
AC
CEP

TE
D M

AN
USC

RIP
TRelationship of Auditory Electrophysiological Responses to Magnetic Resonance 

Spectroscopy Metabolites in Early Phase Psychosis 

Lisa A. Bartolomeoa, Andrew M. Wrightb, Ruoyun E. Mab,c, Tom A. Hummerc,d, Michael M. 

Francisd, Andrew C. Viscod, Nicole F. Mehdiyound, Amanda R. Bolbeckera, William P.  Hetricka, 

Ulrike Dydakb,c, John Barnarde, Brian F. O’Donnella, Alan Breierd 

aDepartment of Psychological and Brain Sciences and Program in Neuroscience, Indiana 

University, Bloomington, Indiana, IN 

bSchool of Health Sciences, Purdue University, Lafayette, IN 

cDepartment of Radiology and Imaging Sciences, Indiana University School of Medicine, 

Indianapolis, IN 

dDepartment of Psychiatry and Prevention and the Recovery Center for Early Psychosis, Indiana 

University School of Medicine, Indianapolis, IN 

eSection of Biostatistics, Cleveland Clinic, Cleveland, OH 

Corresponding author: Brian F. O’Donnell, Department of Psychological and Brain Sciences, 

Indiana University, Bloomington, IN, USA. 

Email:bodonnel@indiana.edu 

Data from this study is available at Bartolomeo et al, 2019. 

ACCEPTED MANUSCRIPT

___________________________________________________________________

This is the author's manuscript of the article published in final edited form as:

Bartolomeo, L. A., Wright, A. M., Ma, R. E., Hummer, T. A., Francis, M. M., Visco, A. C., … Breier, A. (2019). Relationship of 
auditory electrophysiological responses to magnetic resonance spectroscopy metabolites in Early Phase Psychosis. International 
Journal of Psychophysiology. https://doi.org/10.1016/j.ijpsycho.2019.05.009

https://doi.org/10.1016/j.ijpsycho.2019.05.009


AC
CEP

TE
D M

AN
USC

RIP
T

2 

 

Abstract  
 

Both auditory evoked responses and metabolites measured by magnetic resonance 

spectroscopy (MRS) are altered in schizophrenia and other psychotic disorders, but the 

relationship between electrophysiological and metabolic changes are not well characterized. We 

examined the relation of MRS metabolites to cognitive and electrophysiological measures in 

individuals during the early phase of psychosis (EPP) and in healthy control subjects. The 

mismatch negativity (MMN) of the auditory event-related potential to duration deviant tones 

and the auditory steady response (ASSR) to 40 Hz stimulation were assessed.  MRS was used to 

quantify glutamate+glutamine (Glx), N-Acetylasparate (NAA), creatine (Cre), myo-inositol (Ins) 

and choline (Cho) at a voxel placed medially in the frontal cortex. MMN amplitude and ASSR 

power did not differ between groups. The MRS metabolites Glx, Cre and Cho were elevated in 

the psychosis group.  Partial least squares analysis in the patient group indicated that elevated 

levels of MRS metabolites were associated with reduced MMN amplitude and increased 40 Hz 

ASSR power. There were no correlations between the neurobiological measures and clinical 

measures. These data suggest that elevated neurometabolites early in psychosis are 

accompanied by altered auditory neurotransmission, possibly indicative of a neuroinflammatory 

or excitotoxic disturbance which disrupts a wide range of metabolic processes in the cortex. 

 

Keywords: Mismatch negativity, auditory steady state response, magnetic resonance 

spectroscopy, psychosis, schizophrenia, event-related potentials 
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1. Introduction 

1.1 Auditory evoked responses in schizophrenia  

Individuals with schizophrenia (SZ) exhibit impaired electrophysiological responses to 

auditory stimuli, as robustly observed in mismatch negativity (MMN) amplitude and auditory 

steady state response (ASSR) power to 40 Hz stimulation. The MMN is elicited in response to 

deviant auditory stimuli interspersed among a series of more frequent standard stimuli. The 

