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Abstract: 

Multicellular spheroids represent a promising approach to mimic 3D tissues in vivo for 

emerging applications in regenerative medicine, therapeutic screening, and drug discovery. 

Conventional spheroid fabrication methods, such as the hanging drop method, suffer from low 

throughput, long time, complicated procedure, and high heterogeneity in spheroid size. In this 

work, we report a simple yet reliable acoustic method to rapidly assemble cell spheroids in 

capillaries in a replicable and scalable manner. Briefly, by introducing a coupled standing 

surface acoustic wave, we are able to generate a linear pressure node array with 300 trapping 

nodes simultaneously. This enables us to continuously fabricate spheroids in a high-

throughput manner with minimal variability in spheroid size. In a proof of concept application, 

we fabricated cell spheroids of mouse embryonic carcinoma (P19) cells, which grew well and 

retaineddifferentiation potential in vitro. Based on the advantages of the non-invasive, 

contactless and label-free acoustic cell manipulation, our method employs the coupling 

strategy to assemble cells in capillaries, and further advances 3D spheroid assembly 

technology in and easy, cost-efficient, consistent, and high throughput manner. This method 

could further be adapted into a novel 3D biofabrication approach to replicate compilated 

tissues and organs for a wide set of biomedical applications.  
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1. Introduction 
In vivo, cells are constantly interacting with the extracellular matrix and/or directly physically 

contacting and communicating with surrounding cells to regulate complex biological functions 

like development, homeostasis, and disease progression. Currently, most studies in 

biomedical sciences are performed using 2D adherent cell culture methods, which provides a 

well-controlled, homogenous cell culture environment for most cell types. However, 

experimental data produced by 2D adherent cell culture cannot be completely translated into 

animal studies or clinical trials because they fail to recapitulate complicated signals among 

cells and 3D structure of cells growing in vivo [1] [2]. Multicellular spheroidal cultures address 

this challenge and represent better in vivo physiological conditions [3]. The spheroidal cell 

culture also better reflects 3D distributions of nutrients, metabolites, catabolites, and oxygen 

in vivo. Because of these features, spheroidal cell culture attracts significant attention from the 

fields of regenerative medicine, translational medicine, personalized medicine and high-

throughput drug screening [5] [6] [7]. For applications of cancer treatment, tumor spheroids, 

compared to 2D culture, exhibit better histological and physiological features mimicking those 

of actual solid tumors and provide an advantageous model to investigate therapeutic 

interventions [8]. For applications in stem cell biology, spheroidal cell culture generally 

enhances the differentiation capability of stem and progenitor cells. For example, progenitor 

cells derived from salivary glands are able to differentiate into hepatocytic and pancreatic 

lineages only in 3D spheroidal culture but not in 2D adherent culture [9]. Moreover, organoids 

(intestinal, kidney, cerebral and optic cup) [10] [11] [12], cell spheroids derived from stem cells 

with a complex organ architecture, are obtained by in vitro 3D spheroid formation, but not by 

2D culture. However, current spheroidal culture techniques, such as the hanging drop method, 

are laborious and do not fully meet the tremendous needs of replicability, scalability, and 

consistency of spheroid formation for these emerging biomedical applications.  

 

To date, many engineering efforts have been made to fabricate spheroids with identical 

structure, morphology, physiology, and sufficient quantity. Several commercially available 

methods including hanging drop [13], spinner culture [14] [15], rotating wall vessels [16], non-

attachable surface [17] are time-consuming, low-throughput, yield a poor spheroid uniformity 

and/or require a large number of cells. Taking the classical hanging drop for example, this 

method uses the gravity to slowly promote cell-cell interaction between suspended cells in 



hanging drops for reliable cell spheroid formation, while this method normally takes 7 days to 

form only 96 spheroids in a 96-well plate [13]. Other existing methods including microfluidics 

[18] [19] [20] [21], micromold [22], di-electrophoresis [23], and magnetic-assisted assembly 

[24] [25] require dedicated conditions such as complicated design and fabrication, medium 

modification, and/or cell labelling. Recently, acoustics became a promising alternative 

approach for spheroid fabrication because it provides excellent biocompatibility, flexibility, and 

contactless and label-free manipulation of cells while preserving the cells’ native state [26] 

[27] [28]. The bulk acoustic wave resonator has been used to levitate cells into multiple 

paralleled layers vertically for the fabrication of cell spheroids [29] [30]. The acoustic streaming 

has been employed to aggregate cells in 24-well plate for the formation of cell spheroids [31]. 

