
Computational Study of Enantioselective Carboligation 

Catalyzed by Benzoylformate Decarboxylase

Ferran Planasa, Michael J McLeishb* and Fahmi Himoa*

a Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-

10691, Stockholm, Sweden.
b Department of Chemistry and Chemical Biology, Indiana University-Purdue University 

Indianapolis, IN 46202, Indianapolis, USA.

E-mail: fahmi.himo@su.se; mcleish@iupui.edu

Abstract

Benzoylformate decarboxylase (BFDC) is a thiamin-diphosphate enzyme that catalyzes the 

decarboxylation of benzoylformate to yield benzaldehyde and carbon dioxide. In addition to 

its natural reaction, BFDC is able to catalyze carboligation reactions in a highly 

enantioselective fashion, making the enzyme a potentially important biocatalyst. Here, we use 

density functional theory calculations to investigate the detailed mechanism of BFDC-

catalyzed carboligation and to elucidate the sources of the enantioselectivity. Benzaldehyde 

and acetaldehyde are studied as acceptors, for, when reacting with a benzaldehyde donor, they 

yield products with opposite enantiospecificity. For each of the acceptors, several possible 

binding modes to the active site are initially examined before the individual reaction paths 

leading to the two enantiomeric products are followed. The calculated energies are in good 

agreement with the experimental results, and analysis of the transition states gives insight into 

the origins of the enantioselectivity. 

Keywords: Biocatalysis, Enantioselectivity, Density functional theory, Carboligation, 

Benzoylformate decarboxylase, Reaction mechanism, Enzymology, Asymmetric synthesis.
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I. Introduction

Benzoylformate decarboxylase (BFDC) is a thiamine diphosphate (ThDP)-dependent lyase 

that catalyzes the non-oxidative decarboxylation of benzoylformate into benzaldehyde and 

carbon dioxide as part of the mandelic acid degradation pathway.1,2 The reaction mechanism 

of this enzyme has attracted attention, initially because BFDC showed some notable 

differences in the active site compared to other ThDP-dependent decarboxylases. Pyruvate 

decarboxylase (PDC), the archetypal member of the group, has two contiguous histidine 

residues, sometimes referred to as the HH motif,3 as well as two ionizable acidic residues all 

of which have been shown to be catalytically important.4-6 These residues are conserved in 

most other group members.7-9 However, they are not present in BFDC, which lacks the two 

ionizable residues and has the two histidines differently placed both in sequence and space.10 

While plausible roles for the BFDC active site residues were initially reported,11-12 subsequent 

studies brought those roles into question.13-14

Very recently, we reported a detailed computational study of the mechanism of the BFDC 

reaction (Scheme 1) characterizing the intermediates and transition states of the catalytic cycle 

in terms of geometries and energies.15 The roles of the different active site residues were 

described and, very importantly, we demonstrated the existence of an off-cycle, yet kinetically 

relevant, tricyclic form of the ThDP cofactor not considered previously for this enzyme.15 The 

decarboxylation step was calculated to be irreversible, and the resultant enamine-carbanion 

form of the cofactor, was found to be the resting state of the reaction. The following steps, i.e. 

enamine protonation, cofactor reprotonation and formation of benzaldehyde in the active site, 

were all found to be reversible.15 Subsequently, we identified possible ThDP states and 

calculated their relative stabilities with different ligands bound to the enzyme.16 The 

calculations showed that the nature of the bound ligand can have a dramatic effect on the 

energies of the cofactor states, and the aforementioned tricyclic state was demonstrated to be 

lowest in energy in the presence of the substrate.
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Scheme 1. Partitioning between the decarboxylation and carboligation in the mechanism 

of BFDC.

The reversibility of the second part of the reaction has implications for a very important 

feature of BFDC, namely its ability to catalyze carboligation reactions. These can occur when 

the enamine intermediate reacts with an aldehyde acceptor molecule, as shown in Scheme 1. 

