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Abstract 

 

How can we be certain that software is reliable?  Is there any method that can verify the correctness of software 

for all cases of interest? Computer scientists and software engineers have informally assumed that there is no 

fully general solution to the verification problem.  In this paper, we survey approaches to the problem of 

software verification and offer a new proof for why there can be no general solution.   

 

Introduction 

 

In the computer science and software engineering communities the problem of software verification is a central 

concern. Computer scientists have created various methods for at least partially checking the correctness of 

software.  But could there be a fully general solution to the problem of verification?  By a fully general solution 

we mean one that solves the verification problem for all cases of interest.  Most computer scientists and software 

engineers have assumed as a working hypothesis that there is no such solution.  In this paper, we demonstrate 

formally why this working hypothesis is correct.   

The question of whether there is a general solution to the verification problem has two important 

aspects.  The first is largely philosophical, in the sense that that it concerns the limits of human knowledge.  

The second concerns the class of possible software verification methods.  This issue lies within the domain of 

theoretical computer science. The verification problem can be solved for relatively small (where “small” is 

defined below) software systems for reasons that we will explain. We argue, however, that there are metalogical 

properties of the software verification problem that preclude a solution for all cases of interest. 

The problem of software verification is relevant to epistemological questions concerning the role of 

computers in science.  What degree of certainty are we entitled to expect of theories that depend in important 
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ways on software? (See Boschetti et.al 2012). How does the kind of software intensive science that is currently 

ubiquitous differ in kind from non-software intensive science? (See Symons and Alvarado 2019). 

The verification problem also has ethical and legal consequences in situations where we must decide 

how much care needs to be taken in military, governmental, and commercial contexts to minimize software 

error. What level of software testing should we expect of a responsible manufacturer in cases where failure can 

lead to serious harms?  

 Error-free software in science and technology is ideal but as we will argue, we can never be certain 

that we have such software outside of a very restricted set of domains.   

Our primary aim in this paper is to show (independently of the well known Halting Problem (Turing 1936)), 

why there cannot be a fully general solution to the problem of software verification.   To do this, we first state 

the verification problem (Section 1.0). We then state several desiderata that a (fully) general solution to the 

verification problem should meet and critically examine possible solutions in light of those criteria.  More 

specifically, in Section 2.0, we explain why the most widely used verification procedure, verification-as-testing, 

fails to serve as a general solution to the verification problem.  We assess formal approaches to the verification 

problem, noting that the most widely used formal approach to verification, model-checking, has produced 

impressive practical results.   In Section 3.0 we argue that, despite progress in verification methods, no software 

that is required to implement arithmetic, including virtually all business and scientific software, can be 

completely verified.   

The arguments we present here are meant to close the door to a very specific kind of idealized philosophical 

ambition.  We acknowledge that probably no practicing scientist in the software verification community has 

the goal that we show is impossible.  Our argument does two things.  First it provides a principled formal 

reason in support of the commonsense assumptions concerning the limits of verification.  In the scheme of 

things this may be a less important contribution than our second point.  Our work here takes an idealized vision 

of what is achievable via computational methods and software off the table.  This is especially important for 

philosophical reflection on the role of computational methods in science and the ethics of technology. Given 

the result presented here, one cannot generally assume that we have, or that we can reliably create, error-free 

software.  Thus, the ideal of achieving error-free software should simply drop out of epistemological and ethical 

reflections on computational methods.   

 

1.0  The verification problem 

 

The problem of assessing the reliability of software can be thought of as the problem of showing the 

correctness of a software system. For the purpose of this paper, we use the term “software” to mean a 

sequence of instructions written in a computer language (e.g., C++, Java, Ada, etc.).  Understanding the 

reliability or correctness of a software system involves determining whether that system satisfies a 
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specification.  Among other things, a specification represents the purpose for which the software is being 

developed.  In practice, specifications can be articulated with varying degrees of precision.  Generally, the 

more precise the better.  The problem of assessing whether the software system meets the specification is 

called the software verification problem; from here on, we will refer to that problem more briefly as the verification 

problem. The verification problem, succinctly stated, is 

 

 (The verification problem).   Given a software system S and specification H, determine whether S 

satisfies H.   

 

The satisfaction relation in this context can be articulated in model-theoretic terms.1  We will give a precise 

characterization of this relation in Section 3. An intuitive understanding of ‘satisfies’ will suffice for our 

immediate purposes.  

 There are a wide variety of ways that software can go wrong (See Floridi, Fresco, and Primiero 2015;).  

Notice that our definition of the verification problem is minimal in the sense that it is not intended to rule out 

the system doing more than what we ask of it in the specification.  There are cases where a piece of software 

behaves in ways not represented in H which would not count as errors on our minimal account.  Doing more 

than the specification can be good or bad.  For example, an operating system does more, and is intended to do 

more, than what is generally specified.  Some unspecified uses of a piece of software can be benign, but others 

can be problematic.  For example, a rootkit can allow an administrator access to a system, but the kit can also 

allow an adversary a backdoor into the system.2  

Our characterization of the problem restricts the challenge of verification to the determination of 

whether the system satisfies the specification.  This is not meant to be an exhaustive list of necessary and 

sufficient conditions for the ways that things can go wrong in software engineering or in the deployment of 

technology.  Rather, it is a necessary condition for determining the correctness of S that it at least satisfy the 

specification H.  By analogy, we can say that a functional heart is one that pumps blood throughout the body 

of an organism in a way that leads the organism to thrive.  If it fails to do so, then we can say that it is not a 

functional heart. Whether the beating heart also has a pleasant sounding rhythm or can function as a symbol 

of romantic love is a not relevant to whether the heart is performing what philosophers of biology called its 

