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Yuanfang Xu

AN OLS-BASED METHOD FOR CAUSAL INFERENCE IN OBSERVATIONAL

STUDIES

Observational data are frequently used for causal inference of treatment effects

on prespecified outcomes. Several widely used causal inference methods have adopted

the method of inverse propensity score weighting (IPW) to alleviate the influence of

confounding. However, the IPW-type methods, including the doubly robust methods,

are prone to large variation in the estimation of causal effects due to possible extreme

weights. In this research, we developed an ordinary least-squares (OLS)-based causal

inference method, which does not involve the inverse weighting of the individual

propensity scores.

We first considered the scenario of homogeneous treatment effect. We pro-

posed a two-stage estimation procedure, which leads to a model-free estimator of

average treatment effect (ATE). At the first stage, two summary scores, the propen-

sity and mean scores, are estimated nonparametrically using regression splines. The

targeted ATE is obtained as a plug-in estimator that has a closed form expression.

Our simulation studies showed that this model-free estimator of ATE is consistent,

asymptotically normal and has superior operational characteristics in comparison to

the widely used IPW-type methods. We then extended our method to the scenario

of heterogeneous treatment effects, by adding in an additional stage of modeling

the covariate-specific treatment effect function nonparametrically while maintaining

the model-free feature, and the simplicity of OLS-based estimation. The estimated
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covariate-specific function serves as an intermediate step in the estimation of ATE

and thus can be utilized to study the treatment effect heterogeneity.

We discussed ways of using advanced machine learning techniques in the pro-

posed method to accommodate high dimensional covariates. We applied the pro-

posed method to a case study evaluating the effect of early combination of biologic &

non-biologic disease-modifying antirheumatic drugs (DMARDs) compared to step-up

treatment plan in children with newly onset of juvenile idiopathic arthritis disease

(JIA). The proposed method gives strong evidence of significant effect of early com-

bination at 0.05 level. On average early aggressive use of biologic DMARDs leads to

around 1.2 to 1.7 more reduction in clinical juvenile disease activity score at 6-month

than the step-up plan for treating JIA.

Ying Zhang, Ph.D., Chair

vii



TABLE OF CONTENTS

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Causal Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Causal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Neyman-Rubin Causal Model . . . . . . . . . . . . . . . . 5

1.2.2 Causal Assumptions and Average Treatment Effect . . . . 6

1.3 Methods for Estimating Average Treatment Effect . . . . . . . . . 9

1.3.1 Outcome Regression . . . . . . . . . . . . . . . . . . . . . 10

1.3.2 Propensity Score . . . . . . . . . . . . . . . . . . . . . . . 11

1.3.3 Inverse Propensity Score Weighting . . . . . . . . . . . . . 14

1.4 Doubly Robust Estimation . . . . . . . . . . . . . . . . . . . . . . 16

1.4.1 Augmented Inverse Probability Weighting . . . . . . . . . 16

1.4.2 Limitation of DR Methods . . . . . . . . . . . . . . . . . 17

1.5 Some Existing Nonparametric Methods in Causal Inference . . . 19

1.6 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CHAPTER 2 Sieve Estimation and Splines . . . . . . . . . . . . . . . . 23

2.1 Nonparametric Regression . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Kernel Method . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.2 Sieve Method . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.2 Sieve Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

viii



2.3 Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3.1 Sieves for Sieve Estimation . . . . . . . . . . . . . . . . . . 30

2.3.2 Spline Function . . . . . . . . . . . . . . . . . . . . . . . . 32

2.3.3 B-Splines . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

CHAPTER 3 An OLS-based Method for Casual Inference - Homoscedas-

tic Treatment Effect Case . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Two-Stage Estimation Method . . . . . . . . . . . . . . . . . . . . 41

3.3.1 Stage 1: Nonparametric Estimation of Mean and Propensity

Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.3.2 Stage 2: Plug-in Estimator of τ̂ . . . . . . . . . . . . . . . 43

3.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.4.1 Simulation Study (1) . . . . . . . . . . . . . . . . . . . . . 46

3.4.2 Simulation Study (2) . . . . . . . . . . . . . . . . . . . . . 56

3.5 A Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 JIA Study Background . . . . . . . . . . . . . . . . . . . . 66

3.5.2 Baseline Characteristics of the Study Population . . . . . . 68

3.5.3 Estimation of the ATE of Early Use of Biologic DMARD . 69

CHAPTER 4 Extension of the OLS-based Method to Estimate ATE in

Heterogeneous Treatment Effect Scenario . . . . . . . . . . . . . . . . . 75

4.1 Heterogeneity of Treatment Effects . . . . . . . . . . . . . . . . . 75

4.2 Model-Free Method for Heterogeneous Treatment Effect . . . . . . 77

ix



4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.2.2 Three-Stage Estimation Procedure . . . . . . . . . . . . . 79

4.2.3 Some Comments . . . . . . . . . . . . . . . . . . . . . . . 81

4.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Application of Model-Free Method in Estimating Heterogeneous Treat-

ment Effect in JIA Study . . . . . . . . . . . . . . . . . . . . . . 94

CHAPTER 5 Application of OLS-based Method in Observational Studies

with A Large Set of Covariates . . . . . . . . . . . . . . . . . . . . . . 98

5.1 Curse of Dimensionality and Machine Learning Methods in Causal

Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Application of Various Machine Learning Methods in JIA Study . 105

5.2.1 Notation for Estimators from Various Methods . . . . . . . 106

5.2.2 Relative Importance of Variables and Interactions in the

Estimation of Mean and Propensity Scores . . . . . . . . 110

5.2.3 Diagnosis of Propensity Scores from Different Methods . . 112

5.2.4 Heterogeneous Treatment Effects . . . . . . . . . . . . . . 116

5.2.5 Estimated Average Treatment Effects . . . . . . . . . . . 119

CHAPTER 6 Conclusion And Discussion . . . . . . . . . . . . . . . . . 125

6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

CURRICULUM VITAE

x



LIST OF TABLES

3.1 Simulation study (1): comparison of bias, Monte Carlo standard

deviation, asymptotic standard error and 95% coverage probability

among all the methods . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2 Simulation study (2) under two scenarios: comparison of bias, Monte

Carlo standard deviation, asymptotic standard error and 95% cov-

erage probability among all the methods . . . . . . . . . . . . . . 62

3.3 Baseline cJADAs and pain by treatment arms . . . . . . . . . . . 69

3.4 Estimated average causal effects of early aggressive use of biologic

DMARD based on baseline cJADAs and low pain indicator in JIA

study assuming homogeneous treatment effect . . . . . . . . . . . 74

4.1 Summary table of results from simulation study with heterogeneous

treatment effect: comparison of bias, Monte Carlo standard devia-

tion, asymptotic standard error and 95% coverage probability among

all the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1 Baseline characteristics of the JIA study population by the two treat-

ment arms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.2 Comparison of estimated average treatment effect of early combina-

tion among all the methods . . . . . . . . . . . . . . . . . . . . . 122

xi



LIST OF FIGURES

3.1 Simulation study (1): consistent estimation of the mean and propen-

sity scores using cubic B-splines in stage 1 . . . . . . . . . . . . . 50

3.2 Histogram of estimated treatment effects from all methods in study

(1) with sample size 400: true effect is 6 . . . . . . . . . . . . . . 57

3.3 Boxplots of estimated treatment effects from all methods in study

(1) with sample size 800: true effect is 6 . . . . . . . . . . . . . . 58

3.4 A typical sample generated according to the design of study (2) with

extreme true propensity scores . . . . . . . . . . . . . . . . . . . . 61

3.5 Distribution of estimated treatment effect from all methods (scenario

1: true propensity scores range 0.1− 0.9 ) . . . . . . . . . . . . . 63

3.6 Distribution of estimated treatment effect from all methods (scenario

2: true propensity scores range 0.01− 0.99 ) . . . . . . . . . . . . 64

3.7 Estimated treatment effect from all methods for simulation study 2

with sample size 400 . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 cJADAs at baseline and 6 month by treatment group . . . . . . . 70

3.9 Distribution of the estimated propensity scores using cubic B-splines

of baseline cJADAs and its interaction with low pain indicator in JIA

study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.1 Estimation of τ(X1, X2) with sample size 300 . . . . . . . . . . . 87

4.2 Spline-based sieve estimator of τ(X1, X2) when the true τ(X1, X2)

is constant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xii



4.3 Distribution of Estimators from Various Methods for the simulation

study with heterogeneous treatment effect: True τ u 2.32 . . . . . 93

4.4 Estimated functional (in terms of baseline cJADAs and low pain)

curves of heterogeneous treatment effects . . . . . . . . . . . . . 97

5.1 Relative variable importance of the baseline covariate and their two

way interactions in mean score estimation . . . . . . . . . . . . . 113

5.2 Relative variable importance of the baseline covariate and their two

way interactions in propensity score estimation . . . . . . . . . . . 114

5.3 Scatter plots of estimated mean and propensity score from BART

verse from GBM . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.4 Distribution of estimated propensity scores from CBPS, BART and

GBM, respectively, by treatment groups . . . . . . . . . . . . . . 117

5.5 Diagnosis of estimated propensity scores for assessing the covariates

balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.6 Examination of heterogeneous treatment effects with respect to base-

line cJADAs, 6-month outcome assessment time, low pain and severe

morning stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.7 Estimators of treatment effect and 95% confidence intervals . . . . 121

xiii



CHAPTER 1

Introduction

1.1 Causal Inference

Causality is at the core of scientific inquiring. For instance, does cigarettes

smoking increase the risk of lung cancer? Is a given drug effective in treating patient

with hypertension? Is an employment program helpful in moving the job trainees

into the job market? Investigation of causality arises in many domains of science,

and some view it as the ultimate goal of many scientific research. Learning causality

helps researchers to understand the underlying mechanism through which the causal

effects take place from the observed data. The important understanding serves as a

basis for treatment actions and policy making.