The ability of BFDC to catalyze a carboligation reaction was initially reported after 2-

hydroxypropiophenone (2-HPP) was obtained as a side product of benzoylformate 

decarboxylation with acetaldehyde as cosubstrate.17 The fact that 2-HPP was obtained in 
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parallel with benzaldehyde formation indicated that the post-decarboxylation intermediate, the 

enamine-carbanion, could either be protonated, ultimately producing benzaldehyde (i.e., the 

natural reaction), or intercepted by the acetaldehyde to yield 2-HPP (carboligation). It was 

further observed that, at high concentrations of benzaldehyde, 2-HPP was also formed. This 

demonstrated that the enamine intermediate could be obtained from either benzoylformate or 

from benzaldehyde (see Scheme 1) and provided irrefutable evidence that all post-

decarboxylation steps must be reversible.17 Further, since acetaldehyde is a prochiral molecule, 

a stereogenic center will be formed in this reaction. It is now well established that S-HPP is 

formed, with ~90% enantiomeric excess (ee).17-19 Intriguingly, when carried out with 

benzaldehyde lyase (BAL), another ThDP-dependent enzyme, the same reaction provided R-

HPP in better that 99% ee.20,21 Conversely, if benzaldehyde is used as the acceptor, both BFDC 

and BAL produce solely the R-enantiomer of benzoin.18,22-24 

The source of the enantioselectivity of the BFDC-catalyzed carboligations has been 

addressed by both experimental mutagenesis studies19,25,26 and molecular modeling.21 Site-

directed mutagenesis showed that Ala460 and Phe464 were relevant for the enantioselectivity, 

as simultaneous mutation of both these positions to isoleucine resulted in a change of 

enantioselectivity for the carboligation producing R-HPP in ~50% ee.19 

In the molecular modeling study, selected conformations of the acceptor were built into the 

active site, which enabled the identification of residues likely to control the stereochemical 

outcome.21 Two pockets in the BFDC active site were identified, one large and highly solvent-

exposed cavity lying on top of the phenyl group of the donor, and a much smaller cavity lying 

on top of the thiazole ring (see Figure 1). It was noted that the residues forming the two cavities 

were consistent with those shown to affect enantioselectivity in the mutagenesis studies, and 

suggested that differential binding of acceptor molecules in the two pockets was crucial for the 

stereoselectivity of the carboligation. The modeling study also revealed Leu461 as a potentially 

important position, something that was later confirmed experimentally.27

Here, we use accurate quantum chemical methods to investigate the mechanism and origins 

of the enantioselectivity of the carboligation reaction of BFDC. It is important to appreciate 

that the modeling of enantioselective reactions requires high accuracy in relative transition 

state energies in order to reproduce and rationalize observed selectivities. In general, this is a 

daunting task for any kind of computational approach. That said, the adopted quantum 
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chemical cluster approach has been demonstrated to be a valuable tool in this field,28-30 and has 

been successfully applied to explore the reaction mechanisms and enantioselectivities of 

several enzymes, including epoxide hydrolases,31,32 arylmalonate decarboxylase,33 phenolic 

acid decarboxylase,34,35 and secondary alcohol dehydrogenase.36

As with our earlier studies on the BFDC decarboxylation reaction15 and the energetics of 

the cofactor states,16 we employ a large model of the active site designed on the basis of the X-

ray structure. Using benzoylformate as the donor, we considered two acceptor substrates, 

benzaldehyde (BA) and acetaldehyde (AA) which yield benzoin and 2-HPP, respectively. 

These two substrates provide products with opposite enantioselectivities,18 and we address the 

reasons for this.

Figure 1. X-Ray structure of BFDC active site with a bound substrate analog, R-mandelate 

(PDB 1MCZ). The large and small cavities are indicated.
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II. Computational Methods

II.A. Quantum chemical technical details

All the calculations were performed using the Gaussian 09 package37 and the B3LYP-

D3(BJ) method.38-41 The 6-31G(d,p) basis set was used for the geometry optimizations and the 

electronic energies of the stationary points were refined by single-point calculations with the 

6-311+G(2d,2p) basis set. Solvation energies were calculated with the SMD implicit solvent 

method42 and a dielectric constant of =4. The zero-point energy corrections were done at the 

same level of theory as the geometry optimizations.

