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Abstract

The aim of this thesis is the investigation of a few theoretical propositions of realizing various 
interesting topological states of matter using cold atomic systems. The topological order in 
quantum mechanics has been given much attention in the recent years as this concept, pre­
viously known mostly from the observation of the fractional quantum Hall effect, has been 
generalized for a broader range of physical systems, where it can manifest itself in the form of 
non-local topological invariants. The search for new topological models and their implemen­
tations is undertaken not only because it is an exciting opportunity to study unique quantum 
mechanical effects, but also because they may be useful in some emerging technologies, such 
as quantum computing. Optical lattices are naturally a popular choice for such considerations 
due to an ease with which they can be modified and fine-tuned. The present thesis fits in this 
general scheme, as it focuses on a proper numerical evaluation of selected topological lattice 
models, paying great attention to their experimental feasibility.

In a natural way the results presented here are related to other, earlier works. After Chap­
ter 1 containing preliminaries introducing the reader into specific features of cold atom settings 
and the topological order, in consecutive chapters we give a short summary of the main re­
sults published in 3 research articles forming the main part of the thesis. Chapter 2 discusses 
a realization of the emergent Rice-Mele model in a one-dimensional optical lattice. This 
paradigmatic model has already been realized experimentally in I. Bloch group using different 
techniques. On the other hand, the proposition we consider benefits from the ease of forma­
tion of defects, which is a consequence of its emergent nature. Moving on to systems with 
interactions, Chapter 3 focuses on the one-dimensional extended Bose-Hubbard model for 
filling V =  3/2  and U =  2V, which for zero tunneling corresponds to the thin-torus limit of 
the topological system. We investigate whether this equivalence is still valid for non-negligible 
tunneling and take a closer look at the quantum phase transition in the system. Chapter 4 
contains the analysis of the extended Bose-Hubbard model in the context of an experimentally 
plausible realization in a one-dimensional optical lattice of dipolar particles, with the emphasis 
on the topological Haldane insulator phase and on the pair-superfluid phenomena that arise as 
an effect of long-range interactions. The two appendices are technical and describe shortly the 
numerical tools used, namely the exact diagonalization and the density matrix renormalization 
group. Here the aim is to provide some useful, in the author’s opinion, hints for the interested 
reader rather than a precise introduction to the techniques which are more comprehensively 
discussed already in the references given.
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Streszczenie

Głównym tematem niniejszej rozprawy jest analiza kilku teoretycznych propozycji tego, jak 
zrealizować ciekawe topologiczne stany materii przy użyciu układów zimnych atomów. Dużo 
uwagi zostało w ostatnich latach poświęcone topologicznemu porządkowi, ponieważ to pojęcie, 
pierwotnie znane głównie z obserwacji ułamkowego efektu Halla, udało się uogólnić na szerszą 
klasę fizycznych układów, w których objawia się w postaci nielokalnych niezmienników to­
pologicznych. Poszukiwania nowych topologicznych modeli i sposobów ich implementacji są 
podejmowanie nie tylko jako ekscytująca możliwość badania wyjątkowych efektów mechaniki 
kwantowej, ale także ze względu na korzyści z ich potencjalnego wykorzystania w pewnych 
nowo powstających technologiach, takich jak informatyka kwantowa. Sieci optyczne, dzięki 
łatwości i dokładności z jaką można je modyfikować, są często wykorzystywane w tego typu 
rozważaniach. W te działania wpisuje się też obecna rozprawa, jako że przedstawiona została tu 
analiza wybranych topologicznych modeli przy użyciu metod numerycznych, ze szczególnym 
naciskiem na określenie wykonalności eksperymentalnej realizacji tych modeli.

Wyniki tutaj przedstawione są naturalnie powiązane z pewnymi wcześniejszymi pracami. 
Po krótkim zapoznaniu czytelnika z charakterystyką układów zimnych atomów i pojęciem po­
rządku topologicznego w rozdziale 1, kolejne rozdziały stanowią zwięzłe podsumowanie wy­
ników 3 prac badawczych, na których oparta jest ta rozprawa. Rozdział 2 zawiera dyskusję 
na temat realizacji emergentnego modelu Rice’a-Melego w jednowymiarowej sieci optycznej. 
Ten szeroko znany model został już zrealizowany w grupie I. Blocha przy wykorzystaniu in­
nej metody. Propozycja tutaj rozważana ma w odniesieniu do niej pewne zalety, takie jak 
ułatwione formowanie defektów sieci, co jest konsekwencją jej emergentnej natury. Przecho­
dząc do oddziałujących układów, rozdział 3 skupia się na jednowymiarowym, rozszerzonym 
modelu Hubbarda dla wypełnienia V =  3/2  i U =  2V, który przy zerowym tunelowaniu 
odpowiada pewnemu topologicznego układowi w granicy cienkiego torusa. Sprawdzamy, czy 
ta równoważność jest spełniona także w przypadku niezaniedbywalnego tunelowania i przy­
glądamy się uważniej kwantowemu przejściu fazowemu, które jest obecne w tym układzie. 
Rozdział 4 przedstawia analizę rozszerzonego modelu Bosego-Hubbarda w kontekście eks­
perymentalnej realizacji w jednowymiarowej sieci optycznej zawierającej dipolowe cząstki, ze 
szczególnym uwzględnieniem topologicznej fazy izolatora Haldane’a i zjawiska superciekłości 
par, które są konsekwencją dalekozasięgowych oddziaływań. Dwa załączniki stanowią krót­
kie przedstawienie użytych w rozprawie metod numerycznych, czyli dokładnej diagonalizacji i 
grupy renormalizacji dla macierzy gęstości (ang. density matrix renormalization group). Ce­
lem tutaj jest jedynie krótkie zarysowanie kilku użytecznych, zdaniem autora, właściwości tych 
technik, bardziej szczegółową ich analizę można znaleźć w przytoczonych referencjach.
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Chapter 1

Preliminaries

1.1 Optical lattices
The theoretical physics rarely stops and waits for its experimental counterpart to catch up. 
With an ever-growing number of physicists trying to explain every bit of universe’s inner 
workings, devising new ways of examining and constraining these theories became a job of an 
utmost importance. At the same time, the field of atomic physics saw great progress in areas 
of developing sophisticated techniques of cooling dilute atomic gases and constructing lasers, 
bringing unprecedented control of physical systems, allowing not only precise measurements of 
fundamental constants, but also engineering complex interacting systems which realize given 
theoretical models with great precision.

These two independent developments naturally aligned with each other actualizing the 
idea of quantum simulators, proposed by Richard Feynman [22] — to use carefully assem­
bled quantum systems in order to simulate physics, which are otherwise hard to observe. The 
examples of which include various tight-binding models, lattice models with enormous mag­
netic fields and, more recently, even quantum chromodynamics and other gauge theories. One 
particular area of physics that benefited greatly from this kind of simulations is the field of 
topological insulators, which is the topic of Sec. 13 . In this section I will present the main 
ideas behind using ultra cold-atoms as quantum simulators with a focus on optical lattice 
settings.

1.1.1 Atom-light interactions

The study of lattices has always been inseparably connected with solid state physics. Recent 
advances in atom cooling and trapping, however, brought them into experimental spotlight in 
the field of atomic, molecular and optical (AMO) physics. Using carefully set up lasers and 
atoms cooled to temperatures near absolute zero, different kinds of possible artificial lattices 
are being explored, collectively known as optical lattices. The main ingredient is the laser light 
[with intensity !(r )] acting on the atoms with the dipole force: [29]

F(r) =  Re(a)W (r). (11)
2£0C

The polarizability of the atoms, a, which depends on both the frequency of the laser w and 
the resonant frequency in the model Ofo, can be derived using a simplified two-level model
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14 Chapter 1 Preliminaries

and the rotating wave approximation. In the regime of small detuning, A =  w — Wo «  wo, 
and even smaller excited state decay rate, r  «  A, the effective potential and the scattering 
length of the excited state are given by: [29]

3nf2 r  r
V(r) =  ^ 3 A n r )' (12) r sc(r) =  hAU (r) ' (13)

Because U(r) ~  J(r)A —1 and r sc(r) ~  I(r)A -2 , it is possible to reduce the effects of the 
scattering by having large detuning and high laser light intensity. Furthermore, there are two 
classes of trapping potentials, depending on the sign of A: atoms are drawn to either maxima 
(A <  0, red detuning) or minima (A >  0, blue detuning) of the light intensity.

1.1.2 Laser light geometry

In the following description, it is assumed that a single laser beam of a total power P has a 
Gaussian profile with a width w(z) that increases with the distance from the beam focal point 
(z): [29]

2 P 2 2
I(r,z) =  T— e—2r /w (z). (14)

nw2 (z)

The beam divergence function is w(z) =  u>o^1 +  z2/z^ and so in the vicinity of the focus 
both r and z dependence be approximated by a quadratic function. Typical value of Wo is
around 100 ^m, while Zr ranges between millimeters and centimeters. [13]

Two overlapping counter-propagating laser beams of the same wavelength (k =  2n/K) 
and intensity produce periodic potential:

V(r,z) =  —V0e—2r2/w2(z)sin2(kz), (15)

where the value of Vo can be found by using (12) and (14). The potential (15) is a lattice 
of planes (constrained by the beam profile) with a lattice constant a =  K/k =  A/2. Adding 
additional pairs of counter-propagating lasers in perpendicular directions leads to more refined 
systems: 2D array of potential tubes (in the case of 2 laser pairs) and 3D lattice of well-localized 
potential wells (in the case of 3 laser pairs). The last example is of particular interest in relation 
to this work, as it allows creating effective 1D, 2D or 3D synthetic lattices, depending on the 
depths of the lattice potential in each of the directions (as high potential barrier between 
neighboring wells effectively restricts the movement in that direction).

1.2 Bose-Hubbard model
Exact description of a physical system containing a large number of interacting particles, even 
if they are confined to a regular lattice, is a problem that lacks an analytical solution except 
for a few special cases. In order to get a valuable insight into the behavior of such systems, 
some kind of simplification is needed. For the lattice systems it is usually done through tight- 
binding approximation, where one introduces an effective cutoff for the interaction length, 
allowing only particles which are close to each other to affect each other. [6] This simple idea 
is a basis of multiple models, amongst which is the Bose-Hubbard model (BHM).
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1.2.1 Basic model

Hamiltonian of BHM has the form:

H  =  —t ^ b p j  +  l2 ^ n i (ni — 1 ) —^ Z ûi' (16)
(i,j) i i

where the parameters are: t -  the tunneling between the nearest neighbors, U -  the interaction 
between two particles residing on the same site and ^ -  the chemical potential, while bf is the 
creation operator for a particle at site i, =  b̂ b̂  is the corresponding number of particles
operator and (i,j) denotes a sum over the nearest neighbors. The main feature of the model 
is the celebrated superfluid (SF) to Mott insulator (MI) quantum phase transition [23], where 
the ground state of the system changes from the extended, highly correlated state (SF) to the 
one with a fixed number of isolated particles localized on each site of the lattice (MI).

This simple model is commonly used to describe a behavior of ultracold particles trapped 
inside an optical lattice (one of the most famous, early examples of this correspondence is the 
observation of SF to MI transition [26] in a lattice of 87Rb atoms). In such systems the BHM 
arises naturally from the general, many-body Hamiltonian in its second quantization form:

H =  j  drW(r)f [— t ^ 2 +  ^ ext)  ^ ( r ) +  \ j  dr dr'Wf (r)Wf (r)V(r — r')W(r)W(r)

(17)
after taking into account few reasonable assumptions [^ ext is the trapping potential, in the 
form of Gaussian envelope of (15)]. First, since the optical lattice potential is periodic, one 
can describe the field operators (y) using orthogonal Bloch functions ç ^ k (r ) (with a  being 
a band number and k being quasi-momentum). For deep lattices the separation between the 
lowest and the first excited band is large and so it is enough to consider only the lowest band, 
a  =  0, provided that the temperature is sufficiently low. In such cases it is convenient to use 
Wannier functions as the basis, giving the field operators the form:

Ÿ (r) =  Y J biwi(r). (18)
i

Inserting (18) into (16) gives:

Û  = —Z  k ï ï h  +  Z  ^ r W bÂ —Z  e‘n‘- (19)

where:

h,i =  j  dr w * (r) [  — !^ V 2 +  ^ext) w] (r), (110)

j =  j  d rd r 'w *(r )w *(r ')v (r  — r')wk(r)wi(r'). (111)

et =  j  drlwt(r)l2VexV (112)

From (110) one can recover =  t + n  =  t (for isotropic potential and while approx­
imating Vext «  const in the middle of the trap) and set «  0 for li — jl >  1 (which is
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justifiable for deep enough lattices). As for (111), in cold, neutral atoms it is usually enough 
to consider only the short-range s-wave scattering, which, provided that Y  is not singular, has 
the form: [13]

4nh2a„ , , ,
V(r — r )  =  S(r — r ) =  ?S(r — r ), (113)

m
where as is the scattering length. With this assumption the only non-zero term arising from 
the interactions is =  U. The only thing needed to recover (16) is the addition of 
a chemical potential ft, which is a standard procedure when describing system in the grand 
canonical ensemble. This results in term ftint =  (ft +  , unless one again chooses to
ignore the edges of the trap, in which case =  e can be incorporated into chemical potential: 
ft +  e ft, giving (16) as a result.

Working with an optical lattice it is straightforward to manipulate relative strengths of 
tunneling and interactions, t/U , as increasing the lattice depth drastically reduces t, while at 
the same time brings atoms residing on the same lattice sites closer (narrowing their Wannier 
functions), amplifying U [41]. Another popular method of modifying parameters of (16) 
employs so called Feshbach resonances — coupling of atoms’ scattering state to higher energy 
molecular bound states through a magnetic field — which can modify effective as for atoms 
to the point of nullifying it or changing its sign [15].

1.2.2 Extended Bose Hubbard model

While standard BHM is a great tool to analyze simple optical lattices, there are many lattice 
arrangements which require us to go beyond this simple approximation. Probably the most 
notable such case are lattices filled with dipolar atoms, where interactions decay with distance 
as r—3 [48]:

/ X Cdipole 1 —3cOS2 d
K iipoleW =   ^ --. (114)

Here, C^p^  is equal to ft oft2 for particles with magnetic dipole moment ft and ft^/Eo for 
particles with electric dipole moment £o, while Q is the angle between r and the polarization 
direction. Experiments with multiple species of dipolar particles have been done in recent 
years, with a clear progress towards atoms possessing larger dipole momenta [2, 16, 28, 49], 
while also demonstrating the possibility of tuning the contact interactions in such systems 
using Feshbach resonances [50].

Due to long range interactions introduced through (114), an dditional term resulting from 
(111), namely V =  Ui(i+ i)i(i+i) +  Ui(i+i)(i+ i)i, needs to be added to the Hamiltonian (16), 
resulting in:

H  =  — Z t b f t  +  V Z ninj +  y  — 1) — f t Z ™ 1' (115)
(i,j) (i,j) i i

The Hamiltonian (115) is commonly referred to as the extended Bose-Hubbard model (EBHM) 
and has been a topic of numerous theoretical [57, 59] and some preliminary experimental [8] 
works.

Introducing nearest neighbor interaction, V, enriches the phase diagram by multiple 
phases. For large values of V, the system finds itself in checkerboard/density wave (DW) 
phases, which are insulating phases characterized by a specific pattern of particle density (for
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every two nearest neighboring sites, one of them is empty and the other one is filled). For inter­
mediate values of V a peculiar insulating phase called Haldane insulator (HI) manifests[17]. It 
is analogous to Haldane phase introduced for spin-1 Heisenberg chains [32, 34] and is notable 
for being a symmetry protected topological state [31] (see also Sec. 13). Based on numerical 
calculations the existence of yet another class of supersolid phases (where both superfluid and 
density wave order coexist) has been postulated [9, 59].

1.2.3 Further extensions

If the assumptions used to derive BHM and EBHM are even more relaxed, the Hamiltonian 
of an optical lattice gains additional terms, which come mostly from the inclusion of next 
biggest (111) interactions. Most prominent of those are density-dependent (density-induced) 
tunnelings [T =  —0.5(Vii(i+i)i +  Vm^i+\))'] and pair tunnelings (P =  0.5Viijj) [21]:

h = —Z ^ p j + ~ 2 z  Hini + ^ 2 z ûi(û i —1)
(i,j) (i,j) i

— T Z b i  (tij +  Kj)bj +  p Z  b f f i j  — f t Z ^ i '  (116)
(i,j) (i,j) i

Since these terms are generally much smaller than the ones present in BHM the main effects 
of their presence in (116) is a shift of phase boundaries, most noticeable in systems with high 
densities (large ft). It is however expected that in the future it will be possible to engineer 
systems with comparably large values of V, T and P with respect to t and U (enabled by 
trapping particles with large dipole momenta and/or precise arrangement of lattice geometry) 
in which case many more exotic phases, e.g. phases manifesting pair-superfluidity, are expected 
to be found therein [63].

1.3 Topological phenomena in quantum systems

Present-day theory of topological insulators arose as an aftermath of the experimental obser­
vation of integer [44] and fractional quantum Hall effect [67] (IQH and FQH respectively). 
These inherently many-body phenomena manifest in (effectively) two-dimensional electronic 
system subject to large magnetic fields (of the order of a few teslas) and lead to an exact 
quantization of a resulting Hall conductivity in a measured samples. While enlightening phe­
nomenological descriptions of electron wavefunction in such systems were quickly presented 
(most notably by Laughlin [47]), recently these effects are viewed upon in the context of 
much broader classification of topological systems [65, 71]. These systems are characterized 
by particle-like excitations, which are nevertheless resistant to local perturbations and de­
pend only on global invariants, which are topological in nature. These properties make them 
promising candidates for quantum computation, as they can help circumvent one of the biggest 
problems of conventional quantum computers, i.e. the decoherence due to the interactions 
with the environment, which leads to unaccounted errors (correcting this errors requires a 
tremendous effort for typical quantum computer realizations).



18 Chapter 1. Preliminaries

1.3.1 Berry phase and Chern numbers

The phase of a complex quantum mechanical wavefunction, whose evolution in time is deter­
mined by the Schrödinger equation, is a key ingredient in understanding some of the most 
strikingly non-classical quantum effects, such as the double-slit experiment [19] and Ander­
son localization [4]. If a system being studied is isolated from the outside world, the phase has 
no bearing on the physical state and is thus arbitrary. With that said, it may come as a surprise 
that a system evolving over a closed (that is, having the same initial and final state) path C 
may acquire a nontrivial phase factor, which depends only on the topology of a related Hilbert 
space. This geometric phase, observed already in the 1950s by Aharonov and Bohm [1], is 
known as Berry phase [10] and can be calculated as (if the evolution is over some parameter 
called ^):

7 (C) =  —i Jc < ^ ) | V ^ ( ^ ) > ^  =  J ^ A ($)d$, (117)

where A is called Berry connection. (117) can be expressed as a surface integral of a Berry 
flux: F =  V X A. In two-dimensional spaces the integral of F over the whole space gives 
another topological invariant called the first Chern number:

C =  J n / ^ '  (118)

which must necessarily be an integer [35].

1.3.2 Simple one-dimensional topological models

Simple models in one dimension provide a great way to illustrate the basic notions of topo­
logical order in quantum systems. One of such models is the spinless fermion Rice-Mele 
model:

N N
»  =  - ! (  ticjdj +  ^2^ dj—\ +  h.c.) +  A ^ (c jc y  — d '̂dj) (119)

/=1 7=1

where cf (rf|) are the creation operators on odd (even) sites of the lattice. Su-Schrieffer- 
Heeger (SSH) model is a special case of (119) with A set to 0. In SSH case, we can rewrite 
(119) in momentum space as H  =  where is a 2 x 2 ,  getting as a result [7]:

u +,fc =  -j 2 (g —% )  ' (120)

where tielka/2 +  t2 e—lka/2 =  l£jclel°k and a is a lattice constant. Calculating Zak phase (Berry 
phase over whole 1D Brillouin zone) [75] gives two different results depending on whether 
11  >  t2  (D1 configuration) or 11  <  t2  (D2 configuration), which, while not being uniquely 
defined, are related by a topological invariant:

Ä  — Ä  n  (121)
The existence of such invariant tells us that these two configurations are topologically 

different and there must exist a topological critical point where their energies are degenerated
(̂ 1 =  ̂ 2). This property is universal for all topological phases and leads to the presence
of localized edge states on the boundaries between topologically non-equal phases [36]. As 
these edge states are linked to intrinsic properties of the topological phase, they survive in the 
presence of local disturbances.
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1.3.3 Anyon statistics

While models similar to the ones presented in Subsection 1 3 2  are expected to allow for­
mation of quasiparticles behaving as Majorana fermions [25, 43] (sought after as an essential 
step towards topological quantum computation), they are not enough to construct a universal 
quantum computer. In order to fulfill that task more robust quasiparticles are needed [42]. It 
turns out that the class of particles behaving in an appropriate way behave neither as bosons 
nor fermions, and are collectively called anyons.

Both bosonic and fermionic behavior result from two simple facts — first, in three di­
mensions, the path of wrapping one particle all the way around the other can be continuously 
deformed to a trivial transformation, where both particles do not move at all and second, 
exchanging the positions of the identical particles only once may only lead to a change of 
phase (as the particles are indistinguishable). This reasoning however does not apply to two­
dimensional systems, like a sample in a large magnetic field in FQH effect, and indeed some 
of the observations are believed (yet without the definitive proof) to be explained by anyonic 
excitations.

Apart from "trivial” anyons, which upon winding of one anyon around the other provide 
a change of phase, there exist more sophisticated particles called non-Abelian anyons. The 
name comes from the fact that the result of braiding (exchanging the positions of) pairs of 
such particles depends on the order of these operations. In order for anyons to be non-Abelian 
there has to exist a degenerate energy manifold in which those states live [52]. In such a case 
the Berry phase is not enough to describe the evolution of the state, which is governed by a 
matrix, M abtyb, such that:

M ab =  & ei S dR-m, mab =  (ę a (R)\VR\ęb(R ) ) , (122)

where &  stands for path ordering. The anyons present in such a system can be labeled (^j) 
based on a set of properties related to braiding. The behavior of two quasiparticles brought 
close to each other may either produce a single quasiparticle (or a lack thereof in case they 
were each other’s antiparticle) or a nontrivial final state being a superposition of multiple 
quasiparticles. The equations governing the results of bringing quasiparticles together are 
called fusion rules:

<PaX <Pb =  Z N Cab<Pc. (123)
c

To fully characterize a non-Abelian anyonic system it is also necessary to provide the F-matrix 
(Fÿk) and R-matrix (Rçb) which relate different orders of braiding with each other and are 
themselves subject to the so called pentagon and hexagon identities [52, 66].

1.3.4 Fibonacci Anyons

In the case of Fibonacci anyons there are two particle types: 1 and T, characterized by the 
fusion rules: 1 0 1  =  1, 1 ®  T =  T, T ® 1  =  T, T ®  T =  1 ®  T, which correspond to 

=  N fT =  =  N \ t =  N ^t =  1 with the rest =  0. The name comes from
the dependence of the dimension of the fusion Hilbert space M(n) on the number of fused 
particles n, which follows Fibonacci series: d im M (n) =  Fn—i, where F0 =  0, F i =  1 and 
P i = ^ i —1 +  F i—2.

The significance of this type of non-Abelian anyons is related to the fact that not only are 
they enough to construct a universal quantum computer [24], but they have been postulated
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to explain already observed FQH effect at filling v =  ^2 [61]. Fibonacci anyons were also 
related to the low tunneling limit of BH model with v =  2 filling [5], which may point to a 
possible realization of such physics in optical lattices [20].

1.4 Quantum phase transitions
The phase of a classical system is characterized by a specific macroscopic order parameter and 
depends on its temperature, T, or some other intensive property. One of the biggest achieve­
ment of modern physics was the development of the phase transition theory (first proposed by 
Landau), which allowed a categorization of phase transitions into a set of classes of similarities, 
depending on how various parameters scale with the distance from the critical temperature, 
T — Tc (or other parameter driving the transition).

Similar concept exists in quantum mechanics, quantum phase transitions (QPT) however 
are defined for a ground state at T =  0 and the transitions between different phases correspond 
to either an actual or an avoided level crossing in the lowest states’ energies[58]. As in the 
classical theory, QPTs fall into few categories, each of which defines a specific critical behavior 
observable in the vicinity of the transition.

The following sections contain descriptions of a few physical quantities which are com­
monly used to differentiate between quantum phases and detect QPTs in bosonic optical lattice 
systems.

1.4.1 Fidelity

QPTs usually involve a dramatic change of some order in the ground state of the physical 
system. It is therefore possible to think of a simple quantity which measures such changes 
without relying on the specific details of the phases involved. One such measure is the fidelity, 
a term coming from the field of quantum information, which is simply an overlap between 
the two wavefunctions. In case of a QPT, one can select a parameter driving said transition 
(denoted g  here), and define the ground state fidelity related to changes in that parameter [76]:

F(g,S) =  \ (W0(g — ô/2)\W0(g +  S/2)) \. (124)

(Note that some authors choose to use square of the modulus in the definition of the fidelity). 
Here, tyo (g) is the ground state of the system for the parameter value g.

The most important feature that may be identified here is whether the ground state un­
dergoes a gradual change, or there is an energy level crossing at the critical parameter value 
(g c). In the second case, the fidelity will be close to 0 near the transition point regardless of 
the system size or other considerations and the discussion that follows assumes that this is not 
the case

While studying thermodynamical properties of the system, the limit of N  oo (where 
N  is the lattice size) is taken, however in that limit the value of F goes to 0 regardless of the 
values of g  and S (Anderson orthogonality catastrophe). It is therefore useful to consider other 
limiting behavior first, S 0, as we can expand F in Taylor series with respect to S to its first 
nonzero-term [18, 74]:

Ö2
F ~ 1 —Xf ^2'  (125)
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(Linear term must vanish because of the ground state normalization, which ensures that F <  
1). The prefactor Xf , called fidelity susceptibility, provides a valuable insight into the nature 
of the phase transition without being dependent on the value of Ô. Xf scaling with respect to 
\g — g c\ and N  has been shown to follow certain relations including the critical exponent of 
the transition (v) [30].

1.4.2 Correlation functions

Having an order parameter dependent on space and/or time [ty(r,t)], one can define a corre­
lation function as:

C ^(r ,r ,/ t/ t') =  (^ ( r , t )^ ( r ,/ t ') ) .  (126)

Away from a criticality, the spatial part of these correlations typically follow an exponential 
law [58]:

Cç(r/r ')  x  exp(\r — r'\/Ç)/ (127)

where Ç is a characteristic correlation length.
Inside a critical region on the other hand, in thermodynamical limit the value of £ oo, 

and instead of (127) there is a power law:

Cę (Trt') x \ r \ —K/2/ (128)

where the value of K is dependent on the universality class of the transition/phase. For exam­
ple, the values of K are well known for a transitions between superfluid and isolating phases in 
one-dimensional bosonic and fermionic chains [33], such as QPT between MI and SF phases 
and between DW and SF phases [46].

