigid and affine registration, there

s still no standard approach for non-rigid registration. For exam-

le, it is not directly applied to FFD because it does not provide

ontrol points on a regular grid. 

Another approach is pixel-based registration [21–23] . This type

f approach uses pixel value directly with a certain similarity

easure [24–26] . However, it is not robust to variation in pixel

ntensity. 

.2. Registration of serial sections for 3D reconstruction 

For reconstructing a 3D model from serial sections, a straight-

orward approach is to conduct neighboring pairwise registration

10] . The registration is applied to neighboring image pairs sequen-

ially according to the following: 

 

′ 
x = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

I x , x = r 
R (I x , I 

′ 
x +1 ) , x < r 

R (I x , I 
′ 
x −1 ) , x > r 

, (1) 
here I x and I ′ x are the x th image before and after registration re-

pectively, I r is the reference image ( r = N/ 2 ), N is the number of

ection images, and R ( S, T ) is the registration function that trans-

orms source image S into target image T . However, registration

ailure in one section causes tissue discontinuity in this method

 Fig. 3 (a)) because once registration fails, we lose continuous tis-

ue sections in neighbor pairwise registration. 

Several methods have been proposed to solve tissue disconti-

uity and scale change problems. The first type of method uses

xternal 3D reference information. This type of method uses a 3D

tructure in CT, MRI, or PET as a reference for the registration of

erial section images [27,28] . Other methods [29,30] use 2D block-

ace surface images of uncut sample tissue as external references.

D block-face refers to images of the sample before each slice is

ectioned. 2D block-face images can be used as a ground truth 3D

eference for registration. However, not all section data have cor-

esponding CT, MRI, PET, or 2D block-face images. Once sectioning

s conducted from samples, these 3D reference data cannot be ob-

ained from them. Therefore, a method without other references

as been proposed as below. 

Another approach uses prior knowledge of a specific biological

tructure. Xu et al. automatically detected the biological structure,

uch as nuclei, and used it as a correspondence landmark between

mage pairs [31] . Others have used the assumption that the original

D sample has a smooth biological structure. Cifor et al. calculated

he displacement field using the curvature of the boundaries of the

xtracted structure [32] . However, these methods rely on a specific

tructure of the section image and cannot be used on every do-

ain of histological section images. 

Another approach selects an appropriate target image to reduce

he effect of registration failure. Wang et al. proposed a valida-

ion model to determine whether the output registration image

s valid [10] . They used the geometrical distances that result from

he B-spline deformation field and set a threshold to accept the

egistration However, they could not solve the discontinuous tis-

ue problem because they used the neighboring pairwise registra-

ion method. Therefore, once the deformation is too large, the out-

ut is the original source image using their validation method, and

ontinuous tissue is lost. Yushkevic proposed a method to select a

ource and target pair using mutual information and a graph algo-

ithm for excluding bad slices [33] . 

. Registration of image pairs 

First, as a minimum problem, we consider the registration of

wo image pairs. In this section, we propose a novel non-rigid reg-

stration method for section images. 

In section images, deformation is globally non-rigid; however,

everal studies [34,35] have been based on the observation that
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they can be considered to be locally rigid. We also consider this

assumption and represent global non-rigid deformation from local

rigid transforms. Therefore, we propose a non-rigid registration by

blending the local rigid transforms. Our method estimates the rigid

transform at every pixel from local rigid transforms ( Fig. 5 (c)). 

Several methods can be used to estimate a transform at each

pixel from the local rigid transforms at the control points. One

is the direct average method [36] , which is also known as linear

blend skinning (LBS) in the computer graphics field. LBS repre-

sents rigid transform M i in matrix form, takes the weighted sum

for each element, and normalizes the resultant matrix so that it

represents a rigid transform. LBS is simple and computationally ef-

ficient; however, it has some artifacts. To reduce the artifacts of

LBS, blending using dual quaternion has been proposed in the 3D

computer graphics field [37] . 

The other method is the polyrigid transform model [34,35] . Ar-

signy et al. used ordinary differential equations to integrate the ve-

locity vector at each control point to obtain the transforms. This

method has some mathematically good attributes, such as the in-

vertibility of the resultant transforms. However, these studies did

not provide quantitative results that demonstrate the effectiveness

of a real-world problem, for example, the registration of histologi-

cal section images and artifacts of the method are not known. The

deformation that occurred in the histological section images would

not be limited to invertible transforms. Therefore, in the present

study, we use the direct average method with the improvement of

reducing the artifacts of blending in 2D images. 