II.B. Active site model

A model of the BFDC active site was built on the basis of the crystal structure (PDB 1MCZ) 

and, as with the two previous studies,15,16 it comprises the catalytically important Ser26, Glu28, 

Glu47, His70 and His281, along with the residues that define the active site cavities, i.e., 

Asn26, Pro24, Asn27, Ala44, Leu45, Asn77, Leu110, Gly401, Gly402, Leu403, Tyr433, 

Tyr458, Ala460, and Phe464. The residues were truncated as shown in Figure 2. In order to 

mimic the restraints that the protein surrounding imposes on the active site residues, the 

truncated atoms were kept fixed at their crystallographic positions. This approximation that has 

been employed in numerous studies and has been shown to yield good results.28-36 In this 

instance it is particularly appropriate as it is well-established that the active site of BFDC is 

remarkably pre-organized.12,14 The acceptor substrates were manually placed in the cavity 

assuming different binding modes and orientation (see below). The total number of atoms in 

the model was 318 with benzaldehyde as acceptor, and 311 for acetaldehyde as acceptor, and 

the overall charge was 0 in both cases.
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Figure 2. A) Optimized structure of the active site model with benzaldehyde bound. 

Asterisks mark the atoms fixed in the geometry optimizations. For clarity, the non-polar 

hydrogens of the residues are omitted. B) Schematic representation of the active site model. In 

both A and B the enamine of ThDP derived from reaction with either benzoylformate or 

benzaldehyde is shown in orange. The acceptor molecule is shown in blue (R = Ph, Me).

Page 7 of 24

ACS Paragon Plus Environment

ACS Catalysis

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



8

III. Results and Discussion

The starting point for the study of the carboligation reaction was the enamine-carbanion 

derived from the decarboxylation of benzoylformate, here abbreviated En (Scheme 1). The 

steps leading up to this intermediate were established in detail in the previous computational 

study on the BFDC reaction.15 Further, as it has been established that all the post-

decarboxylation steps are reversible,15,17 En may also be considered to be the intermediate 

obtained in a carboligation reaction when benzaldehyde is employed as the donor substrate. 

Two acceptor substrates were considered in this study, benzaldehyde (BA) and acetaldehyde 

(AA), which lead to the benzoin and 2-HPP products, respectively. After the potential active 

site binding modes and orientations were examined, the lowest-energy binding mode for each 

acceptor was set to zero. Subsequently, the individual reactions were studied by calculating the 

transition states and intermediates leading to the two enantiomeric outcomes that were possible 

for each acceptor. We start by discussing the results relating to benzoin formation, as this 

reaction has been experimentally observed to take place with effectively complete 

enantiospecificity.18

III.A. Reaction of benzaldehyde

As an acceptor, benzaldehyde can bind to the active site with either its pro-S or pro-R face 

toward the enamine donor. A variety of orientations of the phenyl ring are also possible, 

therefore it was necessary to determine the relative energies of a number of binding modes. 

Overall, the results can be described in three modes depending on the orientations of the 

carbonyl and phenyl moieties (Figure 3). In the lowest-energy binding mode, called En(BA)-

R1, the benzaldehyde is bound with its pro-R face toward the cofactor, with the carbonyl group 

on top of the hydroxyl group of the donor and forming a hydrogen bond with the side chain of 

Ser26. The phenyl group of the acceptor is in the large pocket and located on top of the phenyl 

ring of the donor. 

The second binding mode, En(BA)-S1, has a calculated energy of +1.1 kcal/mol relative to 

En(BA)-R1. In this pose, the phenyl ring remains in the large pocket but the acceptor now 

faces the donor with its pro-S face. Overall, this mode resembles that in En(BA)-R1, but the 
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9

carbonyl lies in opposite direction to the hydroxyl of Ser26, instead forming a hydrogen bond 

with the backbone amide of Leu461. 

Figure 3. Optimized geometries and schematic drawings of different binding modes for 

benzaldehyde. Relative energies are given in kcal/mol. For clarity, only a part of the active site 

model is shown here. 
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The third binding mode, En(BA)-S2, sees also a pro-S binding of benzaldehyde. However, 

the phenyl substituent of the acceptor now points into the small binding pocket and the carbonyl 

oxygen forms hydrogen bonds to both the hydroxyl of Ser26 and the hydroxyl of the cofactor 

(Figure 3). In order for the phenyl substituent to fit into the small space on top of the thiazole 

ring, the side chain of Leu461 rotates away. Concomitantly, the thiazole ring is pushed towards 

the pyrimidine ring and the V-shape of the cofactor becomes somewhat distorted (see SI for a 

superposition of the structures of the three binding modes). In this binding mode, the donor 

and acceptor are much closer to each other than the other two binding modes, and due to the 

steric clashes, the energy of En(BA)-S2 is 7.2 kcal/mol higher than En(BA)-R1.