Ronald Fisher's theory of experimental design (Fisher, 1935) tells us that

causal inference in statistics is fundamentally based on the randomized experiments.

Randomized controlled trials (RCTs) are widely recognized as the gold standard

approach and most powerful design for drawing valid causality conclusions. Random-

ization ensures that the distribution of baseline characteristics for treated subjects

and untreated subjects is balanced at baseline therefore treatment assignment is in-

dependent of either observed or unobserved baseline characteristics. As a result, the

effect of treatment on outcomes can be simply estimated by comparing outcomes be-

tween treated and untreated subjects and has causal interpretation. Unfortunately,

in practice, RCTs might not be able to carry out as initially plotted. For example, as
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researchers aim to seek the evidence for adoption of the treatment (intervention) into

real-world clinical practice, participants are usually allowed to switch off the treat-

ment or switch onto the treatment from control although the treatment is randomly

assigned at baseline. This non-compliance issue arisen in clinical trials was well il-

lustrated by (MOBILITY, 2015), a randomized trial designed for investigating the

effectiveness of metformin (MET) in obese and overweight youth with Bipolar Spec-

trum Disorders (BSD) and treated with SGAs (second generation antipsychotics). It

was found that out of subjects randomized to the MET group at the baseline around

1
4

of them didn’t adhere to the assignment while around 1
3

of subjects from the control

group switched onto taking MET at certain time point for various reasons related to

SGA adherence and weight gain during the follow-up. The simple intention-to-treat

(ITT) analysis approach may then fail to provide an unbiased estimate that reflects

the causal effect of MET in weight control in real life. We essentially need to deal with

post-randomization confounding to account for non-adherence based on post-baseline

observational data.

Needless to say that randomized experiments usually require substantial effort

and in many situations random treatment allocation is infeasible for ethical or practi-

cal reasons. Many studies are observational (non-randomization) by nature. In public

health, medical research as well as social science, researchers must resort to existing

resource of observational studies to address causality. Similar to the non-compliance

issue in RCTs, observational studies are complicated with possible selection bias and

confounding. Lack of treatment randomization leads to potential systematic differ-

ences in baseline characteristics between treated and untreated subjects. Ignoring

such systematic differences will likely result in a biased estimation of causal effect.
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One can imagine that in a biomedical study, physicians make use of patients histor-

ical medical records to answer the question of “is a given drug effective in treating

patients with hypertension”. Suppose it was observed that people who were treated

with the drug had lower blood pressure on average than those who were treated with

standard care (control) at the end of study. Is it then justifiable to claim that the

drug is effective? Without controlling for confounding factors, the effect physicians

observed might be biased and misleading. Perhaps patients in the drug treated group

are younger and have less other comorbidity conditions that could worsen the blood

pressure although the drug has no effect. Or maybe the statistical association of

“drug” and “blood pressure” holding for the entire study population gets reversed

in subpopulations stratified by certain confounders, just as the well-known classical

example of Simpsons Paradox (Simpson, 1951).

Over the past few decades, the methodology development of causal inference

has been an active research area in various disciplines, such as statistics, computer

science, economics and epidemiology, in order to address the challenges of infer-

ring causality using observational data. Most importantly, the potential outcomes

framework (Neyman, 1990; Rubin, 1974) laid the theoretical foundation for studying

causality from observational data and has been widely adopted in statistical research

of causal inference. The introduction of potential outcomes, however, transfers the

causal inference problem to missing data problem as only a fraction of potential out-

comes are observed. The observed outcome is produced jointly by two correlated data

generating models: the underlying science model for the two potential outcomes and

the treatment selection mechanism. Estimation of treatment effects can be conducted

by modeling outcome or modeling the treatment selection. In statistical literature,
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methods of handling missing potential outcomes have been focusing on using propen-

sity score (Austin, 2009, 2011; Williamson et al., 2012). Among a variety of propensity

score methods, the inverse propensity score weighting (IPW) method has been par-

ticularly the topic of research interest since it is considered as being central to the

semi-parametric theory in missing data problem (Tsiatis, 2006; van der Laan and

Robins, 2003). As propensity score methods rely on a correctly specified working

propensity score model, some recent research interest in causal inference shift to a

class of doubly robust (DR) methods (Heejung and Robins, 2005) typically augment-

ing the simple IPW estimator and promise to provide dual protection again either

outcome model misspecification or propensity score model misspecification. However,

these widely used methods have drawbacks frequently discussed in literature. IPW is

well-known for being unstable and highly variable when the true or estimated propen-

sity scores are close to 0 or 1 while DR methods require at least one correct model

to perform well. Since realistically we don't possess accurate knowledge of either

outcome model or treatment assignment model, it calls the need to derive a consis-

tent and robust estimator of causal treatment effect without concerns of parametric

specification for either model. Motivated by this desire, this thesis is devoted to de-

veloping a conceptually simple approach of constructing an estimator of treatment

effects that ensures consistency and robustness yet allow quite flexibility in employing

non-parametric methods to relax the parametric model assumptions.

To fully appreciate our proposed method, we first provide an overview of on-

going research in causal inference literature in this chapter. Starting with some basic

concepts of causal modeling under the potential outcomes framework and the widely

used standard causal assumptions for identifying treatment effect, we discuss the two

4



schools of methods for estimating average treatment effect: outcome modeling and

treatment selection modeling. For the methods of using propensity scores, we fo-

cus on the discussion of IPW and its role in the semiparametric theory of missing

data problem as well as its drawback. The doubly robust methods and its limitation

are also reviewed followed by brief description of some existing nonparametric causal

inference methods in literature.

1.2 Causal Models

Standard statistical analysis, typically regression analysis, is commonly used

to make inference of associations among variables. To distinguish “causation” from

“association” and facilitate the inferences of causality, we need causal models as

formal tools to frame the causal questions rigorously in mathematical language with

transparent assumptions.

1.2.1 Neyman-Rubin Causal Model

The most popular causal model is the so-called potential outcome framework

or Neyman-Rubin model. The idea of “potential outcomes” or “counterfactural” was

originally introduced in Neyman's non-parametric model in which Yx(u) was used

to denote the unit-based response variable as “the value that the outcome Y would

observed in unit u, had treatment X been x (Neyman, 1990). Initially potential

outcomes were brought up as a way to deal with treatment effects in randomized

experiments. Later this concept gradually evolved into a general framework that is

also applicable to observational studies and it became the fundamental framework for

causal inference established in a series of papers by (Cochran, 1968, 1973; Holland,
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1986; Robins et al., 2000; Rosenbaum, 2002; Rosenbaum and Rubin, 1983, 1984;

Rubin, 1974, 1976a, 1990; Scharfstein et al., 1999). Most modern causal inference

methodologies are built upon this framework with wide applications in the area of

statistics, medicine, economics, political science, and social science, etc.

The most notable feature of the potential outcome framework is that the theo-

retical definition of causality applies clearly to a single unit being observed in a study.

In the above example of drug for hypertension, a patient is a single unit. A causal

effect is defined precisely at each unit level using a set of potential outcomes that

could be observed if hypothetically the corresponding treatment status were realized

in real world. In the simplest case with the treatment variable A being the binary

indicator of treated or not, let (Y
(1)
i , Y

(0)
i ) denotes the pair of two potential outcomes

for unit i when Ai = 1 (treated) or Ai = 0 (not treated). The causal effect for unit i

can then be simply calculated as the difference between the two potential outcomes

denoted as τi = Y
(1)
i − Y (0)

i . It is obviously that we now face the fundamental diffi-

culty of estimating the causal average treatment effect since Y
(1)
i and Y

(0)
i can't be

observed simultaneously. In other words, it is impossible to measure causal effects at

the individual level from the observed outcomes.

1.2.2 Causal Assumptions and Average Treatment Effect

The most widely studied average treatment effects is the population average

treatment effect (ATE) defined as

τ = E(Y (1))− E(Y (0))
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As potential outcomes on different units can be used to estimate E(Y (1)) or E(Y (0)),

τ is estimable under some assumptions. We use X to denote a fixed vector of pre-

treatment variables indicating the baseline characteristics observed for a single unit

in addition to the outcome Y and treatment A. The two random variables(Y (1), Y (0))

are typically related to X statistically. Therefore in more explicit form we may write

τ in term of τ(X), the conditional treatment effect given X.

τ = E(τ(X)) = EX(E(Y (1) − Y (0)|X))

Given n individuals from a target population in a study, the observed data consists of

n independent and identical copies of random variable D = (Y,X,A), which provide

valid estimates for the following two conditional expectations:

E(Y (1)|A = 1);E(Y (0)|A = 0)

However in an observation study, due to selection bias, A is not independent of the

joint distribution of (Y (1), Y (0)), which results in

E(Y (1)|A = 1) 6= E(Y (1));E(Y (0)|A = 0) 6= E(Y (0))

Hence the ATE can’t be directly estimated by the valid estimates of E(Y (1)|A = 1)

and E(Y (0)|A = 0).

