TITLE

Impact of T-cell dose on the outcome of T-cell replete HLA matched allogeneic peripheral blood stem cell transplantation.

Ayman Saad¹, Lawrence Lamb², Tao Wang^{3,4}, Michael T. Hemmer⁴, Stephen Spellman⁵, Daniel Couriel⁶, Amin Alousi⁷, Joseph Pidala⁸, Hisham Abdel-Azim⁹, Vaibhav Agrawal¹⁰; Mahmoud Aljurf¹¹, Amer M. Beitinjaneh¹³, Vijaya Raj Bhatt¹⁴, David Buchbinder¹⁵ Michael Byrne¹⁶, Jean-Yves Cahn¹⁷, Mitchell Cairo¹⁸, Paul Castillo¹⁹, Saurabh Chhabra²⁰, Miguel Angel Diaz²¹, Shatha Farhan²², Yngvar Floisand²³, Hadar A. Frangoul²⁴, Shahinaz M. Gadalla²⁵, James Gajewski²⁶, Robert Peter Gale²⁷, Manish Gandhi²⁸, Usama Gergis²⁹, Betty Ky Hamilton³⁰, Peiman Hematti³¹, Gerhard C. Hildebrandt³², Rammurti T. Kamble³³, Abraham S. Kanate³⁴, Pooja Khandelwal³⁵, Aleksandr Lazaryn⁸, Margaret MacMillan³⁶, David I Marks³⁷, Rodrigo Martino³⁸, Parinda A. Mehta³⁵, Taiga Nishihori⁸, Richard F. Olsson^{39,40}, Sagar S. Patel⁴¹; Muna Qayed⁴², Hemalatha G. Rangarajan⁴³, Ran Reshef⁴⁴, Olle Ringden⁴⁵, Bipin N. Savani¹⁶, Harry C. Schouten⁴⁶, Kirk R. Schultz⁴⁷, Sachiko Seo⁴⁸, Brian C. Shaffer⁴⁹, Melhem Solh⁵⁰, Takanori Teshima⁵¹, Alvaro Urbano-Ispizua⁵², Leo F. Verdonck⁵³, Ravi Vij⁵⁴, Edmund K. Waller⁵⁵, Basem William¹, Baldeep Wirk⁵⁶, Jean A. Yared⁵⁷, Lolie C. Yu⁵⁸, Mukta Arora⁵⁹, Shahrukh Hashmi^{11,60}

¹Division of Hematology, The Ohio State University, Columbus, OH; ²University of Alabama at Birmingham, Birmingham, AL; ³Division of Biostatistics, Institute for Health and Equity, Medical College of Wisconsin, Milwaukee, WI; ⁴CIBMTR (Center for International Blood and Marrow Transplant Research), Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; ⁵CIBMTR (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be the Match, Minneapolis, MN; ⁶Utah Blood and Marrow Transplant Program, Salt Lake City, UT; ⁷Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX; ⁸Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center, Tampa, FL; ⁹Division of Hematology, Oncology and Blood and Marrow Transplantation, Children's Hospital of Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA; ¹⁰Division of Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN; ¹¹Oncology Center, King Faisal Specialist Hospital and Research Center; ¹³University of Miami, Miami, FL; ¹⁴The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE; ¹⁵Divsiion of Pediatric Hematology, Children's Hospital of Orange County, Orange, CA; ¹⁶Division of Hematology/Oncology, Vanderbilt University Medical Center, Nashville, TN; ¹⁷Department of Hematology, CHU Grenoble Alpes, Grenoble, France; ¹⁸Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Department of Pediatrics, New York Medical College, New York, NY; ¹⁹UF Health Shands Children's Hospital, Gainesville, FL; ²⁰Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; ²¹Department of Hematology/Oncology, Hospital Infanitl Universitario Nino Jesus, Madrid, Spain; ²²Henry Ford Hospital Bone Marrow Transplant Program, Detroit, MI; ²³The National Hospital, Oslo, Denmark; ²⁴The children's Hospital at TriStar Centennial and Sarah Cannon Research Institute, Nashville, TN: ²⁵Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, MD; ²⁶ consultant Lu Daopei Hospital, Beijing China; ²⁷Hematology Research Center, Division of Experimental Medicine, Department of Medicine, Imperial College London, London, United Kingdom; ²⁸Division of Transfusion Medicine, Mayo Clinic, Rochester, MN; ²⁹ Hematologic Malignancies & Bone Marrow Transplant, Department of Medical Oncology, New York Presbyterian Hospital/Weill Cornell Medical Center, New York, NY; ³⁰Blood & Marrow Transplant Program, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; ³¹Divsion of Hematology/Oncology/Bone Marrow Transplantation, Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI; ³²Markey Cancer Center, University of Kentucky, Lexington, KY; ³³Division of Hematology and Oncology, Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX; ³⁴Osborn Hematopoietic Malignancy and

This is the author's manuscript of the article published in final edited form as:

Saad, A., Lamb, L., Wang, T., Hemmer, M. T., Spellman, S., Couriel, D., ... Hashmi, S. (2019). Impact of T Cell Dose on Outcome of T Cell-Replete HLA-Matched Allogeneic Peripheral Blood Stem Cell Transplantation. Biology of Blood and Marrow Transplantation. https://doi.org/10.1016/j.bbmt.2019.05.007

Transplantation Program, West Virginia University, Morgantown, WV; ³⁵Division of Bone Marrow Transplant and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; ³⁶University of Minnesota Blood and Marrow Transplant Program-Pediatrics, Minneapolis, MN; ³⁷Adult Bone Marrow Transplant, University Hospitals Bristol NHS Trust, Bristol, United Kingdom; ³⁸Division of Clinical Hematology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; ³⁹Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; ⁴⁰Centre for Clinical Research Sormland, Uppsala University, Uppsala, Sweden; ⁴¹Blood and Marrow Transplant Program, Cleveland Clinic Foundation, Cleveland, OH; ⁴²Department of Pediatrics, Emory University School of Medicine, Atlanta, GA; ⁴³Department of Pediatric Hematology, Oncology, Blood and Marrow Transplantation, Nationwide Children's Hospital, Columbus, OH; ⁴⁴Blood and Marrow Transplantation Program and Columbia Center for Translational Immunobiology, Columbia University Medical Center, New York, NY; 45 Translational Cell Therapy Research, Karolinska Institutet, Stockholm, Sweden; ⁴⁶Department of Hematology, Academische Ziekenhuis, Maastricht, Netherlands; ⁴⁷Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, British Columbia's Children's Hospital, The University of British Columbia, Vancouver, BC; ⁴⁸Department of Hematology and Oncology, Dokkyo Medical University, Tochigi, Japan; ⁴⁹Memorial Sloan Kettering Cancer Center, New York, NY; ⁵⁰The Blood and Marrow Transplant Group of Georgia, Northside Hospital, Atlanta, GA; ⁵¹Hokkaido University Hospital, Sapporo, Japan; ⁵²Department of Hematology, Hospital Clinic, University of Barcelona, IDIBAPS, and Institute of Research Josep Carreras, Barcelona, Spain; ⁵³Department of Hematology/Oncology, Isala Clinic, Zwolle, The Netherlands; ⁵⁴Division of Hematology and Oncology, Washington University School of Medicine, St. Louis, MO; ⁵⁵Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA; ⁵⁶Division of Bone Marrow Transplant, Seattle Cancer Care Alliance, Seattle, WA; ⁵⁷Blood & Marrow Transplantation Program, Division of Hematology/Oncology, Department of Medicine, Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD; ⁵⁸Division of Hematology/Oncology and HSCT, The Center for Cancer and Blood Disorders, Children's Hospital/Louisiana State University Medical Center, New Orleans, LA; ⁵⁹Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota Medical Center, Minneapolis, MN; ⁶⁰Department if Internal Medicine, Mayo Clinic, MN;

<u>Running Title:</u> CD3+ T-cell dose and allogeneic transplants outcomes

Conflict of Interest: Disclosures

Corresponding author:

Mukta Arora MD, MS

Division of Hematology, Oncology and Transplant, Minneapolis, MN, USA.