Our method can be considered to extend the FFD approach in

two main aspects. First, the control points are defined not on a

grid, but several local regions according to the pattern on the im-

age. Second, each control point has a rigid transform (translation

and rotation) where a control point of FFD has a displacement

(translation). We call these transforms at every pixel a transfor-

mation field ( Fig. 5 (c)). Because each point has an individual rigid

transform, the transformation field can describe non-rigid defor-

mation for the entire image. For example, if an image has a de-

formation that occurs in a section image, as shown in Fig. 5 (a),

it forms a complex displacement field. FFD represents the defor-

mation using control points defined on a grid that has a displace-

ment (translation), as shown in Fig. 5 (b). The estimated transform

becomes coarse without using a high-resolution grid of control

points. Thus, in FFD, dense control points are required to repre-

sent the complex deformation. By contrast, the control points of

our method have a rigid transform (translation and rotation), as

shown in Fig. 5 (c). Since a rigid transform has richer description

than a displacement, the proposed method can describe complex

non-rigid deformation using a smaller number of control points

than FFD. 

In this section, first, we explain feature-based rigid registration

and then we explain our proposed non-rigid registration by blend-

ing transforms. For our non-rigid registration method, first, we ex-

plain our method for a constant number of local regions and then

we extend it to any number of local regions. 

3.1. Feature-based rigid registration 

First, feature keypoints are extracted in existing feature-based

rigid registration. Then, keypoint matching is performed, and using

the matching, we calculate the global rigid transform. 

3.1.1. Keypoint detection and feature matching 

Although any method can be used for keypoint detection and

feature description such as SIFT and ORB, we adopt accelerated-

KAZE (AKAZE) [38] as the state-of-the-art method. By applying the

method for the source and target images, two sets of keypoints are
cquired. Between them, feature matching is performed by brute-

orce matching using the Hamming distance. 

To prune improper matching in the background region, the

ethod also extracts the tissue region and removes matches out-

ide the region. The tissue region is extracted as follows: First, we

onvert the original image into a grayscale image using the UV

omponent in YUV color space. Next, the grayscale image is con-

erted to a binary image using the threshold calculated by Otsu’s

ethod [39] . Then, we locate the contour of the binary image. Fi-

ally, the outside of the contour is masked. 

.1.2. Estimating rigid transforms 

Using the keypoints, we estimate a rigid transform that trans-

orms the source image into the target image. 3 times 3 matrix M

f rigid transform is estimated using the random sample consensus

RANSAC) algorithm [40] in the same manner as existing methods.

Then, rigid registration can be performed by applying the trans-

orm to the source image. The pixel value of the registered out-

ut image I s 
′ ( x, y ) can be obtained from pixel value I s ( x, y ) in the

ource image using the following: 

 

′ 
s (p) = I s (M 

−1 · p) , (2)

here p = [ x, y, 1] � denotes the homogeneous coordinates. For the

nterpolation of the remapping, linear interpolation is applied. 

.2. Feature-based non-rigid registration by blending transforms 

Next, we explain our proposed non-rigid registration method.

he proposed method estimates rigid transforms at every pixel us-

ng local rigid transforms and blending them. Our non-rigid regis-

ration method consists of four steps, as shown in Fig. 6 . First, we

xtract the feature points for the images and calculate the match-

ng of these points. This step is the same as the step in rigid reg-

stration explained in Section 3.1.1 . Next, we define local regions,

ach of which has rigid deformation. Then, we estimate a rigid

ransform in each local region. Finally, we compute a transforma-

ion field. The following sections explain these steps in detail. We

xplain our method for a constant number of local regions. 

.2.1. Keypoint clustering and estimating local transforms 

As discussed above, even if the deformation is globally non-

igid, there is a rigid transform in each local region. Such a local

ransform can be estimated from the keypoints in a neighborhood.

hus, we perform K -means clustering for the keypoint matches on

he source image using their coordinates to determine each local

egion, as shown in Fig. 6 (2). We explain a method for determin-

ng cluster number K in Section 3.3 . Using the keypoints in each

luster i , we estimate a rigid transform M i , which transforms a lo-

al region in the source image to the target image, as shown in

ig. 6 (3). The rigid transformation matrix M i is estimated as ex-

lained in Section 3.1.2 for each local region i . Then, we define a

ontrol point v i as the center of the keypoints used to estimate M i 

n the source image. 