In order to link E(Y (a)|A = a) with E(Y (a)) and identify τ , a set of standard

assumptions are built as an important part of the causal model.
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The key assumption of “strong ignorability” (Rosenbaum and Rubin, 1983)

include two conditions for each unit i . One is the condition of “no unmeasured

confounder”, i.e., (Y (1), Y (0)) ⊥ A|X where ⊥ denotes independence. It states that X

is sufficient to be adjusted for in order to remove all the possible confounding between

the relationship of A and Y . The other condition is “positivity” or “overlap” requiring

that the probability of being treated or not treated for any unit with all possible values

of X is positive. This is to ensure that given X, Y (0) and Y (1) are well defined for

every unit. A weaker version of the ignorability assumption is E(Y (a)|A = a,X) =

E(Y (a)|X); a = 1, 0, which is called weak ignorability (Rosenbaum and Rubin, 1984)

or mean independence assumption (Imbens, 2004). This assumption seems to be

weaker but it is argued that in very rare settings that the weak ignorability holds

while the storng ignorability does not hold (Vansteelandt and Joffe, 2014).

Two more assumptions in addition to ignorablity are Rubins's stable unit-

treatment value (SUTVA) assumption (Rubin, 1980, 1986, 1990) and consistency

assumption (Cole and Frangakis, 2009; Pearl, 2000, 2010). SUTVA states that the

treatment levels are identical across all the units and the potential outcomes for

any unit do not depend on the treatment or outcome of other units. Consistency

assumption is used to link the potential outcome and observed outcome as Y =

Y (1)A+ Y (0)(1− A).

8



With these standard assumptions, τ is identifiable by the observed outcomes

since

τ = EX(E(Y (1) − Y (0)|X))

= EX(E(Y (1)|A = 1, X)− E(Y (1)|A = 0, X)))

= EX(E(Y |A = 1, X)− E(Y |A = 0, X)))

In this thesis, we mainly focus on the estimation of ATE, the population level average

treatment effect. It is worth mentioning though that other quantities of average

treatment effect might be of interest in some particular research context such as the

average treatment effect on the treated (ATT) E(Y (1) − Y (0)|A = 1), the average

treatment effect on the untreated (ATU) E(Y (1)−Y (0)|A = 0). In some applications,

it may be unrealistic to estimate the effect of the treatment if it were applied to all

the subjects, then the ATT or ATU may be of greater interest than the ATE.

1.3 Methods for Estimating Average Treatment Effect

With the imposed assumptions discussed above, clearly we can specify distri-

bution of the observed data with density P0 under some dominating measure given

by

P (D) = P (Y |X,A)P (A|X)P (X)

An important observation about this density is that it basically implies two correlated

generating processes of observed data: (i) P (Y |X,A) is about how the potential

outcomes generate given X; (ii) P (A|X) defines the how treatment is assigned given

9



X. The problem of estimating average treatment effect therefore can be tackled from

two angles: outcome modeling and treatment selection modeling.

1.3.1 Outcome Regression

Assume that we know the true outcome generating process, i.e., the true func-

tional form of µ(X,A) = E(Y |X,A), estimating τ is straightforward since

τOR =

∫
(µ(X, 1)− µ(X, 0)) dP (x) (1.1)

If the treatment effect is homogeneous in the study population, the individual treat-

ment effect can be written as τi = τ + εi; i = 1, · · ·n where εi’s are random noise

independent of Xi, τ is simply µ(X, 1)− µ(X, 0).

In practice we may propose an outcome regression model, typically a para-

metric model, m(X,A;α) with α being the parameters to be estimated by the ob-

served data through some estimation mechanism. When m(X,A;α) correctly speci-

fies µ(X,A), a consistent estimator τ̂OR can be obtained. This regression adjustment

method is intuitive and has been used frequently for estimating effects of treatment

historically.

There are however some practical concerns of using outcome regression method

in the causal inference. Firstly, the consistency of τ̂OR relies on a correct model for

µ(X,A), which can be challenging in some real applications when no prior knowledge

is possessed about how outcome relates to treatment assignment and baseline covari-

ates. It can become even more challenging when there exists potential extrapolation

bias (Glynn and Quinn, 2010; King and Zeng, 2006). The issue of extrapolation bias

10



arises in the situation, for example, when some range of X is dominated by treated

units such that prediction of the counterfactuals over this range of X based on the

model fitted for the observed data would extrapolate for those untreated units. If

the true outcome generating mechanisms for the treated and untreated units are very

different over this problematic range, the extrapolation could result in substantial

bias in the estimation. The second concern is regarding the interpretation. Unless

treatment effect is homogeneous, the estimator µ̂(X, 1)− µ̂(X, 0) directly from the

outcome regression model of m(X,A;α) has only the interpretation of conditional

treatment effect given X. To obtain τ , which is the marginal treatment effect inte-

grating X out µ̂(X, 1)− µ̂(X, 0) through directly modeling the outcome, one widely

used algorithm is the “g-formula” (Robins, 1986; Taubman et al., 2009) that involves

outcome regression modeling and resampling-based methodology.

1.3.2 Propensity Score

Estimation of τ , on the other hand, may utilize the information of P (A|X), the

treatment selection model. π(X) = P (A = 1|X) was formally defined as propensity

score by (Rosenbaum and Rubin, 1983) as the probability of treatment assignment

conditional on observed baseline covariates. The strong ignorability implies

E(Y (a)|π(x)) = E(Y |A = a, π(x)), a = 1, 0

Thus the propensity score has an attractive property of being a balancing score:

conditional on the propensity score, the distribution of measured baseline covariates

would be similar between treated and untreated subjects. Hence A⊥(Y (1), Y (0))|π(x)

11



(Rosenbaum and Rubin, 1983, 1984) and

τ = Eπ(X)

[
E{Y (1)|π(X)} − E{Y (0)|π(X)}

]
= Eπ(X) [E{Y |π(X), A = 1} − E{Y |π(X), A = 0}]

The balancing property has made propensity score popular in causal inference for sev-

eral reasons. First, the introduction of propensity scores makes it possible to separate

the study design from the analysis, similar to a randomized study (Austin, 2011). By

modeling the treatment assignment, we may view an observation study as a study

being designed for assigning the treatment among the subjects with certain probabil-

ities determined by their baseline characteristics. Thus propensity score provides a

way to mimic an observation study to an RCT at the design stage. Second, as Rubin

showed, the true propensity score is the finest balancing score while X is the coarsest

balancing score (Rosenbaum and Rubin, 1983). When the dimensionality of X is high,

it is much more convenient to check the balance of baseline characteristics between

treated and untreated subjects using the one-dimension propensity score other than

X itself. Third, comparing to outcome regression, the diagnostics of propensity score

model by examining the distribution of X between treated and untreated subjects is

much easier than assessing whether the relation among Y,A,X is correctly specified.

In some situations if we are more knowledgeable about the treatment assignment

mechanism than the outcome generating model, it offers a good alternative way to

estimate treatment effects. Propensity score methods increasingly become a part of

the standard toolkit for controlling confounding in observational studies.
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In observational study, the propensity score is typically unknown therefore

must be estimated from the data. The most commonly used method is logistic re-

gression modeling in which a parametric model π(X; β) is proposed to model treat-

ment selection. Recently, more advanced methods are developed to address the issue

of possible model misspecification in parametric logistic regression, such as bagging,

boosting, random forests etc. (Lee et al., 2010; McCaffrey et al., 2004; Setoguchi

et al., 2008). These machine learning methods have the advantage of being capable

of handling high dimensional baseline covariates and potentially finding a good model

for predicting the treatment assignment. Another school of method is the covariates

balancing propensity score (CBPS) method (Imai and Ratkovic, 2014; Wyss et al.,

2014) which takes into account dual characteristics of the propensity score as the

conditional probability of treatment assignment as well as a balancing score. CBPS

models p(A = 1|X) while optimizing the covariate balance through a set of moment

conditions induced by the mean independence between the A and X after inverse

propensity score weighting.

Using propensity scores in adjusting for observed confounding has been mostly

discussed around four different approaches in literature: (i) matching (Abadie and

Imbens, 2006; Rosenbaum, 1989; Rosenbaum and Rubin, 1985) based on propensity

score is an intuitive way and is considered as a common approach for making less

biased causal inference (Rubin, 1973, 1976b,c); (ii) subclassification or stratification

by propensity scores (Hansen, 2004; Rosenbaum, 1991; Rosenbaum and Rubin, 1984)

can be conceptualized as a meta-analysis of a set of quasi-RCTs (Austin, 2011);

(iii) covariates adjustment method uses propensity scores as covariate in regression

(Little and An, 2004); (iv) inverse propensity score weighting (Hirano et al., 2003;
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Robins et al., 2000; Rosenbaum, 1987) aims to create a pseudo population in which

the distribution of X is independent of A (Austin, 2011). Comprehensive reviews of

these methods, their limitations and comparisons of their performance in empirical

studies can be found in (Austin, 2011; Imbens, 2004; Lunceford and Davidian, 2004;

Stuart, 2010).

1.3.3 Inverse Propensity Score Weighting

Among the aforementioned propensity score methods, the inverse propensity

score weighting(IPW) has especially under extensive study in causal inference due

to its role in semi-parametric theory in missing data setting. It is also our focus of

discussion in this thesis.

The idea of inverse probability weighting was first proposed in the context of

surveys in a paper (Horvitz and Thompson, 1952). The Horvitz-Thompson estimator

of τ is

τHT =
1

n

n∑
i=1

(
YiAi
π(Xi)

− Yi(1− Ai)
1− π(Xi)

)
(1.2)

A landmark paper (Robins et al., 1994) discovered its role in the semiparametric

inference in missing data setting. This paper derived a class of all consistent and

asymptotically normal semiparametric estimators for parameters in a semiparametric

full data model when data are missing at random and showed the estimators in this

class can be expressed as solutions to estimating equations that involve inverse proba-

bility weighting. (Lunceford and Davidian, 2004) used the theory of M-estimation to

show that when π(x) is correctly specified τHT is a consistent estimator of τ and has

a limiting normal distribution with
√
n converge rate to true τ . (Tsiatis, 2006) also
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provides a very good discussion of inverse probability weighting and its connection to

semi-parametric theory.

