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Abstract

The aim of this thesis is the investigation of a few theoretical propositions of realizing various
interesting topological states of matter using cold atomic systems. The topological order in
quantum mechanics has been given much attention in the recent years as this concept, pre-
viously known mostly from the observation of the fractional quantum Hall effect, has been
generalized for a broader range of physical systems, where it can manifest itself in the form of
non-local topological invariants. The search for new topological models and their implemen-
tations is undertaken not only because it is an exciting opportunity to study unique quantum
mechanical eftects, but also because they may be useful in some emerging technologies, such
as quantum computing. Optical lattices are naturally a popular choice for such considerations
due to an ease with which they can be modified and fine-tuned. The present thesis fits in this
general scheme, as it focuses on a proper numerical evaluation of selected topological lattice
models, paying great attention to their experimental feasibility.

In a natural way the results presented here are related to other, earlier works. After Chap-
ter 1 containing preliminaries introducing the reader into specific features of cold atom settings
and the topological order, in consecutive chapters we give a short summary of the main re-
sults published in 3 research articles forming the main part of the thesis. Chapter 2 discusses
a realization of the emergent Rice-Mele model in a one-dimensional optical lattice. This
paradigmatic model has already been realized experimentally in I. Bloch group using different
techniques. On the other hand, the proposition we consider benefits from the ease of forma-
tion of defects, which is a consequence of its emergent nature. Moving on to systems with
interactions, Chapter 3 focuses on the one-dimensional extended Bose-Hubbard model for
filling v = 3/2 and U = 2V, which for zero tunneling corresponds to the thin-torus limit of
the topological system. We investigate whether this equivalence is still valid for non-negligible
tunneling and take a closer look at the quantum phase transition in the system. Chapter 4
contains the analysis of the extended Bose-Hubbard model in the context of an experimentally
plausible realization in a one-dimensional optical lattice of dipolar particles, with the emphasis
on the topological Haldane insulator phase and on the pair-superfluid phenomena that arise as
an effect of long-range interactions. The two appendices are technical and describe shortly the
numerical tools used, namely the exact diagonalization and the density matrix renormalization
group. Here the aim is to provide some useful, in the author’s opinion, hints for the interested
reader rather than a precise introduction to the techniques which are more comprehensively
discussed already in the references given.






Streszczenie

Glownym tematem niniejszej rozprawy jest analiza kilku teoretycznych propozycji tego, jak
zrealizowaé ciekawe topologiczne stany materii przy uzyciu uktadéow zimnych atoméw. Duzo
uwagi zostalo w ostatnich latach poswigcone topologicznemu porzadkowi, poniewaz to pojecie,
pierwotnie znane gtéwnie z obserwacji ulamkowego efektu Halla, udato si¢ uogélni¢ na szersza
klas¢ fizycznych uktadéw, w ktorych objawia si¢ w postaci nielokalnych niezmiennikéw to-
pologicznych. Poszukiwania nowych topologicznych modeli i sposobéw ich implementacii s3
podejmowanie nie tylko jako ekscytujaca mozliwos¢ badania wyjatkowych efektéw mechaniki
kwantowej, ale takze ze wzgledu na korzysci z ich potencjalnego wykorzystania w pewnych
nowo powstajacych technologiach, takich jak informatyka kwantowa. Sieci optyczne, dzigki
tatwosci 1 doktadnosci z jakg mozna je modyfikowad, s3 czesto wykorzystywane w tego typu
rozwazaniach. W te dziatania wpisuje si¢ tez obecna rozprawa, jako ze przedstawiona zostata tu
analiza wybranych topologicznych modeli przy uzyciu metod numerycznych, ze szczegdlnym
naciskiem na okreslenie wykonalnosci eksperymentalnej realizacji tych modeli.

Wyniki tutaj przedstawione sg naturalnie powigzane z pewnymi wczesniejszymi pracami.
Po krétkim zapoznaniu czytelnika z charakterystyka uktadéw zimnych atoméw i pojeciem po-
rzadku topologicznego w rozdziale 1, kolejne rozdzialy stanowig zwigzte podsumowanie wy-
nikéw 3 prac badawczych, na ktoérych oparta jest ta rozprawa. Rozdzial 2 zawiera dyskusje
na temat realizacji emergentnego modelu Rice’a-Melego w jednowymiarowej sieci optycznej.
Ten szeroko znany model zostat juz zrealizowany w grupie 1. Blocha przy wykorzystaniu in-
nej metody. Propozycja tutaj rozwazana ma w odniesieniu do niej pewne zalety, takie jak
utatwione formowanie defektéw sieci, co jest konsekwencjg jej emergentnej natury. Przecho-
dzac do oddziatujacych ukladow, rozdziat 3 skupia si¢ na jednowymiarowym, rozszerzonym
modelu Hubbarda dla wypehienia v = 3/2 1 U = 2V, ktéry przy zerowym tunelowaniu
odpowiada pewnemu topologicznego uktadowi w granicy cienkiego torusa. Sprawdzamy, czy
ta réwnowaznos¢ jest spetniona takie w przypadku niezaniedbywalnego tunelowania i przy-
gladamy si¢ uwazniej kwantowemu przejsciu fazowemu, ktore jest obecne w tym uktadzie.
Rozdzial 4 przedstawia analize rozszerzonego modelu Bosego-Hubbarda w kontekscie eks-
perymentalnej realizacji w jednowymiarowej sieci optycznej zawierajacej dipolowe czastki, ze
szczegolnym uwzglednieniem topologicznej fazy izolatora Haldane’a i zjawiska superciektosci
par, ktére sg konsekwencjg dalekozasiggowych oddzialywan. Dwa zataczniki stanowig krot-
kie przedstawienie uzytych w rozprawie metod numerycznych, czyli doktadnej diagonalizacji i
grupy renormalizacji dla macierzy gestosci (ang. density matrix renormalization group). Ce-
lem tutaj jest jedynie krotkie zarysowanie kilku uzytecznych, zdaniem autora, whasciwosci tych
technik, bardziej szczegdtows ich analiz¢ mozna znalezé w przytoczonych referencjach.

7






Acknowledgements

First of all, T would like to thank my advisor, Prof. Jakub Zakrzewski, for giving me the oppor-
tunity to work under his guidance. Without his invaluable help, finishing this thesis would not
be possible. I would also like to thank all of my Colleagues in the Atomic Optics Department,
whom I had the pleasure of metting during my doctoral work, and whose company was both
enjoyable and scientifically enlightening. Special thanks go to Dr. Omjyoti Dutta, Dr. Tanja
Duri¢ and Dr. Mateusz Lacki, whose work has been indispensable in the research I have been
a part of. I am also grateful to my dear Agnieszka and all of my Friends, as well as my Parents
and the rest of my family for the constant support they have been giving me. The work was
supported by Polish National Science Centre (Grant No. DEC-2012/04/A/ST2/00088 and
Grant No. 2015/19/B/ST2/01028) and by PL-Grid Infrastructure.






Contents

1

Preliminaries

1.1 Optical lattices . . . . . ... .o oo o
1.1.1  Atom-light interactions . . . . . . .. .. ... ... ... ..
1.1.2  Laser light geometry . . . .. ... ... .. ... ... ...

1.2 Bose-Hubbard model . . . . ... ... ... ... .. ... ......
1.2.1 Basicmodel . . . .. ... ... ...
1.2.2  Extended Bose Hubbard model . . . . ... ... ... ... ...
1.2.3  Furtherextensions . . . . . . . . . ... .

1.3 Topological phenomena in quantum systems . . . . . . . ... ... .. ..
1.3.1  Berry phase and Chern numbers. . . . . . ... .. ... ...
1.3.2  Simple one-dimensional topological models . . . . . .. ... ...
1.3.3  Anyon statistics . . . . . . . . ..o e
1.3.4 Fibonacci Anyons . . . . . .. . ... ...

1.4 Quantum phase transitions . . . . . ... ... Lo oL
141 Fidelity . .. .. ..o
1.4.2  Correlation functions . . . . . .. ... ... ...
1.4.3  Structure factor . . . . .. ...
1.44  Entanglement entropy and central charge . . . . . . .. ... ...

Emergent Rice-Mele model in a 1D lattice

2.1 Introduction . . . . . . . .. .. e e
2.1.1  Topological defects in optical lattices . . . . .. .. .. ... ...
212 Thesystem . . . ...
2.2 ReSonant Case . . v v v v v v i e e e e e e e e e e e e e e e e e
2.3 Detunedandothercases . . . . . . . . . . .. .. .. ...
24 Conclusions . . . . . .. .. e e

Fibonacci anyons in a 1D lattice

3.1 Introduction . . . .. .. ... .. ...
3.2 Low tunneling behavior . . . ... ... ... oo o0 0oL
3.3 Density wave to superfluid transition . . . .. ... ... 0oL
34 Furtherremarks . . . .. ... ... Lo o

13
13
13
14
14
15
16
17
17
18
18
19
19
20
20
21
21
22

23
23
23
23
24
26
27



12 Contents

4 EBHM in dipolar gases 37
4.1 Introduction . . . . .. ... 37
4.2 Phase transitionsat p=1 . . . . .. ... L Lo o 39
43 Phasesford =01 ... .. ... . ... . .. 41

43.1 Densitywave phases . . . . . ... ... Lo oL 41
4.3.2  Superfluid and pair-superfluid phases . . . . . .. .. ... .. .. 42
4.3.3 Incommensurate pair-supersolid . . . . . .. ... .00 L. 44
44 Summary ... ... e e e 45

Conclusions 47

A Exact diagonalization 49
Al Basiscreation . . . .. .. ... ..o 49
A.2 Hamiltonian symmetries . . . . . . ... L. oL oo 50
A.3  Matrix creation and diagonalization . . . .. ... ... L0 51

B Density Matrix Renormalization Group 53
B.1 Matrix product states formalism . . . . . . ... ... L0 0L 53
B.2 DMRGAlgorithm . . . .. .. ... ... ... . .. . . ... . 55
B.3 Sine-square deformation . . . . .. .. ... Lo Lo oL 55

Bibliography 57

Author’s publications 63
Topological Rice-Mele model in an emergent lattice: Exact diagonalization approach 64
Fibonacci anyon excitations of one-dimensional dipolar lattice bosons . . . . . . . 71

Extended Bose-Hubbard model with dipolar and contact interactions . . . . . . . 84



Chapter 1

Preliminaries

1.1 Optical lattices

The theoretical physics rarely stops and waits for its experimental counterpart to catch up.
With an ever-growing number of physicists trying to explain every bit of universe’s inner
workings, devising new ways of examining and constraining these theories became a job of an
utmost importance. At the same time, the field of atomic physics saw great progress in areas
of developing sophisticated techniques of cooling dilute atomic gases and constructing lasers,
bringing unprecedented control of physical systems, allowing not only precise measurements of
fundamental constants, but also engineering complex interacting systems which realize given
theoretical models with great precision.

These two independent developments naturally aligned with each other actualizing the
idea of quantum simulators, proposed by Richard Feynman [22] — to use carefully assem-
bled quantum systems in order to simulate physics, which are otherwise hard to observe. The
examples of which include various tight-binding models, lattice models with enormous mag-
netic fields and, more recently, even quantum chromodynamics and other gauge theories. One
particular area of physics that benefited greatly from this kind of simulations is the field of
topological insulators, which is the topic of Sec. 1.3. In this section I will present the main
ideas behind using ultra cold-atoms as quantum simulators with a focus on optical lattice
settings.

1.1.1 Atom-light interactions

The study of lattices has always been inseparably connected with solid state physics. Recent
advances in atom cooling and trapping, however, brought them into experimental spotlight in
the field of atomic, molecular and optical (AMO) physics. Using carefully set up lasers and
atoms cooled to temperatures near absolute zero, different kinds of possible artificial lattices
are being explored, collectively known as optical lattices. The main ingredient is the laser light
[with intensity I(r)] acting on the atoms with the dipole force: [29]

1
F(r) = ?()CRe(oc)VI(r). (1.1)

The polarizability of the atoms, &, which depends on both the frequency of the laser w and
the resonant frequency in the model wy, can be derived using a simplified two-level model
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14 Chapter 1. Preliminaries

and the rotating wave approximation. In the regime of small detuning, A = w — wy K wy,
and even smaller excited state decay rate, I' < A, the effective potential and the scattering
length of the excited state are given by: [29]

37tc
‘/ r) =

Lim, 12 L= Um. (L)
—I(r), . c\l) = 7— r). .
o A (r) A

Because U (r) ~ I(r)A~and T, (r) ~ I(r)A~2, itis possible to reduce the effects of the
scattering by having large detuning and high laser light intensity. Furthermore, there are two

classes of trapping potentials, depending on the sign of A: atoms are drawn to either maxima
(A < 0, red detuning) or minima (A > 0, blue detuning) of the light intensity.

1.1.2 Laser light geometry

In the following description, it is assumed that a single laser beam of a total power P has a
Gaussian profile with a width w(z) that increases with the distance from the beam focal point

(2): [29]

I(r,z) = g2 1w (2) (1.4)

Tw?(z)

The beam divergence function is w(z) = wyy/1 + 22/ 212Q and so in the vicinity of the focus
both r and z dependence be approximated by a quadratic function. Typical value of wy is
around 100 pzm, while zg ranges between millimeters and centimeters. [13]

Two overlapping counter-propagating laser beams of the same wavelength (k = 277/A)
and intensity produce periodic potential:

V(r,z) = —Voe 210 @gin2 (kz), (1.5)

where the value of Vj can be found by using (1.2) and (1.4). The potential (1.5) is a lattice
of planes (constrained by the beam profile) with a lattice constant @ = 7r/k = A/2. Adding
additional pairs of counter-propagating lasers in perpendicular directions leads to more refined
systems: 2D array of potential tubes (in the case of 2 laser pairs) and 3D lattice of well-localized
potential wells (in the case of 3 laser pairs). The last example is of particular interest in relation
to this work, as it allows creating eftective 1D, 2D or 3D synthetic lattices, depending on the
depths of the lattice potential in each of the directions (as high potential barrier between
neighboring wells effectively restricts the movement in that direction).

1.2 Bose-Hubbard model

Exact description of a physical system containing a large number of interacting particles, even
if they are confined to a regular lattice, is a problem that lacks an analytical solution except
for a few special cases. In order to get a valuable insight into the behavior of such systems,
some kind of simplification is needed. For the lattice systems it is usually done through tight-
binding approximation, where one introduces an effective cutoff for the interaction length,
allowing only particles which are close to each other to affect each other. [6] This simple idea
is a basis of multiple models, amongst which is the Bose-Hubbard model (BHM).
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1.2.1 Basic model
Hamiltonian of BHM has the form:

(L))

ol =

D (i = 1) — yan, (1.6)

where the parameters are: f — the tunneling between the nearest neighbors, U — the interaction
between two particles residing on the same site and g — the chemical potential, while b; is the
creation operator for a particle at site i, A; = lAﬂleﬂl is the corresponding number of particles
operator and (7,/) denotes a sum over the nearest neighbors. The main feature of the model
is the celebrated superfluid (SF) to Mott insulator (MI) quantum phase transition [23], where
the ground state of the system changes from the extended, highly correlated state (SF) to the
one with a fixed number of isolated particles localized on each site of the lattice (MI).

This simple model is commonly used to describe a behavior of ultracold particles trapped
inside an optical lattice (one of the most famous, early examples of this correspondence is the
observation of SF to MI transition [26] in a lattice of 87Rb atoms). In such systems the BHM
arises naturally from the general, many-body Hamiltonian in its second quantization form:

2
H= fdr ¥(r)t (—f—mvz + Vext> ¥(r) + % fdr dr OV - )P @) ¥(r)

(1.7)
after taking into account few reasonable assumptions [V, is the trapping potential, in the
form of Gaussian envelope of (1.5)]. First, since the optical lattice potential is periodic, one
can describe the field operarors (i) using orthogonal Bloch functions @y 1 (1) (with & being
a band number and k being quasi-momentum). For deep lattices the separation between the
lowest and the first excited band is large and so it is enough to consider only the lowest band,
a = 0, provided that the temperature is sufficiently low. In such cases it is convenient to use

Wannier functions as the basis, giving the field operators the form:

Y(r) = Z b.w,(r). (1.8)
i

Inserting (1.8) into (1.6) gives:

A==t bth + Z ”"’b*b*bkbl S emy, (1.9)
i#f i
where:
",

- fdrwi (r) (—%v + Vm> w;(r), (1.10)
U = fdr dr' w (1w () (r — 1 Ywg(rawy(r'). (1.11)
¢ = fdrlwi(r)leext. (1.12)

From (1.10) one can recover t; ;.1 = t;;1; = t (for isotropic potential and while approx-
imating V. ~ const in the middle of the trap) and set t;; ~ 0 for [i —j| > 1 (which is
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justifiable for deep enough lattices). As for (1.11), in cold, neutral atoms it is usually enough

to consider only the short-range s-wave scattering, which, provided that ¥ is not singular, has
the form: [13]
47th?a,

m

Vir—-r) =

o(r—r') =¢gé(r—1r"), (1.13)

where 4 is the scattering length. With this assumption the only non-zero term arising from
the interactions is U;;;; = U. The only thing needed to recover (1.6) is the addition of
a chemical potential y, which is a standard procedure when describing system in the grand
canonical ensemble. This results in term p;7; = (¢ + €;)7;, unless one again chooses to
ignore the edges of the trap, in which case €; = € can be incorporated into chemical potential:
i+ € — i, giving (1.6) as a result.

Working with an optical lattice it is straightforward to manipulate relative strengths of
tunneling and interactions, /U, as increasing the lattice depth drastically reduces ¢, while at
the same time brings atoms residing on the same lattice sites closer (narrowing their Wannier
functions), amplifying U [41]. Another popular method of modifying parameters of (1.6)
employs so called Feshbach resonances — coupling of atoms’ scattering state to higher energy
molecular bound states through a magnetic field — which can modify effective a, for atoms
to the point of nullifying it or changing its sign [15].

1.2.2 Extended Bose Hubbard model

While standard BHM is a great tool to analyze simple optical lattices, there are many lattice
arrangements which require us to go beyond this simple approximation. Probably the most
notable such case are lattices filled with dipolar atoms, where interactions decay with distance
as r~3[48]:

Caipole 1 — 3 cos? 0

= > (1.14)

Vdipole (I‘) =

Here, Cyjpole is equal to pou? for particles with magnetic dipole moment y and p2 /¢, for
particles with electric dipole moment €4, while 0 is the angle between r and the polarization
direction. Experiments with multiple species of dipolar particles have been done in recent
years, with a clear progress towards atoms possessing larger dipole momenta [2, 16, 28, 49],
while also demonstrating the possibility of tuning the contact interactions in such systems
using Feshbach resonances [50].

Due to long range interactions introduced through (1.14), an dditional term resulting from
(1.11), namely V' = U;¢41yi¢i41) + Uigi+ 1) (i4+1)1> Needs to be added to the Hamiltonian (1.6),
resulting in:

2 - u
_ + JER .
H__;ﬁtbibﬁvﬁzﬁninﬁE;”i(”i_l)_”;”i' (1.15)

The Hamiltonian (1.15) is commonly referred to as the extended Bose-Hubbard model (EBHM)
and has been a topic of numerous theoretical [57, 59] and some preliminary experimental [8]
works.

Introducing nearest neighbor interaction, V/, enriches the phase diagram by multiple
phases. For large values of V, the system finds itself in checkerboard/density wave (DW)
phases, which are insulating phases characterized by a specific pattern of particle density (for
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every two nearest neighboring sites, one of them is empty and the other one is filled). For inter-
mediate values of V' a peculiar insulating phase called Haldane insulator (HI) manifests[17]. It
is analogous to Haldane phase introduced for spin-1 Heisenberg chains [32, 34] and is notable
for being a symmetry protected topological state [31] (see also Sec. 1.3). Based on numerical
calculations the existence of yet another class of supersolid phases (where both superfluid and
density wave order coexist) has been postulated [9, 59].

1.2.3 Further extensions

If the assumptions used to derive BHM and EBHM are even more relaxed, the Hamiltonian
of an optical lattice gains additional terms, which come mostly from the inclusion of next
biggest (1.11) interactions. Most prominent of those are density-dependent (density-induced)
tunnelings [T = —0.5(Vi;i41)i + Viiigi+1))] and pair tunnelings (P = 0.5V;;) [21]:

H=- th*b +ZZnn +ZZn(n -1
(L))

—T) b+ + P bF2b? - Z (1.16)

{E,h) {0 i

Since these terms are generally much smaller than the ones present in BHM the main effects
of their presence in (1.16) is a shift of phase boundaries, most noticeable in systems with high
densities (large 7). It is however expected that in the future it will be possible to engineer
systems with comparably large values of V, T and P with respect to t and U (enabled by
trapping particles with large dipole momenta and/or precise arrangement of lattice geometry)
in which case many more exotic phases, e.g. phases manifesting pair-superfluidity, are expected
to be found therein [63].

1.3 Topological phenomena in quantum systems

Present-day theory of topological insulators arose as an aftermath of the experimental obser-
vation of integer [44] and fractional quantum Hall effect [67] (IQH and FQH respectively).
These inherently many-body phenomena manifest in (effectively) two-dimensional electronic
system subject to large magnetic fields (of the order of a few teslas) and lead to an exact
quantization of a resulting Hall conductivity in a measured samples. While enlightening phe-
nomenological descriptions of electron wavefunction in such systems were quickly presented
(most notably by Laughlin [47]), recently these effects are viewed upon in the context of
much broader classification of topological systems [65, 71]. These systems are characterized
by particle-like excitations, which are nevertheless resistant to local perturbations and de-
pend only on global invariants, which are topological in nature. These properties make them
promising candidates for quantum computation, as they can help circumvent one of the biggest
problems of conventional quantum computers, i.e. the decoherence due to the interactions
with the environment, which leads to unaccounted errors (correcting this errors requires a
tremendous effort for typical quantum computer realizations).



18 Chapter 1. Preliminaries

1.3.1 Berry phase and Chern numbers

The phase of a complex quantum mechanical wavefunction, whose evolution in time is deter-
mined by the Schrédinger equation, is a key ingredient in understanding some of the most
strikingly non-classical quantum eftects, such as the double-slit experiment [19] and Ander-
son localization [4]. If a system being studied is isolated from the outside world, the phase has
no bearing on the physical state and is thus arbitrary. With that said, it may come as a surprise
that a system evolving over a closed (that is, having the same initial and final state) path C
may acquire a nontrivial phase factor, which depends only on the topology of a related Hilbert
space. This geometric phase, observed already in the 1950s by Aharonov and Bohm [1], is
known as Berry phase [10] and can be calculated as (if the evolution is over some parameter

called ¢):
1O = =i [_P@IVlp(@)dp = [ Ap)de, (1.17)

where A is called Berry connection. (1.17) can be expressed as a surface integral of a Berry
flux: F = V x A. In two-dimensional spaces the integral of F over the whole space (1 gives
another topological invariant called the first Chern number:

1
— FJ? 1.18
> ) da=¢, (1.18)

which must necessarily be an integer [35].