.2.2. Calculating the transformation field by blending the transforms 

The proposed method estimates a transformation field that has

 rigid transform at each pixel by blending rigid transforms M =
 M 1 , . . . , M K ] ( Fig. 6 (4)). Blending rigid transforms has been studied

n the computer graphics field, and LBS is the most simple method.

owever, several artifacts occur, such as the candy wrapper effect

n LBS. For the blending of 3D transforms, dual quaternion linear

lending (DLB) and dual quaternion iterative blending (DIB) have

een proposed to overcome the artifact [37] . DIB requires an itera-

ive process because it is not defined in a closed form, but is math-

matically ideal. For the 2D case, the anti-commutative dual com-

lex has been proposed [41] . We can represent rigid transforms
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Fig. 6. Overview of the proposed non-rigid registration of a pair image: Using source and target images as input, the method (1) extracts feature keypoints and matches 

them; (2) conducts clustering of the matching (the case for K = 2 is shown); and (3) estimates the rigid transform M i in each cluster. The transformation field is computed 

by (4) blending the transforms M with weights w to represent non-rigid deformation. The transformation field is visualized as a displacement (arrow) and rotational degree 

(color). For details of the visualization, see Fig. 9 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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sing the dual complex number as follows: 

ˆ 
 = c 0 + c ε ε, (3) 

here c 0 and c ε are complex numbers and ε is a dual num-

er (c 0 , c ε ∈ C , ε 2 = 0) . Although the linear blending algorithm has

lso been proposed [41] , we extend it to the 2D case as dual

omplex iterative blending (DCIB) because DIB is mathematically

referable. We calculate DCIB as follows: 

For applying DCIB, we convert rigid transform matrices M 

−1 =
 M 

−1 
1 

, . . . , M 

−1 
K 

] into dual complex numbers ˆ c = [ ̂ c 1 , . . . , ̂  c n ] as in

41] . We calculate the rigid transform in dual complex number

ˆ  (p) at pixel p using iterative blending as follows: 

ˆ 
 (p) = F (w(p) , ̂  c ) , (4) 

(p) = [ w 1 (p) , . . . , w K (p)] , (5) 

here F is a function of blending the transforms using DCIB as

hown in Algorithm 1 and w i ( p ) is the blending weight of the local

egion i at pixel p . 

lgorithm 1 DCIB: Iterative blending algorithm for anti-

ommutative dual complex. 

ˆ c = 

∑ 

(w n ̂ c n ) 
‖ ∑ 

(w n ̂ c n ) ‖ 
while ˆ e < ε do 

ˆ e ← 

∑ 

n (w n log ̂  c ∗ ˆ c n ) 

ˆ c ← ˆ c exp ( ̂  e ) 

end while 

For each local region i , we empirically set weight w i at pixel p

ccording to the Euclidean distance from p to transformed control

oint v ′ 
i 

as follows: 

 i (p) = 

1 

‖ p − v ′ 
i 
‖ 

2 
2 

, (6) 

 

′ 
i = M i · v i , (7) 

 i (p) = 

t i (p) ∑ 

j 
t j (p) 

. (8) 
ecause the weights need to be convex ( w i ≥ 0 , 
∑ 

i w i = 1 ), we nor-

alize them to meet the conditions to guarantee the convergence

f DCIB. Then, we convert dual complex number ˆ c (p) to transfor-

ation matrix M 

′ ( p ) as in [41] . 

Finally, we calculate the pixel value of output image I s 
′ ( x, y )

rom pixel value I s ( x, y ) in the source image using the following: 

 

′ 
s (p) = I s (M 

′ (p) · p) , (9) 

here p = [ x, y, 1] � denotes the homogeneous coordinates. For the

nterpolation of the remapping, we apply linear interpolation. 

Each pixel has a different rigid transform because each pixel

as an individual weight. Thus, the transformation field represents

on-rigid deformation in the entire image, as shown in Fig. 6 (4). 