Regardless of its theoretical foundation and popularity, the poor performance

of IPW method in numerical studies has also been recognized and frequently discussed

in literatures. In (Tsiatis, 2006), he stated that “there is a technical condition that

π(Xi) be strictly greater than 0 for all values of X in the support of X in order

that the IPW estimator be consistent and asymptotically normal” and “even if this

technical condition holds true, if π(Xi) is very small, then this gives undue influence

to the i-th observation in the IPW estimator and could result in a very unstable

estimator with poor performance with small to moderate sample sizes”. (Gutman and

Rubin, 2017) reviewed the commonly used statistical procedures for estimating ATE

including matching, sub-classification, weighting and model-based adjustment. They

showed under extensive simulations that the widely used propensity score method has

“poor operating characteristics” and pointed out the potential drawback of inverse

weighting: when some π(Xi) are close to 0 or 1, a few observations dominate the

estimated treatment effect resulting in large sampling variance and it can be even

worse when the propensity score model is misspecified. Peter C. Austin has written

a handful of research papers regarding propensity score methods. In his relatively

recent paper (Austin and Stuart, 2015), he discussed the difficulty arising in the

application of IPW method when treated subjects have a very low propensity score

resulting in very large weights or some control subjects with a propensity score close

to one can result in very large weights, which explicitly indicates uncertainty in the

estimation of ATE.
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1.4 Doubly Robust Estimation

The outcome regression or propensity score method requires specification of

µ(X,A) and π(X), respectively, typically with parametric modeling assumptions.

Consistency of τ̂OR or τ̂HT depends on the correctly specified model of µ(X,A) or

π(X), which could be very challenging when distribution of the observed data is un-

known and complicated. The doubly robust (DR) methods are a new class of methods

designed to offer double protection against model misspecification by comprising the

outcome model and propensity score model in a manner such that the estimator of τ

is consistent if either µ(X,A) or π(X) model is correctly specified (Scharfstein et al.,

1999), thus named “doubly robust”.

1.4.1 Augmented Inverse Probability Weighting

The most commonly used DR estimator, standard augmented IPW estimators

(AIPW), takes the form as

τAIPW =
1

n

n∑
i=1

[
AiYi
π(Xi)

− (1− Ai)Yi
1− π(Xi)

− {Ai − π(Xi)}
{
µ1(X)

π(X)
+

µ0(X)

1− π(X)

}]
(1.3)

where µ1(X) = E(Y |X,A = 1) and µ0(X) = E(Y |X,A = 0) are outcome regression

among treated and untreated, respectively.

It is easy to show that when either π(X) = π(X, β) or µa(X) = m(X, a, αa); a =

0, 1 is correctly specified, τAIPW →p τ .

The standard AIPW is a special case of a class of augmented IPW estimators.

As shown in (Robins et al., 1994), when model of π(X) is correct, with no additional
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assumptions on the distribution of the data, all consistent and asymptotically normal

estimators are asymptotically equivalent to estimators of the general form of AIPW

with some function h(X):

1

n

n∑
i=1

[
AiYi
π(Xi)

− (1− Ai)Yi
1− π(Xi)

− {Ai − π(Xi)}
{
h1(X)

π(X)
+

h0(X)

1− π(X)

}]

(Robins et al., 1994) also showed that the standard AIPW estimator with ha(X) being

the true outcome regression model is the optimal DR estimator with asymptotically

smallest variance. Hence the standard AIPW is said to be locally efficient: if both

µ(X,A) and π(X) are correctly specified, the asymptotic variance of the standard

AIPW is the least among all the other AIPW estimator in general form. In other

words, the local efficiency implies that if π(X) is correctly specified, τAIPW gains

efficiency over all AIPW estimators in the general form under the condition that

the model µ(X,A) is also correctly specified. More discussion regarding asymptotic

property of AIPW estimators can be found in many other publications, for example,

(Cao et al., 2010; Heejung and Robins, 2005; Kang and Schafer, 2007; Lipsitz et al.,

1999; Lunceford and Davidian, 2004; Tan, 2006, 2010; Tsiatis, 2006).

1.4.2 Limitation of DR Methods

The DR estimation through AIPW is “more constructively viewed as incor-

porating outcome model into the IPW than incorporating propensity model into the

outcome regression” (Tan, 2007). When µ(X,A) is modeled correctly the introduc-

tion of inverse weighting may bring in larger variance (in large samples) than the

simple outcome regression model, thus variance of τAIPW is no less than τOR. On
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the other hand, when π(X) is modeled correctly, it is anticipated that introduc-

tion of outcome model helps to improve the efficiency of basic IPW estimator made

only through propensity score model with possible extreme propensity scores. As

can be seen in τAIPW , inverse weighting is taken with respect to A (Y − µ1(X)) or

(1−A) (Y − µ0(X)) instead of AY or (1−A)Y in simple IPW. So when the outcome

model are correctly specified or slightly misspecified, it is expected to see less insta-

bility issue when extreme propensity scores occur. However, In the situation that

outcome may be poorly modeled due to uncertainty about distribution of the data,

the AIPW estimator is found to even lose substantial efficiency compared to the IPW

estimator (Ibrahim et al., 2005; Qin et al., 2009; Rubin and Van der Lann, 2008).

There has also been much efforts in developing improved AIPW estimator

and other type of DR estimators. For example, the method of applying spline func-

tion to propensity scores in the outcome regression (Little and An, 2004), regression

estimation with IPW coefficients (Kang and Schafer, 2007), “tilde” regression estima-

tor (Tan, 010b), targeted maximum likelihood estimator (van der Laan and Gruber,

2010). Nevertheless, one common feature of all DR estimators is that DR methods

require at least one of the two models, either outcome or propensity, is correctly spec-

ified to ensure double robustness and consistency. When one of the working model is

misspecified, finite-sample bias can be amplified as demonstrated by (Carpenter et al.,

2006; Kang and Schafer, 2007; Vansteelandt et al., 2012) in their numerical studies.

Furthermore, two “bad” models are no better than one “bad” model. Severely biased

estimator could result from the scenario when both model are wrong as illustrated in

Kang and Schafer ’s famous simulation study (Kang and Schafer, 2007).
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1.5 Some Existing Nonparametric Methods in Causal Inference

To relax the parametric assumptions, some nonparametric approaches pro-

posed in the estimation of either modeling outcome or propensity score or both have

been discussed in causal inference literature.

(Hahn, 1998) established the fundamental result for semiparametric estimation

of ATE: under certain regularity conditions,the asymptotic variance bound for τ is

given by

E

(
σ2
1(X)

π(X)
+

σ2
0(X)

1− π(X)
+ (τ(X)− τ)2

)
(1.4)

where σ2
a(X) = var(Y (a)|X); a = 0, 1.

In this paper, Hahn also constructed an estimator of τ which can achieve this

asymptotic variance bound by noparametrically estimating E(AY |X = x);E((1 −

A)Y |X = x); π(x) and compute ATE as

τ̂hahn =
1

n

n∑
i=1

(
Ê(AiYi|Xi)

π̂(Xi)
− Ê((1− Ai)Yi|Xi)

1− π̂(Xi)

)
(1.5)

However, no numerical experiment was presented in the Hahn’s paper for the eval-

uation of τ̂hahn's performance. Later, (Hirano et al., 2003) argued that the goal of

achieving the theoretical asymptotic variance bound can be reached through inverse

weighting of nonparametric estimator of π(x) when the estimator of π(x) is sufficiently

flexible. They proposed to estimate π(x) as a series logit estimator. Other similar

work of applying nonparametric technique in propensity modeling includes (Liang

et al., 2004) who considered nonparametric estimation of the component of a partial

linear model with missing covariates using IPW , (Wang et al., 2010) who proposed a
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class of AIPW kernel estimating equations for nonparametric outcome regression and

non-parametric estimation of π(X). There are also much research interest lying in us-

ing machine learning techniques such as classification, regression tree, random forest

and Bayesian methods from the direct outcome modeling perspective. For example,

CART for honest inference for treatment effect (Athey and Imbens, 2016), Bayesian

tree methods for regression surface modeling (Hill, 2011). These methods often find

applications in estimating conditional treatment effects or subgroup classification to

deal with heterogeneity in causal inference.

1.6 Thesis Outline

The use of propensity score to estimate ATE has been widely adopted in ex-

isting literature of causal inference method. The IPW-type of methods requires the

correct specification of the propensity score model to yield an asymptotically unbiased

estimator of ATE. Although some nonparametric techniques have been considered to

take into account the fact that the true association of covariates and outcome, covari-

ates and treatment assignment are hard to be correctly specified through parametric

modeling, the potential numerical instability issue originated from inverse weighting

remains unaddressable. Therefore, we propose to develop a new method to address

these issues. Similar to most causal inference methods, we develop our method on

the foundation of the potential outcome framework and incorporate both outcome

generating and treatment selection mechanism into the estimation process. We con-

sider modeling the outcome and treatment selection nonparametrically to obtain the

marginal mean score and propensity score, respectively. These two summary scores

are combined in such a way that the causal treatment effects can be solved through
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ordinary least squares method. Particularly, we make use of the estimated propensity

scores to derive pseudo “covariate” in the least squared estimation which is totally

different from inverse weighting approach to avoid the potential numerical issue of

the IPW-type of methods. The remainder of this thesis is organized as follows.

In Chapter 2, we introduce the method of sieve nonparametric estimation as it

is heavily used in the development of our proposed method. Starting with the concept

of sieves, we discuss the general approach of sieve estimation followed by description

of splines, a popular class of sieves and a commonly used technique in nonparametric

regression.

Chapter 3 begins with the motivation behind our ordinary least squared based

method and derives the core linear equation based on the standard causal assump-

tions for potential outcome framework. We then discuss in the rest of this chapter

the two stage estimation procedure leading to a model-free estimator of τ in a rela-

tive simple scenario when the treatment effect is assumed to be homogeneous. We

present two Monte Carlo studies to demonstrate the performance of our proposed

estimator and its comparisons with other traditional IPW-type methods. To illus-

trate how the proposed OLS-based causal inference method is applied to real world

data analysis, we introduce the JIA study and present the analysis results for eval-

uating the effect of early combination of biologic & non-biologic disease-modifying

antirheumatic drugs (DMARD) compared to the non-biologic DMARD alone among

children with newly onset of juvenile idiopathic arthritis disease under homogeneous

treatment effect assumption.

We discuss in chapter 4 the way of extending our proposed method to more

general setting when there exists heterogeneity in treatment effects. To maintain
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the “model free” feature of our estimator, we describe the way of using the method

of sieves to add in one more stage of nonparametric estimation of treatment effect

function into the two-stage estimation procedure. The covariate specific treatment

effects can be estimated through the sieve estimation and offers a way of examining the

treatment effect heterogeneity. The model-free estimator of ATE is then computed

as the empirical mean of the estimated covariate specific effects. A Monte Carlo

simulation study is conducted to assess the performance of our proposed estimator

of ATE and its comparison with other IPW-type methods. We apply this extended

approach to the JIA study for the exploration of treatment effect heterogeneity.

In Chapter 5, we focus on the discussion of extending our proposed method

furthermore to meet the challenge of estimation when covariates space is high dimen-

sional. By incorporating the commonly used machine learning methods into the first

stage for the estimation of the two summary scores, we demonstrate that our method

is capable of making causal inference in applications with large set of covariates. We

describe in great details how the machine learning methods are applied to obtain

a feasible estimation of treatment effects in the JIA study. The thesis concludes

with the conclusions and general discussion in Chapter 6 with outlines for the future

directions of our research.
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CHAPTER 2

Sieve Estimation and Splines

2.1 Nonparametric Regression

In Chapter 1, we used m(X,A;α) to denote a working potential outcome

generating model in the outcome regression method and π(X; β) to specify a working

treatment selection model in the propensity score based methods. By writing in

these forms, it is assumed the statistical model m(X,A;α) is the mean outcome Y

for given A,X for observed data and is determined by a finite-dimensional real-valued

parameter α ∈ Rp; the model π(X; β) is determined by a finite-dimensional of real-

valued parameter β ∈ Rq that characterizes the probability P (A|X). For example, if

X is a scalar random variable and no interaction of X and A is assumed to present,

then the linear mean model is E(Y |X,A) = α0+α1X+α2A of which α = (α0, α1, α2) ∈

R3 is a vector of 3 parameters that can be estimated through ordinary least squares

(OLS). Similarly, the simplest logistic regression model for the propensity scores is

P (A = 1|X) = exp(β0+β1X)
1+exp(β0+β1X)

from which the 2 dimensional parameter β = (β0, β1) ∈

R2 can be estimated through maximum likelihood estimation (MLE). In both cases,

restrictions (parametric assumptions) were explicitly imposed to the form of regression

functions. Thus they are referred to as parametric models.

In reality, the imposed functional form restrictions may not reflect the true

association among the variables in the model. Especially, in many biomedical and

epidemiology studies, the outcome or the treatment assignment could be related to
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the measured covariates in a complicated functional form so their true association is

hard to be correctly specified through parametric modeling. Since valid inference for

the causal treatment effects depends on either a correct model of outcome or a correct

model of propensity score, we may resort to the nonparametric modeling techniques

and try to avoid the unrealistic parametric assumptions.

Without loss of generality, we consider the following regression model

Yi = f(Zi) + ui; i = 1, · · · , n (2.1)

where Yi ∈ R is a scalar response variable, Zi is a p × 1 random vector, f(.) is

an unknown smooth function and ui is the error term satisfying E(ui) = 0 and

var(ui) <∞. F denotes the class of functions that the unknown function f(.) belongs

to. When F is restrictive and the functional form of f is known up to some finite

dimensional parameters, e.g. the simplest linear regression model described above,

estimation of f reduces to the problem of parametric estimation. When the functional

form of f is completely arbitrary, however, f cannot be summarized by a finite set of

parameters. We try to use OLS to solve f by minimizing

f̂(z) = arg min
f∈F

1

n

n∑
i=1

[Yi − f(Zi)]
2, (2.2)

Different than minimizing over a finite number of parameters in the parametric sce-

nario, the minimization problem in the nonparametric context should be carried out

over a set of functions. With infinite-dimensional parameters to be estimated, the

estimation of f̂(z) based on finite samples could be very difficult. Even if one may
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handle the computation difficulty, the resulting estimator may have undesirable large

sample properties, such as inconsistency or converging to the true regression function

at very low rate (Chen, 2007). Moreover, since the minimum of
∑n

i=1 [Yi − f(Zi)]
2 is

zero, to another extreme, in (2.2) if no restrictions is put on F, the minimum 0 can

be achieved by any function interpolating the observed data, which usually does not

converge to f in any meaningful sense.

Many nonparametric techniques have been developed to address the question

of estimating f . These techniques can be broadly classified as two types: Kernel and

sieve estimation.

2.1.1 Kernel Method

The method of kernel smoothing provides a way to locally approximate f .

Since this method is not our focus of study, we briefly introduce its idea and some

popular estimators. This type of methods is said to be a local approximation because

they estimate the regression function at a particular point by “locally” fitting a pth

degree polynomial to the observed data via weighted least squares. The idea is quite

intuitive: for any given point z, f(z) is estimated by a local average of yi associated

with zi’s near the point z within a pre-defined bandwidth |zi−z| ≤ b. The bandwidth

b controls the smoothingness of estimated function. The Nadaraya-Watson (NW)

estimator (Nadaraya, 1964; Watson, 1964) is such a kernel estimator with degree

p = 0, i.e., local constant kernel estimator.

f̂NW (z) =

∑n
i=1 yiK( zi−z

b
)∑n

i=1K( zi−z
b

)
=

n∑
i=1

K( zi−z
b

)∑n
i=1K( zi−z

b
)
yi (2.3)
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where K(z) is a kernel function K : R → R satisfying
∫
K(z) dz = 1;

∫
zK(z) dz =

0; 0 <
∫
z2K(z) dz <∞. The weight function is wi(z) =

K(
zi−z

b
)∑n

i=1K(
zi−z

b
)

with
∑n

i=1wi(z) =

1.

Due to its mathematical simplicity, the NW estimator has found some appli-

cations in nonparametric regression. Other frequently used kernel estimators include

local linear kernel estimator in the case of p = 1 and more generally, local polynomial

kernel estimators (Cleveland, 1979; Fan and Gijbels, 1992; Muller and Stadtmuller,

1987; Stone, 1977). For example, in Robinsons double residual method for addressing

the partially linear regression problem (Robinson, 1988), he considered estimating the

mean function and propensity function using the kernel smoothing method. In em-

ploying nonparametric methods for missing data problem using IPW or AIPW type

of estimator, many researchers have also proposed the kernel method (Liang et al.,

2004; Wang et al., 2010).

2.1.2 Sieve Method

The method of sieves was originally proposed by (Grenander, 1981). In con-

trast to the Kernel method, it is a nonparametric technique of global approximation.

Specifically, to resolve the problem of estimating functions over an infinite-dimensional

functional space using finite samples, Grenander suggested to perform the optimiza-

tion (minimization of the sum of square errors in OLS, maximization of the likelihood

in MLE) within a subset of the parameter space of the unknown function, and then

allow this subset to “grow” along with the sample size. This sequence of subsets from

which the estimator is drawn is called a “sieve” and thus the resulting estimation

procedure was named the “method of sieves”.
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The critical part in the sieve method is using the approximating subspaces,

the sieve spaces, to reduce the dimension of functional space in which a functional

estimator is sought. For the regression model of (2.1) , in practice, there is no way

that we can search in the full space F for f(z). So we turn to a simpler space of lower

dimension, say, Fqn , defined as

Fqn =

{
f : f(z) =

qn∑
j=1

αjφj(z)

}
(2.4)

where φj is a sequence of approximating terms known as basis functions; qn is the

dimensionality of the sieve space indicating the number of basis functions lying in the

sieve space given fixed sample size n. If qn is allowed to grow to infinity when the

sample size n goes to infinity and not grow too fast, the sieve space Fqn is gradually

expanding along with n in the sense that Fq1 ⊂ Fq2 ⊂ · · · ⊂ F. As a result of growing,

the sieve space becomes denser and denser in F such that the best approximation to

any function f ∗ ∈ F inside Fqn must get arbitrarily close to f ∗ as n → ∞ (Chen,

2007). In other words, functions inside the sieve space can be used to approximate

various smooth functions at certain convergence rate depending on the complexity

of the approximation. The global nature of sieve method is due to the fact that it

estimates the function of interest over its functional space by restricting to certain

type of sieves in a single step. Thus, comparing to the kernel method, the sieve

method has the advantage of being computational easier with many known basis

functions ready to be used.
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2.2 Sieve Estimation

The sieve expansion of
∑qn

j=1 αjφj(z) in (2.4) reduces the dimensionality of the

optimization problem of (2.2) significantly since the number of basis functions qn for

φj(z); j = 1, · · · , qn required to approximate f(z) grow much slower as sample size

increases. The basis functions φj(z)’s are typically non-linear functions of z but the

sieve expansion is a linear combination of these bases. For such a linear span we can

define the matrix of regressors with dimension n× qn as

Φ =



φ1(z1) φ2(z1) . . . φqn(z1)

φ1(z2) φ2(z2) . . . φqn(z2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

φ1(zn) φ2(zn) . . . φqn(zn)


Provided that the sieve is appropriate and the growth of sieve is sufficiently slow,∑qn

j=1 αjφj(z) is expected to approximate the true regression function f(z) reasonable

well such that f(z)−
∑qn

j=1 αjφj(z)→ 0 for all z as n→ 0. Then the nonparametric

regression by least squares in (2.2) is asymptotically equivalent to the problem of

minimizing

arg min
α

1

n

n∑
i=1

[
Yi −

qn∑
j=1

αjφj(z)

]2
, (2.5)

over the sieve Fqn . Within such sieve space, the estimation of α becomes a standard

parametric regression problem and α̂ can be easily computed via OLS as

α̂ = (α1, α2, · · · , αqn)T = (ΦTΦ)
−

ΦTY (2.6)
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where Y = (Y1, Y2, · · · , Yn)T and (D)− denotes the generalized inverse of (D) satis-

fying DD−D = D and D−DD− = D− (Penrose, 1955). Hence the estimator of f(z)

is given by

f̂(z) =

qn∑
j=1

α̂jφj(z) (2.7)

The idea of sieve least square estimation discussed above can be easily generalized

to sieve maximum likelihood estimation, sieve generalized linear model etc. For ex-

ample, if our goal is to estimate the propensity score function π(x) using this sieve

method, similarly we can approximate the unknown function π(x) by a linear span

of some suitable pn dimensional basis functions γj(x); j = 1, · · · , pn to form a sieve

log-likelihood as

l(X; β) =
n∑
i=1

{
ai

pn∑
j=1

βjγj(x) +
n∑
i=1

log(1 + exp(

pn∑
j=1

βjγj(x)))

}
, (2.8)

where ai indicates if the ith individual was assigned to treatment. Then by maximiz-

ing the sieve log-likelihood with respect to the unknown coefficients βj; j = 1, · · · , pn

we obtain the sieve MLE of βj, β̂j; j = 1, · · · , pn that results in the sieve NPMLE of

π(X), π̂(x) =
∑pn

j=1 β̂jγj(x).

In addition to its advantage of being generalizable to deal with many estima-

tion problems, the sieve method is conceptually simple and can be easily implemented.

Most often, the sieve estimation can be carried out in three steps: (i) choosing the

dimension of sieve space; (ii) choosing appropriate basis functions; (iii) estimating the

coefficients associated with the basis functions. In many cases, we just need to de-

cide the number of those well-studied basis functions, and then conduct the standard

analysis by treating the model as if it were a fully parametric model. As for the large
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sample properties of sieve estimator, Geman and Hwang (1982) initially established

the general consistency of sieve MLE. (Chen, 2007) discussed the regularity condi-

tions for sieve MLE. There has been considerable work on asymptotic normality of

sieve estimator (Andrews, 1991; Bierens, 2012; Chen, 2007; Chen and Pouzo, 2015;

Newey, 1997; Stone, 1982, 1985, 1986). Discussion of asymptotic properties of sieve

estimators in general is beyond the scope of this thesis.

2.3 Splines

2.3.1 Sieves for Sieve Estimation

Sieve method provides common strategy for nonparametric estimation. How-

ever, different sieves lead to different sieve estimators. A variety of sieve estima-

tors are presented as demonstrating examples, in e.g. (Chen, 2007; Geman and

Hwang, 1982; Grenander, 1981). As discussed in (Chen, 2007), in choosing appro-

priate sieves for various applications the most popular class of functions considered

is the Hölder smoothness class or p-smooth class of functions whose rigorous math-

ematical definition was given in (Chen, 2007)(p5569-5570). To put it in simple lan-

guage, Hölder class is a class of functions that have a well-behaved remainder term

in Taylor expansion and thus can be well approximated by a variety linear sieves

including power series, Fourier series, splines and wavelets, etc. In causal inference

literatures, (Hahn, 1998) proposed power series estimation method for computing

Ê(AY |X = x), Ê((1 − A)Y |X = x) and π̂(x). He suggested to construct a power

series as pK = [pK(X1), · · · , pK(Xn)]
T

with pK(x) = (p1K(x), · · · , pKK(x))T . The

element pKK(x) should satisfy the condition 3 of Theorem 6 presented in his paper,
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which as the author pointed out, could be extremely difficult in practice. In the

discussion of obtaining a non-parametrically estimated π̂(x) to feed into the IPW

estimator of ATE, (Hirano et al., 2003) adopted the sieve approach and proposed a

series logit estimator of π̂(x). He described the use of triangular power series in the

approximation of log odds ratio to obtain such a sieve estimator. These proposed

sieve estimators were mainly presented and elaborated for the purpose of theoretical

justification while the implementation of them was not mentioned and sounds not so

straightforward.

In this thesis, we specifically consider using spline functions in the sieve non-

parametric estimation for causal inference problem. Spline has been widely recog-

nized in the statistical and mathematical literature as a useful tool of nonparamet-

ric estimation (Stone, 1985, 1986). Its nature of being “smoothly joined” piecewise

polynomial functions makes it perform very well in approximating quite arbitrary

functions. Polynomial power series is capable of approximating arbitrary functions

well with possibly very high order polynomial, but the design matrix formed by very

high order polynomials is usually ill-conditioned and is likely to cause computation

difficulty in the estimation. Spline, especially B-splines, makes the computation more

stable, faster and thus leads to a more stable estimator. Large sample properties of

spline-based sieve estimator in nonparametric and semi-parametric settings have also

been well established in literatures e.g. (Huang, 2003; Zhang et al., 2010; Zhou et al.,

1998). Moreover, splines are easy to implement with many software packages such as

R developed for accommodating this convenience.
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2.3.2 Spline Function

Our discussion is still within the context of nonparametric estimation f(z) in

model (2.1). Formally, let O be a partition of Z into disjoint sets. In the case of Z

being a scaler random variable, partition is made by certain number of data points

within the range of Z and elements in O are intervals. More generally, in tensor

product splines or other multivariate splines, element of O can be two or higher

dimensional triangle or rectangle. For convenience of discussion, we consider only the

univariate splines here.

A function g : R → R is said to be a r-th degree, equivalently, (r + 1)-th

order(r is an integer and r ≥ 0) spline with a nondecreasing sequence of knots at

κ1 < · · · < κm if

• g is a polynomial of degree r on all the intervals [−∞, κ1], · · · , [κm,∞].

• For j = 0, 1, · · · , r − 1, the jth derivate of g is continuous at each knot

κ1, · · · , κm.

According to its definition, a spline function g is a set of piecewise polynomials joint

smoothly at the knots and constitutes a linear space of dimension m + r + 1. When

no knot is used, splines of degree r are simply polynomials of degree r. When r = 0 ,

g is simply a step function with jump at the knots. r = 3 means g is a piecewise cubic

curve that are continuous, and have continuous first as well as second derivatives at

the knots, which makes it smooth in appearance as the slope and the rate of change

in the slope are continuous at the knots. Visually, a cubic spline is a smooth curve,

and it is the most commonly used spline when a smooth fit is desired.
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With given degree r, g can be simply constructed by truncated power basis

functions. The truncated polynomial of degree r associated with a knot κj; j =

1, · · · ,m is usually denoted as the function (z − κj)r+ which takes values

(z − κj)r+ =


0 if z < κj

(z − κj)r if z ≥ κj

Thus a truncated power based spline function is

g(z) =
r∑

k=0

αkz
k +

m∑
j=1

bj(z − κj)r+

where αk, bj ∈ R. The design matrix is then the n× (1 + r+m) matrix with entries:



1 z1 z21 . . . zr1 (z1 − κ1)r+ (z1 − κ2)r+ . . . (z1 − κm)r+

1 z2 z22 . . . zr2 (z2 − κ1)r+ (z2 − κ2)r+ . . . (z2 − κm)r+

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 zn z2n . . . zrn (zn − κ1)r+ (zn − κ2)r+ . . . (zn − κm)r+


Truncated power function basis has the advantage of being conceptually simple and

the parameters in a model to these corresponding basis functions have clear inter-

pretation. However, since the values in the above design matrix may get very large

when r is large and the columns of the design matrix may be highly correlated, com-

putation of spline coefficients may be numerically unstable. Also, when zi’s span a

wide range and there are a large number of knots used to fit the regression spline,

33



truncated power bases may cause numerical issue of inefficiency and instability. In

practice, the B-spline bases are most commonly used in applications.

2.3.3 B-Splines

Comprehensive reviews regarding the definition and properties of B-splines can

be found in (De Boor, 2001; Dierckx, 1993; Eilers and Marx, 1996; Ruppert et al.,

2003). We give a brief summary of this type of spline as follows.

Given degree r and a non-decreasing sequence of knots κ0 ≤ κ1 ≤ · · ·κm, a

B-spline curve of S(z) is defined as

S(z) =
n∑
i=0

αiB
r
i (z); z ∈ [κr, κn+1) (2.9)

where n = m− r − 1 and Br
i are recursively defined basis functions in the form of

B0
i (z) =


1 if κi ≤ z < κi+1

0 if otherwise

Bj
i (z) =

z − κi
κi+j − κi

Bi,j−1(z) +
κi+j+1 − z
κi+j+1 − κi+1

Bi+1,j−1(z)

The knots interval within [κr, κn+1) are referred to as interior knots and knots κ0, · · · , κr−1

and κn+2, · · · , κn+r+1 at the two ends are called boundary knots typically achieved by

repeating the first used knot (κr) and last used knot (κn+1) r times, respectively. The

great advantage of B-spline basis functions is that each of them has only small sup-

port region that makes computation easier and faster than the truncated power base.
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One can easily see from the definition above that Bj
i is non-zero over an interval that

spans at most r + 1 knots, which means that the design matrix is made of columns

each of whose rows contain at most r + 1 adjacent nonzero entries. This explain the

fact that B-splines are usually numerical stable and effective and therefore preferable

in applications.

Choosing knots number and locations is critical in regression spline estimation.

A popular choice for the knots location in regression spline is to place knots at equally

spaced sample quantiles of Z with the two boundary knots set to be the minimum and

maximum of Z in the sample, respectively. Optimal knots number can be determined

by leave-subjects-out K-fold cross-validation (Huang, 2003) or Akaike information

criterion (AIC) (Xue and Liang, 2009). Alternatively, a rule of thumb based on

the convergence rate of regression spline estimators (Zhang et al., 2010; Zhou et al.,

1998) can be adopted to determine the right number of knots. In applications, we

may explore the optimal number of knots with the guideline ≥ Cn1/v where n is the

sample size , v takes certain value between 2 and 5 and C is a constant for tuning.
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CHAPTER 3

An OLS-based Method for Casual Inference - Homoscedastic Treatment

Effect Case

3.1 Setup

The major goal of many observational studies is to estimate the average effect

of a binary treatment on a scalar outcome. Unless otherwise noted, in the remainder of

this thesis we consider the following basic setting for a causal inference question. Some

notation in Chapter 1 are reiterated here. We have a random sample of size n from

an observational study, from which estimating the average causal effect at population

level is of interest. For unit i(i = 1, · · · , n) in this random sample, let Ai be an

indicator of whether the active treatment (treatment for the evaluation of average

causal effect) is received, with Ai = 1 if unit i is in the treatment arm, and Ai = 0

if unit i is in the control arm. The outcome of interest Y is a continuous variable.

For each unit i, a vector of pre-treatment covariates denoted as X is measured. The

observed n independent and identically distributed copies of data are made of triples

Di = (Ai, Yi, Xi).

Using potential outcome notation, Y
(1)
i and Y

(0)
i are the outcome for unit i

under active treatment and control, respectively. (Y
(1)
i , Y

(0)
i ) does not depend on Aj

or (Y
(1)
j , Y

(0)
j ) if i 6= j. The individual treatment effect for unit i is τi = Y

(1)
i − Y (0)

i .

The covariate-specific ATE for a subpopulation with covariate X being x is τ(x) =

E(Y (1)−Y (0)|X = x). The population average treatment effect is τ = E(Y (1)−Y (0)) =
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EX{τ(x)}, where EX(.) is the expectation taking over the population with respect to

X. Following most of the causal inference literatures, we use the standard assumptions

for the identification of τ(x) and τ .

• Consistency

Y = AY (1) + (1− A)Y (0) (3.1)

• Positivity

0 < P (A = 1|X = x) < 1;∀x ∈ X (3.2)

• Ignorability (weak version)

E(Y (a)|A,X) = E(Y (a)|X); a = 0, 1 (3.3)

3.2 Motivation

The observed outcome Y is associated with both A and X. The expectation of

observed Y conditional on both A and X is measurable. Since X acts as confounder

between A and Y , we can’t directly use E(Y |A,X) to compute E(Y (a)|X) or E(Y (a)).

But notice that

E(Y |A = a,X) = aE(Y |A = 1, X) + (1− a)E(Y |A = 0, X) (3.4)
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With (3.3) we can further write (3.4) as

E(Y |A = a,X) = aE(Y |A = 1, X) + (1− a)E(Y |A = 0, X)

= E(Y (0)|X) + aE(Y (1) − Y (0)|X)

= E(Y (0)|X) + aτ(X) (3.5)

On the other hand, based on (3.1) and (3.3), we have

E(Y |X) = E(Y |A = 1, X)P (A = 1|X) + E(Y |A = 0, X)P (A = 0|X)

= E(Y (1)|X)E(A|X) + E(Y (0)|X)(1− E(A|X))

= E(Y (0)|X) + E(A|X)E(Y (1) − Y (0)|X)

= E(Y (0)|X) + π(X)τ(X) (3.6)

Where π(X) is the propensity score function which is bounded away from 0 and 1

guaranteed by (3.2).

Subtracting (3.6) from (3.5) results in

E(Y |A = a,X) = m(X) + (a− π(X))τ(X) (3.7)

where m(X) = E(Y |X), the mean score function.

(3.7) serves as our core structural equation for the estimation of τ . When the

treatment effect is homoscedastic in the study population, we have (i) τi = τ + εi;

(ii) εi is independent of Xi; (iii) E(εi) = 0 so the study population is homogeneous in

terms of treatment effect. The assumption of homogeneous treatment effect is indeed
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frequently adopted in causal inference literature to simplify the problem of estimat-

ing ATE. A typical example is presented in (Robins et al., 1992) with the associated

method of G-estimation. Robins’s G-estimator was discussed in the context of an

observation study with the goal of evaluating the effect of being current cigarette

smoker on the level of forced expiration volume in one second (FEV1) in a cohort

of 2713 adult white male. It was assumed in the development of his proposed esti-

mator that there is no interaction between the exposure, current smoking, and other

confounders such as past smoking history, past respiratory symptoms, age, coexistent

heart disease etc. No existence of interaction between treatment and confounder, in

other words, means that the confounder X only plays role of being an effect mediator

but not an effect modifier. Under this scenario, τ(x) = τ thus (3.7) can be further

simplified to

E(Y |A = a,X) = m(X) + (a− π(X))τ (3.8)

(3.8) is built on two summary scores: m(X) and π(X). It clearly displays a linear

structure and motivates a simple OLS method to estimate τ by solving

arg min
τ

n∑
i=1

{(Yi −m(Xi))− (Ai − π(Xi))τ}2. (3.9)

If both the mean and propensity scores are known, it is straightforward that τ can

be obtained as

τ̂ =

∑n
i=1 {(Yi −m(Xi))(Ai − π(Xi))}∑n

i=1(Ai − π(Xi))2
(3.10)
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To examine the property of τ̂ assuming m(xi) and π(xi) are known, let ωi = Yi −

m(Xi)−(Ai−π(Xi))τ = Yi−E(Yi|Ai, Xi), then it immediately follows that E(ωi|Xi, Ai) =

0 and var(ωi|Xi, Ai) = var(Y |X,A) since data are i.i.d. τ̂ can be rewritten as

τ̂ = τ +
∑n

i=1 ωi(Ai−π(Xi))∑n
i=1 (Ai−π(Xi))

2 . Further,

√
n(τ̂ − τ) =

√
n

1
n

∑n
i=1 ωi(Ai − π(Xi))

1
n

∑n
i=1 (Ai − π(Xi))

2

Since by law of large numbers,

1

n

n∑
i=1

(Ai − π(Xi))
2 →p E

(
(Ai − π(Xi))

2) = π(X)(1− π(X))

Also,

E (ωi(Ai − π(Xi))) = E (E (ωi(Ai − π(Xi))) |Ai, Xi)

= E ((Ai − π(Xi))E(ωi|Ai, Xi))

= 0

and

E
(
ω2
i (Ai − π(Xi))

2) = E
(
(Ai − π(Xi))

2var(ωi|Ai, Xi)
)

= var(ωi|Xi, Ai)E((Ai − π(Xi))
2)

= var(Y |X,A)π(X)(1− π(X))
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By central limit theory (CLT) ,

√
n

(
1

n

n∑
i=1

ωi(Ai − π(Xi))

)
→d N (0, var(Y |X,A)π(X)(1− π(X)))

Then according to Slutsky’s theorem we have

√
n(τ̂ − τ)→d N

(
0,

var(Y |X,A)

π(X)(1− π(X))

)

However, τ̂ is not a feasible estimator as the mean and propensity scores are unknown

in practice. Therefore the estimation of τ needs to be accomplished in two steps. Once

the mean and propensity scores are consistently estimated from the observed data,

we may derive a plug-in estimator of τ with π(X) and m(X) in (3.10) replaced by

their corresponding estimates.

3.3 Two-Stage Estimation Method

Estimation of τ in OLS-based manner as (3.10) requires knowledge of m(x)

and π(x), we propose the following two-stage estimation procedure and argue that it

leads to a model-free estimator of τ .

3.3.1 Stage 1: Nonparametric Estimation of Mean and Propensity Scores

To ensure consistent estimation of the two summary scores, in the first stage,

we adopt the regression-spline based nonparametric sieve estimation methods as dis-

cussed in Chapter 2 to estimate m(x) and π(x), respectively.

• For estimating m(x), we use a regression-spline based nonparametric sieve least-

squares estimation method. First, we seek to estimate the mean score in a sieve
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space spanned by B-splines, that is

m(x) =

qn∑
j=1

αjBj(x)

where Bj(x) is the pre-specified spline basis functions for j = 1, · · · , qn and qn

is the number of spline basis functions that increases as sample size increases.