1.3.2 Simple one-dimensional topological models

Simple models in one dimension provide a great way to illustrate the basic notions of topo-
logical order in quantum systems. One of such models is the spinless fermion Rice-Mele
model:

N N
H=- Z <tlc;rdj + tZC]J'rdj—l + h-C-> + AZ(C}Cj - d;rdj) (1.19)
j=1 j=1

where C;r (d:r) are the creation operators on odd (even) sites of the lattice. Su-Schrieffer-
Heeger (SSH) model is a special case of (1.19) with A set to 0. In SSH case, we can rewrite
(1.19) in momentum space as H = }", 9/ Hyp; where Hy is a 2 x 2, getting as a result [7]:

1 +1
Upp = — (efi9k> , (1.20)

V2

where tleik’l/ 24 tze_ik”/ 2 - e kleiek and 4 is a lattice constant. Calculating Zak phase (Berry
phase over whole 1D Brillouin zone) [75] gives two different results depending on whether
t; > t, (D1 configuration) or t; < t, (D2 configuration), which, while not being uniquely
defined, are related by a topological invariant:

Tk~ Poa =T (1.21)

The existence of such invariant tells us that these two configurations are topologically
different and there must exist a topological critical point where their energies are degenerated
(ty = t). This property is universal for all topological phases and leads to the presence
of localized edge states on the boundaries between topologically non-equal phases [36]. As
these edge states are linked to intrinsic properties of the topological phase, they survive in the
presence of local disturbances.
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1.3.3 Anyon statistics

While models similar to the ones presented in Subsection 1.3.2 are expected to allow for-
mation of quasiparticles behaving as Majorana fermions [25, 43] (sought after as an essential
step towards topological quantum computation), they are not enough to construct a universal
quantum computer. In order to fulfill that task more robust quasiparticles are needed [42]. It
turns out that the class of particles behaving in an appropriate way behave neither as bosons
nor fermions, and are collectively called anyons.

Both bosonic and fermionic behavior result from two simple facts — first, in three di-
mensions, the path of wrapping one particle all the way around the other can be continuously
deformed to a trivial transformation, where both particles do not move at all and second,
exchanging the positions of the identical particles only once may only lead to a change of
phase (as the particles are indistinguishable). This reasoning however does not apply to two-
dimensional systems, like a sample in a large magnetic field in FQH eftect, and indeed some
of the observations are believed (yet without the definitive proof) to be explained by anyonic
excitations.

Apart from "trivial” anyons, which upon winding of one anyon around the other provide
a change of phase, there exist more sophisticated particles called non-Abelian anyons. The
name comes from the fact that the result of braiding (exchanging the positions of) pairs of
such particles depends on the order of these operations. In order for anyons to be non-Abelian
there has to exist a degenerate energy manifold in which those states live [52]. In such a case
the Berry phase is not enough to describe the evolution of the state, which is governed by a
matrix, §, = My, such that:

My, = Pl TR™ - m = (4, (R)IVglihy (R)), (1.22)

where P stands for path ordering. The anyons present in such a system can be labeled (¢;)
based on a set of properties related to braiding. The behavior of two quasiparticles brought
close to each other may either produce a single quasiparticle (or a lack thereof in case they
were each other’s antiparticle) or a nontrivial final state being a superposition of multiple
quasiparticles. The equations governing the results of bringing quasiparticles together are
called fusion rules:

$a X Pp =Y NS (1.23)

To tully characterize a non-Abelian anyonic system it is also necessary to provide the F-matrix

(F;j k) and R-matrix (R2%) which relate different orders of braiding with each other and are
themselves subject to the so called pentagon and hexagon identities [52, 66].

1.3.4 Fibonacci Anyons

In the case of Fibonacci anyons there are two particle types: 1 and 7, characterized by the
fusionrules: 1®1=1,1Q7 =7, 7TQRQ1 =7, TQ T = 1 7, which correspond to
Ni; = Nf, = NI, = N3, = NI, = 1 with the rest N¢, = 0. The name comes from
the dependence of the dimension of the fusion Hilbert space M, on the number of fused
particles 1, which follows Fibonacci series: dim M,y = F,,_1, where Fy = 0, F; = 1 and
F,=F,_1+F;,_».

The significance of this type of non-Abelian anyons is related to the fact that not only are
they enough to construct a universal quantum computer [24], but they have been postulated
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to explain already observed FQH eftect at filling v = 1?2 [61]. Fibonacci anyons were also

related to the low tunneling limit of BH model with v = % filling [5], which may point to a
possible realization of such physics in optical lattices [20].

1.4 Quantum phase transitions

The phase of a classical system is characterized by a specific macroscopic order parameter and
depends on its temperature, T, or some other intensive property. One of the biggest achieve-
ment of modern physics was the development of the phase transition theory (first proposed by
Landau), which allowed a categorization of phase transitions into a set of classes of similarities,
depending on how various parameters scale with the distance from the critical temperature,
T — T, (or other parameter driving the transition).

Similar concept exists in quantum mechanics, quantum phase transitions (QPT) however
are defined for a ground state at T = 0 and the transitions between different phases correspond
to either an actual or an avoided level crossing in the lowest states” energies[58]. As in the
classical theory, QPTs fall into few categories, each of which defines a specific critical behavior
observable in the vicinity of the transition.

The following sections contain descriptions of a few physical quantities which are com-
monly used to difterentiate between quantum phases and detect QPTs in bosonic optical lattice
systems.

1.4.1 Fidelity

QPTs usually involve a dramatic change of some order in the ground state of the physical
system. It is therefore possible to think of a simple quantity which measures such changes
without relying on the specific details of the phases involved. One such measure is the fidelity,
a term coming from the field of quantum information, which is simply an overlap between
the two wavefunctions. In case of a QPT, one can select a parameter driving said transition
(denoted ¢ here), and define the ground state fidelity related to changes in that parameter [76]:

F(g,0) =1{¥o(g = 0/2D)¥o(g+/2)) 1. (1.24)

(Note that some authors choose to use square of the modulus in the definition of the fidelity).
Here, 19(g) is the ground state of the system for the parameter value g.

The most important feature that may be identified here is whether the ground state un-
dergoes a gradual change, or there is an energy level crossing at the critical parameter value
(gc)- In the second case, the fidelity will be close to 0 near the transition point regardless of
the system size or other considerations and the discussion that follows assumes that this is not
the case

While studying thermodynamical properties of the system, the limit of N — oo (where
N is the lattice size) is taken, however in that limit the value of I' goes to 0 regardless of the
values of ¢ and 4 (Anderson orthogonality catastrophe). It is therefore useful to consider other
limiting behavior first, § — 0, as we can expand F in Taylor series with respect to ¢ to its first

nonzero-term [18, 74]:
52
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(Linear term must vanish because of the ground state normalization, which ensures that F <
1). The prefactor xr, called fidelity susceptibility, provides a valuable insight into the nature
of the phase transition without being dependent on the value of 4. xp scaling with respect to
|¢ — gl and N has been shown to follow certain relations including the critical exponent of
the transition (v) [30].

1.4.2 Correlation functions

Having an order parameter dependent on space and/or time [¢(r, )], one can define a corre-
lation function as:

C(p(r/r,/tlt,) = (gb(r,t)gb(r',t')). (126)

Away from a criticality, the spatial part of these correlations typically follow an exponential
law [58]:

Cp(r,1') o< exp(Ir — I/, (1.27)

where ¢ is a characteristic correlation length.
Inside a critical region on the other hand, in thermodynamical limit the value of { — oo,
and instead of (1.27) there is a power law:

Cp(r,x') o |r|7K/2, (1.28)

where the value of K is dependent on the universality class of the transition/phase. For exam-
ple, the values of K are well known for a transitions between superfluid and isolating phases in
one-dimensional bosonic and fermionic chains [33], such as QPT between MI and SF phases
and between DW and SF phases [46].

1.4.3 Structure factor

In condensed matter physics, the (static) structure factor is an essential tool in analyzing the
spatial structure of a material, as it is manifested through scattering patterns obtained by
bombarding a sample with X-ray radiation or neutrons/electrons. In the field of QPT and
quantum topology, the structure factor is used as a characterization of a phase, which breaks
translational invariance, most notably charge density wave (CDW) or other density wave (DW)
phases. The precise definition of the structure factor for the one-dimensional lattice of length
L and with N particles has the form:

1 & -
Sy =55 ). Wy 1970, (1.29)
e

j k=1

where 7i; is the particle density at i

of density correlations.

site. As such, it can be regarded as a Fourier transform

If a phase exhibits a regular spatial modulation, then S(g) has a local maximum for g
corresponding to a given symmetry. As an example, state |X0XO0...) (with X = %, i™ number
corresponds to occupation of i site here), having Z, symmetry, has a maximum for g = .
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1.4.4 Entanglement entropy and central charge

Entanglement entropy (EE) is a measure of entanglement of a given quantum state and as such
has no equivalent in classical physics. The definition requires a division of a system into two
separated parts (A and B), such that the total Hilbert space of the system can be expressed as
their product: H = H, ® Hpy. The state can be in general represented by a density matrix
p (which for a pure state is p = [¢p) (¢]). The reduced density matrix of p in subsystem A

is defined as the result of the partial trace over B: ¢, = trg p (where partial trace is defined

as trg = Z?L%MB (l/JZBI 0 |¢ZB ), where |l/JZB ) is i state from a basis spanning Hg). EE is then

defined as von Neumann entropy of a reduced density matrix:

SA = —trpAlogpA. (130)

As a measure of how much entanglement there is between two difterent subsystems, S 4 is
important for quantum information and computing perspective [69], but also for characteriz-
ing different highly correlated many body states [70] and for optimizing numerical simulations’
performance and applicability [54]. There is a rather famous result coming from conformal
field theory in 1+1 dimensions, for which case conformal transformations (i.e., the one that
preserves the angles) map to all holomorphic (and anti-holomorphic) functions. For a 1D
chain of the length L in the vicinity of a QPT (or, more generally, in any critical region), EE
of the subsystem of length I is [38]:

c L [l
Sp(h) = §lnl%sm<f>

where s is some non-universal constant, and ¢ is called the central charge. The value of ¢
is a characteristic, universal constant that can be associated with a specific type of QPT. For
example, for a system in a superfluid phase the value of the central charge is ¢ = 1 [14].

+ s, (1.31)




Chapter 2

Emergent Rice-Mele model in a
one-dimensional lattice

2.1 Introduction

2.1.1 Topological defects in optical lattices

As has been already mentioned in Sec. 1.3, systems able to accommodate non-trivial topologi-
cal states are thought to be well suited candidates for engineering a reliable quantum computer.
On the interface between two topologically distinct regions there must necessarily exist edge
states, which are exponentially confined to said interface — and as the topological regions are
protected by non-local topological invariants, they are resilient with respect to local pertur-
bations. This is in a stark contrast to a typical quantum computer architecture, where the
interactions with the environment quickly destroy the coherence, leading to errors propagat-
ing throughout computations and necessitating the use of a large redundancy in the form of
quantum error correction codes. The edge states can be anyonic in nature (see Subsec. 1.3.3)
which means that physically rearranging them can provide all the basic operations needed for
quantum computation.

Using lattice shaking and two strongly interacting fermionic species (denoted as 1 and |)
it is possible to engineer an effective Rice-Mele model hosting topological edge states [56].
While some preliminary numerical results were presented in the original work, in this chapter a
more thorough and precise (albeit constrained to a small system sizes) exact diagonalization (see
App. A) treatment of the proposed system is presented, following the paper [11] reproduced
in this thesis.

2.1.2 The system

The system Hamiltonian, in terms of composite bosons (pairs of different fermionic species,
bound by their interaction) and leftover majority | fermions (for each 1 fermion there is more

23
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than one | fermion), has the form:

N
A:T’@Z@I z+1+hC)—le(Pl 1+ he)

+ 2T —Jo) Z(c st 1618+ he) + QT+ ) Z(plnlnHlle +he) (2.1)

i=1
~ fa N
—Jo Zsi5i+1 + AZ”];/

where &;, &1, are composite annihilation, creation and number operarors at i™" site, while
§i(§;r) and p; (pl) are l fermion ground state (s) and first excited state (p) creation (annihila-
tion) operators, and 7 nl is the number operator of | fermions in p state. The shaking lasers
frequency is chosen to be almost resonant with respect to the difterence between p level energy
and interactions with a small detuning A.

The tunnelings in (2.1) are changed (from their standard, non-tilde values) by the shaking
such that:

:th

Ji=Jo&, Ti=Jo®T, TE=Jn(AT/w) Ty, (2.2)

where AT = \/ (K + 0E{ cos ¢)? + K2 sin? @, @ is the phase shift between the horizontal
shaking (of strength K) and the amplitude oscillatory changes (both of frequency w), K =
K/w and [ is the N-th order Bessel function of the first kind. N comes from an almost
resonant condition, Uy + E; = Nw + A, where Ly is the energy of the p state and Uy is the
energy of the interactions between p state | fermions and 1 fermions. N is set to 1 for the
rest of the chapter.

2.2 Resonant case

In this subsection the condition A = 0 is assumed and the system of length L is half-filled with
both the composites and the leftover fermions (that is, the average fillings are: n, =n = %)

The system is assumed to have periodic boundary conditions (PBC) imposed and K is limited
to K < K, = 2.405, as in the considered range the Hamiltonian is almost symmetrical around
K. (which coincides with the zero of a J function, making all of the tunnelings except for

TZ, approximately proportional to K — K,). The analysis of the system will mostly be focused
on the properties of the boson composites in the system, which in the case of low effective
tunnelings (f; and T;) form an effective lattice through which | fermions can move (this lattice
will be represented in the text as a chain of 70” and "C” characters, corresponding respectively to
empty and filled lattice sites — note however, that this is only a simplified notation, while, due
to PBC, the eigenstates of the system are actually superpositions of every possible translation
of these configurations — see App. A).

As already established in [56], the system in the vicinity of K. is in the DW phase (all
the composites repel each other, 0COCOCOCOCOCOC). For sufficiently big deviations from
K. the system enters clustered (CL) phase, where the composites stay close to each other
(0000000CCCCCCC). In order to verify the correctness of this description one can first look
at the fidelity susceptibility (1.25) for the ground state which should highlight the transition
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Figure 21: The fidelity susceptibility for system sizesL = 10 and L = 14. The sharpest peak
(for K & 2.30) is the result of the ground state energy crossing which marks the CL-M X
phase transition, while other peaks signify transitions between different configurations in MX
phase and MX-DW transition. The inset shows the energies of the lowest levels relative to
the ground state energy in the vicinity of the energy crossing for L = 10 (lines are semi-
transparent — opaqueness is proportional to the number of near-degenerate energies).

between different phases. The results, calculated for two system sizes: L = 10 andL = 14 are
plotted in Fig. 21. The first, sharpest peak is the result of the ground state energy crossing.
The presence of the other peaks hints at other phases and phase transitions present in the
system.

Additional information about the phases present in the system can be acquired withe a
help of the structure factor (129). It is easy to verify at which value of q there is a peak
of S(q) for both CL and DW phase, that is: ~CL = 2n/h and N The values of
S(q) calculated for L = 14 [Fig. 2.2(a)] show that between the expected CL and DW phase
exists a region where the density pattern changes multiple times. Thorough analysis of the
ground state (as calculations are done by ED, full decomposition of the state into Fock basis
is readily available) shows that the composites, which are uniformly spaced in the DW region,
begin to merge together into clusters, whose size grows smaller the further away K is from
Kc, eventually forming single cluster after KCa& 2.30 transition to CL phase. These phases,
which correspond to configurations such as 00000CCO0CCCCC and 000CCO0CCO0CCC |[visible
as peaks for respectively g = 3n/7 and g = 4n/7 in Fig. 2.2(a)] being the most significant
component of the ground state, will be collectively labeled mixed phase (MX) throughout the
text.

The results up to this point were restricted to small system sizes and one may wonder
whether the appearance of M X is only a finite size effect, or if this phase persists for longer
chains. In order to address this question, CL-M X and MX-DW transition points were ob-
tained from Xf calculated for L = 10, 14 and 18 (these values, along with linear fits for L-1
dependence are shown in Fig. 2.3).
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Figure 22: The ground state’s structure factor calculated for A = 0, @ = 2nz/L with
zG12..Land: @ L =124, nc=nm=2,(b)L = 13, nc = 6/13, = 7/13. S(q) is
maximal for the smallest q > 0 in CL phase, for g closest to n in DW (a) or SHP (b), and
for intermediate g values in M X phase.

Figure 23: Extrapolation of MX-DW Figure 24: Phases of the system in K-A
and CL-MX transitions for A = 0 and plane based on Xf calculated for L = 10.
L 00, which suggests that M X phase is Similar results were also observed for L =
stable for arbitrarily long lattices. 14 at selected points (See also Fig. 23).

2.3 Detuned and other cases

As the previous subsection dealt only with the resonant case, which is equivalent to SSH
model, it is informative to find out if, and how, relaxing this condition may affect the behavior
of the system. The results for moderate values of the detuning, A G [—0.01,0.01] (Fig. 24),
show that with increasing |A the M X phase spans over a smaller range of K.

In order to make use of the topological properties of SSH/RM model, both topological
and trivial phases must be present in the system, as localized, topological edge states appear
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on the boundaries between them. Creating different domains is possible by slightly changing
the filling of minority fermions/composites [creating holes (particles) for n, < % (n, > %)]
[56]. Such mechanism can be simulated with ED by setting the number of sites (L) to an
odd number and the number of composites (N,.) to be close to L/2. In the case of N, =
L/2 — 0.5 [Fig. 2.2(b)] the DW phase is replaced with a single-hole phase (SHP), wherein
the ground state contains a defect in the form of two neighboring, empty sites being present
somewhere in the system. The value of g for which S(g) is maximal correspondingly changes
toq = 7m(L—1)/L (from g = 7t in DW). The CL-MX transition stays in approximately the
same place, while the MX-SHP transitions shifts further away from K, in comparison with
ne=n, = % case.

2.4 Conclusions

In the work presented in this chapter we used ED to perform an unbiased analysis of the
periodically driven optical lattice system which resembles Rice-Mele model. The results show
that in addition to DW and CL phases, transitory MX phase arises for intermediate K values.
This phase is characterized by multiple defects present in the composite ordering which may
prove to be beneficial in the context of hosting topological edge states in the system. We also
checked cases of A # 0 and composite filling away from % which both result in similar phase
structure (except for the fact that in the second case the DW necessarily contains some defects).
Based on these results we conclude that Rice-Mele model should be a good description even
for a realistic, non-ideal experimental setup, which in addition should provide a possibility
of creating lattice defects, thus further increasing the viability of the setup in the context of
manipulating topological edge states.






Chapter 3

Fibonacci anyons in a
one-dimensional lattice

3.1 Introduction

As the topological systems with controlled non-Abelian anyons are desirable for their ability
to perform universal quantum computations (see Sec. 1.3), many proposals of realizing such
systems have been put forward. It has been shown that the one-dimensional extended Bose
Hubbard model (1.15) for certain zero tunneling parameter sets is equivalent to an exactly
solvable, thin-torus limit (i.e. Ly — 0 while L - I, = const) of a two-dimensional theory
resulting in topological Read-Rezayi states (which themselves are believed to explain some of
the FQHE observations) [5]. In particular the case of filling v = 3/2 and U = 2V seems to
be interesting, as quasiparticles corresponding to the lowest energy domain walls between the
degenerated ground state DW patterns resemble Fibonacci anyons and it had already received
some mean field treatment [73]. In this section the problem is analyzed more comprehensively
using ED and Density Matrix Renormalization Group (DMRG). The details are given in the
accompanying paper [20].

The ground state of the system is fourfold degenerate and the basis of the degenerate
manifold can be expressed in the Fock space as states: [21] = [2121...), [12] = [1212...),
[30] = [3030...), [03] = [0303...). The lowest energy quasiparticles correspond to the
following domain walls: [12][21], [21][30] and [03][12], which have the fractional charge
q/2, and their counterparts of charge —q/2: [21][12], [30][21] and [12][03] (it is assumed
here that a single boson has a charge q). The quasiparticle charge can be inferred from the
number of bosons at a two-site boundary, which is 4 for /2 domain walls and 2 for —g/2
ones (while in the ground state there are 3 bosons for every two neighboring sites).

A quick way to check that these domain walls show Fibonacci anyon-like behavior is to
consider their adjacency matrix[5], defined for the ground states |7} as: Aij = 1 if the domain
wall between |7) and [j) is the quasiparticle of a given type and 0 otherwise, giving:

0110
1001

A=l 1000 3.1)
0100

29
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The quantum dimension D of the +4/2 quasiparticle corresponds to the dominant eigenvalue
of A [68], and in this case is equal to (1 + \/g> /2, which is the value expected for Fibonacci
anyons [66].

Another informative point of view is provided by the correspondence between hardcore
bosonic systems and non-Abelian FQHE — k copies of hard-core bosonic system, projected
and symmetrized onto k-hard-core [meaning: @hH* = 0, where 4t is the boson creation
operator] bosons is analogous to Moore-Read Pfaffian state, while the excitations in a projected
subspace show SU(2); non-Abelian properties [55]. In our case, k = 3 (SU(2)3 symmetry
corresponds to Fibonacci anyons [66]) and the symmetrized projector has the form P =

Q; B;, with:

1000 0 0 0 O
01110 0 0 O

Pi=loooo0o 2242 0| (3.2)
0000 0 0 0 V6

where the rows (columns) correspond to the basis states of 3-hard-core bosonic system (prod-
uct of 3 copies of hard-core bosonic system) on ith site, in the order of an increasing total
number of bosons (in other words: P, for each site, projects 1 bosons distributed among 3

hard-core copies to 1 bosons in a single 3-hard-core system).

3.2 Low tunneling behavior

While the correspondence explained in the introduction is exact for t = 0, typically in any
experimental setup f is non-zero. In order to verify whether we can expect Fibonacci anyon-
like behavior in realistic systems, we us the following procedure. First, we calculate the lowest
energy eigenstates of the regular (that is, non-hard-core) EBHM. Then we do the same for the
hard-core boson EBHM and create ansatz states by summing 3 copies of the obtained states
and projecting them using J (the resulting states contain anyonic excitations by construction).
The similarity between the ansatz states can be then measured as a simple overlap. In both
of these cases we use ED with PBC to get the eigenstates, in the case of EBHM we impose
an additional constraint: the number of particles on each site is at most 3 - which is fairly
accurate for small values of f and enables us to reach bigger system sizes.