Email: arora005@umn.edu

Word Count: Abstract: _____; Manuscript text: _____; Tables: ____; Figures: _____;

Key words: T-cell, GVHD dose, allogeneic, transplant

Funding:

ABSTRACT:

Background: Data on whether T-cell dose of allogeneic peripheral blood stem cell (PBSC) product influences transplant outcome are conflicting.

Methods: Using CIBMTR database, we identified 2,736 adult patients who underwent first allogeneic peripheral blood stem cell (PBSC) transplant for acute leukemia (AML, ALL) or myelodysplastic syndrome (MDS) between 2008-2014 using an HLA-matched sibling donor (MSD) or 8/8-matched unrelated donor (MUD). We excluded *ex-vivo* and *in-vivo* T-cell depleted transplants. Correlative analysis was performed between CD3+ T-cell dose and tisk of graft-versus-host-disease (GVHD), relapse, non-relapse mortality (NRM), disease free survival (DFS) and overall survival (OS).

Results: Using maximum likelihood estimation method, we identified CD3+ T-cell cell dose cutoff that separated risk of acute GVHD (aGVHD) grade II-IV in both MSD and MUD groups. A CD3+ T-cell dose cutoff of 14 $\times 10^7$ cells/kg identified MSD/low CD3+ (n=223) and MSD/high CD3+ (n=1214), and a dose of 15 $\times 10^7$ cells/kg identified MUD/low CD3+ (n=197) and MUD/high CD3+ (n=1102). With univariate analysis, MSD/high CD3+ group had higher cumulative incidence of day 100 aGVHD grade II-IV of 33% vs 25% when compared to MSD/low CD3+ group (P value =0.009). There was no other difference between both groups in engraftment rate, risk of aGVHD grade III-IV or chronic GVHD (cGVHD), NRM, relapse, DFS, or OS. MUD/high CD3+ group had higher cumulative incidence of day 100 aGVHD grade II-IV of 49% vs 41% when compared to MUD/low CD3+ group (P value =0.04). There was no other difference between both groups in engraftment rate, risk of severe aGVHD or cGVHD, NRM, relapse, DFS, or OS. Multivariate analysis of MSD and MUD groups failed to show an association between CD3+ T-cell dose and risk of either aGVHD grade II-IV (p value =0.1 and 0.07 respectively) or cGVHD (p value=0.8 and 0.3 respectively). Sub-analysis of CD4, CD8 and CD4/CD8 ratio failed to identify cutoff values predictive of transplant outcome. Using log-rank test, the sample size was, however, suboptimal to identify difference at these cutoff cell dose. Conclusion: In this registry study, CD3+/T-cell dose of PBSCT product did not influence risk of

aGVHD or cGVHD or other transplant outcomes when using HLA-matched sibling or 8/8 unrelated donors. Subset analysis of CD4+ and CD8+ T-cell dose was not possible for small sample size.

INTRODUCTION

Allogeneic hematopoietic cell transplant (HCT) when performed for hematologic malignancies, relies on both conditioning regimen as well as the immunotherapy exploiting the graft versus tumor (GVT) effect, which is primarily derived from donor immune effector cells.^{1, 2} A complex interplay between the immune effector cells including antigen presenting cells, CD3 + cells (CD4+ T cells, CD8+ T cells, regulatory T cells (T regs)), and natural killer (NK) cells is responsible for both the GVT and the graft-versus-host-disease (GVHD)³, among which the most well-studied cells are the CD3+ T-cells.

Though the CD3+ T-cells can exert a strong GVT⁴, the risk of aGVHD also rises with a higher dose as demonstrated by both observational and prospective studies.^{5, 6} T-cell depleted (TCD) allogeneic HCT have led to a decreased risk of GVHD but at an expense of increasing the risk of relapse, as demonstrated by some trials in both *ex-vivo*⁷ and *in-vivo* depletion⁸. The higher risk of GVHD in peripheral blood stem cell (PBSC) graft compared to the bone marrow (BM) source is apparent from both observational studies⁹ and clinical trials¹⁰ as the PBSCs are known to carry 10-15 times the quantity of CD3+ T-cells comparatively.¹¹ Thus many attempts have been made to separate out the GVT from GVHD which include utilizing CD34+ selection¹², naïve T-cell depletion¹³, post-transplant cyclophosphamide¹⁴, microtransplantation¹⁵ and NK-cell graft engineering. Few single center studies have evaluated the role of CD3+ T-cell dose with respect to both relapse and GVHD outcomes post-HCT, however, these studies varied significantly in the selection criteria with no consensus on an optimal CD3+ T-cell dose cutoff value.¹⁶⁻¹⁹ A recent large registry study indicated that in HCTs utilizing unrelated donors, the CD3+ and CD34+ doses were significantly associated with an increased risk for grade III-IV aGVHD (hazard ratio [HR] = 3.6; 95% CI: 1.45-9.96, P = .006 and 2.65 (95% CI: 1.07-6.57), P = .04,

4

respectively).²⁰ Since the studies mentioned above have used different types of donors, different diseases, and different conditioning regimens, optimum cut-offs for the CD3+ T-cell dose which can potentially avoid GVHD while still promote GVT, are unknown.

We hypothesized that there exists a T-cell dose range that promotes GVT while levels above this range result in higher risk of both severe acute and chronic GVHD with subsequent increased non-relaspe mortality (NRM).

MATERIALS and METHODS

Data sources

The Center for International Blood and Marrow Transplant Research (CIBMTR) is a working group of more than 420 transplantation centers worldwide that contribute detailed data on HCT to a statistical center at the Medical College of Wisconsin. Participating centers are required to report all transplantations consecutively; patients are followed longitudinally and compliance is monitored by on-site audits. Computerized checks for discrepancies, physicians' review of submitted data, and on-site audits of participating centers ensure data quality. Observational studies conducted by the CIBMTR are performed in compliance with all applicable federal regulations pertaining to the protection of human research participants. Protected Health Information used in the performance of such research is collected and maintained in CIBMTR's capacity as a Public Health Authority under the HIPAA Privacy Rule. The Institutional Review Boards of the Medical College of Wisconsin and the National Marrow Donor Program approved this study. The CIBMTR collects data at two levels: Transplant Essential Data (TED) and Comprehensive Report Form (CRF) data. TED level data include disease type, age, gender, pre-HCT disease stage and chemotherapy-responsiveness, date of diagnosis, graft type (bone

marrow- and/or blood-derived stem cells), conditioning regimen, post-transplant disease progression and survival, development of a new malignancy, and cause of death. All CIBMTR centers contribute TED data. More detailed disease and pre- and post-transplant clinical information are collected on a subset of registered patients selected for CRF data by a weighted randomization scheme. TED and CRF level data are collected pre-transplant, 100 days, and six months post-HCT and annually thereafter or until death. Data for the current analysis were retrieved from CIBMTR (TED and CRF) report forms.

Patients

We analyzed data of adult (\geq 18 years) patients who underwent first allogeneic HCT for acute myeloid leukemia (AML), acute lymphoblastic leukemia (ALL), or myelodysplastic syndrome (MDS) between 2008 and 2014 with PBSC using HLA-identical sibling donor (MSD) or 8/8-matched unrelated donor (MUD) matched at the allele-level at HLA-A, -B, -C and -DRB1. We limited the disease types to AML, ALL, and MDS hypothesizing that these patients have comparable risk of relapse and susceptibility to GVT effect. We excluded *ex-vivo* (TCD and CD34 selected grafts) and *in-vivo* TCD (antithymoglobulin or alemtuzumab) HCT. All patients had available CD3+ T-cell dose, however, some patients were missing CD4+ T-cell and/or CD8+ T cell dose.