MMN peaks at 150-250 ms post stimulus onset and is thought to index echoic memory 

processes, sound-discrimination accuracy and predictive coding (Kujala et al., 2007; Naatanen 

and Kahkonen, 2009; Todd et al., 2012; Wacongne et al., 2012; Winkler et al., 1996). Early 

conceptualizations of the MMN attribute change detection in sensory memory to temporal 

generators and attention shift to frontal generators (Deouell, 2007). A role of frontal cortex in 

the generation of the MMN has been supported by evidence from functional magnetic resonance 

imaging (fMRI), positron-emission tomography (PET), optical imaging, EEG source imaging, 

and lesion studies (Kim et al., 2017; Molnar et al., 1995; Randau et al., 2019; Rissling et al., 

2014; Tse et al., 2006). MMN amplitude is usually reduced in patients with chronic 

schizophrenia, with a larger effect size for duration deviant compared to frequency deviant 

stimuli (Naatanen and Kahkonen, 2009; Umbricht and Krljes, 2005). MMN amplitude 

reduction has been less consistently found in first episode schizophrenia or psychosis, and there 

is some evidence that the MMN deficit may increase over the course of the illness (Erickson et 

al., 2016; Salisbury et al., 2017; Salisbury et al., 2002).  

The ASSR is elicited by periodic auditory stimuli which rapidly entrain the 

electroencephalogram (EEG) to the frequency and phase of the stimulus with a maximal 

response at stimulus rates of about 40 Hz in humans.  Like the MMN, the scalp recorded ASSR 

appears to be generated by auditory cortex with contributions from other regions, including the 

prefrontal cortex (Reyes et al., 2005; Reyes et al., 2004). The ASSR to 40 Hz stimulation is 

usually reduced in power or phase synchronization in patients with schizophrenia compared to 
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healthy adults. Deficits have also been observed in first-episode and high-risk patients (Tada et 

al., 2016), and first-degree relatives (Hong et al., 2004; Rass et al., 2012). While both the MMN 

and ASSR implicate disturbances of auditory and frontal cortical circuits, the neural basis for 

these deficits are not well characterized. Both MMN and ASSR are sensitive to N-methyl-D-

aspartate receptor (NMDAR) antagonists, consistent with models of NMDAR dysfunction in 

schizophrenia (Javitt et al., 2012; Kocsis et al., 2013; McCarley et al., 1999; Thune et al., 2016). 

1.2 MRS metabolites in schizophrenia  

Since scalp recorded electrophysiological responses are primarily generated by post-

synaptic graded potentials, they would likely be sensitive to alterations in inter- and 

extracellular metabolites which reflect neural integrity and signaling. In vivo proton magnetic 

resonance spectroscopy (MRS) can quantify regional metabolites in the brain in persons with 

psychiatric disorders to better understand their underlying neurobiological mechanisms. MRS 

allows for the examination of neurochemical correlates of relevant ERPs and their relation to 

neurobiological models proposed in the etiology of SZ, such as NMDA receptor hypofunction, 

abnormal glutamatergic and dopaminergic transmission and neuroinflammation (Port and 

Agarwal, 2011). The majority of MRS studies have focused on chronic SZ, with more recent 

studies also examining individuals at clinical high risk for psychosis or first episode patients. A 

variety of metabolites within relevant brain regions and circuits have been assessed using MRS 

to examine the neurobiological mechanisms underlying SZ, with studies examining 

glutamatergic metabolites being the most prevalent (Merritt et al., 2016; Poels et al., 2014).  

MRS glutamate metabolites include glutamine (Gln), glutamate (Glu) and their sum, Glx. Glu is 

an amino acid and neurotransmitter that is synthesized from Gln within glutamatergic neurons, 

then synaptically released during neurotransmission. Glial cells recycle Glu from the 

extracellular space and convert it into Gln (Bak et al., 2006; Niciu et al., 2012). 

