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Introductory Paragraph

Multiple sclerosis (MS) is a disease of the central nervous system, treated with disease-

modifying therapies, including the biologic, interferon-beta (IFN-β). Up to 60% of IFN-β 
exposed MS patients develop abnormal biochemical liver test results1,2 and one in 50 

experience drug-induced liver injury (DILI).3 Since genomic variation contributes to other 

forms of DILI,4,5 we aimed to identify biomarkers of IFN-β-induced liver injury using a 

two-stage genome-wide association study (GWAS). The rs2205986 variant, previously 

linked to differential expression of interferon regulatory factor (IRF)-6, surpassed genome-

wide significance in the combined two-stage analysis (P=2.3×10−8, odds ratio=8.3, 95% 

CI=3.6–19.2). Analysis of an independent cohort of IFN-β-treated MS patients identified via 

electronic medical records (EMRs) revealed rs2205986 was also associated with increased 

peak levels of aspartate aminotransferase (AST, P=7.6×10−5) and alkaline phosphatase 
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(ALP, P=4.9×10−4). We show that these findings may be applicable to predicting IFN-β-

induced liver injury, offering insight into its safer use.

Main Letter

While the therapeutic options for MS are expanding, the IFN-βs remain the most widely 

used disease-modifying therapy. Liver injury secondary to IFN-β has potentially serious 

sequelae, yet, there are no means of predicting this adverse reaction. In the US, DILI is the 

leading cause of acute liver failure6 and the most common reason for drug withdrawal from 

the market.7 GWAS have successfully discovered variants of large effect sizes associated 

with DILI due to non-biologics using relatively small, but rigorously phenotyped cohorts.4,8 

However, studies identifying variants associated with DILI from biologics, including IFN-β, 

have not been reported.

Patients who exhibited normal baseline biochemical liver test results prior to IFN-β exposure 

were included in this study (Online Methods). Cases met a published DILI definition9 and 

controls were exposed to IFN-β for ≥2 years, with all biochemical liver test results within 

the normal range. We recruited 170 patients from Canadian-based MS clinics for stage one 

analyses employing genome-wide genotyping. Upon exclusion of samples failing quality 

control (QC) or those of non-European genetic ancestry (Supplementary Fig. 1), 151 

samples (38 cases, 113 controls) were subject to whole genome and HLA-allele imputation. 

Variants reaching P<1.0×10−6 in stage one were tested in stage two. The clinical and 

demographic characteristics of stage one participants were similar between cases and 

controls, apart from the controls being more likely to have a relapsing-remitting MS course 

(P=0.035, Supplementary Table 1).

Genome-wide analysis identified three regions associated with IFN-β-induced liver injury, 

after adjusting for disease course (Table 1, Supplementary Tables 2 and 3, Supplementary 

Fig. 2a). The strongest association was located on chromosome 1q32.2 (rs2205986 [G>A], 

P=1.9×10−7, OR=8.5, 95% CI 3.5–20.4, Table 1). This variant also surpassed our screening 

threshold unadjusted for covariates (P=3.1×10−7) and when adjusted for the first five 

principal components and MS disease course (P=2.6×10−7). HLA-region analyses did not 

identify any association with IFN-β-induced liver injury, including HLA-variants previously 

associated with DILI caused by other medications (Supplementary Table 4).

The prioritized genomic regions were subsequently tested in stage two, using a separate 

cohort of MS subjects from the USA and Sweden (18 cases, 13 controls of European 

ancestry). Cases were significantly older (P=0.026), but were similar to controls across other 

characteristics (Supplementary Table 1). Of the variants tested in stage two, only the 1q32.2 

region (rs2205986) was associated with IFN-β-induced liver injury (P=0.004, Table 1, 

Supplementary Table 3). This variant was only observed in cases (Supplementary Table 2) 

and the overall effect (combined stage one and two) surpassed genome-wide significance 

(P=2.3×10−8, OR=8.3).