                                                           
1 Characterizing the satisfaction relation in the verification problem in model-theoretic terms may seem to differ from 
the way some computer scientists characterize verification.  Emerson (2008, 28), for example, suggests the verification 
problem is determining “whether or not the behavior [our emphasis] of M meets the specification h” where M is the 
program and h is the specification.  Our approach does not depend on behavioral properties, as such, of a program.  
Instead, we characterize the satisfaction relation in terms of a function that relates the models of a program/software 
system to models of the specification (see Section 3 for more detail).     
2 The root toolkit example shows how difficult it is in practice to distinguish some specification from implementation 
issues.  To put this point more sharply, we could answer the requirement to cut a piece of wood with a saw or a stick of 
dynamite.  Both would do the job; the dynamite would surely cause much collateral damage. 
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proper function (See for example Millikan 1989). Given our restriction we can characterize a necessary 

condition for software error as follows: 

 

 (DE) An error in a software system S is a failure to satisfy H.   

 

Given (DE), (fully) verifying a software system S is equivalent to showing that S will not fail to satisfy H in the 

sense of (DE).  

 Verifying software correctness requires using a method.  What should such a method look like?  First, 

we would like a method that scales well, i.e., a method whose complexity is no larger than  “proportional to the 

size of the software system”.  For example, the complexity of the method applied to a software system 

containing 200 “expressions” should be no greater than twice that of a software system containing 100 such 

expressions.  We especially want to avoid situations in which the complexity of the method grows exponentially 

with the size of the software system.  Second, we want a method that does not have to rely on lucky guesses or 

inspiration.  Third, to help minimize the labor involved in the application of the method, it should be 

automatable.  Fourth, we want the method to be able to handle the case in which more than one process is 

running at the same time since this is a feature of many modern software systems. Finally, we want a method 

that runs to completion in finite time (and preferably, in a time we care to wait).  

To summarize, the following seem like reasonable features that we should expect from such a 

verification method. It should: 

(D)3 

• (D1) Scale less than exponentially in problem “size” 

• (D2) Not have to rely on “inspiration” when applied  

• (D3) Be automatable 

• (D4) Capture concurrency4 

• (D5) Complete its task in finite time. 

 

 Emerson 2008 (pp. 27 and 35) suggests some desiderata of adequacy that partially overlap (D3) and 

(D5) above.  The criteria in Emerson 2008, however, are strongly (and in some particulars, exclusively) 

oriented to formal methods of verification (see Section 2.3 of the current paper). 

                                                           
3 Collectively, D2, D3, and D5 significantly overlap what we mean when we say a verification procedure is algorithmic. In 
particular, an algorithmic procedure is an effective procedure, and an effective procedure by definition implies (D2), 
(D3), and (D5).  One might, therefore, replace the union of (D2), (D3), and (D5) with a desideratum requiring an 
approach to verification to be algorithmic.   Articulating (D) as shown, however, supports some informative distinctions 
among the relative strengths of approaches that have been taken to the verification problem, and for this reason we 
choose to adopt (D) in the more expansive form shown.   
4 Two programs, A and B, are concurrent if at least some portion of those programs execute at the same time. 
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In this paper, we show how the task of verification faces fundamental challenges in satisfying (D). To 

help explain these challenges, we survey existing approaches to the verification problem and draw some lessons.  

We emphasize that this survey (especially Section 3) provides only the level of detail required to support our 

general thesis.  It does not, nor need it, given the arguments in Section 3, contain the kind of detail that would 

typically be included in a comprehensive, general technical review of verification methods.5.   

 

2.1  Verification and the Halting Problem 

 

The theory of computation is the formal study of how computing systems compute.  In order to ensure that 

this objective is well defined, computer science requires a clear characterization of a computing system.  For 

the purposes of this paper we will restrict ourselves to the most widely accepted characterization of a computer: 

the Universal Turing Machine.  A Universal Turing Machine is regarded as the minimal system that could serve 

as a general-purpose “computer” (Turing 1936; Boolos, Burgess, and Jeffrey 2007).   

Given this interpretation of “computer”, we already know, in one sense, that a fully general algorithmic 

solution to the verification problem is not possible.  Here’s why:  Let P be an arbitrary program running on a 

Universal Turing Machine and let H be the requirement that P should eventually halt.   Stated as a verification 

task, the requirement can be framed as follows: 

 

Given a software system S (P running on a UTM) and specification H (tell whether P halts), determine 

whether S satisfies H. 

 

Turing proved that no algorithm can determine whether P halts for all possible program input-output pairs for 

P (Turing 1936). This result is known as the Halting Problem.  Thus, for at least some cases, if the specification 

H contains a requirement that a software system halt, (D) cannot be satisfied for all cases of interest. The 

Halting Problem assumes that a computer is a Universal Turing Machine. That assumption excludes 

consideration of systems capable of implementing hypercomputation, which some authors have argued could 

or should be considered as a “computer”.6 

Modern general-purpose computing languages are Turing complete, i.e., programs written in them are 

equivalent to sets of instructions that can execute on a Universal Turing Machine.  Such languages are ultimately 

defined in such a way that they can fully describe anything a Universal Turing Machine can do.   