.3. Extension to any number of local regions 

The optimal number of local regions depends on the magnitude

nd complexity of the deformation in a tissue. Registration is exe-

uted for a number of image pairs for 3D reconstruction, and each

f them has different deformation. Since the optimal number is

lso different depending on the image pair, it is inappropriate to

et the same number of local region for every image pair. There-

ore, we propose a method to determine the number of local re-

ions automatically by our criterion. This criterion is based on our

ovel non-rigid registration method. 

To determine the number of local regions K , we use the error

f the transformed keypoint as a criterion. For given number of

lusters k , a transformation field is computed using the proposed

ethod, then we evaluate it using error e k according to the Eu-

lidean distance from transformed keypoints in the source image

nd its correspondence in the target image as follows: 

 k = 

∑ 

(p s , p t ) 

‖ p 

t − M 

′ (p 

s ) · p 

s ‖ 

2 
2 , (10)

here p 

t is a keypoint in the target image that corresponds to p 

s ,

hich is a keypoint in the source image. We compute transform

 

′ ( p 

s ) at p 

s as explained in Section 3.2.2 . 

We only evaluate the top 80% of keypoint matches that have

 small error to reduce the effect of mismatched keypoints. For

ach image pair, we firstly set k as 1, then increase k while error

 k decreases. We adopt k as appropriate number of clusters K for

he image pair. 
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Fig. 7. Overview of the proposed serial section registration method for 3D recon- 

struction. We conduct registration from reference image I r to I 1 (backward registra- 

tion) or I N (forward registration). In each registration, (1) we select the target image 

from target candidates for each source image. (2) Then, we conduct non-rigid reg- 

istration. (3) Finally, we apply scale adjustment. 
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4. Registration of serial sections for 3D reconstruction 

We propose the non-rigid registration of two image pairs in

Section 3 . In this section, we explain the registration method of en-

tire serial sections that solves tissue discontinuity and scale change

problems for 3D reconstruction. 

For a tissue discontinuous problem, we propose a target selec-

tion method that uses registration accuracy based on our non-rigid

registration method. Our method avoids tissue discontinuity by se-

lecting the target image without registration failure, as shown in

Fig. 3 (b). For the scale change problem, we propose a scale adjust-

ment method to preserve the tissue area after non-rigid registra-

tion ( Fig. 4 ). We use the tissue area before and after registration to

adjust the scale. 

Fig. 7 shows the overview of our serial section registration

method for 3D reconstruction. We conduct sequential registration

from reference image I r backwardly and forwardly. For each pair

of sequential registrations, we (1) select a target image; (2) ap-

ply non-rigid registration; and (3) conduct scale adjustment. Our

method enables smooth 3D reconstruction from a large number of

serial sections. 

4.1. Selecting the target image 

Unlike the registration of neighboring image pairs in Eq. (1) , we

select image pairs and conduct registration sequentially according

to 

I ′ x = 

{ 

I x , x = r 
R (I x , S(I ′ x +1 , ... ,x + ws )) , x < r 

R (I x , S(I ′ x −1 , ... ,x −ws )) , x > r 
, (11)

where I x is the x th image before registration, I ′ x is the x th image

after registration, I r is the reference image ( r = N/ 2 ), N is the num-

ber of section images, R ( S, T ) is the registration function stated

in Section 3 to transform source image S into target image T ,

S(I ′ 
i ... j 

) is the function to select the target image from candidate

images ( I ′ 
i 
, · · · , I ′ 

j 
), and ws is the window size that determines the

candidate images. 

For the selection, we adopt the criterion used to determine the

number of local clusters explained in Section 3.3 . For each target

candidate, we obtain the error of transformed keypoints e k in Eq.

(10) for each source image. We select the target image with mini-

mum e k as the final target image for the source image. 

4.2. Scale adjustment 

To reduce the accumulation of scale change caused by registra-

tion, we propose a method to adjust scaling. We conduct a scale
djustment by calculating the change in area after registration and

pplying the transform to compensate for the change according

o 

 

′′ 
s (p) = I ′ s (S −1 · p)) , (12)

 = 

[ 

s x 0 c x (1 − s x ) 
0 s y c y (1 − s y ) 
0 0 1 

] 

, (13)

 x = s y = 

√ 

A 

A 

′ , (14)

here I s 
′ ( x, y ) is the pixel value of the image after non-rigid regis-

ration, as in Eq. (9) , I s 
′′ ( x, y ) is the pixel value of the final output

mage after scale adjustment, A and A 

′ are tissue area before and

fter registration respectively, s x and s y are the scale factor to the

 -axis and y -axis respectively, ( c x , c y ) is the center of the extracted

issue as the center of the transform, and S is the transformation

atrix used to adjust scaling. 