Next, we evaluated array-genotyped MS patients receiving IFN-β identified via EMRs in the 

Vanderbilt University Medical Center repository (BioVU) to assess the influence of the 
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rs2205986 DILI-risk variant on peak biochemical liver test results during IFN-β treatment. 

Of the four liver test results analyzed, rs2205986 was significantly associated with increased 

AST (P=7.6×10−5) and ALP (P=4.9×10−4) levels (Table 2, Supplementary Fig. 3). Each 

rs2205986 G-allele contributed, on average, to an increase of 52.3 units/L (ALP) and 29.4 

units/L (AST).

Of note, the one BioVU patient homozygous for the rs2205986 G-risk-allele presented with 

elevated peak alanine and aspartate aminotransferase (ALT, AST) and alkaline phosphatase 

(ALP) levels (Table 2), potentially indicating a marked increase in risk associated with this 

rare genotype. We performed a complementary analysis excluding this sample, which 

revealed a significant association with AST (P=0.017) but no association for the remaining 

liver test results. Further, since IFN-β-induced liver injury typically presents with a 

hepatocellular pattern, we also performed an exploratory case-control analysis of ‘mild 

DILI’ (ALT or AST >2x upper limit of normal) in the BioVU cohort. These analyses also 

detected evidence for an association with this phenotype (P=0.048; OR=4.3, 95% CI 1.02–

17.8; Table 1), indicating the biomarker may also be useful in identifying milder forms of 

liver injury.

We also examined the frequency of the top stage one regions in a cohort of 1,319 disease-

matched population controls that were unscreened for biochemical liver test abnormalities. 

This confirmed a higher frequency of rs2205986 in cases [minor allele frequency (MAF) 

21.4%] compared to MS population controls (MAF 9.4%). Although these analyses were no 

longer genome-wide significant (P=3.0×10−4), the use of population controls are best suited 

to adverse drug reactions with prevalence rates of <1%.10 In contrast, 2% of IFN-β-treated 

MS patients develop DILI and up to 60% exhibit abnormal biochemical liver test results in a 

population-based cohort study.3 Since the BioVU biochemical liver test analyses indicated 

rs2205986 is associated with elevated peak liver test results, the depletion in MAF observed 

in drug-exposed/screened controls may have been caused by the removal of carriers with 

abnormal biochemical liver test results during the stringent selection process of controls.

Inspection of the 1q32.2 region revealed that only rs2205986 surpassed P<1.0×10−6, while 

30 variants within a 266-kb linkage disequilibrium (LD) block displayed P<5.0×10−5 (Fig. 

1). Upon adjusting for rs2205986, no variants were independently associated with DILI 

(P>0.05, Supplementary Table 5). Rs2205986 is an intronic synaptotagmin-14 (SYT14) 

variant, however this marker is approximately 4.5-kb from the nearest canonical exon and is 

not predicted to alter SYT14 transcription, splicing or expression. Notably, in silico 
annotation using the Genotype-Tissue Expression Project data revealed rs2205986 is an 

expression quantitative trait locus (eQTL) for the interferon regulatory factor 6 gene (IRF6, 

multi-tissueP=5.89×10−17),11 located 137-kb upstream from rs2205986 (Fig. 1).

Interferon regulatory factors (IRFs) are a family of IFN transcription factors, which 

synchronize the type I IFN pathway.12 Many of the nine known IRFs are associated with 

promoting liver damage in another model of liver cell death: hepatic ischemia/reperfusion 

injury.13 Further, recent gene expression studies have identified IRF6 as an IFN-β drug 

response biomarker,14 while IRF3 has been implicated in tolvaptan-induced liver injury.15 

IRF6 promotes apoptosis following brain injury,16 and previous case reports of MS patients 

Kowalec et al. Page 4

Nat Genet. Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



experiencing IFN-β-induced liver injury have shown hepatocyte apoptosis,17 suggesting 

rs2205986-induced alterations in IRF6 expression may promote apoptosis in the presence of 

IFN-β. The rs2205986-IRF6 eQTL was not significant in liver tissue; however, the effect of 

this variant on gene expression may be amplified in the presence of IFN-β or the variant may 

exert its influence via the blood (Supplementary Fig. 4). Future studies should therefore 

investigate the influence of this eQTL on IFN-β-induced hepatic expression.