1.4.3 Structure factor

In condensed matter physics, the (static) structure factor is an essential tool in analyzing the 
spatial structure of a material, as it is manifested through scattering patterns obtained by
bombarding a sample with X-ray radiation or neutrons/electrons. In the field of QPT and
quantum topology, the structure factor is used as a characterization of a phase, which breaks 
translational invariance, most notably charge density wave (CDW) or other density wave (DW) 
phases. The precise definition of the structure factor for the one-dimensional lattice of length 
L and with N  particles has the form:

S (y) =  ^  Z  (tijtik)e —iti (i—k)/ (129)
j,k=1

where is the particle density at /th site. As such, it can be regarded as a Fourier transform 
of density correlations.

If a phase exhibits a regular spatial modulation, then S(q) has a local maximum for q 
corresponding to a given symmetry. As an example, state \X0X0...) (with X  =  2^, żth number
corresponds to occupation of /th site here), having Z 2  symmetry, has a maximum for q =  n .
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1.4.4 Entanglement entropy and central charge

Entanglement entropy (EE) is a measure of entanglement of a given quantum state and as such 
has no equivalent in classical physics. The definition requires a division of a system into two 
separated parts (A and B), such that the total Hilbert space of the system can be expressed as 
their product: M =  ® Mß. The state can be in general represented by a density matrix
p (which for a pure state is p =  \ty) (^|). The reduced density matrix of p in subsystem A 
is defined as the result of the partial trace over B: =  trB p (where partial trace is defined

as trB =  \ P \^ f ), where |^ f  ) is /th state from a basis spanning Hß). EE is then
defined as von Neumann entropy of a reduced density matrix:

SA =  - t r PAlogPA- (130)

As a measure of how much entanglement there is between two different subsystems, is 
important for quantum information and computing perspective [69], but also for characteriz­
ing different highly correlated many body states [70] and for optimizing numerical simulations’ 
performance and applicability [54]. There is a rather famous result coming from conformal 
field theory in 1+1 dimensions, for which case conformal transformations (i.e., the one that 
preserves the angles) map to all holomorphic (and anti-holomorphic) functions. For a 1D 
chain of the length L in the vicinity of a QPT (or, more generally, in any critical region), EE 
of the subsystem of length I is [38]:

SL (l) =  3  ln — s i n ( — ) + s, (131)

where s is some non-universal constant, and c is called the central charge. The value of c 
is a characteristic, universal constant that can be associated with a specific type of QPT. For 
example, for a system in a superfluid phase the value of the central charge is c =  1 [14].



Chapter 2

Emergent Rice-Mele model in a 
one-dimensional lattice

2.1 Introduction

2.1.1 Topological defects in optical lattices

As has been already mentioned in Sec. 13 , systems able to accommodate non-trivial topologi­
cal states are thought to be well suited candidates for engineering a reliable quantum computer. 
On the interface between two topologically distinct regions there must necessarily exist edge 
states, which are exponentially confined to said interface — and as the topological regions are 
protected by non-local topological invariants, they are resilient with respect to local pertur­
bations. This is in a stark contrast to a typical quantum computer architecture, where the 
interactions with the environment quickly destroy the coherence, leading to errors propagat­
ing throughout computations and necessitating the use of a large redundancy in the form of 
quantum error correction codes. The edge states can be anyonic in nature (see Subsec. 1 3 3 ) 
which means that physically rearranging them can provide all the basic operations needed for 
quantum computation.

Using lattice shaking and two strongly interacting fermionic species (denoted as \ and |) 
it is possible to engineer an effective Rice-Mele model hosting topological edge states [56]. 
While some preliminary numerical results were presented in the original work, in this chapter a 
more thorough and precise (albeit constrained to a small system sizes) exact diagonalization (see 
App. A) treatment of the proposed system is presented, following the paper [11] reproduced 
in this thesis.

2.1.2 The system

The system Hamiltonian, in terms of composite bosons (pairs of different fermionic species, 
bound by their interaction) and leftover majority \ fermions (for each \ fermion there is more

23
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than one |  fermion), has the form:

N N
H  = T-i L (P ^ + i  +  h-c-) -  Toi E (P ^ —i +  h-c-)

i=l i=1
N N

+  (2To — Jo) ^ (c|s}+1Cj+iSj +  h.c.) +  (2Ti + J i ) ^ j (ptncinci+1p i + 1  +  h.c) (21)
j=i j=i

N N
— J o ^ s ^ + i  +  A Z ^ '

j=i j=i

where are composite annihilation, creation and number operators at /th site, while
s j(s |)  and p/(p|) are |  fermion ground state (s) and first excited state (p) creation (annihila­
tion) operators, and is the number operator of |  fermions in p state. The shaking lasers 
frequency is chosen to be almost resonant with respect to the difference between p level energy 
and interactions with a small detuning A.

The tunnelings in (2 1 ) are changed (from their standard, non-tilde values) by the shaking 
such that:

Jl =  JoOK)//. T, =  J o r ö r , ,  T±i =  J N M ± /w )T o i, (2 2 )

where A± =  ^(.K ±  ^£i cos ^ )2 +  K2 sin2 ^, ę  is the phase shift between the horizontal 
shaking (of strength K) and the amplitude oscillatory changes (both of frequency w), i*C =  
K /w  and is the N-th order Bessel function of the first kind. N  comes from an almost
resonant condition, Ui +  £ i =  Nw  +  A, where £ i is the energy of the p state and l i i  is the 
energy of the interactions between p state |  fermions and î fermions. N  is set to 1 for the 
rest of the chapter.

2.2 Resonant case
In this subsection the condition A =  0 is assumed and the system of length L is half-filled with 
both the composites and the leftover fermions (that is, the average fillings are: nc =  =  2).
The system is assumed to have periodic boundary conditions (PBC) imposed and K is limited 
to i*C <  i<Cc «  2.405, as in the considered range the Hamiltonian is almost symmetrical around 
.Kc (which coincides with the zero of a Jq  function, making all of the tunnelings except for 
T±i approximately proportional to K — Kc). The analysis of the system will mostly be focused 
on the properties of the boson composites in the system, which in the case of low effective 
tunnelings (// and T;) form an effective lattice through which j, fermions can move (this lattice 
will be represented in the text as a chain of'”0” and ”C” characters, corresponding respectively to 
empty and filled lattice sites — note however, that this is only a simplified notation, while, due 
to PBC, the eigenstates of the system are actually superpositions of every possible translation 
of these configurations — see App. A).

As already established in [56], the system in the vicinity of i<Cc is in the DW phase (all 
the composites repel each other, 0C0C0C0C0C0C0C). For sufficiently big deviations from 
.Kc the system enters clustered (CL) phase, where the composites stay close to each other 
(0000000CCCCCCC). In order to verify the correctness of this description one can first look 
at the fidelity susceptibility (1.25) for the ground state which should highlight the transition
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Figure 2 1 : The fidelity susceptibility for system sizes L =  10 and L =  14. The sharpest peak 
(for K æ 2.30) is the result of the ground state energy crossing which marks the CL-MX 
phase transition, while other peaks signify transitions between different configurations in MX 
phase and MX-DW transition. The inset shows the energies of the lowest levels relative to 
the ground state energy in the vicinity of the energy crossing for L =  10 (lines are semi­
transparent — opaqueness is proportional to the number of near-degenerate energies).

between different phases. The results, calculated for two system sizes: L =  10 and L =  14 are 
plotted in Fig. 2 1 . The first, sharpest peak is the result of the ground state energy crossing. 
The presence of the other peaks hints at other phases and phase transitions present in the 
system.

Additional information about the phases present in the system can be acquired withe a 
help of the structure factor (129). It is easy to verify at which value of q there is a peak 
of S(q) for both CL and DW phase, that is: ^CL =  2n /h  and ^  The values of
S(q) calculated for L =  14 [Fig. 2.2(a)] show that between the expected CL and DW phase 
exists a region where the density pattern changes multiple times. Thorough analysis of the 
ground state (as calculations are done by ED, full decomposition of the state into Fock basis 
is readily available) shows that the composites, which are uniformly spaced in the DW region, 
begin to merge together into clusters, whose size grows smaller the further away K is from 
Kc, eventually forming single cluster after i<C æ 2.30 transition to CL phase. These phases, 
which correspond to configurations such as 00000CC00CCCCC and 000CC00CC00CCC [visible 
as peaks for respectively q =  3 n /7  and q =  4 n /7  in Fig. 2.2(a)] being the most significant 
component of the ground state, will be collectively labeled mixed phase (MX) throughout the 
text.

The results up to this point were restricted to small system sizes and one may wonder 
whether the appearance of MX is only a finite size effect, or if this phase persists for longer 
chains. In order to address this question, CL-MX and MX-DW transition points were ob­
tained from Xf calculated for L =  10, 14 and 18 (these values, along with linear fits for L-1 
dependence are shown in Fig. 2.3).
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Figure 22 : The ground state’s structure factor calculated for A =  0, q =  2nz/L  with
z G 1 '2 '...L  and: (a) L =  14, nc =  n̂  =  2 , (b) L =  13, nc =  6/13, =  7/13. S(q) is
maximal for the smallest q >  0 in CL phase, for q closest to n  in DW (a) or SHP (b), and 
for intermediate q values in MX phase.

Figure 23 : Extrapolation of MX-DW
and CL-MX transitions for A =  0 and 
L oo, which suggests that MX phase is
stable for arbitrarily long lattices.

Figure 24 : Phases of the system in K—A 
plane based on Xf calculated for L =  10. 
Similar results were also observed for L =  
14 at selected points (See also Fig. 2 3 ).

2.3 Detuned and other cases
As the previous subsection dealt only with the resonant case, which is equivalent to SSH 
model, it is informative to find out if, and how, relaxing this condition may affect the behavior 
of the system. The results for moderate values of the detuning, A G [—0.01,0.01] (Fig. 2 4 ), 
show that with increasing |A| the MX phase spans over a smaller range of K.

In order to make use of the topological properties of SSH/RM model, both topological 
and trivial phases must be present in the system, as localized, topological edge states appear
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on the boundaries between them. Creating different domains is possible by slightly changing 
the filling of minority fermions/composites [creating holes (particles) for nc <  1 (nc >  1 )] 
[56]. Such mechanism can be simulated with ED by setting the number of sites (L) to an 
odd number and the number of composites (Nc) to be close to L/2. In the case of Nc =  
L/2  — 0.5 [Fig. 2 2 b ] the DW phase is replaced with a single-hole phase (SHP), wherein 
the ground state contains a defect in the form of two neighboring, empty sites being present 
somewhere in the system. The value of q for which S(q) is maximal correspondingly changes 
to q =  n (L  — 1)/L (from q =  n  in DW). The CL-MX transition stays in approximately the 
same place, while the MX-SHP transitions shifts further away from Kc in comparison with 
nc =  Ul =  2 case.

2.4 Conclusions
In the work presented in this chapter we used ED to perform an unbiased analysis of the 
periodically driven optical lattice system which resembles Rice-Mele model. The results show 
that in addition to DW and CL phases, transitory MX phase arises for intermediate K values. 
This phase is characterized by multiple defects present in the composite ordering which may 
prove to be beneficial in the context of hosting topological edge states in the system. We also 
checked cases of A ±  0 and composite filling away from 1 which both result in similar phase 
structure (except for the fact that in the second case the DW necessarily contains some defects). 
Based on these results we conclude that Rice-Mele model should be a good description even 
for a realistic, non-ideal experimental setup, which in addition should provide a possibility 
of creating lattice defects, thus further increasing the viability of the setup in the context of 
manipulating topological edge states.





Chapter 3

Fibonacci anyons in a 
one-dimensional lattice

3.1 Introduction
As the topological systems with controlled non-Abelian anyons are desirable for their ability 
to perform universal quantum computations (see Sec. 13), many proposals of realizing such 
systems have been put forward. It has been shown that the one-dimensional extended Bose 
Hubbard model (115) for certain zero tunneling parameter sets is equivalent to an exactly 
solvable, thin-torus limit (i.e. Lx 0 while Lx • Ly =  const) of a two-dimensional theory 
resulting in topological Read-Rezayi states (which themselves are believed to explain some of 
the FQHE observations) [5]. In particular the case of filling v =  3/2 and U =  2V seems to 
be interesting, as quasiparticles corresponding to the lowest energy domain walls between the 
degenerated ground state DW patterns resemble Fibonacci anyons and it had already received 
some mean field treatment [73]. In this section the problem is analyzed more comprehensively 
using ED and Density Matrix Renormalization Group (DMRG). The details are given in the 
accompanying paper [20].

The ground state of the system is fourfold degenerate and the basis of the degenerate 
manifold can be expressed in the Fock space as states: [21] =  \2121...), [12] =  \1212...), 
[30] =  !3030...), [03] =  !0303...). The lowest energy quasiparticles correspond to the 
following domain walls: [12][21], [21][30] and [03][12], which have the fractional charge 
q/2, and their counterparts of charge -q /2 :  [21][12], [30][21] and [12][03] (it is assumed 
here that a single boson has a charge q). The quasiparticle charge can be inferred from the 
number of bosons at a two-site boundary, which is 4 for q/2 domain walls and 2 for - q /2  
ones (while in the ground state there are 3 bosons for every two neighboring sites).

A quick way to check that these domain walls show Fibonacci anyon-like behavior is to 
consider their adjacency matrix[5], defined for the ground states \i) as: Aÿ =  1 if the domain 
wall between \i) and \j) is the quasiparticle of a given type and 0 otherwise, giving:

/  0 1 1 0 \

A =  1 0 0 1 (3 1)
A 1 0 0 0 .  ( )

\  0 1 0 0 J

29
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T h e  q u a n tu m  d im e n sio n  D  o f  th e  + ^ / 2  q u asip art ic le  co rre sp o n d s to  th e  d o m in a n t e igen value 

o f  A  [6 8 ] ,  an d  in  th is  case  is eq u al to  ( l  +  - / 5 )  / 2 ,  w h ich  is th e  va lu e  exp ected  fo r  F ib o n a cc i 

an y on s [6 6 ].

A n o th e r  in fo rm ativ e  p o in t o f  v iew  is p ro v id ed  by  th e  co rresp o n d en ce  b e tw een  h ard core  

b o so n ic  sy stem s an d  n o n -A b e lia n  F Q H E  —  k  co p ie s o f  h a rd -co re  b o so n ic  sy stem , p ro je c te d  

an d  sy m m etrized  o n to  fc -h ard-core  [m e an in g : (fl+ ) fc =  0 , w h ere  is th e  b o so n  creatio n  

o p erato r] b o so n s  is  an a lo g o u s to  M o o re - R e a d  P fa ffian  sta te , w h ile  th e  exc ita tio n s in  a p ro je c te d  

su b sp ace  sh o w  S U ( 2 ) ^  n o n -A b e lia n  p ro p e rtie s  [5 5 ] . In  o u r case , k  =  3  ( S U ( 2 ) 3  sy m m etry  

c o rre sp o n d s to  F ib o n a cc i an y on s [6 6 ])  an d  th e  sy m m etrized  p ro je c to r  h as th e  fo rm  &  =  

0  , w ith :

/ 1 0 0 0 0  0  0  0  \

0 1 1 1 0  0  0  0

A =  0 0 0 0 / 2 / 2 / 2 0  , ( 3 2 )

v 0  0  0  0  0  0  0  / 6  y

w h ere  th e  row s (co lu m n s) co rre sp o n d  to  th e  b a sis  s ta te s  o f3 - h a r d - c o r e  b o so n ic  sy stem  (p ro d ­

u c t  o f  3 cop ies o f  h ard -co re  b o so n ic  sy stem ) o n  /th site , in  th e  o rd er o f  an  in cre a sin g  to ta l 

n u m b e r o f  b o so n s  (in  o th e r  w o rd s: & ,  fo r  each  site, p ro je c ts  n  b o so n s  d istr ib u te d  a m o n g  3 

h a rd -co re  co p ies to  n  b o so n s  in  a s in g le  3 -h a rd -c o re  sy stem ).

3.2 Low tunneling behavior
W h ile  th e  co rresp o n d en ce  exp la in ed  in  th e  in tro d u c tio n  is exact fo r  t =  0 , typ ically  in  any 

e xp erim en ta l se tu p  t is n o n -z ero . In  o rd er  to  verify  w h eth er w e can  ex p ec t F ib o n a cc i an y on - 

like b eh av io r in  rea listic  sy stem s, w e u s  th e  fo llo w in g  p ro ced u re . F ir s t ,  w e ca lcu late  th e  low est 

e n erg y  e ig e n sta te s  o f  th e  re g u la r  (th a t  is, n o n -h a rd -co re )  E B H M . T h e n  w e d o  th e  sam e  fo r  th e 

h a rd -co re  b o so n  E B H M  an d  create  an satz  sta te s  by  su m m in g  3 co p ies o f  th e  o b ta in e d  sta te s 

an d  p ro je c t in g  th e m  u s in g  &  (th e  re su lt in g  sta te s  co n ta in  an yon ic exc ita tio n s by  c o n stru c tio n ). 

T h e  s im ila r ity  b e tw een  th e  an satz  s ta te s  can  be th en  m e asu re d  as a  s im p le  overlap. In  b o th  

o f  th ese  case s w e u se  E D  w ith  P B C  to  g e t  th e  e ig e n sta te s , in  th e  case o f  E B H M  w e im p o se  

an  ad d itio n a l co n stra in t : th e  n u m b e r  o f  p artic le s  o n  each  site is a t  m o s t  3 -  w h ich  is fairly  

accu rate  fo r  sm a ll v a lu es o f  t an d  en ab les u s  to  reach  b ig g e r  sy stem  sizes.

T h e  e n erg y  level s tru c tu re  o f  th e  sy stem  fo r co n sid ered  p aram eter  ran ge  is sp lit  in to  tw o 

d egen erate  (sem id eg en era te  fo r  t ^  0) m an ifo ld s , c o rre sp o n d in g  re sp ectiv e ly  to  th e  g ro u n d  

sta te s  an d  th e  sta te s  co n ta in in g  tw o  d o m ain  w alls (s ta te s  can  n o t have o n ly  on e d o m ain  w all 

b ecau se  o f  P B C ) .  A s  th e  p ro je c t io n  &  d o e s  n o t n ecessarily  re su lt  in  o r th o g o n a l sta te s , we 

u se  a s im p le  G ra m - S c h m id t  o r th o n o rm aliz a tio n  p ro ced u re  to  g e t  th e  b a sis . T h e  overlap  O  o f  

th e  /th e igen sta te  o f  E B H M , |z’e b h ) ,  w ith  th e  H ilb e r t  su b sp ace  sp an n ed  by  th e  p ro je c te d  an d  

o rth o g o n a liz e d  an satz  sta te s, l/ansatz) , is ca lcu lated  as:

O j =  - X ,  1 ^ E B H |/ansatz) |2 ‘ ( 3 3 )

\ j
F ir s t ,  w e take a lo o k  at th e  (se m i-)d e g e n e ra te  g ro u n d  sta te  m an ifo ld  fo r  tw o  case s: U  =  

2 y  an d  U  =  1 . 9 9 ^ .  (T h e  m o tiv a tio n  fo r  th e  seco n d  case  is  fo llo w in g : th e  d egen eracy  

b etw een  sta te s  [1 2 ], [21] an d  [0 3 ], [30] -  w h ich  is n ecessary  fo r  n o n -A b e lia n  an y on s —
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Figure 31: (a) and (b): the lowest energies relative to the ground state energy, (c) and (d): the 
overlap between the 4 lowest energy states (black, solid lines) / maximal overlap states(grey, 
dashed lines) of EBH Hamiltonian and 4 lowest ansatz states ( ^  projection of 3 copies of 
hard-core boson systems) for L =  14, U =  1.99 V [ a  and (c)] and U =  2 V [(b) and (d)]. 
Drop in the overlap values in both of these cases coincides with first energy level crossings 
visible in a and b .

is quickly removed with an increasing f /V . By introducing slight detuning in 17, we get 
almost-degeneracy at some finite tunneling — f/V  «  0.05 in this case — instead of an 
exact degeneracy at t =  0.) The overlap between the four lowest energy states of the EBH 
Hamiltonian and the ansatz states in these cases (for L =  14) is shown as black lines in 
the lower graphs in Fig. 31 — the overlaps between those states is approximately 1 up to 
f/V  «  0.1, where an energy crossing in the lowest energy states (visible in the upper graphs) 
occurs and the overlaps fall dramatically, as these states are no longer related to the initial DW 
patterns. If, instead of using the lowest energy states, we use the states that resemble the 
initial DW patterns the most, we still see a visible drop in the overlap (gray, dashed lines).

Similar analysis can be performed for the states containing the lowest energy domain walls 
(2 of them, because of PBC as was mentioned earlier). The corresponding energy manifold 
accordingly contains 3L(L/2 — 1) states, whose overlaps with the ansatz states (which in these 
case correspond to 2 copies of the hardcore bosonic system being in the ground state and the 
other one in the excited state) are presented in Fig. 3 2 . The drop of the overlap value, visible 
for f/V  «  0.55 can be, similarly to the ground states case, traced to the energy level crossing, 
which in this case happens for higher energy eigenstates [Fig. 3.2(a)]. For f/V  <  0.5 we have 
Oj >  0.9, which suggests that even for non-negligible tunneling the domain walls retain at 
least some of their original characteristics.
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Figure 32: (a): energy levels relative to the ground state energy, (b): maximal overlaps of 
EBH states and ansatz states containing two ± q /2  domain walls, (c) overlaps of the lowest 
(excluding 4 states from the ground states’ manifold) EBH states and ansatz states containing 
two ± q /2  domain walls. Datafor U =  2 and: L =  10 [(a)and(b)] and L =  12 [(c)]. Decrease 
in the overlap in this case is due to energy level crossing in the higher energy manifold for 
t /V  æ 0.055.

3.3 Density wave to superfluid transition
In the previous section we showed that an energy level crossing of a semi-degenerate ground 
states manifold is related to a sharp drop in the overlaps between the EBH and ansatz states. 
This crossing marks the QPT between the DW phase and the SF phase. There exist conflict­
ing characterizations of this QPT in the literature, as Gutzwiller-ansatz mean field approach 
suggests the appearance of an intermediate, supersolid phase between DW and SF phases 
[73], while DMRG and QMC calculations predict a direct DW-SF transition for a similar 
(U /V  =  4/3) system [9]. We thus found it necessary to properly study the transition with 
the help of DMRG (see App. B).

We first look at the fidelity susceptibility (125) calculated for a wide range of system 
sizes (Fig. 3 3 ). The DMRG calculations were performed with PBC (same as ED in previous 
section) and for similar maximum particles per site cutoff: N max =  3 (the relative error 
introduced with this constraint for L =  14 is presented in the inset of Fig. 3 3 ), the bond 
dimension was up to 1200 (for L =  124). The single peak of fidelity is characteristic of a 
direct transition between two phases, and we can further compare the characteristics of the 
Xf behavior to those of the Berezinskii-Kosterlitz-Thouless transition, for which [64]:

Xf (L) - X o - X i  ln-1 (L/a) +  Q [ln- 2 ( L / a ) ] , (34)

max(t) — A +  B ln - 2 (L/a) +  ■■■, (35)

where a is some lattice cutoff and t =  t /V . The scaling (Fig. 3 4 ) gives the extrapolated 
location of the transition: tc =  0.158 ±  0.004.
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Figure 33: The fidelity susceptibility in the vicinity of DW-SF transition for different 
system sizes L. The inset shows the relative error of calculated for L =  14 and different 
N max using either ED or DMRG, with respect to the value calculated for N max =  15 (DMRG).

Another method of determining the critical point of the QPT is based on the central 
charge, c (131) (in order to get the correct values of c the bond dimension of the DMRG 
was increased up to 2200; particle per site cutoff was also increased to N max =  4). As L is 
increased, the maximum of c(F) gets closer to the value expected for SF, that is c =  1, and the 
position of this maximum gets closer to the critical point of the QPT [53]. While the biggest 
L which we were able to use was only L =  70, the position of the maximum does not vary 
much with size (see Fig. 3 5 ) and thus we conclude from the data that ïc «  0.162, which is 
in agreement with the value obtained from scaling.

We define the correlation length for the system size L as:

— / ) 2 < 4 fl/>
^  \ Z L/2 < f > 7 ' (3 6 )

\  Z 7=1 < w

where summation is up to L /2  and not L because of the PBC. If the QPT between DW and SF 
is indeed a direct one, we should expect that the order parameter of DW phase, the structure 
factor at n  (129) in the vicinity of Fc is a power-law function of £ :

S(rc) -  ^ O ^ / L ) ,  (37)

where O (£/L ) is some scaling function [45]. The values of S(flT) and £, calculated for dif­
ferent system sizes and for Fc obtained from (that is Fc «  0.158) are shown in Fig. 3 6 . 
The fitted line corresponds to 7 /v  «  —0.78 and its near-perfect match to data strengthens 
the claim that there are no additional phases between DW and SF.
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ln—i (L)

Figure 34: The scaling of the maximum of fidelity susceptibility, ^p(Fc)/L , and its position 
(Fc) on L for 17 =  2 ^ . Dashed lines are fits to eqs. (3 4 ) and (3 5 ) with A «  0.158, B «  
—0.39, «  37.5 and ^ i  «  —94.2. For the fit only the values for 5 largest Ls were used.

Figure 35: Central charge obtained with
DMRG (PBC). The maxima for pictured Ls 
are all located slightly above f / y  =  0.162 
and linear (with respect to 1/L) extrapo­
lation yields lim L^ œ Fc «  1.617, while 
lim L^ œ cL «  1.001.

Figure 36 : The relation between the struc­
ture factor S(flT) and the inverse correlation 
length 1 /£  at Fc «  0.158. The dashed line 
is the power-law fit (3 7 ) with 7 /v  «  —0.78 
and 0 (£/L) =  1.

3.4 Further remarks

The domain walls described in this chapter may be used in experiments or quantum computa­
tion only if there is a reliable method of their creation and manipulation. One of the proposed 
solutions is locally changing the chemical potential with a single site resolution — creating 
the domain walls with ^/2 (—̂ /2) can be achieved by increasing (decreasing) the value of ̂
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on two neighboring sites. Another experimental problem is the inability to actually move the 
quasiparticles around each other in a one-dimensional lattice. The protocol for realizing this 
objective based on using so-called T-junctions has already been analyzed for Majorana fermions 
[3] and we believe that it should be also applicable to Fibonacci anyons in cold atomic systems. 
In the original scheme, three one-dimensional segments are connected at one point and by 
moving the quasiparticles through the segments (of which only two are in topological phase 
at the same time) in the right order it is possible to exchange the quasiparticles’ positions.

To conclude, we studied a one-dimensional EBHM for filling v =  3/2  and close to 
U =  2V with a focus on anyonic properties of its low energy excitations. By calculating the 
overlaps of these excitations and the ansatz wave functions, which by construction have non- 
Abelian topological order, we demonstrated the system in question supports Fibonacci anyon- 
like quasiparticles even for non-negligible tunnelings. We have also shown that according to 
DMRG results there is a direct DW-SF QPT and no supersolid phases are present on the 
boundary between these two phases.





Chapter 4

Extended Bose-Hubbard model in 
dipolar gases

4.1 Introduction

Using the model introduced in Sec. 1.2.3, this chapter presents a careful examination of the 
dipolar bosonic gas trapped in an effectively one-dimensional optical lattice and closely fol­
lows the accompanying paper [12]. Such systems have been given a reasonable amount of 
attention, mostly thanks to recent experimental efforts which resulted in trapping atoms of 
ever-bigger dipolar momenta, giving hope for realizing topological states of matter resulting 
from long-range interactions between particles (such as the Haldane insulator phase). The 
existing literature is, however, either limited to standard EBHM (ignoring terms such as next 
nearest neighbor interactions and density dependent tunneling) or very small system sizes 
(where ED is still applicable).