Definitions of endpoints

For overall survival (OS), death from any cause was considered an event and surviving patients were censored at last contact. For disease-free survival (DFS), either progression/relapse or death from any cause was considered an event while patients alive without evidence of disease relapse/progression were censored at last follow-up. Non-relapse mortality (NRM) was defined as death without evidence of primary disease progression/relapse with the latter event considered

a competing risk. AGVHD and cGVHD were graded using standard criteria^{21, 22} Neutrophil recovery was defined as the first of 3 successive days with absolute neutrophil count (ANC) \geq 500/µL after post-transplantation nadir. Platelet recovery was defined as the first of 3 successive days with platelet counts \geq 20,000/µL without transfusion support for at least 7 days. Data are censored for mortality events before neutrophil recovery.

Statistical analysis

The primary objective of the study was to correlate the graft T-cell dose with the incidence and grade of aGVHD and cGVHD, OS, DFS, relapse and NRM following PBSC HCT in matched sibling and 8/8 matched URD HCT. In a subset analysis for subjects with available CD4+, CD8+ T-cell doses, we also tested for association of the graft T-cell subset dose and the ratio of CD4+/CD8+ T-cell and these transplant outcomes in univariate analysis only due to smaller sample size. T-cell dose cutoff values were determined using maximum likelihood method based on Cox proportional hazards model for aGVHD grade II-IV endpoint.

Categorical data were summarized using frequencies while continuous data were summarized using medians and ranges. Probabilities of DFS and OS were calculated as described previously.²³ Cumulative incidence of aGVHD grade II-IV, aGVHD grade III-IV, cGVHD, NRM, relapse/progression, platelet recovery and hematopoietic recovery were calculated to accommodate for competing risks.²⁴ Associations among patient-, disease-, and transplantation-related variables and outcomes of interest were evaluated using Cox proportional hazards regression. All the clinical variables were tested for the affirmation of the proportional hazards assumption. Factors violating the proportional hazards assumption were adjusted through stratification. Then a stepwise forward model selection procedure was used to select adjusted clinical variables for each outcome with a threshold of 0.05 for both entry and stay in the model.

Interactions between T-cell dose and the adjusted clinical variables were examined and no significant interactions were detected. Center effect was adjusted as a random factor for all outcomes.²⁵ The significance level of 0.01 was used for the overall effects of factors followed by Bonferroni adjustment for pairwise comparisons to account for multiple testing. All statistical analyses were performed using SAS version 9.4 (SAS Institute, Cary, NC)

RESULTS:

Baseline Characteristics

We identified 2,736 adult patients who met the selection criteria described above. Regimen intensity as myeloablative (MAC), reduced intensity (RIC), or non-myeloablative (NMA)was defined as previously described.²⁶ Based on Cox proportional hazards model, we detertmined the cutoff value for CD3+ T-cell dose and separated each group (MSD and MUD) into low and high risk of grade II-IV aGVHD. These were 14×10^7 cells/kg and 15×10^7 cells/kg for MSD and MUD groups respectively. Then, patients were divided into 4 groups based on the donor type (MSD or MUD) and T-cell dose cutoff values. The 4 groups were MSD/low CD3+ (n= 223), MSD/high CD3+ (n= 1214), MUD/low CD3+ (n= 197), MUD/high CD3+ (n= 1102). Median CD3+ T-cell dose were 11 and 29 (x 10^7) in the MSD/Low and MSD/High groups, respectively, and 10 and 28 (x 10^7) in the MUD/Low and MUD/High groups respectively. MSD and MUD groups were analyzed separately. The baseline patient-, disease- and transplantation-related characteristics are shown in **Tables 1 and 2**.

Matched sibling donor (MSD) groups

Univariate analysis showed cumulative incidence of aGVHD grade II-IV at day +100 of 25% (95% CI [confidence interval]: 19-31) and 33% (95% CI: 30-36) in MSD/low CD3+ and MSD/high CD3+ respectively (p = 0.009). However, there was no difference in the risk of

aGVHD grade III-IV (p=0.4). Likewise, risk of cGVHD at 2 years, NRM, relapse, DFS, and OS were not shown to be statistically different. There was also no difference in the day 100 engraftment rate between both groups.

In multivariate analysis, CD3+ T-cell dose did not influence aGVHD (II-IV, and III-IV) (Table 3), cGVHD, relapse, NRM, DFS, or OS (Supplemental Table 1). However, aGVHD grade II-IV risk was higher with any gender mismatch (p = 0.02 and 0.009 for female-male and male-female, respectively). Risk of severe aGVHD grade III-IV was worse among patients with lower Karnofsky Performance Status (KPS) (<90) relative to KPS 90-100 (p = 0.005). Risk of cGVHD was worse in patients older than 29 years old (overall p = (0.006)), with female donors (p =<0.002), and in transplant done before 2011 (p = 0.01). DFS was worse among older patients $(\geq 60 \text{ years old})$ (p = 0.01), high/very high Disease Risk Index (DRI) (p < 0.0001), and lower KPS $(p = \langle 0.0001 \rangle]$. OS was worse among high/very high DRI (p = 0.0001), lower KPS (p = 0.0001)<0.0001), and HCT-CI >3 (p = 0.003). Non-relapse mortality was worse among MDS (p = 0.002), lower KPS (p = 0.007), and HCT-CI >3 (p = 0.0006). Relapse risk was worse among patients with advanced disease prior to transplant (p = 0.0007), and lower KPS (p = 0.002). Subset analysis of CD4, CD8 and CD4/CD8 ratio was available only in limited number of patients. No significant association of these variables were detected for aGVHD, cGVHD, NRM, relapse, DFS, or OS. Likewise, CD34+ cell dose was also not significantly associated with any of the transplant outcomes.

Matched unrelated donor (MUD) groups

Univariate analysis showed cumulative incidence of aGVHD grade II-IV at day +100 of 41% (95% CI: 35-48) and 49% (95% CI: 46-52) in MUD/low CD3+ and MUD/high CD3+ respectively (p = 0.04). However, there was no difference in the risk of aGVHD grade III-IV (p=

0.9). Likewise, risk of cGVHD at 2 years, NRM, relapse, DFS, and OS were not statistically different. There was also no difference in the day 100 engraftment rate between both groups.

In multivariate analysis, CD3+ T-cell dose did not influence risk of aGVHD (II-IV, and III-IV) (**Table 4**), cGVHD, relapse, NRM, DFS, or OS (**Supplemental Table 2**). However, aGVHD grade II-IV risk was higher among patients who received myeloablative regimens (P = 0.02). Risk of severe aGVHD grade III-IV was worse among underweight patients (p = 0.01), and with older donors (>32 years old) (p = 0.01). Risk of cGVHD was less in patients with ALL (p = 0.003), and in transplant done after 2010 (p = 0.0003). DFS was worse with older donors (>50 years old) (p = 0.0001), and high/very high DRI (p < 0.0003) OS had a worse outcome among older patients (\geq 50 years old) (p = 0.008), older donor (\geq 50 years old) (p = 0.0001), high/very high DRI (p = 0.0005), and lower KPS (p = <0.009). Non-relapse mortality was worse with older donor (>50 years old) (p = 0.0006). Relapse risk was worse among patients with high/very high DRI (p = 0.0002). Subset analysis of CD4, CD8 and CD4/CD8 ratio was available only in limited number of patients. No significant association of these variables were detected for aGVHD, cGVHD, NRM, relapse, DFS, or OS. Likewise, CD34+ cell dose was also not significantly associated with any of the transplant outcomes.