. Results and discussions 

First, we evaluate our non-rigid registration method using the

erformance of the registration of two image pairs. Then, we eval-

ate the performance of our three proposed methods, which are

on-rigid registration method, target selection method, and scale

djustment, for 3D reconstruction from a large number of serial

ections. To achieve this, we used a part of image dataset of the

yoto collection [2] . This study was approved by the Ethics Com-

ittee of the Graduate School of Medicine and Faculty of Medicine,

yoto University (approval numbers R0316 and R0347). The pa-

ameters used in the experiment are as follows: We used AKAZE

n OpenCV [42] with the default parameters, except threshold =
.0 0 05 for keypoint detection explained in Section 3.1.1 . We empir-

cally set window size ws = 5 in Eq. (11) to select a target image. 

.1. Registration of image pairs 

We experimentally demonstrated that the proposed method is

pplicable to the non-rigid registration of a histological section im-

ge. We selected four specimens from the Kyoto collection and ran-

omly selected 20 pairs of two neighboring images from each of

hem. 

We compared our method with one of the existing non-rigid

egistration methods: bUnwarpJ (elastic registration using B-spline)

9] . bUnwarpJ was used for the non-rigid registration of a state-

f-the-art 3D reconstruction method [10] . Fig. 8 shows the source

mage ( Fig. 8 (a)), target image ( Fig. 8 (b)), and results of registra-

ion ( Fig. 8 (c)–(e)). Because the histological sections were stained

hemically, a variation in staining could occur. We show the re-

ults of samples with large deformations in the first row and high

ariations of staining in the third row. The second and fourth rows

how the overlay of the registration result and target image. The

umber of control points for bUnwarpJ was set to 8 × 8 and the

luster number ( K ) was 8 for the proposed method. Even though

he number of control points used in our method was much fewer

han those in bUnwarpJ, the proposed method achieved better per-

ormance for samples with high staining variation where bUnwarpJ

ad a large deformation error, as shown in the bottom row of

ig. 8 . 

Then, we visualized the transformation field of our method for

arious cluster number, K = 1 , 2 , 4 , 8 , in Fig. 9 . The figure shows

he displacement as an arrow and the rotational degree as a color.

his demonstrates that our method can represent a complex defor-

ation from a small number of control points ( K = 2 in this case).
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Fig. 8. Registration of histological section images: (a) source image; (b) target image; (c) rigid registration; (d) non-rigid registration using bUnwarpJ (deformation grid = 

8 × 8); (e) proposed non-rigid registration (cluster number K = 8 ). We show the images with large deformation (first and second rows) and high staining variation (third 

and fourth rows). The first and third rows show the registration images. The second and fourth rows show the target image in blue and each registration results in red. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 9. Visualization of the transformation field in each number of clusters: (a) 

transformation field of each number of clusters, where (n) indicates the number of 

clusters; (b) color bar of the rotational degree. We used the source and target image 

pair in Fig. 8 (first row) for the visualization. The arrow indicates the displacement. 

The color of the arrow indicates the rotational degree. (For interpretation of the ref- 

erences to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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Fig. 10. The accuracy of registration using IOU. IOU of the registration images in 

each method: rigid registration (Rigid), bUnwarpJ, and our method (Ours) for vari- 

ous settings. In bUnwarpJ, ( n × n ) represents the number of deformation grids. In 

our method, ( n ) represents the number of control points, (auto) represents the 

method for determining the number of clusters K using keypoints, and red dots 

represent the mean. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 11. Accuracy comparison of bUnwarpJ and our method with the same number 

of control points or best control number for the same image pair. The x -axis and 

y -axis respectively show that the IOU of bUnwarpJ and our method. The compari- 

son has made between 2 × 2 = 4 deformation grid intervals for bUnwarpJ and four 

control points for our method, which is indicated as (4) in the figure, and between 

8 × 8 = 64 deformation grid intervals for bUnwarpJ and automatic cluster determi- 

nation in our method, which achieved the best performance (best). 
Next, we conducted a quantitative evaluation of registration ac-

uracy using intersection over union (IOU) (also known as the

accard index (JI)) [43] . IOU represents the overlap ratio of tis-

ue regions, which was extracted using the method described in

ection 3.1.1 from two adjacent images as follows: 

OU A,B = 

| A ∩ B | 
| A ∪ B | , (15) 

here A and B are the same pixels in the source and target images.

he accuracy of various settings is presented in Fig. 10 . bUnwarpJ

equired many control points (8 × 8) to achieve good accuracy. By

ontrast, the proposed method achieved almost the same accuracy

ith a much smaller number of control points, and performance

as relatively stable for the number of control points. 