The system considered consists of a dipolar species of particles trapped in a 3D optical 
lattice with potential heights V"x, and such that =  50£^ and V"x «  Vy,
(effectively freezing the dynamics in y and z direction). We assume the Hamiltonian is similar 
to (116), however we also include next-nearest neighbor tunnelings and interactions (respec­
tively innn and Vnnn) and assume P =  0 (this term, being much smaller than the ones we in- 
clude[21], does not bring any qualitative differences). The parameters arising from interactions 
between particles (U", V, Vnnn and T) have their origins in both the contact [which we assume 
in the form of Vcontact(r ) =  4 ^ ^ 2fls /m ^(r), with fls being the effective scattering length and 
m mass of the particle] and the dipolar (114) interactions, such that U =  l icontact +  d̂ipolar 
and so on (where Ucontact and LJdipolar are calculated using (111) for an appropriate potential).

As the proportion V/W is much smaller than 1 [see the inset of Fig. 4.1(a)] for the typical 
optical lattice setups, we propose using Feshbach resonance (which enables us to modify fls 
using a magnetic field) in order to balance contact and dipolar interactions in such a way that 
V/W has the desired value. In our scheme we assume that we are able to change the values of 
fls and Vx, which allows us to satisfy two chosen constraints on Hamiltonian parameter values, 
which we choose to relate f, U and V with each other (so we can work in a two-dimensional 
space of parameters, e.g. U /i and V/f). To obtain the exact values of fls and V"x, the strength

37



38 Chapter 4  EBHM in dipolar gases

F ig u re  4 1 :  (a) T h e  v a lu es o f  V ^ / E r  an d  fls /f l  n ecessary  fo r  1 7 / i  =  2  an d  V / f  =  1 .5  to  h o ld  

tru e  an d  (b) th e  v a lu es o f  th e  ex tra  p aram eters  ad d ed  to  E B H  H a m ilto n ia n  in  re la tio n  to  th e 

stre n g th  o f  th e  d ip o la r  in terac tio n s, rf. T h e  in se t o f  (a): th e  re lative  m ag n itu d e  o f  V  an d  U  
H a m ilto n ia n  p aram eters  ca lcu lated  sep arate ly  fo r  co n ta c t an d  d ip o la r  in teractio n s.

o f  th e  d ip o la r  in te rac tio n s, p aram etr ized  h ere u s in g  a d im e n sio n le ss  q u an tity :

d =  m C dip o le / ( 2 ^ 3^ 2 fl) ( 4 1 )

h as to  b e  kn ow n . T h e  v a lu es o f  V"x an d  £ r n eed ed  to  o b ta in  L 7 / i =  2  an d  V / f  =  1 .5  

d e p e n d in g  o n  d are sh ow n  in  F ig . 4 .1 (a ) . T h e  va lu e o f  d ran g e s  b e tw een  1 0 —3 an d  1 0 —2 fo r  

recen tly  trap p e d  a to m s, su ch  as 52C r  an d  i6 4 D y  (fo r  m o le cu le s  it can  b e  m u ch  h igh e r, e .g . 

d «  0 .1  fo r  i6 8 E r 2 ). W ith  th e  v a lu es o f  V"x , fls an d  d kn o w n , all o f  th e  p aram eters in  th e  

H a m ilto n ia n  can  b e  d e te rm in ed  [see F ig . 4 1 b ].

A ll  o f  th e  re su lts  p re sen ted  in  th is  ch ap ter have b een  o b ta in e d  u s in g  D M R G  w ith  o p en  

b o u n d a ry  co n d itio n s (u n le ss  sta te d  o th e rw ise ). W e th u s typ ically  exclude th e  ch em ica l p o ­

ten tia l te rm  fro m  th e  H a m ilto n ia n  (as th e  D M R G  w o rk s w ith  th e  fixed  n u m b e r  o f  p artic le s) . 

F u rth erm o re , w e im p o se  ad d itio n a l H a m ilto n ia n  te rm s a t  th e  b o u n d arie s, eq u a l to  th e  effect 

th e  ideal D W  c o n fig u ra tio n  (fo r  ap p ro p ria te  lattice  fillin g ) w o u ld  have, w h o se  m a in  p u rp o se  is 

to  b re a k  th e  D W  d egen eracy  (e .g ., fo r  p =  2 , w h ere  th e  d en sity  w ave h as th e  fo rm  |0 2 0 2 . . . )  

in  th e  F o ck  sp ace , th ese  te rm s w o u ld  be  2 ^ ^  +  2 y „ nn(w? +  w ^ )).
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4.2 Phase transitions at />=1
The case of p =  1 filling is particularly interesting, as in this case the EBHM hosts the HI
phase. Because of that, the problem of determining the phases in this case has already been
given considerable attention and the phase diagram can be found in multiple works. Here I 
will only provide a brief summary and afterwards I will present in which way the inclusion 
of Vnnn, T and innn (which are evaluated for the practical realization of EBH in cold atoms, 
as explained in the introduction) changes the already established picture. The phases of the 
system are:

• MI for large values of 17/i and small values of V /f,

• SF for small values of both 17/i and V /f,

• DW for large values of 17/i and V /f,

• HI for an intermediate values of 17/f and V/f.

Figure 4.2: Critical values of U /f (a) and V /f (b) for the QPTs between the phases present 
in the system. The values for a regular EBHM are marked with red dashed lines, while 
points mark the results obtained for the model including additional terms (black solid lines 
are interpolations between these). In each case some constraint between the values of f, U 
and V is assumed: V/W =  3/4 for a  and U /f =  3 for (b).

In order to provide somewhat clear picture of the effect that the dipolar interactions have 
on the extent of the HI phase, we restrict ourselves to two cuts of U /f-V /f plane. The 
first of these is V / ̂  =  3/4 and the phases in this case are (in the order of decreasing 
tunneling): SF, HI and DW (so that there are two QPTs: SF-HI and HI-DW). The other 
one is U /f =  3, in which case for large tunnelings the system is in the MI phase instead of 
the SF phase. The phase boundaries obtained here (the method is described in more detail in 
following paragraphs) are compared with their locations for the case of simple EBHM (that 
is, Vnnn =  T =  fnnn =  0) which can be found in the literature (we additionally verified those 
using our DMRG code). For the comparison, see Fig. 4 2 .

While qualitatively the picture does not change much with the inclusion of additional 
terms in the Hamiltonian, one can see that in the case of V/W =  3/4 the changes can be
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pretty drastic - as the value of d increases, the boundaries shift heavily to larger values of the 
tunneling. A curious effect is the appearance of the boundary between SF and HI for large 
values of tunnelings, which seems counterintuitive. Take note, however, that the lower part of 
Fig. 4 2 a  (U/t  æ 0) is the regime where our model does not hold — the bigger d is and t 
should be, the lower VX/E R must be [see also Fig. 4.1(a)] and at some point the lattice becomes 
too shallow to be described correctly without including longer range tunnelings (which is the 
reason for including innn terms in our Hamiltonian).

Figure 43 : The string and DW order parameters, the energy gap and the critical exponent K 
calculated for V /U  =  3/4 and d =  0 .0 2  using DMRG. Black dashed lines mark the positions 
of the QPTs. The location of DW-HI transition (tc/U  æ 0.175) was determined using AE 
(which must be 0 at the transition, as HI is a topological phase) and Odw (which has a finite 
value in DW phase and is 0 otherwise). HI-SF transition (tc/U  æ 0.8 2 ) is located using a
fact that K =  0.5 at the transition (see text). The inset shows the decay of O string and AE on
the logarithmic scale.

To determine QPTs locations, we used the following quantities: the energy gap between 
the ground and the excited state (AE) and the order parameters Op =  l i m r^ 0  Cp(r) with:

C s F (r) =  (b}bj+r) , (42)

C ß W (r) =  ( - 1 ) r 0 nj$nj+r) and (43)

Cstringfr) =  Z jsta+' S”kSnf+r) . (44)

In order to properly determine the phase boundaries, all of these parameters were extrapolated 
in the thermodynamical limit, L 00, based on the data obtained for L =  1 0 0 , 200, 300 and 
400.

The exemplary values used in the determination of phase boundaries are shown in Fig. 43  
(d =  0.02, V /U  =  3/4) and Fig. 4 4  (d =  0.09, U /t =  3 ). In the case of V /U  =  3 / 4 , 
we were unable to determine the location of HI-SF transition based on the order parameters 
mentioned before — even though both AE and O strjng are non-zero in HI phase and must be
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Figure 44 : The string and DW order parameters and the energy gap calculated for L7/i =  3 
and d =  0.09 using DMRG. Black dashed lines mark the positions of the QPTs. DW-HI 
location (V /fc «  2.74) is determined in the same way as described in the caption of Fig. 4 3 . 
The energy gap closes at the HI-MI transition, however the extrapolated values of A£ do not 
provide a clear-cut location of this closing. We resort to a different method: we extrapolate 
the position of the minimum of A£ using a function: V /f =  V /fc +  flL—̂. The result of 
this fit is shown in the inset (V /fc =  1.94, a «  —2.96, b «  0.56).

0 when the system is in SF phase, our results do not show clearly where does this transition 
take place [see the inset of Fig. 4 3 ]. To circumvent this problem we resort to (128) which 
describes Csf behavior in the SF phase — it is known that the parameter K on the boundary 
of the superfluid phase for v =  1 filling is equal to 0.5 [46].

4.3 Phases for d =  0.1

Haldane insulator phase is not the only interesting aspect of EBHM. The model supports the 
formation of supersolid phases, which manifests non-zero DW order simultaneously with SF- 
like power-law decay of correlation functions. Including additional terms arising from dipolar 
interaction (such as density induced tunnelings and pair tunneling) leads to pair-correlated 
phases [63]. In order to address the question of which of these phases are to be expected in 
a realistic system with large dipolar interactions, we present the phase diagram of the system 
with unconstrained lattice density for V /U  =  3/4 and d =  0.1 (Fig. 4 5 ).

4.3.1 Density wave phases

The ground states of the system in DW phases have a form of alternating empty and filled 
sites, which for lattice density p =  ft/2, ft G N is representable in Fock space as |0ft0ft...). 
The inclusion of y nnn in our model gives rise to additional DW phases for density p =  (2m +  
1)/4, m G N, namely |0m0(m +  1 ) . ) .  The boundaries of DW phases can be calculated
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Figure 45 : Phase diagram of the system for V/W =  3/4 and d =  0.1. Data for phases 
other than IPSS are obtained using OBC DMRG for L =  200 sites. Black lines showing 
transitions from DW phases were obtained from the dependence of the energy on the number 
of particles in the simulation (see text). Most of the pair-superfluid phases (PSS1, PSS2, IPSS 
and PSF) are distinguished by non-zero value of pair-tunneling correlations Cp, in the case 
of PSS1 however nearest-neighbor correlations are insufficient to infer its pair-superfluidity 
(see Fig. 4 6 ). Supersolid (PSS1, PSS2 and IPSS) phases are distinguished by non-zero DW 
order, for IPSS this order is incommensurate.

as ^± =  //mN=(NDW)± 9 £ (N )/9 N  (where N Dw is a total number of particles in a lattice 
corresponding to a given DW pattern) using DMRG results. Although this values depend on 
the system size, we set the system size L =  200 in our calculations which is sufficiently big to 
get reasonable value of the chemical potential. Another justifiable approximation we employ is 
F± «  ± [£ (^ d w  ± 1) — E(Ndw]) instead of a proper derivative, although to get ^ values for 
the lobes we also take into account £(N dw  ±  2 ) values, performing a quadratic interpolation 
of £ (N ) on each side of Ndw and calculating a proper derivatives.

4.3.2 Superfluid and pair-superfluid phases

Superfluidity is manifested through the behavior of the correlation function (4 3 ), which then 
shows a power-law decay. A simpler approach would be to consider only the next-nearest 
neighbors, resulting in the quantity Z j  <^[^ż+1> /Ł, which is directly related to the tunneling 
term in the BH-like models. Here we will also consider similar correlation function associated
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with pair-tunneling and a simplified quantity in the form of the pair-tunneling correlation:

Cp =  ^  X  <(fr[)2 ( ^ + i ) 2) . (45)
i

The values of Cp calculated for different densities (as indicated by the value of ̂ ) and tunneling 
strengths are shown in Fig. 4 5 .

Figure 46 : OBC DMRG results of ((&|&/+r )) correlations averaged in the middle (half of 
the sites) of an L =  200 lattice for a  PSS1 phase at p =  1.25, i /U  =  0.59 and (b) PSS2 
phase at p =  2.25, i /U  =  0.37, both of them showing power-like decay. Log-log plots of 
the respective correlations are shown in the insets.

For p <  1 only DW and SF (power-law Csf decay and no finite order parameters) phases 
are present in the system. Interestingly, the system supports pair-superfluidity for high den­
sities of particles in the system even though the Hamiltonian of the model considered in this 
work does not contain pair-tunneling terms (note however the inclusion of density-dependent 
tunneling terms, &|(ftj+i +  ft/+i)&i+i, in the Hamiltonian). Large tunneling leads to pair- 
superfluid phases (PSS1 and PSS2), for which both DW order and pair-superfluidity is present, 
while there is also pair-superfluid (PSF) regime (pair-superfluidity without DW order) and a 
region where the system is in the phase we dub incommensurate pair-supersolid (IPSS, ex­
panded upon in the next subsection). While pair-superfluidity for PSS1 phase is not clear 
from the value of Cp (due to strong DW order present in the phase, which suppresses near­
est neighbor correlations), it is evident if we consider the dependence of the pair-correlation 
function on the distance (Fig. 4 6 ).
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4.3.3 Incommensurate pair-supersolid

T h e  m o st  b a sic  ch arac teriza tio n  o f  th e  I P S S  is its D W  o rd er, w h ich  in  co n tra st to  D W  p h ase s  

co n sid ered  u p  to  th is  p o in t d o es n o t co rre sp o n d  to  th e  stru c tu re  fac to r ( 1 2 9 ) p e a k in g  a t  q  =  n , 

b u t  in stead  th e  w av en u m b er th is  p e ak  o ccu rs fo r  ap p ears to  b e  in  gen era l an  irra tio n a l n u m b er 

(so  th a t  th e  d en sity  w ave is in co m m en su rate  in  re la tio n  to  th e  la ttice  co n sta n t). T h is  re q u ire ­

m en t fo rces u s  to  ad o p t a d ifferen t n u m erica l m e th o d , as th e  D M R G  u se d  earlier a ssu m e s 

a fixed  n u m b e r o f  p artic le s in  a la ttice s o f  a fixed  le n g th  w h ich  n ecessarily  im p o se s  ra tio n a l 

va lu es o f  w av en u m b er an d  den sity . T o  c ircu m ven t th is  lim ita tio n  w e d id  th e  s im u la tio n s  fo r  

th e  I P S S  p h ase  u s in g  a  so  called  sin e  sq u are  d e fo rm a tio n  (S S D )  D M R G : it d iffers fro m  th e 

re g u la r  D M R G  in  th a t  th e  H a m ilto n ia n  is m u ltip lie d  by  a p o sit io n -d e p e n d e n t sin e sq u are  

fu n c tio n  [ s in 2 ( / ^ / L ) ] .  T h is  en ab les th e  la ttice  e d g e s  (w h ich  n o w  co n tr ib u te  on ly  n eg lig ib le  

en ergy ) to  ac t as a  re serv o ir  o f  p artic le s (o r h o les) fo r  th e  sy stem  —  th e  m id d le  p a r t  o f  th e  

la ttice  —  to  w h ich  th e  p artic le  n u m b er co n stra in ts  n o  lo n g e r  ap p ly  (see  A p p . B ), a llo w in g  u s 

to  in clu d e  th e  ch em ica l p o ten tia l te rm  again .

F ig u re  4 7 :  F it s  o f  th e  S S D  D M R G  (L  =  1 0 0 )  d a ta  to : (a) (4 7 ), (b) (4 8 ), (d) (4 9 ), an d  

(c) v a lu es o f  S ( ^ )  fo r  f /U "  =  0 .4 8  an d  ^  =  3 .7  . W av en u m ber v a lu es o b ta in ed  th is  w ay are 

w ritten  above each  p lo t. O n ly  th e  m id d le  4 0 %  o f  th e  la ttice  sites are co n sid ered .

T h e  fo llo w in g  fo rm u las are valid  fo r  th e  g ro u n d  sta te s  o f  th e  sy stem  in  IP S S  p h ase  (an d  as 

su ch  th ey  are u se d  to  d e term in e  th e  ex ten t o f  th e  p h ase  in  F ig . 4 5 ):

< ^ >  =  Pbulk +  A ^ s i n ( ^ ( « « ) !' +  <Po)' ( 4 6 )

< n jft j+ r > =  C 1  +  A 1  s in ( ^ < MM>r +  ^ ) r —a i , ( 4 7 )

( ( & [) 2 ( ^ + r ) 2 )  =  [ C 2 + A 2 s i n ( ^<MM>r +  ^ 2 ) ] ^ —a 2 ' ( 4 8 )

C D W ( r )  =  Ą 3 s i n ( ^ t b > r  +  ^ 3 ) r —* 3'  ( 4 9 )

w h ere  w e see th a t  co rre la tio n s decay  as a pow er law, how ever th ere  is an  o sc illa to ry  m o d u la t io n ,

w h o se  w av en u m b er is ^<MM> fo r d en sity , p a ir-c o rre la tio n s an d  d en sity  co rre la tio n s [accord in gly ,
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Figure 48 : (a) black marks: collected values of qs  showing a linear dependence (410), red 
line: linear regression q^tb )  =  0 . 9 9 9 1 ( 6 ) n  — 0 .4 9 8 4 (7 )q ^ nn) . (b) relation between q n̂n) 

and jObulk shown for different values of t / U .

it is also the location of the peak of the structure factor S ( q ) ] and q ^tb )  for C q w ( ^ ) .  Examples 
of the fits of the SSD DMRG data to eqs. (4 6 ) to (4 9 ) are shown in Fig. 4 7 .

A consideration of q^nn) and q^tb )  values obtained for multiple parameter sets correspond­
ing to the domain of the IPSS phase reveals a simple relation between those two wavenumbers 
(see Fig. 4.8(a)):

bt b) =  n  — 0 .5 tf(nn) (410)

To further reinforce the claim that the wavenumbers q^nn) and q ^ tb) are in fact irrational 
(unlike some other known cases of DW, e.g. and underdoped p  =  0.5 DW where q =  2 n p  
[27]) we check how q^nn) relates to the density and the Hamiltonian parameters [Fig. 4 8 b ] 
and conclude that there is no simple dependence of the wavenumber on the density.

4.4 Summary
We conducted a thorough analysis of a realistic (i.e. including next-nearest neighbor interac­
tions and density-dependent tunnelings) extended Bose-Hubbard model using DMRG with 
up to L  =  400 system sizes. We found that the phase diagram for p  =  1 is qualitatively simi­
lar to the one obtained for standard EBHM, particularly the HI phase survives the inclusion 
of additional terms in the Hamiltonian and becomes even more pronounced for realistic, low 
values of dipolar interaction strength we considered, where additionally a suppression of SF
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phase is observed. Moreover, strong dipolar interactions in the regime of high (>  1) densi­
ties give rise to pair-correlated phases — not only a pair-superfluid phase, but also additional 
pair-supersolid phases.

Especially interesting is a phase with incommensurate density wave order, to simulate 
which we resorted to an unorthodox DMRG method (i.e. sine square deformation DMRG), 
uncovering various characteristic properties of the ground state in the said phase. This phase, 
which is not present in the standard EBHM, is currently lacking a proper theoretical descrip­
tion explaining the aforementioned features. It is also unclear how this phase relates to other 
incommensurate DW phases, e.g. those found in spin systems [51, 62].



Conclusions

The idea ofcreating topological systems using optical lattices has generated much interest over 
the last few years. As experimental implementations face numerous challenges it is important 
to carefully examine the feasibility of proposed schemes. I believe the work presented in this 
thesis managed to fulfill this goal as I have shown, using reliable numerical methods, that the 
systems considered in Chapter 2 and Chapter 3 do have the postulated properties. Additionally, 
I have also established the domains of the relevant quantum phases, both in the context of 
aforementioned propositions and in the case of a generalization of EBH in Chapter 4, where 
the additional care was taken to be faithful to realistic physical parameters.

The analysis presented in Chapter 2 is constrained to small system sizes due to the mem­
ory requirements of the ED. While the problem of the validity of the obtained results has 
been addressed (in the form of the scaling of the boundaries with respect to the system size) it 
would be valuable to produce data for bigger system sizes, which would be possible using other 
numerical methods. Chapter 4 explores a rich landscape of phases enabled by the dipolar inter­
actions in a realistically feasible experimental setup. Analyzing those of these phases, that are 
not present in a regular EBHM, in a more theoretical context could provide a clear description 
of how these complex phases emerge from additional terms added to EBH Hamiltonian.

DMRG method used extensively throughout the presented work is the de facto standard 
for one-dimensional quantum lattice calculations, however it is not devoid of biases and so a 
comparison with fundamentally different methods, like quantum Monte Carlo, would allow to 
better assess the correctness of the data. Using such methods would also make treatment in 2D 
possible, which is particularly important in the case of non-Abelian anyonic quasiparticles.
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Appendix A

Exact diagonalization

Non-relativistic quantum mechanics are governed by the Schrödinger equation:

ż f t ^ = H | ^ ( f ) > ,  (A.1)

where ^  and H  are, respectively, the state of the system and the Hamiltonian representing some 
model used to describe that system. Equation (A.1) can be simplified if H  is time independent. 
Then, the full solution boils down to finding the eigenvectors and the eigenvalues of H , which 
correspond to stationary states in the system and their respective energies. For models in which 
the Hilbert space (which is spanned by all of the states of the system) is finite dimensional, H 
can be (after choosing orthogonal and complete basis) expressed as a matrix. This matrix, H, 
can be then diagonalized using standard algebraic tools.

Diagonalizing Hamiltonian matrix, other than being a natural method of solving small 
systems with only a few states (where it can be done by hand), turns out to be a popular 
choice for analyzing complicated systems with many body interactions which can not be solved 
analytically. This straightforward approach has severe limitations due to the fact that the size 
of a Hilbert space grows exponentially with the system size. For example, for Heisenberg model 
of L spin-1 particles, the size of the Hilbert space is 2L -  which for L =  40 is around 10i2, 
and is (after employing few tricks) the biggest size which can be exactly solved using present 
day computer technology. It is therefore hard to make precise predictions on the behavior of 
large systems based on the exact diagonalization alone. Due to the unbiased nature of this 
method, it is often used in conjunction with more efficient methods, which, however, rely on 
several approximations.

A.1 Basis creation
In order to uniquely determine Hamiltonian matrix, a basis needs to be chosen. There is, 
usually, a natural choice that depends on the model that is being considered and in the case 
of the BHM this natural choice is the Fock space. The basis vectors are chosen to be states 
with definite number of particles on each site, that is:

|ni n2 ... nL) =  (&!)”1 (&2)”2 ••• (^ l)Ml |0), (A.2)
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where ftj is the number of particles on /-th site, &j is the creation operator on /th site and |0) 
is the vacuum state.

In BHM the total number of particles (N) is conserved, and so this constraint must be
taken into account when creating the basis. The simplest (and the fastest) solution is to just
write L loops, where for /th loop, if i <  L the variable ftj goes from 0 to =  N  — 

z—iX /= i ft/, and ft^ =  N ^ .  While this method requires knowing in advance what L is, it can 
be generalized using recursion (with the depth of L — 1). Another way to generate the basis 
is to create the states one-by-one using the following algorithm, which, given a state in the 
basis {ft/}, allows us to find the next one, {ftj} [77]:

1. Find fc < L, such that ft  ̂ ^  0 and ftj =  0 for all k <  / <  L

ftj, i <  k
2 , =  ftfc — 1  ż =  fc
2  =  N  — X jC=i ft/ +  1, / =  fc +  1

0, / >  fc +  1

Following this procedure beginning with state |N00...0> we get all of the states.
The procedure described above can be modified for the cases, where there is a set limit on 

the number of particles occupying each site (Nmax):

1. Find L' such that fty =  N max for all L' <  /  <  L.

2  Find fc < L, such that ft  ̂ ^  0 and ftj =  0 for all fc <  / <  L'.

3  Let =  N  — X /= i +  1 and  ̂ =  fc +  1 +  L(N^) / NmaxJ.

ftj, / <  fc
ftfc — 1, / =  fc

4  ft' =  - Nmax, fc +  1 <  / <  /
m od Nm1x, Ż =  I

. 0, / >  /

A.2 Hamiltonian symmetries
As the Hilbert space grows exponentially with system size, it is important to make use of 
underlying symmetries of the Hamiltonian in order to reduce the memory requirements. If 
such symmetries exist, it is possible to introduce a basis in which the Hamiltonian matrix has 
a block diagonal form, each block corresponding to some conserved quantity. This of course 
reduces the memory and processing power requirements, as each block can be diagonalized 
separately, while also having a reduced dimensionality.

One of the most common symmetries is a translational symmetry in a lattice with periodic 
boundary conditions (PBC), that is [H, T] =  0 with T being the operator translating state 
by one lattice site. A conserved quantity introduced by this symmetry is the total quasi­
momentum, fc, and the associated basis states are (for a 1D lattice of length L):

1 L—i
|fl(fc)> =  — X  e—̂ ÎH fl> , (A.3)

/ N â é o
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where |fl) is some state from the Fock basis and fc =  m 2 ^ /L , m =  _ L / 2  +  1,...L/2. 
All translations of |fl) correspond to the same |fl(fc)) states. The value of the normalization 
constant is =  N 2/R fl, where is the smallest non-negative integer such that TRfl |fl) =  
|fl). The definition (A.3) produces valid states only if fcRfl/(2^r) G Z.

This basis can be stored as a representative Fock basis vectors |fl), such that |fl) is the 
smallest (in the context of some order imposed on all Fock basis vectors) among the states for 
which (A.3) holds. The generation is similar to the one presented in the preceding section, 
but at each step one must check whether the currently considered state corresponds to a new 
|fl(fc)) by finding the smallest translation (that is, a representative) and seeing if it is already 
stored in the basis.

A.3 Matrix creation and diagonalization
In order to create the Hamiltonian matrix, Hÿ =  (z|H|/) (here, i and /, correspond to the /th 
and / th states of the chosen basis), one could in principle iterate over both i and /, calculating 
Hÿ directly. It is, however, computationally costly (scaling as the Hilbert space dimension 
squared, ) and a much better alternative is to do a single iteration over the basis states and 
for each of these calculate every possible H  |/) term by term. Furthermore, as the number of 
terms (in the usual models) scale linearly with the size of the system, the resulting Hamiltonian 
matrix will be sparse and so it may be stored efficiently (only non-zero terms have to be stored). 
Having some |^) obtained as a step of this iteration:

H  |/) =  ^  |0) +  ... (A.4)

we then must find what is the position of this vector in the basis (find /, such that |/) =  |^)). 
One of the simplest way is to have the basis vectors ordered (using some hash function, or 
simply by storing the vectors in such a way, that we can compare them, e.g. by doing a 
lexicographic comparison between Fock states’ occupation numbers) and then use a binary 
search on this ordered set (which takes on average ~  log2(rf^) steps).