The energy level structure of the system for considered parameter range is split into two
degenerate (semidegenerate for t # 0) manifolds, corresponding respectively to the ground
states and the states containing two domain walls (states can not have only one domain wall
because of PBC). As the projection P does not necessarily result in orthogonal states, we
use a simple Gram-Schmidt orthonormalization procedure to get the basis. The overlap O of
the i™ eigenstate of EBHM, |ipg1), with the Hilbert subspace spanned by the projected and
orthogonalized ansatz states, |f g ), is calculated as:

Oi = \]Z | <iEBH|jansatz> |2' (33)
]

First, we take a look at the (semi-)degenerate ground state manifold for two cases: U =
2V and U = 1.99V. (The motivation for the second case is following: the degeneracy
between states [12], [21] and [03], [30] — which is necessary for non-Abelian anyons —
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Figure 31: (a) and (b): the lowest energies relative to the ground state energy, (c) and (d): the
overlap between the 4 lowest energy states (black, solid lines) / maximal overlap states(grey,
dashed lines) of EBH Hamiltonian and 4 lowest ansatz states (~ projection of 3 copies of
hard-core boson systems) for L = 14, U = 199V [a and (¢)] and U = 2V [(b) and (d)].
Drop in the overlap values in both of these cases coincides with first energy level crossings
visible in a and b.

is quickly removed with an increasing f/VV . By introducing slight detuning in 17, we get
almost-degeneracy at some finite tunneling — f/V « 0.05 in this case — instead of an
exact degeneracy at t = 0.) The overlap between the four lowest energy states of the EBH
Hamiltonian and the ansatz states in these cases (for L = 14) is shown as black lines in
the lower graphs in Fig. 31 — the overlaps between those states is approximately 1 up to
f/V « 0.1, where an energy crossing in the lowest energy states (visible in the upper graphs)
occurs and the overlaps fall dramatically, as these states are no longer related to the initial DW
patterns. If, instead of using the lowest energy states, we use the states that resemble the
initial DW patterns the most, we still see a visible drop in the overlap (gray, dashed lines).

Similar analysis can be performed for the states containing the lowest energy domain walls
(2 of them, because of PBC as was mentioned earlier). The corresponding energy manifold
accordingly contains 3L (L/2 —1) states, whose overlaps with the ansatz states (which in these
case correspond to 2 copies of the hardcore bosonic system being in the ground state and the
other one in the excited state) are presented in Fig. 32. The drop of the overlap value, visible
for f/V « 0.55 can be, similarly to the ground states case, traced to the energy level crossing,
which in this case happens for higher energy eigenstates [Fig. 3.2(a)]. For f/V < 0.5 we have
0Oj > 0.9, which suggests that even for non-negligible tunneling the domain walls retain at
least some of their original characteristics.
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Figure 32: (a): energy levels relative to the ground state energy, (b): maximal overlaps of
EBH states and ansatz states containing two +q/2 domain walls, (c) overlaps of the lowest
(excluding 4 states from the ground states’ manifold) EBH states and ansatz states containing
two £q/2 domainwalls. Datafor U = 2and: L = 10 [(a)and(b)] andL = 12 [(c)]. Decrease
in the overlap in this case is due to energy level crossing in the higher energy manifold for
t/V & 0.055.

3.3 Density wave to superfluid transition

In the previous section we showed that an energy level crossing of a semi-degenerate ground
states manifold is related to a sharp drop in the overlaps between the EBH and ansatz states.
This crossing marks the QPT between the DW phase and the SF phase. There exist conflict-
ing characterizations of this QPT in the literature, as Gutzwiller-ansatz mean field approach
suggests the appearance of an intermediate, supersolid phase between DW and SF phases
[73], while DMRG and QMC calculations predict a direct DW-SF transition for a similar
(U/V = 4/3) system [9]. We thus found it necessary to properly study the transition with
the help of DMRG (see App. B).

We first look at the fidelity susceptibility (125) calculated for a wide range of system
sizes (Fig. 33). The DMRG calculations were performed with PBC (same as ED in previous
section) and for similar maximum particles per site cutoff: Nrmex = 3 (the relative error
introduced with this constraint for L = 14 is presented in the inset of Fig. 33), the bond
dimension was up to 1200 (for L = 124). The single peak of fidelity is characteristic of a
direct transition between two phases, and we can further compare the characteristics of the
Xf behavior to those of the Berezinskii-Kosterlitz-Thouless transition, for which [64]:

Xf(L) -Xo-XilIn-1(L/a) + Q [In-2(L/a)], (34)
max(t) —A + Bln-2(L/a) + =m (35)

where a is some lattice cutoffand t = t/V. The scaling (Fig. 34) gives the extrapolated
location of the transition: tc = 0.158 + 0.004.
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Figure 33: The fidelity susceptibility in the vicinity of DW-SF transition for different
system sizes L. The inset shows the relative error of  calculated for L = 14 and different
N mexusing either ED or DMRG, with respect to the value calculated for Nmex = 15 (DMRG).

Another method of determining the critical point of the QPT is based on the central
charge, ¢ (131) (in order to get the correct values of ¢ the bond dimension of the DMRG
was increased up to 2200; particle per site cutoff was also increased to Nmax = 4). As L is
increased, the maximum ofc(F) gets closer to the value expected for SF, that isc = 1, and the
position of this maximum gets closer to the critical point of the QPT [63]. While the biggest
L which we were able to use was only L = 70, the position of the maximum does not vary
much with size (see Fig. 35) and thus we conclude from the data that ic « 0.162, which is
in agreement with the value obtained from  scaling.

We define the correlation length for the system size L as:

—1)2 <4f/>

\ ZL2 <f > 7" (36)
\ Z EFl<w

where summation is up to L/2 and not L because ofthe PBC. Ifthe QPT between DW and SF
is indeed a direct one, we should expect that the order parameter of DW phase, the structure
factor at n (129) in the vicinity of Fc is a power-law function of £

S(rc) - O ~ /L), (37)

where O (£/L) is some scaling function [45]. The values of S(fiIT) and £, calculated for dif-
ferent system sizes and for Fc obtained from (that is & « 0.158) are shown in Fig. 36.
The fitted line corresponds to 7 /v « —0.78 and its near-perfect match to data strengthens
the claim that there are no additional phases between DW and SF.
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In— (L)

Figure 34: The scaling of the maximum of fidelity susceptibility, “p(Fc)/L, and its position
(Fe) on L for 17 = 2”~. Dashed lines are fits to egs. (34) and (35) with A « 0.158, B «

—0.39, « 37.5and”™i « —94.2. For the

Figure 35: Central charge obtained with
DMRG (PBC). The maxima for pictured Ls
are all located slightly above f/y = 0.162
and linear (with respect to 1/L) extrapo-
lation yields limL"ce Rk « 1.617, while
limL*cecl « 1.001.

3.4 Further remarks

fit only the values for 5 largest Ls were used.

Figure 36: The relation between the struc-
ture factor S(fIT) and the inverse correlation
length 1/£ at £ « 0.158. The dashed line
is the power-law fit (37) with7 /v « —0.78
and 0 (E/L) = 1.

The domain walls described in this chapter may be used in experiments or quantum computa-
tion only if there is a reliable method of their creation and manipulation. One of the proposed
solutions is locally changing the chemical potential with a single site resolution — creating
the domain walls with ~/2 (—£/2) can be achieved by increasing (decreasing) the value of *
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on two neighboring sites. Another experimental problem is the inability to actually move the
quasiparticles around each other in a one-dimensional lattice. The protocol for realizing this
objective based on using so-called T-junctions has already been analyzed for Majorana fermions
[3] and we believe that it should be also applicable to Fibonacci anyons in cold atomic systems.
In the original scheme, three one-dimensional segments are connected at one point and by
moving the quasiparticles through the segments (of which only two are in topological phase
at the same time) in the right order it is possible to exchange the quasiparticles’ positions.

To conclude, we studied a one-dimensional EBHM for filling v = 3/2 and close to
U = 2V with a focus on anyonic properties of its low energy excitations. By calculating the
overlaps of these excitations and the ansatz wave functions, which by construction have non-
Abelian topological order, we demonstrated the system in question supports Fibonacci anyon-
like quasiparticles even for non-negligible tunnelings. We have also shown that according to
DMRG results there is a direct DW-SF QPT and no supersolid phases are present on the
boundary between these two phases.






Chapter 4

Extended Bose-Hubbard model in
dipolar gases

4.1 Introduction

Using the model introduced in Sec. 1.2.3, this chapter presents a careful examination of the
dipolar bosonic gas trapped in an effectively one-dimensional optical lattice and closely fol-
lows the accompanying paper [12]. Such systems have been given a reasonable amount of
attention, mostly thanks to recent experimental efforts which resulted in trapping atoms of
ever-bigger dipolar momenta, giving hope for realizing topological states of matter resulting
from long-range interactions between particles (such as the Haldane insulator phase). The
existing literature is, however, either limited to standard EBHM (ignoring terms such as next
nearest neighbor interactions and density dependent tunneling) or very small system sizes
(where ED is still applicable).

The system considered consists of a dipolar species of particles trapped in a 3D optical
lattice with potential heights V., V|, and V such that V, =V, =50Eg and V, « V|,V
(effectively freezing the dynamics in y and z direction). We assume the Hamiltonian is similar
to (1.16), however we also include next-nearest neighbor tunnelings and interactions (respec-
tively £, and V) and assume P = O (this term, being much smaller than the ones we in-
clude[21], does not bring any qualitative differences). The parameters arising from interactions
between particles (U, V, V., and T) have their origins in both the contact [which we assume
in the form of Vg, (¥) = 47th%ay /md(r), with ag being the effective scattering length and
m mass of the particle] and the dipolar (1.14) interactions, such that U = Uceneaee + Udipolar

and so on (where U,y and Ugipol,, are calculated using (1.11) for an appropriate potential).

As the proportion V /U is much smaller than 1 [see the inset of Fig. 4.1(a)] for the typical
optical lattice setups, we propose using Feshbach resonance (which enables us to modify a;
using a magnetic field) in order to balance contact and dipolar interactions in such a way that
V' /U has the desired value. In our scheme we assume that we are able to change the values of
as and V', which allows us to satisfy two chosen constraints on Hamiltonian parameter values,
which we choose to relate £, U and V with each other (so we can work in a two-dimensional
space of parameters, e.g. U/t and V /t). To obtain the exact values of a; and V, the strength
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Figure 41: (a) The values of V/A/Er and fls/fl necessary for 17/i = 2 and V/f = 1.5 to hold
true and (b) the values of the extra parameters added to EBH Hamiltonian in relation to the
strength of the dipolar interactions, rf. The inset of (a): the relative magnitude of V and U

Hamiltonian parameters calculated separately for contact and dipolar interactions.

of the dipolar interactions, parametrized here using a dimensionless quantity:

d = mcCdipole/(223~2fl) (41)

has to be known. The values of Vx and £r needed to obtain L7/i = 2 and V/f = 1.5
depending on d are shown in Fig. 4.1(a). The value of d ranges between 10—3 and 10—2 for
recently trapped atoms, such as 52Cr and i64Dy (for molecules it can be much higher, e.g.
d« 0.1 for i68Er2). With the values of VX, fls and d known, all of the parameters in the

Hamiltonian can be determined [see Fig. 4 1 b ].

All of the results presented in this chapter have been obtained using DM RG with open
boundary conditions (unless stated otherwise). We thus typically exclude the chemical po-
tential term from the Hamiltonian (as the DM RG works with the fixed number of particles).
Furthermore, we impose additional Hamiltonian terms at the boundaries, equal to the effect
the ideal DW configuration (for appropriate lattice filling) would have, whose main purpose is
to break the DW degeneracy (e.g., for P = 2, where the density wave has the form |0202...)

in the Fock space, these terms would be 2 2~ + 2y, nn(w? + w?’)).
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4.2 Phase transitions at /~>~=1

The case of p = 1 filling is particularly interesting, as in this case the EBHM hoststhe HI
phase. Because of that, the problem of determining the phases in this casehas already been
given considerable attention and the phase diagram can be found in multiple works. Here |

will only provide a brief summary and afterwards | will present in which way the inclusion

of Vnnn, T and inm (which are evaluated for the practical realization of EBH in cold atoms,

as explained in the introduction) changes the already established picture. The phases of the
system are:

« MI for large values of 17/i and small values of V /f,
+ SF for small values of both 17/i and V/f,
« DW for large values of 17/i and V/f,

+ HI for an intermediate values of 17/f and V/f.

Figure 4.2: Critical values of U/f (a) and V/f (b) for the QPTs between the phases present
in the system. The values for a regular EBHM are marked with red dashed lines, while
points mark the results obtained for the model including additional terms (black solid lines
are interpolations between these). In each case some constraint between the values of f, U
and V is assumed: V/W = 3/4 fora and U/f = 3 for (b).

In order to provide somewhat clear picture of the effect that the dipolar interactions have
on the extent of the HI phase, we restrict ourselves to two cuts of U/f-V/f plane. The
first of these is V/” = 3/4 and the phases in this case are (in the order of decreasing
tunneling): SF, HI and DW (so that there are two QPTs: SF-HI and HI-DW). The other
one is U/f = 3, in which case for large tunnelings the system is in the MI phase instead of
the SF phase. The phase boundaries obtained here (the method is described in more detail in
following paragraphs) are compared with their locations for the case of simple EBHM (that
is, ViMm = T = fnm = 0) which can be found in the literature (we additionally verified those
using our DMRG code). For the comparison, see Fig. 42.

While qualitatively the picture does not change much with the inclusion of additional
terms in the Hamiltonian, one can see that in the case of V/W = 3/4 the changes can be
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pretty drastic - as the value of d increases, the boundaries shift heavily to larger values of the
tunneling. A curious effect is the appearance of the boundary between SF and HI for large
values of tunnelings, which seems counterintuitive. Take note, however, that the lower part of
Fig. 4 2a (U/t & 0) is the regime where our model does not hold — the bigger d is and t
should be, the lower VX/E R must be [see also Fig. 4.1(a)] and at some point the lattice becomes
too shallow to be described correctly without including longer range tunnelings (which is the
reason for including inmn terms in our Hamiltonian).

Figure 43: The string and DW order parameters, the energy gap and the critical exponent K
calculated for V/U = 3/4 andd = 0.02 using DMRG. Black dashed lines mark the positions
of the QPTs. The location of DW-HI transition (tc/U & 0.175) was determined using AE
(which must be 0 at the transition, as H1 is a topological phase) and Odw (which has a finite
value in DWphase and isO otherwise). HI-SF transition (tc/U & 082) islocated using a
fact that K = 0.5 atthe transition (see text). The inset shows the decayof o string and AE on
the logarithmic scale.

To determine QPTs locations, we used the following quantities: the energy gap between
the ground and the excited state (AE) and the order parameters Op = lim r*0 Cp(r) with:

csF() = (blbj+r), (42)
cewW () = (-1)r 0 nj$nj+r) and (43)
Cstringfr) = Zjsta+' S”kSnf+r) . (44)

In order to properly determine the phase boundaries, all of these parameters were extrapolated
in the thermodynamical limit, L 00, based on the data obtained for L = 100, 200, 300 and
400.

The exemplary values used in the determination of phase boundaries are shown in Fig. 43
(d = 0.02, V/U = 3/4) and Fig. 44 (d = 0.09, U/t = 3). In the case of V/U = 3/4,
we were unable to determine the location of HI-SF transition based on the order parameters
mentioned before — even though both AE and o string are non-zero in HI phase and must be



43 Phases ford = 0.1 41

Figure 44: The string and DW order parameters and the energy gap calculated for L7/i = 3
and d = 0.09 using DMRG. Black dashed lines mark the positions of the QPTs. DW-HI
location (V/fc « 2.74) is determined in the same way as described in the caption of Fig. 4 3.
The energy gap closes at the HI-M1 transition, however the extrapolated values of A£ do not
provide a clear-cut location of this closing. We resort to a different method: we extrapolate
the position of the minimum of A£ using a function: V/f = V/fc + fIL—2. The result of
this fit is shown in the inset (V/fc = 1.94, a « —2.96, b « 0.56).

0 when the system is in SF phase, our results do not show clearly where does this transition
take place [see the inset of Fig. 43]. To circumvent this problem we resort to (128) which
describes Csf behavior in the SF phase — it is known that the parameter K on the boundary
of the superfluid phase for v = 1 filling is equal to 0.5 [46].

4.3 Phases ford-= 0.1

Haldane insulator phase is not the only interesting aspect of EBHM. The model supports the
formation of supersolid phases, which manifests non-zero DW order simultaneously with SF-
like power-law decay of correlation functions. Including additional terms arising from dipolar
interaction (such as density induced tunnelings and pair tunneling) leads to pair-correlated
phases [63]. In order to address the question of which of these phases are to be expected in
a realistic system with large dipolar interactions, we present the phase diagram of the system
with unconstrained lattice density for V/U = 3/4 andd = 0.1 (Fig. 45).

4.3.1 Density wave phases

The ground states of the system in DW phases have a form of alternating empty and filled
sites, which for lattice density p = ft/2, ft G N is representable in Fock space as |0ftOft...).
The inclusion of y nm in our model gives rise to additional DW phases for density p = (2m +
1)/4, m G N, namely [OmO(m + 1).). The boundaries of DW phases can be calculated
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Figure 45: Phase diagram of the system for V/W = 3/4 and d = 0.1. Data for phases
other than IPSS are obtained using OBC DMRG for L = 200 sites. Black lines showing
transitions from DW phases were obtained from the dependence of the energy on the number
of particles in the simulation (see text). Most of the pair-superfluid phases (PSS1, PSS2, IPSS
and PSF) are distinguished by non-zero value of pair-tunneling correlations Cp, in the case
of PSS1 however nearest-neighbor correlations are insufficient to infer its pair-superfluidity
(see Fig. 46). Supersolid (PSS1, PSS2 and IPSS) phases are distinguished by non-zero DW
order, for IPSS this order is incommensurate.

as "+ = /ImN=(NDW+9£(N)/9N (where NDw is a total number of particles in a lattice
corresponding to a given DW pattern) using DMRG results. Although this values depend on
the system size, we set the system size L = 200 in our calculations which is sufficiently big to
get reasonable value of the chemical potential. Another justifiable approximation we employ is
Ft « £[E(*dw = 1) —E(Ndw]) instead of a proper derivative, although to get ~ values for
the lobes we also take into account £(Ndw + 2) values, performing a quadratic interpolation
of £(N) on each side of Ndw and calculating a proper derivatives.

4.3.2 Superfluid and pair-superfluid phases

Superfluidity is manifested through the behavior of the correlation function (4 3), which then
shows a power-law decay. A simpler approach would be to consider only the next-nearest
neighbors, resulting in the quantity Z j <*["z+1>/t, which is directly related to the tunneling
term in the BH-like models. Here we will also consider similar correlation function associated
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with pair-tunneling and a simplified quantity in the form of the pair-tunneling correlation:
1
Cp =1 2 D2, (4.5)
i

The values of C,, calculated for different densities (as indicated by the value of ) and tunneling
strengths are shown in Fig. 4.5.

((BH2(b)?)

(BN (by)?)

Figure 4.6: OBC DMRG results of ((b;rbi +r)) correlations averaged in the middle (half of
the sites) of an L = 200 lattice for (a) PSSI phase at p = 1.25, t/U = 0.59 and (b) PSS2
phase at p = 2.25, t/U = 0.37, both of them showing power-like decay. Log-log plots of

the respective correlations are shown in the insets.

For p < 1 only DW and SF (power-law Cgy decay and no finite order parameters) phases
are present in the system. Interestingly, the system supports pair-superfluidity for high den-
sities of particles in the system even though the Hamiltonian of the model considered in this
work does not contain pair-tunneling terms (note however the inclusion of density-dependent
tunneling terms, b;r(ﬂi 41+ 7 +1)Bi +1, in the Hamiltonian). Large tunneling leads to pair-
superfluid phases (PSS1 and PSS2), for which both DW order and pair-superfluidity is present,
while there is also pair-superfluid (PSF) regime (pair-superfluidity without DW order) and a
region where the system is in the phase we dub incommensurate pair-supersolid (IPSS, ex-
panded upon in the next subsection). While pair-superfluidity for PSS1 phase is not clear
from the value of C,, (due to strong DW order present in the phase, which suppresses near-
est neighbor correlations), it is evident if we consider the dependence of the pair-correlation
function on the distance (Fig. 4.6).
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4.3.3 Incommensurate pair-supersolid

The most basic characterization of the IPSS is its DW order, which in contrast to DW phases
considered up to this point does not correspond to the structure factor (129) peakingatq = n,
but instead the wavenumber this peak occurs for appears to be in general an irrational number
(so that the density wave is incommensurate in relation to the lattice constant). This require-
ment forces us to adopt a different numerical method, as the DM RG used earlier assumes
a fixed number of particles in a lattices of a fixed length which necessarily imposes rational
values of wavenumber and density. To circumvent this limitation we did the simulations for
the IPSS phase using a so called sine square deformation (SSD) DM RG: it differs from the
regular DM RG in that the Hamiltonian is multiplied by a position-dependent sine square
function [sin2(/~/L)]. This enables the lattice edges (which now contribute only negligible
energy) to act as a reservoir of particles (or holes) for the system — the middle part of the
lattice — to which the particle number constraints no longer apply (see App. B), allowing us

to include the chemical potential term again.

Figure 47: Fits of the SSD DMRG (L = 100) data to: (a) (47), (b) (48), (d) (49), and
(c) values of S(») for f/lU" = 0.48 and » = 3.7 . Wavenumber values obtained this way are

written above each plot. Only the middle 40% of the lattice sites are considered.

The following formulas are valid for the ground states of the system in IPSS phase (and as

such they are used to determine the extent of the phase in Fig. 45):

<A> = Pbulk + AN sin (M(««)!'+ <Po)' (46)
<njfti+r>= Cl + Alsin("<Mwr + " )r —ai, (47)
((&ND2("+r)2) = [C2+A 2sin("<Mwr + ~2) ] =2’ (48)
CDW(r) = A3sin("tb>r + "3)r—=3 (49)

where we see that correlations decay as a power law, however there is an oscillatory modulation,

whose wavenumber is ~<Mw> for density, pair-correlations and density correlations [accordingly,
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Figure 48: (a) black marks: collected values of gs showing a linear dependence (410), red
line: linear regression g~tb) = 0.9991(6)n —0.4984(7)g”nn). (b) relation between g’hn)
and jGouk shown for different values oft/u .

it is also the location ofthe peak of the structure factor s(q)] and g~tb) for c qw (»). Examples
of the fits of the SSD DMRG data to egs. (46) to (49) are shown in Fig. 47.

A consideration ofg*nn) and g~tb) values obtained for multiple parameter sets correspond-
ing to the domain of the IPSS phase reveals a simple relation between those two wavenumbers
(see Fig. 4.8(a)):

btb) = n —0.5tf(nn) (410)

To further reinforce the claim that the wavenumbers g*nn) and g”~tb) are in fact irrational
(unlike some other known cases of DW, e.g. and underdoped p = 0.5 DW where q = 2np
[27]) we check how g*nn) relates to the density and the Hamiltonian parameters [Fig. 4 8 b ]
and conclude that there is no simple dependence of the wavenumber on the density.