 The glutamatergic system has been implicated in the pathophysiology of SZ by 

pharmacological, animal model, post-mortem and imaging investigations, possibly secondary to 
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NMDA receptor dysfunction (Hu et al., 2015; Javitt, 2010; Stone et al., 2007; Veerman et al., 

2014).  A meta-analysis examining studies of the glutamatergic metabolites concluded that 

persons with schizophrenia, or at high risk for the disorder, had elevated concentrations of Glu 

and Glx in the basal ganglia, Glx in the medial temporal lobe, and Gln in the thalamus compared 

to control subjects (Merritt et al., 2016). However, secondary analyses also showed differences 

across phases of the illness. Individuals at high-risk had higher Glx concentrations in the medial 

frontal cortex, individuals within their first episode showed increased Glx in the basal ganglia 

and individuals with chronic schizophrenia had elevated Glx levels within frontal white matter 

and the medial temporal lobe. Several subsequent MRS studies have evaluated Glu levels in the 

anterior cingulate cortex in first-episode of psychosis, but results have been inconsistent, 

reporting elevated (Kim et al., 2018), reduced (Reid et al., 2019), and intact levels of Glu 

(Egerton et al., 2018) compared to control subjects. 

1.3 Relationship between ERPs and MRS metabolites in EPP 

Evidence for a relationship between the MMN and ASSR with metabolites in psychosis 

remains sparse, particularly in the early stages of the illness.  To our knowledge, there are no 

studies of the 40 Hz ASSR examining the relationship between glutamatergic metabolites and 

EPP.  For MMN, studies have associated increased thalamic Glx with smaller (less negative) 

frontal MMN amplitude in individuals at high-risk for psychosis (Stone et al., 2010), and a trend 

for increased ACC Glu and smaller frontal MMN amplitude in EPP (Kaur et al., 2019). In 

contrast, smaller MMN amplitude has been associated with lower frontal and anterior cingulate 

cortex Glu levels in individuals with chronic schizophrenia (Rowland et al., 2016). Consequently, 

there is a pressing need to characterize the metabolic correlates of MMN amplitude and the 40 

Hz ASSR in persons with EPP. Such relationships could shed light on the pathophysiological 

abnormalities associated with psychosis, such as NMDAR hypofunction and altered 

glutamatergic neurotransmission.  

1.3 Aims of current study 
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The primary aim of the current study was to examine correlations between MMN 

amplitude and 40 Hz ASSR power with concentrations of frontal cortex Glx in persons with 

EPP. Secondarily, glutamatergic levels and MMN amplitude were compared between subjects 

with EPP and healthy adults. We predicted that compared to control subjects, a) MMN 

amplitude and ASSR power would be reduced in EPP compared to control subjects, b) Glx 

would be increased in EPP and c) increased Glx would be associated with smaller MMN 

amplitude and reduced ASSR power in the EPP group. We also examined associations between 

the electrophysiological measures and other metabolites that have been investigated in 

schizophrenia and related disorders (Brugger et al., 2011; Kraguljac et al., 2012; Wijtenburg et 

al., 2015), including N-acetyl aspartate (NAA), myo-inositol (Ins), creatine (Cre), and choline 

(Cho; composed of phosphocholine and glycerophosphocholine). Finally, exploratory analyses 

evaluated the relationship of both biological measures with clinical features and cognitive 

function. 

2. Methods 

2.1 Participants 

Thirty-four participants with EPP (EPP) were recruited from the Prevention and 

Recovery Center for Early Psychosis (PARC), which is part of Indiana University School of 

Medicine (IUSM) and the Eskenazi Health System.  Subjects had a DSM-IV diagnosis of 

schizophrenia, schizoaffective, schizophreniform or psychosis not otherwise specified, as 

determined by the Structured Clinical Interview for DSM-IV-TR (SCID-I/P Patient Edition) 

(First et al., 2002)  and corroborated by family informants and medical records. Subjects were 

between 16 and 35 years of age and within five years of the first onset of a non-affective, non-

substance use-induced psychosis. First onset was operationally defined as first emergence of 

psychotic symptoms coupled with evidence of seeking treatment. Cumulative antipsychotic drug 

dosages prior to study enrollment and during the trial were quantified as chlorpromazine 
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equivalent doses (Woods, 2003). Exclusionary criteria included IQ less than 70, current 

substance use disorders, pregnancy, neurologic illness or other serious medical disorders or 

inability to provide informed consent. All 34 subjects received MRS assessment and 31 subjects 

received both MRS and electrophysiological assessment. 

Nineteen control participants were recruited using advertisements in local community 

newspapers and flyers. The EPP and control groups did not differ in sex distribution (Pearson 

Chi-Square (1) = 0.034, p = 0.85). All control participants were interviewed using the SCID-NP 

(non-patient edition (First, 2002)) to exclude individuals with psychiatric diagnoses. 