                                                           
5 For a detailed survey of the latter kind, see Emerson 2008 and Clark, Bloem, Veith, and Henzinger 2018 
6 Copeland et al 2016 make the case that hypercomputation should be taken seriously as a candidate for what is meant by 
“computation”, given hypercomputation’s compatibility with the Church-Turing thesis.  We will not defend our choice 
to exclude hypercomputation in this paper, however see Davis (2004) for reasons to be skeptical. 
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The Halting Problem is a well-known limiting result that stands as one of the intellectual landmarks of computer 

science.  However, from an engineering perspective, one can imagine granting that the Halting Problem is an 

insurmountable obstacle to verification while simultaneously regarding it as a special case that can be ignored 

in practice.  One might, for example, focus on the practical task of developing methods for determining whether 

a system satisfies a specification in the following way:  One could simply stipulate that one is excluding 

verification tasks that involve the kinds of self-referential or meta-level features that characterize the Halting 

Problem.  Restrictions of this kind are implicitly what happens in engineering practice.  Naively, it might seem 

that once provably unachievable specifications have been ruled out, the verification problem is a 

stratightforward testing problem. It turns out however, that verification-as-testing has intractable difficulties, 

albeit of a very different kind than the Halting Problem as we shall explain in following section.7  

 

2.2  Verification-as-testing 

 

In software engineering, most efforts to address the verification problem and minimize error involve testing.  

It might be conjectured that verification can be reduced to testing, but that view is deeply problematic.8  To see 

why, let S be a sequence of instructions written in some computer language L. The abstract executable structure 

of S can be represented as a control-flow-graph9 (Nielson, Nielson, and Hankin 1999; Baier and Katoen 2008).  

We define a path in a software system to be a path (Diestel 1997, p. 6) in such a graph.   We define the path 

complexity of S to be the number of possible paths in that control-flow graph.  Path complexity, thus defined, 

captures the space of possible ways that the software system could run to completion.10,11 The number of paths 

in a program increases at least exponentially with the number of conditional statements in S.12  Consider, for 

example, a 1000-line (instruction) software system that has a binary conditional statement every 10 lines on 

average.  The number of paths through such a program, and hence its path complexity, is 21000/10  =  ~1030.  

In general, the path complexity of a program of M lines that has a binary decision branch on average every N 

lines is 2M/N, where M > N.  We call this exponential scaling of the number of paths in S with the number of 

                                                           
7 This problem has been known, at least informally, since the earliest days of software testing.   
8 Among philosophers, Jim Fetzer was the first to point out that software verification characterized as a testing problem 
poses challenges (Fetzer 1988) that are intractable in practice.   
9 A control-flow statement in S is a statement that can, based on a condition that may not always obtain, change the 
order of execution of the statement in S. 
10 Note that this definition requires that S can run to “completion”.  Some software systems, such as operating systems, 
by design “run forever”, and thus have no “completion”. 
11 This definition of path complexity is different from McCabe complexity, which is a count of the number of independent 
paths in S (McCabe 1976). 
12 A conditional statement is a statement of the form “If X, do Y”. A Turing complete language, in addition to providing 
a way implement conditional statements, must also provide a way to implement loops.  For the purpose of this paper, we 
can restrict the analysis to a program whose control statements are “if-then” statements only.  Why? To show that 
verification-as-testing fails to satisfy (D1), it is sufficient to show that even if S contained only if-then control constructs, 
verification-as-testing would fail to satisfy (D1).  (Accommodating loop control constructs in S only increases 
complexity.)  
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control (for our purposes, conditional) statements in S the path-complexity catastrophe; in control-flow-graph terms, 

it is equivalent, for some software systems, to what is sometimes called the “state-explosion” problem (Valmari 

1998).13  

 A 1000-line program is extremely short by contemporary standards.  For example, it is not uncommon 

for large scientific simulators to contain ~105 lines of code (Horner 2003).   The UNIX/Linux operating 

systems each contain at least  ~106 lines of code.  Facebook’s software system reportedly contains ~61 million 

lines of code! 

  Why is high path complexity significant for verification-as-testing?  One way to begin to answer this 

question is to consider the degree of confidence we should assign to the results of a system.  A natural way of 

thinking about the appropriate degree of confidence we would give to these systems is in terms of their 

reliability.  We can be more confident in the behavior of a system if we can judge it to be reliable.   

 How can we determine the reliability of software systems through testing?  In an empirical scientific 

domain that uses no software (e.g., measuring the temperature of a material object, using only a simple (e.g., 

volumetric) thermometer, there is a relatively straightforward approach that an agent could take.  Typically, the 

distribution of errors (in the case of the thermometer, the distribution of errors presumed to be contained in a 

set of measurements) in such a domain can be characterized by conventional statistical inference theory (CSIT) 

(Hogg, McKean, and Craig 2005, Chaps. 5-12).   CSIT requires us to randomly draw (Hogg, McKean, and Craig 

2005, Df. 5.1.1) a sample from the population of interest, then apply statistical tests to the sample to assess the 

probability that a specific hypothesis (H) about the population holds.  Often the sample size required to test a 

hypothesis of interest in such a case is small -- on the order of 100.  

 In the case of a domain that uses non-trivial software in an essential way, however, we cannot, in all 

cases of interest, be assured that CSIT can be used to characterize the distribution of error.  It has been shown 

(Symons and Horner 2017) that it is not possible to ensure, in all cases of interest, that the errors in a software 

system are characterizable by random variables (for a definition of “random variable”, see Chung 2001, Chapter 

3). CSIT requires distributions to be defined in terms of random variables, so we cannot, for all software systems 

of interest, be assured that CSIT is applicable.  It is always possible, furthermore, to extend (perhaps 

unintentionally) any software system whose error distribution is characterizable by a distribution of random 

variables to a software system the distribution of whose errors is not characterizable as a distribution of random 

variables (Symons and Horner 2017).   