However, it is challenging to reproducibly generate uniform spheroids in a high-throughput 

manner due to the complicated setup or the requirement of a sensitive temperature control. 

Recently, we have developed 3D acoustic tweezers for the 3D manipulation of single cells by 

introducing standing surface acoustic wave into microfluidics [32] and demonstrated the 

formation of cancer cell spheroids at 100 cells per hour with our SSAW microfluidic device 

[33]. However, complicated design and fabrication of microfluidic devices are still required, 

and the devices are relatively expensive mainly due to the price of the SSAW generator. 

Therefore, in order to develop a technology which would be widely applicable for acoustic cell 

spheroid fabrication in a standard cell biology laboratory, hospital, or pharmaceutical industry, 

an advanced spheroidal culture technique is highly desirable to achieve simpler setup, lower 

cost, higher throughput, and better uniformity. We here describe the generation of such a 

device and demonstrate its efficiency by assembling P19 cells into rapidly growing spheroids.    

 

In this work, we demonstrated an acoustic assembly technique that can rapidly and high-

throughput fabricate cell spheroids in commercially available capillaries. By introducing the 

standing surface acoustic wave into the disposable capillary with the oil-coupling strategy, a 

linear pressure node array with around 300 trapping nodes was generated. Thus, we could 

repeatedly form 300 spheroids of similar size and compositions in a capillary in less than 1 

second and obtain around 100 stable spheroids in Petri dishes without cell dissociation in 30 

minutes. Compared with traditional hanging drop method (96 spheroids per 7 days) [13], our 

acoustic cell assembly method (100 spheroids per day) could significantly enhance the 

efficiency for spheroid fabrication. Our method also enabled cardiomyocyte differentiation of 

mouse embryonic carcinoma cells. Moreover, the oil-coupling strategy allowed for re-usage 



of the relatively expensive SSAW generator and simultaneous processing of multiple 

disposable capillaries to further enhance the throughput. With its simplicity, rapid spheroid 

formation, high-throughput, and non-invasiveness, the acoustic cell assembly approach 

presented here can be highly applicable for many 3D biofabrication applications.  

 

2. Working mechanism 

We developed a simple method to rapidly assemble cell spheroids in a capillary using standing 

surface acoustic wave (SSAW). The working mechanism of acoustic assembly of cell 

spheroids is illustrated in Figure 1. Our acoustic assembly device included disposable 

capillaries and a reusable SSAW generator, which could be coupled together with a thin layer 

of coupling gel. The reusable SSAW generator was built by depositing a pair of interdigital 

transducers (IDTs) on a piezoelectric substrate (LiNbO3). To produce a linear cell assembly 

array, we chose a round capillary with an inside diameter of around the half wavelength of the 

SSAW and coupled the capillary in the SSAW-activated region of the substrate along the 

propagation direction of SSAW. Cell suspensions were introduced into the capillary by 

capillary force. Once the radio frequency signal was applied to the IDT pair of the SSAW 

generator, a SSAW was generated and propagated on the piezoelectric substrate and leaked 

into the glass capillary through a thin layer of coupling oil between the SSAW generator and 

the capillary. The SSAW locally introduced into the capillary formed a periodic distributed 

acoustic field in the capillary after interacting with and reflecting by the capillary wall. Due to 

the gradient of the acoustic field, an acoustic radiation force was generated, which pushed 

suspended cells to the pressure nodes or pressure antinodes. In a standing acoustic wave 

field, the primary acoustic force (Fr) on a particle or a cell [34] [35] can be expressed as [36]  
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where 𝑝( , 𝑉+ , 𝜆 , 𝑘 , x, 𝜌- , 𝜌+ , 𝛽- , and 𝛽+  correspond to pressure amplitude, particle 

