
Deep Learning for Smart Industry:Efficient
Manufacture Inspection Systemwith Fog
Computing

著者 LI Liangzhi, OTA Kaoru, DONG Mianxiong
journal or
publication title

IEEE Transactions on Industrial Informatics

volume 14
number 10
page range 4665-4673
year 2018-06-01
URL http://hdl.handle.net/10258/00009957

doi: info:doi/10.1109/TII.2018.2842821

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Muroran-IT Academic Resource Archive

https://core.ac.uk/display/225132273?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXX 2017 1

Deep Learning for Smart Industry:
Efficient Manufacture Inspection System

with Fog Computing
Liangzhi Li, Student Member, IEEE, Kaoru Ota, Member, IEEE, Mianxiong Dong, Member, IEEE

Abstract—With the rapid development of Internet of Things
(IoT) devices and network infrastructure, there have been a lot of
sensors adopted in the industrial productions, resulting in a large
size of data. One of the most popular examples is the manufacture
inspection, which is to detect the defects of the products. In order
to implement a robust inspection system with higher accuracy, we
propose a deep learning based classification model in the paper,
which can find the possible defective products. As there may be
many assembly lines in one factory, one huge problem in this
scenario is how to process such big data in real-time. Therefore,
we design our system with the concept of fog computing. By
offloading the computation burden from the central server to the
fog nodes, the system obtains the ability to deal with extremely
large data. There are two obvious advantages in our system. The
first one is that we adapt the convolutional neural network (CNN)
model to the fog computing environment, which significantly
improves its computing efficiency. The other one is that we work
out an inspection model which can simultaneously indicate the
defect type and its degree. The experiments well prove that the
proposed method is robust and efficient.

Index Terms—Fog computing, manufacture inspection, smart
industry, deep learning.

I. INTRODUCTION

Industry 4.0, or in other words, the smart industry, is a word
representing the current trend of manufacturing revolution
[1]. Two most important concepts in this smart industry era
are automation and data. The former one is one of our
main objectives and the latter one is one of our most useful
tools. Data can be analyzed and learned by some artificial
intelligence (AI) methods, deep learning as an example, and
empower the computers and manipulators with human-like
abilities. In order to collect more data, which is essential for
the AI approaches, more and more Internet of Things (IoT)
[2] enabled devices are deployed in smart factories [3]. Using
these data, people have come up with lots of new ways to
make the manufacturing process more automated and efficient.
In this work, we focus on the autonomous manufacturing
inspection, which is an area with a long history but still has
many problems currently, especially in the big data era.

One serious problem existing in this task is that current
inspection system cannot guarantee good performances while

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

Authors are with the Department of Information and Electronic Engineer-
ing, Muroran Institute of Technology, Japan.
E-mail:{16096502, ota, mxdong}@mmm.muroran-it.ac.jp

Manuscript received xx xx, 2017; revised xx xx, 2017.

keeping the processing efficiency. The traditional methods,
such as filters or some feature-based classification approaches,
are simple but not so effective in all the scenarios. Then the
deep learning based methods [4] turned up, bringing greatly-
improved analysis and recognition abilities, however, at the
same time, slowing down the running speed, as these methods
usually require a lot of computation [5], [6].

It may not be a serious problem when the data size is not
so large. But with the rapid development of smart industry,
people invest their maximum effort on the manpower reduction
by deploying vision sensors [7], [8] in each manufacturing
line and empowering them with the ability of autonomous
defect detection, which results in a hugely increased data size.
Considering the production capacity, the computing efficiency
has become the bottleneck to implement a real-time inspection
system for smart industries.

Computation offloading is important to improve the comput-
ing efficiency and build a real-time system [9], and the newly-
developed fog computing [10] can serve as a good solution
in this scenario. In the paper, we design our manufacture
inspection system, named DeepIns, as three modules, i.e.,
the fog-side computing module, the backend communication
module, and the server-side computing module. The two
computing modules are to calculate the deployed deep models,
and the communication module is responsible for the data
exchanges and command transfer.

We focus on the combination of these three modules. In
order to further decrease the response latency and network
traffic, we design the fog-side computing module with an
early-exit feature, which can stop the inference process and
obtain the classification results in advance.

The application scenario is shown in Fig. 1, in some places
of the production line, which usually move along one side,
several sensors or cameras are deployed to capture the visual
information regarding the products. Then the information will
be uploaded to the fog nodes for further analysis, and the fog
node will use the installed inspection model to find the possible
defects and give the results to the central server. Ultimately,
the central server can collect all the necessary data in order
to give recommendations and feedback on current production
status.

The main contributions of our work include:
• We propose a multi-branch deep model for the manu-

facture inspection application. The proposed model can
effectively find the potential defects and measure their
degrees.