 We can imagine , of course, a testing regimen in which we exercise a software system S for some period 

P of time, collecting error information (see, for example, Littlewood and Strigini 2000).  That error data can 

then be analyzed by CSIT (e.g., by statistical time-series analysis methods (Brockwell and Davis 2006)).  Let’s 

                                                           
13 For a complete discussion of the path complexity catastrophe see Symons and Horner 2014.   
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call this approach, appropriating a term from software engineering jargon, the “soak testing”14 approach to 

verification-as-testing. 

 There is much to be said for soak testing.  The longer software is executed, it would seem, the more 

confident we can be that the software does what we want.  In in any case soak testing occurs as an inevitable 

consequence of using software after that software has been deployed.   

 Can soak testing overcome the problems of path complexity and the inapplicability of CSIT to the 

analysis of error in all possible software systems?   It cannot.  Here’s why.  First, for a software system of 

sufficiently high path complexity (e.g., a typical program containing more than ~10 binary branches), soak 

testing can exercise, for the reasons argued above, only a (very small) subset of the possible paths in that system.  

Thus, soak testing cannot overcome the path complexity problem in all cases of interest.  Second, note that the 

statistics obtained on the behavior of a software system are statistics about the set empirically observed behaviors 

during P.  The mapping between these behaviors and the software proper cannot be fully characterized, for 

some software systems of interest, for exactly the reasons adduced above.  Thus, for some software systems of 

interest, we have no warrant to infer the error distribution of the software from the statistics of the behaviors 

of those systems observed during soak testing.  And therefore, soak testing cannot overcome the “CSIT 

inapplicability” problem for all cases of interest. 

 If we assume that verification is testing, and we cannot apply CSIT to testing, then in order to fully 

characterize the error distribution in a software system, we must test all paths in that system.  But that approach 

is intractable.  To get at least an informal sense of this problem, again consider the 1000-line program mentioned 

above.  Suppose that we could test one path per second and that the program contained on average, a binary 

branch per 10 lines.  Under plausible assumptions about the average time required to test a path in S, 

exhaustively testing all paths in such a program would take more ~1013 lifetimes of the Universe to test all paths 

in the code (Symons and Horner 2017). 

 It might be objected to the above that the “path-complexity catastrophe” is largely determined by the 

relatively slow speed of human action or comprehension.  One might imagine, such an objection might go, an 

entirely automated testing regime in which no human involvement is required.   

 Although it is difficult to discern what a test regimen completely devoid of human involvement could 

be (Turing 1950), let’s entertain the notion that there might be such a scheme.  In that case, we note that the 

test regimen must nevertheless involve coordinated collecting of test results at a given point in space (Cover 

and Thomas 2006; Hennessy and Patterson 2007; Reichenbach 1957).  That communication is speed-of-light 

limited (Reichenbach 1957).  Let’s suppose, for example, that the average distance such communication must 

traverse is 1 meter, permitting us to replace the time to execute a test case in the analysis above to (1/(3 x 108 

                                                           
14 In typical practice, “soak testing” refers to informally observing the behavior of S over P under nominal operating 
conditions.   
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m/sec) ~) 3 x 10-9 sec. In this regimen, therefore, it would take “only” (1013 x 10-9 ~) 104 lifetimes of the 

universe to test all paths in a non-trivial 1000-line software system.  Thus, even if the time to execute a test case 

were limited only by speed-of-light communication, the path-complexity catastrophe would persist on speed-

of-light scale. 

 To address this concern, it has been suggested that parallelizing tests (i.e., executing those tests at the 

same time) on a sufficiently large computer could, in theory, make the path-complexity catastrophe go away.  

However, even if this were a solution to the problem for some software systems, it is significantly limited for 

those software systems whose testing is state-history-dependent (e.g., large climate simulators), because the 

software sequences to be tested are not decomposable to anything smaller than a sequence that produces an 

entire system trajectory. 

 For at least some software systems, even maximally parallelizable testing cannot make the path-

complexity catastrophe go away. Here’s why.  The minimum time, tcoord, to coordinate at a given spatial location, 

P, the reports of tests executed in parallel at M disjoint spatial  locations x1, x2, …, xM,  is ~ Md/c, where  

 

• d > 0 is the mean of normally distributed one-way distances between P and the xi,  i = 1, 2, 

…, M  

• xi  ∩ P = Ø for each i  

• Ø is the null set (null region) 

• c is the speed of light  

 

(For a more detailed discussion, see Amdahl 1967).  Note that for any d, as M →  ∞,  tcoord →  ∞. Thus, no 

matter what value d has, there is a positive lower bound to tcoord, and a corresponding upper bound on the path-

complexity of some software system that can be tested in any finite time.   This argument generalizes to the 

case in which there is merely some finite time – not necessarily determined by light time-of-flight -- required to 

coordinate results among M separate tests, provided c is finite. 