It should be mentioned that a fourth class of binding modes was also examined in which the 

acceptor faces the donor with its pro-R face and with the phenyl substituent pointing into the 

small pocket. However, all attempts to optimize such geometry resulted in the benzaldehyde 

leaving the active site entirely.

At this point it is important to remember that we here only evaluate the relative energies of 

the various binding modes. That is, the absolute binding free energies are not calculated, as 

these cannot be accurately determined by the current approach. 

The carboligation mechanism obtained from the calculations is shown in Scheme 2. Upon 

binding of the BA acceptor, the first step is a C-C bond formation that leads to an alkoxide 

tetrahedral intermediate, Int1, which has a newly formed chiral center. Next, an intramolecular 

proton transfer takes place from the hydroxyl group of the donor moiety to the alkoxide, 

resulting in Int2. Finally, the last step is a C-C bond cleavage to recover the ylid form of the 

cofactor and to form the enzyme-product complex (EP).

Scheme 2. General mechanism for the carboligation reaction starting at the enamine.
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As seen from the calculated potential energy profiles, the reactions leading to the R- and S-

products display very large energy differences (Figure 4), starting as early as initial C-C bond 

formation. While the barrier for this step for the R-pathway is calculated to be 10.7 kcal/mol 

(TS1(BA)-R), the barrier for the S-pathway is as high as 25.1 kcal/mol (TS1(BA)-S). The 

energies of the resulting intermediates also show very large difference and are calculated to be 

+9.4 kcal/mol for Int1(BA)-R and +22.9 kcal/mol for Int1(BA)-S. Intriguingly, the pathway 

leading to the S-product does not start from the lowest-energy pro-S binding mode En(BA)-

S1, rather from the higher energy En(BA)-S2. Attempts to form the C-C bond starting from 

En(BA)-S1 always resulted in the formation of the enamine. Presumably, reaction following 

this binding mode lacks the hydrogen bonds that can stabilize the charge of the alkoxide 

developed at the acceptor upon C-C formation.

Figure 4. Calculated potential energy profiles for the carboligation reaction of 

benzaldehyde. Energies are given in kcal/mol.

The calculated energy difference of 7.2 kcal/mol in the binding (Figure 4) has thus increased 

to 14.4 kcal/mol at the TS of the C-C bond formation step. Comparison of the optimized 

geometries of the TS1(BA)-R and TS1(BA)-S (Figure 5) reveals some differences that explain 

this increase. In TS1(BA)-R, the charge developing at the alkoxide oxygen is stabilized by an 
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oxyanion hole consisting of three hydrogen bonds (to the hydroxyl and backbone NH of Ser26, 

and to the hydroxyl group of the donor), while in TS1(BA)-S only the first two of these are 

possible. We note also that, in TS1(BA)-S, the phenyl ring of the acceptor has moved from the 

small pocket toward the large pocket. Due to the formation of a tetrahedral carbon center at the 

acceptor it now experiences steric clashes with the Phe464, Ala460 and Leu461 residues.

Figure 5. Optimized geometries of selected transition states for the reaction with 

benzaldehyde as acceptor. For clarity, only a part of the active site model is shown here.

The subsequent proton transfer step is predicted to have a barrier of 4 kcal/mol for the S-

pathway (TS2(BA)-S, Figure 4). Conversely, for the R-pathway proton transfer appears to be 

barrierless or, at most, occur with a very low barrier. A transition state for the R-pathway could 

be optimized at the level of the theory of the geometry optimization. However, when 
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corrections such as the large basis set, solvation and zero-point energy corrections were added 

to the energy the barrier disappeared (i.e., became lower in energy than the intermediate). 

Consequently, the formation of Int2(BA)-R from Int1(BA)-R can be considered to be 

effectively barrierless. 