volume, acoustic wavelength, wave vector, distance from a pressure node, density of the 

medium, density of particles, compressibility of the medium, and compressibility of particles, 

respectively. The acoustic contrast factor (ϕ) determines whether the particle or cell moves to 

the pressure nodes or pressure antinodes, and usually, the cell suspended in normal culture 

medium will move towards the pressure nodes because ϕ is positive. The distance between 



neighboring nodes (the distance between the center of two cell clusters) is always the 

wavelength of SSAW on the substrate. By tuning the cell concentration, suspended cells were 

moved and aggregated into a linear cell assembly array. After incubation in the capillary, the 

cells within an assembly formed stable cell-cell contacts to maintain cell assembly. Next, the 

assembled cells were transferred into ultralow attachment dishes, where they were kept 

growing as cell spheroids for long-term culture. To induce differentiation of P19 cells, the cell 

spheroids were transferred to adherent culture dishes, and differentiation markers were 

assessed.  

 

3. Experiments 

The SSAW generator was fabricated by a standard soft lithography and lift-off process [37]. A 

7-μm-thick photoresist layer (S1813, MicroChem, MA) was spin-coated on the piezoelectric 

substrate (a 500-μm-thick, double-side polished, 128° YX-propagation LiNbO3 wafer). Then, 

the designed IDT patterns of 40 electrode pairs with the 75 μm finger width and periodic 

spacing were transferred from the plastic mask (Kunshan Kaisheng Electronics Co., Ltd, 

China) to the substrate by UV exposure. The IDT patterns were developed in a photoresist 

developer (MF CD-26, Microposit, MA) and deposited with double metal layers (Cr/50 Å, 

Au/600 Å) by a thermal evaporation (JSD-350, Anhui Jiaoshuo Vacuum Technology Co., Ltd, 

China). IDTs on the piezoelectric substrate were finally obtained after a standard lift-off 

process. The resonant frequency of the fabricated SSAW generator was measured as around 

20.7 MHz using a network analyzer (E8362C, Agilent, CA).  

 

Mouse embryonic carcinoma cells (P19, ATCC, VA) were cultured in Alpha Modified Eagle’s 

Medium (Corning, NY) supplemented with 10% fetal bovine serum (Sigma-Aldrich, MO), 100 

U/mL penicillin and 100 μg/mL streptomycin (Invitrogen, PA), in a humidified incubator at 5% 

CO2 and 37 °C. For the experiments, cells were suspended by dissociation of cells with 0.25% 

trypsin–EDTA (Invitrogen, PA), followed by centrifugation of dissociated cells at 800 rpm for 5 

min at room temperature, and re-suspension in culture medium at a final concentration of 5 to 

10 million cells per mL. Cells were observed using microscopy (IX83, Olympus, Japan) and 

counted using a hemocytometer.   

 

P19 cells were acoustically-assembled into cell clusters in capillaries. After coating a thin layer 

of oil (Sigma, MO) to the SSAW generator, a glass capillary (inside diameter = 200 μm; outside 



diameter = 300 μm; length = 5 cm; VitroCom, NJ) sterilized by UV exposure was used to load 

the P19 cell suspension and was coupled to the SSAW generator through the thin oil layer. 

P19 cells were aggregated into a linear array in the capillary by energizing the IDT pair with a 

radio frequency signal generated by a function generator (AFG3102C, Tektronix, CA) and 

amplified by an amplifier (25A100A, Amplifier Research, CA). The movement of cells was 

monitored and recorded by microscope (IX83, Olympus, Japan) equipped with a CMOS 

camera (ORCA-Flash 4.0, HAMAMATSU, Japan) connected to a computer. The P19 cells 

were acoustically-aggregated within 1 minute by an input acoustic power from 2 to 10 Vpp. 

Then cell clusters were incubated in the capillary for about 30 minutes to allow the suspended 

cells to form stable of cell-cell contacts. The cell images were analyzed using ImageJ 1.46 

software.  