4.4 Summary

We conducted a thorough analysis of a realistic (i.e. including next-nearest neighbor interac-
tions and density-dependent tunnelings) extended Bose-Hubbard model using DMRG with
up toL = 400 system sizes. We found that the phase diagram for p = 1 is qualitatively simi-
lar to the one obtained for standard EBHM, particularly the HI phase survives the inclusion
of additional terms in the Hamiltonian and becomes even more pronounced for realistic, low
values of dipolar interaction strength we considered, where additionally a suppression of SF
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phase is observed. Moreover, strong dipolar interactions in the regime of high (> 1) densi-
ties give rise to pair-correlated phases — not only a pair-superfluid phase, but also additional
pair-supersolid phases.

Especially interesting is a phase with incommensurate density wave order, to simulate
which we resorted to an unorthodox DMRG method (i.e. sine square deformation DMRG),
uncovering various characteristic properties of the ground state in the said phase. This phase,
which is not present in the standard EBHM, is currently lacking a proper theoretical descrip-
tion explaining the aforementioned features. It is also unclear how this phase relates to other
incommensurate DW phases, e.g. those found in spin systems [51, 62].



Conclusions

The idea of creating topological systems using optical lattices has generated much interest over
the last few years. As experimental implementations face numerous challenges it is important
to carefully examine the feasibility of proposed schemes. I believe the work presented in this
thesis managed to fulfill this goal as I have shown, using reliable numerical methods, that the
systems considered in Chapter 2 and Chapter 3 do have the postulated properties. Additionally,
I have also established the domains of the relevant quantum phases, both in the context of
aforementioned propositions and in the case of a generalization of EBH in Chapter 4, where
the additional care was taken to be faithful to realistic physical parameters.

The analysis presented in Chapter 2 is constrained to small system sizes due to the mem-
ory requirements of the ED. While the problem of the validity of the obtained results has
been addressed (in the form of the scaling of the boundaries with respect to the system size) it
would be valuable to produce data for bigger system sizes, which would be possible using other
numerical methods. Chapter 4 explores a rich landscape of phases enabled by the dipolar inter-
actions in a realistically feasible experimental setup. Analyzing those of these phases, that are
not present in a regular EBHM, in a more theoretical context could provide a clear description
of how these complex phases emerge from additional terms added to EBH Hamiltonian.

DMRG method used extensively throughout the presented work is the de facto standard
for one-dimensional quantum lattice calculations, however it is not devoid of biases and so a
comparison with fundamentally different methods, like quantum Monte Carlo, would allow to
better assess the correctness of the data. Using such methods would also make treatment in 2D
possible, which is particularly important in the case of non-Abelian anyonic quasiparticles.
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AppendixA

Exact diagonalization

Non-relativistic quantum mechanics are governed by the Schrédinger equation:

9
i = HIp(b)), (A1)

where 1 and H are, respectively, the state of the system and the Hamiltonian representing some
model used to describe that system. Equation (A.1) can be simplified if H is time independent.
Then, the full solution boils down to finding the eigenvectors and the eigenvalues of H, which
correspond to stationary states in the system and their respective energies. For models in which
the Hilbert space (which is spanned by all of the states of the system) is finite dimensional, Ff
can be (after choosing orthogonal and complete basis) expressed as a matrix. This matrix, H,
can be then diagonalized using standard algebraic tools.

Diagonalizing Hamiltonian matrix, other than being a natural method of solving small
systems with only a few states (where it can be done by hand), turns out to be a popular
choice for analyzing complicated systems with many body interactions which can not be solved
analytically. This straightforward approach has severe limitations due to the fact that the size
of a Hilbert space grows exponentially with the system size. For example, for Heisenberg model
of L spin-1 particles, the size of the Hilbert space is 2 — which for . = 40 is around 1012,
and is (after employing few tricks) the biggest size which can be exactly solved using present
day computer technology. It is therefore hard to make precise predictions on the behavior of
large systems based on the exact diagonalization alone. Due to the unbiased nature of this
method, it is often used in conjunction with more efficient methods, which, however, rely on
several approximations.

A.1 Basis creation

In order to uniquely determine Hamiltonian matrix, a basis needs to be chosen. There is,
usually, a natural choice that depends on the model that is being considered and in the case
of the BHM this natural choice is the Fock space. The basis vectors are chosen to be states
with definite number of particles on each site, that is:

My, ..onpy = (Bh)ym )" . (b 10y, (A.2)
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where 1, is the number of particles on i-th site, b; is the creation operator on i™®

is the vacuum state.

In BHM the total number of particles (N) is conserved, and so this constraint must be
taken into account when creating the basis. The simplest (and the fastest) solution is to just
write I loops, where for i® loop, if i < L the variable n; goes from 0 to Nz = N —

site and |0)

-1 . . . . . ..
Z;:l nj, and #; = Nz While this method requires knowing in advance what L is, it can

be generalized using recursion (with the depth of L — 1). Another way to generate the basis
is to create the states one-by-one using the following algorithm, which, given a state in the
basis {11;}, allows us to find the next one, {n;}[77]:

1. Find k <L, such that ny # 0andn; =0 forallk <i < L

n;, l<k
, nk—l, i=k
ZMEINCYE n41, i=kal
=17 " "
0, i>k+1

Following this procedure beginning with state IN0O...0) we get all of the states.
The procedure described above can be modified for the cases, where there is a set limit on
the number of particles occupying each site (N,,,):

1. Find L" such that #; = N, forall L' <j < L.
2. Find k <L, such that ny £ 0and n; = 0 forall k <i < L.

3. Let N = N — Z;ll +land 1= k+ 1+ | (Ng) /Ny .

n;, i<k
nk—l, i=k

4. 1, =1 Npao k+1<i<l
Niymod N,,,,, i=1
0, i>1

A.2 Hamiltonian symmetries

As the Hilbert space grows exponentially with system size, it is important to make use of
underlying symmetries of the Hamiltonian in order to reduce the memory requirements. If
such symmetries exist, it is possible to introduce a basis in which the Hamiltonian matrix has
a block diagonal form, each block corresponding to some conserved quantity. This of course
reduces the memory and processing power requirements, as each block can be diagonalized
separately, while also having a reduced dimensionality.

One of the most common symmetries is a translational symmetry in a lattice with periodic
boundary conditions (PBC), that is [[, T] = 0 with T being the operator translating state
by one lattice site. A conserved quantity introduced by this symmetry is the total quasi-
momentum, k, and the associated basis states are (for a 1D lattice of length L):

1 &
atk)) = — ) e T a), (A.3)

a r=0
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where |a) is some state from the Fock basis and k = m 27/L, m = —L/2 + 1,...L/2.
All translations of |a) correspond to the same |a(k)) states. The value of the normalization
constant is N, = N2/R,, where R, is the smallest non-negative integer such that TRa gy =
lay. The definition (A.3) produces valid states only if kR, / (277) € Z.

This basis can be stored as a representative Fock basis vectors |a), such that |a) is the
smallest (in the context of some order imposed on all Fock basis vectors) among the states for
which (A.3) holds. The generation is similar to the one presented in the preceding section,
but at each step one must check whether the currently considered state corresponds to a new
la(k)) by finding the smallest translation (that is, a representative) and seeing if it is already
stored in the basis.

A.3 Matrix creation and diagonalization

In order to create the Hamiltonian matrix, Hy = ({1H lj) (here, i and j, correspond to the ith

and jth states of the chosen basis), one could in principle iterate over both i and j, calculating
Hj; directly. It is, however, computationally costly (scaling as the Hilbert space dimension
squared, dIZJ) and a much better alternative is to do a single iteration over the basis states and
for each of these calculate every possible H |i) term by term. Furthermore, as the number of
terms (in the usual models) scale linearly with the size of the system, the resulting Hamiltonian
matrix will be sparse and so it may be stored efficiently (only non-zero terms have to be stored).
Having some |¢p) obtained as a step of this iteration:

Hliy = hypl¢) + ... (A.4)

we then must find what is the position of this vector in the basis (find j, such that [j) = |¢)).
One of the simplest way is to have the basis vectors ordered (using some hash function, or
simply by storing the vectors in such a way, that we can compare them, e.g. by doing a
lexicographic comparison between Fock states’ occupation numbers) and then use a binary
search on this ordered set (which takes on average ~ log, (d) steps).

The method described above is simple for BHM with a Fock basis, but for some other
bases and their representations (such as the quasi-momentum basis |a(k))) calculationg Hj is
not as straightforward. If we use the quasi-momentum basis, |a(k)), and store the basis states
as the representative Fock space states (see the previous section), calculating (A.4) (la) = [i)
will be used, where |a) is the representative of [a(k))) is only the first step. The |¢) is not
necessary a representative state itself, which we may denote as |b) = T! |¢). Knowing [ and
using (A.3) we finally arrive at the value of the matrix element in the quasi-momentum basis:

(b()H; plak)) = hy ye=™ N, /N, (A.5)

where the indices of I:Ii,(p are there to point out that (A.5) is only a part of the full term
(b(k)|Hla(k)), which is a sum of all (b(k)lHi,(pla(k)) such that |¢) is a translation of |b).
As the Hilbert space of the problem is very large, the diagonalization can not be complete
(in a reasonable time) and one must resort to algorithms that provide only a handful of eigen-
vectors/eigenvalues (examples of such methods are Lanczos method and Arnoldi method).
Many implementations of these can be easily found in the form of libraries available for multi-
ple programming languages (one of such libraries is ARPACK). The eigenvectors found using
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ED provide a full picture of an underlying quantum states and so it is possible to calculate any
quantum mechanical quantity.



Appendix B

Density Matrix Renormalization
Group

In this appendix the DMRG method will be presented. Instead of a rigorous, complete de-
scription, the focus will be on the applications of this method in the works presented as a part
of this thesis. The DMRG used in these works has been based on the ITensor library [40].
More details on the method can be found in the vast literature on the subject, which contains
some excellent reviews (such as [60]).

B.1 Matrix product states formalism

Tn general, quantum state of the lattice of L sites, where the state on the i site is spanned
spanned by the local d-dimensional basis ¢;, can be written as:

W)=Y oy 01, 07 (B.1)
01,.--,01,

Equation (B.1) can be rewritten in the following form, named matrix product state(MPS):

Py = > M{M3>M" oy, ..., 01), (B.2)
0100

L

where MY is a matrix of dimensions d;_1 X d; (assuming the form (B.2), we must set dy =
dy =1 for the matrix multiplication to be a scalar, making M and M;" effectively vectors).

(B.2) can be used to describe any kind of state, but the dimensions d; of the matrices
grow exponentially with system size (for even L, d; = dmin(L=0) Fortunately, the relevant
class of states, that is ground (and other low-lying) states of short-range Hamiltonians in 1D,
can be effectively approximated by matrices of dimensions d; < x, where x (called the bond
dimension) is in practice between 100 and 1000 (for lattices containing hundreds of sites).
The approximation can be done directly on the lattices through singular value decomposition
(SVD): every matrix M of dimensions N 4 x N can be decomposed: M = USV* in such a
way, that U =1, vtV =IandSisa square diagonal matrix of dimension min(N4, Ng),
which elements, called singular values, are non-negative. Reducing the dimensionality of M
can be then done by discarding the smallest singular values.

53
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The MPS representation is not unique, as for any invertible matrix X one can make a
transformation of neighboring matrices: M;T I M;T ‘Xand M; /it - X 1Mi 13t without
changing the resulting state [¢f). This gauge freedom can be used to impose some convenient

properties on the matrices M;T !, the most important of which are:
Z(M;f Z')JFM;T =1, left-normalization (B.3)
Ui

Z M;T i (M;T nt=p, right-normalization. (B.4)
4]

Let us denote left-normalized matrices by A’ and right-normalized by B;*. Then, we can
decompose |1f) into so-called mixed-canonical form as (the detailed scheme of arriving at this
decomposition can be found in [60]):

Py = Z Airl“'A?SBZ?'“BZLIUl,...,UL>, (B.5)
T1,.-,0]

L

where S is a diagonal matrix of singular values obtained through SVD. This form can signif-
icantly simplify the calculations in which MPS is used (see Fig. B.1).

Similarly to MPS, we can define any operator, the Hamiltonian in particular, as a product
of local matrices:

~ 01,073 07,07
H = Z Wll 1"'WLL L |Ul,...,UL> <Ul,...,UL|. (B6)
T1,00,0

L

There exist a few recipes as well as automated tools (such as AutoMPO included with ITensor)

for transforming given classes of Hamiltonians into MPS form. The matrices M’ and W;T w0
can be thought of as tensors of rank 3 and 4 respectively. ¢; and ¢] indices are referred to
as physical indices, while the matrix indices of Ms and Ws matrices are link/dummy indices.
This picture allows easy pictorial representation of MPS and MPO operations, example of
which is presented in Fig. B.1.

Ay Ay |44 S |- By S

)

) —

)

B B
| |
O O
I I

Al AL l-Al_fH s B! |- B} S B!

1

Figure B.1: Graphical representation of calculating the value of a single site operator, (110;11)
for |p) given by (B.5). Horizontal lines correspond to matrix multiplication, while vertical
lines to the summation over possible local physical states, ; (both kinds of lines correspond
to tensor contractions of tensor forms A; and B;). The form on the left of this figure is
equivalent to the one on the right, as the properties (B.3) and (B.4) can be used to transform
multiple contractions into an identity (a line).
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B.2 DMRG Algorithm

The first step of the algorithm is to prepare an initial MPS. The simplest approaches are to
simply take a random state (which for Bose-Hubbard models may be from Fock basis) or
choose one resembling the final state (such as a DW state in the DW phase), in which case
one must be careful, as the DMRG may become stuck in the local minimum. If some quantity
(e.g. particle number) is conserved by the Hamiltonian, the initial MPS sets its value.

To find the ground state, instead of trying to diagonalize the whole H at once (which,
while possible using MPO and MPS formalism, would still require resources comparable to
full exact diagonalization), one can minimize the energy site-by-site. This is done by updating
only one or just a few matrices M;T " at a time (here, the matrices of sites i and i + 1 were
being updated in each minimization step). In order to do this local minimization, the non-
variable parts of the Hamiltonian MPO and current trial MPS have to be contracted (which
can be done efficiently if the MPS is in the mixed-canonical form (B.5) [60]), leaving only
the indices of the local matrices. These indices can be combined in order to cast this problem
in the form of a regular eigenequation, to which standard diagonalization methods (such as
Jacobi-Davidson or Lanczos) can be applied.

The procedure described above is applied step-by-step to the MPS sites, from one end of
the lattice to the other one and then back to the starting point. Each local minimization done
throughout these so-called sweeps is followed by SVD decomposition, which at the same time
ensures the correct mixed-canonical form and allows discarding the smallest singular values to
keep the dimensions of MPS matrices below the required level. That is, the diagonalization
and SVD steps done for i and i 4+ 1 site during jth sweep (left-to-right, iterating i from 1 to
L — 1) change the tensors in a following way:

A1y M1 By Binoja

diag A , , B
IR S ij—1 i+1,j-1  Pi+2,j-1

L Ay Ay M1 Bigojr

where the first index denotes the site, second how many sweeps were done already, A are
left-normalized matrices, B are right normalized matrices and M are matrices without any
normalization properties imposed, primed matrices are the results of diagonalization procedure
(matrices without primes are the results of SVD and approximation). The starting point is
M By 0B30++Br o, the left-to-right sweeps end at Ay 1---Ay_q 1M 1. The procedure for
right-to-left sweep is analogous to the one described in (B.2) (matrices on the sites i and i + 1
go from A; ;M1 to M; By j1)-

The sweeps are done until the energy converges to a stable value with a given accuracy (or
until any other chosen criterion is met). The energy of the MPS updated using the DMRG
procedure must necessarily be lowered (or stay the same) after each step, this does not, however,
guarantee that the correct ground state is ever reached (as a consequence of using only local
updates to the MPS state).

B.3 Sine-square deformation

The DMRG is the most efhcient for open boundary conditions. These boundary conditions,
however, introduce strong boundary effects (e.g. in the form of Friedel oscillations [72]) which
effectively increase the system size necessary to obtain precise bulk properties of the system. It
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is therefore advantageous to use methods which simulate PBC in system with OBC and with
that goal in mind multiple smooth-edge DMRG variations were introduced, each of which
consists of applying a smooth envelope to the Hamiltonian, such that the Hamiltonian stays
approximately the same in the middle of the lattice and decays to 0 towards the edges.

One of such variations is the so-called sine-square deformation (SSD), wherein the en-
velope is the sine-square function [37]. If we denote by I:Ii,i = H; all the terms acting on a
single site i and by I:Ii,i 4 all the terms of the Hamiltonian acting on sites { and i + , then the
SSD Hamiltonian has the form:

r Lo
Hggp = Z Zfi,jHi,i-i-j/ (B.7)
1

j=0i=

where 7 is the maximum range of the Hamiltonian terms (e.g. ¥ = 1 for BHM and r = 2 for
EBHM), and the envelope function f (i, ) is:

£, :sin2l% <z+]_71>] (B.8)

The SSD DMRG, apart from being able to simulate PBC with OBC, allows for non-
conservation of quantities otherwise conserved by the Hamiltonian. In the case of Bose-
Hubbard model, this allows us to simulate the system in grand canonical ensemble-like situa-
tion[39], wherein the particles/holes on the edges of the lattice provide only negligible energy
addition, and thus the edges function as a particle reservoir for the middle part of the lattice
(which correspond to the bulk properties of the system). To control the density of the par-
ticles, one must then use the chemical potential term, —p )" #i; (without any deformation
of the particle-conserving Hamiltonian, this term only shifts the total energy and may be
discarded). This method has an additional advantage when dealing with phases, where the
density is incommensurate with respect to the lattice site (such as the IPSS phase from Chap-
ter 4) — the number of particles does not have to be an integer (in contrast to the regular

DMRG).
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Topological Rice-Mele model in an emergent lattice: Exact diagonalization approach
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Using exact diagonalization methods we study possible phases in a one-dimensional model of two differently
populated fermionie species in a periodically driven optical lattice. The shaking amplitude and frequency
are chosen to resonantly drive s-p transition while minimizing the standard intraband tunnelings. We verify
numerically the presence of an emergent density wave configuration of composites for appropriate filling fraction
and minimized intraband tunnelings. The majority fermions moving in such a lattice mimic the celebrated
Rice-Mele model. Far away from that region, the structure changes to a clustered phase, with the intermediate
phase abundantly populated by defects of the density wave. These defects lead to localized modes carrying
fractional particle charge. The results obtained are compared with earlier approximate predictions.

DOI: 10.1103/PhysRevA.93.033631

I. INTRODUCTION

Ultracold atoms trapped in optical lattices provide systems
characterized by an unprecedented control over various pa-
rameters, enabling a simulation of a wide array of exotic
solid-state models. One example of such phenomena are
topological insulators [1,2], which are of particular interest
in the field of quantum information and spintronics due
to their inherent stability and transport properties [3-5].
Lattices hosting systems showing topological properties have
been realized experimentally, both for two-dimensional (2D)
[6- 11] and one-dimensional (1D) models (e.g., Su-Schrieffer-
Heeger [12] and Rice-Mele [13] dimer models in Ref. [14]
or Thouless pump in Refs. [15,16]). Optical lattices by
themselves do not allow for generation of impurities on
which boundary localized modes may appear— the lattices
are necessarily perfect. In two dimensions, the localized
defect— a vortex— may be created by a vortex wave [17,18]
leading to a well-placed dislocation. In one dimension, the
situation is not so simple, but a recent proposition [19]
suggests that topologically nontrivial states may emerge in
systems consisting of two subspecies of strongly attracting
fermions. There, the topological structure is not encoded in
the underlying lattice geometry, but rather is an emergent
feature arising from atomic interactions, enabling creation of
defects with less constraints. For high enough values of the
interaction strength, fermions of different species tend to bind
together forming composites, and if there is some imbalance
in a number of atoms of both species, excess fermions stay
unbound. To extract essential properties of the system, one has
to take into account higher bands (p band at least, as in the
model studied below) and the effects of strong interactions,
such as the density-induced tunnelings [20- 23]. The lattice
shaking is employed with the shaking frequency such that
the interband density-induced s to p tunneling is resonantly
enhanced. As a result, in a 1D chain, the emergent system
is proposed to be described by the Rice-Mele model [20].
For a triangular lattice geometry, similar processes lead to the
creation of synthetic non-Abelian fields in an emergent dice
lattice [24].

Let us note, parenthetically, that physics of p-orbital
fermions is very rich, leading to a possible creation of
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Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) states [25] as well
as density stripes at appropriate fillings due to nested Fermi
surfaces [26,27] even in the absence of any periodic driving
(for a review of these effects see [28]). Those systems were
studied using both two- and three-dimensional models. Here,
we shall restrict ourselves to small 1D systems amenable to
exact diagonalization.

Let us stress that the main approximation used in pe-
riodically driven models discussed in Refs. [20,24] is to
neglect the tunneling of the minority components. As aresult,
one generates a modified Falicov-Kimball-like model with
immobile composites (made out of strongly coupled pair of
fermions) and mobile excess fermions. We test this assumption
in the present paper. Namely, we are employing an exact
diagonalization method to the system described in Ref. [20] in
order to assess the validity of the results presented there. The
fidelity and structure factor analysis allow us to classify the
ground states for different values of parameters. We consider
also explicitly possible configurations with a given number of
defects.

Il. SYSTEM

The system considered is a mixture of two species of
unequally populated, strongly attractively interacting fermions
in a 1D periodically shaken optical lattice. The Hamiltonian of
the system is [20] H = Htun+ Hdit+ Hons + Hsh(t), where:

Htun= -J0~ [s/s)+ 4 isjjl+ J1
(i) (i)
Hdit= ~ M
0),

+ TOL(J - i)pinjsj + H.c.)],

p\pj’

i(n + nl)sjj + Tip}(n) + nhpj

Hos = UO”

~njni + U11Z Pipinj + E11Z
i i i

Hsh(t) = k cos j(nj + slsj+ pjpj)
j

+ 5E lcos(™ + e) EPIPI- (1)
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FIG. 1. Visualization of the kinetic tunneling processes present
in the system. Blue (open) and red (filled) half circles denote the
minority, f fermions and the majority, | fermions, respectively.
Observe that the minority fermions appear paired in composites only.

Above and in the following, sj,si, p\,pi are creation and
annihilation operators of | fermions in the s and p bands
respectively, while sfi-,Sfi are s-band creation and annihilation

operators for f fermions. Accordingly, hi,hp, and hf are the
corresponding number operators. Note that while we take into
account s and p bands for | fermions we consider only the s
band for thef component. Thatis so because we assume that f
fermions form a minority component with filling close to 1/2.
On the other hand, we assume abigger density for I fermions.