The calculations suggest that the last step of the mechanism, the C-C bond cleavage to form 

benzoin and recover the ylid, will have the highest barrier of all studied steps. This is true for 

both the R- and S-pathways, with overall barriers of 18.3 and 27.6 kcal/mol, respectively, 

relative to En(BA)-R1. As with the initial C-C bond formation step, the large energy difference 

arises from the clashes of the phenyl ring of the acceptor with the Phe464, Ala460 and Leu461 

groups in TS3(BA)-S. Conversely, as shown in Figure 5, in TS3(BA)-R the phenyl ring points 

to the more open side of the large pocket.

Interestingly, although TS3 for the two pathways differ considerably in energy, the enzyme-

product complexes, EP(BA)-R and EP(BA)-S, are calculated to have quite similar energies 

(+8.6 and +9.8 kcal/mol, respectively). Most likely, this is because the strain and steric clashes 

present in TS3(BA)-S are alleviated once the C-C bond is cleaved and the product is detached 

from the cofactor.

It is important to remember that the present study focuses on the steps between the enamine-

carbanion intermediate En (to which the donor molecule is bound) and the enzyme-product 

complex EP (in which the cofactor is in the ylid form, Scheme 2), as it is assumed that the 

selectivity is controlled in this part of the reaction. To continue the catalytic cycle, the benzoin 

product has to be released, a new donor molecule has to bind, the enamine intermediate has to 

be regenerated, and a new acceptor molecule has to bind (Scheme 1). While the mechanism for 

the enamine formation has been described in detail in our previous work on the natural reaction 

mechanism,15 the non-chemical steps involving substrate binding and product release are not 

considered explicitly as their modeling is associated with large errors.

Since TS3 constitutes the highest energy transition state in both pathways, the energy 

difference between TS3(BA)-R and TS3(BA)-S will determine the stereochemical outcome. 

The large calculated difference of 9.3 kcal/mol is consistent with the full stereocontrol observed 

experimentally for this substrate.18 It is likely, however, that the difference is somewhat 

overestimated in the calculations due to the model likely being somewhat too rigid to properly 
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adapt to the position of the large phenyl substituent, therefore causing more clashes than 

expected. 

III.B. Reaction of acetaldehyde 

With acetaldehyde as acceptor, a binding mode analysis was conducted in a similar manner 

to that employed for benzaldehyde. Four individual binding modes could be identified. In 

contrast to benzaldehyde, in the lowest-energy binding mode the substrate faces the enamine 

by its pro-S face (En(AA)-S1, Figure 6), with the carbonyl group forming a hydrogen bond 

with the side chain of Ser26. The small methyl substituent points into the much larger active 

site pocket on top of the phenyl ring of the donor, and the distance between the two carbons 

that will form the C-C bond is longer than in the case of the benzaldehyde acceptor.

The second binding mode, En(AA)-R1, has the pro-R face toward the enamine, with the 

methyl group lying above the aromatic ring of the donor. In that position the carbonyl group 

forms two hydrogen bonds, with Ser26 and with the hydroxyl group of the enamine (Figure 6). 

As the acceptor is now closer to the donor, this binding mode causes more steric crowding and 

the calculated energy is therefore higher than En(AA)-S1, by 4.7 kcal/mol.

In the third binding mode, En(AA)-S2, the acceptor lies above the enamine and the carbonyl 

forms two hydrogen bonds with the hydroxyl and backbone amide groups of Ser26. These 

interactions position the methyl group in the small cavity and close to Leu461, again resulting 

in steric clashes. Predictably, the calculated energy for this binding mode is also high, +7.2 

kcal/mol. 

The fourth binding mode, En(AA)-R2, has the carbonyl group of the acceptor facing Ala460 

and the methyl group oriented toward Ser26. This prevents the formation of any stabilizing 

hydrogen bond to the carbonyl group and has been calculated to be as much as 14.1 kcal/mol 

higher in energy than En(AA)-S1. A superposition of the structures of the four binding modes 

is given in the SI.

Starting from these binding modes, the reactions with acetaldehyde as acceptor were 

followed. The lowest-energy pathways leading to each of the enantiomers of the 2-HPP product 

are displayed in Figure 7. Although the calculations show that the reactions follow the same 

mechanism as for benzaldehyde (Scheme 2), the potential energy profiles are significantly 

different (Figure 4). Chemically, acetaldehyde is a better electrophile than benzaldehyde, and 
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therefore will react faster. Accordingly, the energy barriers are expected to be lower. However, 

in this instance, an additional factor is at play. Replacing the phenyl ring of benzaldehyde with 

the considerably smaller methyl group in acetaldehyde, removes many of the less favorable 

steric interactions in the active site, resulting in much lower barriers and intermediate energies. 

 
Figure 6. Optimized geometries and schematic drawings of the different binding modes for 

acetaldehyde. Relative energies are given in kcal/mol. For clarity, only a part of the active site 

model is shown here.
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The geometries of the transition states for both the initial C-C bond formation (TS1) and the 

subsequent proton transfer (TS2) could be optimized but, after adding the large basis set, 

solvation, and zero-point energy corrections, their energies were calculated to be lower than 

those of the connecting intermediates. Therefore, these steps can be assumed to be barrierless, 

or occur with very low barriers. This is very different from the benzaldehyde reaction, where 

initial C-C bond formation had a quite high barrier (at least 10.7 kcal/mol, Figure 4).

The C-C bond formation results in Int1(AA)-S and Int1(AA)-R, which are calculated to be 

-4.8 and -3.1 kcal/mol, respectively, relative to the enamine En(AA)-S1. Interestingly, due to 

its smaller size, the methyl group of acetaldehyde can readily fit in both the large cavity in 

Int1(AA)-R and the small cavity in Int1(AA)-S, with the only minor rotations of the Phe464 

and Leu461 side chains (Figure 8). 

With acetaldehyde as the acceptor, as with benzaldehyde, C-C bond cleavage was calculated 

to have the highest energy barrier. Since the previous steps are reversible, the stereochemical 

outcome of the carboligation reaction with acetaldehyde will be determined by the energy 

difference between TS3(AA)-R and TS3(AA)-S. This is calculated to be slightly (0.3 kcal/mol) 

in favor of the S-product (Figure 7). In broad terms this number is consistent with the 

experimental observations of ~90% ee S-2-HPP,17 but the calculated energy difference appears 

to be underestimated. It would not be unreasonable to attribute this discrepancy to the active 

site model being somewhat rigid, possibly not allowing proper relaxation of the various groups 

to fully adapt to the changes between the different binding modes.

Figure 7. Calculated potential energy profiles for the carboligation reaction between 

benzaldehyde (donor) and acetaldehyde (acceptor). Energies are given in kcal/mol.
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It is difficult to pinpoint the source of such a small energy difference. However, analysis of 

the geometries of the selectivity-determining TS3 (Figure 8) can give some hints. In TS3(AA)-

S the methyl substituent of the acceptor points toward Leu461, while in TS3(AA)-R the methyl 

group points in the direction of Phe464. This suggests that these two residues are likely to 

influence the stereochemical outcome of the reaction. It is gratifying to note that this suggestion 

is in accord with site-directed mutagenesis studies which show that replacement of Leu461 by 

either Ala or Gly increases the ee of the S-product (to 98%). Conversely, but nonetheless 

consistent, mutation of Phe464 to Ile decreases the ee to 42%.21

Figure 8. Optimized geometries of selected stationary points along the paths for 

acetaldehyde as acceptor. For clarity, only a part of the model is shown here. 
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IV. Conclusions

In this work, we have used quantum chemical calculations to investigate the reaction 

mechanism and the sources enantioselectivity of BFDC-catalyzed carboligation reaction. A 

large model of the active site, comprising more than 300 atoms, was designed on the basis of 

the crystal structure and the detailed mechanisms of reaction of benzaldehyde with two 

different acceptors, benzaldehyde and acetaldehyde, were examined, resulting in benzoin and 

2-HPP, respectively. Experimentally, BFDC has been demonstrated to yield the opposite 

enantiomers of the two products.17,23

For each acceptor, several different binding conformations were first evaluated. These were 

then used as starting points for calculations of the chemical mechanism leading to the two 

possible enantiomeric outcomes of the products.

The reactions of both substrates are demonstrated to follow the same mechanism. A C-C 

bond is formed between the donor and acceptor, resulting in an alkoxide tetrahedral 

intermediate. Next, an intramolecular proton transfer takes place from the hydroxyl group of 

the donor moiety to the alkoxide. Finally, C-C bond cleavage yields the reaction product and 

recovers the ylid form of the ThDP cofactor.

Although the overall reaction mechanisms are the same, the energy profiles display some 

differences. The most significant differences are apparent in the barriers of the C-C bond 

formation and cleavage steps, with the latter being found to be the rate- and selectivity-

determining step for both substrates. Further, the calculated barriers attest to the reversibility 

of the reactions, and suggest that HPP formation would be faster than benzoin formation. Both 

predictions are in line with experimental evidence.21

Importantly, the calculations satisfactorily reproduce the experimentally observed change 

of enantioselectivity in the formation of benzoin vs. 2-HPP products. Namely, for benzoin 

formation, the calculated energy difference of 9.3 kcal/mol in favor of the R-enantiomer is 

consistent with the observed complete stereocontrol,23 while for the formation of 2-HPP, the 

calculated energy difference of 0.3 kcal/mol in favor of the S-enantiomer is consistent with the 

observation of S-HPP with 90% ee.17

The obtained energy differences are overestimated in the case of benzoin formation and 

underestimated in the case of HPP formation. The reasons for this could be the size and the 
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rigidity of the adopted active site model. Although the model is more than 300 atoms large 

(which is a considerable size in this kind of modeling studies), it still represents only a small 

part of the enzyme. A number of atoms are kept fixed at the periphery of the model to maintain 

the overall structure of the active site. This scheme grants some flexibility to the model, but it 

is likely that a larger model could potentially allow better flexibility of the various groups to 

adopt to the changes that take place during the reaction thereby yielding better quantitative 

agreement. However, we do not expect this to qualitatively change the obtained energy profiles 

nor alter the conclusions. In addition, a much larger model would be associated with other 

shortcomings, such as multiple minima problems that would require extensive sampling.28-31

Previous experimental and modeling studies indicated that residues Phe464 and Leu461 

would play a major role in stereochemical control of carboligation.21,27 Inspection of the 

optimized geometries of the TSs for the C-C bond formation (TS1) and C-C bond cleavage 

(TS3) steps confirms the relevance of those residues. Further, it suggests an important role for 

Ser26 in overall reactivity as well as in controlling the stereochemical outcome. This residue 

forms hydrogen bonds to the oxygen of the acceptor through its hydroxyl group and its 

backbone NH. These interactions are clearly important, since the initial C-C bond formation 

could not take place when one or both were lost. Importantly for the enantioselectivity, the 

hydrogen bonds to Ser26 hinder the mobility of the acceptor and set restrictions as to how the 

substituent of the acceptor can point in the active site. In the TS leading to the R-enantiomer, 

the substituent points into the large cavity, while in the TS leading to the S-enantiomer the 

substituent points into the small cavity (see Figure 1). 

In the case of benzoin formation, the phenyl group of the benzaldehyde acceptor points into 

the large cavity, since pointing into the small cavity results in numerous steric clashes that lead 

to a higher energy intermediate. As a result, the R-enantiomer of benzoin is the major product. 

On the other hand, the methyl group of the acetaldehyde acceptor readily fits into the small 

cavity. This turns out to be energetically favorable and leads to the preferred formation of the 

S-enantiomer of 2-HPP. A plausible reason for this result is that the attractive dispersion 

interactions between the methyl group of acetaldehyde and the side-chains of the residues 

lining the small pocket are stronger than any unfavorable steric clashes. Similar observations 

were recently reported in the study of the enantioselectivity of secondary alcohol 

dehydrogenase from Thermoanaerobacter brockii.37 Conceivably, the methyl group has the 
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perfect size to fit into the small cavity. If true, there would be a trend for acceptors with 

increasingly larger substituents to show increasing preference for the large cavity and, 

concomitantly, the ratio of the R-product would increase. This analysis is consistent with the 

observation made when propanal is used as acceptor. This aldehyde only has one extra carbon 

compared to acetaldehyde, but the selectivity of the reaction is already reversed (ee = 28% R).27

We believe that the insights developed in the present work will be valuable for future 

applications of BFDC (and other ThDP-dependent enzymes) in asymmetric biocatalysis. It 

should also be stressed here that calculation of enantioselective mechanisms requires 

inordinately high accuracy, and the fact that the current calculations account for the 

experimentally observed trends and selectivity reversal for the two substrates is remarkable 

and is certainly a testament to the strength of the adopted quantum chemical methodology in 

this field.
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