DISCUSSION

This study demonstrated no association of the CD3+ T-cell dose of PBSC graft and risk of acute or chronic GVHD, nor did it influence the risk of relapse in the cohort. Nonetheless, the subgroup analyses project certain associations worth exploring further prospectively. Although the univariate analysis showed a correlation between the CD3+ T-cell dose and the risk of aGVHD in both the MSD and the MUD groups, the multivariable analysis failed to prove such an association. It is possible that the subgroups selected for multivariate analysis were not large enough to power a detection in difference in the binary outcome (presence or absence of grade II-IV aGVHD) thus leading to the possibility of type II error. It is also possible that the variables chosen in the univariate analysis did not include some potential risk factors of aGVHD (e.g. inadequate information on CD4+, CD8+, CD56+ cells, and dendritic cells in the PBSC graft). The only group with increased risk of aGVHD grade II-IV (on multivariate analysis) was patients who underwent MUD HCT using MAC regimens. This is consistent with the previous CIBMTR study that showed that among MUD HCT, RIC regimens were associated with decreased risk of aGVHD.²⁷

Our data contrasts with the European Society of Blood and Marrow Transplant (EBMT) study of MUD HCT that showed that CD3+ T-cell dose $>35 \times 10^{7}$ /kg to be associated with higher risk of aGVHD.²⁰ This discrepancy may be attributed to difference in median CD3+ T-cell doses in PBSC grafts in both studies, and the statistical methodology used for categorization of the primary outcome variable (CD3+ T-cell dose was categorized by interquartile range in the EBMT study, whereas in the current study we used a cutoff values of CD3 T-cell dose based on the differential risk of aGVHD grade H-IV). Moreover, EBMT study included TCD allogeneic HCT, whereas the current study excluded it. Additionally, some of the conditioning regimens used in the EBMT study were not evaluated in the current study. It is worthy noting that the BMT CTN0201 trial has also failed to show an association of the T-cell dose of the PBSC graft with survival or GVHD in patients with AML or MDS.²⁸ A single institution study using bone marrow (rather than PBSC) graft has demonstrated a paradoxical increase of risk of cGVHD with lower CD3+ T-cell dose in a subset of patients who received myeloablative busulfan/cyclophosphamide regimen (p=0.006).²⁹

Due to the limited sample size of our cohort, further analysis was not possible in order to detect outcome differences based on T cell phenotypic subsets; CD4+, CD8+, or their ratio. However, transplant outcome may depend on functional T cell subsets; naïve T cells, effector T cells, and/or central memory T cells. In particular, depletion of naïve T cells (either CD4+ or CD8+) was associated with less risk of cGVHD and more likelihood of steroid-responsive aGVHD in small phase II study.¹³ T_{reg} (regulatory T cells: CD4+/CD25+/FOXP3+) another small subset of CD4 has been shown to ameleriorate cGVHD.³⁰ Unbalanced recovery of T_{reg} and effector T cells after transplant has been also correlated with risk of cGVHD.³¹

Though, a PBSC graft includes a co-infusion of both CD34+ and CD3+ T-cells in HCTs, the dose of CD3+ is not evaluated routinely in most transplant centers since it continues to be controversial. Farhan *et al.* retrospectively evaluated the CD3+ T-cell dose in both MUD and MSD HCTs, and found no significant correlation with aGVHD, however, they observed that the OS was significantly affected by a higher dose of CD3+ (mean dose 12 x 10^{7} /kg) in their cohort.³² This CD3+ T-cell dose differs from the dose in our cohort and the EBMT cohort, thus perhaps contributing to different outcome.

Although, our analysis did not show an impact of CD34+ cell dose on transplant outcome, it is worth noting that most of patients in our cohorts (more than 50%) received CD34+ cell dose of 4-8 x10*6 cells/kg and minority (5-10%) received a dose <2 x10*6 cells/kg (tables 1 and 2). In our opinion, this precludes an accurate conclusion on the impact of CD34+ cell dose on transplant outcome. Prior studies have evaluated this question with favorable outcome with higher CD34+ cell dose³³⁻³⁵ albeit observing higher risk of cGVHD with CD34+ cell dose >8 x10*6 cells/kg,^{35, 36} or >10 x10*6 cells/kg.³⁷

Donor age group was found to be a risk factor for the development of severe aGVHD and for a worse DFS (donor age > 50 years) in MUD HCT. The effect of donor age on the clinical outcomes is similar to another study,¹⁶ where there was a correlation of donor's age and the CD8+ content of the PBSC graft. Given the limited availability of CD8+ dose in the PBSC grafts in our cohorts, we could not assess this association with age. This study was congruent with other large studies for results pertaining to well known risk factors for GVHD, e.g. older recipient age³⁸, and a lower KPS³⁹. Expectedly, a higher DRI predicted greater risk of relapse in both MUD and MSD groups.⁴⁰

Strength of our study lies in a large sample size in both the MUD and MSD groups, which allowed us to categorize the entire cohort into 4 groups based on the donor and the CD3+ T-cell dose in the PBSC graft. Another strength of the study was the availability of comprehensive data on both the transplant (including both MAC and RIC/NMA regimens) and disease associated risk factors (in the 3 disease types selected for the study), and a long median follow-up of 4 years (49 months for MSD, 47 months for MUD).

To our knowledge, this is the largest study addressing the question of impact of T-cell content of PBSC grafts on transplant outcomes. In this registry study, the CD3+ T-cell dose in the PBSCT product did not influence the risk of aGVHD or cGVHD or other transplant outcomes when using HLA- matched sibling or 8/8 unrelated donors. Prospective studies are needed to determine whether T-cell subsets; CD4+, CD8+, T_{reg} , or naïve T-cell content of the allografts have meaningful influence on transplant outcome. Results of the ongoing phase II clinical trial using standardized CD3+ T cell dose with HLA-matched related PBSC transplant is awaited (NCT00959140). Additionally, in the current era of post-transplant cyclophosphamide (PTCy) for prevention of GVHD, it may be imperative to assess the impact of these T-cell subsets in

ACCEPTED MANUSCRIPT

haploidentical and HLA-matched HCT. Interestingly, a multicenter study has indeed indicated an increased risk of all grade cGVHD with an elevated CD3+ T-cell dose with haploidentical PBSC HCT using post-transplant cyclophosphamide.⁴¹ CD3 T-cell dose has also been shown to be predictive of graft failure with TCD allogeneic HCT.⁴²