Exclusionary criteria were the same as for the early psychosis group. All 19 subjects received 

MRS assessment and 16 subjects received both MRS and electrophysiological assessment. The 

research was approved by the IU Institutional Review Board and informed consent was obtained 

from all participants.   

2.2 Electrophysiological assessment 

Participants were seated comfortably in a dark, electrically isolated enclosure for 

electrophysiological assessment. For both paradigms, the electroencephalogram was 

continuously recorded (band pass 0.1–200 Hz, sampling rate 1000 Hz) and digitized  

(Neuroscan SynAmps) from the scalp, using a 28-channel electrode cap (10–20 system; Falk- 

Minow Services, Munich, Germany) and additional electrodes to obtain vertical and horizontal 

electrooculograms. Recordings were referenced to the nose. Electrode impedances were 

maintained at <10 kOhm. All auditory stimuli were presented through Etymotic insert 

earphones. 

ASSRs. During the evaluation, participants kept their eyes open while listening to trains 

of clicks. The individual stimuli were 1 ms duration clicks (80 dB SPL), presented in 500 ms 

duration 40 Hz click trains. Eighty trains were presented with a 700 ms inter-train interval.  

Fordata processing, EEG was digitally filtered with a bandpass of .02 to 100 Hz, and corrected 

for ocular artifacts using the Gratton et al. algorithm (Gratton et al., 1983). The EEG data was 
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segmented into 500 ms epochs concurrent with the click train stimulus. Epochs with voltage 

exceeding ±100 μV at any site were automatically excluded from analyses. A fast Fourier 

Transform (FFT) was applied to the averaged ASSR to generate power spectra. The 40 Hz signal 

power (μV2) was measured at the FZ electrode site. 

Duration Mismatch Negativity. Participants sat with eyes open while gazing at a fixation 

cross and listening to a series of tones. The paradigm was composed of 765 auditory tones with a 

duration of 100 ms (“frequent” tones; probability=0.90) and 85 tones with a duration of 50 ms 

(“deviant” tones; probability=0.10). Tones were presented at 800 Hz, 70 dB SPL, and had a 

rise/fall of 10 ms. The inter-stimulus interval (ISI) was 500 ms. EEG data was stored offline for 

subsequent analysis. Using BrainVision Analyzer software (Brain Products, Munich, Germany), 

data were filtered using high pass (0.01Hz) and low pass (30Hz) filters. After VEOG correction, 

data were segmented into individual epochs with 100 ms baseline and 400 ms poststimulus 

duration.  After baseline correction, individual epochs were rejected if they exceeded ±100 µV.  

Trials within the frequent and deviant conditions were averaged for each subject. Difference 

waveforms were computed by subtracting the averaged deviant tone waveform from the 

averaged frequent tone waveform. MMN amplitude was measured as the most negative voltage 

between 140 and 280 ms in the difference waveform at FZ for each participant, which is 

typically the location of the largest MMN deflection in nose-referenced EEG recordings (Javitt et 

al., 2000; Umbricht et al., 2006), 

2.3 MRS Assessment 

All MRI/MRS acquisitions were performed on a Siemens 3T TIM Trio whole-body 

scanner with a 32-channel head coil. T1-weighted MPRAGE images (resolution 1x1x1 mm3) were 

acquired for anatomical information. A single voxel PRESS sequence was used with the 

following parameters: echo time (TE) = 30ms, repetition time (TR) = 1500 ms, 128 averages, 

resulting in a total acquisition time of 4 min. In addition, for every scan a water-unsuppressed 

scan with 24 averages was acquired to serve as water reference for quantification purposes. The 
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MRS volume of interest (VOI) was placed medially in the frontal cortex (size = 2x2x2 cm3). VOI 

placement and a representative spectrum of the frontal cortex are shown in Fig 1. All 

spectroscopy data were quantified using LCModel V6.2-0R and scaled to the internal water 

signal. MPRAGE images were segmented into gray matter, white matter and cerebral spinal 

fluid with SPM12. The percentage of each type of tissue within the MRS VOI was calculated 

using in-house Matlab code. The metabolites of interest were Glx, NAA, Cre, Ins and Cho. 