The HLA-region has been shown to confer risk to DILI caused by certain drugs;4,5 however, 

no HLA-alleles or variants outside the HLA-region previously been associated with DILI 

(e.g. glutathione S-transferase and ATP-binding cassette transporter genes)18,19 reached the 

screening threshold. As previous pharmacogenomic studies of DILI investigated non-

biologics, these results might be expected given the differences in the metabolism of 

biologics compared to small molecule drugs,19 and the limited evidence surrounding IFN-β 
metabolism.20

We also incorporated rs2205986 into a predictive model for DILI: including rs2205986 

significantly improved the prediction of liver injury, over clinical factors alone (P=0.0039, 

Supplementary Fig. 5). Rs2205986 had a specificity of 93.7% (95% CI=87.9–97.2) and 

sensitivity of 41.1% (95% CI=28.1–55.0). Notably, the only patient requiring a liver 

transplant was an rs2205986 carrier. The negative and positive predictive values of 

rs2205986 were 98.7% and 12.2% respectively and the number of individuals needed to 

screen for rs2205986 to prevent one case was 117. These metrics are similar to those 

reported for the testing of HLA-B*1502 and carbamazepine-induced Stevens-Johnson 

syndrome.21 Pharmacogenomic testing for HLA-B*1502 prior to carbamazepine use is 

recommended by the FDA for certain ancestries, highlighting the importance of the current 

findings. Future studies could consider incorporating additional variables; such as the 

absolute baseline liver biochemistry values into predictive models to further improve 

prediction.

To our knowledge, this is the first GWAS to investigate an adverse reaction due to a MS 

therapy and specifically DILI due to a biologic. These analyses were restricted to European 

genetic ancestry patients to minimize population stratification. However, since MS is known 

to be most prevalent in those with Northern European ancestry,22 these results are expected 

to be applicable to the majority of people with MS. Further, objectively defining DILI9 and 

applying stringent inclusion criteria for the controls in this study enhanced the statistical 

power.10 Nonetheless, sample size remains a limitation, and as a consequence, we were only 

able to identify one pharmacogenomic predictor of IFN-β-induced liver injury. Future 

studies of larger cohorts might improve the ability to detect additional variants of smaller 

effect.

In conclusion, we have identified an association between an IRF-related eQTL and IFN-β-

induced liver injury. These findings have important implications for the development of 

strategies to reduce the occurrence of IFN-β-induced liver injury in MS patients. 

Pharmacogenomic testing for this variant prior to IFN-β therapy, rather than only monitoring 

liver enzymes during treatment, may prevent DILI in at-risk patients. Prevention of DILI in 

rs2205986-carriers could then be achieved by either considering alternative therapies or 
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increased monitoring of liver injury. In addition, our findings set the stage for functional 

assessments of IRF6, rs2205986 and IFN-β treatment, to provide a mechanistic 

understanding of this pharmacogenomic association that can be specifically targeted to 

prevent DILI.

Online Methods

Study participants.

Subjects were eligible for inclusion in our study if they had either relapsing-remitting or 

secondary-progressive definite MS (based on Poser or McDonald criteria),23,24 documented 

exposure to an IFN-β product (IFN-β−1b subcutaneous, SC [250 mcg every other day], IFN-

β−1a SC [22 mcg or 44 mcg 3x weekly] or IFN-β−1a intramuscular, IM [30 mcg weekly]) 

and had a normal baseline liver enzyme test. At least one alanine aminotransferase (ALT) 

test result was required for baseline assessment. Cases met the following definition, which 

includes at least one of the following criteria9: (1) ALT or aspartate aminotransferase (AST) 

≥5x upper limit of normal (ULN); or (2) ALT ≥3x ULN with simultaneous elevation of 

bilirubin >2x ULN; or (3) alkaline phosphatase (ALP) >2x ULN. Controls were exposed to 

IFN-β for at least two years with all biochemical liver test results within normal limits based 

on the normal ranges for the site-specific laboratory.