 The software engineering community has long been aware that, with rare exceptions, only a tiny 

fraction of the paths in a typical software system can be tested.  Accordingly, engineers try to design testing 

that shows that, at least under some nominal conditions, the system performs the most important functions 

required by H, and doesn’t have at least some behaviors that violate H.  In addition, practical testing may include 

(collections of) procedures that, at least taken as a whole, try to exercise every logical function (DeMarco 1979) 

in the system.  This kind of testing is often called “coverage” testing.   The statistics that can be obtained from 

coverage testing are, in effect, statements about which, or what fraction, of the logical functions in the system 

have been exercised.15 In a typical software system, there are often ~10 binary branches per logical function, 

                                                           
15 Some variants of Linux, for example, contain a coverage-analysis utility, gcov. 
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so “coverage” testing cannot overcome the path-complexity problem.  (For a discussion of the scope of 

practical testing, see Amman and Offutt 2016).   

 In any case, verification-as-testing cannot satisfy at least (D1) and (D5) for all cases of interest.  Given 

that testing cannot satisfy all of (D1)-(D5), computer scientists have pursued alternative verification strategies. 

 

2.3   Formal methods of verification 

 

What can be done to overcome the limits of verification-as-testing?  It would seem that formal methods, 

roughly analogous to formal methods in logic (see for example Chang and Keisler 2012; Gries 1981) could 

provide purchase on the verification problem.  Such approaches provide at least mathematically well-defined 

frameworks within which a variety of desirable meta-level properties (e.g., consistency and completeness) can 

be characterized by finite procedures. Is there some equivalent strategy for proving the correctness of a software 

system?  There have been some impressive results in this program.   

In this section, we sketch some examples of how the program of formal verification has been pursued. 

This overview closely follows Emerson’s 2008 retrospective and is not intended to be exhaustive or original.  

Our purpose here is only to introduce and illustrate some of the main achievements of the formal verification 

approach (for a fuller recent survey of these topics, see Clark, Bloem, Veith, and Henzinger 2018).  We will 

argue that formal methods of verification variously meet at least some of (D1) – (D5) for at least some software 

systems.  But ultimately, as we argue in Section 3.0, no verification method can satisfy (D5) for all cases of 

interest, and that result limits the detail that is proportionate to include in the more-or-less historical overview 

that follows (i.e., in Sections 2.3.1 and 2.3.2). 

 

2.3.1  The “axiomatic” approach to formal verification 

 

One way to formalize the verification problem is to cast it as a question about whether a given software system 

S is equivalent to a theorem in a theory, where that theory is formulated as a set of axioms that captures a 

specification H.  In this paradigm, one manually constructs proofs of correctness for (deterministic) programs 

that start with an input and terminate with an output. To do this, a computer program is first translated into a 

set of sentences in the formal language L in which H is expressed.  We then attempt to show that the resulting 

set of sentences has a proof in an axiom system (that determines H). This approach to formal verification is 

called “axiomatic” verification.  Floyd 1967, for example, provided some basic principles for this approach by 

proving “partial correctness” in such a framework, as well as articulating termination and total correctness 
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forms of liveness properties (Emerson 2008, p. 29).16 Extending this idiom, Hoare 1969 provided an axiomatic 

basis for verification of partial correctness using axioms and inference rules in a formal deductive system 

(Emerson 2008, p. 29).  

The Floyd-Hoare framework provided many useful insights. The approach facilitated the investigation 

of important meta-theoretic properties such as soundness and (relative) completeness, as well as 

compositionality.  This framework, however, turned out to have limited utility in practice for several reasons 

(Emerson 2008, p. 29).  First, the approach scaled exponentially in the number of terms in the theorems to be 

proven, thus failing to satisfy (D1).  Second, the approach often required discovering, in non-mechanical 

(“inspired”) ways, proof strategies specific to the problem of interest, and failure to discover a proof did not 

imply that there was no proof possible, thus failing to satisfy (D2).  Third, there was no known way to automate 

the approach, thus failing to satisfy (D3).  Fourth, the framework could not express the temporal aspects of 

concurrent programs, thus failing to satisfy (D4).  

 Pnueli 1977 extended the Floyd-Hoare approach to capture least part of concurrency.  Pnuelli 

proposed, as a working hypothesis, that temporal logic could be used for reasoning about concurrent 

programs.17  To capture concurrency, he defined a temporal logic-based system that included as basic temporal 

operators F (sometimes), G (always),  X (next-time), and U (until) (Emerson 2008, p. 30).  Besides these basic 

temporal operators applied to propositional arguments, Pneuli’s system permitted nested and boolean 

combinations of subformulae (Emerson 2008, p. 31).  

Like the Floyd-Hoare framework, Pneuli 1977 took an axiomatic approach to verification.  Like the 

Floyd/Hoare approach, Pneuli’s approach cannot satisfy (D1) and (D2).  Nevertheless, Pneuli’s incorporation 

of temporal logic into the formal description of software systems, it turned out, provided powerful resources 

for addressing (D4).   

  Temporal logic comes in two broad flavors (Emerson 2008, pp. 31-32, See also Venema 2001):  

  

(1) Linear Time Logic (LTL (Pneuli 1977)) 

In LTL, an assertion h is interpreted by default to apply to a single path.  (Here, “path” means 

a sequence of instructions that represents one way that a system could run.)  When interpreted 

over a program there is an implicit universal quantification over all paths of the program.  