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXX 2017 2

Sensors Production Line

Fog Nodes
Central
Server

Inspection

Model

Fig. 1. Fog computing based manufacture inspection for the smart industry.
Each fog node is able to check the status of the productions, using the
deployed deep learning model, and upload the results or intermediate values
to the central server.

• We make some modifications to the common deep model
structure and adapt it to the fog computing environments.
Compared with existing works, the proposed structure
has the advantages of faster response and lower network
traffic.

• We implement an actual fog system as the experimental
environment and conduct several comparison experiments
with a local deep learning system. We also compare the
recognition performance with traditional approaches.

Section II introduces the existing research in related area.
Section III presents some notations and the problem definition,
and gives an overview of the proposed system. Also, in
this section, we give a detailed introduction regarding the
inspection method, and proposes the implementation of the
fog system for the smart industry. Experiments are presented
in Section IV. Finally, Section V gives the conclusions.

II. RELATED WORKS

A. Manufacture Inspection

In order to accurately inspect and assess the quality of
products, some studies present various visual inspection ap-
proaches to detect product defects in a large scale production.
In [11], a contour finding method based on image processing
is proposed, which uses image filters and can detect surface
defects by pixel chip pads. As a tiny sensor, the pixel chip is a
significant part for detecting defects. In the image processing,
three steps are used to achieve the goal. In the first step, the
surface pad is segmented into areas by K-Means clustering.
Then the areas are extracted by Gabor filter, and Canny Edge
filter detects defects of the surface in the last step. Similarly,
the feature of sensor chips is measured with a 3D surface al-
gorithm proposed in [12]. In the algorithm, 3D scanner applies
various methods such as triangulation and interferometry, and
is aimed to scan the chip surfaces. Moreover, thousands of
sensors are adopted in the system to collect depth information
of chip surface, thereby measuring flatness and thickness of the
chip surface, which are the main indications of chip quality.
According to the experimental results, the proposed algorithm

can improve production efficiency and avoid critical damage.
However, the surface defects cannot be detected completely in
the research.

Modern methods use deep learning mechanism to realize
more reliable and more efficient inspection in more compli-
cated scenarios than traditional methods mentioned above.
And whether the method has the learning ability is the
crucial distinction between modern methods and traditional
methods. Till now, challenges, such as full automation and
special products, are still the obstacle for product inspection.
However, it has been verified that modern methods can deal
with challenges better than traditional methods while reducing
human errors. For instance, modern methods can provide more
frequent inspections by computer vision and pattern recogni-
tion, based on which, [13] proposes a concept to combine
multiple detectors within a multitask learning framework. The
method is used to detect railroad tracks, which need to be
monitored periodically to guarantee safe transportation. In this
scenario, railway material needs to be identified in inspection,
and only a small number of training samples is available
for learning an anomaly detector. Therefore, authors in [13]
adopt multiple detectors to improve accuracy for detecting
defects on components of the railway. Moreover, a task can
be beneficial from the knowledge, which has been learned by
others. Therefore, it is shown that the combined system, i.e. the
multi-task learning framework, can obtain better performance
than conducting each task separately.

Generally, it has to analyze shape features at the first place
in the detection process. The shape defects can be classified
into regular shape defects and irregular shape defects, in which
irregular shape defects are the complicated problem since they
are not the regular pattern [14]. As for special products, whose
surface is partially reflective or components are small, it may
cause much overhead and reduce the reliability of inspection
in traditional methods. Yet modern methods have been applied
widely for detecting irregular shape defects. For example, [15]
introduces a method of multi-camera/multi-pose inspection
station to tackle noise and support advanced image analysis,
and proposes the first functional prototype implementation
of the method. The method presents the effective automated
visual inspection by detecting star washers. Due to the small
size of components and the inherent reflectivity of products,
challenges need to be addressed in the vision-based inspection.
[15] describes the strategy for dealing with the challenges.
Specifically, instead of one fixed pose, multiple poses of an
image are analyzed, which can capture more details of the
product and obtain the required visual information. Normally,
the feature training is hard to conduct since there exists a
large number of defect samples of products, which is one of
the limitations of inspection approaches as well. Aiming to
avoid this difficulty, [16] proposed a method, which fuses three
image features for achieving automatic surface inspection.
Specifically, features are learned to analyze the qualified
image, which consists of pixel regularity, sub-image gray level
difference and color histogram. Then images are tested based
on the detection fusion of the three features. Moreover, the
simulation results illustrated in [16] prove that the proposed
method is efficient for detecting industrial product and can

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXX 2017 3

ensure the product quality.
In [14], a modern method using pulse coupled neural

networks [17] is proposed for specific defects of integrated
circuits (IC) without the reference image. Due to the characters
of IC, the method presents a six-step process for identifying
the position of IC defects, which can be illustrated briefly
as an estimation of image noise parameter, bilateral filter,
edge detection, Hough transform, classification and defect
detection. Since the main goal of the method is to achieve
the effective segmentation and accurate detection, the image
segmentation is the most significant step in the process. The
detection process is performed in a self-adaptive way, and
the simulation results present that the defect detection can be
operated automatically with high effectiveness.

In building material inspection, modern methods can also
play an important role to guarantee the stability and safety
of building construction. As the key factor in a building,
pile quality is studied in [18]. A wavelet packet transform
method is proposed, which is adopted to analyze the stress
wave reflected signals. The wavelet packet energy ratio can
reflect much information of pile defects, such as the energy
distribution of signals. Authors in [18] use multi-layer Support
Vector Machine (SVM) to classify the pile defects and present
a novel approach, i.e. feature extraction to detect the defects.
As shown in the simulation, the proposed approach can achieve
high accurate classification and efficient pile defect detection.

B. Computation offloading and Fog Computing

As a promising technology, fog computing aims to help
mobile devices to operate tasks at the network edge directly
[19], and is supposed to solve the ever-increasing computation
in various scenarios of mobile applications [20]. For the
Internet of Things (IoT), fog computing is adopted to improve
the quality of service (QoS) [21]. And it is shown that fog
computing can be useful to move the resources, such as storage
and processing, closer to the data of IoT, instead of delivering
the data to the cloud. The analytical model proves that the fog-
capable devices can reduce the service delay effectively. On
the other hand, fog computing has been applied into Internet
of Vehicle (IoV) scenarios [22] to guarantee the low latency
by delivering computational resources for vehicle-based fog
nodes, so as to achieve a real-time traffic management. Besides
the low latency, researchers also pay attention to other perfor-
mance of the fog computing, such as energy consumption.
However, reducing energy consumption may lead to a larger
execution delay [23]. Therefore, there exist lots of methods
aiming to balance the latency and energy consumption. Aiming
to achieve the balance, a multi-objective optimization model
is built by queue theory, which describes the trade-off among
execution delay, energy consumption and payment cost of
offloading processes [23]. Moreover, Surin Ahn et. al [24]
propose a two-tier offloading method, which supports the
device to use resources from either the fog or the cloud based
on offloading decision. And the optimized decision is made
according to the trade-off between the low latency and energy
savings. The simulation results illustrate how the performance
varies along with parameters, and prove that the proposed

TABLE I
MAIN NOTATIONS

Notation Description

X Set of input data
Y Set of ground-truth defect category labels
R Set of ground-truth defect degree labels

hθ(xi) Output of layer θ
W Weights of proposed network
Wθ Weight matrix of layer θ
B Biases of proposed network
Bθ Bias matrix of layer θ
L Loss function of the deep model
Le The loss function for the exit point e
λ Term weights for loss function units
γ Term weights for the loss functions in exit points
TP True positive
FP False positive
TN True negative
FN False negative

method achieves a better performance than the cloud-only
offloading method in terms of latency and energy consump-
tion. Similarly, some studies adopt the advanced technique to
improve the performance of the fog computing. For example,
the social relationships of the energy harvesting techniques
and various queue models are applied into the computational
offloading system in fog computing, which can reduce the
latency and energy consumption as well [20]. Considering the
fog node is usually battery operated, Arash Bozorgchenani
et. al [25] present a suboptimal partial offloading method,
which can generate a great impact on the network lifetime
according to the simulation results. Moreover, since additional
data communication caused by offloading from the cloud to
the network edge may incur more overhead, Qiliang Zhu et.
al [19] design a task offloading policy for the fog computing
model, which takes execution time, energy consumption and
other costs into account. Furthermore, based on the challenges
of cloud computing, fog computing is designed to deal with
the situation of unreliable connectivity to the could [26].
By studying a language independent Remote Procedure Call
middleware between the fog node and the droplet, which is
the fog-aware small application, Md. Tanzim Saqib et. al [26]
propose a reliable and lightweight architecture, called as FogR,
for computation offloading, and illustrate that the fog network
can be used for responding to an emergency in a smart traffic
system with high reliability.

III. DEEPINS SYSTEM

In this paper, we propose a system named DeepIns to
address the problem of industrial manufacture inspection. We
mainly focus on two objectives, i.e., a deep model which has
a state-of-the-art classification performance while suiting for
the fog computing environment. In the following two sections,
we respectively introduce our solutions for these two tasks.

A. Deep Model

The system structure is shown in Fig. 2(a). As we can
see, the system mainly consists of three components. First,
we need visual sensors in each assembly line to watch the

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXX 2017 4

Interface

Cameras

Fog Nodes
Interface

Servers

Higher-Level
CNN Layers

Defect Classification

Storage

Memory

Disk

Database

Lower-Level CNN Layers

Early Exit Data Uploading

Data Link Communication

Interface Degree Regression

Sensor

(a)

conv, 3×3, 64

Input Images

conv, 3×3, 128

conv, 3×3, 256

conv, 3×3, 512

FC, 1000

Results

(b)

Fig. 2. Overview of the defect detection system. (a) System framework. (b) The model structure of the proposed deep learning network.

production status. The adopted cameras should be equipped
with network interfaces, which usually are wired network
adapter, for image uploading and some command transfer.
The data are sent to local fog nodes to extract some lower-
level features and, if possible, output fast inference results
for efficiency improvement and traffic saving. This early exit
feature will be detailed in next section. If the fog nodes cannot
give accurate judgments by themselves, they will continue to
upload the intermediate values of CNN model inference to
the remote cloud servers for further processing. The central
servers have the ability to finish the entire CNN inference,
conduct the classification and regression, and output the final
results.

Fig. 2(b) presents the deep model we used in our system.
There are four convolutional layers and two fully-connected
layers. This part is common and frequently seen in the other
deep models, and we put the emphasis on the decision-making
part, which is also the major difference. We connect two end
modules in the top of the deep model, i.e., one classifier and
one regressor. The classifier is to judge whether there are any
defects in a production and to find the specific defect category,
while the regressor is to infer the approximate degree of the
possible defects. Then the problem comes to how to design a
loss function to jointly train the classifier and the regressor.

Similar to the works [27], [28], a multi-task loss, which
can achieve two goals simultaneously, is presented as the loss
function for our proposed deep model,

L = λ1Ldefect + λ2Ldegree + λ3Ldec (1)

where Ldefect and Ldegree are loss functions focused on
different goals, and are introduced detailedly in the following.
Jdec(W) is a commonly-used weight decay term and Ldec =‖
W ‖22. On the other hand, λ1, λ2 and λ3 are pre-defined
weights to describe the relative proportion of corresponding
loss functions in the final loss value.

Specifically, Ldefect indicates the loss value to judge the
defect categories of the selected data samples, that is, to check
whether or not there is a specific defect in current product. In
addition, Ldefect is built based on the Softmax loss function
[29].

Given n input data X = {x1, x2, ..., xn}, the set Y =
{yx1

, yx2
, ..., yxn} and D = {rx1

, rx2
, ..., rxn} are represented

ground-truth labels and degrees respectively, related to each
input data xi. In particular, y ∈ {y∗1 , y∗2 , ..., y∗m} and d are the
real values for the possible results.

Ldefect = −
1

n

[
n∑
i=1

m∑
j=1

1{yxi = y∗j } log
eh

(j)
defect(xi)∑m

φ=1 e
h
(φ)
defect(xi)

]
(2)

In the formula of Ldefect, n is the number of input samples,
and m indicates the total category number of the pre-defined
defects, while i and j represent the id of the input sample
and specific defect, respectively. With the range from 0 to 1,
h
(j)
defect(xi) varies along with the possibilities that defects in

the image are involved in a specific defect category. Besides,
hdefect(xi) represents the output of Softmax classification
layer, and hdegree(xi) represents the output of Smooth L1

Localization layer.
Ldegree can be used to predict the degree of the detected

defect. Essentially, it is a regression function. In our paper,
the minimum rank is set to 1, representing the slightest defect
degree. According to the calculation of smooth L1 loss in Fast
R-CNN [30], Ldegree is defined as follows.

Ldegree =
1

n

n∑
i=1

smoothL1
(h

(d)
degree(xi)− dxi) (3)

and

smoothL1
(z) =

{
0.5z2, |z| < 1

|z| − 0.5, |z| ≥ 1
(4)

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXX 2017 5

Central Server

Fog
Device

Fog
Device

Central
Cloud

Fog
Nodes

Lower Level
Layers

Higher Level
Layers

Fog
Server

Back
Transfer

Fog
Devices

Central Server

Fog
Device

Fog
Device

Central
Cloud

Fog
Nodes

Lower Level
Layers

Higher Level
Layers

Fog
Server

Final
Results

Back
Transfer

Fog
Devices

Fast Inference
Results

Early Exit

Final
Results

Classification
Output

Classification
Output

(a)

Central Server

Fog
Device

Fog
Device

Central
Cloud

Fog
Nodes

Lower Level
Layers

Higher Level
Layers

Fog
Server

Back
Transfer

Fog
Devices

Central Server

Fog
Device

Fog
Device

Central
Cloud

Fog
Nodes

Lower Level
Layers

Higher Level
Layers

Fog
Server

Final
Results

Back
Transfer

Fog
Devices

Fast Inference
Results

Early Exit

Final
Results

Classification
Output

Classification
Output

(b)

Fig. 3. The deep learning structure in fog computing scenarios. (a) Our past
work which allocates different parts of the deep models to different devices
for higher efficiency. (b) The newly-proposed structure with the ability of
early exit, which can significantly decrease the communication needs.

B. Offloading Strategy

There are several different offloading strategies for the fog
computing scenarios. In our past work [31], we have imple-
mented an offloading method to transfer the deep learning
computation from the end nodes to the central cloud. The main
concept is to divide the models by layers, which are allocated
to different devices to average the computing burden. This
design is shown in Fig. 3(a). As we can see, the lower layers of
the deep model are processed by the fog nodes and fog servers,
as a whole, and the intermediate values will be uploaded
to the cloud servers through network communications for
further computing. The central cloud servers will perform
the classification and output the final results, which will be
transferred back to the fog nodes. After this, the fog nodes, the
users in other words, can finally get the classification results.

This strategy is simple yet effective. With this method, we
significantly improve the running efficiency of the inference
process. However, we find several problems in this strategy.
First, the users cannot get the classification results until the
final output is transferred back to these edge devices. This will
cause severe performance problem when the network latency

is non-ignorable. Second, the intermediate values should be
uploaded to the central cloud servers for further computation.
This process results in huge network traffic because the
extracted features are still in a big size.

To address these problems, we improve our strategy and
design a new deep learning framework in Fig. 3(b) for the fog
computing environments. The difference is that we adopt an
early-exit feature [32] of the deep models as a way to allocate
the lower parts to the fog devices while ensuring they can
obtain early results without waiting for the results from the
central servers. If the fog devices have obtained some results
which are able to meet their requirements, they can just stop
uploading intermediate values and adopt the fast inference as
the final results.

In order to empower the parallel deep model with the ability
of early exit, we should modify its structure in several aspects.
The first problem is how to train the network in the fog
computing environment. In essence, this problem is how to
adapt the existing loss functions to multiple classifiers (or
regressors).

With Eq. (1), we can get the loss function for an early-exit
branch e, as shown below.

Le = λ1L
e
defect + λ2L

e
degree + λ3L

e
dec (5)

where Le is the loss function for the exit point e, and Ledefect,
Ledegree are the sub-loss-functions of exit e, respectively for
category classification and degree regression.

According to Eq. (2)(3), we can obtain modified functions
for Ledefect and Ledegree, as follows

Ledefect = −
1

n

[
n∑
i=1

m∑
j=1

1{yxi = y∗j } log
eh

(j)
defect,e(xi)∑m

φ=1 e
h
(φ)
defect,e(xi)

]
(6)

Ledegree =
1

n

n∑
i=1

smoothL1
(h

(d)
degree,e(xi)− dxi) (7)

where h
(φ)
defect,e(xi) varies from 0 to 1, according to the

possibilities that the defects in the image belong to one specific
defect category and h(d)degree,e(xi) represents the inferred value
of the possible defect degree. h(φ)defect,e(xi) and h

(d)
degree,e(xi)

are respectively computed by the classifier and regressor of
early-exit e.

Assume that there are E early-exits in the adopted network,
then we can get the following equation

Lall =

E∑
e=1

γeL
e (8)

where Le is the loss function for exit e and γ represents their
weights.

Weight γ is defined according to the inclination and expe-
riences. Giving the early-exit a higher weight will make the
network try to learn some discriminate features in their lower-
level layers, which can effectively increase the fast-inference
accuracy and, in this case, the fog nodes need not to upload
the intermediate values, resulting in faster response and lower

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXX 2017 6

conv, 3×3, 64

Input Images

conv, 3×3, 64

conv, 3×3, 128 conv, 3×3, 128 conv, 3×3, 128

Concatenate Feature

Intermediate Values

conv, 3×3, 256 conv, 3×3, 256

conv, 3×3, 512 conv, 3×3, 512 conv, 3×3, 512

conv, 3×3, 256

Final Results

Fog Node

Central Server

Fast Inference

Fig. 4. The data exchange between sub-models, which are respectively
deployed in the fog node and central servers.

network traffic. However, the absence of the higher-level layers
does have some inference on the performance. Setting the final
exit a higher weight will move the emphasis of the network
to the improvement of the final results again. But, at the same
time, the transferring of the intermediate values also bring
larger communication consumption, which of course has some
effects on the system throughput. In industrial application, the
weight γ should be decided according to the actual situation. A
higher value can be assigned to the final classifiers/regressors,
if both the fog nodes and network conditions are capable of
handling heavy burdens; otherwise, leaving the higher values
to the lower exits for higher efficiency.

At the training process, we adopt the stochastic gradient de-
scent (SGD) algorithm, which is traditional yet effective, rather
than the recently risen adaptive optimization methods, such
as RMSProp, Adam, etc. The reason is that, although SGD
algorithm may be outperformed by the adaptive optimization
methods in the training speed, SGD shows a significant
advantage in their generalization ability [33]. In other words,
SGD can lead to a well-trained model with better accuracy for
actual applications.

Another problem in enabling the deep model with fog
computing support is how to exchange data between fog nodes
and central servers, in what format and how to decrease the
network traffic. In our past work [31], we simply upload the
intermediate values of the lower-level layers, which are in the
local fog nodes, to the higher-level layers, which are in the
cloud servers. This strategy works well with a regular data
size which is not very large. However, it may encounter several
problems if the processing queue increases quickly and each
fog node is full of products waiting to be processed, which is
a common scene in actual industrial scenarios. In this work,

we use an extra max pooling layer to concatenate the feature,
as shown in Fig. 4, which can also effectively decrease the
data size of the intermediate values.

One remaining question is in what situations the early-
exit can happen and in what situations can not. One obvious
solution is to set a threshold Tloss for the maximum acceptable
loss value. If the loss value of one exit point is less than Tloss,
then the inference process can be terminated and its inference
results will be regarded as the final output. Otherwise, the
inference should continue and the intermediate values will be
uploaded to central servers for further computation.

With the above features, the proposed DeepIns system
can be directly used in fog environments with well-trained
parameters. Although the training process is time-consuming,
the model inference is not. With the support of fog computing
in DeepIns system, the running efficiency can be further im-
proved and can meet the requirement of real-time manufacture
lines with very high production outputs. In the next section,
we will test both of the recognition accuracy and system
efficiency.

IV. PERFORMANCE EVALUATION

Several experiments are conducted in this section to evaluate
the performance of the proposed defect detection system.
At first, we perform a comparison experiment of the defect
detection.

We manually capture a dataset using some tile production as
the data source for network training and testing. We label these
data with several different categories for different defects. We
also classify these defects into conforming or non-conforming
products with specific values for their defect degrees. The
dataset consists of ten categories, each of which has 200
images for training process and 50 testing images for network
testing.

As the convention in defect detection area, we use the re-
ceiver operating characteristic (ROC) curve for the comparison
between our method and the existing approaches. The ROC
curve, which is also known as a relative operating character-
istic curve, is plotted by a comparison of the true positive rate
(TPR) and the false positive rate (FPR) with various detection
methods. As functions of the classifier parameter, TPR against
FPR can illustrate the diagnostic ability of a binary classifier
system, where TRP explains how many correct positive results
occur among the positive sample space and FPR explains
how many incorrect positive results occur among the negative
sample space. Specifically, TPR and FPR are expressed as
follows:

TPR =
TP

TP + FN
(9)

FPR =
FP

TN + FP
(10)

We compare the proposed DeepIns method with two famous
methods in the defect detection area, namely the contour
detection approach and the pixel-based method. The former
one first extracts the contour information from the raw input
images, and then judges their categories with some contour
classifiers. The latter one defines some pixel-based features to

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXX 2017 7

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
T

P
R

DeepIns

Contour Detection

Pixel-based

(a)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

DeepIns

Contour Detection

Pixel-based

(b)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

DeepIns

Contour Detection

Pixel-based

(c)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

DeepIns

Contour Detection

Pixel-based

(d)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
T

P
R

DeepIns

Contour Detection

Pixel-based

(e)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

DeepIns

Contour Detection

Pixel-based

(f)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

DeepIns

Contour Detection

Pixel-based

(g)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P

R

DeepIns

Pixel-based

(h)

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0

0.2

0.4

0.6

0.8

1.0
T

P
R

DeepIns

Pixel-based

(i)

Fig. 5. The comparison results of the defect detection experiments. The defects are as follows: (a)Blob. (b)Corner. (c)Edge. (d)Spot. (e)Pinhole. (f)Crack.
(g)Line. (h)Saturation. (i)Brightness.

represent the input data while decreasing its size, then trains a
classifier using the combination of these pixel-based features.

The ROC curves of these methods on the product image
data are shown in Fig. 5, where both TPR and FPR vary from
0 to 1. Among all these scenarios, it can be seen that the
ROC curves increase rapidly at the beginning, that is, when
FPR ∈ (0, 0.3). Then the ROC curves come into a period of
relatively steady growth. And the values of the ROC curves
become 1 eventually. Consistent with our theoretical analysis
above, the proposed method shows the efficiency in various
scenarios, and outperforms both the contour detection method
and pixel-based method.

In addition, we conduct another simulation on the running

efficiency. We can see that with fog support, the running
efficiency has been significantly improved, which makes a
real-time manufacture inspection system possible.

V. CONCLUSION

In this paper, we propose a manufacture inspection system
for the smart industry. This system adopts the state-of-the-
art deep models to analyze the input images captured by the
sensors and find the defective products with particular values
to indicate the degree of the defects. In order to implement a
real-time system capable of dealing with a large size of data,
we design the proposed system on the basis of fog computing,
which can offload the computation burden to the fog nodes and

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. XX, NO. XX, XXX 2017 8

TABLE II
THE RUNNING EFFICIENCY.

Number of Tiles With DeepIns Local Computation

100 62.11 136.91
200 138.46 265.87
300 197.91 397.12
400 265.37 523.76
500 321.18 651.61
600 398.15 782.18

significantly decrease the overload of the central servers. The
simulations prove that our system is robust and efficient, and
can outperform some existing approaches in the tests.

In the future, we plan to perform the classifica-
tion®ression experiments on some other kinds of produc-
tions. Also, we will continue to improve the offloading strategy
to bring multiple fog devices into deep model computation,
simultaneously, which can further enhance the running effi-
ciency of fog deep leaning applications.

ACKNOWLEDGMENT

This work is partially supported by JSPS KAKENHI Grant
Number JP16K00117 and KDDI Foundation. Mianxiong Dong
is the corresponding author.

REFERENCES

[1] J. Wan, S. Tang, D. Li, S. Wang, C. Liu, H. Abbas, and A. V. Vasilakos,
“A manufacturing big data solution for active preventive maintenance,”
IEEE Transactions on Industrial Informatics, vol. 13, no. 4, pp. 2039–
2047, Aug 2017.

[2] Z. Bi, L. D. Xu, and C. Wang, “Internet of things for enterprise systems
of modern manufacturing,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 2, pp. 1537–1546, May 2014.

[3] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, Nov 2014.

[4] Q. Zhang, L. T. Yang, Z. Yan, Z. Chen, and P. Li, “An efficient deep
learning model to predict cloud workload for industry informatics,” IEEE
Transactions on Industrial Informatics, pp. 1–1, 2018.

[5] K. Ota, M. S. Dao, V. Mezaris, and F. G. B. D. Natale, “Deep learning
for mobile multimedia: A survey,” ACM Trans. Multimedia Comput.
Commun. Appl., vol. 13, no. 3s, pp. 34:1–34:22, Jun. 2017. [Online].
Available: http://doi.acm.org/10.1145/3092831

[6] Q. Zhang, L. T. Yang, Z. Chen, and P. Li, “A tensor-train deep
computation model for industry informatics big data feature learning,”
IEEE Transactions on Industrial Informatics, pp. 1–1, 2018.

[7] H. Harb and A. Makhoul, “Energy-efficient sensor data collection
approach for industrial process monitoring,” IEEE Transactions on
Industrial Informatics, vol. 14, no. 2, pp. 661–672, Feb 2018.

[8] K. Ota, M. Dong, J. Gui, and A. Liu, “Quoin: Incentive mechanisms for
crowd sensing networks,” IEEE Network, vol. 32, no. 2, pp. 114–119,
March 2018.

[9] X. Tao, K. Ota, M. Dong, H. Qi, and K. Li, “Performance guaranteed
computation offloading for mobile-edge cloud computing,” IEEE Wire-
less Communications Letters, vol. 6, no. 6, pp. 774–777, Dec 2017.

[10] J. Fu, Y. Liu, H. C. Chao, B. Bhargava, and Z. Zhang, “Secure data
storage and searching for industrial iot by integrating fog computing
and cloud computing,” IEEE Transactions on Industrial Informatics, pp.
1–1, 2018.

[11] A. Nurhadiyatna, S. Loncaric, E. Prakasa, E. Kurniawan, A. A.
Khoirudin, L. Musa, and P. Reidler, “Development of visual inspec-
tion system for detecting surface defects on sensor chip,” in 2017
International Conference on Computer, Control, Informatics and its
Applications (IC3INA), Oct 2017, pp. 100–105.

[12] E. Prakasa, E. Kurniawan, A. Nurhadiyatna, L. Musa, and P. Reidler,
“Implementation on 3d surface algorithm for measuring thickness pa-
rameter of sensor chip,” in 2015 International Symposium on Intelligent
Signal Processing and Communication Systems (ISPACS), Nov 2015,
pp. 199–203.

[13] X. Gibert, V. M. Patel, and R. Chellappa, “Deep multitask learning for
railway track inspection,” IEEE Transactions on Intelligent Transporta-
tion Systems, vol. 18, no. 1, pp. 153–164, Jan 2017.

[14] A. Abedini and M. Ehsanian, “Defect detection on ic wafers based on
neural network,” in 2017 29th International Conference on Microelec-
tronics (ICM), Dec 2017, pp. 1–4.

[15] O. Semeniuta, S. Dransfeld, and P. Falkman, “Vision-based robotic
system for picking and inspection of small automotive components,”
in 2016 IEEE International Conference on Automation Science and
Engineering (CASE), Aug 2016, pp. 549–554.

[16] X. Wu, H. Xiong, Z. Yu, and P. Wen, “A surface defect detection method
based on multi-feature fusion,” in Ninth International Conference on
Digital Image Processing (ICDIP 2017), vol. 10420. International
Society for Optics and Photonics, 2017, p. 104200S.

[17] A. Abedini, A. Miri, and A. Maleki, “Parallel improved pulse coupled
neural network application for edge detection in image processing,”
Computer Engineering and Information Technology, vol. 06, no. 2, 2017.

[18] K. Weixin, Z. Yuchen, and L. Lingxi, “Pile defect detection based on
wavelet packet energy ratio and support vector machine,” in 2017 13th
IEEE International Conference on Electronic Measurement Instruments
(ICEMI), Oct 2017, pp. 92–97.

[19] Q. Zhu, B. Si, F. Yang, and Y. Ma, “Task offloading decision in fog
computing system,” China Communications, vol. 14, no. 11, pp. 59–68,
Nov 2017.

[20] L. Liu, Z. Chang, and X. Guo, “Socially-aware dynamic computation
offloading scheme for fog computing system with energy harvesting
devices,” IEEE Internet of Things Journal, vol. PP, no. 99, pp. 1–1,
2018.

[21] A. Yousefpour, G. Ishigaki, R. Gour, and J. P. Jue, “On reducing iot
service delay via fog offloading,” IEEE Internet of Things Journal,
vol. PP, no. 99, pp. 1–1, 2018.

[22] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A
fog-enabled real-time traffic management system,” IEEE Transactions
on Industrial Informatics, vol. PP, no. 99, pp. 1–1, 2018.

[23] L. Liu, Z. Chang, X. Guo, S. Mao, and T. Ristaniemi, “Multiobjec-
tive optimization for computation offloading in fog computing,” IEEE
Internet of Things Journal, vol. 5, no. 1, pp. 283–294, Feb 2018.

[24] S. Ahn, M. Gorlatova, and M. Chiang, “Leveraging fog and cloud
computing for efficient computational offloading,” in 2017 IEEE MIT
Undergraduate Research Technology Conference (URTC), Nov 2017,
pp. 1–4.

[25] A. Bozorgchenani, D. Tarchi, and G. E. Corazza, “An energy and delay-
efficient partial offloading technique for fog computing architectures,” in
GLOBECOM 2017 - 2017 IEEE Global Communications Conference,
Dec 2017, pp. 1–6.

[26] M. T. Saqib and M. A. Hamid, “Fogr: A highly reliable and intelligent
computation offloading on the internet of things,” in 2016 IEEE Region
10 Conference (TENCON), Nov 2016, pp. 1039–1042.

[27] S. Song and J. Xiao, “Deep sliding shapes for amodal 3d object detection
in rgb-d images,” in 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), June 2016, pp. 808–816.

[28] L. Li, K. Ota, M. Dong, and W. Borjigin, “Eyes in the dark:
Distributed scene understanding for disaster management,” IEEE
Transactions on Parallel and Distributed Systems, 2017, doi:
10.1109/TPDS.2017.2740294.

[29] W. Liu, Y. Wen, Z. Yu, and M. Yang, “Large-margin softmax
loss for convolutional neural networks,” in Proceedings of the 33rd
International Conference on International Conference on Machine
Learning - Volume 48, ser. ICML’16. JMLR.org, 2016, pp. 507–516.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3045390.3045445

[30] R. Girshick, “Fast r-cnn,” in Proceedings of the 2015 IEEE International
Conference on Computer Vision (ICCV), ser. ICCV ’15. Washington,
DC, USA: IEEE Computer Society, 2015, pp. 1440–1448. [Online].
Available: http://dx.doi.org/10.1109/ICCV.2015.169

[31] H. Li, K. Ota, and M. Dong, “Learning iot in edge: Deep learning for
the internet of things with edge computing,” IEEE Network, vol. 32,
no. 1, pp. 96–101, Jan 2018.

[32] S. Teerapittayanon, B. McDanel, and H. T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR), Dec 2016, pp.
2464–2469.

[33] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and B. Recht, “The
marginal value of adaptive gradient methods in machine learning,” in
Advances in Neural Information Processing Systems, 2017, pp. 4151–
4161.