REFERENCES

- 1. Kolb HJ, Schattenberg A, Goldman JM, Hertenstein B, Jacobsen N, Arcese W *et al.* Graft-versus-leukemia effect of donor lymphocyte transfusions in marrow grafted patients. *Blood* 1995; **86**(5): 2041-2050. e-pub ahead of print 1995/09/01;
- Boyiadzis M, Arora M, Klein JP, Hassebroek A, Hemmer M, Urbano-Ispizua A *et al.* Impact of Chronic Graft-versus-Host Disease on Late Relapse and Survival on 7,489 Patients after Myeloablative Allogeneic Hematopoietic Cell Transplantation for Leukemia. *Clinical cancer research : an official journal of the American Association for Cancer Research* 2015; **21**(9): 2020-2028. e-pub ahead of print 2014/10/29; doi: 10.1158/1078-0432.Ccr-14-0586
- 3. Storb R, Gyurkocza B, Storer BE, Sorror ML, Blume K, Niederwieser D *et al.* Graftversus-host disease and graft-versus-tumor effects after allogeneic hematopoietic cell transplantation. *J Clin Oncol* 2013; **31**(12): 1530-1538. e-pub ahead of print 2013/03/13; doi: 10.1200/jco.2012.45.0247
- Deol A, Lum LG. Role of donor lymphocyte infusions in relapsed hematological malignancies after stem cell transplantation revisited. *Cancer treatment reviews* 2010; 36(7): 528-538. e-pub ahead of print 2010/04/13; doi: 10.1016/j.ctrv.2010.03.004
- Ranganathan P, Heaphy CE, Costinean S, Stauffer N, Na C, Hamadani M *et al.* Regulation of acute graft-versus-host disease by microRNA-155. *Blood* 2012; **119**(20): 4786-4797. e-pub ahead of print 2012/03/13; doi: 10.1182/blood-2011-10-387522
- Coghill JM, Sarantopoulos S, Moran TP, Murphy WJ, Blazar BR, Serody JS. Effector CD4+ T cells, the cytokines they generate, and GVHD: something old and something new. *Blood* 2011; **117**(12): 3268-3276. e-pub ahead of print 2011/01/20; doi: 10.1182/blood-2010-12-290403
- Soiffer RJ, Lerademacher J, Ho V, Kan F, Artz A, Champlin RE *et al.* Impact of immune modulation with anti-T-cell antibodies on the outcome of reduced-intensity allogeneic hematopoietic stem cell transplantation for hematologic malignancies. *Blood* 2011; 117(25): 6963-6970. e-pub ahead of print 2011/04/06; doi: 10.1182/blood-2011-01-332007
- Soiffer RJ, Kim HT, McGuirk J, Horwitz ME, Johnston L, Patnaik MM *et al.* Prospective, Randomized, Double-Blind, Phase III Clinical Trial of Anti-T-Lymphocyte Globulin to Assess Impact on Chronic Graft-Versus-Host Disease-Free Survival in Patients Undergoing HLA-Matched Unrelated Myeloablative Hematopoietic Cell Transplantation. *J Clin Oncol* 2017; **35**(36): 4003-4011. e-pub ahead of print 2017/10/19; doi: 10.1200/jco.2017.75.8177
- Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR *et al.* Peripheralblood stem cells versus bone marrow from unrelated donors. *N Engl J Med* 2012;
 367(16): 1487-1496. e-pub ahead of print 2012/10/19; doi: 10.1056/NEJMoa1203517

- 10. Horowitz MM, Gale RP, Sondel PM, Goldman JM, Kersey J, Kolb HJ *et al.* Graftversus-leukemia reactions after bone marrow transplantation. *Blood* 1990; **75**(3): 555-562. e-pub ahead of print 1990/02/01;
- 11. Bensinger WI, Martin PJ, Storer B, Clift R, Forman SJ, Negrin R *et al.* Transplantation of bone marrow as compared with peripheral-blood cells from HLA-identical relatives in patients with hematologic cancers. *N Engl J Med* 2001; **344**(3): 175-181. e-pub ahead of print 2001/02/15; doi: 10.1056/nejm200101183440303
- 12. Pasquini MC, Devine S, Mendizabal A, Baden LR, Wingard JR, Lazarus HM *et al.* Comparative outcomes of donor graft CD34+ selection and immune suppressive therapy as graft-versus-host disease prophylaxis for patients with acute myeloid leukemia in complete remission undergoing HLA-matched sibling allogeneic hematopoietic cell transplantation. *J Clin Oncol* 2012; **30**(26): 3194-3201. e-pub ahead of print 2012/08/08; doi: 10.1200/jco.2012.41.7071
- Bleakley M, Heimfeld S, Loeb KR, Jones LA, Chaney C, Seropian S *et al.* Outcomes of acute leukemia patients transplanted with naive T cell-depleted stem cell grafts. *The Journal of clinical investigation* 2015; **125**(7): 2677-2689. e-pub ahead of print 2015/06/09; doi: 10.1172/jci81229
- Mielcarek M, Furlong T, O'Donnell PV, Storer BE, McCune JS, Storb R *et al.* Posttransplantation cyclophosphamide for prevention of graft-versus-host disease after HLA-matched mobilized blood cell transplantation. *Blood* 2016; **127**(11): 1502-1508. epub ahead of print 2016/01/15; doi: 10.1182/blood-2015-10-672071
- Guo M, Hu KX, Liu GX, Yu CL, Qiao JH, Sun QY *et al.* HLA-mismatched stem-cell microtransplantation as postremission therapy for acute myeloid leukemia: long-term follow-up. *J Clin Oncol* 2012; **30**(33): 4084-4090. e-pub ahead of print 2012/10/10; doi: 10.1200/jco.2012.42.0281
- Reshef R, Huffman AP, Gao A, Luskin MR, Frey NV, Gill SI *et al.* High Graft CD8 Cell Dose Predicts Improved Survival and Enables Better Donor Selection in Allogeneic Stem-Cell Transplantation With Reduced-Intensity Conditioning. *J Clin Oncol* 2015; 33(21): 2392-2398. e-pub ahead of print 2015/06/10; doi: 10.1200/jco.2014.60.1203
- Pastore D, Delia M, Mestice A, Carluccio P, Perrone T, Gaudio F *et al.* CD3+/Tregs ratio in donor grafts is linked to acute graft-versus-host disease and immunologic recovery after allogeneic peripheral blood stem cell transplantation. *Biol Blood Marrow Transplant* 2012; **18**(6): 887-893. e-pub ahead of print 2011/11/09; doi: 10.1016/j.bbmt.2011.10.039
- Saad A, Almubarak M, Kanate A, Cumpston A, Watkins K, Buckhalter R *et al.* Balancing Acute Graft Versus Host Disease (aGVHD) and Survival after Peripheral
 Allogeneic Stem Cell Transplantation (SCT) in Hematological Malignancies: A Potential

for Graft Engineering. 2007 Annual Meeting of the American Society of Hematology 2007.

- 19. Nakamura R, Bahceci E, Read EJ, Leitman SF, Carter CS, Childs R *et al.* Transplant dose of CD34(+) and CD3(+) cells predicts outcome in patients with haematological malignancies undergoing T cell-depleted peripheral blood stem cell transplants with delayed donor lymphocyte add-back. *Br J Haematol* 2001; **115**(1): 95-104. e-pub ahead of print 2001/11/28;
- 20. Czerw T, Labopin M, Schmid C, Cornelissen JJ, Chevallier P, Blaise D *et al.* High CD3+ and CD34+ peripheral blood stem cell grafts content is associated with increased risk of graft-versus-host disease without beneficial effect on disease control after reducedintensity conditioning allogeneic transplantation from matched unrelated donors for acute myeloid leukemia - an analysis from the Acute Leukemia Working Party of the European Society for Blood and Marrow Transplantation. *Oncotarget* 2016; **7**(19): 27255-27266. epub ahead of print 2016/04/02; doi: 10.18632/oncotarget.8463
- Przepiorka D, Weisdorf D, Martin P, Klingemann HG, Beatty P, Hows J *et al.* 1994 Consensus Conference on Acute GVHD Grading. *Bone Marrow Transplant* 1995; **15**(6): 825-828. e-pub ahead of print 1995/06/01;
- Filipovich AH, Weisdorf D, Pavletic S, Socie G, Wingard JR, Lee SJ *et al.* National Institutes of Health consensus development project on criteria for clinical trials in chronic graft-versus-host disease: I. Diagnosis and staging working group report. *Biol Blood Marrow Transplant* 2005; **11**(12): 945-956. e-pub ahead of print 2005/12/13; doi: 10.1016/j.bbmt.2005.09.004
- 23. Zhang X, Loberiza FR, Klein JP, Zhang MJ. A SAS macro for estimation of direct adjusted survival curves based on a stratified Cox regression model. *Computer methods and programs in biomedicine* 2007; **88**(2): 95-101. e-pub ahead of print 2007/09/14; doi: 10.1016/j.cmpb.2007.07.010
- 24. Zhang X, Zhang MJ. SAS macros for estimation of direct adjusted cumulative incidence curves under proportional subdistribution hazards models. *Computer methods and programs in biomedicine* 2011; **101**(1): 87-93. e-pub ahead of print 2010/08/21; doi: 10.1016/j.cmpb.2010.07.005
- 25. Commenges D, Andersen PK. Score test of homogeneity for survival data. *Lifetime data analysis* 1995; **1**(2): 145-156; discussion 157-149. e-pub ahead of print 1995/01/01;
- Bacigalupo A, Ballen K, Rizzo D, Giralt S, Lazarus H, Ho V *et al.* Defining the intensity of conditioning regimens: working definitions. *Biol Blood Marrow Transplant* 2009; 15(12): 1628-1633. e-pub ahead of print 2009/11/10; doi: 10.1016/j.bbmt.2009.07.004