The method described above is simple for BHM with a Fock basis, but for some other 
bases and their representations (such as the quasi-momentum basis |fl(fc))) calculationg Hÿ is 
not as straightforward. If we use the quasi-momentum basis, |fl(fc)), and store the basis states 
as the representative Fock space states (see the previous section), calculating (A.4) (|fl) =  |/) 
will be used, where |fl) is the representative of |fl(fc))) is only the first step. The |^) is not 
necessary a representative state itself, which we may denote as |&) =  |^). Knowing / and
using (A.3) we finally arrive at the value of the matrix element in the quasi-momentum basis:

<&(fc)|Hi/0 |fl(fc)) =  ^ e _ /fcZ VNfc/N fl, (A.5)

where the indices of are there to point out that (A.5) is only a part of the full term 
(&(fc)|H|fl(fc)), which is a sum of all (&(fc)|Hj,^|a(fc)) such that |^) is a translation of |&).

As the Hilbert space of the problem is very large, the diagonalization can not be complete 
(in a reasonable time) and one must resort to algorithms that provide only a handful of eigen­
vectors/eigenvalues (examples of such methods are Lanczos method and Arnoldi method). 
Many implementations of these can be easily found in the form of libraries available for multi­
ple programming languages (one of such libraries is ARPACK). The eigenvectors found using
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ED provide a full picture of an underlying quantum states and so it is possible to calculate any 
quantum mechanical quantity.



Appendix B

Density Matrix Renormalization 
Group

In this appendix the DMRG method will be presented. Instead of a rigorous, complete de­
scription, the focus will be on the applications of this method in the works presented as a part 
of this thesis. The DMRG used in these works has been based on the ITensor library [40]. 
More details on the method can be found in the vast literature on the subject, which contains 
some excellent reviews (such as [60]).

B.1 Matrix product states formalism
In general, quantum state of the lattice of L sites, where the state on the /th site is spanned 
spanned by the local rf-dimensional basis ^ , can be written as:

W) =  Y  |0i , - , t f L ) -  (B.1)

Equation (B.1) can be rewritten in the following form, named matrix product state(MPS):

| ^ ) =  Y  (B.2)

where is a matrix of dimensions rfj_i x ^  (assuming the form (B.2), we must set rfo = 
^  = 1 for the matrix multiplication to be a scalar, making M ^1 and M ^L effectively vectors).

(B.2) can be used to describe any kind of state, but the dimensions rfj of the matrices 
grow exponentially with system size (for even L, df =  rfmin(ż,Ł_j)). Fortunately, the relevant 
class of states, that is ground (and other low-lying) states of short-range Hamiltonians in 1D, 
can be effectively approximated by matrices of dimensions df <  X , where X (called the bond 
dimension) is in practice between 100 and 1000 (for lattices containing hundreds of sites). 
The approximation can be done directly on the lattices through singular value decomposition 
(SVD): every matrix M  of dimensions x Ng can be decomposed: M  =  17SV+ in such a 
way, that =  I, =  I and S is a square diagonal matrix of dimension m in (N ^ ,N g),
which elements, called singular values, are non-negative. Reducing the dimensionality of M  
can be then done by discarding the smallest singular values.
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The MPS representation is not unique, as for any invertible matrix X  one can make a 
transformation of neighboring matrices: M ^!'X  and M ^ 1 X ^ M ^ + j1 without
changing the resulting state |^). This gauge freedom can be used to impose some convenient 
properties on the matrices , the most important of which are:

£ « ' ) * < '  =  I, left-normalization (B.3)

Y M f ’W f O W ,  right-normalization. (B.4)

Let us denote left-normalized matrices by Â ~! and right-normalized by B̂ ~!. Then, we can 
decompose |^) into so-called mixed-canonical form as (the detailed scheme of arriving at this 
decomposition can be found in [60]):

| ^ ) =  Y  A [1- A ; ^̂ SB f̂++11- B ^ Ł | ^ l / . / ^ L)/ (B.5)

where S is a diagonal matrix of singular values obtained through SVD. This form can signif­
icantly simplify the calculations in which MPS is used (see Fig. B.1).

Similarly to MPS, we can define any operator, the Hamiltonian in particular, as a product 
of local matrices:

H =  Y  0"L) . . . ,0'L| . (B.6)

There exist a few recipes as well as automated tools (such as AutoMPO included with ITensor)
for transforming given classes of Hamiltonians into MPS form. The matrices and W ^'^ 
can be thought of as tensors of rank 3 and 4 respectively. ^  and ^  indices are referred to 
as physical indices, while the matrix indices of M s and Ws matrices are link/dummy indices. 
This picture allows easy pictorial representation of MPS and MPO operations, example of 
which is presented in Fig. B.1.

Figure B.1: Graphical representation of calculating the value of a single site operator, (^|O j|^) 
for |^) given by (B.5). Horizontal lines correspond to matrix multiplication, while vertical 
lines to the summation over possible local physical states, a  ̂ (both kinds of lines correspond 
to tensor contractions of tensor forms Aj and Bj). The form on the left of this figure is 
equivalent to the one on the right, as the properties (B.3) and (B.4) can be used to transform 
multiple contractions into an identity (a line).
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B.2 DMRG Algorithm
The first step of the algorithm is to prepare an initial MPS. The simplest approaches are to 
simply take a random state (which for Bose-Hubbard models may be from Fock basis) or 
choose one resembling the final state (such as a DW state in the DW phase), in which case 
one must be careful, as the DMRG may become stuck in the local minimum. Ifsome quantity 
(e.g. particle number) is conserved by the Hamiltonian, the initial MPS sets its value.

To find the ground state, instead of trying to diagonalize the whole H  at once (which, 
while possible using MPO and MPS formalism, would still require resources comparable to 
full exact diagonalization), one can minimize the energy site-by-site. This is done by updating 
only one or just a few matrices at a time (here, the matrices of sites i and i +  1 were 
being updated in each minimization step). In order to do this local minimization, the non­
variable parts of the Hamiltonian MPO and current trial MPS have to be contracted (which 
can be done efficiently if the MPS is in the mixed-canonical form (B.5) [60]), leaving only 
the indices of the local matrices. These indices can be combined in order to cast this problem 
in the form of a regular eigenequation, to which standard diagonalization methods (such as 
Jacobi-Davidson or Lanczos) can be applied.

The procedure described above is applied step-by-step to the MPS sites, from one end of 
the lattice to the other one and then back to the starting point. Each local minimization done 
throughout these so-called sweeps is followed by SVD decomposition, which at the same time 
ensures the correct mixed-canonical form and allows discarding the smallest singular values to 
keep the dimensions of MPS matrices below the required level. That is, the diagonalization 
and SVD steps done for i and i +  1 site during / th sweep (left-to-right, iterating i from 1 to 
L — 1) change the tensors in a following way:

^-î—1,/ ^ î ,/—1 ®î+1,/—1 ®î+2,/—1

— — ^-î—1,7 ^ î ,7'—1 ^ i + 1,7—1 ®î+2,/—1 •"
— ••• A j—1,y Aj,y -Mj+1,y_1 Bj+2,y'—1 "",

where the first index denotes the site, second how many sweeps were done already, A are 
left-normalized matrices, B are right normalized matrices and M  are matrices without any 
normalization properties imposed, primed matrices are the results of diagonalization procedure 
(matrices without primes are the results of SVD and approximation). The starting point is 
^ 1 0^ 2 0^ 3 0" ’®L 0, the left-to-right sweeps end at A 1 1—A^—11-M  ̂1. The procedure for 
right-to-left sweep is analogous to the one described in (B.2) (matrices on the sites i and i +  1 
go from A yM j+1,y to M ÿ B j+ y +1).

The sweeps are done until the energy converges to a stable value with a given accuracy (or 
until any other chosen criterion is met). The energy of the MPS updated using the DMRG 
procedure must necessarily be lowered (or stay the same) after each step, this does not, however, 
guarantee that the correct ground state is ever reached (as a consequence of using only local 
updates to the MPS state).

B.3 Sine-square deformation
The DMRG is the most efficient for open boundary conditions. These boundary conditions, 
however, introduce strong boundary effects (e.g. in the form ofFriedel oscillations [72]) which 
effectively increase the system size necessary to obtain precise bulk properties of the system. It
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is therefore advantageous to use methods which simulate PBC in system with OBC and with 
that goal in mind multiple smooth-edge DMRG variations were introduced, each of which 
consists of applying a smooth envelope to the Hamiltonian, such that the Hamiltonian stays 
approximately the same in the middle of the lattice and decays to 0 towards the edges.

One of such variations is the so-called sine-square deformation (SSD), wherein the en­
velope is the sine-square function [37]. If we denote by H u  =  all the terms acting on a 
single site i and by H ifi+j all the terms of the Hamiltonian acting on sites i and i +  /, then the 
SSD Hamiltonian has the form:

r L—j
^ SSD =  X , (B.7)

i=0i=1

where r is the maximum range of the Hamiltonian terms (e.g. r =  1 for BHM and r =  2 for 
EBHM), and the envelope function f ( i , j )  is:

f ( i , j )  =  sin2 j  . (B.8)

The SSD DMRG, apart from being able to simulate PBC with OBC, allows for non­
conservation of quantities otherwise conserved by the Hamiltonian. In the case of Bose- 
Hubbard model, this allows us to simulate the system in grand canonical ensemble-like situa- 
tion[39], wherein the particles/holes on the edges of the lattice provide only negligible energy 
addition, and thus the edges function as a particle reservoir for the middle part of the lattice 
(which correspond to the bulk properties of the system). To control the density of the par­
ticles, one must then use the chemical potential term, —̂ ' ^ i ni (without any deformation 
of the particle-conserving Hamiltonian, this term only shifts the total energy and may be 
discarded). This method has an additional advantage when dealing with phases, where the 
density is incommensurate with respect to the lattice site (such as the IPSS phase from Chap­
ter 4) — the number of particles does not have to be an integer (in contrast to the regular 
DMRG).
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Topological Rice-Mele model in an emergent lattice: Exact diagonalization approach
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Using exact diagonalization methods we study possible phases in a one-dimensional model of two differently 
populated fermionie species in a periodically driven optical lattice. The shaking amplitude and frequency 
are chosen to resonantly drive s-p  transition while m inim izing the standard intraband tunnelings. We verify 
numerically the presence of an emergent density wave configuration of composites for appropriate filling fraction 
and minimized intraband tunnelings. The majority fermions moving in such a lattice mimic the celebrated 
Rice-M ele model. Far away from that region, the structure changes to a clustered phase, with the intermediate 
phase abundantly populated by defects of the density wave. These defects lead to localized modes carrying 
fractional particle charge. The results obtained are compared with earlier approximate predictions.

D O I: 10.1103/PhysRevA.93.033631

I. IN T R O D U C T IO N

U ltra co ld  atoms trapped in  optical lattices provide system s 
characterized b y  an unprecedented control over various p a­
rameters, enabling a sim ulation o f a w ide array o f exotic 
solid-state m odels. O ne exam ple o f such phenom ena are 
topologica l insulators [ 1,2], w h ich  are o f particu lar interest 
in  the fie ld  o f quantum  inform ation and spintronics due 
to their inherent stab ility  and transport properties [3- 5 ]. 
Lattice s  hosting system s show ing topo lo gica l properties have 
been rea lized  experim entally, both for tw o-dim ensional (2 D )  
[6- 11] and one-dim ensional (1 D ) m odels (e.g., Su -Sch rie ffe r- 
H eeger [12] and R ice -M e le  [ 13] dim er m odels in  R e f. [ 14] 
or Thou less pum p in  R e fs . [ 15, 16]). O p tica l lattices by 
them selves do not a llow  for generation o f im purities on 
w hich  boundary lo ca lize d  m odes m ay appear— the lattices 
are necessarily  perfect. In  two dim ensions, the lo ca lize d  
defect— a vortex— m ay be created b y  a vortex wave [17, 18] 
leading to a w e ll-p lace d  d islocation. In  one dim ension, the 
situation is not so sim ple, but a recent proposition [ 19] 
suggests that to p o lo g ica lly  n on trivia l states m ay emerge in 
system s consisting o f two subspecies o f strongly attracting 
ferm ions. There, the topo lo gica l structure is not encoded in 
the underly in g lattice geometry, but rather is  an emergent 
feature aris in g  from  atom ic interactions, enabling creation o f 
defects w ith less constraints. F o r  h igh  enough values o f the 
interaction strength, ferm ions o f d ifferent species tend to b ind  
together form ing com posites, and i f  there is  som e im balance 
in  a num ber o f atoms o f both species, excess ferm ions stay 
unbound. To  extract essential properties o f the system , one has 
to take into account h igher bands (p  band at least, as in  the 
m odel studied below ) and the effects o f strong interactions, 
such as the density-induced tunnelings [20- 23]. Th e  lattice 
shaking is em ployed w ith the shaking frequency such that 
the interband density-induced s  to p  tunneling is resonantly 
enhanced. A s  a result, in  a 1D chain, the emergent system  
is proposed to be described b y  the R ice -M e le  m odel [20]. 
F o r a triangular lattice geom etry, s im ilar processes lead to the 
creation o f synthetic n o n -A b e lia n  fields in  an emergent dice 
lattice [24].

L e t  us note, parenthetically, that p h ysics  o f p -orbital 
ferm ions is  very r ich , lead ing to a possib le  creation o f

F u ld e -F e rre ll-La rk in -O v c h in n ik o v  ( F F L O )  states [25] as w ell 
as density stripes at appropriate f ill in g s  due to nested Ferm i 
surfaces [26,27] even in  the absence o f any perio d ic d riv in g  
(for a review  o f these effects see [28]). Th o se  system s were 
studied usin g  both tw o- and three-dim ensional m odels. Here, 
we shall restrict ourselves to sm all 1D  system s amenable to 
exact d iagonalization.

L e t  us stress that the m ain  approxim ation used in  pe­
r io d ica lly  driven m odels d iscussed in  R e fs . [20,24] is  to 
neglect the tunneling o f the m inority com ponents. A s  a result, 
one generates a m odified F a lic o v -K im b a ll- lik e  m odel with 
im m o bile  com posites (made out o f strongly coupled pair of 
ferm ions) and m obile  excess ferm ions. We test this assum ption 
in  the present paper. N am ely, we are e m plo ying an exact 
d iagonalizatio n  method to the system  described in  R e f. [20] in 
order to assess the va lid ity  o f the results presented there. The  
fid e lity  and structure factor analysis a llow  us to c la ss ify  the 
ground states for different values o f parameters. We consider 
also e x p lic it ly  possib le  configurations w ith a given num ber of 
defects.

I I .  S Y S T E M

Th e  system  considered is  a m ixture o f two species of 
unequally populated, strongly attractively interacting ferm ions 
in  a 1D p e rio d ica lly  shaken optical lattice. Th e  H am ilto n ian  of 
the system  is [20] H  =  H tun +  H dit +  H ons +  Hsh(t), where:

H tun =  - J 0 ^ [s/s J +  4  i s j j ] +  J 1 p \ p j ’
(ij) (ij)

Hdit =  ^  M  i ( n  +  nJ ) s j j  +  T1p}(nJ +  n1j ) p j
(ij)

+  T01( ( J  -  i ) p i n js j  +  H .c .) ] ,

H ons =  U 0 ^  n'jn i +  U1 I Z  P ip in'j  +  E 1 I Z  
i i i

Hsh(t ) =  k  cos j  (n j  +  s ] s j  +  p jp j  )
j

+  5E 1 c o s ( ^  +  ę )  E P l P i -  ( 1)
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F IG . 1. Visualization of the kinetic tunneling processes present 
in the system. Blue (open) and red (filled) half circles denote the 
minority, f  fermions and the majority, l  fermions, respectively. 
Observe that the minority fermions appear paired in composites only.

A b o ve  and in  the fo llo w in g , s j , s i , p \ ,p i are creation and 
annih ilation operators o f l  ferm ions in  the s and p  bands 
respectively, w h ile  s f i-,S fi- are s-band creation and annih ilation

operators for f  ferm ions. A cco rd in g ly , hi ,hp, and h f  are the 
corresponding num ber operators. N ote that w h ile  we take into 
account s and p  bands for l  ferm ions w e consider o n ly  the s 
band for th e f com ponent. That is  so because w e assum e that f  
ferm ions form  a m inority com ponent w ith fill in g  clo se  to 1 /2. 
O n  the other hand, w e assum e a b igge r density for l  ferm ions.

T h e  sing le-particle  tunneling part o f the H am ilto n ian  is 
g iven b y  H tun (com pare F ig . 1). W e assum e both species 
to have the sam e m ass and feel the same optical lattice 
for s im p lic ity . W ith the adopted s ign  convention J 0, J 1 >  0. 
T h e  density-dependent tunneling part is  denoted as Hdit. 
T h e  tunneling coefficients T0,T1,T01 are given b y  appropriate 
integrals o f  W annier functions [2 0 ,23]. S in ce  the p-W annier 
orbital is  antisym m etric, the interorbital tunneling am plitudes 
have opposite signs in  opposite directions as reflected b y  ( j -i ) 
factor.

T h e  basic  assum ption o f the m odel is  that attraction 
between d ifferent species dom inates the problem  energetically. 
C o n sid e r the on-site energy term Hons. U nder our assum ption, 
U0 is  negative w ith |U0| g iv in g  the large energy scale. E 1, the 
energy o f the p  band, is  another large energy. A s  tested b y  us 
w ith  W annier functions for different lattice depths, |U1|, the 
energy o f the interaction between a ferm ion in the p  and in the 
s  band, is  sm aller than | U0| .

W ith that assum ption, the low est-energy m an ifo ld  is  fille d  
w ith  com posites— pairs o f f  and l  ferm ions— and the rem ain­
in g  l  ferm ions, lead ing to nontrivial dynam ics. N ote that, for 
exam ple, i f  a m in o rity  f  ferm ion tunnels from  a given site, it 
leads to breaking o f the com posite. It  costs a huge amount o f 
energy (|U0|) unless the tunneling occurs to a site in  w hich  a 
m ajority l  ferm ion w aits to form  a com posite w ith  the f  parti­
c le . O n ly  the latter process rem ains in  the low -energy m anifold. 
In  effect, the sim ple  tunneling o f the m inority ferm ion m ay be 
view ed as a tunneling o f the com posite, accom panied b y  a 
reverse direction tunneling o f the m ajority ferm ion (com pare 
F ig .  2 ) w ith in  this m anifo ld . T h e  system  m ay be described 
b y  operators describ ing excess m ajority ferm ions (resid ing 
either in  the s  or p  band) and the com posites described

F IG . 2. Visualization of the direction-dependent interband 
density-dependent tunnelings in the dressed picture. The dressed 
tunneling amplitudes are direction dependent.

b y  annih ilation (creation) operators ci (c\ ) obeying hard-core 
boson com m utation relations. T h e  corresponding com posite 
num ber operator is  hci =  c \c i. T h e  presented intu itive  picture is  
fu lly  recovered on a m ore form al level b y  an appropriate 
construction o f the effective H am ilto n ian  [ 19]. In  effect, the 
excess m ajority ferm ions m ove in the emergent lattice created 
b y  the com posites. To avoid excessive  repetitions w e refer the 
reader to R e f. [ 19] for details w h ile  R e f. [24] provides yet 
another exam ple o f a tw o-dim ensional construction based on 
the idea described above.

Th e  second im portant step is  to derive the effective 
H am ilto n ian  va lid  for the h igh-frequency d riv in g  obeying the 
(alm ost) resonant condition

U 1 +  E 1 =  Nm  +  A  (2)

w ith N  be ing an integer and a sm all detuning | A  | ^  m. O b ­
serve that the tim e-dependent part o f the H am ilto n ian , H sh(t ), 
contains two tim e-periodic terms. T h e  first one describes 
a standard horizontal lattice shaking (after an appropriate 
gauge transform ation) as o r ig in a lly  proposed in  R e f. [29] 
and review ed, e.g., in  R e f. [30]. Such  a horizontal shaking 
has been realized  experim entally b y  several groups [31- 33] 
and serves as a convenient knob on lattice system  properties. 
T h e  second term is  due to the harm onic variation o f the 
lattice depth. T h is  translates into a perio d ic m odulation o f 
the p -b an d  energy offset S E 1 [20]. T h e  phase ę  between 
the two harm onic m odulations can be e asily  contro lled in 
experim ents. T h e  procedure o f averaging is  fa ir ly  standard 
and is  described in  detail in R e f. [20]. W e quote here the final 
effective H am ilto n ian  expressed in  terms o f com posite and 
excess ferm ion operators:

N N
H  =  ^ £ ( ^ + 1 +  H .c .)  -  f 0+1 J2 (p }h C si-1 +  H .c .)

i=1 i=1
N

+ ( 2 f 0 — t ) )  :(c i si+1c i+1si + H .c .)
i=1
N

+  (2 f 1 +  T ) £ ( p i th Ch C+ 1p i+ 1 +  H .c )
i=1

N N

-  T  J2 si si+1 +  A J2hp’ (3)
i=1 i=1

where the tilde s ign  over tunnelings and density-dependent 
tunnelings indicates their dressed character (after tim e averag­
in g). E x p lic it ly , f  =  J 0(K )J i  w ith l =  0,1 corresponding to 
s and p  band respectively and J 0 be ing the B e sse l function 
[20 ,29]. A  s im ilar dressing takes p lace for intraband density- 
dependent tunnelings T . O n  the other hand, the interband
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s-p  tunneling am plitude value becom es direction dependent 
due to the phase difference between shaking am plitudes. We 
express that asym m etry b y  denoting the tunnelings between 
Pi ^  si+1 as 70+ and pi ^  si-1 as 70-. These  tunneling
processes are v isu a lize d  in  F ig . 2 and read e x p lic it ly  [20] f 0+ =  
J N(A + / m )T 01, where A +  =  ^ ( K  +  S E 1 cos ę ) 2 +  K 2 sin2 ę .

W h ile  the frequency o f the period ic drive is  fixed  b y  the 
resonance condition (2), the shaking am plitude K  provides a 
convenient parameter to tune the properties o f the system . In  
particular, K c such that K c/m  «  2 .405 corresponds to the zero 
o f J o  B e sse l function. F o r such a cho ice  o f K,  the intraband 
tunnelings alm ost vanish and the interband density-dependent 
tunneling becom es the o n ly  m echanism  o f transferring the 
m ajority ferm ions (the com posites becom ing im m o bile  in this 
lim it). Then, as suggested in R e f. [20] for n  =  1/2 (the 
f ill in g  for m inority ferm ions), the com posites form  a density 
w ave (D W ) in  the ground state w h ile  the excess m ajority 
ferm ions are described b y  a R ice -M e le  topolo gica l dim er 
m odel. O n  the other hand, su ffic iently  far from  Kc the standard 
tunneling m echanism s dominate— the system  then organizes 
into a clustered phase ( C L )  w ith com posites and em pty sites 
separated in space [20].

To  test this prediction, one has to care fu lly  estimate various 
parameters appearing in  the m in im al H am ilto n ian , (3 ). T h e y  
depend on the details o f  the lattice potential and interactions 
between two species. W e fo llow  the assum ptions o f R e f. [20] 
and assum e the optical lattice potential to take the form  Vlatt =  
Vi s in 2( n x / a )  +  V i [ s in 2( n y / a )  +  s in2( n z / a ) ] ,  w ith a  being 
the lattice constant. F o r V± >  V|| the system  is  e ffective ly 
one dim ensional. W e take V± =  25 w h ile  Vi =  8 in  the units 
o f the reco il energy E R =  h2/ (8 M a 2) (note that a =  X/2 
w ith X be ing the w avelength o f the laser beam s form ing 
a standing w ave pattern). A s  a d im ensionless interaction 
strength w e take a p lausib le  value a  =  as / a  =  - 0 .1  [with 
as being the (negative) scattering length]. That, together with 
lattice parameters, a llow s us to estimate a ll the tunneling 
and interaction param eters o f  the m odel u sin g  the W annier 
functions appropriate for the lattice potential [20].

A s  far as the shaking is  concerned, w e o b v io u sly  concen­
trate on the v ic in ity  o f K /m  =  2 .4 region, taking the vertical 
shaking to be in phase w ith the lateral one (ę  =  0), w hich  
gives 70- >  T0+ . F o r  s im p lic ity , w e assum e first the exact 
driv in g  resonance A  =  0. In  F ig .  3 w e show the dependencies 
o f the different dressed tunnelings as a function o f K /m  (w e 
shall later assum e a notation K  =  K/m )  com ing from  W annier 
function calcu lations.

To  find the ground state o f (3 ) w e have yet to define the 
density o f  m ajority component, w h ich  is  taken to be un ity 
(thus w e have a 1/ 2 fill in g  o f com posites and 1/ 2 fill in g  
o f excess ferm ions). Then, w e use the exact d iagonalizatio n  
method based on R e fs . [34,35]. D ia go n a liza tio n s take p lace 
in the F o c k  space o f a ll possib le  configurations o f the system , 
assum ing that each site i m ay be em pty or occupied b y  a s ing le  
com posite or a i  ferm ion in s state, or both the com posite and 
i  ferm ion, although the second one in  p  state (because there 
is  already an s-state i  ferm ion in  a com posite). Therefore, 
the lo ca l H ilb e rt space consists o f four states per site with 
no truncation. F o r an even num ber o f ferm ions, a ferm ion 
tunneling between arbitrary edges (that is, between the first and 
the last site) leads to an additional phase (s ign ) change arisin g

F IG . 3. 7 , 7  and 7+ tunnelings for V0 =  8, V± =  25, a  =  —0.1, 
N =  1, and 0  =  0. For K =  K/m  range shown in the figure there 
exist three phases: the density wave (DW ) (blue), the clustered phase, 
C L  (white), and the mixed phase, M X  (pink). Boundaries of these 
phases were calculated using the fidelity susceptibility (see Fig. 4 ) 
and the structure factor (Fig. 5).

from  the anticom m utation relations. Because  the num ber o f 
ferm ions is  h a lf  the num ber o f sites, available  num bers o f sites 
are o f  the form  o f L  =  4l +  2, l e  Z .

W ith perio d ic boundary conditions, the H am ilto n ian  in 
E q . (3 ) com m utes w ith the translation operator ( f ) ,  w h ich  a l­
low s us to use states w ith the conserved total m om entum  (k )  as 
our basis: T \a(k)} =  eik \a(k)}. States w ith different ks  are or­
thogonal to each other, and k e  { ( —L / 2  +  1 ) f , . . .  , ( L / 2 ) l } 
[because T L \a(k)) =  elkL \a(k)) =  \a(k))] w ith L  be ing the 
length o f the chain. D ia go n alizatio n  consists o f creating states 
in  the basis (fo r some or a ll values o f k ), ca lcu latin g  m atrix 
elem ents o f  H  in that basis, and u sin g  num erical algorithm  
to get eigenvalues and eigenvectors for the low est-energy 
states. W e w ould lik e  to point out that the total m om entum  
k serves o n ly  to sp lit the large H am ilto n ian  m atrix into sm aller 
b lo cks.

I I I .  R E S U L T S

W e carry  out exact d iagonalizatio ns ty p ica lly  on a chain  of 
length L  =  14 (lead ing to m atrices o f the ran k ~ 8 4 0  000). Fo r 
selected data w e show the results for L  =  18 (m atrices o f rank 
around 131 x  106). A s  tunnelings are nearly sym m etric with 
respect to K c «  2 .405 (o n ly  T0+ are noticeably different, w hich 
leads to sm all, quantitative— but no qualitative— changes), 
w e w ill  o n ly  consider K  <  2.405. In  the interval o f interest, 
the ground state corresponds to k =  n  . T o  characterize its 
properties and locate possib le  phase transitions w e use the 
fid e lity  approach [36]. W e calculate the fidelity, F , asso­
ciated w ith a sm all parameter change 8 [here F ( K ,8) =
(f-0(K  -  8 / 2 )\^ 0( K  +  8/2 ))] u sin g  the eigenvectors com ing

82
from  the d iagonalization. F o r 8 «  0, we get F  «  1 -  x y ,  
w h ich  defines the fid e lity  susceptib ility, x  [37 ,38]. It  is  
com m only understood that the fid e lity  suscep tib ility  diverges 
at phase transitions. F o r  our finite system , the possib le  
crossovers w ill  be identified b y  the m axim a o f x .
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F IG . 4. Fidelity susceptibility, x , for the ground state for L =  14. 
Observe a sharp peak at K =  2.3 and a rich structure of peaks up to 
about K =  2.35. The different phases are analyzed using the structure 
factor, see the text and Fig. 5 .

A . Resonant case

A s  m entioned above, the s im plified  analysis [20] predicts 
the existence o f two com posite arrangements: the density w ave 
(D W ) clo se  to K c =  2 .405, where intra-band tunnelings are e f­
fective ly  sw itched off, and the clustered phase ( C L ) ,  where the 
com posites group together. Th u s, w e should expect a s in g le  x 
m axim u m  for K  <  K c corresponding to the border between 
these two phases. T h e  num erical results are, however, quite 
different (com pare F ig .  4 ). There  are indeed two regions o f 
lo w -fid e lity  suscep tib ility  for K  <  2 .29 (w ith  a sharp peak o f 
x  around f t  =  2 .3 ) as w e ll as for f t  values clo se  to K c (for 
f t  >  2 .35) ind icating stable phases. O n  the other hand, the 
interval f t  e  (2 .2 9 ,2 .3 5 ) show s a structure o f peaks w ith x 
h a vin g  s ign ificant values alm ost everywhere.

To understand that som ewhat com plicated behavior o f  x 
we consider the structure factor here defined as

S (K  ,q) =  (nC -  1 )  (n )  -  2 )  e-iqnli-jl ̂ , (4)

where « c is  the num ber o f com posite bosons (0 or 1 in  our case) 
o ccupying i th site. F ig u re  5 show s three areas w ith  different 
behavior o f structure factor, each corresponding to different 
phase structure. F o r  the C L  phase, the structure factor S  (f t  ,q =  
2 /L )  «  0.1, w h ile  values for different q are clo se  to 0, w hich  
happens to be the case for f t  su ffic iently  far from  K c. O n 
the other hand, for D W , S (f t ,q  =  1) =  0.25 and vanishes for 
other q values. Such  a behavior is  seen clo se  to the resonance, 
f t  >  2 .35. Th u s, indeed the two phases obtained clo se  to the 
resonance and far from  it show the properties predicted in 
R e f. [20]. N ote that since the num ber o f particles is  strictly  
conserved in  exact d iagonalization, w e cannot use som e mean- 
fie ld  order parameter to c la s s ify  the phases observed. S t il l  the 
identification based on the structure factor is  unam biguous.

Th e  behavior is  m ore com plicated in  the intermediate 
interval o f f t  values. T h e  structure factor for both q =  
2 / L  and q =  1 becom es sm all w h ile  interm ediate q values 
( 4 / L , 6 / L , . . . )  becom e important. T h e  situation seem s som e­
how  clearer clo se  to the border o f phase transitions. A ro u n d

FIG . 5. Structure factor S(ft ,q) calculated for L =  14 sites and 
different q values as indicated in the figure. For ft >  2.35 a single 
q =  1 value dominates indicating D W  phase. Similarly, for ft <  2.29 
q =  1/7 dominates pointing out to the clustered phase (C L ). Changes 
in the structure factor behavior nicely correlate with peaks in the 
fidelity susceptibility, compare Fig. 4).

f t  =  2.3 the peak in  fid e lity  suscep tib ility  co incides with 
the change in  ground-state structure [as seen in the S ( K ,q) 
plot]; instead o f the fu lly  separated phases o f com posites 
and em pty sites w e observe sp litting o f  the com posites 
cluster into two [in sm all (A ft  «  0 .0 01) interval d irectly  
above f t  =  2.3] and three clusters (w hich  corresponds to 
the dom inant S ( f t ,3 /7 )  value). L e t  us denote the pure C L  
phase as a string 0 0 0 0 0 0 0 C C C C C C C  w ith C  sites being 
fille d  b y  com posites. R espective  m any-cluster phases can be 
traced b a ck  to 0 0 0 0 0 C C 0 0 C C C C C  and 0 0 0 C C 0 0 C C 0 0 C C C  
configurations as verified b y  a careful exam ination o f the 
ground-state w ave-function expansion in  F o c k  space (possib le  
due to the sm all s ize  o f  our system ). O n  the other hand, w h ile  in 
the v ic in ity  o f K c w e observe a pure D W  phase, clo se  to 
f t  =  2 .35 the inspection o f the w ave function reveals an 
addition o f defected com ponents, w ith two sites breaking the 
D W  sym m etry. T h e  relative im portance o f a s in g le  defect 
com ponent changes sm oothly from  p ractica lly  zero close 
to K c [observe that above k  =  2 .35 a ll q com ponents o f 
S  (f t  ,q)  vanish except q =  1] to becom e sign ificant below  
f t  =  2 .35. T h e  subsequent peaks o f the fid e lity  susceptib ility, 
x  in F ig .  4 n ice ly  co incide  w ith different com ponents o f 
S  (f t  ,q)  dom inating the structure factor. Th at corresponds, 
as again confirm ed b y  the inspection o f the w ave-function 
com ponents, to successive  defects o f the partial D W  leading 
to sm all clusters eventually m erging as K  m oves further aw ay 
from  K c.

O ne m ay pose an im portant question whether the m ixed 
phase observed is  not re a lly  a fin ite -size  effect, w h ich  w ill  
disappear in  the therm odynam ic lim it  and the m ean-field 
an alysis  [20] w ill  be recovered in that lim it. To provide 
an answer, w e have evaluated the borders between different 
phases for the longer chain  w ith L  =  18. P lo tting the borders 
as a function o f 1 / L  and extrapolating to the infin ite  chain 
one can see a clear ind ication  that the m ixed  phase should 
not be pure ly a fin ite s ize  effect (see F ig . 6 ). L e t  us note 
that this behavior is  rem iniscent o f striped phases observed in 
the tw o-dim ensional F a lic o v -K im b a ll m odel [39]. Im portantly,
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F IG . 6. Borders between D W  and M X  phase as well as M X  and 
C L  phase as a function of the inverse system size. Observe that the 
mixed phase persists in the extrapolated L ^ < X )  limit.

considering the standard optical lattices system s, the typ ica l 
lattice s ize  is  about 50 sites, thus the results obtained here are 
of a direct experim ental relevance.

U s in g  results from  d iagonalizatio ns, one can e asily  c a l­
culate the correlation function o f com posite bosons, C c j ). 
W hen a system  is  in the D W  phase, the correlation function 
decays e xponentia lly  w ith increasing j  | (c jc j )| a  e x p ( - j / l c), 
com pare F ig .  7 . T h e  correlation length lc depends strongly 
on K ,  com pare the correlation functions for K  =  2.36 and 
K  =  2 .40. F o r other phases m uch slow er decay, presum ably 
pow erlike, is  observed but no definite conclu sions m ay be 
drawn due to sm all s izes considered. To that end, one should 
perform  a num erical study o f a m uch larger chain, e.g., 
u sin g  density m atrix  renorm alization group (D M R G ), w hich  
is  beyond the scope o f the present w ork.

F IG . 7. Correlation function C c j) of creation operators for 
boson composites in ground state calculated for L =  14 sites 
system for three values of parameter K =  K/a>, which are in 
the mixed ( K  =  2.32) and density wave ( K  =  2.36,2.40) phases. 
The correlation function decays exponentially in the D W  phase, 
for the M X  and C L  (not shown) phase the decay is much slower, 
presumably powerlike.

F IG . 8. Different phases in the K -A plane. Observe the shrinking 
of the intermediate mixed phases region while the interesting density 
wave arrangement of composites region gets larger. The borders 
obtained for this plot were collected from diagonalizations of L =  10 
system with five composites, results for L =  14 at selected points 
show that the picture is not affected significantly by the system size.

B . Detuned case

W h ile  the studies o f R e f. [20] and the results presented 
above concentrated on the A  =  0 case corresponding in  the 
D W  phase to the S S H  H am ilto n ian  [1 2 ], it is  interesting to 
see whether the fu ll R ice -M e le  m odel [ 13] for A  =  0 leads to 
s im ilar conclu sions. To that end, w e have studied the phase 
d iagram  in the K - A  plane as shown in  F ig . 8 . O bserve that 
w h ile  the border o f  the C L  phase is  not sensitive to A ,  the 
region o f D W  actually  increases eating up the M X  phase. 
Therefore, the R ice -M e le  m odel seems to be rea lized  quite 
e asily  w ith the present system .

T h e  m ost interesting p h y sics  o f  the R ice -M e le  m odel 
com es from  lo ca lize d  m odes on defects on the borders 
between topolo gica l and triv ia l phases [ 13,4 0 ]. A s  d iscussed 
in  R e f. [20], the present m odel a llow s for control o f the 
num ber o f defects b y  changin g s lig h tly  the fill in g  o f m inority 
ferm ions, i.e., o f com posites. F o r the f ill in g  nc <  1/2 one 
creates holes in  the D W , for nc >  1/2 w e should have extra

F IG . 9. Structure factor S(K,q)  for L =  13 and N =  6 compos­
ites. Such a situation results in a defect (hole) present in the system. A  
single hole leads to a structure factor being dominant for q =  12/ 13, 
the presence of a hole results in nonvanishing values of S  for other 
q ’s. A s  before, the C L  phase is characterized by the structure factor 
being most prominent at q =  2/ L .
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particles. Indeed, as v isu a lize d  in  F ig . 9 when w e consider s ix  
com posites in  L  =  13 sites, the D W  phase (occurring for seven 
com posites and L  =  1 4  sites) is  replaced b y  a s ing le-hole  
phase (S H P ) . D u e  to the perio d ic boundary conditions and 
the translational invariance o f the system , the ground state 
is  a com bination o f states w ith a hole at different positions 
a long the lattice as revealed b y  the eigenstate inspection in  the 
F o c k  representation. T h e  border between a S H P  and m ixed  
configurations is  p laced close  to the value for the border o f the 
D W  phase in  an ideal h a lf  f ill in g  o f com posites (taking into 
account fin ite -size  effects). Fo r K  far from  K c, we observe a 
sharp phase transition to clustered phase w ith holes and defects 
separated.

IV . C O N C L U S IO N S

U s in g  exact d iagonalizatio n  on sm all system s, w e have 
addressed the problem  o f resonantly shaken optical lattices 
in  w h ich  an unevenly populated m ixture o f two species o f 
ferm ions is  held. We have verified the b a sic  m odel studied 
in  R e f. [20]  where, neglecting m inority  ferm ion tunnelings, 
density wave arrangements o f com posites were found in  the 
situation when the shaking am plitude was tuned in  a w ay 
enabling sw itch ing o ff a ll o f the intraband tunnelings. Then, 
the excess m ajority  ferm ions m ove in  an emergent lattice 
(form ed b y  com posites) w ith direction-dependent tunnelings 
re a liz in g  the topo lo gica l R ice -M e le  m odel. In  the s im plifie d

approach [20], it was found that apart from  the density 
wave (fo r sw itched o ff intraband tunnelings) the com posites 
and empty sites m ay separate form ing two clusters— when 
the intraband tunnelings are important. Th a t has also been 
confirm ed b y  the present calcu lation. In  addition to these 
two phases, the m iddle  region  separating these ideal cases 
is  revealed b y  an exact d iagonalizatio n. In  this m ixed-phase 
region, the ground state contains superposition o f m any 
different com posite arrangem ents. T h is  phase m ay show quasi- 
long-range order, w h ich  is absent in  the density wave phase.

We have also shown that the density wave phase in  the 
v ic in ity  o f shaking parameters com bination sw itch ing off 
intraband tunnelings (K /m  «  2 .405, the zero o f zero-order 
B e sse l function) persists even when the shaking frequency is 
not adapted p recise ly  to the s-p  orbital resonance condition, 
thus it is  quite robust. We have e x p lic it ly  shown that the 
deviations from  the ideal h a lf  f ill in g  o f the m inority ferm ions 
(and thus the com posites) leads d irectly  to defects (holes or 
extra particle) that, i f  occurring on the edge o f the to p o lo g ica lly  
non triv ia l phase, lead to lo ca lize d  m odes.
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Fibonacci anyon excitations of one-dimensional dipolar lattice bosons
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We study a system of dipolar bosons in a one-dimensional optical lattice using exact diagonalization and density 
matrix renormalization group methods. In particular, we analyze low energy properties of the system at an average 
filling of 3/2 atoms per lattice site. We identify the region of the parameter space where the system has non-Abelian 
Fibonacci anyon excitations that correspond to fractional domain walls between different charge-density waves. 
When such one-dimensional systems are combined into a two-dimensional network, braiding of Fibonacci anyon 
excitations has potential application for fault tolerant, universal, topological quantum computation. Contrary to 
previous calculations, our results also demonstrate that super-solid phases are not present in the phase diagram 
for the discussed 3/2 average filling. Instead, decreasing the value of the nearest-neighbor tunneling strength 
leads to a direct, Berezinskii-Kosterlitz-Thouless, superfluid to charge-density-wave quantum phase transition.

D O I: 10.1103/PhysRevB.95.085102

I. IN T R O D U C T IO N

Th e  large recent interest in  n o n -A b e lia n  topo lo gica l phases 
o f matter is  strongly m otivated b y  the p o ss ib ility  o f a 
fault-tolerant topo lo gica l quantum  com putation [ 1- 6 ] based 
upon n o n -A b e lia n  anyons [7- 10] that appear as quasiparticle  
excitations for such exotic quantum  phases o f matter. Th e  
errors caused b y  lo ca l interactions w ith the environm ent are 
a basic  obstacle for quantum  com putation. Th e  m ain idea 
behind topo lo gica l quantum  com putation is that no n -A b e lian  
anyonic quasiparticles can  be used to encode and m anipulate 
inform ation in  a w ay that is  resistant to errors, and therefore 
to perform  fault-tolerant quantum  com putation without loss of 
inform ation (decoherence).

Th e  understanding o f the o rig in  and properties o f non- 
A b e lia n  states o f matter is  also o f fundam ental im portance 
and is  at the frontier o f current theoretical and experim ental 
research [ 11- 15]. Th e  m ain  objective is the investigation of 
new m odels that have n o n -A b e lia n  quasiparticle  excitations, 
or support n o n -A b e lia n  defects, as a result o f co m p lex 
interplay between topology and quantum  m echanics [16, 17]. 
Th e  robustness against sm all lo ca l perturbations is  due to the 
topo lo gica l nature o f these states o f matter, that therefore 
can be used as b u ild in g  b lo ck s for topo lo gica l quantum  
com putation.

In  this paper we study a system  o f u ltraco ld  d ipolar bosons 
trapped in  a one-dim ensional ( 1D )  optical lattice and at an 
average f ill in g  o f 3 /2  atoms per lattice site. T h e  system  can 
be w e ll described b y  an extended Bo se -H u b b ard  H am ilto n ian  
w ith the on-site and nearest-neighbor interactions [ 18]. We 
study the ground states and low  energy elem entary excitations 
o f the system  in  the regim e o f sm all tunneling between lattice 
sites and identify  the region o f the parameter space where 
the system  supports no n -A b e lian , S U (2 )3 F ib o n a cc i anyon 
excitations.

In  1D  quantum  statistics is  not w e ll defined. Th e  inter­
change o f two quasiparticles in  one spatial d im ension is im ­
possib le  without one particle  go in g  through another. Therefore 
the adiabatic exchange (bra id ing) o f these quasiparticles is  not 
possib le  in  the strictly  1D  system  that we have considered. 
H ow ever, b raid ing can be achieved b y  connecting these 1D

system s w ith T  junctio ns into a tw o-dim ensional (2 D ) netw ork 
as suggested prev io u sly  in  the case o f M ajorana quantum  w ires 
[ 19].

O u r results show that the system  supports F ib o n a cc i anyon 
excitations in  the regim e where (quasi)degenerate m anifolds 
o f energy states are w e ll defined, w ithout cro ssings between 
the energy levels w ithin  different m anifo lds. T h is  regim e 
corresponds on ly to a part o f the charge-density-w ave (C D W ) 
region in  the phase d iagram  o f the system , w hile  the system  has 
n o n triv ia lly  (quasi)degenerate ground states in  the w hole C D W  
region. A s  indicated in  previous studies [ 18,20], F ib o n a cc i 
anyon excitations correspond to fractional dom ain w alls  
between different C D W s .

A ls o , contrary to previous calcu latio ns based on G u tzw ille r 
w ave-function approach [ 18], our results demonstrate that the 
supersolid  ( S S )  phases are not present between the superfluid 
(S F )  and C D W  regions o f the phase d iagram  o f the system  for 
the specific  average f ill in g  o f 3/2  atoms per lattice site co n ­
sidered throughout this paper. T h e  system  for arbitrary fillin g s  
has also been considered b y  Batroun i et al. [21] where the S S  
phases were observed at other h igher f illin g s . S t il l  at the p artic­
u lar value o f V =  3 /2  the authors o f [21] were unable to ve rify  
the presence o f the S S  phases. We c la im  that instead, decreas­
in g  the tunneling strength between the ne ighboring sites leads 
to a direct, B e re z in sk ii-K o ste rlitz -T h o u le ss  ( B K T ) ,  superfluid 
(S F )  to charge-density-w ave (C D W ) quantum  phase transition.

Th e  anyonic quasiparticles, w h ich  are neither ferm ions nor 
bosons, are associated to system s in  two spacial d im ensions. 
N am ely, when two quasiparticles are exchanged in  two 
dim ensions, the wave function o f the system  can gain  any 
phase factor ela, w h ich  m otivated the nam e anyons. O n  the 
other hand in  three spacia l dim ensions the on ly possib le  phase 
factors are ela =  + 1  or - 1, w h ich  corresponds to bosons or 
ferm ions.

I f  in  addition there are m degenerate states ÿ i (i =  1,...,m) 
for n quasiparticles at positions x 1,...,x n, the result o f the 
quasiparticle  exchanges is m ore than ju st a change o f the 
phase o f the wave function. In  that case an exchange o f two 
quasiparticles can rotate one o f the degenerate states, ÿ i , 
into a different degenerate state ÿ j  w ith in  a m -dim ensional
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degenerate H ilb e rt space for n quasiparticles, ÿ i ^  Aij ÿ j . 
In  general, exchange o f other two quasiparticles w ill  be 
described b y  a different rotation m atrix, ÿ i ^  B ij ÿ j . For 
two consecutive exchanges o f the quasiparticles, the final 
state o f the system  w ill  depend upon the order in  w hich  
these exchanges were perform ed, since the m atrices A  and 
B  do not com m ute, that is  A B =  BA . Su ch  states and their 
quasiparticle  excitations are therefore ca lled  n o n -A b e lia n  or 
noncom m utative.

T h is  exotic n o n -A b e lia n  statistical behavior allow s fault- 
tolerant m anipulation o f the quantum  inform ation stored in 
m -dim ensio nal H ilb e rt space o f n n o n -A b e lia n  quasiparticles. 
Q uantum  com putation is  a process o f in it ia liz in g  a contro llable 
quantum  system  to some know n in itia l state \ÿ i ), e vo lv in g  the 
system  b y a unitary transform ation U (t) to some final state 
\ÿ f  ), and fin a lly  m easuring the state \ÿ f  ) at the end o f the 
com putation. Th e  quantum  com putational code is defined by 
the unitary transform ations, w h ich  can be engineered to be any 
unitary transform ations i f  there is  sufficient control over the 
underly in g H am ilto n ian  o f the system .

Fo r a large class o f n o n -A b e lia n  states any unitary transfor­
m ation can be generated on ly b y  b ra id in g  quasiparticles [2 ,3], 
w h ich  consequently allow s universal topo lo gica l quantum  
com putation through braid ing. A n  exam ple o f such non- 
A b e lia n  states are the states that support S U (2)3 F ib o n acc i 
anyon quasiparticle  excitations [2- 4 ]. Th e  final result o f the 
com putation, that is  the final state o f the system  after evolution 
b y  a unitary transform ation, can be obtained b y  a topologica l 
m easurement based on a n o n -A b e lia n  generalization o f the 
A h aro n o v-B o h m  effect [2- 4 ].

N o n -A b e lia n  states were in it ia lly  predicted in  fractional 
quantum  H a ll  (F Q H )  system s [7 ,22- 27] that are constrained 
to two spacial dim ensions, and subsequently in  various s im ilar 
F Q H - lik e  system s in  2 D  [4 ,26 ,28- 39]. H ow ever, analogous 
states were also found to appear in  various one-dim ensional 
(1 D ) m odels [40- 5 0 ].

W hether in  1D or 2 D , n o n -A b e lia n  states o f matter have 
a g lo b a l hidden order w ith constituent particles fo llo w in g  a 
g loba l pattern that is  not associated w ith breaking o f any 
sym m etry. T h is  h idden order is  associated w ith organization of 
particles in  ind istin gu ishab le  clusters [27 ,4 4 ,4 5 ,4 9 ,51]. E a ch  
cluster corresponds to an underly in g A b e lia n  copy, and S U (2 )k 
n o n -A b e lia n  states can be obtained from  k such A b e lian  
copies b y  sym m etriz ing over the coordinates o f the clusters 
[27 ,4 4 ,4 5 ,4 9 ,5 1 ]. T h is  sym m etrization (in d istin gu ish ab ility ) 
can be achieved b y  a p p ly in g  a projection operator to a direct 
product o f the wave functions for k copies, w h ich  introduces 
the p o ss ib ility  o f topologica l degeneracy and no n -A b e lian  
statistics in  the space o f quasiparticles.

Th e  projection operator projects k lo ca l degrees o f freedom  
corresponding to k copies onto a new degree o f freedom  that 
is  sym m etric under exchange o f any o f the k com ponents and 
leads to a topo lo gica l degeneracy not related to sim ple sym ­
m etry considerations. T h is  topo lo gica l degeneracy is robust 
against perturbations and interactions w ith the environm ent.

In  our calcu latio ns we use exact d iagonalizatio n  ( E D )  
and density m atrix  renorm alization group (D M R G )  [52- 5 4 ] 
methods to study low  energy properties o f the system  for 
system  sizes up to 124 lattice sites and w ith perio d ic boundary 
conditions.

Th e  region o f the parameter space where the system  sup­
ports n o n -A b e lia n  F ib o n a cc i anyon excitations is determined 
b y  ca lcu la tin g  the overlaps between the exact wave functions 
for the low -energy states o f the H am ilto n ian  describ ing the 
system  at average f ill in g  o f V =  3/ 2 atoms per lattice site and 
the corresponding ansatz wave functions w h ich  have S U (2 )3 
n o n -A b e lia n  order b y  construction.

Th e  ansatz states are constructed b y  ap p ly in g  a sym - 
m etrization projection operator to a d irect product o f the 
corresponding wave functions for three A b e lia n  copies at 
f ill in g  fraction V =  1/ 2 atoms per lattice site. T h e  projection 
operator introduces in d istin gu ish a b ility  between the copies 
(sym m etrization  over the coordinates o f the clusters) w h ich  
leads to S U ( 2)3 n o n -A b e lia n  order.

Th e  paper is  organized as fo llo w s. In  Sec. I I  we consider 
exactly  so lvab le  points in  the parameter space o f the underly ing 
extended Bo se -H u b b ard  H am ilto n ian  and demonstrate that 
F ib o n a cc i anyon excitations correspond to fractional dom ain 
w a lls  between different degenerate C D W  ground states o f the 
system . In  Sec. I I I  w e present E D  and D M R G  results away 
from  the e xactly  so lvab le  points. In  Sec. I V  we further char­
acterize the S F  to C D W  quantum  phase transition. Protoco l 
for b raid ing fractional dom ain w a lls  w ith in  a 2 D  T-junctio n  
netw ork is  described in  Sec. V . W e draw our conclu sions in  
the final section, Sec. V I .

I I .  F IB O N A C C I A N Y O N  E X C IT A T IO N S  A S  F R A C T IO N A L  
D O M A IN  W A L L S

Th e  system  o f u ltraco ld  d ipolar bosons in  a 1D optical 
lattice can  be w e ll described b y  an extended B ose-H ubbard  
H am ilto n ian  o f the form  [ 18]

H  =  ~ t ^ 2 ( a i a i+1 +  a i+1a i ) +  U  £  ni (ni -  1)
i i

+  V ^ n - n i + 1, ( 1)
i

where t is  the tunneling am plitude between the ne ighboring 
sites, U  is  the on-site interaction, V is  the nearest-neighbor 
interaction, and the boson ic operators a \ / a i create/annihilate 

a boson on site i . Th e  operator ni =  a ]a i denotes the number 
o f bosons on site i .

Previous studies showed that the H am ilto n ian  ( 1) near the 
lattice f ill in g  V =  k/2  supports S U (2 )k anyonic excitations 
in  the parameter regions where the system  has n o n triv ia lly  
degenerate C D W  ground states [ 18,20]. In  particular, at 
average f ill in g  V =  3/2  that we consider, the low  energy 
excitations are S U ( 2)3 F ib o n a cc i anyons. To demonstrate 
that the low -energy S U (2 )k anyonic excitations correspond 
to dom ain w a lls  between different degenerate C D W  ground 
states we first consider e xactly  solvable points in  the parameter 
space, that is , the ground states and the low  energy excitations 
o f the H am ilto n ian  ( 1) at t =  0 and U =  2 V .

In  general, for the f ill in g  fraction v =  k / 2 a t  t =  0 and U =  
2V , the ground state has n on triv ia l degeneracy. Th e  ground 
states are a ll C D W  states w ith unit ce lls  [l,k — l ] ,  where l =  
0 ,1,...,k  [ 18,20]. Fo r v =  3 /2  there are four degenerate C D W
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ground states:

|030303...> =  [03]

1121212...) =  [12]
(2)

|212121 ...> =  [21]

1303030...) =  [30].

T h e  low  energy quasiparticle/quasihole excitations correspond 
to dom ain w alls  between degenerate C D W s  w ith unit ce lls  
[l,k — l] and [l ±  1,k — l ^  1] [ 18,20]. M ore precise ly, fo l­
lo w in g  dom ain w a lls  correspond to elem entary excitations [20]

[k — l , l ] [ k  — l — 1,l +  1] for 0 <  l <  k,

[k — l,l][k — l +  1,l — 1] for 0 <  l <  k,
(3)

[k ,0 ] [k  — 1, 1],

[0 , k ] [ 1,k  — 1],

where [a,b][c,d] =  l.. .ababcdcd...>.  F o r the f ill in g  fraction 
V =  3/2  elem entary quasihole and quasiparticle  excitations 
are [20]

|...21211212...) =  [21] [ 12],

|...12122121...) =  [12] [21],
(4)

|...12120303...) =  [12][03],

|...2 1213030...) =  [21][30].