The single-particle tunneling part of the Hamiltonian is
given by Htun (compare Fig. 1). We assume both species
to have the same mass and feel the same optical lattice
for simplicity. With the adopted sign convention J0,J1> 0.
The density-dependent tunneling part is denoted as Hdit
The tunneling coefficients TO,T1,TOL are given by appropriate
integrals of Wannier functions [20,23]. Since the p-Wannier
orbital is antisymmetric, the interorbital tunneling amplitudes
have opposite signs in opposite directions as reflected by (j -i)
factor.

The basic assumption of the model is that attraction
between different species dominates the problem energetically.
Consider the on-site energy term Hons. Under our assumption,
U0 is negative with |UO|giving the large energy scale. E 1, the
energy of the p band, is another large energy. As tested by us
with Wannier functions for different lattice depths, |U1| the
energy of the interaction between a fermion in the p and in the
s band, is smaller than |UO|.

With that assumption, the lowest-energy manifold is filled
with composites— pairs of f and | fermions— and the remain-
ing | fermions, leading to nontrivial dynamics. Note that, for
example, if aminority f fermion tunnels from a given site, it
leads to breaking of the composite. It costs a huge amount of
energy (JUO]) unless the tunneling occurs to a site in which a
majority | fermion waits to form a composite with the f parti-
cle. Only the latter processremains in the low-energy manifold.
In effect, the simple tunneling of the minority fermion may be
viewed as a tunneling of the composite, accompanied by a
reverse direction tunneling of the majority fermion (compare
Fig. 2) within this manifold. The system may be described
by operators describing excess majority fermions (residing
either in the s or p band) and the composites described

PHYSICAL REVIEW A 93, 033631 (2016)

FIG. 2. Visualization of the direction-dependent interband
density-dependent tunnelings in the dressed picture. The dressed
tunneling amplitudes are direction dependent.

by annihilation (creation) operators ci(c\) obeying hard-core
boson commutation relations. The corresponding composite
number operatoris ht = c\ci. The presented intuitive picture is
fully recovered on a more formal level by an appropriate
construction of the effective Hamiltonian [19]. In effect, the
excess majority fermions move in the emergent lattice created
by the composites. To avoid excessive repetitions we refer the
reader to Ref. [19] for details while Ref. [24] provides yet
another example of a two-dimensional construction based on
the idea described above.

The second important step is to derive the effective
Hamiltonian valid for the high-frequency driving obeying the
(almost) resonant condition

Ul+ E1= Nm+ A (2)

with N being an integer and a small detuning JA | m. Ob-
serve that the time-dependent part of the Hamiltonian, H sh(t),
contains two time-periodic terms. The first one describes
a standard horizontal lattice shaking (after an appropriate
gauge transformation) as originally proposed in Ref. [29]
and reviewed, e.g., in Ref. [30]. Such a horizontal shaking
has been realized experimentally by several groups [31- 33]
and serves as a convenient knob on lattice system properties.
The second term is due to the harmonic variation of the
lattice depth. This translates into a periodic modulation of
the p-band energy offset SE1 [20]. The phase e between
the two harmonic modulations can be easily controlled in
experiments. The procedure of averaging is fairly standard
and is described in detail in Ref. [20]. We quote here the final
effective Hamiltonian expressed in terms of composite and
excess fermion operators:

N N
H=~"~ £ (~ + 1+ Hc.)- fORJ2(p}hCsi-1 + H.c.)

i=1 i=1
N
+ (2f0 —t ) ) :(cisi+lci+lsi+ H.c.)
i=1
N
+ (2f1+ T )£ (pithChGlpi+1+ H.c)
i=1

=z

N
- T 5]125isi+1 + A_\]12hp’ (3)
i= i=

where the tilde sign over tunnelings and density-dependent
tunnelings indicates their dressed character (after time averag-
ing). Explicitly, f = J 0(K)Ji with | = 0,1 corresponding to
s and p band respectively and J 0 being the Bessel function
[20,29]. A similar dressing takes place for intraband density-
dependent tunnelings T. On the other hand, the interband
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s-p tunneling amplitude value becomes direction dependent
due to the phase difference between shaking amplitudes. We
express that asymmetry by denoting the tunnelings between
Pi A si+1 as 70+ and pi N si-1 as 70-. These tunneling
processes are visualized in Fig. 2 and read explicitly [20] fOr =
JN(A+/m)T01, where A+ = ~(K + SElcose)2+ K2sin2e.

W hile the frequency of the periodic drive is fixed by the
resonance condition (2), the shaking amplitude K provides a
convenient parameter to tune the properties of the system. In
particular, Kcsuch that Kc/m « 2.405 corresponds to the zero
of Jo Bessel function. For such a choice of K, the intraband
tunnelings almost vanish and the interband density-dependent
tunneling becomes the only mechanism of transferring the
majority fermions (the composites becoming immobile in this
limit). Then, as suggested in Ref. [20] for n = 1/2 (the
filling for minority fermions), the composites form a density
wave (DW) in the ground state while the excess majority
fermions are described by a Rice-Mele topological dimer
model. On the other hand, sufficiently far from Kc the standard
tunneling mechanisms dominate— the system then organizes
into a clustered phase (CL) with composites and empty sites
separated in space [20].

To test this prediction, one has to carefully estimate various
parameters appearing in the minimal Hamiltonian, (3). They
depend on the details of the lattice potential and interactions
between two species. We follow the assumptions of Ref. [20]
and assume the optical lattice potential to take the form Vlatt =
Vi sin2(nx/a) + Vi[sin2(ny/a) + sin2(nz/a)], with a being
the lattice constant. For V+ > V|| the system is effectively
one dimensional. We take V+ = 25 while Vi = 8 in the units
of the recoil energy ER= h2/(8Ma2) (note that a = X/2
with X being the wavelength of the laser beams forming
a standing wave pattern). As a dimensionless interaction
strength we take a plausible value a = as/a = -0.1 [with
as being the (negative) scattering length]. That, together with
lattice parameters, allows us to estimate all the tunneling
and interaction parameters of the model using the Wannier
functions appropriate for the lattice potential [20].

As far as the shaking is concerned, we obviously concen-
trate on the vicinity of K/m = 2.4 region, taking the vertical
shaking to be in phase with the lateral one (¢ = 0), which
gives 70- > TOr. For simplicity, we assume first the exact
driving resonance A = 0. In Fig. 3 we show the dependencies
of the different dressed tunnelings as a function of K/m (we
shall later assume anotation K = K/m) coming from Wannier
function calculations.

To find the ground state of (3) we have yet to define the
density of majority component, which is taken to be unity
(thus we have a 1/2 filling of composites and 1/2 filling
of excess fermions). Then, we use the exact diagonalization
method based on Refs. [34,35]. Diagonalizations take place
in the Fock space of all possible configurations of the system,
assuming that each site i may be empty or occupied by asingle
composite or ai fermion in s state, or both the composite and
i fermion, although the second one in p state (because there
is already an s-state i fermion in a composite). Therefore,
the local Hilbert space consists of four states per site with
no truncation. For an even number of fermions, a fermion
tunneling between arbitrary edges (thatis, between the first and
the last site) leads to an additional phase (sign) change arising

PHYSICAL REVIEW A 93, 033631 (2016)

FIG. 3. 7,7 and 7+ tunnelings for VO= 8, Vt = 25;a = —0.1,
N = 1, and 0 = 0. For K = K/m range shown in the figure there
exist three phases: the density wave (DW) (blue), the clustered phase,
CL (white), and the mixed phase, M X (pink). Boundaries of these
phases were calculated using the fidelity susceptibility (see Fig. 4)
and the structure factor (Fig. 5).

from the anticommutation relations. Because the number of
fermions is half the number of sites, available numbers of sites
are of the form of L = 41+ 2,1 e Z.

With periodic boundary conditions, the Hamiltonian in
Eq. (3) commutes with the translation operator (f), which al-
lows us to use states with the conserved total momentum (k) as
our basis: T \a(k)} = eik\a(k)}. States with different ks are or-
thogonal to each other,andk e {(—L/2 + 1 )f,... ,(L/2)I}
[because TL\a(k)) = elkL\a(k)) = \a(k))] with L being the
length of the chain. Diagonalization consists of creating states
in the basis (for some or all values of k), calculating matrix
elements of H in that basis, and using numerical algorithm
to get eigenvalues and eigenvectors for the lowest-energy
states. We would like to point out that the total momentum
k serves only to split the large Hamiltonian matrix into smaller
blocks.

IIl. RESULTS

We carry out exact diagonalizations typically on a chain of
length L = 14 (leading to matrices of the rank ~840 000). For
selected data we show the results for L = 18 (matrices ofrank
around 131 x 106). As tunnelings are nearly symmetric with
respectto Kc « 2.405 (only TG are noticeably different, which
leads to small, quantitative— but no qualitative— changes),
we will only consider K < 2.405. In the interval of interest,
the ground state corresponds to k = n.To characterize its
properties and locate possible phase transitions we use the
fidelity approach [36]. We calculate the fidelity, F, asso-
ciated with a small parameter change 8 [here F(K,8) =
(f-0(K - 8/2)\"0(K + 8/2))] using the eigenvectors comin&q
from the diagonalization. For 8 « 0, we get F « 1- xy,
which defines the fidelity susceptibility, x [37,38]. It is
commonly understood that the fidelity susceptibility diverges
at phase transitions. For our finite system, the possible
crossovers will be identified by the maxima of x .
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FIG. 4. Fidelity susceptibility, X , for the ground state for L = 14.
Observe a sharp peak at K = 2.3 and arich structure of peaks up to
about K = 2.35. The different phases are analyzed using the structure
factor, see the text and Fig. 5.

A. Resonant case

As mentioned above, the simplified analysis [20] predicts
the existence of two composite arrangements: the density wave
(DW) close to Kc = 2.405, where intra-band tunnelings are ef-
fectively switched off, and the clustered phase (CL), where the
composites group together. Thus, we should expect a single X
maximum for K < Kc corresponding to the border between
these two phases. The numerical results are, however, quite
different (compare Fig. 4). There are indeed two regions of
low-fidelity susceptibility for K < 2.29 (with a sharp peak of
x around ft = 2.3) as well as for ft values close to Kc (for
ft > 2.35) indicating stable phases. On the other hand, the
interval ft e (2.29,2.35) shows a structure of peaks with x
having significant values almost everywhere.

To understand that somewhat complicated behavior of x
we consider the structure factor here defined as

S(K,q) = (nC- 1) (n)- 2)e-ignli-jl~, (4)

where «cis the number of composite bosons (0 or 1in our case)
occupying ith site. Figure 5 shows three areas with different
behavior of structure factor, each corresponding to different
phase structure. For the C L phase, the structure factor S(ft,q =
2/L) « 0.1, while values for different q are close to 0, which
happens to be the case for ft sufficiently far from Kc. On
the other hand, for DW, S(ft,q = 1) = 0.25 and vanishes for
other g values. Such a behavior is seen close to the resonance,
ft > 2.35. Thus, indeed the two phases obtained close to the
resonance and far from it show the properties predicted in
Ref. [20]. Note that since the number of particles is strictly
conserved in exact diagonalization, we cannot use some mean-
field order parameter to classify the phases observed. Still the
identification based on the structure factor is unambiguous.
The behavior is more complicated in the intermediate
interval of ft values. The structure factor for both q =
2/L and q = 1 becomes small while intermediate q values
(4/L,6/L,...) become important. The situation seems some-
how clearer close to the border of phase transitions. Around

PHYSICAL REVIEW A 93, 033631 (2016)

FIG. 5. Structure factor S(ft,q) calculated for L = 14 sites and
different g values as indicated in the figure. For ft > 2.35 a single
g = 1value dominates indicating DW phase. Similarly, for ft < 2.29
g = 1/7 dominates pointing out to the clustered phase (CL). Changes
in the structure factor behavior nicely correlate with peaks in the
fidelity susceptibility, compare Fig. 4).

ft = 2.3 the peak in fidelity susceptibility coincides with
the change in ground-state structure [as seen in the S (K ,q)
plot]; instead of the fully separated phases of composites
and empty sites we observe splitting of the composites
cluster into two [in small (Aft « 0.001) interval directly
above ft = 2.3] and three clusters (which corresponds to
the dominant S(ft,3/7) value). Let us denote the pure CL
phase as a string 0000000CCCCCCC with C sites being
filled by composites. Respective many-cluster phases can be
traced back to 00000CC00CCCCC and 000CCO0CCOOCCC
configurations as verified by a careful examination of the
ground-state wave-function expansion in Fock space (possible
due to the small size of our system). On the other hand, while in
the vicinity of Kc we observe a pure DW phase, close to
ft = 2.35 the inspection of the wave function reveals an
addition of defected components, with two sites breaking the
DW symmetry. The relative importance of a single defect
component changes smoothly from practically zero close
to Kc [observe that above k = 2.35 all g components of
S(ft,q) vanish except q = 1] to become significant below
ft = 2.35. The subsequent peaks of the fidelity susceptibility,
X in Fig. 4 nicely coincide with different components of
S(ft,q) dominating the structure factor. That corresponds,
as again confirmed by the inspection of the wave-function
components, to successive defects of the partial DW leading
to small clusters eventually merging as K moves further away
from Kc.

One may pose an important question whether the mixed
phase observed is not really a finite-size effect, which will
disappear in the thermodynamic limit and the mean-field
analysis [20] will be recovered in that limit. To provide
an answer, we have evaluated the borders between different
phases for the longer chain with L = 18. Plotting the borders
as a function of 1/L and extrapolating to the infinite chain
one can see a clear indication that the mixed phase should
not be purely a finite size effect (see Fig. 6). Let us note
that this behavior is reminiscent of striped phases observed in
the two-dimensional Falicov-Kim ball model [39]. Importantly,
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FIG. 6. Borders between DW and M X phase as well as M X and
CL phase as a function of the inverse system size. Observe that the
mixed phase persists in the extrapolated L ~<X) limit.

considering the standard optical lattices systems, the typical
lattice size is about 50 sites, thus the results obtained here are
of a direct experimental relevance.

Using results from diagonalizations, one can easily cal-
culate the correlation function of composite bosons, C cj).
When a system is in the DW phase, the correlation function
decays exponentially with increasing j | (cjcj)] a exp (-j/lc),
compare Fig. 7. The correlation length Ic depends strongly
on K, compare the correlation functions for K = 2.36 and
K = 2.40. For other phases much slower decay, presumably
powerlike, is observed but no definite conclusions may be
drawn due to small sizes considered. To that end, one should
perform a numerical study of a much larger chain, e.g.,
using density matrix renormalization group (DM RG), which
is beyond the scope of the present work.

FIG. 7. Correlation function C cj) of creation operators for
boson composites in ground state calculated for L = 14 sites
system for three values of parameter K = K/a> which are in
the mixed (K = 2.32) and density wave (K = 2.36,2.40) phases.
The correlation function decays exponentially in the DW phase,
for the MX and CL (not shown) phase the decay is much slower,
presumably powerlike.

PHYSICAL REVIEW A 93, 033631 (2016)

FIG. 8. Different phases in the K -A plane. Observe the shrinking
of the intermediate mixed phases region while the interesting density
wave arrangement of composites region gets larger. The borders
obtained for this plot were collected from diagonalizations of L = 10
system with five composites, results for L = 14 at selected points
show that the picture is not affected significantly by the system size.

B. Detuned case

W hile the studies of Ref. [20] and the results presented
above concentrated on the A = 0 case corresponding in the
DW phase to the SSH Hamiltonian [12], it is interesting to
see whether the full Rice-Mele model [13] for A = 0 leads to
similar conclusions. To that end, we have studied the phase
diagram in the K-A plane as shown in Fig. 8. Observe that
while the border of the CL phase is not sensitive to A, the
region of DW actually increases eating up the M X phase.
Therefore, the Rice-Mele model seems to be realized quite
easily with the present system.

The most interesting physics of the Rice-Mele model
comes from localized modes on defects on the borders
between topological and trivial phases [13,40]. As discussed
in Ref. [20], the present model allows for control of the
number of defects by changing slightly the filling of minority
fermions, i.e., of composites. For the filling nc < 1/2 one
creates holes in the DW, for nc > 1/2 we should have extra

FIG. 9. Structure factor S(K,q) for L = 13 and N = 6 compos-
ites. Such asituation results in adefect (hole) present in the system. A
single hole leads to a structure factor being dominant for q = 12/ 13,
the presence of a hole results in nonvanishing values of S for other
g’s. As before, the CL phase is characterized by the structure factor
being most prominent atq = 2/L.
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particles. Indeed, as visualized in Fig. 9 when we consider six
compositesin L = 13 sites, the DW phase (occurring for seven
composites and L = 14 sites) is replaced by a single-hole
phase (SHP). Due to the periodic boundary conditions and
the translational invariance of the system, the ground state
is a combination of states with a hole at different positions
along the lattice as revealed by the eigenstate inspection in the
Fock representation. The border between a SHP and mixed
configurations is placed close to the value for the border of the
DW phase in an ideal half filling of composites (taking into
account finite-size effects). For K far from Kc, we observe a
sharp phase transition to clustered phase with holes and defects
separated.

IV. CONCLUSIONS

Using exact diagonalization on small systems, we have
addressed the problem of resonantly shaken optical lattices
in which an unevenly populated mixture of two species of
fermions is held. We have verified the basic model studied
in Ref. [20] where, neglecting minority fermion tunnelings,
density wave arrangements of composites were found in the
situation when the shaking amplitude was tuned in a way
enabling switching off all of the intraband tunnelings. Then,
the excess majority fermions move in an emergent lattice
(formed by composites) with direction-dependent tunnelings
realizing the topological Rice-Mele model. In the simplified
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region, the ground state contains superposition of many
differentcomposite arrangements. This phase may show quasi-
long-range order, which is absent in the density wave phase.

We have also shown that the density wave phase in the
vicinity of shaking parameters combination switching off
intraband tunnelings (K/m « 2.405, the zero of zero-order
Bessel function) persists even when the shaking frequency is
not adapted precisely to the s-p orbital resonance condition,
thus it is quite robust. We have explicitly shown that the
deviations from the ideal half filling of the minority fermions
(and thus the composites) leads directly to defects (holes or
extra particle) that, if occurring on the edge of the topologically
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We study a system of dipolar bosons in a one-dimensional optical lattice using exact diagonalization and density
matrix renormalization group methods. In particular, we analyze low energy properties of the system at an average
filling of 3/2 atoms per lattice site. We identify the region of the parameter space where the system has non-Abelian
Fibonacci anyon excitations that correspond to fractional domain walls between different charge-density waves.
When such one-dimensional systems are combined into a two-dimensional network, braiding of Fibonacci anyon
excitations has potential application for fault tolerant, universal, topological quantum computation. Contrary to
previous calculations, our results also demonstrate that super-solid phases are not present in the phase diagram
for the discussed 3/2 average filling. Instead, decreasing the value of the nearest-neighbor tunneling strength
leads to a direct, Berezinskii-Kosterlitz-Thouless, superfluid to charge-density-wave quantum phase transition.

DOI: 10.1103/PhysRevB.95.085102

I. INTRODUCTION

The large recent interestin non-Abelian topological phases
of matter is strongly motivated by the possibility of a
fault-tolerant topological quantum computation [1- 6] based
upon non-Abelian anyons [7- 10] that appear as quasiparticle
excitations for such exotic quantum phases of matter. The
errors caused by local interactions with the environment are
a basic obstacle for quantum computation. The main idea
behind topological quantum computation is that non-Abelian
anyonic quasiparticles can be used to encode and manipulate
information in a way that is resistant to errors, and therefore
to perform fault-tolerant quantum computation without loss of
information (decoherence).

The understanding of the origin and properties of non-
Abelian states of matter is also of fundamental importance
and is at the frontier of current theoretical and experimental
research [11- 15]. The main objective is the investigation of
new models that have non-Abelian quasiparticle excitations,
or support non-Abelian defects, as a result of complex
interplay between topology and quantum mechanics [16,17].
The robustness against small local perturbations is due to the
topological nature of these states of matter, that therefore
can be used as building blocks for topological quantum
computation.

In this paper we study a system of ultracold dipolar bosons
trapped in a one-dimensional (1D) optical lattice and at an
average filling of 3/2 atoms per lattice site. The system can
be well described by an extended Bose-Hubbard Hamiltonian
with the on-site and nearest-neighbor interactions [18]. We
study the ground states and low energy elementary excitations
of the system in the regime of small tunneling between lattice
sites and identify the region of the parameter space where
the system supports non-Abelian, SU(2)3 Fibonacci anyon
excitations.

In 1D quantum statistics is not well defined. The inter-
change of two quasiparticles in one spatial dimension is im-
possible without one particle going through another. Therefore
the adiabatic exchange (braiding) of these quasiparticles is not
possible in the strictly 1D system that we have considered.
However, braiding can be achieved by connecting these 1D
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systems with T junctions into atwo-dimensional (2D) network
as suggested previously in the case of Majorana quantum wires
[19].

Our results show that the system supports Fibonacci anyon
excitations in the regime where (quasi)degenerate manifolds
of energy states are well defined, without crossings between
the energy levels within different manifolds. This regime
corresponds only to a part of the charge-density-wave (CDW)
region in the phase diagram of the system, while the system has
nontrivially (quasi)degenerate ground states in the whole CDW
region. As indicated in previous studies [18,20], Fibonacci
anyon excitations correspond to fractional domain walls
between different CDW's.

Also, contrary to previous calculations based on Gutzwiller
wave-function approach [18], our results demonstrate that the
supersolid (SS) phases are not present between the superfluid
(SF) and CDW regions of the phase diagram of the system for
the specific average filling of 3/2 atoms per lattice site con-
sidered throughout this paper. The system for arbitrary fillings
has also been considered by Batrouni etal. [21] where the SS
phases were observed at other higher fillings. Still at the partic-
ular value of V= 3/2 the authors of [21] were unable to verify
the presence of the SS phases. We claim that instead, decreas-
ing the tunneling strength between the neighboring sites leads
to adirect, Berezinskii-Kosterlitz-Thouless (BKT), superfluid
(SF) to charge-density-wave (CDW ) quantum phase transition.

The anyonic quasiparticles, which are neither fermions nor
bosons, are associated to systems in two spacial dimensions.
Namely, when two quasiparticles are exchanged in two
dimensions, the wave function of the system can gain any
phase factor ela, which motivated the name anyons. On the
other hand in three spacial dimensions the only possible phase
factors are ela = +1 or - 1, which corresponds to bosons or
fermions.

If in addition there are m degenerate states yi (i = 1,...m)
for n quasiparticles at positions x1,...,xn, the result of the
quasiparticle exchanges is more than just a change of the
phase of the wave function. In that case an exchange of two
quasiparticles can rotate one of the degenerate states, Vi,
into a different degenerate state yj within a m-dimensional
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degenerate Hilbert space for n quasiparticles, yi ~ Aijyj.
In general, exchange of other two quasiparticles will be
described by a different rotation matrix, yi A Bijyj. For
two consecutive exchanges of the quasiparticles, the final
state of the system will depend upon the order in which
these exchanges were performed, since the matrices A and
B do not commute, that is AB = BA. Such states and their
quasiparticle excitations are therefore called non-Abelian or
noncommutative.