As the first 15 months of IFN-β exposure is considered the greatest risk period for 

developing de novo ALT elevations,2 and all cases developed DILI within 700 days of 

beginning IFN-β,3 two years of IFN-β exposure was required to determine if a participant 

was truly a control. As expected due to the study design, stage one controls were exposed to 

IFN-β for a significantly longer duration (median: 82 months, IQR: 51–110.5 months) than 

cases (median: 4 months; IQR: 2.5–27.5 months, P=6.0 × 10−15). Moreover, all biochemical 

liver test results for controls had to be within the normal reporting range, which further 

limited the size of our control sample given that 30–60% of MS patients exposed to IFN-β 
will experience any de novo liver enzyme elevation.1,2 Although limiting our sample size for 

IFN-β-exposed controls, these stringent inclusion criteria increased the confidence in the 

clinical phenotype enhancing our power to detect genetic variants of clinical relevance.

Participants included in stage two were recruited from three sites: a USA-based clinic 

(Partners HealthCare MS Clinic, Boston, USA) and two national adverse drug reaction 

surveillance networks, situated in the USA (the Drug-Induced Liver Injury Network25,26) 

and Sweden (SWEDEGENE, http://www.swedegene.se/). Inclusion criteria for patients 

recruited from the Drug-Induced Liver Injury Network matched that from other centers 

except that two consecutive elevations of the same magnitude described above of ALT, AST 

or ALP were required.26 The relevant research ethics board of each participating institution 

approved the study and all participants provided written informed consent. This study 

complies with all relevant ethical regulations.

Clinical characterization.

Each patient’s medical record was reviewed prior to genotyping to capture demographic and 

clinical information and a comprehensive characterization of the adverse drug reaction, 
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including drug exposure information and biochemical liver test results. The following 

information was collected from medical charts for all patients: demographics (sex, date of 

birth, self-reported ancestry), body mass index (BMI), MS disease characteristics (MS 

disease course at IFN-β initiation (relapsing-remitting (RR) or secondary-progressive (SP)), 

medications (IFN-β product (dose, route of administration, start and stop dates), concurrent 

medication usage (generic name, route of administration, dose, frequency, start and stop 

dates, where possible), and biochemical live test results [date of test, test result (value, if 

abnormal), reporting laboratory ULN, if abnormal].

Genotyping, quality control (QC) and imputation.

Genome-wide genotyping was performed for the stage one participants (n=170) using the 

Illumina MEGA array (1,705,969 genetic variants) followed by stringent sample and variant 

QC methods. The stage two cohort was either genotyped in the same manner (n=10) or as 

part of a genome-wide analysis of MS disease risk as described previously41 (n=24). For the 

participants genotyped as part of the MS disease risk study, access to imputed genotype data 

allowed for the extraction of the variants of interest where necessary.

The following combination of thresholds for QC metrics were implemented using either 

QCTOOL (version 2, http://www.well.ox.ac.uk/~gav/qctool_v2/), GTOOL (version 0.7.5, 

http://www.well.ox.ac.uk/~cfreeman/software/gwas/gtool.html) and PLINK (version 1.90).
27 Genetic variants with a low call rate (<95%), a minor allele frequency <1% in both cases 

and controls and those deviating from Hardy-Weinberg equilibrium genotype distributions 

(P<1.0 × 10−6 in controls) were excluded. No samples were related (using an identity by 

descent estimation metric ≤ 0.15). Three patient samples in the stage one cohort were 

excluded due to low sample call rate. Non-autosomal markers were excluded from analyses.