We also tested the effectiveness of our method for determining

he cluster number. We evaluated the IOU of the cluster number

election method, as shown in Fig. 10 (auto). We observe that it

chieved the best performance among the other methods. 

Fig. 11 shows the direct comparison of bUnwarpJ and our

ethod using the same number of control points or condition with
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Fig. 12. Histogram of the selected cluster number for the proposed method using 

keypoints (KPs) and the benchmark method using IOU (IOU). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13. Accuracy comparison of the cluster number selection method using the 

keypoints and IOU for the same image pair. The x -axis shows the IOU of the bench- 

mark data using the IOU of the entire tissue in each sample. The y -axis shows the 

IOU of the proposed method that determined the cluster number. The IOUs for the 

entire tissue (whole) and annotated tissue (annotated) are shown. 
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the best average IOU in Fig. 10 . For the same number of control

points, we compare between bUnwarpJ with 2 × 2 = 4 deforma-

tion grid intervals and our method with four control points. For

the condition of best average IOU, we compare between bUnwarpJ

with 8 × 8 = 64 deformation grid intervals and our method auto-

matic cluster determination. Each point represents the IOU of bUn-

waprJ and our method for the same pair of sections. If the accuracy

is same, then the point is plotted on the diagonal line. The points

in the upper left-hand side indicate that the proposed method

achieved a better IOU than bUnwarpJ. We observe that our method

achieved similar or much better accuracy than bUnwarpJ for most

samples. 

For further evaluation of the cluster number selection method,

we compared the criterion of Eq. (10) by comparing with a bench-

mark method using the IOU to evaluate the number of clusters.

We evaluated the IOU for local cluster number K = 1 , · · · , 16 in

a brute-force manner, and selected K that achieves the best IOU

for each image pair. Note that the benchmark method always

achieves better accuracy in terms of IOU than the automatic se-

lection method where the selected cluster number is less than 16. 

Fig. 12 shows the histogram of the cluster number of our

method and the method using IOU. Our method selected a smaller

number of control points than that of the best IOU. To compare

the performance of our proposed method with the benchmark

method, we used two criteria: the IOU of the entire tissue and

IOU of the manually annotated region of the central nervous sys-

tem. This annotation was performed by a medical expert. Because

the benchmark method maximized the IOU of the entire tissue us-

ing the brute-force approach, it had to be the best result under

the first criterion. The second criterion using the IOU of an anno-

tated image was blind for both methods; thus, it provided a fair

and solid comparison. As a result, the proposed method using key-

points was comparable with the benchmark method using IOU in

both the entire and annotated regions ( Fig. 13 ). Note that the pro-

posed method using keypoints had much less computational cost

than the benchmark method using the IOU because these meth-

ods required the blending of transforms only at keypoints and at

all pixels, respectively. These results support the fact that the pro-

posed method using keypoints was efficient and sufficiently appro-

priate to tune the number of clusters. 

5.2. Registration of serial section images 

Next, we examine the 3D reconstruction result from serial sec-

tion images and evaluate the effectiveness of our target selection
ethod and scale adjustment. Fig. 14 shows the cross sections of

he 3D reconstruction results with or without selecting the tar-

et image and scale adjustment. First, we examine the effective-

ess of our target selection method. In existing neighboring pair

egistration methods ( Eq. (1) ), a reconstructed tissue is discontinu-

us ( Fig. 14 (first and second column)). By contrast, using the pro-

osed target selection method, the reconstructed tissue is continu-

us and smooth ( Fig. 14 (third and fourth column)). We also quan-

ified the result by the IOU of each neighboring pair of serial sec-

ions ( Fig. 15 ). As a result, the average IOU of selecting the target

mage was higher than the neighboring pair registration. The reg-

stration result might depend of the window size. We empirically

et it as ws = 5 in this experiment. The proper number of win-

ow size depends on 1) the thickness of the slice that determines

he difference in tissue structure and 2) the probability of dam-

ged tissue. Smaller window size cannot avoid the tissue disconti-

uity caused by registration failure due to a large staining variation

r a destructive deformation in a slice. By taking enough window

ize, our method can select proper target image which avoids the

issue discontinuity. These results demonstrate that our target se-

ection method reduced the tissue discontinuity caused by regis-

ration failure. 