This exotic non-Abelian statistical behavior allows fault-
tolerant manipulation of the quantum information stored in
m-dimensional Hilbert space of nnon-Abelian quasiparticles.
Quantum computation is aprocess ofinitializing acontrollable
quantum system to some known initial state \yi), evolving the
system by a unitary transformation U(t) to some final state
\yf), and finally measuring the state \yf) at the end of the
computation. The quantum computational code is defined by
the unitary transformations, which can be engineered to be any
unitary transformations if there is sufficient control over the
underlying Hamiltonian of the system.

For alarge class ofnon-Abelian states any unitary transfor-
mation can be generated only by braiding quasiparticles [2,3],
which consequently allows universal topological quantum
computation through braiding. An example of such non-
Abelian states are the states that support SU(2)3 Fibonacci
anyon quasiparticle excitations [2- 4]. The final result of the
computation, thatis the final state of the system after evolution
by a unitary transformation, can be obtained by a topological
measurement based on a non-Abelian generalization of the
Aharonov-Bohm effect [2- 4].

Non-Abelian states were initially predicted in fractional
quantum Hall (FQH) systems [7,22- 27] that are constrained
to two spacial dimensions, and subsequently in various similar
FQH-like systems in 2D [4,26,28- 39]. However, analogous
states were also found to appear in various one-dimensional
(1D) models [40-50].

Whether in 1D or 2D, non-Abelian states of matter have
a global hidden order with constituent particles following a
global pattern that is not associated with breaking of any
symmetry. This hidden order is associated with organization of
particles in indistinguishable clusters [27,44,45,49,51]. Each
cluster corresponds to an underlying Abelian copy, and SU(2)k
non-Abelian states can be obtained from Kk such Abelian
copies by symmetrizing over the coordinates of the clusters
[27,44,45,49,51]. This symmetrization (indistinguishability)
can be achieved by applying a projection operator to a direct
product of the wave functions for k copies, which introduces
the possibility of topological degeneracy and non-Abelian
statistics in the space of quasiparticles.

The projection operator projects k local degrees of freedom
corresponding to k copies onto a new degree of freedom that
is symmetric under exchange of any of the k components and
leads to a topological degeneracy not related to simple sym-
metry considerations. This topological degeneracy is robust
against perturbations and interactions with the environment.

In our calculations we use exact diagonalization (ED)
and density matrix renormalization group (DMRG) [52-54]
methods to study low energy properties of the system for
system sizes up to 124 lattice sites and with periodic boundary
conditions.

PHYSICAL REVIEW B 95, 085102 (2017)

The region of the parameter space where the system sup-
ports non-Abelian Fibonacci anyon excitations is determined
by calculating the overlaps between the exact wave functions
for the low-energy states of the Hamiltonian describing the
system at average filling of V= 3/2 atoms per lattice site and
the corresponding ansatz wave functions which have SU(2)3
non-Abelian order by construction.

The ansatz states are constructed by applying a sym-
metrization projection operator to a direct product of the
corresponding wave functions for three Abelian copies at
filling fraction V= 1/2 atoms per lattice site. The projection
operator introduces indistinguishability between the copies
(symmetrization over the coordinates of the clusters) which
leads to SU(2)3 non-Abelian order.

The paper is organized as follows. In Sec. || we consider
exactly solvable points in the parameter space of the underlying
extended Bose-Hubbard Hamiltonian and demonstrate that
Fibonacci anyon excitations correspond to fractional domain
walls between different degenerate CDW ground states of the
system. In Sec. Il we present ED and DM RG results away
from the exactly solvable points. In Sec. IV we further char-
acterize the SF to CDW quantum phase transition. Protocol
for braiding fractional domain walls within a 2D T-junction
network is described in Sec. V. We draw our conclusions in
the final section, Sec. V I.

Il. FIBONACCIANYON EXCITATIONS AS FRACTIONAL
DOMAIN WALLS

The system of ultracold dipolar bosons in a 1D optical
lattice can be well described by an extended Bose-Hubbard
Hamiltonian of the form [18]

H = ~tr2(aiai+l + ai+lai)+ U £ ni(ni - 1)

+VAn-ni+l (1
i

where t is the tunneling amplitude between the neighboring
sites, U is the on-site interaction, V is the nearest-neighbor

interaction, and the bosonic operators a\/ai create/annihilate

a boson on site i. The operator ni = a]ai denotes the number
of bosons on site i.

Previous studies showed that the Hamiltonian (1) near the
lattice filling V= k/2 supports SU(2)k anyonic excitations
in the parameter regions where the system has nontrivially
degenerate CDW ground states [18,20]. In particular, at
average filling V= 3/2 that we consider, the low energy
excitations are SU(2)3 Fibonacci anyons. To demonstrate
that the low-energy SU(2)k anyonic excitations correspond
to domain walls between different degenerate CDW ground
states we first consider exactly solvable points in the parameter
space, that is, the ground states and the low energy excitations
of the Hamiltonian (1) att = 0 and U = 2V.

In general, for the filling fraction v = k/2att= 0and U =
2V, the ground state has nontrivial degeneracy. The ground
states are all CDW states with unit cells [lI,k —I], where | =
0,1,....k [18,20]. For v = 3/2 there are four degenerate CDW
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ground states:

[030303..> = [03]
1121212..) = [12]
p12121.> = [21]

1303030...)

[30].

The low energy quasiparticle/quasihole excitations correspond
to domain walls between degenerate CDW s with unit cells
[Lk —I] and [I £ 1,k —I~ 1] [18,20]. More precisely, fol-
lowing domain walls correspond to elementary excitations [20]

[k —11[k —1 —1,0 + 1] for 0 < | < k,
[k —LI][k —I + 1,1 —1] for 0 < I < k,
3
[k,0][k — 1,1], 3
[0,k][1,k — 1],
where [a,b][c,d] = I...ababcdcd...>. For the filling fraction

V= 3/2 elementary quasihole and quasiparticle excitations
are [20]

[.21211212..) = [21][12],
[..12122121..) = [12][21],
[..12120303...) = [12][03], @)
[..21213030...) = [21][30].

If the lattice bosons have a charge q, than the quasipar-
ticle/quasihole excitations have a fractional charge +q/2
[18,20]. In other words, the states (4) have one boson more
or less at two sites where a domain wall is formed. Since the
states (4) have one particle more or less than the ground states,
for a system with a fixed number of particles the elementary
excitations are quasiparticle-quasihole pairs.

We further demonstrate that these fractional domain walls
are non-Abelian SU(2)3 Fibonacci anyons [10], similar to the
elementary excitations ofthe v = 12/5 Read-Rezayi fractional
quantum Hall (FQH) state [24,25]. If a fractional domain wall
is aFibonacci anyon then its quantum dimension is the golden
ratio dF = (1 + V5)/2 [10,55,56]. The Fibonacci sequence is
a sequence with the property that each number in the sequence
is the sum of the previous two numbers in the sequence. The
non-Abelian anyons with quantum dimension equal to golden
ratio are named Fibonacci anyons because the ratio of any
number in the Fibonacci sequence to the previous number in
the sequence is approximately the golden ratio.

The quantum dimension for these fractional domain walls
can be found by considering an adjacency matrix for the
elementary excitations [55]. We first note that here charge
q/2 and charge —q/2 elementary excitations are topologically
equivalent excitations because they differ by a local operator
[55]. The adjacency matrix can then be obtained by considering
which pairs of ground states create a +q /2 fractional domain
wall and is given by

0 1 10\
Azl Q 0ol | (8}
W 1 0 o0/
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where therows/columns 1,2,3, and 4 refer to the [21], [12], [30],
and [03] ground states, respectively.

The adjacency matrix (5) encodes fusion rules for the
elementary excitations [55,56]

ixj = YAADKK, (6)
K

where Ai is the adjacency matrix of the quasiparticle i. These
fusion rules determine the number of ways that quasiparticles
i and j can fuse into quasiparticle k. For the Fibonacci anyons
T the fusion rule is

TXT= 1+ T @)

Due to the Fibonacci anyon algebra (7) theground-state
degeneracy in the presence of n Fibonaccianyon excitations
satisfies the Fibonacci recursion relation [56]

G(n) = G(n —1) + G(n —2). (8)

In the large n limit the ground-state degeneracy grows as
[65,56]

log G(n) ~ nlogdF... 9)

with dF being the Fibonacci anyon quantum dimension that
corresponds to the maximum eigenvalue of the adjacency
matrix (5) [55].

For am-fold degenerate ground-state manifold the statistics
of anyons can be described by m x m unitary matrices that act
on the ground-state manifold. Since m x m unitary matrices
form anon-Abelian group (matrices A and B generally do not
commute, AB = BA), these anyons are called non-Abelian
anyons.

In the parameter region where the system supports non-
Abelian elementary excitations the ground-state degeneracy
depends on the topology of the manifold on which the system
is defined. For the lattice filling V= k/2 the ground state
will be k + 1-fold degenerate for periodic boundary condition
and nondegenerate for open boundary condition. In other
words, the system has nontrivial non-Abelian topological order
reflected in topological ground-state degeneracy [57,58]. We
also note that in general a topologically ordered state has
a quasidegenerate ground state manifold for a finite system
size that becomes exactly degenerate in the thermodynamic
limit. That will be the case away from the exactly solv-
able points (U = 2V, t = 0) as described in the following
section.

IIl. NUMERICAL RESULTS

To study properties of the system away from the exactly
solvable points (U = 2V, t= 0) we use ED and DMRG
[52- 54] methods. Validity of our DM RG results is confirmed
by comparison with the ED results for smaller system sizes
(L < 14 lattice sites).

We primarily study the ground states and low-lying exci-
tations of the system with periodic boundary conditions for
U,V ~ t and for a fixed number of atoms, N = 3L/2. For
such states large occupation of asingle site is improbable. This
allows the local Hilbert space truncation to single site Fock
states |ni) containing at most n = nmex atoms. For the lattice
filling V= N/L = 3/2itis sufficient to take nmax = 3, that is,
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the local Hilbert space of dimension four with ni = 0,1,2,3.

We first demonstrate that there is a parameter region
where the system supports non-Abelian excitations. For
those parameter values all (quasi)degenerate lowest energy
states have a high overlap (~1) with the corresponding
manifold of four ansatz states that have SU (2)3 non-Abelian
topological order by construction. We also show that ele-
mentary excitations above such states exhibit non-Abelian
statistics.

The four non-Abelian ansatz states for the lowest energy,
(quasi)degenerate manifold at filling fraction v = 3/2 can be
constructed from the two lowest energy, (quasi)degenerate,
Abelian states at filling fraction v = 1/2, (k = 1,2), by
orthonormalization of the following wave-functions subspace
[44,45,49,51]:

\f ('mn))(m =
where Iom,n = 1,2 and a = f , | ,0 denotes three v = 1/2
copies. The tunneling parameter and the on-site interaction
strength are denoted by - = t/V and U = U/V, respectively.

Here the wave functions Vak))- (k = 1,2) correspond to the
two lowest energy (quasi)degenerate states of the Hamiltonian

® K m)-@ \*:)i), (10)

Ha — t~ Aaa,iaa,i+l + aaji+lai,a)+ V ~ "na,ina,i+l,

i i
(11)

at average filling v = 1/2 atoms per lattice site and with
periodic boundary conditions, nai = aliaa,i and a\i/aa,i
are hard-core boson creation/annihilation operators at site
i satisfying (a”-)2= 0 (that is, only allowed occupation
numbers are nb = 0 or 1bosons per site).

At t = 0 the wave functions 17)-=o0 (k = 1,2) are two
degenerate CDW states with unit cells [0,1] and [1,0] and
the low energy excitations of the Hamiltonian (11) are +q/2
fractional domain walls that are Abelian anyons similar to
the quasiparticle and quasihole excitations of the v = 1/2
Laughlin FQH state [59]. As illustrated in Fig. 1, the states
\N)- (k = 1,2) at some finite value of the parameter - = t/V
are adiabatically connected to the states att = 0, and therefore
have Abelian topological order.

The projection operator V has the form

V= PfL, (12)

with L being the number of lattice sites. Here Pi is the local
projection operator at a lattice site i,

/1 00 0 0 0 0 0\
01 1 1 0 0 0 0
Piz= 0000V 2V 2V 2 0 ., (13)
W 0 0 0 0 0 0 Véy

Pi maps eight-dimensional Hilbert space of three species
of hard-core bosons, f, |, and o, to the single-site four-
dimensional Hilbert space of four-hardcore bosons that obey
generalized exclusion principle— less than four bosons at any
site i, as illustrated in Fig. 2.

After orthonormalization of the wave-functions subspace
(10) we find four linearly independent ansatz states, denoted
here by \"AKatz) ¢,u). The number of linearly independent
ansatz states corresponds to the number of lowest energy,
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FIG. 1. The ED results for the first five energy levels of the
Hamiltonian (11) at filling fraction v = 1/2 and with periodic
boundary conditions, as functions of the tunneling parameter t/V
(with V being the nearest-neighbor interaction) and for the system
sizes L = 10 (red dotted lines), 12 (green dashed lines), and 14 (blue
solid lines) lattice sites. Here the energy values (per lattice site) are
in units of V.

(quasi)degenerate states of the Hamiltonian (1) that form the
ground state manifold of the Hamiltonian (1).

The states \"Ansatz)(t,0), (k = 1,2,3,4) form an orthonor-
mal basis within (quasi)degenerate manifold, which leads
to the following expression for the total overlap with
the exact lowest energy (quasi)degenerate states of the
Hamiltonian (1):

4
oixtU= E U

( AEi)act| MAkjsati(t-,0)] 2, (14)

where i = 1,...,4. The ED results for the overlaps (14) for
the system sizes L = 10,12, and 14 lattice sites are shown
in Fig. 3 and Fig. 4. The figures show overlaps for the four
lowest (quasi)degenerate states (ground state manifold) of
the Hamiltonian (1) for a range of values of the tunneling
parameter t/V and for two values of the on-site interaction
strength, U/V = 2 and U/V = 1.99.

ForU = 2V andt = 0 (exactly solvable points) these states
are four degenerate CDW s with unit cells [03], [30], [12], and
[21], and the overlaps are exactly 1. This reflects non-Abelian

FIG. 2. Schematic of the local projection operator Pi at a lattice
site i. The operator Vi projects the three local degrees of freedom f, |,
and o, onto anew degree of freedom thatis symmetric under exchange
of any of the three components. In other words, Pi maps the single
site 8-dimensional Hilbert space of three species of hard-core bosons
f (red spheres), | (purple spheres), and o (blue spheres) to the single-
site four-dimensional Hilbert space of four-hard-core bosons (green
spheres). These four-hard-core bosons obey generalized exclusion
principle— less than four bosons at any lattice site i.
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FIG. 3. The ED results for the total overlaps (14) of the four
lowest energy, (quasi)degenerate, exact ground states of the Hamil-
tonian (1) at average filling of v = 3/2 atoms per lattice site and
with periodic boundary conditions [(a)-(d)], with the corresponding
orthonormalized ansatz states. Here t/V is the tunneling parameter
with V being the nearest-neighbor interaction, and the on-site
interaction strength is U/V = 2. The system sizes are L = 10, 12,
and 14 sites (red, green, and blue symbols, respectively).

nature of these states since the ansatz wave functions have non-
Abelian topological order by construction, and is in agreement
with the results discussed in the previous section. However, the
overlaps for all four states are ~1 for a range of values of the
tunneling parameter t/V ,both at U = 2V (Fig. 3) and slightly
away from U = 2V (for example for U = 1.99V, Fig. 4).
This indicates non-Abelian nature of the states away from the
exactly solvable points.

Sudden decrease of the overlap, from ~1 to zero, for the
states (b) and (d) in Fig. 3 and Fig. 4, is related to a cross-
ing between the energy levels within the (quasi)degenerate,
ground state manifold, and the energy levels within the
(quasi)degenerate first excited manifold. That can be clearly

FIG. 4. Same as Fig. 3 for the on-site interaction strength U/V =
1.99.

PHYSICAL REVIEW B 95, 085102 (2017)

FIG. 5. The ED results for the first ten energy levels of the
Hamiltonian (1) at filling fraction v = 3/2 and with periodic
boundary conditions, as functions of the tunneling parameter t/V
and for the system sizes (a) L = 12 and (b) L = 14 lattice sites.
Here the on-site interaction strength is U/V = 2, with V being the
nearest-neighbor interaction.

seenin Fig. 5 and Fig. 6.For the states (a) and (c) in Fig. 3 and
Fig. 4 the overlaps startdeceasing away from ~ 1atsome value
of t/V = tc(L). The value tc is characterized by a crossing
between the energy levels within the (quasi)degenerate, first
excited states manifold, and the energy levels within the
(quasi)degenerate, second excited states manifold. These level
crossings for the system sizes L = 10 and 12 are shown in
Fig. 7.

To confirm the non-Abelian nature of the states for
(t/V) < tc,we further study elementary excitations above the
(quasi)degenerate ground state manifold. By construction, the
ansatz states (10) have a hidden global order associated with
the organization of the particles in three copies of v = 1/2
states (t, i, 0). The elementary excitations can be constructed
by considering the elementary excitations of the three v =
1/2 copies and symmetrizing [49,51]. Non-Abelian statistics
appears as a consequence of the symmetrization (introduced
with projection operator P) which leads to a topological
degeneracy in the subspace of elementary excitations and
non-Abelian algebra of exchanges of elementary excitations
(domain walls) [51].

The ansatz states for the first excited states manifold can
be constructed by orthonormalization of the following wave-
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FIG. 6. Same as Fig. 5 for the on-site interaction strength U/V =
1.99.

functions subspace [49,51]

wW{mn)(m = P(\*h @ < m)-0® C~-), (15)

where I,m = 1,2 and n= L(L/2 —1) with L being the
number of lattice sites. Here the wave functions < k))- (k =
1,2) correspond to the two lowest energy (quasi)degenerate
states of the Hamiltonian (11) at average filling v = 1/2, and
the wave functions |<n))- correspond to the states within
the (quasi)degenerate, first excited states manifold of the
Hamiltonian (11) at v = 1/2.

The elementary excitations of the Hamiltonian (11) at
v= 1/2 and for a fixed number of particles are +q/2
domain wall pairs (quasiparticle-quasihole pairs) of the type
[01][10]-[10][01]. The number of states in the first excited
manifold at v= 1/2, N = L(L/2 — 1) corresponds to the
number of different pairs of sites (i,j) where the domain
walls can be created. In addition, there are three possible
choices of the two ground states in the ansatz (15): (I = 1,
m= 1), (I= 1m= 2), and (I = 2,m = 2), which gives in
total NL = 3L(L/2 —1) linearly independent ansatz states
for the first excited states manifold at v = 3/2. These ansatz
states, denoted by WiK)satz) (t,U) (k = 1,2,...,NL), are obtained
after orthonormalization of the wave-function subspace (15).

The total overlap with the exact states within the first
excited, (quasi)degenerate manifold of the Hamiltonian (1)

PHYSICAL REVIEW B 95, 085102 (2017)

FIG. 7. The energy levels of the Hamiltonian (1) at average filling
of V= 3/2 atoms per lattice site, obtained by ED method for the
system sizes L = 10 [(a) and (c)] and L = 12 [(b) and (d)] lattice
sites and with periodic boundary conditions. Here on-site interaction
strength U = U/V = 2[(a) and (b)] and U = U/V = 1.99 [(c) and
(d)], with V being the nearest-neighbor interaction. As explained
in the text the system supports Fibonacci anyon excitations in the
regime (t/V) < 0.05 where (quasi)degenerate energy manifolds are
well defined and there is no level crossing between the states within
different manifolds.

is
N L /\ -
otu) = EU( xJL U 12, (16)
M k=1
where i = 1,...,N. denotes the states "Exart"U) within the

first excited states manifold.

FIG. 8. The ED results for the total overlaps (16) of the
3L(L/2 —1) exact, (quasi)degenerate states within the first excited
states manifold of the Hamiltonian (1) at average filling of v = 3/2
and with periodic boundary conditions, with the corresponding
orthonormalized ansatz states. Here t/V is the tunneling parameter
with V being the nearest-neighbor interaction, and the on-site
interaction strength is U/V = 2 [(@) and (b)] and U/V = 1.99
[(c)and (d)]. The system sizes are L = 10 [(a) and (c)] and L = 12
[(b) and (d)] lattice sites.
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The ED results for the overlaps (16) are shown in Fig. 8 for
the system sizes L = 10 and 12. For the values of the tunneling
parameter t/V < tc(L,U) the overlaps for all states within the
first excited states manifold are ~ 1. In other words, away from
the degeneracy point at U = 2V and t = 0, the nature and
fractional charge of the domain walls do not change if t/V <
tc(L,U). This is of importance for actual experiments, where
there is always some finite possibility for atoms tunneling
between the lattice sites, and where the values of the on-site
and nearest-neighbor interaction strengths can be tuned away
from U = 2V.

Sudden decrease of the overlap for some of the excited
states at t/V = tc(U ,L) is related to the energy level crossings
between the states within the first and second excited states
manifolds (Fig. 7). Namely, as pointed outin Ref. [18], moving
away from the degeneracy point, where domain walls do not
interact, introduces interaction between domain walls via a
linear potential. The strength and sign of the potential depends
on the energy splitting between the CDW states that are
degenerate at U = 2V and t = 0. For t/V > tc(L,U), some
states with two £q/2 domain wall pairs are more energetically
favorable than some of the states with one £+q/2 domain wall
pair due to an attractive linear potential between the domain
walls which results in energy level crossings and sudden
decrease of the overlap for some of the states within the first
excited states manifold. t

We also note that the overlaps (16) for i“Exact)f,U 0' =
1,...,NL) taken to be the states adiabatically connected to the
states within the first excited states manifold at t = 0 (the
states with one domain wall pair), also decrease significantly
for some of these states when t/V > tc(U,L), as shown
in Fig. 9. In other words, the fractional domain walls do
not have non-Abelian statistics for t/V > tc(U,L), after the
crossing between the states within different (quasi)degenerate
manifolds.

In addition, for U < 2V increasing the tunneling strength
t/V induces the first order phase transition from [30] ([03])
to [21] ([12]) CDW state, as demonstrated previously using
the Gutzwiller ansatz wave function [18]. This first order
transition, characterized by an energy level crossing, can be
clearly seen in the fidelity metric [60- 70]. Ifi*0(t)) and
i~o(f+ St)) are two groundstates corresponding toslightly
different values of the relevant parametert = t/V, the fidelity
between these two ground states is defined as the modulus of
the overlap between the two states:

F(t,t+ St) = i(fo(t + St)ifo(t))i. 17)

The fidelity (17) can further be rewritten as

()2
F(tt+ St)= 1- y A XF(t)+ .., (18)

where xF(t) is the fidelity susceptibility,

2In F (t + St) d2F (t + St)

Xf(t) = - lim R . (19)
St”h0 (St)2

The first order transition between two different CDW states

is characterized by a singular peak in the fidelity susceptibility.