 

(2) Branching Time Logic (BTL) 

                                                           
16 A liveness property asserts that program execution eventually reaches some desirable state (Owicki and Lamport 
1982). 
17 Concurrent systems are often reactive systems (i.e., they execute in response to a stimulus (e.g., from a sensor) outside 
those programs). Reactive systems are often nondeterministic, so their non-repeatable behavior is not amenable to 
testing. Their semantics can be given as infinite sequences of computation states. 
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An assertion h of a branching time logic is interpreted over computation trees. A branching time 

logic has a universal future-time quantifier A (for all futures) and an existential future-time 

quantifier E (for some future) paths. These quantifiers allow us to distinguish between AFP 

(along all futures, P eventually holds and is thus inevitable)) and EFP (along some future, P 

eventually holds and is thus possible). 

 

 

One widely used branching time logic is known as Computation Tree Logic (CTL). Its basic temporal 

quantifiers are A (for all futures) or E (for some future) followed by one of F (sometime), G (always), X (next-

time), and U (until); compound formulae are built up from nestings and propositional combinations of CTL 

subformulae (Emerson 2008, p. 32, See also Huth and Ryan 2004).  

CTL and LTL do not have the same expressive power (Emerson 2008, p. 32). There is an ongoing 

debate as to whether linear time logic or branching time logic is better for formal verification objectives 

(Emerson 2008, p. 32). 

One prominent logical framework familiar to logicians and that can capture CTL is the mu-calculus 

(Kozen 1983).  The mu-calculus provides operators for defining correctness properties using recursive 

definitions and least fixpoint and greatest fixpoint operators. Least fixpoints correspond to well-founded or 

terminating recursion, and are used to capture liveness or progress properties asserting that something does 

happen. Greatest fixpoints permit infinite recursion. They can be used to capture safety or invariance properties.  

The mu-calculus is very expressive and flexible.  It is still in wide use in formal verification methods (Emerson 

2008, Section 4).   

 

2.3.2  Model-checking 

Casting the verification problem in a temporal logic does not, by itself, overcome all the problems 

faced by axiomatic approaches.  Framing the problem in terms of temporal logic does nothing, for example, to 

address (D1) – (D3), and there is no guarantee that it would satisfy (D5).    To help address these issues, Clarke 

and Emerson 1981 observed that if in contrast to the axiomatic approaches to proof of correctness, we derived 

a software system S directly from H we might be able to overcome at least some of the problems of the 

axiomatic approach.  This proposal  – formally deriving software from a specification – is often called the 

“synthesis” approach to formal verification of software.   

The synthesis approach, as such, does not guarantee that (D1), (D2) and (D5) are satisfied.  One way 

to help to meet (D1) and (D5) is to require that the description of S define a finite state graph M. M can then 

searched, via pattern specifications (which can be of arbitrary complexity), to determine whether M satisfies H.   
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Clarke and Emerson 1981 proposed, in particular, that we exploit the “small model property”18 

possessed by certain decidable temporal logics. Exploiting the small model property of these decidable temporal 

logics has at least two further virtues:  The method is sound: if the input specification is satisfiable, the method 

generates a finite global state graph that is a model of the specification, from which individual processes of S 

can be derived. The method is also complete: If the specification is unsatisfiable, it would be possible to 

determine that is unsatisfiable:  given any finite model M and CTL specification H one can algorithmically check 

that M is a genuine model of H by evaluating (verifying) the basic temporal modalities over M based on the 

fixpoint properties.  Composite temporal formulae comprised of nested subformulae and boolean 

combinations of subformulae of CTL could be verified by recursive descent. These features -- CTL, fixpoint 

properties, and recursion – became the foundation of what is now called “model checking” (Emerson 2008). 

 How well does model-checking work?  In practice, model-checking is typically implemented in a model 

checker.  A model checker is a software tool that helps to assess whether a software system S is a model of a 

specification H.  Model checkers that are formulated in CTL can be quite useful in practice, especially when 

applied to finite-state concurrent systems. Moreover, CTL has the flexibility and expressiveness to capture many 

important correctness properties. In addition, a CTL model checking algorithm has reasonable efficiency: it is 

polynomial in the specification size (i.e., it satisfies (D1)).  

 The fundamental accomplishment of model checking has been the enabling of broad scale formal 

verification. Today many industrial-application systems have been verified using model checking. Model 

checkers have verified protocols with millions of states and hardware circuits with at least 1050 states (Clark, 

Bloem, Veith, and Henzinger 2018).  

For example, model-checking has been used to verify (Clark, Bloem, Veith, and Henzinger 2018)  

 

• a cache coherence protocol 

• the bus arbiter for the PowerScale multiprocessor architecture 

• a high-level datalink controller 

• a control protocol used in Philips stereo components 

• an active structural control system to make building more resistant to earthquakes19  

 

For at least some programs, model-checking evidently satisfies (D1)-(D4).  In addition, model checking 

supports both verification and refutation of correctness properties. Since most programs do contain errors, an 

                                                           
18   A system K has the small model property if and only if any satisfiable formula in K has a “small” finite model, i.e., a 
model whose size is a polynomial function of the formula size. 
19 The model checker used in this case found errors in the original design of the system.  Some of these errors would 
have made buildings less resistant to earthquakes. 
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important strength of model checkers is that they can readily provide a counter-example for at least some 

classes of errors.   

Despite its power, neither model checking nor any other verification method can satisfy (D5); the 

requirement that the method complete its task. in all cases of interest, as we now proceed to argue. 

 

3.0  Can any method solve the verification problem for all cases of interest? 
 

Model-checking satisfies (D1) - (D5) for at least some software systems. We will now argue that any 

software system that (a) is written in a Turing complete language and that (b) must implement at least Robinson 

arithmetic20 (Mostowski, Robinson, and Tarski 1953)21 has, as a consequence of the Löwenheim-Skolem 

theorem (Löwenheim 1915; Skolem 1920), an infinite number of non-isomorphic models and thus cannot be 

verified in a finite time,22 i.e., cannot satisfy (D5). 