I f  the lattice bosons have a charge q , than the quasipar­
ticle/quasihole excitations have a fractional charge ± q /2  
[18,20]. In  other w ords, the states (4 ) have one boson more 
or less at two sites where a dom ain w a ll is  form ed. S in c e  the 
states (4) have one particle  more or less than the ground states, 
for a system  w ith a fixed  num ber o f particles the elem entary 
excitations are quasiparticle-quasihole pairs.

W e further demonstrate that these fractional dom ain w alls  
are n o n -A b e lia n  S U (2 )3 F ib o n a cc i anyons [ 10], s im ilar to the 
elem entary excitations o f the v =  12/5 R e a d -R e za y i fractional 
quantum  H a ll  (F Q H )  state [24,25]. I f  a fractional dom ain w all 
is  a F ib o n a cc i anyon then its quantum  dim ension is  the golden 
ratio dF =  (1 +  V 5 ) / 2  [10,5 5 ,5 6 ]. Th e  F ib o n a cc i sequence is 
a sequence w ith the property that each num ber in  the sequence 
is the sum  o f the previous two num bers in  the sequence. Th e  
n o n -A b e lia n  anyons w ith quantum  dim ension equal to golden 
ratio are nam ed F ib o n a cc i anyons because the ratio o f any 
num ber in  the F ib o n a cc i sequence to the previous num ber in  
the sequence is  approxim ately the golden ratio.

Th e  quantum  dim ension for these fractional dom ain w alls  
can be found b y  considering an adjacency m atrix  for the 
elem entary excitations [55]. We first note that here charge 
q /2  and charge —q /2  elem entary excitations are to p o lo g ica lly  
equivalent excitations because they d iffer b y  a lo ca l operator 
[55 ]. T h e  adjacency m atrix  can then be obtained b y  considering 
w hich  pairs o f ground states create a ± q /2  fractional dom ain 
w a ll and is g iven  b y

/0  1 1 0\

A  -  I 1 0 0 1  (5)A  =  1 0 0 0 , (5)
\ 0  1 0 0/

where the row s/colum ns 1,2,3, and 4 refer to the [21], [12], [30], 
and [03] ground states, respectively.

Th e  adjacency m atrix  (5) encodes fusio n  rules for the 
elem entary excitations [5 5 ,56]

i x  j  =  Y ^ (Ai)jkk, (6)
k

where Ai is  the adjacency m atrix  o f the quasiparticle  i . These 
fusio n  rules determine the num ber o f w ays that quasiparticles 
i and j  can fuse into quasiparticle  k . Fo r the F ib o n a cc i anyons 
T the fusion  rule is

T X T =  1 +  T. (7)

D u e  to the F ib o n a cc i anyon algebra (7) the ground-state
degeneracy in  the presence o f n F ib o n a cc i anyon excitations
satisfies the F ib o n a cc i recursion relation [5 6 ]

G(n) =  G(n — 1) +  G(n — 2). (8)

In  the large n lim it  the ground-state degeneracy grow s as 
[55 ,56]

lo g  G (n )  ~  n lo g  dF ... (9)

w ith dF be ing the F ib o n a cc i anyon quantum  dim ension that 
corresponds to the m axim um  eigenvalue o f the adjacency 
m atrix  (5 ) [5 5 ].

Fo r a m -fo ld  degenerate ground-state m an ifo ld  the statistics 
o f anyons can be described b y  m x  m unitary m atrices that act 
on the ground-state m anifo ld . S in ce  m x  m unitary m atrices 
form  a n o n -A b e lia n  group (m atrices A  and B  genera lly  do not 
com m ute, A B  =  BA),  these anyons are ca lled  n o n -A b e lia n  
anyons.

In  the parameter region where the system  supports non- 
A b e lia n  elem entary excitations the ground-state degeneracy 
depends on the topology o f the m an ifo ld  on w hich  the system  
is defined. F o r the lattice f ill in g  V =  k / 2 the ground state 
w ill  be k +  1-fo ld  degenerate for perio d ic boundary condition 
and nondegenerate for open boundary condition. In  other 
w ords, the system  has n on trivia l n o n -A b e lia n  topo lo gica l order 
reflected in  topologica l ground-state degeneracy [57 ,5 8 ]. We 
also note that in  general a to p o lo g ica lly  ordered state has 
a quasidegenerate ground state m an ifo ld  for a fin ite system  
size  that becom es e xactly  degenerate in  the therm odynam ic 
lim it. That w ill  be the case aw ay from  the exactly  so lv ­
able points (U =  2 V , t =  0) as described in  the fo llo w in g  
section.

I I I .  N U M E R IC A L  R E S U L T S

To  study properties o f the system  aw ay from  the exactly 
so lvab le  points ( U  =  2 V , t =  0) we use E D  and D M R G  
[52- 54] methods. V a lid ity  o f our D M R G  results is  confirm ed 
b y  com parison w ith  the E D  results for sm aller system  sizes 
(L  <  14 lattice sites).

We p rim a rily  study the ground states and lo w -ly in g  e x c i­
tations o f the system  w ith perio d ic boundary conditions for 
U ,V  ^  t and for a fixed  num ber o f atoms, N =  3 L / 2 .  For 
such states large occupation o f a s in g le  site is  im probable. T h is  
a llow s the lo ca l H ilb e rt space truncation to s in g le  site F o c k  
states |ni ) contain ing at m ost n =  n max atoms. Fo r the lattice 
f ill in g  V =  N / L  =  3/2  it is  sufficient to take n max =  3, that is,
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the lo ca l H ilb e rt space o f d im ension four w ith ni =  0 ,1 ,2 ,3 .
W e first demonstrate that there is  a parameter region 

where the system  supports no n -A b e lian  excitations. Fo r 
those parameter values a ll (quasi)degenerate low est energy 
states have a h igh  overlap ( ~ 1 )  w ith the corresponding 
m an ifo ld  o f four ansatz states that have S U ( 2)3 n o n -A belian  
topolo gica l order b y  construction. W e also show that e le­
m entary excitations above such states e xh ib it n o n -A belian  
statistics.

T h e  four n o n -A belian  ansatz states for the low est energy, 
(quasi)degenerate m an ifo ld  at f ill in g  fraction v =  3/2  can be 
constructed from  the two lowest energy, (quasi)degenerate, 
A b e lia n  states at f ill in g  fraction v =  1/2, (k =  1 ,2), b y
orthonorm alization o f the fo llo w in g  w ave-functions subspace 
[4 4 ,4 5 ,4 9 ,51]:

\ f  (l’m’n)) (m  =  ®  K m) )- ®  \ ^ : })i), (10)

where l,m,n =  1,2 and a  =  f  , I  ,o denotes three v =  1/2 
copies. T h e  tunneling parameter and the on-site interaction 
strength are denoted b y  -  =  t / V  and Ü =  U / V , respectively.

H ere the w ave functions \^ak))- (k  =  1 ,2) correspond to the 
two low est energy (quasi)degenerate states o f the H am ilto n ian

Ha — t ^  (̂a a, iaa,i+1 +  a a,i + 1a i,a ) +  V ^  ^n a,in a,i+1, 
i i

(11)

at average fill in g  v =  1/ 2 atoms per lattice site and with 
perio d ic boundary conditions, nai  =  a l iaa,i and a \ i / a a,i 
are hard-core boson creation/annihilation operators at site 
i satisfy in g  (a^ - )2 =  0 (that is, o n ly  allow ed occupation 
num bers are nat =  0 or 1 bosons per site).

A t  t =  0 the w ave functions 1 ^ ) - = o (k  =  1,2) are two 
degenerate C D W  states w ith unit ce lls  [0 ,1] and [1,0] and 
the low  energy excitations o f the H am ilto n ian  ( 11) are ± q / 2  
fractional dom ain w a lls  that are A b e lian  anyons s im ilar to 
the quasiparticle  and quasihole excitations o f the v =  1/ 2 
L a u g h lin  F Q H  state [59]. A s  illustrated in  F ig .  1, the states 
\ ^ ) -  (k  =  1,2) at som e finite value o f the parameter -  =  t / V  
are ad iabatically  connected to the states at t =  0, and therefore 
have A b e lia n  topo lo gica l order.

T h e  projection operator V  has the form

V  =  P f L, (12)

w ith L  be ing the num ber o f lattice sites. H ere P i is  the local 
projection operator at a lattice site i ,

/1 0 0 0  0 0 0 0 \
0 1 1 1 0 0 0 0

Pi  = 0 0 0 0 V 2 V 2 V 2  0 , (13)
v0 0 0 0 0 0 0 V 6 y

Pi  m aps e ight-dim ensional H ilb e rt space o f three species 
o f hard-core bosons, f ,  I ,  and o, to the sing le-site  four­
dim ensional H ilb e rt space o f four-hardcore bosons that obey 
generalized  exclu sio n  p rin cip le — less than four bosons at any 
site i, as illustrated in F ig .  2 .

A fte r orthonorm alization o f the w ave-functions subspace 
( 10) w e find four lin e a rly  independent ansatz states, denoted 
here b y  \^Ąk11)satz) (t-,u) . T h e  num ber o f lin e a rly  independent 
ansatz states corresponds to the num ber o f low est energy,

F IG . 1. The E D  results for the first five energy levels of the 
Hamiltonian ( 11) at filling fraction v =  1/2 and with periodic 
boundary conditions, as functions of the tunneling parameter t/V  
(with V being the nearest-neighbor interaction) and for the system 
sizes L  =  10 (red dotted lines), 12 (green dashed lines), and 14 (blue 
solid lines) lattice sites. Here the energy values (per lattice site) are 
in units of V.

(quasi)degenerate states o f the H am ilto n ian  ( 1) that form  the 
ground state m an ifo ld  o f the H am ilto n ian  ( 1).

T h e  states \^Af n)satz)(t,û), (k  =  1 ,2 ,3 ,4 ) form  an orthonor­
m al basis w ithin  (quasi)degenerate m anifold, w h ich  leads 
to the fo llo w in g  expression for the total overlap with 
the exact low est energy (quasi)degenerate states o f the 
H am ilto n ian  ( 1):

4

OiXt,U) =  E  U ( ^Ei;)act|^Akn)satJ(t-,û)|2, (14)
k= 1

where i =  1,...,4. T h e  E D  results for the overlaps ( 14) for 
the system  sizes L  =  10 , 12, and 14 lattice sites are shown 
in F ig .  3 and F ig . 4 . T h e  figures show overlaps for the four 
low est (quasi)degenerate states (ground state m an ifo ld ) o f 
the H am ilto n ian  ( 1) for a range o f values o f the tunneling 
parameter t / V  and for two values o f  the on-site interaction 
strength, U / V  =  2 and U / V  =  1.99.

F o r Ü =  2V  and t =  0 (exactly  so lvab le  points) these states 
are four degenerate C D W s  w ith unit ce lls  [03], [30], [12], and 
[21], and the overlaps are exactly  1. T h is  reflects n o n -A belian

F IG . 2. Schematic of the local projection operator P i at a lattice 
site i . The operator Vi projects the three local degrees of freedom f ,  |, 
and o, onto a new degree of freedom that is symmetric under exchange 
of any of the three components. In  other words, P i maps the single 
site 8-dimensional Hilbert space of three species of hard-core bosons 
f  (red spheres), | (purple spheres), and o (blue spheres) to the single­
site four-dimensional Hilbert space of four-hard-core bosons (green 
spheres). These four-hard-core bosons obey generalized exclusion 
principle— less than four bosons at any lattice site i.
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F IG . 3. The E D  results for the total overlaps ( 14) of the four 
lowest energy, (quasi)degenerate, exact ground states of the H am il­
tonian ( 1) at average filling of v =  3/2 atoms per lattice site and 
with periodic boundary conditions [(a)-(d)], with the corresponding 
orthonormalized ansatz states. Here t/V  is the tunneling parameter 
with V being the nearest-neighbor interaction, and the on-site 
interaction strength is U/V =  2. The system sizes are L =  10, 12, 
and 14 sites (red, green, and blue symbols, respectively).

nature o f these states since the ansatz w ave functions have non- 
A b e lia n  topolo gica l order b y  construction, and is  in  agreement 
w ith the results d iscussed in  the previous section. How ever, the 
overlaps for a ll four states are ~ 1  for a range o f values o f the 
tunneling parameter t / V , both at U =  2 V  (F ig . 3) and s lig h tly  
aw ay from  U =  2V  (fo r exam ple for U =  1.99V , F ig .  4 ). 
T h is  indicates no n -A b e lian  nature o f the states aw ay from  the 
e xa ctly  so lvab le  points.

Sudden decrease o f the overlap, from  ~ 1  to zero, for the 
states (b) and (d) in  F ig .  3 and F ig . 4 , is  related to a cro ss­
in g  between the energy levels w ith in  the (quasi)degenerate, 
ground state m an ifo ld , and the energy levels w ith in  the 
(quasi)degenerate first excited m anifo ld . That can be c le a rly

F IG . 4. Same as Fig. 3 for the on-site interaction strength U/V =  
1.99.

F IG . 5. The E D  results for the first ten energy levels of the 
Hamiltonian (1) at filling fraction v =  3/2 and with periodic 
boundary conditions, as functions of the tunneling parameter t/V  
and for the system sizes (a) L =  12 and (b) L =  14 lattice sites. 
Here the on-site interaction strength is U/V =  2, with V being the 
nearest-neighbor interaction.

seen in  F ig .  5 and F ig .  6 . F o r the states (a) and (c ) in  F ig .  3 and 
F ig . 4 the overlaps start deceasing aw ay from  ~  1 at som e value 
o f t / V  =  tc( L ) .  T h e  value tc is  characterized b y  a cro ssing 
between the energy levels  w ithin  the (quasi)degenerate, first 
excited states m an ifo ld , and the energy levels w ith in  the 
(quasi)degenerate, second excited states m anifo ld . These level 
cro ssings for the system  sizes L  =  10 and 12 are shown in 
F ig . 7 .

To confirm  the no n -A b e lian  nature o f the states for 
( t / V ) <  tc, w e further study elem entary excitations above the 
(quasi)degenerate ground state m an ifo ld . B y  construction, the 
ansatz states ( 10) have a hidden g loba l order associated with 
the organization o f the particles in  three copies o f  v =  1/2 
states ( t ,  i ,  o). T h e  elem entary excitations can be constructed 
b y  considering the elem entary excitations o f the three v =  
1/2 copies and sym m etriz ing [4 9 ,51]. N o n -A b e lia n  statistics 
appears as a consequence o f the sym m etrization (introduced 
w ith projection operator P ) w hich  leads to a topological 
degeneracy in  the subspace o f elem entary excitations and 
no n -A belian  algebra o f exchanges o f elem entary excitations 
(dom ain w a lls) [51].

T h e  ansatz states for the first excited states m an ifo ld  can 
be constructed b y  orthonorm alization o f the fo llo w in g  wave-
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F IG . 6. Same as Fig. 5 for the on-site interaction strength U/V =  
1.99.

F IG . 7. The energy levels of the Hamiltonian ( 1) at average filling 
of V =  3/2 atoms per lattice site, obtained by E D  method for the 
system sizes L =  10 [(a) and (c)] and L =  12 [(b) and (d)] lattice 
sites and with periodic boundary conditions. Here on-site interaction 
strength U =  U/V =  2 [(a) and (b)] and U =  U/V =  1.99 [(c) and 
(d)], with V being the nearest-neighbor interaction. A s  explained 
in the text the system supports Fibonacci anyon excitations in the 
regime ( t/V ) <  0.05 where (quasi)degenerate energy manifolds are 
well defined and there is no level crossing between the states within 
different manifolds.

is

N L

O t U )  =  E  U( ̂ xj L U l2, ( 16)
M k=1

where i =  1,.. .,N L  denotes the states ^ E x a r t ^ U ) w ithin  the 
first excited states m anifold.

functions subspace [4 9 ,51]

W {l'm'n)) ( m  =  P ( \ ^ h  ®  < m) )- ®  C ^ - ) ,  (15)

where l,m =  1,2 and n =  L ( L / 2  — 1) w ith L  being the 
num ber o f lattice sites. H ere  the w ave functions < k))- (k =  
1 , 2 ) correspond to the two low est energy (quasi)degenerate 
states o f the H am ilto n ian  ( 11) at average f ill in g  v =  1/2, and 
the w ave functions |< rn))- correspond to the states w ithin  
the (quasi)degenerate, first excited states m an ifo ld  o f the 
H am ilto n ian  ( 11) at v =  1/2.

T h e  elem entary excitations o f the H am ilto n ian  ( 11) at 
v =  1/2  and for a fixed  num ber o f particles are ± q /2 
dom ain w a ll pairs (quasipartic le-quasiho le  p airs) o f the type 
[0 1 ][1 0 ]-[1 0 ][0 1 ]. T h e  num ber o f states in  the first excited 
m an ifo ld  at v =  1/2, N  =  L ( L / 2  — 1) corresponds to the 
num ber o f different pa irs o f sites ( i , j ) where the dom ain 
w a lls  can be created. In  addition, there are three possib le  
choices o f  the two ground states in the ansatz ( 15): ( l =  1, 
m =  1), (l =  1,m =  2 ), and (l =  2,m =  2 ), w h ich  g ives in 
total NL =  3 L (L / 2 — 1) lin e a rly  independent ansatz states 
for the first excited states m an ifo ld  at v =  3/2 . These  ansatz 
states, denoted b y  | WJ(k))satz ) (t,U) (k  =  1,2 , . . . ,N L ), are obtained 
after orthonorm alization o f the w ave-function subspace ( 15).

T h e  total overlap w ith the exact states w ith in  the first 
excited, (quasi)degenerate m an ifo ld  o f  the H am ilto n ian  ( 1)

F IG . 8. The E D  results for the total overlaps (16) of the 
3 L ( L / 2  — 1) exact, (quasi)degenerate states within the first excited 
states manifold of the Hamiltonian ( 1) at average filling of v  =  3/2 
and with periodic boundary conditions, with the corresponding 
orthonormalized ansatz states. Here t/V  is the tunneling parameter 
with V being the nearest-neighbor interaction, and the on-site 
interaction strength is U/V =  2 [(a) and (b)] and U/V =  1.99 
[(c)and (d)]. The system sizes are L =  10 [(a) and (c)] and L =  12 
[(b) and (d)] lattice sites.
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Th e  E D  results for the overlaps ( 16) are shown in  F ig . 8 for 
the system  sizes L  =  10 and 12. Fo r the values o f the tunneling 
parameter t / V  <  tc(L ,U )  the overlaps for a ll states w ith in  the 
first e xcited states m an ifo ld  are ~  1. In  other words, away from  
the degeneracy point at U  =  2 V and t =  0 , the nature and 
fractional charge o f the dom ain w a lls  do not change i f  t / V  <  
t c( L , U ) .  T h is  is  o f im portance for actual experim ents, where 
there is  a lw ays some finite p o ssib ility  for atoms tunneling 
between the lattice sites, and where the values o f the on-site 
and nearest-neighbor interaction strengths can be tuned away 
from  U =  2 V .

Sudden decrease o f the overlap for some o f the excited 
states at t / V  =  t c (U  ,L)  is  related to the energy level cro ssings 
between the states w ith in  the first and second excited states 
m an ifo lds (F ig . 7). N am ely, as pointed out in  R e f. [ 18], m oving 
away from  the degeneracy point, where dom ain w a lls  do not 
interact, introduces interaction between dom ain w alls  v ia  a 
linear potential. Th e  strength and sign  o f the potential depends 
on the energy sp litting between the C D W  states that are 
degenerate at U =  2V  and t =  0. Fo r t / V  >  tc(L ,U ) ,  some 
states w ith two ± q / 2  dom ain w a ll p airs are more energetically 
favorable than some o f the states w ith one ± q / 2  dom ain w all 
pair due to an attractive linear potential between the dom ain 
w a lls  w h ich  results in  energy level cro ssings and sudden 
decrease o f the overlap for some o f the states w ith in  the first 
excited states m an ifo ld . t

We also note that the overlaps ( 16) for i^ E xact)f,U 0' =
1,...,NL) taken to be the states ad iabatically  connected to the 
states w ith in  the first excited states m an ifo ld  at t =  0 (the 
states w ith one dom ain w a ll pair), also decrease s ig n ifican tly  
for some o f these states when t / V  >  tc( U , L ) ,  as shown 
in  F ig . 9 . In  other w ords, the fractional dom ain w a lls  do 
not have n o n -A b e lia n  statistics for t / V  >  tc( U , L ) ,  after the 
cro ssing between the states w ith in  different (quasi)degenerate 
m anifo lds.

In  addition, for U <  2V  increasing the tunneling strength 
t / V  induces the first order phase transition from  [30] ([03]) 
to [21] ([1 2 ]) C D W  state, as demonstrated p rev io u sly  using 
the G u tzw ille r  ansatz wave function [ 18]. T h is  first order 
transition, characterized b y  an energy level crossing, can be 
cle a rly  seen in  the fid e lity  m etric [60- 7 0 ]. I f  i^ 0(t)) and
i^ o (f  +  St)) are two ground states corresponding to s ligh tly
different values o f the relevant parameter t =  t / V , the fide lity 
between these two ground states is  defined as the m odulus of 
the overlap between the two states:

F  (t,t +  St) =  i(fo(t +  St)if0(t))i.  (17)

Th e  fid e lity  ( 17) can further be rewritten as

(St-)2
F (t,t +  St) =  1 -  y- ^ XF(t) +  . . ,  (18)

where x F (t) is  the fid e lity  susceptib ility,

2 ln  F  (t +  St) d 2 F  (t +  St)
Xf  (t) =  -  l i m   ------- = --------- — - — . (19)

S t^ 0 (St)2 d (St)2

Th e  first order transition between two different C D W  states 
is  characterized b y  a singu lar peak in  the fid e lity  susceptib ility. 
N am ely, since the overlap m easures s im ilarity  between two 
states, it equals to one i f  two states are the same and zero i f  
the states are orthogonal. Consequently, the fid e lity  shows a

F IG . 9. The overlaps ( 16) for (i =  1,...,NL) taken to
be the states adiabatically connected to the states within the first 
excited states manifold at t =  0 (the states with one domain wall pair) 
and for the system size L  =  10 lattice sites with periodic boundary 
conditions. Here the on-site interaction strength is (a) U/V  =  2 and 
(b) U/V  =  1 .99, with V being the nearest-neighbor interaction.

very sharp decrease at points where there is a level cro ssing 
between two orthogonal states, and decrease in  the fide lity 
corresponds to a singu lar peak in  the fid e lity  susceptib ility. 
T h is  s ingu lar peak can be c le a rly  seen in  F ig . 10 at t / V  =  
tcDW-CDW(U,L) corresponding to the value o f the tunneling 
parameter t / V  where there is an energy level cro ssing w ithin  
the (quasi)degenerate ground-state m an ifo ld  (F ig . 6).

Further increase o f the value o f the tunneling strength t / V  
leads to a C D W  to S F  quantum  phase transition o f the B K T  
type, as w ill  be described in  m ore details in  the fo llo w in g  
section. T h is  phase transition is characterized b y  a broader 
peak in  the fid e lity  suscep tib ility  w h ich  becom es sharper and 
sharper as the system  size  increases. T h is  is  c le a rly  v is ib le  in  
F ig s . 10, 11, and 12.

Th e  transition is  related to a level cro ssing between the 
states in  the low est energy, (quasi)degenerate m an ifo ld  and 
the states w ith in  the first excited, (quasi)degenerate m an ifo ld  
at t / V  =  tCDW-SF(U ,L ) .  Th e  level cro ssings can be c le a rly  
seen in  F ig . 5 and F ig .  6 at values o f t / V  w h ich  co incide  with 
the positions o f the broader peaks in  the fid e lity  susceptib ility.

O u r results thus demonstrate that the system  undergoes a 
direct, B K T ,  C D W  to S F  quantum  phase transition without 
interm ediate S S  phases between the C D W  and S F  regions 
o f the phase diagram . T h is  is  in  contrast w ith the results
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F IG . 10. The fidelity susceptibility x F ( 19) as a function of the 
tunneling parameter t /V , obtained by E D  method for the system 
sizes L  =  10, 12, and 14 lattice sites and with periodic boundary 
conditions. Here the average filling is v =  3/2 atoms per lattice site 
and the on-site interaction strength is (a) U/V =  2 and (b) U/V =  
1 .99, with V being the nearest-neighbor interaction.

obtained p rev io u sly  w ith in  the G u tzw ille r-an satz wave fu n c­
tion approach [ 18]. N am ely, previous results predicted two 
different S S  phases, S S 1  and S S 2 , separating C D W  and S S  
regions o f the phase d iagram  for U =  1.99V . These S S  phases 
are p a rtia lly  m elted C D W  phases, w ith S S 1  and S S 2  having 
different underly in g C D W  orders. Th e  G u tzw ille r-an satz wave 
function calcu lations [18] also predict C D W  to S S 1  and SS1  
to S S 2  transitions to be first order transitions, and S S 2  to S F  
transition to be a second order transition. I f  S S  phases were 
present in  the phase d iagram , these transitions w ould  be c le arly  
v is ib le  in  the fid e lity  susceptib ility. H ow ever, we do not find 
any signatures o f such transitions and S S  phases in  our E D  and 
D M R G  results.

We also note that the G u tzw ille r-an satz wave function 
calcu latio ns were perform ed w ith the lo ca l H ilb e rt space 
truncation to s ing le  site F o c k  states \nt) w ith at m ost ntr =  30 
atoms at each lattice site (0 <  n  <  n tr), w h ile  our E D  and 
D M R G  calcu lations were perform ed w ith ntr =  3. To check 
that increasing the truncation num ber ntr does not change 
qualitative ly our results c lose  to the C D W  to S F  transition, 
we have perform ed additional calcu lations w ith ntr =  10 and 
ntr =  15. Th e  results, shown in  F ig . 11 c le a rly  demonstrate that 
increasing the truncation num ber ntr introduces on ly m inor 
changes in  the num erical values for the fid e lity  suscep tib ility

F IG . 11. The E D  and D M R G  results for the fidelity susceptibility 
XF ( 19) as a function of the tunneling parameter t /V , for the system 
size L  =  14 lattice sites and with periodic boundary conditions, the 
average filling v =  3/2 atoms per lattice site, and with the local 
Hilbertspace truncation to single site Fock states with at most ntr =  3, 
10, and 15 atoms at each lattice site. Here the on-site interaction 
strength is (a) U/V =  2 and (b) U/V =  1.99, with V being the 
nearest neighbor interaction.

F IG . 12. The D M R G  results for the fidelity susceptibility x F ( 19) 
as a function of the tunneling parameter t /V , for the system sizes 
L  =  40-124 lattice sites and with periodic boundary conditions, the 
average filling v =  3/2 atoms per lattice site, and with the local 
Hilbert space truncation to single site Fock states with at most ntr =  4 
atoms at each lattice site. Here the on-site interaction strength is 
U/V  =  2 with V being the nearest-neighbor interaction.
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and does not change our results qualitatively. We have also 
add itionally  verified that increasing the truncation num ber 
ntr to ntr ^  10 introduces on ly m inor changes in  our D M R G  
results for larger system  sizes.