Namely, since the overlap measures similarity between two

states, it equals to one if two states are the same and zero if

the states are orthogonal. Consequently, the fidelity shows a

PHYSICAL REVIEW B 95, 085102 (2017)

FIG. 9. The overlaps (16) for (i= 1,...,NL) taken to
be the states adiabatically connected to the states within the first
excited states manifold at t = O (the states with one domain wall pair)
and for the system size L = 10 lattice sites with periodic boundary
conditions. Here the on-site interaction strength is (a) U/V = 2 and
(b) U/V = 1.99, with V being the nearest-neighbor interaction.

very sharp decrease at points where there is a level crossing
between two orthogonal states, and decrease in the fidelity
corresponds to a singular peak in the fidelity susceptibility.
This singular peak can be clearly seen in Fig. 10 at t/V =
tcDW-CDW(U,L) corresponding to the value of the tunneling
parameter t/VV where there is an energy level crossing within
the (quasi)degenerate ground-state manifold (Fig. 6).

Further increase of the value of the tunneling strength t/V
leads to a CDW to SF quantum phase transition of the BKT
type, as will be described in more details in the following
section. This phase transition is characterized by a broader
peak in the fidelity susceptibility which becomes sharper and
sharper as the system size increases. This is clearly visible in
Figs. 10, 11, and 12.

The transition is related to a level crossing between the
states in the lowest energy, (quasi)degenerate manifold and
the states within the first excited, (quasi)degenerate manifold
at t/V = tCDW-SF(U,L). The level crossings can be clearly
seen in Fig. 5 and Fig. 6 at values of t/V which coincide with
the positions of the broader peaks in the fidelity susceptibility.

Our results thus demonstrate that the system undergoes a
direct, BKT, CDW to SF quantum phase transition without
intermediate SS phases between the CDW and SF regions
of the phase diagram. This is in contrast with the results
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FIG. 10. The fidelity susceptibility xF (19) as a function of the
tunneling parameter t/V, obtained by ED method for the system
sizes L = 10, 12, and 14 lattice sites and with periodic boundary
conditions. Here the average filling is v = 3/2 atoms per lattice site
and the on-site interaction strength is (a) U/V = 2 and (b) U/V =
1.99, with V being the nearest-neighbor interaction.

obtained previously within the Gutzwiller-ansatz wave func-
tion approach [18]. Namely, previous results predicted two
different SS phases, SS1 and SS2, separating CDW and SS
regions of the phase diagram for U = 1.99V.These SS phases
are partially melted CDW phases, with SS1 and SS2 having
differentunderlying CDW orders. The Gutzwiller-ansatz wave
function calculations [18] also predict CDW to SS1 and SS1
to SS2 transitions to be first order transitions, and SS2 to SF
transition to be a second order transition. If SS phases were
presentin the phase diagram, these transitions would be clearly
visible in the fidelity susceptibility. However, we do not find
any signatures of such transitions and SS phases in our ED and
DMRG results.

We also note that the Gutzwiller-ansatz wave function
calculations were performed with the local Hilbert space
truncation to single site Fock states \nt) with at most ntr = 30
atoms at each lattice site (0 < n < ntr), while our ED and
DMRG calculations were performed with ntr = 3. To check
that increasing the truncation number ntr does not change
gualitatively our results close to the CDW to SF transition,
we have performed additional calculations with ntr = 10 and
ntr = 15. The results, shown in Fig. 11 clearly demonstrate that
increasing the truncation number ntr introduces only minor
changes in the numerical values for the fidelity susceptibility

PHYSICAL REVIEW B 95, 085102 (2017)

FIG. 11. The ED and DMRG results for the fidelity susceptibility
XF (19) as a function of the tunneling parameter t/V, for the system
size L = 14 lattice sites and with periodic boundary conditions, the
average filling v= 3/2 atoms per lattice site, and with the local
Hilbertspace truncation to single site Fock states with atmostntr = 3,
10, and 15 atoms at each lattice site. Here the on-site interaction
strength is (@) U/V = 2 and (b) U/V = 1.99, with V being the
nearest neighbor interaction.

FIG. 12. The DMRG results for the fidelity susceptibility xF (19)
as a function of the tunneling parameter t/V, for the system sizes
L = 40-124 lattice sites and with periodic boundary conditions, the
average filling v= 3/2 atoms per lattice site, and with the local
Hilbert space truncation to single site Fock states with atmostntr = 4
atoms at each lattice site. Here the on-site interaction strength is
U/V = 2 with V being the nearest-neighbor interaction.
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and does not change our results qualitatively. We have also
additionally verified that increasing the truncation number
ntr to ntr ~ 10 introduces only minor changes in our DM RG
results for larger system sizes.

IV. SUPERFLUID TO CHARGE-DENSITY-WAVE
QUANTUM PHASE TRANSITION

To further describe the SF to CDW quantum phase
transition we calculate the density-density structure factor at
wave number k = n

1 L
Sn = Ni T, ein(i{ninj), (20)
ij=1

the single particle correlation function

r(li —j D =C(ajaj), (21)

and the associated system-size-dependent correlation length

* Ej=1( —j)2(alal) (22)
L= e A2 f e , (22)
\| Zij=1(aiaj)
for the system with L sites and N bosons and with periodic
boundary conditions.
We also calculate the von-Neumann block entanglement
entropy

S1(1) = —Tr[p Inpt], (23)

where piis the reduced density matrix for theblock of length
I. Froml + 1 dimensional conformal field theory [71,72]
it follows that the von Neumann entanglement entropy at a
critical point has the form

¢ [L (nl\
SI(1) = 3In —sm(—J + St (24)

for a system with periodic boundary conditions, with slbeing a
nonuniversal constant and c the central charge of the associated
conformal field theory (CFT). Since DM RG calculations give
the most precise data for SL(I) when | = L/2 [72,73], the most
suited relation to determine the central charge is

3[Si (L/2 — 1) —Si (L/2)] A

*L, i} ’
c® In [cos(n/L)] (2%)

where ¢* = ¢ when the system is critical. The central charge
provides definitive information about the universality class of a
(1 + 1)-dimensional system [74]. Our results show thatc = 1
in the SF regime, where the low energy effective theory for
the system, obtained by the Abelian bosonization [75], is the
Tomonaga-Luttinger-liquid (TLL) Hamiltonian [76]. Within
the non-Abelian bosonization [77] the low energy theory of
the SF phase is the Wess-Zumino-Witten (W ZW) theory with
topological couplingk = 1(SU(2)1W ZW theory) [78] and the
conformal anomaly parameter (central charge) ¢ = 3k/(2 +
k) = 1[78].

The central charge can also be used to determine the
critical point between TLL and gapped (or ordered) phases
[73]. Namely the critical point corresponds to the maximum
of ¢c* (25) as a function of t/V [73]. The position of the
maximum point, (t/V)c, is independent of the system size

PHYSICAL REVIEW B95, 085102 (2017)

FIG. 13. The DMRG results for the central charge c* (25) as a
function of the tunneling parameter t/V for several system sizes L
and with periodic boundary conditions. Here the on-site interaction
strength is U/V = 2 with V being the nearest-neighbor interaction.

for the model that we have considered (Fig. 13). A similar
result was obtained for 1D half-filled spinless fermions with
nearest-neighbor repulsion [73].

OurDMRG [54]results show that (t/V )c & 0.162 (Fig. 13)
for U/V = 2.0n theright-hand side of the maximum point c*
approaches the value ¢ = 1 with increasing system size, and
c* N~ 0forthe CDW gapped phase. In theDM RG calculations
of the central charge dimensions of the matrices in the matrix
product state (M PS) wave function were taken to be up to 2200
and ntr = 4.

To further characterize the nature of the SF to CDW
guantum phase transition we consider the finite-size scaling of
the fidelity susceptibility. Within the non-Abelian bosonization
approach it was shown that the fidelity susceptibility in the
vicinity of a BKT transition has the following logarithmic
finite-size scaling [79]

X1 r 1 i
(0]

Xt —X0—, n ., + 2 ,
In(L/a) |_Inz(L/a)_

(26)
where a is the lattice cutoff. Also, the finite-size dependence
of the peak position in the fidelity susceptibility, that signals
the B KT transition, has the following form

<—A + B/In2(L/a) +-——, (27)

which can be obtained using scaling arguments on the gapped
side of the BKT transition [79]. Here - = t/V . We fit our
DM RG data for the fidelity susceptibility to these predicted
finite size-scaling behaviors, and the results of these fits
demonstrate good agreement with the theory (Fig. 14). This
confirms that the SF to CDW quantum phase transition is of
the BK T type.

We also point out that tc(L » <¢)= A = 0.158 + 0.004
which is consistent (within the error bars) with the value of
tc & 0.162 obtained from the central charge. We have also
studied the scaling of the energy gap in the vicinity of the
transition [80]. The estimated transition point is then tc(L ~
ix) = 0.16 + 0.004 in agreement with tc obtained from the
fidelity susceptibility studies.

We finally calculate the structure factor (20) close to the
SF to CDW quantum phase transition to show that there is
a direct phase transition from the SF to CDW phase. The
nonzero structure factor characterizes the crystalline order,
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FIG. 14. The finite-size scaling of the peak position tc and
amplitude xL(-c) of the fidelity susceptibility. The lines correspond
to fits (26) and (27), where A & 0.158, B & -0.39, X0& 37.5,
and x1& —94.2. The data are for the system sizes L = 20-124
lattice sites and with periodic boundary conditions. Here the on-site
interaction strength is U/V = 2 with V being the nearest-neighbor
interaction.

and in the case of direct transition from the SF phase has the
form Sn ~ fY/N$(f/L) close to the transition [81,82], where
$ is a scaling function. For the case of a direct transition the
structure factor is governed by the correlation length f that
characterizes SF order and diverges in the SF phase [81,82],
which results in the mentioned form of the structure factor
close to the transition.

Also, the functional form of the structure factor can-
not be transformed to a power law behavior depending
on t/V since the correlation length diverges like f a
exp(const. / (t/V)c—(t/V)) at BKT type transition. Our
results for the structure factor are shown in Fig. 15 and
confirm that there is a direct SF to CDW transition without

FIG. 15. The structure factor Sn as a function 1/f, where f is the
correlation length, at the BKT transition of the CDW phase (t/V &
0.158). The slope is &—0.78 and Sn a f—078. The data are for the
system sizes L = 20-124 lattice sites and with periodic boundary
conditions. Here the on-site interaction strength is U/V = 2 with V
being the nearest-neighbor interaction.
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FIG. 16. Schematic demonstration how local changes in the
chemical potential can create robust SU(2)3 Fibonacci anyon frac-
tional domain walls which appear in a ground state configuration of
the system, as suggested previously in Ref. [18].

intermediate normal or supersolid phases. This is in agreement
with previous results found by other authors [21].

V. PROTOCOL FOR BRAIDING FRACTIONAL
DOMAIN WALLS

In order to use described fractional domain walls for
guantum computation, that is to realize topological quantum
gates, one needs to engineer states with robust fractional
domain walls in a geometry where these domain walls can
be interchanged in a controlled way (braided). To have robust
fractional domain walls it is necessary to achieve that these
domain walls appear in a ground state configuration of the
system. For a fixed filling fraction this can be achieved by
locally varying the chemical potential [18] as illustrated in
Fig. 16.

Namely, starting from the unperturbed initial configuration,
increasing/decreasing the chemical potential on two neigh-
boring sites creates +q/2/ —q/2 fractional domain walls
[18]. The domain walls illustrated in Fig. 16 are SU(2)3
Fibonacci anyons similar to elementary excitations of the
bosonic Read-Rezayi state [18,25,27]

N/k N/k \

Yi(zh —z*)2... n (zik —zj«)2

h<]| ik<jk J
N
fl(zi —Zj)Me—/a~ 1212, (28)
i<j
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FIG. 17. A T junction which allows adiabatic exchange of two
fractional domain walls. In each step of adiabatic exchange a dashed
line represents a part of the junction which is disconnected from the
part of thejunction represented by a solid line. Position of a domain
wall on a 1D lattice represented by a solid line can be changed by
an adiabatic change of the local chemical potential at corresponding
sites of the initial and final positions of the domain wall (Fig. 16).

with k = 3 and M = 0 and where S denotes symmetrization
over possible divisions of the atoms into k clusters of the same
size.

The adiabatic exchange (braiding) of the fractional domain
walls is not possible in the strictly 1D system that we have
considered. Therefore, to achieve controlled interchange of
these non-Abelian defects, and realize topological quantum
gates, several such 1D atomic quantum wires need to be com-
bined into a 2D network where 1D wires are connected with
T junctions, as proposed previously for Majorana quantum
wires [19]. A T junction which allows adiabatic exchange of
two fractional domain walls is illustrated in Fig. 17. A part
of the T junction which does not contain domain walls can
be connected to or disconnected from the part of the junction
with two domain walls by adiabatically switching on or off the
tunneling between the neighboring sites of the two parts of the
junction.

In Fig. 17 a part of the junction that is disconnected from
the rest of the junction in each step of the adiabatic exchange
of two fractional domain walls is represented by a dashed line.
A part of the junction which contains two domain walls is
represented in each step by a solid line. Position of a domain
wall on a 1D lattice represented by a solid line can be changed
by an adiabatic change of the local chemical potential at
corresponding sites of the initial and final positions of the
domain wall (for example in the step from 1to 2 in Fig. 17).

We also point out that braiding of fractional domain walls
in a T-junction network requires only a few local operations
on relevant sites where the local chemical potential and the
tunneling strength between the two nearest-neighboring sites

PHYSICAL REVIEW B 95, 085102 (2017)

needs to be adiabatically changed in each step of the adiabatic
exchange of these non-Abelian defects.

These adiabatic changes of the local chemical potential and
the tunneling strength between the two nearest-neighboring
sites can be achieved experimentally by using local site
addressing tools available in current experiments with cold
atoms and molecules [83- 85]. In cold atom experiments these
local operations can be realized in a controllable way by
changing the intensity of tightly focused laser fields on the
corresponding site or link [83- 85].

VI. CONCLUSIONS

We have studied low energy properties of a system of
dipolar lattice bosons trapped in a 1D optical lattice and at
average filling v = 3/2 atoms per lattice site. The system
can be described by an extended Bose-Hubbard Hamiltonian
with the on-site and nearest-neighbor interactions. Using ED
and DM RG methods we have identified aregion of the phase
diagram where the system supports SU(2)3 Fibonacci anyon
excitations. The SU(2)3 non-Abelian topological order of the
exact wave functions of the Hamiltonian was demonstrated by
calculating the overlaps with the ansatz wave functions which
have SU(2)3 topological order by construction.

Contrary to previous results obtained within the Gutzwiller
ansatz wave-function approach [18], our ED and DMRG
results demonstrated that for an average filling of 3/2 the
system undergoes a direct, BKT, CDW to SF quantum phase
transition when the tunneling strength between the nearest-
neighboring sites of the lattice is increased above a certain
critical value. We do not find any signatures of the SS phases
in the phase diagram of the system, found in Ref. [18] to
appear between CDW and SF regions in the parameter space.
However, the SS phases are predicted to appear at higher filling
fractions [21].

We have also discussed a protocol which would allow
creation of robust SU (2)3 fractional domain walls in a ground
state configuration of the system and their controlled adiabatic
interchange (braiding), with potential application for fault
tolerant, universal, topological quantum computation. The
domain walls can be introduced in aground state of the system
by changing the local chemical potential on certain lattice sites
[18], and braiding can be achieved by combining 1D atomic
gquantum wires into a 2D network where the 1D wires are
connected with T junctions, as previously proposed in the
context of Majorana quantum wires [19]. Both creation and
braiding of such domain walls are achievable with local site
addressing tools available in current cold atom experiments
[83- 85].
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We study the phase diagram of the one-dimensional boson gas trapped inside an optical lattice with contact
and dipolar interaction, taking into account next-nearest terms for both tunneling and interaction. Using the
density-matrix renormalization group, we calculate how the locations of phase transitions change with increasing
dipolar interaction strength for average density p = 1. Furthermore, we show the emergence of pair-correlated
phases for a large dipolar interaction strength and p * 2, including a supersolid phase with an incommensurate
density wave ordering manifesting the corresponding spontaneous breaking of the translational symmetry.

DOI: 10.1103/PhysRevB.97.245102

I. INTRODUCTION

Ultracold gases loaded in optical lattices enable simulation
of a broad range of lattice gas models, most prominently the
Bose-Hubbard (BH) model [1] with Mott insulator (M) to
superfluid (SF) quantum phase transition [2]. Precise control of
model parameters is achieved by optical potential manipulation
or by advanced techniques such as Feshbach resonances [3,4].
Long-range dipolar interparticle interactions are often taken
into account by adding a simple nearest-neighbor interaction
term resulting in the extended Bose-Hubbard (EBH) model,
which has been the topic of numerous theoretical [5- 16] and
experimental [17] works.

A feature of ultracold gases is the ability to control the
geometry of the underlying optical lattice potential or even the
possibility ofimplementation of amore complex unit cell. The
boundary conditions of the potentials can be setby an external
harmonic orabox trap, leading to the open boundary conditions
(OBCs) [18,19], or by arranging a system into a ringlike or
cylinderlike geometry [20,21], thus implementing periodic
boundary conditions (PBCs). Notably, one-dimensional sys-
tems offer the possibility of efficient many-body numerical
simulations of the resulting lattice models by a family of
methods related to the density-matrix renormalization group
(DMRG) [22,23].

For one-dimensional lattices the EBH model features not
only M | and SF phases but also an isolator density wave (DW)
characterized by infinite-range spatial order, a topologically
protected Haldane insulator (HI) with a nonzero value of
the string order parameter, and supersolid (SS) phases which
show both spatial ordering and superfluid behavior [24- 26].
It has also been suggested that at the mean density p = 3/2
the EBH model features Fibonacci anyon excitations [27,28]
corresponding to fractional domain walls between different
DW phases. In this context, the mean-field analysis [27]
predicted the existence of the SS phase between DW and SF
phases, in contrast to the DM RG calculation [28].

The necessary strength of the dipole-dipole interactions
is achieved for isotopes of dysprosium and erbium [29,30],
Feshbach molecules [31], and polar molecules [32- 34]. More
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exotic phases such as checkerboard and stripe-ordered phases
are possible for higher-dimensional lattices [35-40] (for a
review see [13]).

The BH and EBH models are motivated by an expan-
sion of the field operators in the discrete basis defined by
Wannier functions [1,41] for the optical potential, followed
by truncating the physics to the lowest Bloch band and
neglecting hopping beyond the nearest neighbors. The BH
model includes only on-site interactions, while the EBH also
contains density-density interactions on the nearest-neighbor
sites. The rigor of this procedure has been the topic of extended
research in the presence of fast-time dependence [42,43] and
strong interatom interactions manifesting as so-called density-
dependent tunnelings [13,32,44] and even as arenormalization
of model parameters due to avirtual population ofhigher bands
[45- 47]. Moreover, the coupling beyond the nearest neighbor
has been included in studies which treated shallow optical
lattices [48,49] and for strongly interacting dipolar systems
[50]. In the latter case the extra couplings led to the appearance
of spatially ordered phases [35].

Extensive studies of the EBH-like models mentioned in this
section were mostly done by scanning the parameter space
of the constructed Hamiltonians at a chosen mean density
or possibly under other constraints such as a ratio between
parameters. In this study we take a more systematic approach
to obtain the Hamiltonian for a dipolar gas of ultracold atoms
in the optical lattice and study its phase diagram. First, our
intent is to modify only experimentally accessible parameters
such as the optical lattice potential depth, the scattering length
for contact interactions, the dipole-dipole interaction strength,
and the mean density of the gas. Second, we chose to keep
all the relevant tight-binding terms describing tunneling and
interactions. In this way the parameters of the obtained EBH -
like Hamiltonians yield a realizable physical model. In other
words we get natural constraint values of the parameters.
This saves us from considering parameter ranges unaccessible
experimentally. In the phase diagram defined by the experi-
mentlike control knobs, we predict modifications of up-to-date
theoretical results going beyond a simple readjustment of
phase boundaries. In particular we provide evidence for the
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emergence of a new phase: a pair superfluid phase with an
incommensurate density wave order.

In Sec. Il we derive the model from the microscopic
principles identifying the realistic parameter set relevant for
ultracold dipolar atoms and ultracold dipolar molecules. The
phase diagrams for the system are presented in Sec. Il (for
the case of unit density in the lattice) and Sec. IV (for the case
of other densities). In Sec. V we provide the final conclusions
and outlook. We finish with three Appendixes describing in
detail the computational methods used throughout the paper:
in Appendix A we present our method of calculating the
terms present in the Hamiltonian, Appendix B contains the
parameters used in our DM RG runs, and in Appendix C we
describe the DM RG method used in Sec. IV .

Il. MODEL

The realistic Hamiltonian that models ultracold bosonic gas
in the one-dimensional optical lattice potential considered in
this work has the form

L-1 L-2
H=-1t (b\bi+® H.c.) —trina*2/(b\bi+2+ H .c.)
i=1 i=1
U L L-1 L-2
+ 2722 ni(ni —1)+V'Yhninitl+ Vonn A~ WW+2
i=1 i=1 i=1
L-1
—T  [bJ(ni+ ni+1)bi+l + H .c ], (1)
i=1

where t, T, and V denote the amplitude for standard, nearest-
neighbor tunnelings, the amplitude of density-dependent tun-
nelings resulting from interactions, and the strength of interac-
tions between nearest-neighbor sites, respectively. The terms
proportional to tnnnand Vhnnare, respectively, the tunneling and
strength of interaction between next-nearest-neighbor lattice
sites.

The Hamiltonian (1) in its full glory is aresult of arealistic
tight-binding approximation to the many-body formulation
continuous in space, as given by the second quantization. We
consider an ultracold gas of atoms or molecules of mass m
in the separable optical potential created by three pairs of
standing waves of lasers with a wavelength XL which takes the
form Vopt(r) = Wxcos2fc x )+ Wcos2(kLy) + Vzcos2(kLz),
with KL = 2n/XL. The recoil energy ER = hlkL/2m defines
a natural energy scale for the single-particle physics. We take
Vy = Vz= 50Er and WVx* W,Vz, which freezes the motion
in directions y and z and leaves an effectively one-dimensional
motion along the x axis. We can recover the parameters of (1)
from (for more details see Appendix A)

h2v 2

FRSILI + vopt()' f (r)

+»J FANEXr)V (- 1) f(r)frd3rd3r.  (2)

The function V(r) represents the sum of contact (Vc) and
dipolar (Vd) interactions, V(r) = Vc(r) + Vd(r), where

4nh2as Cdd 1- 3cos20
Ve(r) = - p— sS(r), Vd(r) = an r% -------- , (3)
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with O being the angle between the direction of polarization
and r and as being the scattering length for effective contact
interactions [6].

The value of Cdd depends on the strength of dipolar
interactions and has the form

— _ A{lol™n,
dd = i~ 2/f0,

for magnetic dipole moment fim, 4
for electric dipole moment i.ie. O

Later we will use arepresentation of the dipolar interaction

strength by a dimensionless quantity:
a= Mg )
2n3h a

In effect, we have two parameters, VX and as, that can be
controlled in the experiment (using the previously mentioned
Feshbach resonance) and d, which depends on the kind of
particles used in an experiment (we can, however, modify the
strength of dipolar interactions by changing the direction of
polarization). In the case of molecules, d can be controlled by
the external electric field inducing the dipole moment. In this
work, we set the dipole direction to be perpendicular to that of
the lattice, so that dipolar interactions are maximally repulsive.
Then, for given values of U/t and V/t, the appropriate values
of Wx and as can be found, which in turn determines the values
of tnnn/ t, Vnnn/t, and T/t.

Let usremark that one can, in principle, employ atransverse
harmonic confinement of the boson gas [32] to change the
relative values of the parameters of dipolar interactions. We
have found that while it does provide more control over the
values of T/t, ultimately, they have amagnitude similar to what
we obtain solely with Vopt, and so we refrain from including
that method in our considerations.

We denote the values of V and U restricted to only
contact (dipolar) interactions as Vc (Vd) and Uc (Ud). In the
most common parameter range used in this paper, V/U is
of the order of 1. For the optical lattice that we consider
(Appendix A), both Vc/Uc and Vd/U d are smaller than 10- 1
(see the inset in Fig. 1). Consequently, for a given positive
value of d, the value of as has to be negative in order to lower
the value of U to achieve the desired V/U.

We now take a closer look at how changes in the dipolar
interaction strength influence the validity ofusing (1)forafixed
phase diagram point (U/t, V/t). Vd and Ud increase linearly
with d, and so must |as|if we want to maintain the desired
ratio of V/U. To keep V/t (which is approximately Vd/t)
and U/t unchanged, the lattice must be made shallower (as t
depends solely on VX). Since the tight-binding approximation
is no longer correct for shallow lattices, this provides an
effective upper limit for t, which gets stricter as d increases.
The maximum value of d we consider in this paper is 0.1,
which corresponds to W being roughly equal to 2.5E R for the
exemplary values of U/t = 2and V/t = 1.5 (seeFig. 1,where
we also plot the resulting values of Vnnn/t, T/t, and tnnn/t).

To give an example of the magnitude of d for real atoms
and molecules, we first assume the lattice constant is a =
532 nm. Single atoms have weak dipole moments (for 52Cr,
d” 9.7 x 10-4; for 168r, d » 4.3 x 10-3; and for 164Dy,
d & 8.5 x 10-3) [29,30,40]. The values for molecules can be
afew orders of magnitude greater (for 168Er2,d & 0.1) [4]. Itis
worth noting that multiple experimental methods of decreasing
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FIG. 1 (a) Values of Wk and as/a necessary to get U/t = 2 and
V/t = 1.5 for different values of d. (b) Values of parameters in
Hamiltonian (1) in such a case. The inset shows the values of V/U
for dipolar-only and contact-only terms.

a in optical lattices [which would increase d; see Eq. (5)] by a
factor of 2 or 3 (with the prospect for a larger value) have been
developed and tested [51- 54].

IIl. THEPHASE TRANSITIONS ATp=1

The full phase diagram calculated numerically for the EBH
model with t, U, and V as the only parameters and a unit mean
density p = 1 has been studied in detail already [24,25], and
here we will only briefly sum up the possible phases observed
in the (V/t, U/t) plane. For large values of t, the system is
in the SF phase, whereas large values of U/t with small V/t
drive the system into the M 1. Large enough values of V/t for
a sufficient U/t put the system in the DW phase. The HI is
present on the phase diagram in between the three previously
mentioned phases, that is, for intermediate values of both V/t
and U/t.

In this section we will calculate how the locations of the
transitions between these phases change for the Hamiltonian
(1), depending on dipolar interaction strength d. We will not,
however, recover afull phase diagram, and instead, we focus on
two lines, given by the constraints V/U = 0.75 and U/t = 3.
The first of these values is chosen because it covers three of
the phases achievable in the EBH model (DW, HI, and SF)
and has already been extensively analyzed [25,26], while the
second one allows us to examine the M | phase (in addition to
DW and HI, which are also present in that case).

In order to determine the boundaries between different
phases, we define their characteristic properties: (1) for DW,
Odw = 0, AE = 0, (2) for MI, Odw = 0, = 0, AE =
0, (3) for HI, ODW = 0, Ostring = 0, AE = 0, and (4) for SF,
ODW = Ostring = 0, AE = 0. Order parameters are defined
similarly to those in [24], Op = limr Cp, for the following

PHYSICAL REVIEW B 97, 245102 (2018)

FIG. 2. The values of the string and DW order parameters, critical
exponent K, and energy gap AE for V/U = 3/4, d = 0.02. The
positions of black dashed vertical lines correspond to the critical
values of t/U for DW-HI and HI-SF transitions (t&MH/U ~ 0.175
and tHI-SF ~ 0.82). The inset shows a logarithmic plot of O stg and
AE near the HI-SF transition.

correlators:

CSF(r) = (b)bj+r), (6)
CDW(r) = (-1)r (SnjSnj+r), (7
Cstring(r) = (Snjei™ j< kj+rSnkSnj+r) , (8)

where Snj = nj —p. The energy gap and its thermodynamic
limit extrapolation are defined simply as AE(L) = E (Q(L) —
E©O(L) and AE = limL~ e AE(L), where E(K(L) is the
energy of the kth excited state in a lattice of length L (k= 0
is the ground state).

We will also be using the fact that for the superfluid phase
it can be shown, using the Luttinger liquid theory, that the
correlations in the system show power-law decay [55]:

CSF(r) ~ r—K/2. (9)

A. V/U = 0.75 constraint

We present the results of our calculations for the model (1)
obtained using the DM RG method described in Appendix B .
For t/U close to zero the system is in the DW phase. As
the value of t/U is increased, the first transition is a DW -H|
transition at tRW—HI/U . The transition location can be easily
determined because for t = tOW-HI (1) the gap AE closes and
(2) the order parameter O DW vanishes (see Fig. 2, where the
values of the order parameters are plotted for d = 0.02). AE
is linear with respect to t/U on both sides of the transition,
which allows us to easily determine where the gap closes.
Additionally, the function a[(t —tc)/U]-b can be fitted to
the numerically computed O DW near the transition point for
t/U < tDW-HI/U . The values of tc/U obtained with these
methods are in agreement with each other (with adifference of
less than 5 x 103 for every value of d that was considered).

For even larger t, the consecutive transition occurs between
the HI and SF phases, but the determination of its location,
tHI-SF/U, proves to be more difficult. As in the earlier case,
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FIG. 3. Critical values of U/t for DW-HI and HI-SF transitions,
V/U = 3/4 (black solid lines), and the same for a model with Vnm,
ton, and T set to zero (red dashed lines).

the energy gap closes, and the appropriate order parameter
(String) goes to zero. However, the decay of both AE and
Ostnng features an exponential tail and does not provide aclear
value of the transition point (see the inset of Fig. 2). In order to
determine the correct value, we fit the correlations C SF(r) for
each L according to (9) and then extrapolate the obtained K
to the L limit. It has been shown [56] that K = 0.5 for
p = 1latthe transition between insulator and superfluid phases.
That is the criterion we use here to determine t1-SF/U .

The results of the analysis described above are shown in
Fig. 3, where the dependence on the chosen d value for both
DW -HI and HI-SF transitions is plotted as black solid lines.
The results of similar calculations but with parameters Vnnn,
tnnn, and T set to zero are marked with the vertical red dashed
lines. The U/tc value for the DW -H |1 transition has a strong,
linear dependence on d, and the transition point is moved
considerably for both small and large values of d in the chosen
interval (0 < d < 0.1). The situation is different for the HI-SF
transition; while for values of d close to zero U/tc is almost
the same as for an ordinary EBH, the SF phase disappears
completely around d = 0.03. What can also be seen for the
intermediate values of d is thatfor small U/tcanother transition
appears; in simulations we see thereemergence oftheH | phase,
indicated by arise in Ostring, AE, and K (the transition point is
once again pinpointed by the equation K = 0.5). The striking
substantial difference between the two models indicates that
real care has to be taken when applying the tight-binding
approximate Hamiltonian to a given physical system.

B. U/1= 3constraint

In this case, two transitions exist between three insulating
phases: DW -HlandHI-M I. The method of locating the HI-DW
transition is the same as in Sec. II1A (the corresponding plot
of order parameters for U/t = 3 and d = 0.09 is shown in
Fig. 4). For the HI-M I transition a different approach must be
undertaken, as AE does not have alinear dependence on t near
the transition point. To determine V/tc we find the minimum
of AE with respect to V/t for each available L, and then we
extrapolate itforL ~ musing apower functional -b + V/tc
(see Fig. 5).

PHYSICAL REVIEW B 97, 245102 (2018)

FIG. 4. The values of the order parameters (6), (7), and (8) for
U/t = 3, d = 0.09. The positions of the black dashed vertical lines
correspond to the critical values of V/t for DW-HI and HI-M|
transitions (V/t#l-MI & 1.94 and V/tOW-HI & 2.74).

We plottheresults in Fig. 6,comparing them with the results
obtained for a pure EBH model, i.e., setting Vnnn, thnn, and T
in (1) to zero. While the changes are not as drastic as for fixed
V/U = 0.75, the H | phase gets narrower with respect to V/t
as d increases.

IV. THEPHASE DIAGRAM FOR d = 0.1

In this section, we characterize the phase diagram without
constraining the density of particles p while setting V/U =
0.75 and d = 0.1. The results for an ordinary EBH model,
obtained mostly using quantum Monte Carlo methods, can be
found in [15,25]. To this end we calculate the ground-state
energies using DM RG with OBCs (for technical details see
Appendix B) for p corresponding to each of the DW phases
present in the system for vanishing tunnelings. It is easy to
convince oneself that the DW phase requires a commensu-
rate relation between the number of particles and number
of sites. Restricting the calculation to next-nearest-neighbor
interactions, the corresponding densities are pDW = nDW/4,
where nDW > 2, nDW e Z. Repeating the same calculations

FIG. 5. The energy gap for different system sizes and U/t =
3, d = 0.09. The inset shows an extrapolation for L ~-<x>, b &
0.56151.
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FIG. 6. Critical values of VV/t for DW-HI and HI-SF transitions,
U/t = 3 (black solid lines), and the same for amodel with Vnn, thon,
and T set to zero (red dashed lines).

with particles added or removed from the system allows us to
obtain the chemical potential: i(N,L) = BE(N,L)/BN. We
can then get the boundaries of DW phases as adiscontinuity in
I(N,L) at Ndw = pDWL. The lower boundary for the DW
phase is then given by i - = limN” N+ i(N,L), while the
upper one is given by i+ = limN~ N-wi(N,L). By adjusting
the system size we verify that sysBWns with L = 200 are
sufficiently large to properly determine the values of i L and
| U; for most of the boundary i - = E(N,L) - E(N - 1,L),
and i+ = E(N + 1,L) - E(N,L) [the only exception is the
cusps at the rightmost edges of the DW lobes, where we take
into account E(N - 2,L) and E(N + 2,L) and perform the
guadratic interpolation]. The resulting phase diagram can be
seen in Fig. 7. We remark that apart from the conventional
|0(2p)0(2p)0 mme> DW phases, with p = pDW, we observe
P(2p - 2)0(2p + 1) e==> phases for odd nDW as an effect of
introducing Vnmini+2 coupling terms into the Hamiltonian.
The corresponding DW regions are, fortunately, quite tiny,
showing that for most parameters, the picture obtained within
the EBH model is correct.

Apart from the abundant DW phases we observe either SF-
or SS-like phases, as indicated by the power-law decay of the
C SF correlations (9). The difference between the two phasesis a
nonzero density wave order parameter value in the supersolid
phase. The trivial SF phase is seen for p < 1; however, we
observe the emergence of a pair superfluid (PSF) phase for
large enough i. We use the pair-tunneling correlation

Cp=1LE
i

<bktbi+1bi+1> (10)

as a measure of pair superfluidity (see Fig. 7). The phases
marked SS and PSS (pair supersolid) in Fig. 7 differ from
conventional supersolid phases in asimple EBH model, where
C SF(r) is always positive. CSF(r) is negative forr = 4n + 2,
neZ in the SS phase [Fig. 8(a)] and for odd r in the PSS
phase [Fig. 8(b)]. The other difference is that Cp > 0 in the
PSS phase. We remark that both the PSS and PSF phases have
been previously observed in numerical calculations for EBH
Hamiltonians with density-dependent tunneling [32,57,58].
Next, we describe the last phase present in the phase
diagram, which we call an incommensurate pair supersolid
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FIG. 7. The phases for the system for d = 0.1 at a fixed ratio
V/U = 0.75. Black lines showing the boundaries of DW phases are
the values of i+ and i - obtained from OBC DMRG (L = 200). The
black squares come from sine-square deformation (SSD) DMRG (see
Appendix C for details) for L = 100 and show the transition points
between PSS and PSF (where Odw vanishes). Blue error bars mark
the boundaries of the IPSS phase (and also SSD DMRG, L = 100).
The value of pair-tunneling correlations Cp (10) is plotted as a color
map with the scale shown on the right.

(IPSS). This phase is characterized by afinite, positive Cp and
the structure factor

1 L
S(q) = 72 J2 <nn>e-q(j-k), (11)
j,k=1

with apeak at n/2 < g < n , which is incommensurate with
respect to lattice size and the particle density. In order to
identify this phase, we use the sine-squared deformation
(SSD) variant of the DM RG method which we describe in
Appendix C .

In the IPSS we see periodic modulation of both density and
density-density correlations [Fig. 9(a)] in the form of

i>  pbuk + Apsin(g<n)i + ~0), (12)
<ninitr>= C1+ Alsin(g<nn>r + ~)r- (13)

where ghn>is the same wave-number value for which there
is a peak in S(q) [see Fig. 9(c)] The pair correlations also
show the same modulation, while at the same time following
apower-law decay [Fig. 9(b)],

<b\b\bi+rbi+r>= [C2+ A2sin(g<nn>r + V2)]r- “2. (14)

Another modulation can be observed in <b{bi+r>; however, in
this case the wave number differs from g<nn> and the values
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FIG. 8. OBC DMRG results of (b\bi+r) correlations in the middle
of an L = 200 lattice at (a) p = 1.25, t/U = 0.59 (SS phase) and
(b) p = 2.25, t/U = 0.37 (PSS phase). Log-log plots of the same
correlations are shown in the insets.

oscillate around zero [see Fig. 9(d)]:
(b\bi+r) = A3sin(*(b\b)r + ~)r —3. (15)

After combining the results for many different x and t/U
parameters, we can provide the relation between q(b\b) and g (nn)
[see Fig. 10(a)l:

q@b = n —0.5q(n). (16)

We also note that is q(nn) does not depend exclusively on phbulk
[which is the case in, e.g., underdoped p = 0.5 DW, where
g = 2np [26]; see Fig. 10(b)].

FIG. 9. Correlations and structure factor values obtained with
SSD DMRG for the system in the IPSS phase (L = 100, t/U = 0.48,
and x = 3.7). (a) Density correlations, (b) pair correlations, (c)
structure factor (11), and (d) creation-annihilation correlations. For
(a), (b), and (d), black points mark the numerical results, with red
lines showing the fits of the functions in Eqgs. (13) to (15). The value
of the appropriate wave number ga obtained from the fits [or from the
position of the S(q) peak in (c)] is written above each plot.
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FIG. 10. The results of SSD DMRG for the IPSS phase.
(@) The relation between q(m) and q(Bb. The linear fit (red) is
g(b\b) = 0.9991(6)n —0.4984(7)q(m). (b) The relation between q(m)
and phuik shown for different values of t/U .

V. CONCLUSIONS

In this paper we have presented an accurate Hamiltonian
representation of a one-dimensional system of bosons in
an optical lattice considering both the dipolar and contact
interactions (the mutual strength of which may be balanced
using the Feshbach resonance). We have employed the well-
established DM RG method to measure the dependence of
the phase transitions on often overlooked terms in the EBH
model (most notably, the next-nearest-neighbor tunnelings
and the density-dependent tunnelings). We have observed the
suppression of the SF phase with rising dipolar interaction
strength. In the case of fixed p = 1 we have also noted the
stable presence of a nontrivial, highly nonlocally correlated
H | phase throughout the considered parameters range, which
is even more pronounced for realistic, low values of dipolar
interactions. This robustness can be traced back to the fact that
H 1 is a symmetry-protected topological state [59].

For greater dipolar interaction strength and higher densities
we have observed interesting pair-correlated phases. Among
those, we put a particular emphasis on characterizing a novel
incommensurate pair superfluid phase, whose distinctive fea-
ture is an incommensurate density wave order. That phase is
not present either in the standard EBH model or for large
dipole-dipole interactions in small-diagonalization studies. We
have also noticed a particular relation between wave numbers
characterizing different correlations measured in this phase
(16) which may provide some insight into how to construct
an appropriate theoretical description. Rigorous theoretical
treatment of the IPSS is, however, beyond the scope of this

paper.
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APPENDIX A: THE DETERMINATION OF HAMILTONIAN
PARAMETERS

The values of the parameters in model (1) have been
calculated numerically using Wannier function representation
for a periodic boundary system with a standard optical lattice
potential Vopt(r). In thenumerical calculations described below
we assume the lattice is in the form of a cube with N3 sites,
so that the total volume Q = (Na)3, where a = n/kL is the
lattice constant.

Bloch functions of the form

Ak(r) = elkruk(r), (A1)

where uk(r) is afunction with the same periodicity as the lattice
potential, are calculated for the noninteracting Hamiltonian,
Hni = —hm + Vopt(r), as the lowest-energy eigenvectors of
the Schrddinger equation:

HNirk(r) = Ek™k(r). (A2)

Wannier functions can be calculated in the usual way [41]
from the Bloch functions:

Wn(r)= -L= £
V N keBZ

$k (r)e—ikxan, (A3)

where <k(0) is real and positive, n is thenumber of the
lattice sitein the x direction (we assume y = z = 0), and the
summation is done over k = (kx,ky,kz) from the first Brillouin
zone.

Substituting field operators of the form 0(r) = ~ i wi(r)bi
in (2), we get

t= ti(i+l),
tnm — ti(i+2),
U = Viiii,

= Vi(i+D)i(i+1) + Vi(i+1)(i+1)i,

v = Aii+2)i(i+2) + V(i+2)(i+2)i,
= —O0.5[Vii(i+1)i + Viii(i+1)], (A4)
with
tij = —Jf drw *(r)HM Wij(r), (A5)
q
Vijki = f drxdr2w*(rx)w*(r2)
ia
X V(n —r2)wk(rx)wi(r2). (A6)

Integral (A5) is straightforward to calculate using (A2) and
(A3). In order to calculate (A 6), we use periodic extension of
the interaction potential:

V(r) = g E V(k)eikr,
k

(A7)
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where k = Na(nl,n2,n3), ni e N, and V (k) = Vc(k) + Vd(k)
is the sum of the Fourier transforms of the contact and dipolar
interaction potentials (3):

t
Vd(k) = Cdd(cos2y — 1/3), (A8)
where y is the angle between the direction of polarization and

k. For convenience, we group the Wannier functions with the
same arguments wij (r) = w*(r)wj(r):

Vijki driwWik(riW dr2V (n —r2)wji(r2)

Jq Jq

driwik(r1)(v * Wji)(rl)
Ja

= £ f driWk(r1)"2(V » Wji)(k2)eik2r. (A9)
K

Ja

We use the convolution theorem for the Fourier series to obtain

Vijki = £ f drw *k(r)EV (k2)Wji(k2)eik2 r
Ja k2

Q [ drn2 wrk(klelklr E V (k2)Wji(k2)elker
K K

= Q £ Wik(k)V (k2Wji(k2) f dr ei(kl+k))«
k1k2

1
:QE
k

Wik(—k)V (K)W ji(k). (A10)

APPENDIX B: DMRG PARAMETERS

All ofthe numerical calculations reported in this paper were
done using density-matrix renormalization group (DMRG)
implementation found in the ITENSOR library [23]. For most
of the work OBCs were used, with sizes from L = 100 to
L = 400 andamaximum bond dimension x = 600. The cutoff
e was set to 1042 [e determines the number of singular
values discarded after each singular-value decomposition step
in the ITENSOR alg°rithm: (Enediscarded ~ )/(E n < el].In
Sec. I, we limit the maximum number of particles on each
lattice site Nout to 5, while for the OBCs and the SSD DMRG
used in Sec. IV the number is, respectively, up to 10 and 12.

Unless stated otherwise, a boundary term equal to
2p(nl + n2 nn+ nL nnn) was added to break the degener-
acy ofthe DW state (the added term simulates asituation where
we have four additional sites at the boundaries, with fixed
n—= 0, n0= 2p,nL+l = 0, and NL+2 = 2p, as expected in
one of the DW ground states). Another motivation for adding
these terms is to remove excitations on the edges in the H1
phase.

APPENDIX C: THE DESCRIPTION OF SINE-SQUARED
DEFORMATION DMRG

Some of the calculations (determination of boundaries of
the IPSS phase in Sec. 1V) were performed using a smooth-
boundary DM RG method, referred to as a sine-squared de-
formation (SSD) DMRG. In this approach the Hamiltonian
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FIG. 11. Position of the peak in S(q) (11) computed using m
middle sites (black points). The red solid line shows a fit of the
form C + Am-—Bcos(Km + 0). Here K & 0.342n, which is roughly
halfof g(m = C & 0.686n (shown as a green dashed line). At most
2/3 of all lattice sites have been considered. Data are calculated
for B/U = 5.2, t/U = 0.6, L = 100, and Nat = 12. The damped
oscillation amplitude S(q) position is approximately an order of
magnitude smaller than the FWHM of the S(q) function, which for
maximal mis &0.03n.

is rescaled using a sine-squared deformation [60]: HSDD =

Tj=0T = , Where

fu = sin2 +jy~) (C1)

with Hi,i+j acting only onsitesiandi + j and Hiti = Hiacting
only on a single site, i. We also add a chemical potential term
to the Hamiltonian, so thatnow Hi = (U/2)ni(ni —1) — Bni.

In contrasttoregularD M RG methods, the density of the gas
of particles (as measured in the middle part of the lattice) is not
fixed by the number of particles N used in the simulation, but
rather by the value of 3. An excess (or a deficit) of particles
stemming from the choice of N is taken care ofby placing extra
particles (vacancies) close to the system boundary, where the
coefficient fi,j takes a minimal value. This makes the edges
act as an effective bath for the particles (holes) in the middle
of the lattice. Because of that, in determination of the physical
guantities, we consider only 40% of the sites in the middle of
the lattice, unless stated otherwise.
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