Metabolite concentrations were expressed in institutional units and corrected for the percentage 

of cerebrospinal fluid (CSF) within the VOI (Chowdhury et al., 2015). 

2.4 Clinical and cognitive assessments  

Symptoms were assessed by the Positive and Negative Syndrome Scale (PANSS (Kay et 

al., 1987)) with total score and three sub-scale scores defined by Marder et al.(Marder et al., 

1997) assessing positive, negative and disorganized thought symptoms. The Brief Assessment of 

Cognition in Schizophrenia (BACS; (Keefe et al., 2004; Keefe et al., 2008)) was used to evaluate 

cognitive function. The BACS assesses four domains of cognition, including verbal memory, 

working memory, processing speed, and reasoning/problem solving. All BACS scores were 

corrected for norms based upon age and gender of participants. The BACS composite score was 

used for analysis. One patient did not complete the BACS. 

2.5 Statistical analysis 

T-tests were used to test for group differences on the metabolite and electrophysiological 

measures. Partial least squares analysis (PLS) was used to test for an overall relationship between 

the six MRS measures and the two electrophysiological measures (MMN, ASSR power) in the 

EPP group and the entire sample. PLS computes a singular value decomposition of a cross-

correlation matrix between two sets or blocks of measures, which produces a series of latent 

variables (singular vectors) (Bookstein et al., 1996; O’Donnell et al., 1999). Salience or weight 

measures for each variable indicate the contribution of a variable to a given latent variable. In 

order to test the significance of the association between the two blocks of measures, the first pair 
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of latent variables was compared with the distribution of covariances arising from random 

permutations of the data set. Data were permuted 10,000 times to estimate the likelihood that 

the obtained covariance of a latent pair is due to chance alone. The calculated p value indicates 

whether or not the relationship between the two variable blocks is significant.  

 Exploratory analyses tested for possible relationships between the MRS metabolites and 

electrophysiological measures and clinical features in the EPP group using Spearman correlation 

coefficients. Features included the PANSS negative, positive and disorganized factor scores, 

illness duration, age, CPZ dosage and the composite score of the BACS. A criterion of p < .05 

(two-tailed) was used for significance testing across tests. 

3.  Results 

3.1 Participant characteristics 

Demographic, clinical, and cognitive characteristics are displayed in Table 1 for the 

patient and control groups. The BACS composite score was about two standard deviations below 

the control group mean (p < .001), indicative of marked cognitive impairment.   

3.2 Group differences for MRS metabolites, MMN amplitude and ASSR power 

MRS and electrophysiological measures are shown in Table 2. T-tests between groups for 

each metabolite showed increased levels (p < .05) of Glx , Cre and Cho in EPP compared to the 

control group. Figure 2 shows the grand average event-related potentials elicited from each group 

in the MMN paradigm. MMN amplitude did not differ between groups. Figure 3 shows the 

averaged time domain and frequency domain 40 Hz ASSR response in both groups. ASSR power 

at 40 Hz did not differ between groups. 

3.3 Partial Least Squares Analysis of MRS metabolites and electrophysiological measures in  

the EPP group.  

PLS analysis revealed an overall relationship between the MRS metabolites and the 

electrophysiological measures in the EPP group (Table 3). This relationship was captured in the 

salience or weights of the first latent factor of the PLS analysis, which accounted for 98.5% of the 
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variance contributed to the overall sum of the summed squared cross-block correlations in the 

analysis. Permutation tests revealed a significant relationship between the two blocks of 

measures (p = 0.01). The magnitude of the salience value indicates estimates the contribution of 

that measure to the latent variable. For MMN amplitude, the positive salience value indicated 

that MMN amplitude became smaller (i.e. less negative) as MRS metabolite levels increased. For 

the 40 Hz ASSR, the positive salience value indicated that power increased as metabolite levels 

increased.  The larger salience value for MMN amplitude (0.88) indicated that it had a stronger 

relationship to the set of MRS metabolite values than 40 Hz power (0.47).   

A second PLS using the same variables was computed using the entire sample of EPP 

and control subjects (Table 4).  The overall relationships were comparable to the PLS on the EPP 

sample.  The relationship between the MRS and electrophysiological measures was significant (p 

= 0.01), with 96% of the covariance loading on the first latent factor.  As MRS metabolite levels 

increased, MMN decreased in amplitude and ASSR increased in power. 