We also examined the effectiveness of our scale adjustment.

ithout the scale adjustment, the area of tissue was changed by

he accumulation of the scale change ( Fig. 16 (c)). By contrast, using

ur scale adjustment, the area of tissue was retained ( Fig. 16 (d)).

e also evaluated the effect of scale adjustment on the 3D re-

onstructed results. Without scale adjustment, the tissue area in-

reased, as shown in Fig. 14 (bottom part of the third column). By

ontrast, the tissue area was retained with our scale adjustment, as

hown in Fig. 14 (bottom part of the fourth column). We quantified

he result by the IOU of each neighboring pair of serial sections

 Fig. 15 ). As a result, the average IOU of the scale adjustment was

ower than that for the method without scale adjustment because,

y adjusting the scale, the area of overlap tissue became smaller.

ote that IOU could not become 1.0 because the areas of the origi-

al source and target image were not same. Additionally, we quan-

ified the tissue area before and after registration. Fig. 17 shows

hat the ratio of the tissue area increased after registration by the

istance from the reference image. Without scale adjustment, the

issue area increased by increasing the distance from the reference

mage ( Fig. 17 (a)). By contrast, with our scale adjustment, the tis-

ue area was retained by increasing the section number from the
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Fig. 14. The side section of the 3D reconstruction result: two side views from the 3D reconstructed result by two different sectioning planes are displayed in each row. We 

show a result of our non-rigid registration method with ( + ) or without ( −) each of two conditions: selecting the target image (Target) and scale (Scale) adjustment. 

Fig. 15. The accuracy of registration using IOU: IOU of the registration images in 

each method, rigid registration (Rigid), and our non-rigid method (Non-rigid) in 

various settings. For rigid registration, our method ( K = 1 ) is shown. We show with 

( + ) or without ( −) two conditions: selecting the target image (Target) and scale 

adjustment (Scale). 

Fig. 16. The change in tissue area caused by non-rigid registration. The 88th image 

from the reference image is shown: (a) original image; (b) rigid registration; (c) 

non-rigid registration; (d) non-rigid registration with scale adjustment. 
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eference image ( Fig. 17 (b)). These results demonstrate that our

cale adjustment reduced the accumulation of scale change. 

We also compared the proposed method with an existing reg-

stration method for 3D reconstruction: the state-of-the-art non-

igid registration method by Wang et al. [10] . Fig. 18 shows the

ross section of the results of the proposed method and existing

ethods using their dataset [10] . We used registered section im-

ges according to their method [44] and built the cross section

f the 3D reconstruction from these sections. The 3D reconstruc-

ion results of both the existing method and proposed method

ere continuous, as in Fig. 18 . However, the result of the proposed

ethod is slightly worse than the existing method since the tissue

as not smooth in the upper part of our method. This is one of

ur limitations that our method is weak for the image of a tiny

iece with the fine resolution because it does not have the global

tructure of the organs and leads the mismatches of the keypoints.

y contrast, Wang et al.’s study used a data normalization and fea-

ure extraction method that emphasized a small biological struc-

ure and thus accomplished high registration performance for this

ample [10] . 

Next, we compared the performance of 3D reconstruction using

 large number of sections ( N = 201 ). For Wang et al.’s method,

e used the author’s implementation [44] and searched the best

arameter α = 150 , which is a threshold for validating the out-

ut registered image. We compared the existing method and the

roposed method using a subset of Kyoto collection data [2] .

ig. 19 shows the cross section of the results. The 3D reconstruc-

ion result of the existing method is discontinuous, as shown in

ig. 19 (a). Since the existing method adopts the neighboring pair-

ise method, the output became discontinuous once the contin-

ous sections were lost because of registration failure. To support

his assumption, their registration result was smooth for some con-

inuous sections as shown in Fig. 19 (a). By contrast, the 3D recon-

truction result of the proposed method was continuous through-

ut entire sections as shown in Fig. 19 (b). This result suggests

hat our registration method selected a target image without reg-

stration failure and was effective for reconstructing a smooth 3D

odel. 
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Fig. 17. Effect of a scale adjustment to the tissue area: (a) without scale adjustment; and (b) with scale adjustment. The x -axis shows a relative number from reference 

image r to the i th image as | r−i | 
N 

, where N is the number of section images. The y -axis shows the ratio of the tissue area after non-rigid registration and the original image. 