IV . S U P E R F L U ID  T O  C H A R G E -D E N S IT Y -W A V E  
Q U A N T U M  P H A S E  T R A N S IT IO N

To further describe the S F  to C D W  quantum  phase 
transition we calculate the density-density structure factor at 
w ave num ber k =  n

1 L
Sn =  N ï T ,  ein(i—j){n in j), (20)

i, j=1

the s ing le  particle  correlation function

r (| i  — j  |) = ( a j a j  ), (21)

and the associated system -size-dependent correlation length

* E j = 1 (i — j  )2(al a J ) (22)
* L =  ------ ^ L / 2  , f .-------, (22)

\| Z i j = 1 (ai a j )

for the system  w ith  L  sites and N  bosons and w ith perio d ic 
boundary conditions.

We also calculate the von-N eum ann b lo c k  entanglement 
entropy

Sl (1) =  — T r [ p  ln  pt ], (23)

where pi is  the reduced density m atrix  for the b lo c k  o f length
l. F ro m  1 +  1 d im ensional conform al fie ld  theory [71 ,72]
it fo llow s that the von N eum ann entanglement entropy at a 
crit ica l point has the form

c [ L  ( n l \
Sl(1) =  3  ln  — s m (  — J  +  S1 (24)

for a system  w ith perio d ic  boundary conditions, w ith s 1 be ing a 
nonuniversal constant and c the central charge o f the associated 
conform al fie ld  theory ( C F T ) .  S in ce  D M R G  calcu lations g ive  
the m ost precise data for S L ( l)  when l =  L / 2  [72 ,7 3 ], the most 
suited relation to determine the central charge is

* , „  3 [S l ( L / 2  — 1) — S l ( L / 2 ) ]  ^
c (L) = ---------------------------------------------, (25)

ln  [c o s (n / L ) ]

where c* =  c when the system  is crit ica l. T h e  central charge 
provides definitive inform ation about the u n iversa lity  class o f a 
(1 +  1)-d im ensional system  [74 ]. O u r results show that c =  1 
in  the S F  regim e, where the low  energy effective theory for 
the system , obtained b y  the A b e lian  bosonization [7 5 ], is  the 
To m o n aga-Lu ttin ger-liq u id  ( T L L )  H am ilto n ian  [7 6 ]. W ith in  
the n o n -A b e lia n  bosonization [7 7 ] the low  energy theory of 
the S F  phase is  the W ess-Zum ino-W itten  (W Z W ) theory with 
topo lo gica l co u p lin g  k =  1 ( S U ( 2 ) 1 W Z W  theory) [7 8 ] and the 
conform al anom aly parameter (central charge) c =  3 k / (2  +  
k) =  1 [78].

Th e  central charge can also be used to determine the 
crit ica l point between T L L  and gapped (or ordered) phases 
[73 ]. N a m e ly  the crit ica l point corresponds to the m axim um  
o f c* (25) as a function o f t / V  [73]. Th e  position o f the 
m axim um  point, ( t /V ) c, is  independent o f the system  size

F IG . 13. The D M R G  results for the central charge c* (25) as a 
function of the tunneling parameter t/V  for several system sizes L 
and with periodic boundary conditions. Here the on-site interaction 
strength is U /V  =  2 with V being the nearest-neighbor interaction.

for the m odel that we have considered (F ig . 13). A  s im ilar 
result was obtained for 1D  h a lf-fille d  spin less ferm ions with 
nearest-neighbor repulsion [7 3 ].

O u r D M R G  [54 ] results show that ( t /V  )c & 0 .162 (F ig . 13) 
for U /V  =  2. O n  the right-hand side o f the m axim u m  point c* 
approaches the value c =  1 w ith increasing system  size, and 
c* ^  0 for the C D W  gapped phase. In  the D M R G  calcu lations 
o f the central charge d im ensions o f the m atrices in  the m atrix 
product state (M P S ) wave function were taken to be up to 2200 
and ntr =  4.

To  further characterize the nature o f the S F  to C D W  
quantum  phase transition we consider the fin ite -size  sca lin g  of 
the fid e lity  susceptib ility. W ith in  the n o n -A b e lia n  bosonization 
approach it w as shown that the fid e lity  suscep tib ility  in  the 
v ic in ity  o f a B K T  transition has the fo llo w in g  logarithm ic 
fin ite -size  sca lin g  [7 9 ]

X 1 r  1 i
Xl — X0 — , n  . , +  O 2 , (26)

ln ( L / a )  |_lnz ( L / a ) _

where a  is  the lattice cutoff. A ls o , the fin ite -size  dependence 
o f the peak position in  the fid e lity  susceptib ility, that s ignals 
the B K T  transition, has the fo llo w in g  form

-c — A  +  B / ln 2( L / a )  +------ , (27)

w hich  can be obtained u sing sca lin g  argum ents on the gapped 
side o f the B K T  transition [79 ]. H ere  -  =  t / V . We fit our 
D M R G  data for the fid e lity  suscep tib ility  to these predicted 
finite s ize -sca lin g  behaviors, and the results o f these fits 
demonstrate good agreem ent w ith the theory (F ig . 14). T h is  
confirm s that the S F  to C D W  quantum  phase transition is of 
the B K T  type.

We also point out that tc(L  ^  <x>) =  A  =  0.158 ±  0.004 
w hich  is consistent (w ith in  the error bars) w ith the value of 
tc & 0 .162 obtained from  the central charge. We have also 
studied the sca lin g  o f the energy gap in  the v ic in ity  o f the 
transition [80]. Th e  estimated transition point is  then tc(L  ^  
ix )  =  0 .16 ±  0.004 in  agreement w ith tc obtained from  the 
fid e lity  suscep tib ility  studies.

We fin a lly  calculate the structure factor ( 20) close to the 
S F  to C D W  quantum  phase transition to show that there is 
a direct phase transition from  the S F  to C D W  phase. The  
nonzero structure factor characterizes the crysta llin e  order,
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F IG . 14. The finite-size scaling of the peak position tc and 
amplitude x L (-c ) of the fidelity susceptibility. The lines correspond 
to fits (26) and (27), where A  & 0.158, B & -0 .3 9 , X0 & 37.5, 
and x 1 & —94.2. The data are for the system sizes L =  20-124 
lattice sites and with periodic boundary conditions. Here the on-site 
interaction strength is U/V =  2 with V being the nearest-neighbor 
interaction.

and in the case o f direct transition from  the S F  phase has the 
form  Sn ~  f Y/v$ ( f / L )  c lose to the transition [81 ,82], where 
$  is  a sca lin g  function. F o r the case o f a direct transition the 
structure factor is  governed b y  the correlation length f  that 
characterizes S F  order and diverges in  the S F  phase [81 ,82], 
w h ich  results in  the m entioned form  o f the structure factor 
clo se  to the transition.

A ls o , the functional form  o f the structure factor can­
not be transform ed to a pow er law  behavior depending 
on t / V  s ince the correlation length diverges lik e  f  a  
exp(const. / ( t /V ) c — ( t / V )) at B K T  type transition. O ur 
results for the structure factor are shown in F ig . 15 and 
confirm  that there is  a direct S F  to C D W  transition without

F IG . 15. The structure factor Sn as a function 1 / f , where f  is the 
correlation length, at the B K T  transition of the C D W  phase (t/V & 
0.158). The slope is & —0.78 and Sn a  f —078. The data are for the 
system sizes L =  20-124 lattice sites and with periodic boundary 
conditions. Here the on-site interaction strength is U/V =  2 with V 
being the nearest-neighbor interaction.

F IG . 16. Schematic demonstration how local changes in the 
chemical potential can create robust SU (2)3 Fibonacci anyon frac­
tional domain walls which appear in a ground state configuration of 
the system, as suggested previously in Ref. [ 18].

interm ediate norm al or supersolid  phases. T h is  is  in  agreement 
w ith previous results found b y  other authors [21].

V. P R O T O C O L  F O R  B R A ID IN G  F R A C T IO N A L  
D O M A IN  W A L L S

In  order to use described fractional dom ain w a lls  for 
quantum  com putation, that is  to rea lize  topolo gica l quantum  
gates, one needs to engineer states w ith robust fractional 
dom ain w a lls  in  a geom etry where these dom ain w a lls  can 
be interchanged in a contro lled w ay (braided). To have robust 
fractional dom ain w a lls  it is  necessary to achieve that these 
dom ain w a lls  appear in a ground state configuration o f the 
system . F o r a fixed  fill in g  fraction this can be achieved b y  
lo c a lly  va ry in g  the chem ical potential [ 18] as illustrated in 
F ig . 16.

N am ely, starting from  the unperturbed in itia l configuration, 
increasing/decreasing the chem ical potential on two n e igh ­
boring sites creates + q / 2 /  — q /2  fractional dom ain w alls  
[ 18]. T h e  dom ain w a lls  illustrated in  F ig . 16 are S U (2 )3 
F ib o n a cc i anyons s im ilar to elem entary excitations o f the 
bosonic R e a d -R e za y i state [ 18,25 ,27]

( N/k N/k \

Y i  (zh —z * )2... n  (zik —zjk )2

h<ji ik <j k J

N
f l ( z i  — Z j )Me—(1/4)^ l z;l2, (28)
i<j
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F IG . 17. A  T  junction which allows adiabatic exchange of two 
fractional domain walls. In each step of adiabatic exchange a dashed 
line represents a part of the junction which is disconnected from the 
part of the junction represented by a solid line. Position of a domain 
wall on a 1D lattice represented by a solid line can be changed by 
an adiabatic change of the local chemical potential at corresponding 
sites of the initial and final positions of the domain wall (Fig. 16).

w ith k =  3 and M  =  0 and where S  denotes sym m etrization 
over possib le  d iv is io n s o f the atoms into k clusters o f the same 
size.

T h e  adiabatic exchange (bra id ing) o f the fractional dom ain 
w a lls  is  not possib le  in  the strictly  1D  system  that w e have 
considered. Therefore, to achieve controlled interchange o f 
these n o n -A belian  defects, and rea lize  topo lo gica l quantum  
gates, several such 1D atom ic quantum  w ires need to be com ­
bined into a 2 D  netw ork where 1D  w ires are connected with 
T  junctio ns, as proposed p rev io u sly  for M ajorana quantum  
w ires [ 19]. A  T  junction  w hich  allow s adiabatic exchange o f 
two fractional dom ain w a lls  is  illustrated in  F ig .  17. A  part 
o f the T  junctio n  w hich  does not contain dom ain w a lls  can 
be connected to or disconnected from  the part o f the junction  
w ith two dom ain w a lls  b y  ad iabatica lly  sw itch ing on or o ff the 
tunneling between the neighboring sites o f the two parts o f the 
junction.

In  F ig . 17 a part o f  the junctio n  that is  disconnected from  
the rest o f  the junctio n  in  each step o f the adiabatic exchange 
o f two fractional dom ain w a lls  is  represented b y  a dashed line. 
A  part o f  the junctio n  w hich  contains two dom ain w a lls  is  
represented in  each step b y  a so lid  line. P osition  o f a dom ain 
w a ll on a 1D  lattice represented b y  a so lid  lin e  can be changed 
b y  an adiabatic change o f the lo ca l chem ical potential at 
corresponding sites o f the in itia l and final positions o f  the 
dom ain w a ll (for exam ple in the step from  1 to 2 in  F ig . 17).

W e also point out that braid ing o f fractional dom ain w alls  
in  a T -junctio n  netw ork requires o n ly  a few lo ca l operations 
on relevant sites where the lo ca l chem ical potential and the 
tunneling strength between the two nearest-neighboring sites

needs to be ad iabatica lly  changed in each step o f the adiabatic 
exchange o f these no n -A b e lian  defects.

These adiabatic changes o f the lo ca l chem ical potential and 
the tunneling strength between the two nearest-neighboring 
sites can be achieved experim entally b y  u sin g  lo ca l site 
addressing tools available in current experim ents w ith  co ld  
atoms and m olecules [83- 85]. In  co ld  atom experim ents these 
lo ca l operations can be realized  in  a contro llable w ay b y  
changin g the intensity o f  tig h tly  focused laser fie lds on the 
corresponding site or lin k  [83- 85].

V I .  C O N C L U S IO N S

We have studied low  energy properties o f a system  o f 
d ipolar lattice bosons trapped in a 1D optical lattice and at 
average fill in g  v =  3/2  atoms per lattice site. T h e  system  
can be described b y  an extended Bo se -H u b b ard  H am ilto n ian  
w ith the on-site and nearest-neighbor interactions. U s in g  E D  
and D M R G  methods w e have identified a region o f the phase 
d iagram  where the system  supports S U (2 )3 F ib o n a c c i anyon 
excitations. T h e  S U (2 )3 n o n -A b e lian  topolo gica l order o f the 
exact w ave functions o f the H am ilto n ian  w as demonstrated b y  
ca lcu lating the overlaps w ith the ansatz w ave functions w hich  
have S U (2 )3 topolo gica l order b y  construction.

Co ntrary to previous results obtained w ith in  the G u tzw ille r 
ansatz w ave-function approach [ 18], our E D  and D M R G  
results demonstrated that for an average fill in g  o f 3/2 the 
system  undergoes a direct, B K T ,  C D W  to S F  quantum  phase 
transition when the tunneling strength between the nearest- 
n eighboring sites o f the lattice is  increased above a certain 
crit ica l value. W e do not find any signatures o f the S S  phases 
in the phase d iagram  o f the system , found in  R e f. [ 18] to 
appear between C D W  and S F  regions in  the parameter space. 
H ow ever, the S S  phases are predicted to appear at higher f ill in g  
fractions [21].

We have also d iscussed a protocol w h ich  w ould a llow  
creation o f robust S U (2 )3 fractional dom ain w a lls  in a ground 
state configuration o f the system  and their controlled adiabatic 
interchange (bra id ing), w ith potential application for fault 
tolerant, universal, topo lo gica l quantum  com putation. Th e  
dom ain w a lls  can be introduced in  a ground state o f the system  
b y changin g the lo ca l chem ical potential on certain lattice sites
[ 18], and b ra id ing can be achieved b y  com bin ing 1D atomic 
quantum  w ires into a 2 D  netw ork where the 1D w ires are 
connected w ith T  junctio ns, as p rev io u sly  proposed in  the 
context o f M ajorana quantum  w ires [19]. Both  creation and 
braid ing o f such dom ain w a lls  are achievable w ith lo ca l site 
addressing tools ava ilab le  in current co ld  atom experim ents 
[83- 85].
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We study the phase diagram of the one-dimensional boson gas trapped inside an optical lattice with contact 
and dipolar interaction, taking into account next-nearest terms for both tunneling and interaction. Using the 
density-matrix renormalization group, we calculate how the locations of phase transitions change with increasing 
dipolar interaction strength for average density p =  1. Furthermore, we show the emergence of pair-correlated 
phases for a large dipolar interaction strength and p ^  2, including a supersolid phase with an incommensurate 
density wave ordering manifesting the corresponding spontaneous breaking of the translational symmetry.

D O I: 10.1103/PhysRevB.97.245102

I .  IN T R O D U C T IO N

U ltraco ld  gases loaded in  optical lattices enable sim ulation 
o f a broad range o f lattice gas m odels, m ost prom inently the 
B o se -H u b b ard  (B H )  m odel [ 1] w ith M ott insulator (M I)  to 
superfluid ( S F )  quantum  phase transition [2]. P recise  control of 
m odel parameters is  achieved b y  optical potential m anipulation 
or b y  advanced techniques such as Feshbach resonances [3 ,4 ]. 
Lo n g-ra n g e  d ipolar interparticle interactions are often taken 
into account b y  adding a sim ple nearest-neighbor interaction 
term resu lting in  the extended B o se -H u b b a rd  ( E B H )  m odel, 
w h ich  has been the topic o f num erous theoretical [5- 16] and 
experim ental [ 17] w orks.

A  feature o f u ltracold  gases is  the a b ility  to control the 
geom etry o f the underly in g optical lattice potential or even the 
p o ss ib ility  o f im plem entation o f a m ore com plex unit ce ll. Th e  
boundary conditions o f the potentials can be set b y  an external 
harm onic or a b o x  trap, lead ing to the open boundary conditions 
(O B C s )  [ 18, 19], or b y  arranging a system  into a r in g lik e  or 
c y lin d e rlik e  geom etry [20 ,21], thus im plem enting perio d ic 
boundary conditions (P B C s ) . N otably, one-dim ensional sy s­
tems offer the p o ss ib ility  o f efficient m any-body num erical 
sim ulations o f the resu lting lattice m odels b y  a fa m ily  of 
m ethods related to the density-m atrix renorm alization group 
(D M R G )  [22 ,23].

Fo r one-dim ensional lattices the E B H  m odel features not 
on ly M I and S F  phases but also an iso lator density wave (D W ) 
characterized b y  infin ite-range spatial order, a to p o lo g ica lly  
protected H aldane insulator ( H I)  w ith a nonzero value of 
the string order parameter, and supersolid  (S S )  phases w hich  
show both spatial ordering and superflu id  behavior [24- 26]. 
It has also been suggested that at the m ean density p  =  3/2 
the E B H  m odel features F ib o n a cc i anyon excitations [27,28] 
corresponding to fractional dom ain w a lls  between different 
D W  phases. In  this context, the m ean-field  analysis  [27] 
predicted the existence o f the S S  phase between D W  and S F  
phases, in  contrast to the D M R G  calcu lation  [28].

Th e  necessary strength o f the d ipole-d ipo le  interactions 
is  achieved for isotopes o f dysprosium  and erbium  [29 ,30], 
Feshbach m olecules [31], and polar m olecules [32- 34]. M ore

exotic phases such as checkerboard and stripe-ordered phases 
are possib le  for h igher-d im ension al lattices [35- 4 0 ] (fo r a 
review  see [ 13]).

Th e  B H  and E B H  m odels are m otivated b y  an expan­
sion o f the fie ld  operators in  the discrete basis defined b y  
W annier functions [ 1,4 1 ] for the optical potential, fo llow ed 
b y  truncating the p h ysics  to the low est B lo c h  band and 
neglecting hopping beyond the nearest neighbors. T h e  B H  
m odel includes on ly on-site interactions, w h ile  the E B H  also 
contains density-density interactions on the nearest-neighbor 
sites. Th e  rig o r o f this procedure has been the topic o f extended 
research in  the presence o f fast-tim e dependence [4 2 ,4 3 ] and 
strong interatom  interactions m an ifesting as so-called  density- 
dependent tunnelings [13,32 ,4 4 ] and even as a renorm alization 
o f m odel parameters due to a v irtual population o f h igher bands 
[45- 4 7 ]. M oreover, the co u p lin g  beyond the nearest neighbor 
has been included  in  studies w h ich  treated shallow  optical 
lattices [4 8 ,4 9 ] and for strongly interacting d ipolar system s 
[50]. In  the latter case the extra coup lings led to the appearance 
o f spatia lly  ordered phases [35].

Exte n sive  studies o f the E B H - l ik e  m odels m entioned in  this 
section were m ostly done b y  scanning the parameter space 
o f the constructed H am ilto n ians at a chosen mean density 
or p o ss ib ly  under other constraints such as a ratio between 
parameters. In  this study we take a m ore system atic approach 
to obtain the H am ilto n ian  for a d ipolar gas o f u ltracold  atoms 
in  the optical lattice and study its phase d iagram . F irst, our 
intent is  to m o d ify  on ly experim entally accessib le  parameters 
such as the optical lattice potential depth, the scattering length 
for contact interactions, the d ipole-d ipo le  interaction strength, 
and the mean density o f the gas. Second, we chose to keep 
a ll the relevant tight-b ind ing terms describ ing tunneling and 
interactions. In  this w ay the parameters o f the obtained E B H -  
lik e  H am ilto n ian s y ie ld  a rea lizab le  p h y sica l m odel. In  other 
words we get natural constraint values o f the parameters. 
T h is  saves us from  considering parameter ranges unaccessib le  
experim entally. In  the phase d iagram  defined b y  the experi­
m entlike control knobs, we predict m odifications o f up-to-date 
theoretical results go in g  beyond a sim ple readjustm ent of 
phase boundaries. In  particu lar we provide evidence for the
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emergence o f a new phase: a pa ir superfluid phase w ith an 
incom m ensurate density wave order.

In  S e c . I I  we derive the m odel from  the m icroscop ic  
p rin cip les id e n tify in g  the rea listic  parameter set relevant for 
ultracold  d ipolar atoms and ultracold  d ipolar m olecules. T h e  
phase diagram s for the system  are presented in  S e c . I I I  (fo r 
the case o f unit density in  the lattice) and S ec. I V  ( fo r the case 
o f other densities). In  Sec. V  we provide the final conclu sions 
and outlook. W e fin ish  w ith three A p p en d ixe s describ ing in  
detail the com putational m ethods used throughout the paper: 
in  A p p e n d ix  A  w e present our method o f ca lcu latin g  the 
terms present in  the H am ilto n ia n , A p p e n d ix  B  contains the 
parameters used in  our D M R G  runs, and in  A p p e n d ix  C  we 
describe the D M R G  method used in  Sec. I V .

I I .  M O D E L

Th e  rea listic  H am ilto n ian  that m odels u ltraco ld  boson ic gas 
in  the one-dim ensional optical lattice potential considered in  
this w o rk  has the form

L-1 L-2
H  =  -  t (b\bi+ 1 +  H .c .) — trina^ 2 /(b\bi+2 +  H .c .)

i= 1 i= 1
U L L-1 L-2

+  2 ^ 2  ni (ni — 1) +  V 'Yhnini+1 +  Vnnn ^  Wi Wi+ 2
i= 1 i= 1 i= 1

L -1
— T  [bJ(n i +  ni+1)bi+1 +  H .c .] , (1)

i =  1

where t , T , and V denote the am plitude for standard, nearest- 
neighbor tunnelings, the am plitude o f density-dependent tun­
n e lin gs resu lting from  interactions, and the strength o f interac­
tions between nearest-neighbor sites, respectively. Th e  terms 
proportional to tnnn and Vnnn are, respectively, the tunneling and 
strength o f interaction between next-nearest-neighbor lattice 
sites.

Th e  H am ilto n ian  ( 1) in  its fu ll g lo ry  is  a result o f a rea listic  
tight-b ind ing approxim ation to the m any-body form ulation 
continuous in  space, as g iven  b y  the second quantization. W e 
consider an u ltraco ld  gas o f atoms or m olecules o f mass m 
in  the separable optical potential created b y  three pairs of 
standing waves o f lasers w ith a w avelength XL w h ich  takes the 
form  Vopt(r) =  Vx cos2f c x ) +  Vy cos2(kLy) +  Vz cos2(k L z ), 
w ith kL =  2n/XL . Th e  reco il energy E R =  h1k’L/2m  defines 
a natural energy scale for the sing le-particle  p h ysics. W e take 
Vy =  Vz =  5 0 E r and Vx ^  Vy,Vz, w h ich  freezes the m otion 
in  directions y  and z and leaves an effective ly one-dim ensional 
m otion along the x  a x is. We can recover the parameters o f ( 1) 
from  (fo r m ore details see A p p e n d ix  A )

f  + r  h 2v 2 i
H  =  J  f  f( r ) -  +  Vopt(r) f  (r)

+ J f  ̂ ( r ) f (̂ r ' ) V ( r ' -  r ) f  ( r ' ) f  ( r ) d 3r d 3r '.  (2)

T h e  function V ( r )  represents the sum  o f contact (V c) and 
d ipolar (V d) interactions, V ( r )  =  Vc( r )  +  Vd(r ) ,  where

4 n h 2as Cdd 1 -  3 cos2 0
Vc ( r )  = ------------s-S(r), Vd ( r )  =   3---------, (3)

m 4n r 3

w ith 0 be ing the angle between the direction o f polarization  
and r  and as be ing the scattering length for effective contact 
interactions [6].

Th e  value o f Cdd depends on the strength o f dipolar 
interactions and has the form

— _  {lol^n,  for m agnetic d ipole  m om ent fim, (4 )
dd =  i ^ 2/ f 0, for electric dipole m om ent i.ie. ( )

La te r we w ill  use a representation o f the d ipolar interaction 
strength b y  a d im ensionless quantity:

m Cddd =  —d:  . (5)
2n 3 h a

In  effect, we have two parameters, Vx and as , that can be 
contro lled in  the experim ent (u sin g  the prev io u sly  mentioned 
Feshbach resonance) and d , w h ich  depends on the k in d  of 
particles used in  an experim ent (w e can, however, m o d ify  the 
strength o f d ipolar interactions b y  changin g the direction of 
po larizatio n). In  the case o f m olecules, d  can be controlled b y  
the external e lectric fie ld  in d u cin g  the dipole m oment. In  this 
w ork, we set the d ipole  direction to be perpendicular to that of 
the lattice, so that d ipolar interactions are m a x im a lly  repulsive. 
Then, for g iven values o f U / t  and V /t,  the appropriate values 
o f Vx and a s can be found, w h ich  in  turn determines the values 
of tnnn/ t , Vnnn/t, and T /t .

L e t  us rem ark that one can, in  p rin cip le , em ploy a transverse 
harm onic confinem ent o f the boson gas [32] to change the 
relative values o f the parameters o f d ipolar interactions. We 
have found that w h ile  it does provide m ore control over the 
values o f T /t ,  u ltim ately, they have a m agnitude s im ilar to what 
we obtain so le ly  w ith Vopt, and so w e refrain  from  in clu d in g  
that m ethod in  our considerations.

We denote the values o f V and U  restricted to only 
contact (d ipo lar) interactions as Vc (Vd) and Uc (Ud). In  the 
m ost com m on parameter range used in  this paper, V / U  is 
o f the order o f 1. Fo r the optical lattice that we consider 
(A p p e n d ix  A ), both Vc/ U c and Vd/ U d are sm aller than 10- 1 
(see the inset in  F ig . 1). Consequently, for a g iven  positive 
value o f d , the value o f as has to be negative in  order to low er 
the value o f U  to achieve the desired V / U .

We now take a c loser lo o k  at how changes in  the dipolar 
interaction strength influence the va lid ity  o f usin g  ( 1) fo r a f ix e d  
phase d iagram  point (U /t ,  V /t) .  Vd and Ud increase lin early  
w ith d , and so m ust |as | i f  we want to m aintain the desired 
ratio o f V / U . To keep V /t  (w h ich  is approxim ately Vd/t)  
and U /t  unchanged, the lattice m ust be made shallow er (as t 
depends so le ly  on Vx). S in ce  the tight-b ind ing approxim ation 
is no longer correct for shallow  lattices, this provides an 
effective upper lim it for t , w h ich  gets stricter as d  increases. 
T h e  m axim u m  value o f d  we consider in  this paper is  0.1, 
w h ich  corresponds to Vx be ing ro u gh ly  equal to 2 .5E R for the 
exem plary values o f U /t  =  2 and V /t  =  1.5 (see F ig .  1, where 
w e also plot the resu lting values o f Vnnn/ t , T /t ,  and tnnn/ t) .

To  g ive  an exam ple o f the m agnitude o f d  for real atoms 
and m olecules, we first assum e the lattice constant is  a  =  
532 nm . S in g le  atoms have w eak dipole moments (fo r 52C r , 
d  ^  9.7 x  10- 4; for 168E r , d  ^  4.3 x  10- 3; and for 164D y , 
d & 8.5 x  10- 3) [29,30 ,4 0 ]. Th e  values for m olecules can be 
a few  orders o f m agnitude greater (for 168E r 2, d & 0 .1 ) [4 ]. It is 
worth noting that m ultip le  experim ental m ethods o f decreasing
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F IG . 1. (a) Values of Vx and as/a  necessary to get U/t =  2 and 
V/t =  1.5 for different values of d. (b) Values of parameters in 
Hamiltonian ( 1) in such a case. The inset shows the values of V/U 
for dipolar-only and contact-only terms.

a  in  optical lattices [w h ich  w ould  increase d ; see E q . (5)] b y  a 
factor o f 2 or 3 (w ith  the prospect for a larger value) have been 
developed and tested [51- 54].