- Jagasia M, Arora M, Flowers ME, Chao NJ, McCarthy PL, Cutler CS *et al.* Risk factors for acute GVHD and survival after hematopoietic cell transplantation. *Blood* 2012; 119(1): 296-307. doi: 10.1182/blood-2011-06-364265
- 28. Waller EK, Logan BR, Harris WA, Devine SM, Porter DL, Mineishi S *et al.* Improved survival after transplantation of more donor plasmacytoid dendritic or naive T cells from unrelated-donor marrow grafts: results from BMTCTN 0201. *J Clin Oncol* 2014; **32**(22): 2365-2372. e-pub ahead of print 2014/07/02; doi: 10.1200/jco.2013.54.4577
- 29. Patel SS, Rybicki LA, Corrigan D, Dumont C, Bolwell B, Dean R *et al.* Effect of bone marrow CD34+cells and T-cell subsets on clinical outcomes after myeloablative allogeneic hematopoietic cell transplantation. *Bone Marrow Transplant* 2018. e-pub ahead of print 2018/10/31; doi: 10.1038/s41409-018-0380-5
- 30. McDonald-Hyman C, Flynn R, Panoskaltsis-Mortari A, Peterson N, MacDonald KP, Hill GR *et al.* Therapeutic regulatory T-cell adoptive transfer ameliorates established murine chronic GVHD in a CXCR5-dependent manner. *Blood* 2016; **128**(7): 1013-1017. e-pub ahead of print 2016/07/08; doi: 10.1182/blood-2016-05-715896
- Alho AC, Kim HT, Chammas MJ, Reynolds CG, Matos TR, Forcade E *et al.* Unbalanced recovery of regulatory and effector T cells after allogeneic stem cell transplantation contributes to chronic GVHD. *Blood* 2016; **127**(5): 646-657. e-pub ahead of print 2015/12/17; doi: 10.1182/blood-2015-10-672345
- 32. Farhan S, Mckinnon R, Fortney C, Divine G, Janakiraman N. CD3 Cell Dose And Outcome After Allogeneic Stem Cell Transplantation. . *Biology of Blood and Marrow Transplantation* 2010; **16**(2): S279.;
- 33. Torlen J, Ringden O, Le Rademacher J, Batiwalla M, Chen J, Erkers T et al. Low CD34 dose is associated with poor survival after reduced-intensity conditioning allogeneic transplantation for acute myeloid leukemia and myelodysplastic syndrome. *Biol Blood Marrow Transplant* 2014; 20(9): 1418-1425. e-pub ahead of print 2014/06/04; doi: 10.1016/j.bbmt.2014.05.021
- Yamamoto C, Ogawa H, Fukuda T, Igarashi A, Okumura H, Uchida N *et al.* Impact of a Low CD34(+) Cell Dose on Allogeneic Peripheral Blood Stem Cell Transplantation. *Biol Blood Marrow Transplant* 2018; 24(4): 708-716. e-pub ahead of print 2017/12/03; doi: 10.1016/j.bbmt.2017.10.043
- 35. Zaucha JM, Gooley T, Bensinger WI, Heimfeld S, Chauncey TR, Zaucha R *et al.* CD34 cell dose in granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cell grafts affects engraftment kinetics and development of extensive chronic graft-versus-host disease after human leukocyte antigen-identical sibling transplantation. *Blood* 2001; **98**(12): 3221-3227. e-pub ahead of print 2001/11/24;

- 36. Mohty M, Bilger K, Jourdan E, Kuentz M, Michallet M, Bourhis JH *et al.* Higher doses of CD34+ peripheral blood stem cells are associated with increased mortality from chronic graft-versus-host disease after allogeneic HLA-identical sibling transplantation. *Leukemia* 2003; **17**(5): 869-875. e-pub ahead of print 2003/05/17; doi: 10.1038/sj.leu.2402909
- 37. Heimfeld S. Bone marrow transplantation: how important is CD34 cell dose in HLAidentical stem cell transplantation? *Leukemia* 2003; **17**(5): 856-858. e-pub ahead of print 2003/05/17; doi: 10.1038/sj.leu.2402893
- 38. Hahn T, McCarthy PL, Jr., Zhang MJ, Wang D, Arora M, Frangoul H *et al.* Risk factors for acute graft-versus-host disease after human leukocyte antigen-identical sibling transplants for adults with leukemia. *J Clin Oncol* 2008; **26**(35): 5728-5734. e-pub ahead of print 2008/11/05; doi: 10.1200/jco.2008.17.6545
- 39. Arora M, Klein JP, Weisdorf DJ, Hassebroek A, Flowers ME, Cutler CS *et al.* Chronic GVHD risk score: a Center for International Blood and Marrow Transplant Research analysis. *Blood* 2011; **117**(24): 6714-6720. e-pub ahead of print 2011/04/16; doi: 10.1182/blood-2010-12-323824
- Armand P, Kim HT, Logan BR, Wang Z, Alyea EP, Kalaycio ME *et al.* Validation and refinement of the Disease Risk Index for allogeneic stem cell transplantation. *Blood* 2014; **123**(23): 3664-3671. e-pub ahead of print 2014/04/20; doi: 10.1182/blood-2014-01-552984
- 41. Mussetti A, De Philippis C, Carniti C, Bastos-Oreiro M, Gayoso J, Cieri N *et al.* CD3+ graft cell count influence on chronic GVHD in haploidentical allogeneic transplantation using post-transplant cyclophosphamide. *Bone Marrow Transplant* 2018; **53**(12): 1522-1531. e-pub ahead of print 2018/04/29; doi: 10.1038/s41409-018-0183-8
- 42. Urbano-Ispizua A, Rozman C, Pimentel P, Solano C, de la Rubia J, Brunet S *et al.* The number of donor CD3(+) cells is the most important factor for graft failure after allogeneic transplantation of CD34(+) selected cells from peripheral blood from HLA-identical siblings. *Blood* 2001; **97**(2): 383-387. e-pub ahead of print 2001/01/12;

CD3+ T-cell dose	$< 14 \text{ x} 10^7$	\geq 14 x10 ⁷	
Number of patients	223	1214	-
Number of centers	58	95	
Recipient Age			
Median (range)	51 (18-71)	54 (18-78)	
18-29	20 (9)	110 (9)	
30-39	28 (13)	130 (11)	,
40-49	55 (25)	232 (19)	
50-59	74 (33)	419 (35)	
60+	46 (21)	323 (27)	
Recipient gender			
Male	123 (55)	694 (57)	
Female	100 (45)	520 (43)	
Recipient race			
Caucasian	176 (79)	1057 (87)	
Non-Caucasian	37 (17)	117 (10)	
Missing	10 (4)	40 (3)	
Body mass index			
Median (range)	29 (18-62)	27 (15-56)	
Underweight (<18.5)	2 (<1)	25 (2)	
Normal (18.5-<25)	52 (23)	366 (30)	
Overweight (25-<30)	67 (30)	433 (36)	
Obese (≥30)	101 (45)	390 (32)	
Missing	1 (<1)	0	
Karnofsky performance status			
< 90	92 (41)	478 (39)	
90-100	125 (56)	718 (59)	
Missing	6 (3)	18 (1)	
Sorror co-morbidity index			
0-1	101 (45)	560 (46)	
2-3	68 (30)	382 (31)	
4+	51 (23)	261 (21)	
Missing	3 (1)	11 (<1)	
Disease			
AML	137 (61)	640 (53)	
ALL	33 (15)	224 (18)	
MDS	53 (24)	350 (29)	

Table 1. Characteristics of adult patients undergoing first allogeneic HCT for AML, ALL, and MDS between 2008-2014 with PBSC from an HLA-identical sibling donor with valid CD3+ cell dose data, as reported to the CIBMTR.