3.3 Correlations between neurobiological variables and clinical features 

MRS metabolites, MMN amplitude and ASSR power did not show significant 

correlations with PANSS symptom severity, illness duration, CPZ dosage, age or the BACS 

composite score.   

4. Discussion 

Consistent with hypotheses, the EPP group showed higher Glx levels compared to the 

control group, as well as elevations of Cre and Cho. In contrast, and inconsistent with 

hypotheses, there were no differences between groups for MMN amplitude or 40 Hz ASSR 

power. Partial least squares analysis group showed that increased MRS metabolite levels were 

associated with smaller (less negative) MMN amplitude within the EPP group and in the 

combined sample. There was a weaker association between increased metabolite levels and 

increased ASSR 40 Hz power. Additional analyses indicated that neither the MRS metabolites 

nor electrophysiological measures were correlated with symptom severity, age, CPZ lifetime 
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dosage or cognitive function in the EPP group. These data can be interpreted in terms of the 

specific implications of abnormal glutamatergic signaling, or of the consequence of 

pathophysiological processes which could broadly interfere with metabolic functioning.  

While MMN has been a robust finding in patients with chronic schizophrenia, MMN 

amplitude reduction has been less consistently found in first episode psychosis. The current 

findings in EPP are congruent with several other studies showing an unaffected MMN in first 

episode psychosis (Salisbury et al., 2007; Salisbury et al., 2018; Salisbury et al., 2017; Salisbury 

et al., 2002; Umbricht et al., 2006). Forty Hz ASSR power was also unaffected in the present 

EPP sample. This differs from Tada et al. (2016), who found reduced a 40 HZ ASSR deficit in 

persons with first episode schizophrenia. The findings suggest that these two 

electrophysiological measures may be less affected in a diagnostically heterogeneous EPP 

sample compared to persons with chronic SZ. 

The MRS metabolites Glx, Cre and Cho were elevated in the FEP group.  Increased levels 

of Glx and Glu are common in first-episode patients (Kahn and Sommer, 2014). Prior MRS 

studies suggest that the course of schizophrenia may be characterized by an initial increase in 

prefrontal Glx during the prodromal and early phase, followed by a decrease with age and illness 

progression (Abbott and Bustillo, 2006; Kahn and Sommer, 2014; Liemburg et al., 2016).  

Results from a longitudinal study suggest that increased Glu levels in the associative-striatum 

are associated with conversion to psychosis (de la Fuente-Sandoval et al., 2013). Creatine is 

thought to reflect energy metabolism, while choline reflects membrane integrity. Elevated Cre 

has been reported in the frontal lobe of children with schizophrenia (O'Neill et al., 2004), while 

reduced frontal Cre has been reported in first-episode patients relative to healthy controls 

(Ohrmann et al., 2007). Increases in Ins and Cho have been found in the right associative 

striatum, along with increased Ins in the bilateral medial temporal lobes in previous MRS 

studies of first-episode psychosis (de la Fuente-Sandoval et al., 2013; Plitman et al., 2016b; 

Wood et al., 2008). Contrary to the current findings, several previous studies assessing NAA 
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concentrations in EPP have found reduced NAA (Brugger et al., 2011; Liemburg et al., 2016; 

Schwerk et al., 2014).  

Increases in Glx in the EPP group and entire sample were associated with lower MMN 

amplitude and greater ASSR power. The relationship of Glx to MMN and ASSR in the present 

study may indicate that the pathophysiological processes involved in the onset of psychosis may 

be associated with disrupted glutamatergic neurotransmission, which contributes to variation in 

electrophysiological responses. Consistent with this model, acute administration of NMDA 

receptor antagonists in rodents can produce increased 40 Hz ASSR power or phase locking 

(Leishman et al., 2015; Sullivan et al., 2015) particularly at low levels of receptor occupancy 

(Sivarao et al., 2016). Importantly, glutamatergic disturbances may affect other metabolites.  

For example, elevated Cre has been attributed to hypermetabolism induced by aberrant 

glutamatergic signaling (Olney and Farber, 1995; Smesny et al., 2015; Tibbo et al., 2013) and 

higher levels of glutamatergic neurotransmission may produce excitotoxic damage to neurons 

(Plitman et al., 2014). 