I I I .  T H E  P H A S E  T R A N S IT IO N S  A T  p =  1

Th e  fu ll phase d iagram  calculated n u m e rica lly  for the E B H  
m odel w ith t , U , and V as the on ly parameters and a unit mean 
density p  =  1 has been studied in  detail already [24 ,25], and 
here we w ill  on ly b rie fly  sum  up the possib le  phases observed 
in  the (V /t ,  U /t )  p lane. F o r large values o f t , the system  is 
in  the S F  phase, whereas large values o f U /t  w ith sm all V /t 
drive the system  into the M I. La rg e  enough values o f V /t  for 
a sufficient U /t  put the system  in  the D W  phase. Th e  H I  is 
present on the phase d iagram  in  between the three prev io usly 
mentioned phases, that is, for interm ediate values o f both V /t 
and U / t .

In  this section we w ill  calculate how the locations o f the 
transitions between these phases change for the H am ilto n ian
( 1), depending on dipolar interaction strength d . We w ill  not, 
however, recover a fu ll phase d iagram , and instead, we focus on 
two lines, g iven  b y  the constraints V /U  =  0.75 and U /t  =  3. 
Th e  first o f these values is chosen because it covers three of 
the phases achievable in  the E B H  m odel (D W , H I ,  and S F )  
and has already been extensively analyzed [25,26], w h ile  the 
second one allow s us to exam ine the M I phase (in  addition to 
D W  and H I ,  w h ich  are also present in  that case).

In  order to determine the boundaries between different 
phases, w e define their characteristic properties: (1) for D W , 
Odw =  0, A E  =  0, (2) for M I, Odw =  0, =  0, A E  =
0, (3) for H I ,  O DW =  0, O string =  0, A E  =  0, and (4) for SF , 
O DW =  O string =  0, A E  =  0. O rder parameters are defined 
s im ila rly  to those in  [ 24], Op =  l im r Cp, for the fo llo w in g

F IG . 2. The values of the string and D W  order parameters, critical 
exponent K , and energy gap AE  for V/U =  3/4, d =  0.02. The 
positions of black dashed vertical lines correspond to the critical 
values of t/U  for D W -H I and H I-S F  transitions (tcDW—HI/U  ^  0.175 
and t(HI-SF ^  0.82). The inset shows a logarithmic plot of O stnng and 
AE  near the H I-S F  transition.

correlators:

C S F ( r ) =  (b)bj +r) ,  (6)

C D W (r) =  ( - 1 ) r (SnjSnj  + r ) ,  (7)

Cstring(r) =  (Snjei^ j < k<j+rSnkSnj+r) , (8)

where Snj =  nj — p. Th e  energy gap and its therm odynam ic 
lim it  extrapolation are defined sim p ly  as A E (L )  =  E (1) ( L )  — 
E (0)( L )  and A E  =  l im L ^ œ  A E ( L ) ,  where E (k)(L)  is  the 
energy o f the kth excited state in  a lattice o f length L  (k =  0 
is  the ground state).

We w ill  a lso be u sing the fact that for the superfluid phase 
it can be shown, u sing the Lu ttin ger liq u id  theory, that the 
correlations in  the system  show pow er-law  decay [55 ]:

C S F ( r ) ~  r —K/2. (9)

A . V/ U =  0.75 constraint

We present the results o f our calcu lations for the m odel ( 1) 
obtained u sing the D M R G  method described in  A p p e n d ix  B . 
F o r t / U  c lose  to zero the system  is in  the D W  phase. A s  
the value o f t / U  is  increased, the first transition is  a D W -H I 
transition at t<PW—HI / U . T h e  transition location can be e asily  
determined because for t =  tC)W—HI (1) the gap A E  closes and
(2) the order parameter O DW vanishes (see F ig . 2 , where the 
values o f the order parameters are plotted for d =  0 .02). A E  
is  linear w ith respect to t / U  on both sides o f the transition, 
w h ich  allow s us to e asily  determine where the gap closes. 
A d d itio n a lly , the function a [(t  — tc) / U ] —b can be fitted to 
the n u m e rica lly  com puted O DW near the transition point for 
t / U  <  tcDW—HI/ U . Th e  values o f tc/ U  obtained w ith these 
m ethods are in  agreement w ith each other (w ith  a d ifference of 
less than 5 x  10—3 for every value o f d  that was considered).

Fo r even larger t , the consecutive transition occurs between 
the H I  and S F  phases, but the determ ination o f its location, 
tcHI—SF/ U ,  proves to be more d ifficu lt. A s  in  the earlier case,
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F IG . 3. Critical values of U/t  for D W -H I and H I-S F  transitions, 
V/U =  3/4 (black solid lines), and the same for a model with Vnnn, 
tnnn, and T set to zero (red dashed lines).

the energy gap closes, and the appropriate order parameter 
(Strin g ) goes to zero. H ow ever, the decay o f both A E  and 
Ostnng features an exponential tail and does not provide a clear 
value o f the transition point (see the inset o f F ig . 2). In  order to 
determine the correct value, we fit the correlations C SF( r ) for 
each L  accord ing to (9) and then extrapolate the obtained K  
to the L  lim it. It  has been shown [5 6 ] that K  =  0.5 for 
p  =  1 at the transition between insulator and superfluid phases. 
That is  the criterion w e use here to determine tcH I-S F / U .

Th e  results o f the analysis described above are shown in  
F ig . 3 , where the dependence on the chosen d  value for both 
D W -H I and H I - S F  transitions is plotted as b la c k  so lid  lines. 
T h e  results o f s im ilar calcu lations but w ith parameters Vnnn, 
tnnn, and T  set to zero are m arked w ith the vertical red dashed 
lines. Th e  U /tc value for the D W -H I transition has a strong, 
linear dependence on d , and the transition point is  m oved 
considerab ly for both sm all and large values o f d  in  the chosen 
interval (0 <  d  <  0 .1 ). T h e  situation is  different for the H I - S F  
transition; w h ile  for values o f d  c lose  to zero U /tc is  alm ost 
the same as for an ordinary E B H ,  the S F  phase disappears 
com pletely around d  =  0 .03. W hat can also be seen for the 
intermediate values o f d  is  that for sm all U /tc another transition 
appears; in  s im ulations we see the reem ergence o f the H I  phase, 
indicated b y  a rise  in  O string, A E ,  and K  (the transition point is 
once again p inpointed b y  the equation K  =  0 .5 ). Th e  strik ing 
substantial d ifference between the two m odels indicates that 
real care has to be taken when ap p ly in g  the tight-b ind ing 
approxim ate H am ilto n ian  to a given p h y sica l system .

B . U/ 1 =  3 constraint

In  this case, two transitions exist between three insu lating 
phases: D W -H I and H I-M I.  T h e  m ethod o f locating the H I-D W  
transition is  the same as in  Sec. I I I A  (the corresponding plot 
o f order parameters for U / t  =  3 and d  =  0.09 is shown in 
F ig . 4 ). Fo r the H I- M I transition a different approach m ust be 
undertaken, as A E  does not have a linear dependence on t near 
the transition point. To  determine V /tc we find the m in im um  
o f A E  w ith respect to V /t  for each available L ,  and then we 
extrapolate it for L  ^  m u s in g  a pow er function a L -b +  V /tc 
(see F ig . 5 ).

F IG . 4. The values of the order parameters (6), (7), and (8) for 
U/t =  3, d =  0.09. The positions of the black dashed vertical lines 
correspond to the critical values of V/t  for D W -H I and H I-M I 
transitions (V /tcHI-MI & 1.94 and V /tcDW-HI & 2.74).

We p lot the results in  F ig . 6, com paring them w ith the results 
obtained for a pure E B H  m odel, i.e., setting Vnnn, tnnn, and T 
in  ( 1) to zero. W h ile  the changes are not as drastic as for fixed  
V /U  =  0 .75, the H I  phase gets narrow er w ith respect to V /t 
as d  increases.

IV . T H E  P H A S E  D IA G R A M  F O R  d =  0.1

In  this section, we characterize the phase d iagram  without 
constrain ing the density o f particles p  w h ile  setting V /U  =  
0.75 and d  =  0 .1. T h e  results for an ordinary E B H  m odel, 
obtained m ostly usin g  quantum  M onte C a r lo  methods, can be 
found in  [ 15,25]. To this end w e calculate the ground-state 
energies usin g  D M R G  w ith O B C s  (fo r technical details see 
A p p e n d ix  B ) for p  corresponding to each o f the D W  phases 
present in  the system  for van ish in g  tunnelings. It  is  easy to 
convince oneself that the D W  phase requires a com m ensu­
rate relation between the num ber o f particles and number 
o f sites. R estrictin g  the calcu lation  to next-nearest-neighbor 
interactions, the corresponding densities are pDW =  n DW/4, 
where n DW >  2, n DW e Z .  Repeating the same calcu lations

F IG . 5. The energy gap for different system sizes and U/t =  
3, d =  0.09. The inset shows an extrapolation for L ^-<x>, b & 
0 .56151.
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F IG . 6. Critical values of V/t  for D W -H I and H I-S F  transitions, 
U/t =  3 (black solid lines), and the same for a model with Vnnn, tnnn, 
and T set to zero (red dashed lines).

w ith particles added or rem oved from  the system  allow s us to 
obtain the chem ical potential: i ( N , L )  =  B E (N ,L ) /B N . We 
can then get the boundaries o f D W  phases as a d iscontinu ity in  
l ( N , L )  at N dw =  p DWL .  T h e  low er boundary for the D W  
phase is  then given b y  i -  =  l im N^ N+ i ( N , L ) ,  w h ile  the 
upper one is  g iven b y  i +  =  l im N ^ N- w i ( N , L ) .  B y  adjusting 
the system  size  we v e rify  that sysDteWm s w ith L  =  200  are 
su ffic iently  large to properly determine the values o f i L and 
l U; for most o f the boundary i -  =  E ( N ,L )  -  E ( N  -  1 ,L ) ,  
and i +  =  E ( N  +  1,L) -  E ( N ,L )  [the o n ly  exception is  the 
cusps at the rightm ost edges o f the D W  lobes, where w e take 
into account E ( N  -  2 ,L )  and E ( N  +  2 ,L )  and perform  the 
quadratic interpolation]. T h e  resulting phase d iagram  can be 
seen in F ig . 7 . W e rem ark that apart from  the conventional 
|0(2p)0(2p)0  ■ ■ •> D W  phases, w ith p =  p DW, w e observe 
|0(2p -  2 )0(2p +  1 ) •••> phases for odd n DW as an effect o f 
introducing Vnnnnini+2 co u p lin g  terms into the H am ilton ian. 
Th e  corresponding D W  regions are, fortunately, quite tiny, 
show ing that for m ost parameters, the picture obtained w ithin  
the E B H  m odel is  correct.

A p art from  the abundant D W  phases w e observe either S F ­
or S S - l ik e  phases, as indicated b y  the pow er-law  decay o f the 
C SF correlations ( 9 ). T h e  difference between the two phases is  a 
nonzero density w ave order parameter value in the supersolid 
phase. T h e  triv ia l S F  phase is  seen for p <  1; however, we 
observe the em ergence o f a pa ir superfluid (P S F )  phase for 
large enough i .  We use the pair-tunneling correlation

Cp =  L E  < b k tb i+ 1b i+ 1> ( 10)
i

as a m easure o f pa ir superflu id ity (see F ig .  7 ). T h e  phases 
m arked S S  and P S S  (pair supersolid) in F ig . 7 d iffer from  
conventional supersolid  phases in  a sim ple  E B H  m odel, where 
C SF( r ) is  a lw ays positive. C SF( r ) is  negative for r =  4n +  2, 
n e  Z  in  the S S  phase [F ig . 8(a )] and for odd r  in the P S S  
phase [F ig . 8 (b )]. T h e  other difference is  that Cp >  0 in  the 
P S S  phase. W e rem ark that both the P S S  and P S F  phases have 
been p rev io u sly  observed in  num erical calcu latio ns for E B H  
H am ilto n ians w ith density-dependent tunneling [32,57,58].

N ext, w e describe the last phase present in  the phase 
diagram , w h ich  w e c a ll an incom m ensurate pair supersolid

F IG . 7. The phases for the system for d =  0.1 at a fixed ratio 
V/U =  0.75. B lack  lines showing the boundaries of D W  phases are 
the values of i +  and i -  obtained from O B C  D M R G  ( L  =  200). The 
black squares come from sine-square deformation (SS D ) D M R G  (see 
Appendix C  for details) for L =  100 and show the transition points 
between P SS  and P SF  (where O dw vanishes). Blue error bars mark 
the boundaries of the IP S S  phase (and also S S D  D M RG , L =  100). 
The value of pair-tunneling correlations Cp ( 10) is plotted as a color 
map with the scale shown on the right.

( IP S S ) .  T h is  phase is  characterized b y  a finite, positive  Cp and 
the structure factor

1 L

S (q ) =  72  J 2  < n n > e- q ( j - k), ( 11)
j,k=1

w ith a peak at n / 2 <  q < n , w hich  is  incom m ensurate with 
respect to lattice s ize  and the particle  density. In  order to 
identify  this phase, w e use the sine-squared deformation 
( S S D )  variant o f the D M R G  method w hich  w e describe in 
A p p e n d ix  C .

In  the IP S S  w e see period ic m odulation o f both density and 
density-density correlations [F ig . 9 (a)] in  the form  of

<ni> pbulk +  A p s in (q <nn)i +  ^ 0) , (12)

<nini+r > =  C 1 +  A 1 sin(q<nn>r +  ^ ) r - , (13)

where q<nn> is  the sam e w ave-num ber value for w hich  there 
is  a peak in  S(q)  [see F ig . 9 (c )] T h e  pair correlations also 
show the same m odulation, w h ile  at the sam e tim e fo llo w in g  
a pow er-law  decay [F ig . 9 (b )],

<b\b\bi+rbi+r> =  [C 2 +  A 2 sin(q<nn>r +  V2)]r - “2. (14)

•j*
A nother m odulation can be observed in  <b\bi+r>; however, in 
this case the w ave num ber d iffers from  q<nn>, and the values
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F IG . 8. O B C  D M R G  results of (b\bi+r ) correlations in the middle 
of an L =  200 lattice at (a) p =  1.25, t/U  =  0.59 (SS  phase) and 
(b) p =  2.25, t /U  =  0.37 (PSS phase). Log-log plots of the same 
correlations are shown in the insets.

oscillate  around zero [see F ig . 9 (d )]:

(b\bi+r) =  A 3 sin(^(b\b)r +  ^ ) r  —“3. (15)

A fte r com b in in g  the results for m any different x  and t / U  
parameters, w e can provide the relation between q (b\b) and q (nn) 
[see F ig . 10(a)]:

q(b\b) =  n  — 0 .5q(nn). (16)

W e also note that is  q(nn) does not depend e xc lu s ive ly  on pbulk 
[w hich  is the case in , e.g., underdoped p =  0 .5 D W , where 
q =  2np  [26]; see F ig . 10(b)].

F IG . 9. Correlations and structure factor values obtained with 
S S D  D M R G  for the system in the IP SS  phase ( L  =  100, t/U  =  0.48, 
and x  =  3.7). (a) Density correlations, (b) pair correlations, (c) 
structure factor ( 11), and (d) creation-annihilation correlations. For 
(a), (b), and (d), black points mark the numerical results, with red 
lines showing the fits of the functions in Eqs. ( 13) to ( 15). The value 
of the appropriate wave number qa obtained from the fits [or from the 
position of the S(q) peak in (c)] is written above each plot.

F IG . 10. The results of S SD  D M R G  for the IP SS  phase. 
(a) The relation between q(nn) and q(b\b). The linear fit (red) is 
q(b\b) =  0.9991(6)n — 0.4984(7)q(nn). (b) The relation between q(nn) 
and pbuik shown for different values of t / U .

V. C O N C L U S IO N S

In  this paper we have presented an accurate H am ilto n ian  
representation o f a one-dim ensional system  o f bosons in  
an optical lattice considering both the d ipolar and contact 
interactions (the m utual strength o f w h ich  m ay be balanced 
u sin g  the Feshbach resonance). We have em ployed the w e ll- 
established D M R G  m ethod to m easure the dependence of 
the phase transitions on often overlooked terms in  the E B H  
m odel (m ost notably, the next-nearest-neighbor tunnelings 
and the density-dependent tunnelings). W e have observed the 
suppression o f the S F  phase w ith r is in g  d ipolar interaction 
strength. In  the case o f fixed  p =  1 we have also noted the 
stable presence o f a nontriv ia l, h ig h ly  n o n lo ca lly  correlated 
H I  phase throughout the considered parameters range, w hich  
is even m ore pronounced for rea listic , low  values o f dipolar 
interactions. T h is  robustness can be traced b a ck  to the fact that 
H I  is  a sym m etry-protected topo lo gica l state [5 9 ].

Fo r greater d ipolar interaction strength and h igher densities 
we have observed interesting pair-correlated phases. A m o n g  
those, we put a particu lar em phasis on characterizing a novel 
incom m ensurate pair superflu id  phase, w hose d istinctive  fea­
ture is an incom m ensurate density wave order. Th a t phase is 
not present either in  the standard E B H  m odel or for large 
d ipole-d ipo le  interactions in  sm all-d iago n alizatio n  studies. We 
have also noticed a particu lar relation between wave num bers 
characterizing different correlations m easured in  this phase 
( 16) w h ich  m ay provide some insight into how  to construct 
an appropriate theoretical description. R igo ro u s theoretical 
treatment o f the IP S S  is, however, beyond the scope o f this 
paper.
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A P P E N D IX  A : T H E  D E T E R M IN A T IO N  O F  H A M IL T O N IA N  
P A R A M E T E R S

Th e  values o f the parameters in  m odel ( 1) have been 
calculated n u m e rica lly  usin g  W annier function representation 
for a perio d ic boundary system  w ith a standard optical lattice 
potential Vopt(r ) .  In  the num erical calcu latio ns described below  
we assum e the lattice is in  the form  o f a cube w ith N 3 sites, 
so that the total vo lum e Q  =  ( N a ) 3, where a =  n / k L is  the 
lattice constant.

B lo c h  functions o f the form

^ k  (r )  =  elkruk ( r ) ,  (A 1 )

where uk ( r )  is  a function w ith the same p e rio d ic ity  as the lattice 
potential, are calculated for the noninteracting H am ilto n ian , 
Hni =  —h,m +  Vopt(r ) ,  as the low est-energy eigenvectors of 
the Schröd inger equation:

H N i^ k (r )  =  E k ^ k ( r ) .  (A 2 )

W annier functions can be calculated in  the usual w ay [41 ] 
from  the B lo c h  functions:

Wn(r) =  - L =  £  $ k (r)e—ikxan, (A 3 )
V N  keBZ

where </>k(0) is  real and positive, n is  the num ber o f the
lattice site in  the x  direction (w e assum e y  =  z =  0), and the
sum m ation is done over k  =  (kx,ky,kz ) from  the first B r illo u in  
zone.

Substituting fie ld  operators o f the form  0 ( r )  =  ^ i wi (r)bi 
in  (2), we get

t =  ti(i+1), 

tnnn — ti(i+2),

U =  Viiii,

V =  Vi(i+1)i(i+1) +  Vi(i+1)(i+1)i,

Vnnn =  ^i(i+2)i(i+2) +  V '(i+2)(i+2)i,

T =  — 0 .5[Vii(i+1)i +  V iii(i+1)], (A 4 )

with

tij =  — f  d r w * (r ) H M Wj( r ) ,  (A 5 )
J q

Vijki =  f  d r x d r 2w * (rx )w * (r2) 
j q

x  V ( n  — r 2)wk(rx )w i( r2). ( A 6)

Integral (A 5 ) is  straightforw ard to calculate usin g  (A 2 ) and 
(A 3 ). In  order to calculate (A 6), w e use perio d ic extension of 
the interaction potential:

V ( r )  =  q E  V (k )e i k r , (A 7 )
k

where k  =  Na(n 1,n 2,n 3), ni e  N ,  and V (k )  =  Vc(k )  +  Vd(k ) 
is  the sum  o f the Fourier transform s o f the contact and dipolar 
interaction potentials ( 3):

~  4 n h 2a s ~  t
V c(k ) = -------------, Vd(k )  =  C dd(cos2 y  — 1/3), ( A 8)

m

where y is  the angle between the direction o f po larizatio n  and 
k . Fo r convenience, we group the W annier functions w ith the 
same arguments wij ( r )  =  w * (r )w j(r ) :

Vijki =  d r 1W ik(r1W  d r 2V ( n  — r 2) w j i ( r 2)
J q J  q

=  d r1W ik(r1 )(V  * W ji)(r1)
J q

=  Ł f  d r1 Wi k (r1 ) ^ 2 ( V  *  W ji)(k2)eik2 r . (A 9)
J q k2

W e use the convolution theorem  for the Fourier series to obtain

Vijki =  Ł  f  d r  w * k ( r ) E V (k 2)W ji(k 2)e ik2 r
J q k2

=  Q  [  d r ^ 2  WTk(k1)e!k1^ E  V (k2 )W ji(k2 )e !k2 r
k1 k2

=  Q Æ  W ik(k1) V (k 2)W ji(k 2) f  d r  ei(k1+ k2) •r
k1,k2

1
=  Q  E  Wik(—k ) V ( k ) W ji ( k ) .  (A 1 0 )

k

A P P E N D IX  B : D M R G  P A R A M E T E R S

A l l  o f the num erical calcu lations reported in  this paper were 
done u sing density-m atrix  renorm alization group (D M R G )  
im plem entation found in  the ITENSOR lib ra ry  [23]. Fo r m ost 
o f the w o rk  O B C s  were used, w ith sizes from  L  =  100 to 
L  =  400 and a m axim um  bond d im ension x  =  600. Th e  cutoff 
e was set to 10—12 [e determines the num ber o f singular 
values discarded after each singular-va lu e  decom position step
in  the ITE NSOR a lg ° rithm : ( Enediscarded ^ ) / ( E n <  e ] . In
Sec. I I I , w e lim it  the m axim um  num ber o f particles on each 
lattice site Ncut to 5, w h ile  for the O B C s  and the S S D  D M R G  
used in  Sec. I V  the num ber is, respectively, up to 10 and 12.

U n le ss  stated otherw ise, a boundary term equal to 
2p (n 1 +  n2 nnn +  nL nnn) was added to break the degener­
acy o f the D W  state (the added term sim ulates a situation where 
we have four additional sites at the boundaries, w ith fixed  
n—1 =  0, n0 =  2 p , nL+1 =  0, and nL+2 =  2 p , as expected in  
one o f the D W  ground states). A nother m otivation for adding 
these terms is  to rem ove excitations on the edges in  the H I  
phase.

A P P E N D IX  C : T H E  D E S C R IP T IO N  O F  S IN E -S Q U A R E D  
D E F O R M A T IO N  D M R G

Som e o f the calcu lations (determ ination o f boundaries of 
the IP S S  phase in  Sec. I V ) were perform ed usin g  a smooth- 
boundary D M R G  method, referred to as a sine-squared de­
form ation ( S S D )  D M R G . In  this approach the H am ilto n ian
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F IG . 11. Position of the peak in S(q) ( 11) computed using m 
middle sites (black points). The red solid line shows a fit of the 
form C +  A m—B cos(Km  +  0). Here K & 0 .342n, which is roughly 
half of q(nn) =  C & 0.686n (shown as a green dashed line). A t most 
2/3 of all lattice sites have been considered. Data are calculated 
for ß /U  =  5.2, t/U  =  0.6, L =  100, and N cut =  12. The damped 
oscillation amplitude S (q) position is approximately an order of 
magnitude smaller than the FW H M  of the S (q) function, which for 
maximal m is &0.03n.

F IG . 12. (a) Position of the S(q)peak q(nn) (see Fig. 11) calculated 
for different values of maximum particles per site cutoff Nc u t  for L =  
100. The red solid line shows a power-law decay to a constant value 
qe(nn) (reached for a finite N c u t, here approximately 11.24; shown as a 
blue dashed line). (b) Values of qe(nn) calculated for different system 
sizes L .  Data for (a) and (b) were calculated for ß/U  =  5.2 and 
t/U  =  0.6. The position of the S(q) peak for N c u t ^  10 S(q) and 
for L  ^  40 changes by at least one order of magnitude less than the 
corresponding FW HM .

is rescaled usin g  a sine-squared deform ation [60]: H SDD =

T j = 0 T  =  , where

f u  = sin2 +  j y ~ )  ’ (C 1 )

w ith Hi,i+ j  acting o n ly  on sites i and i +  j  and Hiti =  Hi acting 
on ly on a s ing le  site, i . We also add a chem ical potential term 
to the H am ilto n ian , so that now  Hi =  (U/2)ni (ni — 1) — ßni .

In  contrast to regular D M R G  methods, the density o f the gas 
o f particles (as m easured in  the m iddle  part o f the lattice) is  not 
fixed  b y  the num ber o f particles N  used in  the sim ulation, but 
rather b y  the value o f ß. A n  excess (or a deficit) o f particles 
stem m ing from  the choice  o f N  is  taken care o f b y  p la c in g  extra 
particles (vacancies) c lose  to the system  boundary, where the 
coefficient fi ,j  takes a m in im a l value. T h is  m akes the edges 
act as an effective bath for the particles (holes) in  the m iddle 
o f the lattice. Because o f that, in  determ ination o f the p h ysica l 
quantities, we consider on ly 4 0 %  o f the sites in  the m iddle  of 
the lattice, unless stated otherwise.

We p ic k  N  such that it does not d iffer m uch from  Lpbulk, 
the num ber com patible w ith the b u lk  density. T h is  ensures 
that few er particles are d isp laced to (from ) the edges, w h ich  
m in im ize s  the undesired boundary effects on the com puted 
expectation values in  the m iddle  o f the system.

In  order to find the values o f w ave num bers q{b\b) and q(nn) 
[plotted in  F ig .  10(a)] we lo o k  at the position o f the peak of 
S(q ) ( L1) (or an analog ica l quantity for (b^b) correlations). To 
rem ove the boundary effects from  our analysis, we consider 
on ly m lattice sites in  the m iddle  w hen ca lcu latin g  the structure 
factor. D epend ing on m , the position o f the peak qm(nn) 
oscillates w ith decreasing am plitude (see F ig . 11) around a 
value q (nn), w h ich  is the one used in  the m ain text.

A s  the mean densities in  the IP S S  phase in  our calcu lations 
are quite h igh  [w ith sites f ille d  b y  m ore than s ix  particles; 
F ig . 10(b)], we calcu latedho w  the cutoff on m axim u m  particles 
per site Ncut in  D M R G  calcu lations affects the obtained value 
o f q(nn) [F ig . 12(a)], tak ing as an exam ple values o f ß / U  =  5.2 
and t / U  =  0 .6 , corresponding to pbuik &  3.1. Fo r each system  
size  L  we define qe(nn',(L) =  lim N cut̂ «> q(nn) (Ncut) and p lot its 
value in  F ig . 12(b). W e determine that N cut =  12 and L  =  100 
are enough to get converged values o f wave num bers, and these 
parameters were used for S S D  D M R G  calculations.
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