CD3+ T-cell dose	$< 14 \text{ x} 10^7$	\geq 14 x10 ⁷
Disease status		
AML	137	640
Early	87 (64)	386 (60)
Intermediate	21 (15)	107 (17)
Advanced	29 (21)	147 (23)
ALL	33	224
Early	17 (52)	167 (75)
Intermediate	7 (21)	37 (17)
Advanced	9 (27)	20 (9)
MDS	53	350
Early	35 (66)	228 (65)
Intermediate	17 (32)	104 (30)
Advanced	1 (2)	18 (5)
Revised Disease Risk Index (DRI)		
AML	137	640
Low	8 (6)	41 (6)
Intermediate	90 (66)	355 (55)
High/Very high	25 (18)	135 (21)
Missing	14 (10)	109 (17)
ALL	33	224
Intermediate	17 (52)	167 (75)
High/Very high	16 (48)	57 (25)
MDS	53	350
Intermediate	29 (55)	194 (55)
High/Very high	12 (23)	81 (23)
Missing	12 (23)	75 (21)
Time from diagnosis to transplant, months		
Median (range)	6 (1-156)	5 (<1-279)
< 6	121 (54)	695 (57)
6 - < 12	52 (23)	257 (21)
≥ 12	50 (22)	262 (22)
CD3+ cell dose, x 10^7 /kg, median (range)	11 (3-14)	29 (14-113)
CD4+ cell dose, x 10^7 /kg, quartiles		
Median (range)	8 (3-169)	19 (<1-180)
< 10.6	73 (33)	30 (2)
10.6 - 16.79	4 (2)	99 (8)
16.8 - 28.79	0	103 (8)
\geq 28.8	12 (5)	90 (7)
Missing	134 (60)	892 (73)

CD3+ T-cell dose	$< 14 \text{ x} 10^7$	\geq 14 x10 ⁷		
$\overline{\text{CD8+}\text{ cell dose, x } 10^7/\text{kg, quartiles}}$				
Median (range)	4 (<1-59)	8 (<1-253)		
< 4.52	61 (27)	43 (4)		
4.52 - 7.179	16(7)	87 (7)		
7.18 - 12.769	2 (<1)	102 (8)		
≥ 12.77	11 (5)	92 (8)		
Missing	133 (60)	890 (73)		
CD34+ cell dose, x 10^6 /kg				
Median (range)	5 (<1-22)	6 (<1-28)		
< 2	36 (16)	53 (4)		
2-<4	54 (24)	211 (17)		
4-<8	101 (45)	624 (51)		
≥ 8	26 (12)	314 (26)		
Missing	6 (3)	12 (<1)		
CD4+/CD8+ cell dose ratio, quartiles				
Median (range)	2 (<1-9)	2 (<1-13)		
< 1.53	26 (12)	78 (6)		
1.53 - 2.189	20 (9)	82 (7)		
2.19 - 3.149	23 (10)	79 (7)		
≥ 3.15	19 (9)	84 (7)		
Missing	135 (61)	891 (73)		
D/R gender match				
F/F	48 (22)	255 (21)		
F/M	55 (25)	312 (26)		
M/F	52 (23)	265 (22)		
M/M	68 (30)	382 (31)		
D/R CMV status match				
/	56 (25)	276 (23)		
-/+	52 (23)	304 (25)		
+/-	26 (12)	141 (12)		
+/+	84 (38)	477 (39)		
Missing	5 (2)	16(1)		
D/R ABO match				
Matched	105 (47)	565 (47)		
Minor mismatch	26 (12)	136 (11)		
Major mismatch	22 (10)	149 (12)		
Bidirectional mismatch	7 (3)	36 (3)		
Missing	63 (28)	328 (27)		
Conditioning regimen intensity				

CD3+ T-cell dose	$< 14 \text{ x} 10^7$	\geq 14 x10 ⁷	_
MA	167 (75)	840 (69)	_
RIC/NMA	56 (25)	374 (31)	
Conditioning regimen, MA			
BU+CY <u>+</u> others	52 (31)	242 (29)	
TBI+CY	48 (29)	275 (33)	
BU+FLU	40 (24)	206 (25)	
TBI+ETOP	10 (6)	71 (8)	
Others	17 (10)	46 (5)	
Conditioning regimen, RIC/NMA			Þ
BU+FLU	20 (36)	156 (42)	
FLU+MEL	23 (41)	104 (28)	
TBI+FLU	2 (4)	64 (17)	
FLU+others	10 (18)	41 (11)	
Others	1 (2)	9 (2)	
TBI used in conditioning regimen			
Yes	81 (36)	461 (38)	
No	142 (64)	753 (62)	
GVHD prophylaxis			
$CsA + MTX \pm others$	9 (4)	123 (10)	
Tac + MTX \pm others	161 (72)	716 (59)	
$CsA + MMF \pm others$	13 (6)	92 (8)	
Tac + MMF \pm others	18 (8)	145 (12)	
Others	22 (10)	138 (11)	
Year of transplant			
2008-2010	110 (49)	555 (46)	
2011-2014	113 (51)	659 (54)	
Follow-up of survivors, months, median (range)	47 (3-101)	49 (3-107)	

Abbreviations: HCT, hematopoietic cell transplantation; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; MDS, myelodysplastic syndrome; PBSC, peripheral blood stem cells; HLA, human leukocyte antigen; CIBMTR, Center for Blood and Marrow Transplant Research; D, donor; R, recipient; F, female; M, male; CMV, cytomegalovirus, MA, myeloablative; RIC/NMA, reduced intensity conditioning/non-myeloablative, BU, busulfar; CY, cyclophosphamide; TBI, total body irradiation; FLU, fludarabine; ETOP, etoposide; GVHD, graft-versus-host disease; CsA, cyclosphamide; MTX, methotrexate; MMF, mycophenolate mofetil; Tac, tacrolimus.

Variable	$< 15 \text{ x} 10^7$	<u>> 15 x10⁷</u>	
Number of patients	197	1102	
Number of centers	55	80	
Age			
Median (range)	55 (19-76)	56 (18-78)	
18-29	18 (9)	111 (10)	~
30-39	25 (13)	120 (11)	F
40-49	32 (16)	182 (17)	
50-59	61 (31)	264 (24)	
60+	61 (31)	425 (39)	
Recipient gender			
Male	123 (62)	629 (57)	
Female	74 (38)	473 (43)	
Recipient race			
Caucasian	190 (96)	1022 (93)	
Non-Caucasian	7 (4)	61 (6)	
Missing	0	19 (2)	
Body mass index, median (range)			
Body mass index			
Median (range)	29 (19-52)	28 (8-62)	
Underweight (<18.5)	0	21 (2)	
Normal (18.5-<25)	45 (23)	309 (28)	
Overweight (25-<30)	68 (35)	418 (38)	
Obese (<u>≥</u> 30)	84 (43)	354 (32)	
Karnofsky performance status			
< 90	81 (41)	428 (39)	
90-100	113 (57)	662 (60)	
Missing	3 (2)	12 (1)	
Sorror co-morbidity index			
0-1	64 (32)	473 (43)	
2-3	61 (31)	357 (32)	
4+	70 (36)	264 (24)	
Missing	2 (1)	8 (<1)	
Disease			
AML	116 (59)	619 (56)	
ALL	22 (11)	142 (13)	
MDS	59 (30)	341 (31)	

Table 2: Characteristics of adult patients undergoing first allogeneic HCT for AML, ALL, and MDS between 2008-2014 with PBSC from an 8/8-matched unrelated donor with valid CD3+ cell dose data, as reported to the CIBMTR.