Fig. 18. The side section of the 3D reconstruction result using the data in Wang et al. [10] . Results for (a) Wang et al. [10] and (b) our proposed method are shown: two side 

views of the 3D reconstructed result using two sectioning planes are shown in each row. Note that the color in the result image of Wang et al.’s method was normalized 

using their algorithm [10] . The number of sections N = 18 . For this sample, we set threshold = 0 . 0 0 015 for keypoint detection in AKAZE. (For interpretation of the references 

to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 19. The side section of the 3D reconstruction result: two side views of the 3D 

reconstructed result using two sectioning planes are shown in each row. Results for 

(a) Wang et al. [10] and (b) our proposed method are shown. Note that the color in 

the output image using Wang et al.’s method was normalized using their algorithm 

[10] . The number of sections N = 201 . 
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Fig. 20. The side section of the 3D reconstruction results of the four developmental sta

shown. The number of sections is N = [201 , 340 , 1582 , 532] , respectively. 
Finally, we present applicability of our method. The Kyoto col-

ection contains human embryo images of many stages of devel-

pment from early stage to late stage (image number N > 100 to

 > 10 0 0) [2] . Fig. 20 shows the 3D reconstruction result of vari-

us developmental stages. As a result, our 3D reconstruction result

as smoothly connected. This demonstrates that our method can

e used for various samples from a small to a large number of im-

ges. Our method also can be used to reconstruct a specific part of

he sample. Fig. 21 shows the 3D reconstruction data of various or-

ans from the annotation data. The annotation was performed by

 medical specialist. We estimated the deformation in section im-

ges without annotation and then applied the deformation to the

mages with annotations. The surface of each tissue region was ex-

orted as a 3D mesh using voTracer [45] and it was visualized us-

ng the Unity3D game engine [46] . As a result, various organs were

moothly connected using our registration method. 

. Conclusion 

In this study, we proposed a method for the 3D reconstruc-

ion of serial section images. For non-rigid deformation in the

ection image, we proposed a novel feature-based non-rigid reg-

stration method that establishes the transformation field. The

roposed method estimates the rigid transform in local regions
ges: two side views of the 3D reconstructed result using one sectioning plane are 
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Fig. 21. 3D reconstruction of various organs from the annotated image: From a nor- 

mal and annotated image as input (left), the 3D model of various organs is shown 

(right). Each organ is visualized in each color: tissue surface as gray, central nervous 

system (CNS) as red, intestine as blue, and liver as yellow. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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nd blends them to interpolate the transforms at every pixel. The

xperimental results demonstrated that our method could describe

 complex deformation with a smaller number of control points

nd was robust to a variation of staining. The proposed method

lso automatically selects the number of control point appropri-

tely for the given image pair. We also proposed a method to

olve problems in 3D reconstruction from a large number of se-

ial section images. To avoid tissue discontinuity caused by regis-

ration failure, we proposed a method to select the target image.

e selected the target image according to the registration accu-

acy based on our non-rigid registration method by blending trans-

orms. To avoid a change in the tissue area caused by the accu-

ulation of scale changes, we proposed scale adjustment. We ad-

usted an area of tissue using the tissue area before and after reg-

stration. The experimental results demonstrated that our methods

educed tissue discontinuity and scale change. 

As a limitation of the feature-based approach, the proposed

ethod could not perform registration in the image without a suf-

cient number of feature points. The use of a more robust algo-

ithm for matching will improve registration quality. We used a

issue extraction method for non-rigid registration and the calcu-

ation of the tissue area for scale adjustment. However, in some

ases, tissue extraction failed in samples with a large distortion.

his failure of tissue extraction caused a failure in non-rigid reg-

stration and scale adjustment. Therefore, a more robust tissue ex-

raction method could be adopted to improve robustness. 

The non-rigid registration method may have applications other

han the registration of histological serial section images. The in-

estigation of other applications of the method will be interesting

or future study. 
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