Genotype Harmonizer (1.4.15)28 was used to ensure that variants were on the correct strand 

to facilitate imputation. Phasing was performed with SHAPEIT (version 2), followed by 

whole genome imputation using IMPUTE2 (version 2.3.2)28 and Phase 3 1000 Genomes 

Project reference panel.29 Markers with imputation info metrics ≥0.5 were included in the 

subsequent analyses. Imputation of classical HLA-alleles and HLA-region variants was 

performed with SNP2HLA (version 1.0.2),30 using the stage one cohort genotype data and 

the Type 1 Diabetes Genetics Consortium (T1DGC) reference panel. HLA-alleles and 

related variants with imputation scores R2≤0.5 and call rate<0.85 were excluded from the 

subsequent analyses.

Genotyping calls of genome-wide significant variants (rs2205986) were validated in the 

stage one cohort patients using TaqMan® genotyping assays (ThermoFisher Scientific, 

Waltham, USA and ThermoFisher Taqman® Genotyper Software) and exhibited 100% 

concordance with array genotype (Supplementary Fig. 6).

GWAS stage one and two statistical analyses.

Categorical variables [sex, MS disease course (relapsing-remitting or secondary-

progressive), IFN-β product, liver injury pattern (hepatocellular, cholestatic or mixed), and 

concomitant hepatotoxic medication use] were summarized by frequency (percent), with age 

at IFN-β initiation and BMI (continuous variables) summarized using the median 
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(interquartile range) or mean (standard deviation). Clinical and demographic factors were 

compared between cases and controls using the appropriate parametric (Pearson’s chi-square 

test, Student’s t-test) or non-parametric tests (Fisher’s exact test, Mann-Whitney U test), and 

associations with P<0.05 were considered significant (All P-values were 2-tailed).

Genetic ancestry was confirmed using principal components analysis (EIGENSTRAT 

method),35 which was subsequently compared to self-reported ethnicity, with patients 

excluded based on non-European ancestry. To minimize the potential confounding effects of 

population stratification, a total of 16 (stage one) and 3 (stage two) samples were removed 

from the analyses owing to non-European ancestry (Supplementary Fig. 1). The first 10 

principal components were re-calculated within the individuals who were of European 

genetic ancestry in stage one (n=151), with no significant difference between cases and 

controls (Student’s t-test, P>0.1). Additionally, a genomic inflation factor of 1.06 indicates 

the stage one participants (n=151) utilized for genome-wide discovery, was not notably 

influenced by population stratification (Supplementary Fig. 2b).

The association for each genomic marker passing QC assessment with case/control status 

was tested using logistic regression in an additive model (adjusted for relevant clinical and 

demographic factors), with findings expressed as odds ratios with 95% confidence intervals. 

A screening threshold (P<1.0 × 10−6) was applied to the stage one cohort to prioritize 

variants for subsequent stage two analyses, where P<0.05 was considered significant. 

Associations reaching the standard genome-wide significance threshold (P<5.0 × 10−8) 

across the combined cohort (i.e. stage one and two) were considered to be statistically 

significant. For the HLA-region, an HLA-wide significance threshold of P<2.3 × 10−4 was 

set to account for Bonferroni correction for the 219 HLA-alleles present in the cohort. 

P<0.05 was considered significant for the replication of previously reported associations 

with HLA-alleles and DILI.

Genome-wide association analyses were performed with SNPTEST (version 2, https://

mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html), and other statistical analyses 

were performed using Golden Helix SVS (version 8.4, Bozeman, USA), IBM SPSS (version 

22.0, Mississauga, Canada), or R for Statistical Computing (version 3.2.3). Plots (Manhattan 

plot, regional association plot and the ROC curve) were generated using LocusZoom,39 R 
for Statistical Computing or Golden Helix SVS.

BioVU electronic medical record analyses.