The present findings suggest that individuals with EPP may display a different 

relationship between neurochemical metabolites and event-related potentials than individuals 

with chronic illness. Increases of glutamate metabolites have been associated with reduced 

MMN amplitude in clinical high-risk subjects (Stone et al., 2010) and in EPP (Kaur et al., 2019). 

In contrast, smaller MMN amplitude has been associated with lower Glu levels in individuals 

with chronic schizophrenia (Rowland et al., 2016). In addition to a relationship between higher 

levels of Glu and larger MMN, a higher ratio of glutamine to glutamate has been associated with 

smaller (less negative) MMN in chronic SZ (Rowland et al., 2016), suggesting that altered 

glutamatergic signaling impacts MMN generation. These findings support the possibility that 

glutamatergic transmission or metabolism changes during the transition from early psychosis to 

more chronic illness (Kahn and Sommer, 2014). 
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 The elevation of multiple metabolites observed in the present data may reflect a 

pathophysiological mechanism that interferes with a broad range of metabolic processes, such 

as neuroinflammation. Converging evidence has implicated neuroinflammatory responses to the 

risk for and expression of psychosis (Radhakrishnan et al., 2017). The present findings are 

similar to the results observed in the associative striatum of sixty antipsychotic naïve patients 

during their first episode of psychosis. In these patients, Glu, Cho and Ins were significantly 

increased in the patient group, while Glx, NAA and Cre were elevated but did not reach 

significance (Plitman et al., 2016a).  Plitman et al. hypothesized that elevated levels of Cho and 

Ins may reflect neuroinflammatory disruption of astrocyte function, which in turn disturbs the 

conversion of glutamate to glutamine within astrocytes. Notably, this research group had 

previously found higher levels of NAA, Glu, Ins and Cho in an anti-psychotic naïve first episode 

group in the associative striatum or cerebellum (de la Fuente-Sandoval et al., 2013).  

 There are several limitations affecting interpretation of the present findings. All of the 

patients were medicated, which could affect electrophysiological responses and MRS 

metabolites (de la Fuente-Sandoval et al., 2013). The MRS voxel was placed in a different brain 

region than the temporal lobe generators of the MMN and ASSRs. MRS levels may be 

differentially affected in regions of the brain which were not assessed in the present study. The 

psychosis group was diagnostically heterogeneous, unlike many MRS studies which only include 

persons with schizophrenia or schizoaffective disorder. Mood disturbances were not assessed 

with rating scales.  The number of control subjects was appreciably smaller than the number of 

EPP subjects. 

Despite these limitations, these findings suggest that joint use of human metabolite  

and electrophysiological measures could help better characterize psychosis pathophysiology. 

When coupled with a longitudinal design, this multimethod approach could be highly 

informative in characterizing neurophysiological and neurochemical changes that occur with the 

emergence and varied outcomes of psychotic disorders. Finally, these non-invasive methods are 
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well suited for measurement of the neurobiological effects of therapeutic interventions.  
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Table 1.   
Participant Characteristics  
  

Gender and Diagnoses 
 

 EPP Control 

 

Sample size 

 

34 

 

19 

 
Female/Male 
 

 
7/24 

 
14/5 

Diagnosis, n (%)   

     Psychosis disorder NOS 4 (13%) - 

     Schizoaffective 6 (19%) - 

     Schizophrenia 17 (55%) - 

     Schizophreniform 4 (13%) - 

 

 
 

M (SD) 
 

EPP  

M (SD) 
 

Control 
 

 

Age, years  

 

22.0 (4.3) 

 

22.9 (3.6) 

BACS composite score  29.9 (14.2) 48.8 (11.7)** 

Illness Duration, years  2.01 (1.33) - 

CPZ Lifetime Exposure, grams  139.6 (173.0) - 

PANSS total scoreb 53.7 (13.6) - 

PANSS cognitive/disorganized factor 12.6 (3.7) - 

PANSS negative symptom factor 12.7 (5.6) - 

PANSS positive symptom factor 16.9 (6.5) - 
 

 
Note.  EPP = Early Phase Psychosis, CPZ = chlorpromazine, PANSS =the Positive and Negative 
Syndrome Scale, BACS = Brief Assessment of Cognition in Schizophrenia.  ** p < .001. 
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Table 2.   
MRS Metabolite, MMN Amplitude and 40 Hz ASSR Power 
 
 
 

M (SD) M (SD) Test statistic  95% CI Effect size 
(d) 

 
 

EPP Control    

 
Metabolite 
concentration (i.u.) 