To show this, we posit that S can satisfy H only if every model of H is homomorphic to some model 

of S (where S is a software system and H is a specification).23  We call this condition “satisfaction up to model 

identity”.  More formally:  

 

(A) S satisfies a H up to model-identity only if each model of H is homomorphic to some model of S.   

 

From (A), it follows that:24 

 

(Q)  A verification V verifies that S satisfies  H up to model-identity only if V verifies that each model of  H is 

homomorphic to some model of S. 

 

 Given (A) and (Q), we now argue that the Löwenheim-Skolem Theorem (LST; Löwenheim 1915; 

Skolem 1920) implies that no verification method can fully characterize the error distribution of a software 

system if the requirement to implement arithmetic is part of H: 

                                                           
20 Robinson arithmetic is “ordinary” (Peano) arithmetic without the Peano induction axiom. 
21 Virtually all business and scientific software must implement arithmetic. 
22 Note that a theory of arithmetic (or anything else) that is not finitely axiomatizable cannot be implemented on a finite 
Universal Turing Machine.  No second-, or higher-, order theory of arithmetic, for example, can be implemented on a 
Universal Turing Machine. (See for example Chang and Keisler 2012, Chapter 1.) 
23 To avoid a problem of self-reference one need only partition the specification into two components.  One component 
would state the requirement for the relationship between the models of H and the models of S, and the other 
component would describe everything not included in or implied by the first component of the specification.  
24 Although beyond the scope of this paper, it’s worth noting that criteria (A) and (Q) rest on a theory of verification 
that does not appear to be limited to software regimes as such, and thus might help to characterize verification in 
ordinary empirical science (and even more generally, in any regime in which verification must be accomplished by a 
multi-step procedure in finite time). 
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1. By (Q), in order to verify that S satisfies H up to model-identity, we must verify that every model of H 

is homomorphic to some model of S. 

2. Let H include a requirement to implement a finite first-order axiomatization of at least Robinson 

arithmetic on a Universal Turing Machine. This requirement is implied by any requirement to 

implement arithmetic on a Universal Turing Machine. Note that, unless further qualified/constrained, 

the specifications of virtually all business and scientific software imply this requirement. 

3. The LST implies that there are an infinite number of non-isomorphic models of any finite first-order 

axiomatization of Robinson arithmetic.  Therefore, by (1), (2), and the LST, verifying that S satisfies H 

up to model-identity requires verifying that that each of the infinite number of non-isomorphic models 

of H is homomorphic to some model of S.    

4. Now note that S is a sequence of computer language instructions created, at least in part, by the action 

of an agent who is at least in principle capable of making mistakes.25   Thus S is an attempt, and possibly 

a flawed one, to satisfy H. Because we cannot a priori presume any properties of S, we cannot be assured, 

for every case of interest, given that a model B satisfies H, that we can infer that B is homomorphic to 

a model of S except by verifying, in a distinct action, that B is homomorphic to a model of S. Such a 

verification activity takes some non-zero time. 

5. For all models of H, let tmin > 0 be the shortest time required to show a model of H is homomorphic 

to a model of S.   

6. By (3), (4), and (5), for at least some software systems, we must perform an infinite number of distinct 

verification actions to verify that S satisfies H up to model-identity.   These actions will collectively 

take (tmin times infinity =) infinite time. Thus, we cannot verify in a finite time (D5) that an arbitrary S 

satisfies an arbitrary H up to model-identity. 

 

On the basis of (1)-(6), we conclude that, even were the Halting Problem solvable, no verification method 

can satisfy (D5) for all cases of interest. 

We now consider an objection to the view articulated in (1)-(6).26  It might be argued that in typical 

practice, the requirement that S satisfy all models of Robinson arithmetic, especially the class of models 

“involved in” the LST, need not be part of a specification “to implement Robinson arithmetic (RA)”.  More 

specifically, the infinite class of non-isomorphic models considered in the known proofs of the LST are non-

standard models of RA that require adding k new constants to the smallest signature of Robinson arithmetic, 

adding to that signature new elements as values of these new constants, then showing that there is a model for 

                                                           
25 In practice, we would attempt to limit the range of such sequences to those that had passed some testing or formal 
verification regimen. 
26 We thank a reviewer of an earlier version of this paper for this objection. 
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every finite subset of RA conjoined with the new sentences using these new constants.  Some people might 

consider these non-standard models of RA to lie outside what we would typically mean by “Robinson 

arithmetic”. 

 Regardless of whether we admit non-standard models of RA in the scope of H, the objection continues, 

all models (including the non-standard ones invoked by the proof of the LST) of RA are elementary equivalent.  

By definition, two models, A and B, are elementary equivalent if they satisfy the same sentences (Chang and 

Keisler 2012, 32).  Elementary equivalence seems like a plausible candidate of adequacy for the relation of the 

models of H and the models of S in a verification context.  So suppose we replace “homomorphism” in the 

criterion, (Q), of adequacy with “elementary equivalence”, yielding 

 

    (Q’)  A verification V verifies that S satisfies  H up to model-identity  if V verifies that each model 

of  H is elementary equivalent to some model of S. 

 

Then in order to show that S satisfies (in the sense of (Q’)) H, it would suffice to show that one model of H is 

satisfied by a model of S.  Replacing (Q) with (Q’), therefore, allows us to escape the limit to verification posed 

by (1)-(6). 