BioVU population. 279 MS patient samples that were previously genotyped at Vanderbilt 

University Medical Center (VUMC), USA were accessed. The samples are part of BioVU, a 

de-identified collection of DNA samples extracted from discarded blood and linked to de-

identified electronic medical records (EMRs).31 All samples were identified as being from 

an individual with MS by previously published algorithms.32 The EMRs were evaluated 

manually to identify dates of IFN-β treatment; biochemical liver test results (ALT, AST, 

ALP and total bilirubin) were extracted from structured fields of the EMRs during IFN-β 
treatment. A total of 87 unique MS patients were exposed to IFN-β, had a sample and 

available biochemical liver test results during IFN-β treatment and were used in subsequent 

analyses. The highest value for each biochemical liver test result was identified independent 
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of the other biochemical liver test results. For patients with more than one IFN-β treatment 

period, only the treatment period with the highest overall value was analyzed. Additionally, 

IFN-β-induced liver injury often presents with a hepatocellular pattern3, an exploratory 

analysis of ‘mild DILI’ was performed where cases were defined as either ALT or AST 

levels >2x ULN.

BioVU genotyping, quality control and statistical analyses.—Samples were 

genotyped on the Illumina MEGAEX array at VUMC. Quality control was performed by 

BioVU as previously described33 and array genotype data for rs2205986 was extracted. 

Relationship status was evaluated using PLINK27 and revealed no related individuals 

(identity by descent ≤0.15). Principal components were determined by multidimensional 

scaling in PLINK27. One patient-sample was excluded from the ALP analyses due to being 

an outlier (>3 standard deviations above the mean). BioVU association analyses were 

performed using PLINK.27 Rs2205986 genotype was analyzed using an additive genetic 

model by linear regression for association with the highest values for each of the four 

biochemical liver test results during IFN-β treatment, while logistic regression was 

employed in the case-control association analyses. BioVU linear regression analyses were 

adjusted for age at biochemical liver testing, sex, and the first two principal components.

Disease-matched population control analyses.

Genotype data (Illumina Human670-QuadCustom v1) for disease-matched population 

controls were obtained from the MS Wellcome Trust Case Control Consortium 2 cohort 

(EGAD00000000120)34 after approval by the relevant data access committees. We included 

MS patients recruited in North America and determined to be of Northern European genetic 

ancestry (Supplementary Fig. 7), leaving 1,319 patients for these analyses. QC, strand 

alignment and whole genome imputation was performed as described above.

Predictive test analyses.

Genomic markers of statistical significance were evaluated for specificity, sensitivity, 

negative predictive value (NPV), positive predictive value (PPV) and the number needed to 

screen within the combined patient cohort. NPV, PPV and number needed to screen, were 

calculated using sensitivity, specificity, and the population incidence of IFN-β-induced liver 

injury (2%).3 Post-test probabilities to estimate the proportion of patients testing positive for 

the variant who will develop DILI, were assessed using likelihood ratios and pre- and post-

test odds (http://www.cebm.net/likelihood-ratios/). Receiver operating characteristic (ROC) 

curves, the corresponding area under the curve (AUC) estimates and 95% confidence 

intervals (95%CI) were generated for two predictive models of IFN-β-induced liver injury. 

The clinical model included age, IFN-β product, and sex (selected a priori based on previous 

DILI literature reporting significantly associated factors)36 and a separate model 

incorporated these same variables in addition to any significantly associated genomic 

variants. The ROC curves of these two prediction models were compared using the 

DeLong’s test.37,38
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Figure 1. Regional association plot of chromosome 1q32.2 demonstrating a pharmacogenomic 
association between rs2205986 and IFN-β-induced liver injury.
The interferon regulatory factor 6 (IRF6) gene is located ~132-kb upstream of 

synaptotagmin 14 (SYT14). Association results [primary y-axis, -log10(P-value)] are shown 

for genetic variants along with recombination rates (secondary y-axis, cM/Mb) for a 1.5 Mb 

region on chromosome 1. Each circle represents the -log10(P-value) from the logistic 

regression analysis, adjusted for MS disease course in the stage one case-control cohort 

(n=151). Genetic variants are coloured according to their pairwise correlation (r2) with 

rs2205986 (purple circle) using linkage disequilibrium data from the 1000 Genomes Project 

(European population). Three genes (MIR4260, TRAF3IP3, C1orf74) were omitted from the 

figure due to space requirements.