     

    Glx 4.93 (1.44) 4.07 (1.18) t [51] = 2.24* [1.64, 0.09] 0.62 

    NAA 4.23 (1.05) 3.71 (0.82) t [51] = 1.85 [1.08, -0.04] 0.52 

    Cho 0.96 (0.23) 0.73 (0.18) t [51] = 3.80** [0.35, 0.11] 0.97 

    Cre 3.34 (0.86) 2.75 (0.77) t [51] = 2.50* [1.07, 0.12] 0.68 

    Ins 2.76 (0.88) 2.40 (0.66) t [51] = 1.59 [0.83, -0.10] 0.45 

 
Electrophysiological 
measure 

     

     MMN (µV) -2.71 (2.76) -2.27 (2.40) t [45] = 0.54 [1.20, -2.07] -0.17 

     40 Hz Power (µV2) 0.05 (0.05) 0.05 (0.04) t [45] = 0.28 [0.02, -0.03] -0.09 

 
 
Note. Group differences were tested using t-tests.  EPP = Early Phase Psychosis, Glx = 

Glutamate+Glutamine, NAA = N-Acetylasparate, Cho = Choline, Cre = creatine, Ins = Myo-

inositol, MMN = mismatch negativity.  

*p < 0.05, **p < 0.001 
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Table 3.   
Partial Least Squares Analysis of Association Between MRS Metabolites and 
Electrophysiological Responses in the EPP Group 
 
 
Latent variable 

 
1 

 
2 

   
 
Singular Values 

 
1.027   

 
0.128 

   
Percent variance 98.5  1.5 

   
MRS Metabolite Level   
    Glx    0.445  0.574 
    NAA    0.458   -0.770 
    Cho 0.501      0.256 
    Cre      0.480  0.010 
    Ins      0.333 -0.108 
   
Electrophysiological Measure   
     40 Hz ASSR power 0.473 0.881 
     Mismatch Negativity Amplitude 0.881  -0.473 

 
 
  

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

27 

 

 
Table 4.   
Partial Least Squares Analysis of Association Between MRS Metabolites and 
Electrophysiological Responses in Pooled EPP and Control Subjects 
 
 
Latent variable 

 
1 

 
2 

   
 
Singular Values 

 
0.828  

 
0.170 

   
Percent variance 96.0 4.0 

   
MRS Metabolite Level   
    Glx    0.316 0.645 
    NAA    0.492  -0.681 
    Cho 0.449     0.266 
    Cre      0.538  -0.121 
    Ins      0.408 0.187 
   
Electrophysiological Measure   
     40 Hz ASSR power 0.287 0.958 
     Mismatch Negativity Amplitude 0.958  -0.287 
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Figures 

 

Fig. 1.  Location of MRS voxel of interest (VOI) in medial frontal lobe and representative 

spectrum.  VOI placement in sagittal and axial views, together with a representative MR 

spectrum (red: LCModel fit, dashed: raw data, solid black line: fitted baseline) from a EPP 

subject, showing the peaks of Cho, Cre, Glx and NAA. 

Fig. 2.  Event-related potential grand average responses to deviant and standard tones in the 

EPP (dashed line) and Control group (solid line).  Deviant - Standard grand average difference 

waveforms showing the MMN deflection (third column). 

Fig. 3.  ASSR grand average responses to 500 Hz click trains in the EPP and Control  groups (left 

column).  Grand Average power spectra showing 40 Hz power in the two groups (right column). 
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Highlights 

 Electrophysiological responses and brain metabolites are affected in psychosis. 

 The relationship between these biomarkers in the early phase of psychosis was 

examined. 

 The brain metabolites Glx, creatine and choline were elevated in patients. 

 Elevated metabolites were associated with decreased mismatch and increased 

gamma responses. 

 Metabolic changes may contribute to neurophysiological alterations in early 

psychosis. 
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