 What can we say about this objection, which clearly goes the heart of the argument in (1)-(6)?  To 

begin, we emphasize that a primary objective of our paper is to characterize the notion of software verification 

for all possible specifications.  Achieving that objective could, and likely does, cause the characterization to 

include in the scope of possible specifications, creatures that might not be included in what passes as a 

“specification” in typical software engineering practice.   Given these considerations, we argue that the objection 

articulated above is problematic for at least two reasons, depending on whether we take (Q) at face.   

 Problem 1: Assume  (Q).  Should standard models (in this case, of RA) to be included in the range of 

models of H?  To this question, we reply that we know of no in-principle reason why a specification H must 

preclude requiring all possible models (here, of RA) to be included in the verification context.  If non-standard 

models of RA are permitted to be included in the range of models of H, then there are an infinite number of 

non-isomorphic models of H that must somehow be satisfied by the models of S. (1)-(6) follows. 

 Even if non-standard models of RA are not permitted within the scope of H, there is a variant of (1)-

(6) that would still carry:27   

 

1. Any consistent extension of a model of RA is still a model of RA. 

                                                           
27 We thank Troy Catterson for suggesting this elegant construction. 
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2. By Gödel’s Incompleteness Theorem (Gödel 1931), there is a formula G such that neither G nor ~G 

is provable within RA. 

3. Hence, both RA+G and RA+~G are both consistent extensions of RA. 

4. Let M(G) and M(~G) be the models for both G, and ~G, respectively. G and ~G are non-

isomorphic. 

5. Since both RA+G and RA+~G are extensions of RA, they have formulas that are undecidable 

within the respective systems.  

6. Iterate the construction in (1)-(4) to create two more nonisomorphic models. 

7. Repeat (1)-(6) a countably infinite number of times. 

 

The result of this procedure is a countably infinite set of non-isomorphic models that contain all and only the 

natural numbers as the members of their domain, and they do not change the meaning of any of the relation 

predicates in the language of RA,  i.e., all the models arising from this construction would be “standard”.  

Substitute these models for the non-standard models, and suppress the invocation of the LST,  in (1)-(6).  A 

variant of (1)-(6), referencing only standard models of RA, then follows. 

 
 Problem 2: Don’t assume (Q).  More specifically, why can’t we substitute “elementary equivalence” for 

“homomorphism” in (Q)?  To this we reply that two cases are possible: either all the models of interest are 

finite or they are not.  If all the models of interest of H and S are finite (Chang and Keisler 2012,  21), then 

elementary equivalence of the models of interest implies that those models are isomorphic (Chang and Keisler 

2012, Proposition 1.3.19), i.e., there is a homomorphism between the set of models of H and some subset of 

the set of models of S.  In this case, the difference between the homomorphism and elementary equivalence 

formulations of (Q) is moot.  If some of the models of interest are not finite, then at least in some cases, 

elementary equivalence is too weak to preserve structure up to isomorphism (Chang and Keisler 2012, Exercise 

1.3.4). 

   

 

4. Conclusion 

 

The most important implication of the results of Section 3.0 concerns the scope of software specifications, and 

more specifically, whether a specification that constrains “arithmetic” in a way could, if possible, make the 

specification satisfiable. The Halting Problem notwithstanding, all approaches to software verification 

considered above are tractable only for small software systems (nominally, containing fewer than 10 binary 

branches). For example, there is no need for an ordinary thermostat system in a home to perform more than a 
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very small set of operations, arguably requiring less than 10 binary branches.  One could even imagine such 

thermometers operating with finite look-up tables for all the operations that they would need in order to satisfy 

a specification.  Even in cases involving arithmetical operations, one could test a system that is required to 

perform that arithmetic in a small finite domain.  It is highly unlikely, however, that restricting specifications 

for software along these lines will be acceptable in the scientific context or even in most internet-enabled 

products in a consumer context.   

Understanding the trade-offs involved as we weigh the importance of verifying software correctness 

with the benefits of large-scale software are not matters that we ought to leave solely to engineers and corporate 

leaders.  Elsewhere, it has been argued that philosophers need to carefully reflect on the nature of science when 

the reliability of our most important instruments is impossible to determine with confidence (Symons and 

Horner 2014; Horner and Symons 2014, Symons and Alvarado 2016).  Perhaps more importantly, philosophers 

also need to reflect on the ethical implications of creating ever larger, more connected, systems with more layers 

of interdependence and vulnerability.  Responsibility for failure is increasingly difficult to assign.  The cost of 

detecting critical error can be impractically high and the consequences of failure to detect critical error can be 

lethal.  In the Toyota unintended acceleration (UA) case (Koopman 2014), for example, we now know that 

verifying the as-built software is intractably difficult. At the same time, software systems like those in the UA 

case provide us with highly efficient and generally excellent cars.  Is the loss of a handful of lives an acceptable 

price to pay for cars with more desirable features?  How should one approach the risks associated with 

purchasing such a vehicle?  What duty does the manufacturer have to explain the presence of error in its 

product?  These are not questions that computer scientists or engineers are equipped to answer. 

How do we balance our desire to be connected electronically to our toasters and toothbrushes, or to 

fill our homes with smart speakers/microphones/cameras with unverifiable and potentially serious 

vulnerabilities that these systems introduce in our lives and social systems? The first step in beginning to answer 

these questions involves understanding the limits of our ability to minimize error in these systems. 
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