Kowalec et al. Page 13

Nat Genet. Author manuscript; available in PMC 2019 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kowalec et al. Page 14

Ta
b

le
 1

:

Ph
ar

m
ac

og
en

om
ic

 a
ss

oc
ia

tio
n 

an
al

ys
es

 f
or

 r
s2

20
59

86
 a

nd
 I

FN
-β

-i
nd

uc
ed

 li
ve

r 
in

ju
ry

 in
 m

ul
tip

le
 s

cl
er

os
is

 p
at

ie
nt

s 
en

ro
lle

d 
fr

om
 C

an
ad

a 
(s

ta
ge

 o
ne

) 
an

d 

U
SA

/S
w

ed
en

 (
st

ag
e 

tw
o)

G
en

et
ic

 V
ar

ia
nt

 I
nf

or
m

at
io

n
P

op
ul

at
io

n
L

og
is

ti
c 

R
eg

re
ss

io
n 

(A
dd

it
iv

e)
a

V
ar

ia
nt

A
nn

ot
at

io
n

St
ud

y 
st

ag
e

N
 c

as
es

N
 c

on
tr

ol
s

M
A

F
 c

as
es

M
A

F
 c

on
tr

ol
s

P
-v

al
ue

O
dd

s 
R

at
io

95
%

C
I

rs
22

05
98

6

1:
21

0,
11

6,
11

2b
IR

F6
 e

Q
T

L
 /

SY
T

14
 in

tr
on

ic

St
ag

e 
on

e
38

11
3

0.
24

0.
04

1.
9 

×
 1

0−
7

8.
5

3.
5–

20
.4

St
ag

e 
tw

o
18

13
0.

17
0.

00
4.

3 
×

 1
0−

3
-

-

C
om

bi
ne

d 
(S

ta
ge

 o
ne

 +
 tw

o)
56

12
6

0.
21

0.
03

2.
3 

×
 1

0−
8

8.
3

3.
6–

19
.2

B
io

V
U

 ‘
m

ild
 D

IL
I’

c
9

78
0.

22
0.

05
0.

04
8

4.
3

1.
02

–1
7.

8

a L
og

is
tic

 r
eg

re
ss

io
n 

w
as

 p
er

fo
rm

ed
 in

 s
ta

ge
 o

ne
 (

ad
ju

st
ed

 f
or

 M
S 

di
se

as
e 

co
ur

se
) 

an
d 

tw
o 

(a
dj

us
te

d 
fo

r 
ag

e)

b G
R

C
h3

7 
as

se
m

bl
y 

po
si

tio
n 

(c
hr

om
os

om
e:

ba
se

 p
ai

r)
, H

G
V

S 
no

ta
tio

n:
 N

C
_0

00
00

1.
10

:g
.2

10
11

61
12

G
>

A
; a

nd

c de
fi

ne
d 

as
 tw

ic
e 

th
e 

up
pe

r 
lim

it 
of

 n
or

m
al

 f
or

 e
ith

er
 a

la
ni

ne
 o

r 
as

pa
rt

at
e 

am
in

ot
ra

ns
fe

ra
se

.

C
I:

 c
on

fi
de

nc
e 

in
te

rv
al

, e
Q

T
L

: E
xp

re
ss

io
n 

qu
an

tit
at

iv
e 

tr
ai

t l
oc

us
, M

A
F:

 m
in

or
 a

lle
le

 f
re

qu
en

cy
, N

: n
um

be
r.