Variable	$< 15 \text{ x} 10^7$	<u>> 15 x10⁷</u>		
Disease status				
AML	116	619		
Early	70 (60)	351 (57)		
Intermediate	20 (17)	124 (20)		
Advanced	26 (22)	141 (23)		
Missing	0	3 (<1)		
ALL	22	142		
Early	12 (55)	91 (64)		
Intermediate	5 (23)	31 (22)		
Advanced	5 (23)	20 (14)		
MDS	59	341		
Early	41 (69)	233 (68)		
Advanced	16 (27)	92 (27)		
Missing	2 (3)	16 (5)		
Revised Disease Risk Index (DRI)				
AML	116	619		
Low	9 (8)	39 (6)		
Intermediate	64 (55)	352 (57)		
High/Very high	26 (22)	129 (21)		
Missing	17 (15)	99 (16)		
ALL	22	142		
Intermediate	12 (55)	91 (64)		
High/Very high	10 (45)	51 (36)		
MDS	59	341		
Intermediate	33 (56)	210 (62)		
High/Very high	11 (19)	73 (21)		
Missing	15 (25)	58 (17)		
Time from diagnosis to transplant, months				
Median (range)	6 (2-156)	6 (<1-297)		
< 6	94 (48)	505 (46)		
6 - < 12	55 (28)	292 (26)		
\geq 12	47 (24)	305 (28)		
Missing	1 (<1)	0		
CD3+ cell dose, x 10^7 /kg, median (range)	10 (3-14)	28 (14-113)		
CD4+ cell dose, x 10^7 /kg, quartiles				
Median (range)	6 (2-57)	18 (<1-190)		
< 9.6	63 (32)	20 (2)		
9.6 - 14.89	3 (2)	80 (7)		
14.9 - 23.39	0	81 (7)		

Variable	$< 15 \text{ x} 10^7$	\geq 15 x10 ⁷
≥ 23.4	6 (3)	77 (7)
Missing	125 (63)	844 (77)
CD8+ cell dose, x 10^7 /kg		
Median (range)	4 (<1-30)	10 (<1-145)
< 5.19	58 (29)	24 (2)
5.19 - 8.519	8 (4)	76 (7)
8.52 - 14.439	1 (<1)	81 (7)
\geq 14.44	5 (3)	78 (7)
Missing	125 (63)	843 (76)
CD34+ cell dose, x 10^6 /kg		
Median (range)	5 (<1-24)	7 (1-30)
< 2	10 (5)	11 (<1)
2-<4	40 (20)	98 (9)
4-<8	117 (59)	511 (46)
<u>></u> 8	27 (14)	455 (41)
Missing	3 (2)	27 (2)
CD4+/CD8+ cell dose ratio		
Median (range)	2 (<1-6)	2 (<1-19)
< 1.31	19 (10)	62 (6)
1.31 - 1.649	14 (7)	68 (6)
1.65 - 2.259	19 (10)	65 (6)
\geq 2.26	20 (10)	62 (6)
Missing	125 (63)	845 (77)
Unrelated donor age, years		
Median (range)	30 (18-60)	28 (18-61)
18-32	116 (59)	692 (63)
33-49	59 (30)	296 (27)
50+	14 (7)	63 (6)
Missing	8 (4)	51 (5)
D/R gender match		
F/F	15 (8)	163 (15)
F/M	19 (10)	174 (16)
M/F	59 (30)	310 (28)
M/M	104 (53)	455 (41)
D/R CMV status match		
-/-	65 (33)	300 (27)
-/+	71 (36)	409 (37)
+/-	15 (8)	116 (11)
+/+	42 (21)	265 (24)

Variable	$< 15 \text{ x} 10^7 \qquad \ge 15 \text{ x} 10^7$						
Missing	4 (2)	12 (1)					
D/R ABO match							
Matched	60 (30)	397 (36)					
Minor mismatch	42 (21)	216 (20)					
Major mismatch	34 (17)	168 (15)					
Bidirectional mismatch	5 (3)	66 (6)					
Missing	56 (28)	255 (23)					
Conditioning regimen intensity							
MA	134 (68)	668 (61)					
RIC/NMA	63 (32)	434 (39)					
Conditioning regimen, MA							
BU+CY <u>+</u> others	50 (37)	211 (32)					
TBI+CY	33 (25)	157 (24)					
BU+FLU	29 (22)	203 (30)					
TBI+ETOP	6 (4)	29 (4)					
Others	16 (12)	68 (10)					
Conditioning regimen, RIC/NMA							
BU+FLU	27 (43)	117 (27)					
FLU+MEL	20 (32)	145 (33)					
TBI+FLU	8 (13)	100 (23)					
FLU+others	6 (10)	43 (10)					
Others	2 (3)	29 (7)					
TBI used in conditioning regimen							
Yes	57 (29)	391 (35)					
No	140 (71)	711 (65)					
GVHD prophylaxis							
CsA + MTX + others	6 (3)	41 (4)					
$Tac + MTX \pm others$	130 (66)	611 (55)					
$CsA + MMF \pm others$	11 (6)	97 (9)					
$Tac + MMF \pm others$	30 (15)	192 (17)					
Others	20 (10)	161 (15)					
Year of transplant							
2008-2010	69 (35)	482 (44)					
2011-2014	128 (65)	620 (56)					
Follow-up of survivors, months, median (range)	37 (21-96)	48 (3-102)					

Abbreviations: HCT, hematopoietic cell transplantation; AML, acute myeloid leukemia; ALL, acute lymphoblastic leukemia; MDS, myelodysplastic syndrome; PBSC, peripheral blood stem cells; HLA, human leukocyte antigen; CIBMTR, Center for Blood and Marrow Transplant Research; D, donor; R, recipient; F, female; M, male; CMV, cytomegalovirus, MA, myeloablative; RIC/NMA, reduced intensity conditioning/non-myeloablative, BU, busulfar; CY, cyclophosphamide; TBI, total body irradiation; FLU, fludarabine; ETOP, etoposide; GVHD, graft-versus-host disease; CsA, cyclosphamide; MTX, methotrexate; MMF, mycophenolate mofetil; Tac, tacrolimus.

	aGVHD II-IV * IV*		cGV	HD*	Relapse **		NRM		DFS		OS			
Factor	HR (95% CI)	P value												
CD3 cell dose, x 10 ⁷ /kg														
> 14	1		1		1		1		1		1		1	
<u>≤</u> 14	0.79 (0.60- 1.04)	0.10	0.78 (0.51- 1.18)	0.25	0.97 (0.79- 1.21)	0.81	1.02 (0.81- 1.29)	0.85	0.97 (0.70- 1.36)	0.87	0.99 (0.82- 1.20)	0.96	0.94 (0.77- 1.15)	0.55

Table 3: Multivariate analysis of MSD showing influence of CD3+ T-cell dose.

Abbreviations: MSD, matched sibling donor; aGVHD, acute graft-versus-host disease; cGVHD, chronic graft-versus-host disease.

									1					
	aGVHI *	VHD II-IV aGVHD III- * IV** CGVHD		Relapse		NRM		DFS		OS				
Factor	HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value	HR (95%) CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value	HR (95% CI)	P value
CD3 cell dose, x 10 ⁷ /kg														
> 15	1		1		1		1		1		1		1	
≤ 15	0.81 (0.65- 1.02)	0.07	0.85 (0.61- 1.19)	0.34	0.89 (0.73- 1.10)	0.29	1.01 (0.78- 1.29)	0.96	0.95 (0.71- 1.27)	0.73	0.97 (0.80- 1.18)	0.77	0.96 (0.78- 1.17)	0.66

Abbreviations: MUD, matched unrelated donor; aGVHD, acute graft-versus-host disease; cGVHD, chronic graft-versus-host disease.