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A methodology of textural analyses based on image analysis is proposed and tested based on study of fault rock samples
from the Tatra Mts., Poland. The procedure encompasses: (1) SEM-BSE imagery of thin sections; (2) image classification
using the maximum likelihood method, performed with GIS software; (3) statistical analysis and fractal dimension (self-simi-
larity) analysis. The results of this method are comparable to those obtained with methods involving specialized software.
The proposed analytical procedure particularly improves qualitative observations with quantitative data on grain shape and
size distribution. The potential of the method is shown, as an auxiliary tool in determining the nature of deformation pro-
cesses: the role of high-temperature dynamic recrystallization processes is recorded using grain shape indicators, whilst the

switch from ductile to brittle conditions is reflected by the grain size distribution pattern.
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INTRODUCTION

The method most usually applied in petrotectonics is the
analysis of three-dimensional structures in two-dimensional
sections, especially petrological thin sections. Sections can be
studied by many different methods (e.g., optical microscopy,
cathodoluminescence, scanning or transmission electron mi-
croscopy), but the result is always an image. In fact, such an im-
age may be considered a map of distribution of any measurable
parameter, such as light intensity and colour, or other signal
level reflected by the sample surface. Such a map is a source of
a great deal of microstructural and microtextural data, espe-
cially concerning grain size distribution and grain shape. De-
tailed analyses of such features must be conducted on the ba-
sis of a statistically significant amount of data, which can be ob-
tained either manually or via computer-aided measurements.

This paper explores selected potential uses for the applica-
tion of computer image analysis in petrotectonics involving
rocks related to shear zones. These methods were developed
by researchers including. Heilbronner (2000), who proposed
the Lazy Grain Boundary method, a macro working with NIH or
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Scion Image software which detects grains in thin sections.
Heilbronner and Keulen (2006) applied widely-known photo ed-
iting software (Adobe Photoshop) to pre-processing, followed
by a specialised set of ImageSXM macros working in the Mac
OS X operating system. The input images they applied were
SEM/BSE scans; the output data consisted of a collection of
shape factors for grains detected in fault gouges.

However, Geographical Information Systems (GIS) soft-
ware appears to be an excellent alternative to specialised im-
age analysis software. GIS software contains a set of toolboxes
originally prepared for processing satellite imagery land-use
classification (using well-known digital methods) or landscape
metrics (tools applying numerical descriptions of landscape
structures obtained from aerial or satellite imagery; see e.g.
Gokyer, 2013) as well as for basic operations such as the con-
version of raster images to vector shapefiles. An example of
this type of application of GIS methodology was provided by
Tarquini and Favalli (2010) in the form of the concept of a
GIS-based “microscopic information system”, or MIS, which is a
tool set for innovative petrographic analyses conducted on sub-
stantial data sets. Determination of quartz optical axes in thin
section images is another potential application for GIS software
in microstructural petrographic research (Hassanpour, 2012).

The motivation to perform this study was to explore whether
it is possible to carry out thin section image analyses using rela-
tively simple methods, while providing interesting results with
the potential for novel interpretations.
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In the present study, a combination of photo-editing soft-
ware and ESRI ArcGIS/ArcMap was selected for grain size dis-
tribution analyses of SEM-BSE images. Particularly nowadays,
when GIS software is popular with and familiar to most earth
science researchers and students, the prospects for such un-
conventional applications are good.

The present study shows how image analyses based on
GIS can be applied in microstructural analyses. As regional ge-
ology studies are limited in their interpretational potential, the
methodology proposed may be considered for inclusion into
multi-proxy geological studies.

Selection of the samples was based on an earlier paper
(Kania, 2014), enabling reference to earlier shape analyses
performed with optical microscopy and manual grain
vectorisation. All of the samples are from the Western Tatra
Mts., from shear zone-related rocks.

GEOLOGICAL SETTING

The Tatra Mountains is an Alpine collisional fold belt formed
due to Late Cretaceous nappe thrusting and Cenozoic uplift (for
detailed review see Jurewicz, 2005; Smigielski et al., 2016).
The crystalline core of the Western Tatras, on which this paper
is focused, is composed of a metamorphic complex cut with nu-
merous igneous intrusions. According to a widely accepted in-
terpretation (e.g., Kahan, 1969; Janak, 1994), it includes two
structural units with inverted metamorphism: an upper unit with
gneiss, migmatites, and amphibolites, and a lower unit contain-
ing metasedimentary rocks with protolith sedimentation dated
to the Late Cambrian (Kohut et al., 2008). This structure was
formed during Variscan tectonic episodes (Fritz et al., 1992).
The upper and lower units were identified in the Polish Western
Tatra Mts. forming respectively a migmatitic complex and a
metasedimentary complex with amphibolites (Gaweda and
Burda, 2004). The younger component of the crystalline core
comprises igneous rocks. There are three granite varieties that
intruded during the subduction (365-360 Ma) and collision
(340-332 Ma) events of the Variscan orogeny: (1) biotite-am-
phibole-quartz diorite, (2) a “High Tatra type” biotite-muscovite
granodiorite transitional to tonalite and (3) a “common Tatra
type” biotite-muscovite porphyric granodiorite (Kohut and
Janak, 1994; Kohut et al., 2008; Gaweda, 2008). Variscan
mylonitization was active before 298 Ma (Deditius, 2004 ), whilst
the Alpine deformation was discussed by Cymerman (2009).

SAMPLING

The samples were taken from several areas in the western
part of the Western Tatras (Fig. 1 and Table 1). This area is
dominated by leucogranites, mylonites and, in the Wotowiec

(Slovakian: Volovec) Mt. area, granodiorites (Skupinski, 1975;
Bac-Moszaszwili et al., 1979; Piotrowska, 2016). The charac-
teristic feature of this region is the abundance of sub-horizontal
brittle-ductile shear zones, composed of shearing-related
rocks: cataclasites and mylonites. The shear zones show vari-
ous grades of deformation, with overprinting by a range of kine-
matic structures (Cymerman, 2010; Kania, 2014).

The samples (Table 1 and Fig. 2) comprise different rock
types; however, for the sake of consistency, all of the rocks
were collected from shear zones. The mylonites (samples Za2,
72, 68) are composed of quartz porphyroclasts embedded in a
layered matrix. Sample Za2 contains bands of white mica that
forming the dominant directional structure. The matrix is com-
posed of a fine-grained quartz-dominated aggregate. The other
mylonite sample, 72, is characterized by a matrix dominated by
sericite. The third (68) mylonite sample is characterized by
highly recrystallized zones dominated by white and dark micas.
These blastomylonitic zones forms foliation layers between
slightly deformed plagioglase and quartz crystals.

The cataclasites (samples 58 and 43) are dominated by
plagioclase and quartz. The cataclasite sample 58 is an S-C
cataclasite (Lin, 1999, 2001); the analyses concentrated on the
layer composed of biotite, muscovite, plagioclase, and quartz,
located in a granitic-type setting. Cataclasite sample 43 com-
prises a block-controlled cataclasite, adapting the terminology
proposed for quartzite cataclasites by Ismat and Mitra (2005),
the latter being characterised by a more abundant sericite ma-
trix developed mainly in fractures.

METHODS

The analytical procedure shown in Figure 3 can be subdi-
vided into 5 stages, reflecting the applied input/output data for-
mat and software. The first stage was carried out with Hitachi
SEM Manager software, the second with the Corel Paint Shop
Pro 8 photo editor. The third and fourth stages used ESRI/
ArcGIS suite 10.2 (ArcMap application); the fifth and final stage
was carried out with StatSoft Statistica 12 and the R statistical
computing language. All of the analyses were performed in the
Windows 10 environment.

The backscattered electron (BSE, see Fig. 3, step 1.1;
Fig. 4A) images were acquired as 2560 x 1920-pixel, uncom-
pressed, 8-bit (256 grey levels recorded) tiff bitmaps, using a
Hitachi S-4700 scanning electron microscope equipped with a
YAG detector at an acceleration voltage of 20 kV (Jagiellonian
University in Krakéw, Institute of Geological Sciences, SEM
laboratory) with constant 250x magnification. Noise reduction
and image softening (both functions of the Corel PaintShop Pro
application) were applied (steps 2.1 and 2.2) to eliminate the
“salt-and-pepper” look. If necessary (2.3 decision step), the pro-
cedure was repeated (no more than one additional pass). The

Table 1

Samples analysed in the study

Dominant
Symbol Locallity deforma- Remarks
tion type
43 Ornak Ridge brittle cataclasites with a low content of matrix, mainly sericite and in some enclaves feldspathic
58 Dziurawa Pass brittle protocaclasite with initial grain reduction, with large (over 1 mm) plagioclases
68 Siwa Pass ductile mylonitic gneiss, with deformation localized in the mica-enriched bands
72 Siwa Pass ductile mylonite with high content of sericitic matrix
Za2 Zabrat Pass ductile ultramylonite with feldspathic/quartz matrix and mica bands
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Fig. 1. Geological map of the area sampled

A — general geological map of the Polish Tatra Mts. (after Nawrocki and Becker, 2017, modified);
B — detailed map based on Piotrowska (2016) via the PGl WMS server
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Fig. 2. An overview of the structure of selected samples

A — sample Za2, mylonite; B — sample 72, mylonite; C — sample 68, mylonite; D — sample 58, cataclasite; E — sample 43, cataclasite;
all photos are in crossed polarized light

pre-processed bitmap was loaded into ESRI ArcGIS ArcMap
without defining a coordinate system (in fact, the simplest Car-
tesian coordinates were used, with one pixel as the applicable
unit). Training polygons were defined (step 3.1) as ~10 in
quartz, 5in feldspar, and 5 in matrices, in order to conduct a su-
pervised classification in accordance with the maximum likeli-
hood classification method. However, the effective number of
defined categories varied, and in some cases additional
classes (i.e. grain border zones) were marked. Additional poly-
gons were marked for zones outside the thin section area or for
holes in the thin section, defined as a special “no-data” class.
The maximum likelihood classification method applied is a
popular image classification algorithm in which a probability
function is calculated for each defined class using pre-defined
training data. Each of the pixels analysed is assigned to one of

the classes based on a statistical probability calculation (e.g.,
Sun et al., 2013).

Output images (rasters) of maximum likelihood classifica-
tion (see e.g., step 3.2; Fig. 4B) were evaluated (decision step
3.3). The evaluation result was considered positive if groups of
pixels clearly corresponded to grains, negative if the classified
image included too much noise or if grains were not clearly re-
cognisable in the matrix. In the case of a negative evaluation,
the analyses were repeated, beginning with step 2.1 or 3.1.

The classified images required additional corrections in or-
der to render the grain surfaces more homogenous. These are
steps 3.4 and 3.5, repeated depending on the result of decision
step 3.6.

The raster images were then vectorised (step 3.7) and pro-
cessed further as ESRI shapefiles (shp). Grains with grid codes
corresponding to quartz were chosen and the smallest grains
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Fig. 4. Example of data processing (sample 43)

A — raw SEM-BSE image (Qtz — quartz, Kfs — K feldspar, Ms — muscovite, Zrn — zircon); B — classified image; quartz grains marked
as black; C — all grains, vectorised image; D — grains selected to analyse (quartz); grey level corresponds to the grain area

(i.e. several pixels in size) eliminated (step 4.1; Fig. 4C). The
“eliminate polygon parts” tool was applied to remove small
holes and artefacts on grain borders; this was repeated, if nec-
essary, with a different critical diameter (step 4.2).

Manual correction was indispensable (step 4.3). One of the
main problems was that some of the grains (especially the
larger ones) exhibited a tendency to become amalgamated with
other grains in the processed image (Fig. 4D). This was cor-
rected in the shapefile edition with a polygon-cutting tool. Addi-
tional corrections eliminated grains only partially contained by
the image frame.

The data were then augmented by calculating the grain
convex hulls (step 4.4) and exported as tables for further statis-
tical analyses.

QOutliers were defined based on the grain area. A median
+3c (standard deviation) range was adopted for the analyses;
other records were removed (step 5.1). Prior to the beginning of
the statistical analyses (step 5.2), all of the dimensions became
ArcGIS “undefined units”. These units were finally recalculated
in micrometres for linear dimensions or square micrometres for
aerial dimensions based on calibration images with a scale bar
acquired by the SEM Manager.

The equivalent circular diameter (ECD) parameter, applied
as the main grain size indicator, is the diameter of a circle with
the same area as the grain, calculated according to the follow-
ing formula:

ECD =2x[(A)/x]"” [1]

where: A is grain area.

The statistical analyses, which include descriptive statistics,
a histogram, and scatter plots, were augmented with fractal di-
mension determination for grain size distribution.

Fractal dimensions were determined using the R statistical
computing language with the “fractaldim” package, which im-
plements various methods for estimating fractal dimensions of
numerical data (Sevcikova et al., 2014). The rodogram method
of calculation (function fd.estim.rodogram()) was chosen be-
cause rodograms, which are modifications of variograms, are
widely applied in geostatistical distance measurement, and can
potentially eliminate the influence of reduction outliers or cha-
otic values on the analysis (Journel, 1988).
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RESULTS

The ratio of the grain perimeter to the grain area is one of
the simplest shape indicators. When the dimensions are in-
creasing, with a simple (convex) shape of the grain area pre-
served, the ratio should decrease, with a linear trend when plot-
ting in log-log space. When the grain boundary is more compli-
cated, with any indents or irregularities, the value rises, and the
trend becomes non-linear. Measured ratios are shown on the
log-log space scatter plots in Figure 5, clearly showing devia-
tions from the linear trend. In fault rocks, the deviation of the
trend can thus be interpreted as reflecting the presence of
boundaries formed before cataclasis, in high-temperature grain
boundary migration (Passchier and Trouw, 2005), one of the
processes which can be responsible for creating loboid grain
boundaries. This main sequence is always observed to have
two parts: large and small grains. The border between them is
clearin all cases. In all samples, the main sequence in the small
grains shows some deviations in the log-log linear mode: there
is always one subpopulation, or more, of small grains forming a
“tail” on the scatter plot, where an increase in area is combined
with a very small increase in the perimeter, or none, signifying
that these grains have become straighter than others.

The grain size distribution is described using their circular
equivalent diameter (ECD) with common descriptive statistics
parameters (Fig. 5 and Table 2). The ECD values vary within a
range of 0.003—236.33 ym, with a mean of 6.91 um, for all of the
grains analysed in an aggregate. Cataclasite 58 from Derava
Pass and mylonite 72 from Siwa Pass are characterized by the
widest range of ECD variation, with variance coefficients of
275.03 and 247.02, respectively. At the opposite extreme, the
other Siwa Pass mylonite specimen, 68, shows a variance of
47.68. This quantitative result closely correlates with the optical
microscopy observations, according to which mylonite 68 is
composed of a very fine grained matrix and rare large
porphyroclasts. This is also the sample with the smallest maxi-
mum ECD value (57.38 pm).

In all cases, the distribution is characterized by positive
skewness (the third moment of distribution) within the range
4.10-7.13. Sample 68a is characterized by the least degree of
skewness, due to the presence of a left-sided distribution tail;
this is also the sample with the lowest value of standard devia-
tion.

The kurtosis (the fourth moment of distribution) values are
extremely high, 20.37 to 78.47 (the distribution is strongly
leptokurtic). Such high kurtosis values are explained by more
than one high, sharp peak, especially in the distribution tail part
(right side of the histogram).

The statistical distribution of the grain sizes can be inter-
preted as a marker of the “textural maturity” as the strain or
comminution leads eventually to a log-normal distribution (An
and Sammis, 1994). Fits to commonly used statistical distribu-
tions — half-normal, log-normal, and gamma distributions — were
tested. The log-normal distribution shows the best fit for all sam-
ples; however, this fit varies between samples. Fitting accuracy
was tested using the chi-square test by the Statistica software
algorithm for number of degrees of freedom. The results were
compared with a table of critical values (commonly available
from statistical textbooks or websites). The results (Table 3)
show that in one sample, the distribution fits a log-normal distri-
bution quite closely (sample 58); in another sample (72) the fit is
still quite close. All other samples show poor fits. The two sam-
ples mentioned above (58 and 72) are also those with the high-
est variance coefficients.

The fractal dimension (d) parameter, sometimes called
“‘mass dimension”, is a measure of the self-similarity
(Blenkinsop, 1991; Anderson et al., 1997; Bagde et al., 2002;
Sammis and King, 2007) of the grain population analysed in
two-dimensional space. In other words, it shows the degree to
which the grain size distribution is self-similar (scale invariant;
e.g., Bagde et al., 2002; Heilbronner and Keulen, 2006). The
fractal dimension is another way to describe grain size distribu-
tion. If 0<d<2 the distribution can be described as fractal; how-
ever, the GSD is often fractal in the small grains set and
non-fractal in the larger grains set (Keulen et al., 2007).

In all of the samples, fractal dimensions were analysed for
the entire population of grains as well as for two subsets: small
and large grains. The boundary of the two subsets was deter-
mined using ECD histogram (Fig. 5) analyses and located at
~10-30 um“ ECD (Table 4).

The results are shown in Table 4. The all-data fractal di-
mensions are, in all but one case (i.e. in 58 cases) significantly
smaller than the subset values. The smaller values generally in-
dicate distributions closer to self-similarity; however, this will be
discussed later. For all grains, the values are lowest in the
mylonitic rocks (72 and Za2); moreover, in sample 72, the large
grain subset closely fits the self-similarity trend. Samples 58
and 68a are at the opposite extreme, with high d values, espe-
cially in the large grain subset. Sample 58 is also atypical, with
the fractal dimensions of all grains higher than the small grain
subset. In fact, the grain distribution characteristic of this rock is
the most complicated, as will be shown in the discussion.

DISCUSSION

APPLIED METHODOLOGY

The methodology applied here seems very convenient, es-
pecially given the use of popular software and well-established
analytical methods. However, it certainly needs more testing.
The results for the rocks presented in this paper have been
compared to the results for deformed granitic rocks obtained by
Keulen et al. (2007; Table 5). The base images used in their
study were SEM-BSE images; instead of a single image, as in
the present study, they used sets of images within a range of
maghnification of 100-20,000x. Their software and grain detec-
tion methods were also different. Despite the methodological
differences, the results obtained seem generally comparable.

GRAIN SHAPES AND GRAIN SIZE DISTRIBUTION

Deformations are multi-stage processes and occurs in dif-
ferent and changing conditions. The approach described
(shape analysis, self similarity of grain size distribution) is then
capable of helping distinguish between brittle and ductile defor-
mation: the ductile stage is marked by the presence of lobate
grain boundaries. Grain shape indicators, even such simple
ones as the grain area vs. grain perimeter used in this study re-
cords this by deviating from a linear trend when plotted in
log-log space (Fig. 6) Thus, it can be concluded that ductile pro-
cesses, i.e. dynamic recrystallization, played an important role
during grain evolution. As grain boundary migration is a process
forming lobate shapes, the recrystallization should be consid-
ered as high-temperature recrystallization at temperatures
above 500°C (Passchier and Trouw, 2005).

On the other hand, concurrent brittle and ductile processes,
as well as grain reduction and tectonic growth, affect the grain
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Table 2
Descriptive statistics of the equivalent circular diameter
Mean Media Min Max Var Std. Dev. Skew. Kurt.
Sample N :
all values in ym
All grains
43 1984 6.632 3.990 0.004 121.832 126.728 11.257 4.511 29.105
58 490 9.835 5.365 0.016 189.957 275.031 16.584 6.441 54.638
68a 860 4.721 3.643 0.003 57.385 47.678 6.905 4.099 20.372
72 655 8.142 4.552 0.010 236.331 247.024 15.717 7.135 78.475
Za2x 1599 5.226 3.367 0.003 94.766 87.277 9.342 4.566 28.413
Small grains subset (up to tens of uym, defined for each samples separately, see slope break value in Table 4)
43 1913 4.952 3.869 0.004 29.665 34.716 5.892 1.814 3.370
58 462 6.716 5.172 0.016 27.901 23.752 4.874 1.831 3.850
68a 800 3.180 3.582 0.003 11.344 5.777 2.404 0.466 0.129
72 633 5.907 4.410 0.010 35.191 43.426 6.590 2.006 4573
Za2x 1537 3.732 2.608 0.003 23.496 20.376 4.514 1.836 3.715
Large grains subset (hundreds to thousands of um, defined for each samples separately, see slope break value in Table 4 )
43 70 52.19 45.05 30.196 121.832 488.480 22.102 1.583 2.049
58 28 61.29 44.29 29.126 189.957 1663.610 40.787 2.104 4.307
68a 60 25.26 20.90 11.624 57.385 154.559 12.432 0.852 0.201
72 22 72.42 58.22 36.492 236.331 1 906.730 43.666 2.721 9.344
Za2x 62 42.27 36.08 24.415 94.766 322.618 17.962 1.433 1.456
Table 3
Chi-square test result for the ECD values for log-normal distribution
Sample Adjusted df | Chi-square | CV(df) | CV(df)/chi-square ratio
43 7 57.9 141 0.24
58 3 9.6 7.8 0.81
68a 5 55.3 11.1 0.20
72 4 15.1 9.5 0.63
Za2 6 72.5 12.6 0.17
df — number of degrees of freedom, CV(df) — critical value of chi-square for given df value
Table 4
Fractal dimensions of the ECD and slope break values
Sample | All data fractal dimension Small grg:&iﬁg%snet fractal Large grgiirr]\qsérs;gi%sﬁet fractal Slope break value (um)
43 1.83 1.89 1.99 30.5
58 1.98 1.86 2.18 28.5
68a 1.96 2.00 2.25 11.5
72 1.76 1.85 1.76 35.5
Za2 1.75 1.87 2.06 23.7
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Table 5

Comparison of methods and some results

Keulen et al. (2007) Kania (this study)
Imaging method SEM-BSE SEM-BSE
Magnification 100x—20k x; 2—2.5 step 250x
Image analysis software Image SXM + ImageJ ArcGIS
Grain detection density slicing maximum likelihood classification
Phases identified feldspars, quartz matrix (incl. feldspars), quartz
Grains per sample 300-1200 490-1984
Diameter range [um] 0.06—400 0.03-236
Fractal dimension ranges 1.4-2.3 1.62-2.33

size distribution pattern. The change in grain size (AD) during
tectonic processes can be described as (Cross et al., 2015):

AD = AD —-AD

growth reduce

[3]

where: AD is the effect of two opposing components, growth and re-
duction.

However, when ductile and brittle processes co-occurring in
the same deformation phase (brittle-ductile deformation re-
gime, Passchier and Trouw, 2005) are taken into account, this
equation can be upgraded to be more specific:

AD = ADgrowth _(ADcrushing +AD [4]

dynamic _ recrystalization )

Thus the grain reduction component includes two sub-com-
ponents: “cataclastic” and “mylonitic”. Note that these are lim-
ited to stress-related processes; grain reduction can also be im-
proved by other factors, such as sericitisation, which are also
post-tectonic active processes.

Grain population characteristics are an important source of
information concerning which of the processes described
above were active during multiphase deformation (e.g.,
Heilbronner and Keulen, 2006; Keulen et al., 2007). In a paper
by Kania (2014), it was shown, based on analyses of shape fac-
tors, that the main processes operating during deformation
were cataclastic grain reduction, cataclastic flow, sericitisation,
and — linked with sericitisation — the leaching, transport, and de-
position of silica. At present, by aggregating the grain size data,
we can see two grain populations in all samples (Fig. 6).
Small-grain populations are especially well-developed in sam-
ples Za2 and 43. Sample 43 (cataclasite) shows that these
grains may be the product of grain crushing. Therefore, it is
possible that, in other samples as well, the presence of a
smaller subset demonstrates the “cataclastic” sub-component
in grain reduction processes. However, as this paper focuses
on demonstrating some new methods and potential interpreta-
tions, this issue will have to remain open.

FRACTALITY OF STRUCTURE

According to the “constrained comminution” particle-size
distribution model provided by Sammis et al. (1987) and
Sammis and King (2007), the fractal dimension (fractal, mass
dimension, considered two-dimensional in this paper) value
during deformation is governed by the relative difference in size
between neighbouring particles. This model shows that the brit-
tle deformation process in the rock differs from e.g. crushing
material in a mill, where initial size distribution governs output.

In general, the trend in textural evolution is to eliminate neigh-
bouring same-size particles, as experimentally shown by Biegel
et al. (1989) and modelled, using computers, by Steacy and
Sammis (1991). The final texture should then be characterized
by minimal dilation (optimal grain packing) and can be mathe-
matically illustrated as a Sierpinski carpet (see e.g., Ciesielski
and Pogoda, 1996) fractal for which d = 1.89, or — even better —
a Sierpinski gasket (triangle) fractal for which d = 1.58 — nearest
to d = 1.6, resulting in minimal dilation and therefore promoting
the development of highly strained cataclasites. The important
feature of the Sierpinski gasket is that no same-size particles
are neighbours on any scale, which is also a result of the grain
fragmentation process (Sammis, 1997) “constrained commi-
nution” model described above. Natural grain aggregates in
fault rocks are characterized by values of d = 2.0 for the fault
zone core and d = 1.6 for the fault gauge zone (Chester et al.,
2005; Sammis and King, 2007).

To determine whether the sample-size distribution is really
self-similar, the number of magnitude orders covered by the
analysis is important. In this study, there is only one order in the
large subset, but there are four in the small subset. The distribu-
tion can be identified as self-similar if a frequency vs size log-log
plot forms a straight line over several orders of magnitude
(Keulen et al., 2007). In this study (Fig. 7), the grain size distri-
bution samples Za2 and 72 (both mylonites) can be identified as
the most nearly self-similar, at least in the small subset, where
the straight section of the log-log distribution curve covers 2.5-3
orders of magnitude. Keulen et al. (2007) concluded that none
of their samples was self-similar. It should be noted that they
analysed all minerals. Perhaps, however, separate determina-
tion of the fractal dimension for each mineral phase is a better
idea, due to the different mechanical properties of minerals.

Keeping the above in mind, it may be useful to introduce the
factor of “textural maturity” in the deformed rocks, which can be
described as a state of equilibrium between grain growth and
grain reduction. Although such an ideal state seems impossible
to obtain, the deforming processes may be moving asymptoti-
cally towards this state. The final state would be characterized,
as was shown, by a fractal dimension with a value of ~1.6, re-
sulting in the best packing. Textural maturity of this kind is also
expressed by a high degree of statistical variance and a close
log-normal fit. Moreover, increased textural maturity can make
further (post-tectonic) grain reduction or alternating processes
more difficult to accomplish, due to the greater difficulty of pene-
trating texturally well-packed rock.

Generally, the fractal dimensions obtained in this study are
smaller in the small grains subset than with large grains. More-
over, small-grain self-similarity is marginally greater when only
small grains are taken instead of the entire sample (Fig. 8).
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If a higher value of the fractal dimension is an indicator of a
more mature size distribution texture, then a problem arises as
to how to understand the fact that distribution is not homoge-
nous, i.e. that subsets with differing fractal dimension values
are present. Bjork, et al. (2009) suggest a switch in the defor-
mation mechanism during tectonic history. A switch of this kind
may be an important event during the deformation history of the
rocks analysed and may indicate a change from a Variscan
ductile deformation regime to an Alpine brittle-ductile regime
(Gaweda and Burda, 2004; Jurewicz and Baginski, 2005;
Kania, 2014), which may be marked by self-similarity (fractal di-
mension) differences between subsets of large and small
grains.

CONCLUSIONS

1. The methodological approach presented is a relatively in-
expensive and quick method to analyse grain size distribution in
microscale as well as grain shape indicators. Such an analysis
is helpful in determining what kind of processes (brittle or duc-
tile) were active during deformation history. In particular, more
value is added via the possibility to obtain repeatable results

and fully quantitative data, which may be analysed with statisti-
cal procedures.

2. Observed self-similarity of the smaller grains subset may
be explained as a product of advanced deformation in the brittle
regime. According to the “constrained comminution” model,
such a deformation should lead to the best packing of particles.
The self-similarity level should be below 2 as is observed in the
samples analysed.

3. The constrained data obtained generally shows two grain
size subdistributions, with self-similar distribution in the smaller
grain sets (fractal dimensions 1.85-2.00), and mixed distribu-
tion in the large grain set (fractal dimensions 1.76-2.25). These
are typical values for natural grain size aggregates.

4. lmage analysis based on the maximum likelihood classifi-
cation is a tool applicable to SEM-EDS images. The results are
comparable to the density slicing grain detection of Keulen et al.
(2007).
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