Nat Genet. Author manuscript; available in PMC 2019 May 13.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kowalec et al. Page 15

Ta
b

le
 2

:

A
ss

oc
ia

tio
n 

an
al

ys
is

 o
f 

rs
22

05
98

6 
ge

no
ty

pe
 o

n 
pe

ak
 b

io
ch

em
ic

al
 li

ve
r 

te
st

s 
re

su
lts

 d
ur

in
g 

IF
N

-β
 tr

ea
tm

en
t i

n 
m

ul
tip

le
 s

cl
er

os
is

 p
at

ie
nt

s 
fr

om
 th

e 

V
an

de
rb

ilt
 U

ni
ve

rs
ity

 M
ed

ic
al

 C
en

te
r 

(V
U

M
C

) 
re

po
si

to
ry

, B
io

V
U

, U
SA

B
io

ch
em

ic
al

 L
iv

er
 T

es
t

M
ea

su
re

m
en

t
a B

et
a 

co
ef

fi
ci

en
t

P
-v

al
ue

a
F

ir
st

 r
ec

or
de

d 
va

lu
e 

(m
ea

n)
H

ig
he

st
 r

ec
or

de
d 

va
lu

e 
(m

ea
n)

M
ea

n 
hi

gh
es

t 
va

lu
e 

by
 g

en
ot

yp
e 

(G
G

 / 
G

A
 / 

A
A

)

A
L

P
U

ni
ts

/L
52

.2
8

4.
9 

×
 1

0−
4

79
10

1
25

5 
/ 1

40
 / 

94

U
pp

er
 li

m
it 

of
 n

or
m

al
0.

35
5.

0 
×

 1
0−

4
N

A
N

A
N

A

A
ST

U
ni

ts
/L

29
.3

9
7.

6 
×

 1
0−

5
29

42
14

7 
/ 5

9 
/ 3

8

U
pp

er
 li

m
it 

of
 n

or
m

al
0.

73
7.

6 
×

 1
0−

5
N

A
N

A
N

A

A
LT

U
ni

ts
/L

5.
29

0.
54

34
47

11
2 

/ 4
3 

/ 4
7

U
pp

er
 li

m
it 

of
 n

or
m

al
0.

10
0.

54
N

A
N

A
N

A

T
B

IL
m

g/
dL

0.
00

0.
98

0.
49

0.
77

1.
00

 / 
0.

59
 / 

0.
77

U
pp

er
 li

m
it 

of
 n

or
m

al
0.

00
0.

98
N

A
N

A
N

A

a L
in

ea
r 

re
gr

es
si

on
s 

us
in

g 
ad

di
tiv

e 
ge

ne
tic

 m
od

el
 f

or
 h

ig
he

st
 v

al
ue

s,
 a

dj
us

te
d 

fo
r 

ag
e 

at
 b

io
ch

em
ic

al
 li

ve
r 

te
st

 d
at

e,
 s

ex
, a

nd
 th

e 
fi

rs
t t

w
o 

pr
in

ci
pa

l c
om

po
ne

nt
s 

in
 n

=
87

 M
S 

pa
tie

nt
s 

ex
po

se
d 

to
 in

te
rf

er
on

-
be

ta
. A

L
P,

 a
lk

al
in

e 
ph

os
ph

at
as

e;
 A

LT
; a

la
ni

ne
 tr

an
sa

m
in

as
e;

 A
ST

, a
sp

ar
ta

te
 a

m
in

ot
ra

ns
fe

ra
se

; T
B

IL
, t

ot
al

 b
ili

ru
bi

n,
 N

A
: N

ot
 a

pp
lic

ab
le

.

Nat Genet. Author manuscript; available in PMC 2019 May 13.


	Introductory Paragraph
	Main Letter
	Online Methods
	Study participants.
	Clinical characterization.
	Genotyping, quality control (QC) and imputation.
	GWAS stage one and two statistical analyses.
	BioVU electronic medical record analyses.
	BioVU genotyping, quality control and statistical analyses.

	Disease-matched population control analyses.
	Predictive test analyses.

	References
	Figure 1
	Table 1:
	Table 2:

