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Abstract

Although many organizations throughout the world have worked tirelessly to control tuber-
culosis (TB) epidemics, no country has yet been able to eradicate the disease completely.
We present two compartmental models representing the spread of a TB epidemic through a
population. The first is a general TB model; the second is an adaptation for regions in which
HIV is prevalent, accounting for the effects of TB/HIV co-infection. Using active subspaces,
we conduct time-dependent sensitivity analysis on both models to explore the significance of
certain parameters with respect to the spread of TB. We use the results of this sensitivity
analysis to determine the most effective strategies for treatment and prevention throughout
the epidemic.

Keywords: time-dependent sensitivity analysis, active subspaces, tuberculosis, SEIR, com-
partmental modeling

1 Introduction

Tuberculosis (TB) is a potentially fatal, airborne infec-
tion caused by the bacterium Mycobacterium tuberculosis.
TB typically affects the respiratory system (pulmonary
TB), though it may also damage other organ systems
(extra-pulmonary TB) [25]. The progression of this in-
fection varies with each case; some individuals become
infectious immediately after encountering the bacterium,
while others enter an exposed—or latent—state. Those
who become immediately infectious (and thus contagious)
are classified as having fast-track TB. These individuals
may be treated via a therapeutic drug regimen. Those
who enter the exposed state have slow-track TB, and may
develop active infections later on in one of two ways: en-
dogenous reactivation or exogenous reinfection. Endoge-
nous reactivation occurs when a latently infected individ-
ual becomes infectious after the TB bacteria inside them
is activated. Exogenous reinfection occurs when a latently
infected individual becomes infectious after they are ex-
ternally infected by a new TB bacterium. This is some-
times referred to as a “mixed infection” [18]. However, 90
to 95 percent of latent TB patients remain asymptomatic
and noninfectious for life [3]. Exposed individuals may
be treated with a regimen of chemoprophylaxis.

Tuberculosis has been kept under relative control in the

1Northwestern University, Evanston, IL, 2California State Uni-
versity Channel Islands, Camarillo, CA, 3Regis University, Den-
ver, CO, 5St. Mary’s College of Maryland, St. Mary’s City, MD,
4Department of Mathematics, Lafayette College, Easton, PA

western world since the beginning of the twentieth cen-
tury. In 1921, the Bacillus Calmette-Guérin (BCG) vac-
cine was developed by French medical researchers, Albert
Calmette and Camille Guérin. Ideally administered dur-
ing infancy, the BCG vaccine remains a standard medical
practice, although it has only fifty percent efficacy [12].

Despite numerous medical advances, TB has made a
recent resurgence in the developing world, specifically in
the regions of Sub-Saharan Africa, Eastern Europe, and
Asia. New drug resistant strains of M. tuberculosis, in
addition to the simultaneous rapid spread of human im-
munodeficiency virus (HIV), prompted the declaration of
a public health emergency in 2005. According to the
Africa Regional Committee of the World Health Orga-
nization, the TB incidence rate has doubled overall in
the past fifteen years. Moreover, in areas where HIV is
especially prevalent, the rate has tripled and in regions
that have been severely affected by both TB and HIV,
the rate has quadrupled [26]. This suggests that being
HIV+ significantly increases one’s susceptibility to tuber-
culosis, accelerating the spread of an epidemic. This oc-
curs because tuberculosis is an opportunistic infection,
meaning that active cases are more likely to develop or
increase in severity when the body’s immune system is in
a weakened state. Accordingly, we choose to focus both
on general TB epidemics as well as those that occur in
HIV-prevalent regions.

A number of previous studies have been conducted to
model the proliferation of tuberculosis in the developing
world. Ozcaglar et. al [18] provide an extensive overview
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of the work done with regard to the mathematical model-
ing of TB epidemics. Expanding upon the work described
in [18], our investigation not only encompasses the anal-
ysis of compartmental models for the spread of TB and
its co-infection with HIV, but also introduces the use of
time-dependent sensitivity analysis to pinpoint the exact
times in an epidemic for which specific treatment or pre-
vention strategies are most effective.