 

To form cell spheroids, assembled P19 cell were transferred from the capillary to an ultra-low 

attachment petri dish or well plate (Corning, PA) with fresh cell culture medium. The petri dish 

or well plate with cell clusters was incubated in an in-situ chamber (Tokai Hit, Japan) integrated 

on the microscope and maintained at 5% CO2 and 37 °C. The cell clusters were imaged and 

recorded daily from day 0 to day 3. After 3-days of culture in ultra-low attachment 24-well 

plates (Corning, PA), the P19 cell spheroids were transferred to adherent 24-well plates 

(Corning, PA) for cardiomyocyte differentiation. Cell spheroids were allowed to adhere to the 

24-well plate overnight following treatment with complete DMEM medium containing 1% 

DMSO (Sigma-Aldrich, MO) for 7 days. After the DMSO-induced cardiomyocyte 

differentiation, cells were fixed with 4% formalin (Affymetrix, CA) and permeabilized with ice-

cold methanol (Sigma, MO). Cells were stained with anti-Troponin I antibody (Abcam, CA) 

followed by secondary antibody, goat anti-rabbit Alexa 594 (Thermo Fisher, IN). Cells were 

counterstained with DAPI (Thermo Fisher, IN) and imaged using a microscope (IX83, 

Olympus, Japan) using a 40X objective. Meanwhile, differentiated P19 cells were harvested 

for RNA extraction (Qiagen, MD). Troponin I expression was analyzed using one step qRT-

PCR kit (Thermo Fisher, IN). Fold change was calculated as 2ΔΔCt based on expression fold 

change against P19 parental cell line and normalized against GAPDH housekeeping gene. 

 

In order to completely record the cell spheroid development process, a group of P19 cell 

spheroids were cultured for one week and cellular viability was monitored every 24 h. Living 

cells were labelled with green fluorescent using calcein AM, and dead cells were labelled with 



red fluorescent using ethidium homodimer-1 (live/dead viability kit, L3224, Thermo Fisher 

Scientific Inc.). The cellular viability was recorded by calculating the ratio of green fluorescent 

area sizes over total spheroid. To measure P19 spheroid proliferation, cell number was 

measured by CCK-8 kit (Sigma, USA) every 24 hour. Cell spheroids were harvested from non-

adherent plate and plated into 96-well plate. The spheroids were co-incubated with CCK-8 

agent for 4 hours at 37 °C incubator. The plate was then read at 450nm for absorbance. Cell 

numbers were calculated based on stand curve plotted using serial titration of P19 parental 

cell line. 

 

 

4. Results and discussion 

The assembled device generated a non-uniform pressure distribution in the capillary by 

introducing leaked SSAW from the SSAW generator to the capillary with a thin layer of 

coupling oil. Next, the cells were moved and aggregated to a linear pressure node array in the 

capillary (Fig. 2A). In our design, the length of the cell assembly region was about 4.5 cm; the 

distance between two adjacent pressure nodes was 150 μm (as the half wavelength); and the 

length, inside and outside diameter of the glass capillary was 5 cm, 200 μm, and 300 μm, 

respectively. Therefore, the number of pressure nodes (cell clusters) created in the capillary 

was approximately 300, offering a reasonable throughput. Fig. 2B shows the time-lapse 

images of P19 cells moving into the pressure nodes in the capillary. When the acoustic field 

was applied, the cells within one fourth wavelength distance from the center of the nearest 

pressure node aggregated to form cell clusters within 1 second (See ESI Video 1). The cells 

became well assembled into a linear cell cluster array in the capillary up to the region of IDTs 

and the gap between the IDT pair.   

 

The non-invasiveness is one of the biggest advantages of our acoustic cell assembly 

technique. We measured the viability of P19 cells before and after acoustic aggregation by 

live/ dead cell staining. The P19 cells were simultaneous fluorescently stained using calcein-

AM and ethidium homodimer-1, which is indicative of viable and dead cells, respectively. The 

control group without any treatment and the experimental group with acoustic assembly 

treatment were repeated three times, respectively. As shown in Fig. 2C, there was no 

significant difference in viability of P19 cells without or with the acoustic treatment (87.1 ± 0.87% 



vs. 84 ± 3.7%, respectively, P=0.284). Thus, we demonstrated that our acoustic cell assembly 

had a good biocompatibility.   

 

We previously described the mechanism of acoustic assembly of cell spheroids and 

aggregation of P19 cells in a capillary. To extend this technique to broader applications in the 

biological laboratory or pharmaceutical industry, we developed a technique compatible with 

commercially available and widely used cell culture approaches and consumables, such as 

Petri dishes and well-plates. In this regard, we further extended our method for capillary-free, 

long-term culture of cell spheroids. After acoustically-assembly of P19 cells into clusters in the 

capillary, strong cell-cell connections were formed during the in vitro room temperature 

incubation (10-30 minutes), allowing for stable cell clusters to be transferred from the capillary 

to an ultralow attachment dish. We found that 30 minutes is the optimal incubation time for 

P19 cell assembly as determined by testing different incubation times (10, 20, and 30 

minutes).  

 

After forming stable cell contacts, we carefully flushed out the cell assemblies from the 

capillary to an ultralow attachment dish filled with cell culture medium. Compared to 

microfluidic approaches, our method employed commercially available capillaries, avoiding 

the complicated fabrication of microfluidic chambers as well as the dead volume between the 

tubing and microfluidic inlets or outlets. The recovery rate of the cell assembly is critical for 

the cell spheroid culture and subsequent cardiomyocyte differentiation studies. Here, we 

collected around 100 stable cell clusters in a petri dish from a capillary with around 300 cell 

assemblies. The cell-to-cell boundary became blurred as the cells formed spheroids during 

the 12-hour-culture after the transfer of the cell clusters into well plates. The growth of cell 

spheroids in the ultralow attachment dish was monitored and recorded by time-lapse 

microscopy (Fig. 3). After 3 days of culture, the average size of the cell spheroids increased 

from 139 μm to 292 μm, which is ready for the differentiation experiments.  

 

To further demonstrate the developed P19 cell spheroids, acoustically-assembled P19 cell 

spheroids were cultured for 7 days and characterized with the viability and prefiltration tests. 

For day 1 and day 2, the average size of cell spheroids was less than 200 μm and there was 

almost no cell death (Fig. 4A). The P19 cell spheroids grow gradually to the average diameter 

around 600 μm, and showed a significant stratification until day 7. The calceim AM staining of 



developed P19 spheroid at day 7 (in green) indicated the proliferative zone, while the 

homodimer-1 staining of developed P19 spheroid at day 7 (in red) showed the necrotic zone.  

To some extent, spheroids at this state displayed inherent metabolic (oxygen, carbon dioxide, 

nutrients, and wastes) gradients similarly to poorly vascularized tumors (Fig. 4A). In addition, 

CCK-8 kit was used to measure the P19 spheroid expansion rate. The cell number of the 

developed P19 cell spheroids was increasing dramatically during the 7-day culture to show a 

good proliferation (Fig. 4B). Thus, we demonstrated a method to form intact and viable cell 

spheroids.  

 

To demonstrate that the assembled P19 spheroids preserve the biological traits of the natural 

embryonic body, we analysed the differentiation capacity of acoustically-assembled P19 

spheroids. P19 cell spheroids can differentiate into cardiomyocytes and skeletal muscle cells 

upon 1% DMSO induction and adherent conditions [38]. To validate that the acoustically 

assembled P19 spheroids had the same traits, P19 cells were first assembled by our device 

as described above and were allowed to form spheroids of around 300 mm diameter by 

culturing them for 3 days in ultralow attachment plates. After the spheroids reached the desired 

size, they were transferred onto an adherent plate for attachment (Fig. 5A). Spheroids were 

allowed to adhere to the plate for overnight and were then treated with 1% DMSO. After 

induction for 7 days, we analysed cardiomyocyte marker expression by immunofluorescence. 

As shown in Fig.5B, assembled P19 spheroids were able to develop into cardiomyocytes, as 

indicated by cardiomyocyte marker -Troponin I. In contrast, without DMSO or acoustic 

assembly, such differentiation was not observed. This proved that our acoustic assembly 

method did not alter the differentiation potential of P19 embryonic cells. In addition, Troponin 

I expression of differentiated P19 spheroids was also analyzed by qRT-PCR. As shown in Fig. 

5C, DMSO induced a ~4 folds (10,000 times) increase in the expression of Troponin I gene in 

P19 spheroids. This result further confirmed the cardiomyocyte differentiation of P19 

spheroids induced by DMSO, which demonstrated that the developed P19 cell spheroids 

always maintained differentiation potential. Thus, our acoustic assembly method allows for a 

much easier and higher-throughput method to generate embryonic bodies for research 

applications. 

 

5. Conclusion  



By coupling disposable capillaries to a reusable SSAW generator, a large number of pressure 

nodes can be produced to aggregate cells for the formation of cell spheroids. This acoustic 

cell assembly method enables rapid, noninvasive and high throughput means to fabricate cell 

spheroids (aggregation of cell within 1 second; almost no impact on the cell viability; 

generation of 300 cell clusters in one capillary). Moreover, the coupling strategy combines a 

simple operation with low cost, no cross-contamination, and high-throughput parallel assembly 

of multiple capillaries. These advantages make the acoustic cell assembly technique 

presented here promising for biofabrication of cell spheroids, organoids, and other spheroid-

based 3D architectures. 

 

Acknowledgments  

This project was supported by the departmental start-up fund of Indiana University 

Bloomington and the Vice Provost for the Research through the Faculty Research Support 

Program (Indiana University Bloomington).   

 

ORCID iDs 

 

Feng Guo https://orcid.org/0000-0001-9103-3235 

  



References 

[1] Pampaloni F, Reynaud E G and Stelzer E H K 2007 The third dimension bridges 

the gap between cell culture and live tissue Nature Reviews Molecular Cell Biology 

8 839 

[2] Baraniak P R and McDevitt T C 2012 Scaffold-free culture of mesenchymal stem 

cell spheroids in suspension preserves multilineage potential Cell Tissue Res 347 

701-11 

[3] Fennema E, Rivron N, Rouwkema J, van Blitterswijk C and de Boer J 2013 Spheroid 

culture as a tool for creating 3D complex tissues Trends Biotechnol 31 108-15 

[4] Sutherland R 1988 Cell and environment interactions in tumor microregions: the 

multicell spheroid model Science 240 177-84 

[5] Mueller-Klieser W 1987 Multicellular Spheroids. A review on cellular aggregates 

in cancer research vol 113 

[6] Mueller-Klieser W 1997 Three-dimensional cell cultures: from molecular 

mechanisms to clinical applications American Journal of Physiology-Cell 

Physiology 273 C1109-C23 

[7] Sasai Y 2013 Next-Generation Regenerative Medicine: Organogenesis from Stem 

Cells in 3D Culture Cell Stem Cell 12 520-30 

[8] Dertinger H and Lücke-Huhle C 1975 A Comparative Study of Post-irradiation 

Growth Kinetics of Spheroids and Monolayers International Journal of Radiation 

Biology and Related Studies in Physics, Chemistry and Medicine 28 255-65 

[9] Okumura K, Nakamura K, Hisatomi Y, Nagano K, Tanaka Y, Terada K, Sugiyama T, 

Umeyama K, Matsumoto K, Yamamoto T and Endo F 2003 Salivary gland 

progenitor cells induced by duct ligation differentiate into hepatic and pancreatic 

lineages Hepatology 38 104-13 

[10] Laschke M W and Menger M D 2017 Life is 3D: Boosting Spheroid Function for 

Tissue Engineering Trends Biotechnol 35 133-44 

[11] Clevers H 2016 Modeling Development and Disease with Organoids Cell 165 

1586-97 

[12] Huch M and Koo B K 2015 Modeling mouse and human development using 

organoid cultures Development 142 3113-25 

[13] Timmins N, Dietmair S and Nielsen L 2004 Hanging-drop multicellular spheroids 

as a model of tumour angiogenesis Angiogenesis 7 97-103 



[14] Lei Y, Jeong D, Xiao J and Schaffer D V 2014 Developing Defined and Scalable 3D 

Culture Systems for Culturing Human Pluripotent Stem Cells at High Densities 

Cellular and Molecular Bioengineering 7 172-83 

[15] Laschke M W and Menger M D 2017 Life is 3D: Boosting Spheroid Function for 

Tissue Engineering Trends Biotechnol 35 133-44 

[16] Lei Y and Schaffer D V 2013 A fully defined and scalable 3D culture system for 

human pluripotent stem cell expansion and differentiation Proceedings of the 

National Academy of Sciences 110 E5039-E48 

[17] Napolitano A P, Chai P, Dean D M and Morgan J R 2007 Dynamics of the Self-

Assembly of Complex Cellular Aggregates on Micromolded Nonadhesive 

Hydrogels Tissue Engineering 13 2087-94 

[18] Patra B, Chen Y H, Peng C C, Lin S C, Lee C H and Tung Y C 2013 A microfluidic 

device for uniform-sized cell spheroids formation, culture, harvesting and flow 

cytometry analysis Biomicrofluidics 7 54114 

[19] Hsiao A Y, Torisawa Y-s, Tung Y-C, Sud S, Taichman R S, Pienta K J and Takayama 

S 2009 Microfluidic system for formation of PC-3 prostate cancer co-culture 

spheroids Biomaterials 30 3020-7 

[20] Chan H F, Zhang Y, Ho Y P, Chiu Y L, Jung Y and Leong K W 2013 Rapid formation 

of multicellular spheroids in double-emulsion droplets with controllable 

microenvironment Sci Rep 3 3462 

[21] Torisawa Y-s, Chueh B-h, Huh D, Ramamurthy P, Roth T M, Barald K F and 

Takayama S 2007 Efficient formation of uniform-sized embryoid bodies using a 

compartmentalized microchannel device Lab Chip 7 770-6 

[22] A. S A, Nalin T, Y. S J, B. S V and R. M J 2014 Micro-Mold Design Controls the 3D 

Morphological Evolution of Self-Assembling Multicellular Microtissues Tissue 

Engineering Part A 20 1134-44 

[23] Albrecht D R, Underhill G H, Wassermann T B, Sah R L and Bhatia S N 2006 Probing 

the role of the multicellular organization in three-dimensional microenvironments 

Nature Methods 3 369 

[24] Souza G R, Molina J R, Raphael R M, Ozawa M G, Stark D J, Levin C S, Bronk L F, 

Ananta J S, Mandelin J, Georgescu M-M, Bankson J A, Gelovani J G, Killian T C, 

Arap W and Pasqualini R 2010 Three-dimensional tissue culture based on 

magnetic cell levitation Nature Nanotechnology 5 291 



[25] Alessandro T, Gozde D N, Kaushik S, Vigneshwaran M, Bukre C, Rami E A and 

Utkan D 2018 Magnetically Guided Self-Assembly and Coding of 3D Living 

Architectures Adv Mater 30 1705034 

[26] Friend J and Yeo L Y 2011 Microscale acoustofluidics: Microfluidics driven via 

acoustics and ultrasonics Reviews of Modern Physics 83 647-704 

[27] Ding X, Li P, Lin S-C S, Stratton Z S, Nama N, Guo F, Slotcavage D, Mao X, Shi J, 

Costanzo F and Huang T J 2013 Surface acoustic wave microfluidics Lab Chip 13 

3626-49 

[28] Laurell T, Petersson F and Nilsson A 2007 Chip integrated strategies for acoustic 

separation and manipulation of cells and particles Chemical Society Reviews 36 

492-506 

[29] Bazou D, Kearney R, Mansergh F, Bourdon C, Farrar J and Wride M 2011 Gene 

Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an 

Ultrasound Standing Wave Trap Ultrasound in Medicine & Biology 37 321-30 

[30] Jian L, A. K L, O. E G, Jinsheng X, Mingwen M, M. P W, K. J S and Terence C W 

2007 Functional three-dimensional HepG2 aggregate cultures generated from an 

ultrasound trap: Comparison with HepG2 spheroids Journal of Cellular 

Biochemistry 102 1180-9 

[31] Kurashina Y, Takemura K and Friend J 2017 Cell agglomeration in the wells of a 

24-well plate using acoustic streaming Lab Chip 17 876-86 

[32] Guo F, Mao Z M, Chen Y C, Xie Z W, Lata J P, Li P, Ren L Q, Liu J Y, Yang J, Dao M, 

Suresh S and Huang T J 2016 Three-dimensional manipulation of single cells using 

surface acoustic waves P Natl Acad Sci USA 113 1522-7 

[33] Chen K J, Wu M X, Guo F, Li P, Chan C Y, Mao Z M, Li S X, Ren L Q, Zhang R and 

Huang T J 2016 Rapid formation of size-controllable multicellular spheroids via 

3D acoustic tweezers Lab Chip 16 2636-43 

[34] Bruus H 2012 Acoustofluidics 7: The acoustic radiation force on small particles Lab 

Chip 12 1014-21 

[35] Bruus H 2012 Acoustofluidics 2: Perturbation theory and ultrasound resonance 

modes Lab Chip 12 20-8 

[36]   L. P. Gorkov, Soviet Physics - Doklady, 1962, 6, 773–775 

[37] Guo F, Li P, French J B, Mao Z, Zhao H, Li S, Nama N, Fick J R, Benkovic S J and 

Huang T J 2015 Controlling cell–cell interactions using surface acoustic waves 



Proceedings of the National Academy of Sciences 112 43-8 

[38] Skerjanc I S 1999 Cardiac and Skeletal Muscle Development in P19 Embryonal 

Carcinoma Cells Trends in Cardiovascular Medicine 9 139-43 

 

  



Figures and captions  

Figure 1: Schematics of the acoustic assembly of cell spheroids. The acoustic cell assembly 

device was made by coupling disposable capillaries onto a reusable standing surface acoustic 

wave (SSAW) generator with a pair of interdigital transducers (IDTs). Suspended P19 cells 

were aggregated into cell clusters and incubated in the capillary (A), transferred and cultured 

in a non-attachable dish to form cell spheroids (B), differentiated into cardiomyocytes after 

culturing in an attachable dish (C).    

Figure 2: Acoustic cell aggregation in the capillary. (A) Mechanism of acoustic cell assembly 

in a capillary. The waves indicate the pressure distribution in the microchannel. The arrows on 

the cells indicate the direction of cell movement. (B) Experimental time-lapse images of cells 

clustering into a linear assembly array after applying the acoustic field within 1 second. (C) 

The viability of P19 cells before (OFF) or after (ON) the acoustic cell aggregation was 87.1 ± 

0.87% or 84 ± 3.7%, respectively. Scale bar: 200 μm  

Figure 3: P19 Cell spheroid formation and culture. (A) P19 cell clusters were transferred onto 

an ultralow attachment dish and cultured for 3 days. Acoustically-assembled cell clusters grew 

into cell spheroids while other randomly distributed cells were degraded after one- or two-days 

culture. (B) The sizes of P19 cell clusters and spheroids were measured from day 0 to day 3 

until spheroids were transferred to adhesive cell culture dishes for differentiation studies. 

Scale bar: 200 μm 

Figure 4: Long-term culture of P19 Cell spheroids. (A) P19 cell spheroids were cultured in an 

ultralow attachment dish for one week. Live cells were labelled with calcein AM (green), and 

dead cells were labelled with Ethidium homodimer-1(red). (B) Proliferation test of P19 cell 

spheroids with CCK-8 kit (Sigma, USA). Scale bar: 200 μm.  

 

Figure 5: P19 cell spheroid adhesion and differentiation. (A) After being transferred to 

adherent petri dishes, P19 cell spheroids adhered to the substrate during the culture from day 

3 to day 4. (B) The assembled P19 spheroids treated with 1% DMSO were able to develop 

into cardiomyocyte, as indicated by the cardiomyocyte marker Troponin I (indicated by red 

fluorescence). In contrast, without DMSO or acoustic assembly, such differentiation was not 

observed. (C) Troponin I expression of P19 cell spheroids with DMSO was about 4 folds 

(10,000 times) higher than that of P19 cell spheroids without DMSO using one step qRT-PCR 

kit after 7 days DMSO treatment. Scale bar: 100 μm 

 


