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Human in the Loop: Distributed Deep Model
for Mobile Crowdsensing

Liangzhi Li, Student Member, IEEE, Kaoru Ota, Member, IEEE, Mianxiong Dong, Member, IEEE

Abstract—With the proliferation of mobile devices, crowdsens-
ing has become an appealing technique to collect and process big
data. Meanwhile, the rise of 5th generation wireless systems (5G),
especially the new cellular base stations with computing ability,
brings about the revolutionary edge computing. Although many
approaches regarding the mobile crowdsensing have emerged
in the last few years, very few of them are focused on the
combination of edge computing and crowdsensing. In the paper,
we adopt the state-of-the-art edge computing method to solve
the crowdsensing problem with the real-time sensing data, and
more importantly, make human be in the loop again, in order
to respect the users’ willing and privacy. A distributed deep
learning model is adopted to extract features from the captured
data, which is not only a compression process to reduce the
communication cost, but an encryption procedure for safety
protection. The proposed model enables the crowdsensing system
to fully harness the computing capacity of edge nodes and devices,
and obtain a strong data analysis ability to process the captured
data. Simulations demonstrate that our approach is robust and
efficient, and outperforms other strategies in several related tasks.

Index Terms—Edge computing, crowdsensing, human-driven,
deep learning, big data.

I. INTRODUCTION

With the rapid development of Internet of Things (IoT),
many applications have emerged to process the real-time
sensing data, analyze its contents, find the hidden patterns,
and ultimately, give the right labels or predict the future
trends. In the other hand, crowdsensing is an economic and
efficient approach to collect data on an extensive scale, and
can be used as a scalable and stable method for some costly
and complicated tasks in the IoT research. It has become a
hot topic in recent years. The progressive development of
miniaturized sensing and computing devices, especially the
explosive growth of mobile phones, tablets, and wearables,
gives significant prominence to the crowdsensing [1]. Both
the academia and the industry have recognized its values,
for example, to conduct the data collection with no large-
scale investment. Many companies have utilized crowdsensing
to acquire data at relatively low cost, in order to support
their online service based on the captured data, some of the
most notable examples being Facebook, Google and Uber.
However, the boom of crowdsensing also brings about two
grave problems.
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First, the crowdsensing applications create a huge number
of data, which poses significant communication and compu-
tational costs for the existing cloud infrastructure [2]. Com-
pared with the centralized servers, the user-end devices have
limited batteries and computing abilities. Therefore, existing
crowdsensing systems usually put the heavy computation tasks
into the centralized servers, such as the data processing and
analysis. As a typical scenario in current cloud applications,
the major part of the computational burden is usually shifted
to the centralized servers, resulting in the rapid increase of
communication frequency and server calculation load. The
former brings significant traffic to the cloud infrastructure; and
the latter one leads to overwhelming, sometimes unbearable,
load to the centralized servers.

The other concern is about the respect of crowdsensing
contributors. In fact, it has been a long time since the users are
excluded in the crowdsensing process. Although most service
guarantees the right to know and to decide, it is very difficult
for users to truly get involved in the processing loop, e.g., to
what extent the privacy should be protected, to what amount
the device power can be consumed, etc. The compromise
between data uploading, which may cause the privacy leaks
[3], and local computing, which will result in the energy
consumption of the mobile devices, is merely decided by the
service providers, rather than the actual device users.

To address these problems, we adopt the state-of-the-art
edge computing and deep learning methods to balance the
workloads in the cloud, and give the control of crowdsensing
process back to the users. Edge computing pushes calculation
tasks away from the central points to the logical boundaries
of the cloud; and deep learning is a good choice to conduct
the data processing task, simultaneously considering the user
privacy and communication cost. Therefore in the paper, we
design an edge computing based deep learning system for
universal crowdsensing tasks, as shown in Fig. 1. The right
part is the network architecture, in which three edge nodes are
connected to the central cloud, i.e., the cellular base station,
the wired router and the gateway in the buildings. Through
these network nodes, various edge devices can be connected to
the cloud, e.g., mobile phones, sensors, smart meters, electrical
appliances, etc., which is very common in the current IoT age.
The difference between our method and existing crowdsensing
approaches is that we successfully adapt the state-of-the-art
deep learning model to the edge computing framework. As
a result, with the proposed deep model, the captured data is
directly processed in the edge devices and edge nodes, as is
shown in the left part of Fig. 1. And only the irreversibly
extracted features are uploaded to the centralized servers.
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Fig. 1. The proposed edge computing based crowdsensing system. The deep model is adopted to extract features from the raw captured data for cost saving
and privacy protection.

Although the centralized servers in the cloud end have strong
computing abilities, we attempt to push the computing task
to the user end. On the one hand, this scheme can keep the
sensitive data in the user side and prevent the unauthorized
access to the user privacy; on the other hand, it can also reduce
the huge computing load of the centralized servers and fully
utilize the computing resource in the cloud edge.

The main contributions of our work include:
• We propose a distributed deep model for the mobile

crowdsensing problem. The proposed model can fully
utilize the edge computing resource, and reduce the
calculation load of the cloud servers.

• We transform the crowdsensing task into a hierarchi-
cal computing problem, and allocate different layers to
different computing nodes. With the proposed method,
crowdsensing contributors obtain the right to decide the
balance between the privacy protection and energy saving.

• We work out a dynamic learning model for the changing
sensing tasks. In our model, the higher layers can be
flexibly modified in the centralized servers, while keeping
fixed lower layers in the edge nodes and devices.

The rest of the paper is organized as follows. We first
give a brief introduction regarding the existing research in
the related area. After that, we present an overview of the
proposed system, and then detail the human-driven strategy
for mobile crowdsensing. In the experiment section, several
simulations are conducted to demonstrate the performance of
the proposed method. Finally, conclusions are drawn in the
last section.

II. RELATED WORKS

A. Current Crowdsensing Approaches

Crowdsensing is a technology and a trend to utilize the
rapidly-developing sensing and computing ability of mobile

devices, such as smart phones, tablets, etc., to gather, process,
calculate, and analysis the data generated by the environment,
society, and other sources. Crowdsensing is usually for the
public affairs or some wide-range commercial applications.

The first problem in crowdsensing is how to persuade
users to participate in the projects, and encourage them to
make contributions positively on data collection and sharing.
Several incentive mechanisms are proposed for this purpose
[4], [5]. The prime principle is to design a trading model,
in which all captured data has a value and can be sold to
some companies. There are two mainstream mechanisms, i.e.,
auction and lottery. The former one is the most common
mechanism in crowdsensing. The bidders are the users who
have the mobile sensing devices, and the auctioneers attempt
to buy the data from the bidders. The latter one focus on the
even distribution of the winning positions, and the winner is
decided by a probability.

Another important concern is the sensing cost. There have
been some researchers working in this area to reduce the
overall sensing cost while ensuring data quality. A novel way
is to leverage the temporal and spatial relationship between
the data captured in different areas, in order to decrease the
essential number of allocated sensing tasks [6]. A prediction
framework is proposed to predict the data of unsensed area
with the captured data in some selected areas.

Communication cost is also a consideration. The rapidly
growing crowdsensing applications impose heavy burdens on
the existing network. Therefore, the performance of these
applications may deteriorate in some scenarios because of
the overwhelming communication requests. A congestion-ware
paradigm is worked out for dense crowdsensing to ensure load
balancing and reliable communication among mobile devices
[7].
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TABLE I
FEATURES COMPARISON OF CROWDSENSING METHODS.

Existing Approaches Proposed Approach

Load Concentrated in servers Distributed among cloud

Traffic Raw data uploading Extracted features

Analysis Need further processing Already processed

Privacy Sensitive data Irreversible data

Controllability Controlled by provider Controlled by user

Adaptability Fully applicable Available in 5G network

B. Opportunities in Edge Computing

In the era of big data and mobile computing, an extensive
number of applications have emerged and become important
solutions in a lot of areas, such as taxi sharing, mobile
payment, social networks, etc. More and more services become
computation-intensive and cloud-based, which, however, gives
a heavy workload to both the network infrastructure and the
cloud servers. As a good solution, edge computing becomes
popular due to its ability to offload the computational load
from central servers to the devices near the user end [8]–
[15]. One of the most obvious advantages of edge computing
is that it can empower the edge nodes with some essential
computing abilities, which can provide lower response latency
and better resource utilization rate. Another advantage is
that it can balance the workload of the cloud servers [16],
decreasing the possibility that they are overloaded. These
features of edge computing structure can largely alleviate the
aforementioned problem. Several instructive examples have
been presented [17]–[25]. Bilal and Erbad [26] present an
approach to improve users’ experience of video generation
and streaming with mobile edge computing. The authors work
on the “edge based video generation” concept, and desire
to implement a robust and efficient video generation and
streaming approach for gaming interactive videos, multi-view
videos, 360-degree videos, etc. The proposed method makes
sure that the system can conduct the computation with the
edge computing framework. Therefore, it can significantly
improve the QoS of video service and give the users better
experiences when using the edge computing based applications
and services. Tran et al. [27] give another example using the
edge computing approach for the video streaming. They use
the edge servers to transcode the desired videos into several
different versions, which have different resolutions or bit rates,
and, therefore, differ in data size. This design can adapt the raw
videos to various devices with different internet connection
speed and video playing abilities.

C. Deep Learning for Crowdsensing

Although edge computing can partly solve the aforemen-
tioned problems in crowdsensing, another approach is needed
to process the captured data, including the compression, en-
cryption, and analysis. The compression is for the further
decrease of communication cost, the encryption is used for

protecting the users’ privacy, and the analysis is essential to
make the captured data into full play and utilization.

The compressed sensing [28] is a representative case for
data compression. Based on a deep learning method, a binary
autoencoders scheme is designed for compressed sensing,
in which a binary sensing matrix and a recover solver are
jointly optimized in the network training. Results show that
the compressed sensing performs well in efficiency, and is
preferable for real-time wireless applications.

Will deep learning revolutionize crowdsensing? [29] gives
preliminary answers by implementing a prototyping deep
learning engine on a mobile device SoC. Compared with other
approaches in several typical crowdsensing tasks, the deep
learning based methods show significant advantages on infer-
ence accuracy, without overburdening the mobile hardware.

Valerio et al. combine the deep learning with edge com-
puting and crowdsensing-like tasks [30]. They consider three
scenarios, i.e., calculating all the tasks on the local devices,
calculating all the tasks on the remote cloud, or calculating the
tasks on the devices and cloud at the same time. They model
a network cost function to measure the approximate total cost
for the deep learning computing. Given a desired accuracy
for a specific task, their model can be used to compute the
trade-off between performance and network cost and to find
the minimum network cost.

Compared to the aforementioned deep learning based ap-
proaches, our method adopts a specially-designed hierarchical
deep model, which can be well adapted to the edge computing
framework. The difference between the proposed method with
other deep learning based approach is shown in Table. I. Our
method can solve many problems existing in the traditional
approaches, such as the computing distribution, the communi-
cation cost, and the user controllability. The main differences
between our approach and the existing ones include the follow-
ing aspects. First, in the traditional solutions, the centralized
servers take all the burden of computation task, while in
the proposed approach, most of the computing resource in
the cloud can be utilized, leading to a better balanced cloud
environment. Second, in cloud-based approaches, each device
sends the captured data to the centralized servers in the cloud,
resulting in significant traffic to the network infrastructure,
while in our method, only the extracted features are uploaded
to the upper layer, instead of the raw data, which contains
lots of redundant data. Third, as one major drawback of the
existing approaches, the user devices have to upload the sen-
sitive data to the centralized servers for further process, which
may cause privacy leakage, while in this method, users can
decide which level of abstraction can be uploaded. The higher
level the abstractions are, the more security the user data has.
However, there also have some disadvantages, for example ,
the network adaptability. Unlike the traditional methods which
have few requirements on the network infrastructure and,
therefore, are fully applicable on existing devices, the proposed
method need the basic edge computing structure which needs
upgrading on the cloud infrastructure, especially on the base
stations. We will detail its methodology and implementation
in the following sections.
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Fig. 2. The framework of the edge computing based deep learning system. The distributed deep model is allocated to all of the computing resource in the cloud,
including centralized servers, edge nodes, and devices, for better load balance. Edge devices are responsible for the data sensing and lower layers calculation;
the edge nodes calculate for the intermediate layers; the servers will perform the following higher layer calculation and final analysis. The crowdsensing
process is fully controllable through some external APIs. Users can use the control panel to decide the balance between energy-saving and privacy protection.

III. CROWDSENSING SYSTEM: CONCEPT AND DESIGN

In this work, we attempt to adapt the deep learning methods
into the edge computing environment, with the following
reasons. As mentioned above, edge computing is for the load
balance of the cloud network, and there are two reasons we
choose deep learning in the system. First, the crowdsensed data
should ultimately be processed using some analysis methods,
and deep learning is one of the most successful approaches to
perform this task. Second, due to the hierarchical structure of
deep learning models, it can well meet the requirement of edge
computing. Deep learning is able to give both cost-efficiency
and privacy protection to the crowdsensing system.

The main principle is to utilize the hierarchical deep model,
and allocate its computation tasks to available resources in
the cloud, including the centralized servers, the edge nodes,
and devices. As shown in Fig. 2, an edge computing based
deep (ECD) model is proposed for the crowdsensing task.
ECD model is mainly characterized in its distributed nature
and dynamic framework, which are both essential for the
contemporary edge environment.

Fisrt, to adopt the deep learning in the edge computing
area, the deep model must have the potentials for distributed
operation. Same with all other deep models, the ECD model
in the paper also has a large number of layers, as shown in
Fig. 2. One obvious solution is to allocate the layers to all
possilbe computing nodes. More precisely, the lower layers
can be assigned to the edge of the cloud, and the higher
layers can be assigned to the centralized servers. Because
the activations, which are the output of each layer, require
unidirectional transmission, each computing node must send
the calculation results to the next logically adjacent node. The
edge devices, including the mobile phones, deployed sensors,
vehicles, and other devices which capture the raw data, are
responsible for the first part of the crowdsensing task. As the
nearest devices to the users, they should be exclusively under
the control of their holders. According to the decision of the

users, the edge devices can either calculate for a few lowest
layers by themselves and send out the extracted features, or
totally leave the calculation away and directly push the raw
data to the network. It is a key feature of our human-driven
design to empower the users with the power to make decisions,
which will be detailed in the next section. The edge nodes,
including cellular base stations, gateways, and routers, will
handle the calculating of several intermediate layers, which
is also a big difference with the existing deep learning based
crowdsensing approaches. In the next generation of the net-
work infrastructure, the edge nodes will be greatly enhanced
in their computing ability, therefore, they will become an
extremely important resource for cost-efficient services. The
output of the edge nodes is uploaded to the central part of the
cloud, i.e., the centralized server, for the calculation of higher
layers and final analysis. Although the servers have powerful
hardware to perform parallel computing, they are likely to be
overloaded due to the extremely large sensing data captured by
numerous device. However, with the feature extraction in the
lower layers, the burden of centralized servers can significantly
decrease.

Through the aforementioned one-way communication
scheme, the ECD model obtains the basic distributing ability,
however, it needs more to be fully adaptable to the edge
computing architecture. The dynamic structure is another
important piece of puzzle for this. Because one same deep
model cannot handle all crowdsensing tasks, the ECD model
in the proposed system should have the ability to be fitted
into different objectives. On the other hand, the upgrade
frequency of the edge hardware is usually very low, so it is
very difficult to frequently change the lower-layer structures.
Therefore, the proposed system is implemented with a flexible
framework, which is adaptable for various crowdsensing tasks,
while keeping the lower layers relatively stable. The lower
layers are integrated into the firmware and only updated with
a low frequency, and the higher layers are implemented as the
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software installed in the centralized servers and keep adaptable
for different tasks.

The service provider can deploy several sub-models with
different lower layers for some typical kinds of crowdsensing
tasks, such as the image classification, 3D scene understand-
ing, road condition monitoring, audio recognition, network
control [22], etc. A well-trained sub-model can be used for
most of the subtasks in the same category, as their low-level
features are very similar.

IV. HUMAN-DRIVEN CROWDSENSING

Following the trend of human-driven design, we attempt
to empower the users with the right to decide the balance
between energy consumption and privacy protection. On the
one hand, users may prefer their devices can output more
abstracted features, which is more secure but costs more
energy; on the other hand, users may prefer to save the energy
of their devices and leave the computing task to the outside
devices, which can lead to some privacy concerns. The major
reason is that the reconstruction from the output features to
the original input deteriorates with the increase of the forward
propagation progress. Therefore, there is a trade-off between
efficiency and security. We believe, this dilemma should be
decided, or at least partly directed, by the users. In other
words, it must be guaranteed that the users can decide that to
what level the deep model should be calculated on their own
devices, which common users may not be very experienced
in but have enough motivation to have the choice. With
the human-driven design, service providers can give some
recommendations or a changeable security level for the users,
just like all the similar solutions integrated in mainstream
operating systems or mobile applications for other security
problems. As mentioned above, it must be guaranteed that the
users can decide that to what level the deep model should be
calculated on their own devices. Due to the characteristic of
the deep learning model, the smallest calculation unit, which
can be assigned to different computing nodes, is the layer.
Therefore, the best way to control the calculation level is to
select the desired layer numbers for calculation.

We model the aforementioned dilemma as an optimization
problem, and define the solution set as B = {b1, b2, · · · , bn},
where n represents the maximum number of the layers for
calculation. As there are two main factors regarding the energy
consumption of edge devices, i.e., the network communication
Scomm
bi

and deep model computation Scomp
bi

, we also define
their energy consumption values as P (Scomm

bi
) and P (Scomp

bi
)

respectively. In fact, given a specific model, both P (Scomm
bi

)
and P (Scomp

bi
) have fixed values. A common deep model,

shown in Fig. 3, is used as an example. The first few layers in
this model are shown in the figure. The input data is image files
with 1000 × 1000 pixels in three channels. The data column
in the left part represents the output size of each layer, which
is also the packet size for network communication. The ops
column in the right part is for the unit operation number, which
is a rough approximation of the calculation cost. To quantify
the P () function, we conduct several tests on various devices,
and find the relationship between P (Scomm

bi
), P (Scomp

bi
) and

Fig. 3. The communication data size and the numbers of unit operations in
a deep model.

exact power consumption. As shown in Fig. 4(a), we define
a regularized energy cost, in terms of Joule. The dotted black
line represents the energy consumption resulted from the cal-
culation, and the red line represents the communication cost.
It can be seen the computing cost gradually increase with the
calculation level, while the communication cost significantly
drops down due to the decrease of output data size.

In addition to the energy consumption, the privacy pro-
tection Spriv

bi
is another important factor to consider in our

human-driven crowdsensing system. It is very difficult to
accurately measure the risks of the possible privacy leak.
A more obvious way is to calculate the consequences if
the uploading data are captured by unauthorized devices.
There is some approaches to reconstruct the input data with
the output results, such as the intermediate features or even
the final results. These approaches can start with a random
generated noise data, calculate its output, and compare it with
the objective feature, then these methods can optimize the
generated input gradually, and, ultimately, get the data which
maybe similar to the original input. Due to the characteristic
of the deep learning models, it is not possible find the exact
initial input from the output, and the more abstract the features
are, the less similar the inferred input is. Therefore, we define
a data similarity index P (Spriv

bi
) to measure the sensitivity of

the output data. This index measures the degree of similarity
between the reconstruction of the output feature and the raw
captured data. Because the extracted features are not exactly
reversible to the specific input, therefore, the output data with
lower reconstruction similarity has a better security, and it can
keep the users’ privacy even if it is leaked to someone else.
This point is especially notable in image processing tasks,
where the activations of the higher layers are much more
abstracted and illegible than the ones of the lower layers.
In addition, there are lots of ways to measure the similarity,
for example, the Euclidean distance, etc. Fig. 4(b) gives an
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Fig. 4. The energy cost and privacy risk of different calculation levels. (a)The
calculation and communication cost of each calculation level. (b)The privacy
risk of each calculation level. The risk is assessed by calculation the data
similarity.

example regarding the relationship between data similarity
and calculation level. In conformance with our estimates, the
similarity decreases with increasing calculation level.

Given P (Scomm
bi

), P (Scomp
bi

) and P (Spriv
bi

), an utility func-
tion is defined as

U = λ1(P (S
comm
bi ) + P (Scomp

bi
)) + λ2P (S

priv
bi

), (1)

in order to make a comprehensive evaluation on different
solutions. The weights λ1 and λ2 are set by the users to reflect
the individual orientation. The solution with smallest U value
is presented to the users as an instructive recommendation.

V. PERFORMANCE EVALUATION

A. Demonstration for System Validity

We first use a small testbed to demonstrate the validity
of the proposed system, i.e., it is a feasible solution to
divide the deep model into several parts and allocate them
to different computational resources, and it works well with
actual hardware. The testbed consists a central server, an edge
server, and a mobile device. The edge server has a wireless
network interface card for wireless access and an Ethernet
network interface connected to the central server. We use the
Raspberry Pi as the edge server, which is fully capable of
forward propagation.

We implement one image classification application. The
user captures an image, and attempts to know the information
of the image. In our testbed, we install the classification
model in the mobile phone, edge server, and the central
server. The mobile device consistently captures images and
calculates for the results using the available resources. We
compare the performance between the common solution, i.e.,
directly uploading the raw data, and our method. The results
are shown in Fig. 5. Fig. 5(a) gives the traffic change during
actual deep learning based tasks. Compared with the original
method, the proposed ECD approach consumes less network
traffic. After 10 seconds, the traffic size of the original method
have achieved three times larger than ours. In the meantime,
according to Fig. 5 (b), the ECD can keep a similar perfor-
mance with the original method in the response latency. It can
be seen that the proposed method outperforms the original
solution in the network traffic while keeping a similar latency.
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Fig. 5. Network traffic and latency of the demonstration application.

B. Numerical Simulation

In this simulation, two servers, ten edge nodes and 100
mobile devices are deployed to serve as the edge computing
system. The mobile devices keep performing sensing tasks and
upload the data to the cloud. The adopted deep model is used
for image recognition, and all the collected data is in the form
of image. The data size is measured in megabyte.

As shown in Fig. 6, we test the energy saving performance
with several different strategies, and present their consumption
changes with increasing captured data size. The two black
curves are the simulation results of the proposed ECD method,
with λ1 = 0.8, λ2 = 0.2 and λ1 = 0.2, λ2 = 0.8, respectively.
The green line represents the average strategy, i.e., always
calculate for the average layers in the edge devices. The blue
line is the maximum strategy, in which the edge devices
are responsible for all lower layers; while the orange line
represents the strategy in which the edge devices directly
upload the raw captured data. And the last one, the red line, is a
random select strategy, i.e., the calculation level is randomly
selected in each run. It can be seen that the proposed ECD
model has a significant advantage in energy efficiency. When
λ2 is set with a large weight value, the ECD model shows
an obvious orientation on the cost saving. As a result, it
achieves better performance than the one with a larger λ1.
On the contrary, when λ1 is set to 0.8, the ECD model cares
more about the user privacy. Fig. 7 (a) gives the comparison
results of data similarity. And the deep model with a larger
λ1 value, “ECD2” bar in the figure, prefers safety over the
energy efficiency. Of course, the “max” bar shows a huge lead
in this test, because it calculates for all the lower layers and
is able to output the most abstract features. In addition, we
also present the privacy-protection efficiency in Fig. 7 (b),
in order to measure the “value” of unit energy consumption.
It can be seen, our method has the highest efficiency in
improving the effect of privacy protection with one unit of
energy consumption.

Another simulation is conducted to demonstrate the perfor-
mance of the ECD model in balancing the computing load, as
shown in Fig. 8. The difference between left and right sub-
figures is that the edge devices and edge nodes simply send
the raw data to the centralized servers for further computing
in the left, while in the right one both edge devices and nodes
play a part in the computing task. The z axis represents the
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Fig. 6. The comparison results of energy consumption.
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Fig. 7. The comparison experiments on privacy-preserving. (a)The results of
output data similarity. (b)The results of privacy-protection efficiency.

hardware usage. We can see the servers in the left carry most
of the calculation burden, which results in the steep surface
in the left. On the contrary, with the ECD model, all the
computing resource in the right can participate in the process
of the captured data, and the load surface is flat and balanced.

These numerical results once again demonstrate the ne-
cessity and effectiveness of our hierarchical deep model.
Compared to other approaches, the proposed ECD model
performs much better in energy consumption, privacy security
and load balancing.

VI. CONCLUSION

In this paper, we propose an edge computing based crowd-
sensing method, which can adopt the available computing
resources in the whole network, both in the cloud and in the
edge side, to ensure the load balance and reduce communi-
cation cost. We also adopt a specially-designed deep model
to transform the crowdsensing problem into a hierarchical
task, which is not only an effective data processing and
analysis approach, but gives users the right to control the
crowdsensing process. The experimental results well prove
that it can provide better performance while considering and
keeping users’ privacy.

(a) (b)

Fig. 8. Simulation results of load balance. (a)Edge devices directly upload
the raw data for further process. (b) Edge devices and edge nodes participate
in the pre-process of the captured data, using the proposed ECD model.

In the future, we need to test the compatibility of the pro-
posed framework in different cloud environments, especially
the calculation efficiency on various 5G base stations.
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