Our goal is to identify which parameters have the most
substantial impact upon the size of the exposed and in-
fectious populations, in order to determine any vulner-
abilities that could be exploited to drive the epidemic
towards eventual eradication. We begin in Section 2 by
constructing two Susceptible - Exposed - Infectious - Re-
covered (SEIR) compartmental models for the spread of a
tuberculosis epidemic through a population. The first is
a general model for the spread of tuberculosis, while the
second accounts for the effects of HIV prevalence within
the population. In Section 3, we describe our method
for conducting time-dependent sensitivity analysis using
active subspace techniques. In Section 4, we apply these
techniques to our two compartmental models to deter-
mine the most effective strategies for combating tubercu-
losis at different stages of the epidemic.

2 Model Formulation

In this study, we utilize compartmental models to de-
scribe the spread of tuberculosis through a population.
The goal of a compartmental model is to show how ma-
terials flow from one mutually exclusive state to another.
Changes in states are often modeled with differential
equations, taking into account what enters and leaves
each state over time.

Historically, compartmental models play an impor-
tant role in the mathematical modeling of infectious dis-
eases. In the early twentieth century, William Kermack
and Anderson McKendrick introduced a compartmen-
tal model called the Susceptible - Infectious - Recov-
ered (SIR) model [10]. SIR models, often referred to
as Kermack-McKendrick models, represent the possible
states in which an individual can exist during an epi-
demic.

Since SIR models have mutually exclusive states, mem-
bers of a population can only exist in one state at a time.
However, individuals may move from one compartment
to another as their infection status changes due to the
epidemic. Basic SIR models account for two types of
transitions: the transition from susceptible (S) to infec-
tious (I) and from infectious (I) to recovered (R). The rate
at which someone moves from S to I is called the rate of
infection. This rate represents individuals moving from S
to I after coming into contact with the disease. The rate

at which an infected individual moves into the recovered
population is referred to as the rate of recovery.

In this study, we use a modified version of the origi-
nal SIR model: the Susceptible - Exposed - Infectious -
Recovered (SEIR) model. The addition of the Exposed
state (E) takes into account the proportion of the pop-
ulation with latent TB. As previously stated, when an
individual has latent TB, they have been exposed to the
M. tuberculosis bacteria but are asymptomatic and not
contagious.

Here, we introduce two SEIR models. One consists
of the aforementioned states and does not account for
HIV/TB co-infection. Throughout this paper we will re-
fer to it as our general TB model. The other model is
an extension of our general SEIR model and accounts for
HIV prevalence within a population. We will refer to this
model as our HIV/TB co-infection model.

2.1 General Tuberculosis Model

The general TB model is illustrated in Figure 1. Each
individual resides in either the susceptible, exposed, in-
fectious, or recovered population at any given time. The
pathways and rates of transfer between states are de-
scribed by the parameters in Table 1. The general TB
model includes the following assumptions:

1. Everyone is born susceptible to tuberculosis.

2. Relapse from the recovered state means re-contract-
ing active TB, i.e. a relapsed individual goes straight
from recovered to infectious.

3. Drug treatment for both latent and active tubercu-
losis is available, but treatment is not administered
to the entire E and I populations.

4. There are no drug-resistant TB strains present.

5. Vaccines are not 100% effective and may decline in
efficacy over time.

The following system of ordinary differential equations
defines the instantaneous rates of change of the popula-
tions in each compartment. Parameter units are chosen to
ensure consistency in the ODE system; all four equations
have units of individuals/time.

dS
dt = β − λSI − δS − νS (1)

dE
dt = pλSI − (ω + σc + δ)E (2)

dI
dt = (1− p)λSI + ωE − (δ + τ + γ + σt)I + θR (3)

dR
dt = νS + σcE + (σt + γ)I − (δ + θ)R (4)

Equation (1) illustrates the change in the susceptible
population with respect to time. As per assumption (1)
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Figure 1: General Tuberculosis SEIR Model.

Table 1: Parameters for General TB Model.

Parameter Meaning Units

β birth rate individuals
time

δ natural death rate 1
time

ν rate of vaccination 1
time

λ rate of infection 1
individuals×time

ω rate of deterioration 1
time

τ death rate due to TB 1
time

γ rate of recovery 1
time

σc latent TB treatment 1
time

σt active TB treatment 1
time

θ rate of reinfection 1
time

p slow TB proportion —

above, all individuals born into the population, repre-
sented by β, enter the susceptible population. Those in-
dividuals who are vaccinated leave the susceptible popu-
lation, transitioning directly to the recovered population
at a rate of ν. We also take into account those who leave
the susceptible population after coming into contact with
infectious individuals and contracting the disease. A fixed
percentage, p, of these individuals will develop slow-track
TB, while the remainder will move directly to the infec-
tious state. Natural death occurs at the same rate in each
of the four populations and is represented by the δ terms
in Equations (1)–(4).

Equation (2) includes the proportion, p, of those in-
dividuals from the susceptible population that develop
slow TB and enter the exposed population. Individuals
may leave the exposed population due to deterioration to
the active TB infection, natural death, or treatment via
chemoprophylaxis, represented by ω, δ, and σc, respec-
tively.

Equation (3) displays an influx of individuals coming
from both the susceptible population (via fast TB) and
the exposed population (via deterioration of latent TB
into the active infection). This equation also shows in-
dividuals who are naturally recovering from active TB
or recovering via therapeutic treatment and thus leaving
the infectious population, represented by rates γ and σt,
respectively. Here we have two “death” terms; τ repre-
sents people dying due to TB, while δ indicates death due
to natural causes, as in the other three states. Finally,
some individuals from the recovered population relapse
and re-enter the infectious population at a rate of θ.

Equation (4) models how individuals from the suscep-
tible, exposed and infectious populations move into the
recovered population due to vaccination, treatment and
natural recovery. Leaving the recovered population are
those individuals who are naturally dying and relapsing,
as previously discussed. Because TB vaccines are not
100% effective and may decline in efficacy over time [14],
we include vaccinated individuals in the recovered class,
which allows for them to re-enter the E-I-R cycle via the
relapse mechanism.

Figure 2 illustrates the population dynamics of a tu-
berculosis epidemic over a span of 300 years. This graph
is depicted using our established ODE system with es-
timated parameter values listed in Table 2. We use an
initial population of 1000 people, 990 of which are sus-
ceptible and 10 exposed. These initial conditions are
comparable to those used in the epidemiological model
presented in [18]. We choose these values to ensure that
our model dynamics illustrate an epidemic (defined by
the CDC as a greater incidence of disease than what is
expected in a region [19]) as opposed to an endemic preva-
lence of TB. Because we allow for individuals to be born
into—and die out of—the population, our system is not
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Figure 2: SEIR dynamics for a population with nominal
parameter values as listed in Table 2, with initial values
S = 990, E = 10, I = 0, and R = 0.

closed. Thus, it is possible for the total population to
exceed 1000 at later times in the epidemic. The suscepti-
ble population initially thrives then drastically decreases
until year 50 when it begins to level off. The exposed pop-
ulation acts in opposition to this, increasing rapidly until
year 50. The infectious population also increases and be-
gins leveling off around year 50, however it increases at
a lesser rate than the exposed population. The recovered
population—which consists of vaccinated individuals as
well as those whose TB has been successfully treated—
steadily increases in this time frame. In the eventual
steady-state, we see that approximately 35% of the popu-
lation has contracted latent TB, while roughly 10% have
active TB. These percentages are in alignment with data
from high-TB regions in Africa [27]. All remaining indi-
viduals are still susceptible or have moved into the recov-
ered category via either successful treatment of their TB
or vaccination.

2.2 HIV/TB Co-infection Model

We now present a model that more accurately repre-
sents the spread of tuberculosis in regions where HIV is
prevalent. This co-infection model has eight compart-
ments, seen in Figure 3, which separate S, E, I, and R
into HIV+ and HIV− populations. We also introduce two
new parameters. The parameter µ represents the HIV
incidence rate: the rate at which people in each compart-
ment contract HIV and move into the respective HIV+
population. The parameter q represents infants who are
born HIV− as a proportion of the birth rate, β; thus,
(1− q)β accounts for HIV+ births.

The remainder of the parameters have equivalent in-
terpretations to their counterparts in the general TB

Figure 3: HIV/TB Co-infection Model.

model. Parameters subscripted with an H, as shown in
Table 2, have altered values to account for the effects of a
weakened immune system. One additional assumption is
added: the HIV incidence rate, µ, remains the same for
all four HIV− populations.

As before, the rate of change of each population is rep-
resented by a system of ordinary differential equations.
Each equation has similar interpretations to the equa-
tions for the general TB model. In the system, the term
(I + IH) represents the total number of infectious indi-
viduals, whether in the HIV+ or HIV− populations. Note
that an infectious person in the HIV− population can in-
fect a susceptible individual in their own population or in
the HIV+ population. Similarly, an infectious individual
in the HIV+ population can infect a person in their own
population or in the HIV− population.

dS
dt = qβ − λ(I + IH)S − (ν + δ + µ)S

dSH

dt = (1− q)β − λH(I + IH)SH

− (νH + δ)SH + µS

dE
dt = pλ(I + IH)S − (δ + σc + ω + µ)E

dEH

dt = pλH(I + IH)SH + µE − (δ + σcH + ωH)EH

dI
dt = (1− p)λ(I + IH)S + ωE

− (γ + δ + τ + σt + µ)I + θR

dIH
dt = (1− p)λH(I + IH)SH + ωHEH + µI

+ θHRH − (γH + τH + σtH + δ)IH

dR
dt = (σt + γ)I + σcE + νS − (δ + θ + µ)R

dRH

dt = (σtH + γH)IH + σcHEH + νHSH

− (δ + θH − µ)RH
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Figure 4: HIV/TB Co-infection Population Dynamics.

Figure 4 illustrates the dynamics of the eight popula-
tions in the HIV/TB co-infection model. At the steady
state, the total percentage of HIV+ individuals is 12.86%.
For comparison, HIV prevalence among adults aged 15–49
in Nigeria, South Africa, and Swaziland is 3.2%, 18.1%,
and 27.4%, respectively [27].

3 Sensitivity Analysis Using
Active Subspaces

Our objective is to identify which parameters, or combi-
nations of parameters, contribute most to the fluctuations
in exposed and infected individuals, to identify vulnera-
bilities in the system that would allow us to drive that
number toward zero with appropriate treatment and pre-
vention strategies. To perform this sensitivity analysis,
we use techniques derived from the construction of active
subspaces.

3.1 Active Subspace Construction

Active subspaces can be used in sensitivity analysis to
identify key directions in the input space that are most
influential in changing a quantity of interest, f . An ac-
tive subspace identifies a set of orthogonal directions—
or vectors—in the input space, each of which is a set of
weights that define a linear combination of the original
parameters. The first vector in the active subspace rep-
resents the direction along which f changes the most; rel-
ative importance of the direction decreases as you move
along the columns of the active subspace. Those direc-
tions which are deemed unimportant, or noninfluential to

the quantity of interest, are discarded. In this way, active
subspaces are a powerful tool for dimension reduction;
here, we will use them as a means of identifying influen-
tial parameters or sets of parameters for our sensitivity
analysis.

Constantine [5] outlines the process for identifying an
active subspace via Monte Carlo estimation of the eigen-
decomposition of the uncentered covariance matrix. He
goes on to state that this is equivalent to analyzing the
singular value decomposition (SVD) of a matrix of gradi-
ent vectors, collected at a set of M Monte Carlo param-
eter samples. We utilize this second method, and outline
it briefly in Algorithm 1.

There are a number of methods for choosing where to
partition S. Some rely on visual gaps in the singular value
spectrum [5, 13]; others choose the dimension in order to
satisfy a user-defined error tolerance [7, 23]. Depend-
ing on the desired use for the active subspace, a balance
must be struck between minimizing the dimension to re-
duce computational needs and maximizing the accuracy
of the estimate. Here we utilize the “gap-based” method,
choosing the dimension of the active subspace to reflect
an observed gap in the singular values. The partition of S
determines the dimension of the active subspace; that is,
the number of singular values that are deemed significant
determines the number of directions that are included in
the active subspace.

3.2 Obtaining Sensitivity Metrics
from Active Subspaces

Our primary use for the active subspace in this investi-
gation is to construct a global sensitivity metric, which—
like similar procedures such as Morris Screening [17] or
the construction of Partial Rank Correlation Coefficients
(PRCC) [15]—allows us to rank parameters in terms of
their overall influence on the quantity of interest. How-
ever, the advantage to using active subspaces as an in-
termediary step to constructing the sensitivity ranking
is that information regarding linear combinations of sig-
nificant parameters may be obtained; that is, a param-
eter may not be flagged as significant on its own, but
may be extremely significant when observed in combina-
tion with another parameter. In high-dimensional models
where significant dimension reduction must occur before
analysis can proceed, this information can be utilized to
redefine the quantity of interest over key directions of in-
fluence, reducing the dimension of the model while still
minimizing the information loss from discarded parame-
ters [5].

After identifying the dimension, n, of the active sub-
space, we can compute activity scores for each of the m
parameters, which weight each parameter’s contributions
from the important directions in the input space accord-
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Algorithm 1 Estimating the Active Subspace

(1) Draw M parameter samples xj = [x1, . . . , xm], for
j = 1, . . . ,M and m the number of parameters, in-
dependently from a specified density function. Here,
we use

Um(x∗ − 0.2x∗,x∗ + 0.2x∗),

where x∗ represents the vector of nominal parameter
values. That is, we draw samples from a uniform
hypercube where parameter values may vary up to
20% from their defined nominal values.

(2) For each xj , compute the gradient of f ,

∇xfj = ∇xf(xj),

where f(x) : Rm → R represents the quantity of in-
terest. In cases where the gradient is not easily com-
puted via an analytic solution, estimate the gradient
using finite differences,

∇xfj ≈
f(x + hej)− f(x)

h
,

where h is a small step size and ej represents the
standard basis vector with a one in the jth spot and
zeros elsewhere.

(3) Compile the gradient vectors into a matrix:

G =
1√
M

[∇xf1 . . .∇xfM ].

(4) Compute the SVD: G = USV T . This decomposes
the matrix G into its singular values (contained in
S) and matrices containing the left and right singular
vectors (U and V , respectively) [16].

(5) Partition S according to significance of the singular
values,

S =

 S1 0

0 S2

 ,
where

S1 = diag(s1, . . . , sn),

S2 = diag(sn+1, . . . , sm).

(6) Partition U = [U1 U2], such that U1 contains the
first n singular vectors and U2 contains the remain-
der. The vectors in U1 comprise the active subspace.

ing to the significance of the corresponding singular value.
For parameter i and active subspace dimension n, this
takes the form of

αi(n) =

n∑
j=1

sj
2ui,j

2,

where ui,j represents the (i, j)th component of the ac-
tive subspace matrix U1. For more details on the use of
activity scores as a sensitivity metric, see [6].

In a time-dependent scenario, we must account for the
fact that parameter sensitivities may change as a function
of time. We now have a quantity of interest of the form
f(t;x) : Rm+1 → R, where the function depends both on
time and on the value of the parameters assigned for each
run.

To handle the time-dependence, we take snapshots
of the active subspace at time steps [t1, t2, . . . , tN ].
This method has been used previously to construct re-
sponse surfaces (low-dimensional alternatives to a com-
plex model) for an HIV model in [11]. In our investiga-
tion, we use these snapshots to compute an activity score
for each parameter at each time step, and observe how
parameter sensitivities change with respect to time.

4 Analysis and Discussion

We now apply the methods of Section 3 to the two com-
partmental models constructed in Section 2 and analyze
the results. All numerical solutions and figures used in
the analysis were produced using the ode function with
default method LSODA—which switches automatically be-
tween stiff and non-stiff systems—from the deSolve pack-
age in R [21].

4.1 Setup

To begin, we define a scalar quantity of interest for
our model, which we take to be the sum of our exposed
(E) and infectious (I) individuals as a proportion of the
total population (N) at a particular time t. Thus, the
quantity of interest at time t is the proportion of the
population that is affected by tuberculosis in either the
latent or active form:

f(t) =
E(t) + I(t)

N(t)
.

We construct an active subspace for every two year pe-
riod over a duration of 300 years, beginning with t = 1
up to t = 301. To construct our active subspace at each
time t, we sample the parameters from a multivariate
uniform distribution, where parameter values range from
±20% of the nominal values listed in Table 2. Note that
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those parameters listed with asterisks in Table 2 are fixed,
leaving six varying parameters in the general TB model
and 13 in the HIV/TB co-infection model. In each case,
we fix those parameters over which medical profession-
als would have no control, to focus our analysis on those
that may have some flexibility in the field. Wherever pos-
sible, we use nominal values found in the literature. In
cases where values are unavailable, we carefully choose
our nominal values to yield the expected model dynamics
and satisfy our biological understanding. For instance,
we would expect that HIV+ individuals would recover
from TB less frequently than their HIV− counterparts
due to their potentially weakened immune systems; thus,
we choose γH < γ. We note that additional work would
need to be done to verify these estimates before any con-
clusions drawn here could be used in a clinical setting.
However, as we intend for this investigation to serve as
a proof of concept for a procedural methodology rather
than to provide concrete recommendations to clinicians
in the field, we proceed with these estimates.

The gradient vectors at each of the sample sets are
combined into a gradient matrix G, from which an active
subspace is constructed—see Algorithm 1. To determine
the dimension of the active subspace at each time step, we
investigate the relative magnitude of the singular values,
plotted in Figure 5 for the general TB model. Note that
the singular values are normalized so that σ1 = 1 in ev-
ery case, making comparison easier. We use a cutoff value
of 0.01 when choosing the dimension; any singular value
that attains a value greater than this at any point over
the 300 years is deemed significant, and the correspond-
ing singular vector is included in the active subspace for
all time steps. For both the general TB and HIV/TB
co-infection models, we determined the dimension of the
active subspace to be 3. For each of the 151 active sub-
spaces, we compute activity scores with n = 3 for each
of the varying parameters, to identify which are most in-
fluential in changing the value of the quantity of interest.
We note that with such a small parameter space, dimen-
sion reduction is not strictly necessary here as computa-
tion time is not a concern. However, contributions from
the final four columns of the U matrix are minimal, and
their effects upon the activity scores can be considered
negligible.

4.2 Analysis of General TB Model

The activity scores of the general TB model are
graphed over time for each of the six varying parame-
ters in Figure 6. We observe that in the beginning of the
epidemic, λ, the rate of infection, is by far the most sig-
nificant parameter. Therefore, we would recommend that
resources be allocated with a focus on decreasing con-
tact between the infectious and susceptible populations.

Table 2: Nominal parameter values for both the general
TB and co-infection models. Asterisks indicate fixed val-
ues. Those parameters that are not fixed are sampled
from uniform distributions centered at their listed values.

Parameter Nominal, Source

(β) birth rate 21.3*, [8]

(q) proportion born HIV− 0.987*, [22]

(δ) natural death rate 0.00861*, [9]

(ν, νH) rate of vaccination 0.00445, 0.002, [26]

(λ, λH) rate of infection 0.0018, 0.08, Est.

(p) slow-track TB proportion 0.95*, [2]

(ω, ωH) rate of deterioration 0.0084, 0.01, [24, 20]

(τ, τH) death rate due to TB 0.00079*, 0.0375*, [24]

(γ, γH) rate of recovery 0.02*, 0.0001*, Est.

(σc, σcH ) latent TB treatment 0.005, 0.0001, Est.

(σt, σtH ) active TB treatment 0.005, 0.0001, Est., [1]

(θ, θH) rate of reinfection 0.0005, 0.009, [2, 4]

(µ) HIV incidence rate 0.0025, [24]

s1
s2
s3
s4
s5
s6

Figure 5: Normalized singular values for the general TB
model.
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Figure 6: Activity Scores for General TB Model

This could take the form of quarantine for infectious indi-
viduals and/or encouraging susceptible individuals to get
vaccinated, thereby moving them (at least temporarily)
to the recovered population.

Around year 50 of the epidemic, the significance of σc
and ν, the rates of latent treatment and vaccination, in-
creases. This indicates that treatment of exposed individ-
uals and vaccination of susceptible individuals both play
a large role in driving down the total number of people af-
fected by TB during this time frame. Allocating resources
to these two venues would be the most effective form of
controlling the epidemic at this stage. Note that this
could include any of the following: improving vaccination
efficacy, increasing the number of vaccinations given, im-
proving current treatments for slow TB, increasing the
number of individuals receiving treatment, and monitor-
ing those being treated to make sure they complete the
full treatment regimen.

Towards the end of the epidemic, σc remains highly
significant. The significance of θ and ω increase as well.
The rise in significance of the relapse rate, θ, coupled with
the decrease in significance of ν, indicates that our focus
should shift from vaccinating the susceptible population
to monitoring recovered individuals at the risk of relapse.
Since the rate of deterioration, ω, is the rate at which
latently infected individuals become infectious, we would
still want to keep a large focus on latent TB treatment as
well as therapeutic treatment for those that do progress
to active infections.

Figure 7: Activity Scores for HIV/TB Co-infection.

4.3 Analysis of HIV/TB Co-infection
Model

Figure 7 shows the activity scores of the HIV/TB co-
infection model. For the most part, we observe similar
behavior as in the general TB case. During the begin-
ning of the epidemic, the most significant parameter is λ,
the rate of infection, indicating a need for quarantine of
infectious individuals and increased vaccination rates for
the susceptible population to reduce the number of indi-
viduals at risk of infection. As time progresses, σc and
ν once again increase in significance, indicating the effi-
cacy of latent treatment and vaccinations in controlling
TB epidemics. As in the general TB model, we see an
increase in significance of the relapse rate, θ towards the
end of the epidemic.

One notable difference in the HIV/TB co-infection
model is the significance of µ, the HIV contraction rate.
Beginning around year 75, the activity scores for µ un-
dergo a steady increase through to the end of the observed
time period, eventually becoming just as significant as the
treatment rate of latent TB, σc. This suggests that one
of the most effective ways of driving down the number of
individuals affected by TB would actually be to focus on
controlling the spread of HIV, as the TB infection takes
advantage of weakened immune systems such as those ex-
hibited by HIV+ individuals. Spreading awareness of HIV
and emphasizing safe-sex methods could be vital to con-
trolling the spread of both HIV and TB in these regions.

5 Conclusion

Tuberculosis is an airborne disease, therefore it is
treated and prevented through strategies such as quar-
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antine, vaccinations, and drug treatment. These medi-
cal approaches have been used for decades, quelling the
spread of TB for brief periods at a time, though the infec-
tion often returns with a vengeance. As of the twenty-first
century, the prevalence of HIV as well as drug resistant
strains of TB have incited a modern day epidemic in many
developing regions of the world. Given the recent increase
in the incidence of tuberculosis on a global scale, we con-
ducted this research with the goal of accurately modeling
tuberculosis spread in varying environments and aiding in
the design of a protocol for determining effective methods
of prevention and treatment.

Through use of time-dependent sensitivity analysis us-
ing techniques derived from active subspaces, we were
able to pinpoint those parameters in our proposed models
that are most influential in driving down the proportion
of the population that is affected by TB at any given time.
Among those parameters that were deemed most signifi-
cant were the rate of infection (toward the beginning of
the epidemic), the latent treatment and vaccination rates
(toward the middle of the epidemic), and the relapse and
deterioration rates (as the 300 year observed time period
draws to an end). In addition, we discovered that in re-
gions where HIV is prevalent, controlling the spread of
HIV is vital to the eventual eradication of TB.

We stress that all conclusions drawn from this model
assume the validity of the parameter values listed in Ta-
ble 2. As data is not available for each of the four states
over a full epidemic period for model fitting, we have used
parameter values from the literature when available and
chosen values to ensure expected behavior of the state
variables when not. Additional model validation and ver-
ification would be required before the conclusions drawn
here could be utilized at the clinical level. As such, we
present this investigation as a procedural methodology,
and claim that for a properly validated model, our proce-
dure can illuminate not only which strategies of treatment
and prevention may be most effective, but perhaps even
more importantly, when each strategy would be most ef-
fective. This can help us to achieve optimal allocation of
scarce resources for treatment and prevention as we fight
for the eventual eradication of TB on a global scale.
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