The spline coefficients α = (α1, · · · , αqn) are then estimated by α̂ = (α̂1, · · · , α̂qn)

via the OLS method

α̂ = arg min
α

n∑
i=1

{
Yi −

qn∑
j=1

αjBj(Xi)

}2

with design matrix formed by the spline basis functions as

B =



B1(X1) B2(X1) . . . Bqn(X1)

B1(X2) B2(X2) . . . Bqn(X2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B1(Xn) B2(Xn) . . . Bqn(Xn),


the OLS-estimation of α is given by

α̂ = (α̂1, · · · , α̂qn)T = (BTB)
−
BTY

where Y = (Y1, · · · , Yn)T and D− denotes the generalized inverse matrix of D.

The sieve estimator of m̂(x) is m̂(x) =
∑qn

j=1 α̂jBj(x).
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• For estimating π(x), as the outcome considered is binary data A, we adopted a

regression-spline based nonparametric maximum likelihood estimation (NPMLE)

method. First, we model the propensity score using the regression splines

π(x) =
exp

(∑qn
j=1 βjBj(x)

)
1 + exp

(∑qn
j=1 βjBj(x)

)
where Bj(x)’s have the same definition as in the estimation of m(X). We then

estimated the regression coefficients β = (β1, · · · , βqn) by β̂ = (β̂1, · · · , β̂qn) via

the MLE,

β̂ = arg max
β

n∑
i=1

{
Ai

qn∑
j=1

βjBj(Xi)− log

[
1 + exp

(
qn∑
j=1

βjBj(Xi)

)]}

We adopted the Newton-Raphson algorithm to compute β̂ = (β̂1, · · · , β̂qn) from

a sequence of equations

n∑
i=1

Bj(Xi)

Ai − exp
(∑qn

j=1 βjBj(Xi)
)

1 + exp
(∑qn

j=1 βjBj(Xi)
)
 = 0; j = 1, · · · , qn

π̂(x) is thus obtained as π̂(x) =
exp(

∑qn
j=1 β̂jBj(x))

{1+exp(
∑qn

j=1 β̂jBj(x))} .

3.3.2 Stage 2: Plug-in Estimator of τ̂

The idea for the estimation of τ in the second stage is quite simple. The

estimated m̂(X), π̂(X) from stage 1 were substituted for the corresponding m(X)

and π(X) in (3.10), respectively, to form a plug-in estimator of τ̂ . Same as in (3.10),
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this OLS estimator can be written in an explicit form as

τ̂mf =

∑n
i=1 {(Yi − m̂(Xi))(Ai − π̂(Xi))}∑n

i=1(Ai − π̂(Xi))2
. (3.11)

There are several key points about our proposed model-free method for estimating

the average treatment effect τ :

• In our core linear equation (3.8), the potential outcomes Y (1) and Y (0) are

embedded in τ and treated as an integrated whole. As τ is exactly our target

estimand of interest, it suggests that there is no need to estimate E(Y (1)) and

E(Y (0)) separately in order to derive an estimator for τ , which distinguishes our

method from all other IPW type methods. In the inverse weighting methods,

after the propensity scores are obtained, we first need to estimate E(Y (1)) and

E(Y (0)) based on E
(

AY
π(X)

)
and E

(
(1−A)Y
1−π(X)

)
, respectively, then compute τ as

the difference between Ê(Y (1)) and Ê(Y (0)).

• τ̂mf is not a type of inverse probability weighting estimator, hence it does not

suffer the numerical instability issue as frequently seen in IPW estimator (1.2)

and AIPW estimator (1.3) due to the estimated propensity score close to 0 or 1

at some covariate values X. It is obvious that in τ̂mf the estimated propensity

scores are summed across all the individuals before taking inverse. This is totally

different from the way of taking the inverse of the each estimated individual

propensity score in (1.2) or (1.3) . Therefore, it is expected that τ̂mf won’t be

inflated by individual propensity scores near 0 or 1. This is the great advantage

of τ̂mf over all other conventional IPW and AIPW estimators.
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• It is worth of mentioning that Robinson’s semi-parametric estimation approach

in partially linear model results in the same estimator of τ . A semi-parametric

partially linear model is given by

Yi = g(Xi) + τAi + ui, i = 1, · · · , n (3.12)

where ui is the random error term, g(.) is an unknown smooth function and τ

can be interpreted as average treatment effect of A on Y . Taking the conditional

expectation of both sides of (3.12) given Xi, we have

E(Yi|Xi) = g(Xi) + τE(Ai|Xi) (3.13)

Subtracting (3.13) from (3.12) yields

Yi −m(Xi) = (Ai − π(Xi))τ + ui (3.14)

Based on (3.14) we can also derive an plug-in estimator of τ̂ with closed form

as (3.11). Although estimator from this approach coincides with the our pro-

posed estimator, the two are different in the sense that our estimator is derived

without model assumption of (3.12). That is: (3.8) doesn’t require (3.12) and is

derived entirely based on the standard casual assumptions with additional ho-

mogeneity assumption. The development of τ̂mf involves no other parametric

model assumptions either. In the first stage we use sieve estimation techniques

to estimate m(X) and π(X) both non-parametrically. Thus τ̂mf is model-free

and enjoys robustness against model misspecification. This avoids the issue aris-

45



ing from the DR type methods which requires at least one model is correctly

specified and could be severely biased when both models are wrong.

3.4 Simulation Studies

We conducted two simulation studies to evaluate the performance of our pro-

posed model-free estimator of ATE and to compare it with estimators from other

conventional methods including IPW and AIPW at various scenarios.

3.4.1 Simulation Study (1)

3.4.1.1 Design of Study (1)

The first Monte Carlo simulation was designed to mimic a hypothetical cohort

study from which we are interested in studying the average casual effect of a dichoto-

mous treatment A on the outcome Y . There were two observed baseline covariates

X = (X1, X2) served as confounders in the causal relationship of A to Y . We assume

that there is no other observed or unobserved confounders. X1 is a continuous co-

variate generated from uniform(−3, 3) and X2 is a binary group indicator generated

from Bernoulli(0 · 5) and independent of X1. For each subject in a random sample,

the probability of being assigned to the treatment group A = 1 was modelled by the

following logistic model

π(X) = P (A = 1|X1, X2)

=
exp(−1.2 + 0.2X2

1 + 0.3X2 + 0.15X2X1)

1 + exp(−1.2 + 0.2X2
1 + 0.3X2 + 0.15X2X1)

(3.15)
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and the treatment assignment A = 1 was generated from Bernoulli(π(X)). (3.15)

gives the true treatment selection mechanism. With this mechanism, the proportion

of subjects in the treated group is approximately 40% (on average). Particularly,

(3.15) was designed so that the true propensity scores fall closely within the range of

(0.2, 0.8) to avoid possible extreme weights in IPW type methods. Given the treat-

ment assignment indicator A and covariates (X1, X2), the outcome Y was generated

according to the following model

Y = −2− 5X1X2 + 0 · 6X2
1 + 2eX1 + 6A+ ε (3.16)

where the random error ε is independent of X = (X1, X2) and is normally distributed

with N(0, 1). (3.16) gives the true potential outcome generating model. As we are

specifically interested in the homogeneous treatment effect scenario, the true ATE is

set to be a constant 6.

(3.15) and (3.16) together result in true mean scores given by

m(X) = −2−X1X2 + 0 · 6X2
1 + 2eX1+

6 exp(−1 · 2 + 0 · 2X2
1 + 0 · 3X2 + 0 · 15X2X1)

1 + exp(−1 · 2 + 0 · 2X2
1 + 0 · 3X2 + 0 · 15X2X1)

(3.17)

3.4.1.2 Cubic B-Spline Approximation of Mean and Propensity scores

We estimated the mean and propensity scores at the first stage using the cubic

B-spline based sieve method. Since X2 is a binary variable, cubic B spline was only

applied to X1. For a study sample with n observations of X1 contained in a closed

interval [a, b], we divided this interval into qn − 3 subintervals made by a sequence of
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spline knots given by

a = κ1 = κ2 = ξ3 = κ4 < κ5 < · · · < κqn < κqn+1 = κqn+2 = κqn+3 = κqn+4 = b,

According to the discussion of knots selection for regression splines in Chapter 2, we

set the number of knots qn to be
[n1/3]

2
, the largest integer less than n1/3

2
and the knots

were placed at the qn − 3 quantiles of X1. The mean scores and propensity scores

were modelled by

m(X) =

qn∑
j=1

α
(1)
j Bj(X1) +

qn∑
j=1

α
(2)
j Bj(X1)X2

and

log

{
π(X)

1− π(X)

}
=

qn∑
j=1

β
(1)
j Bj(X1) +

qn∑
j=1

β
(2)
j Bj(X1)X2,

respectively, where Bj(X) is the normalized B-spline basis functions at the knots κj

for j = 1, · · · , qn.

To ensure that the first stage yields consistent nonparametric estimation of

mean scores and propensity scores using the cubic B splines, we examined the agree-

ment of true propensity score curve, true mean score curve with the estimated propen-

sity score function, estimated mean function, respectively, and showed them in Figure

3.1. A sequence of 200 data points in the interval [-3,3] were created as D1. A binary

indicator D2 was created in two scenarios (i) all 1; (ii) all 0 with size 200. For each

pair of (D1(i), D2(i) = 1) and (D1(i), D2(i) = 0), we evaluated their true propensity

score π(D1(i), D2(i)) and true mean score m(D1(i), D2(i)) based on (3.15) and (3.17),

respectively. We then generated 1000 datasets each with size 200 according to the
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simulation design described above. With sample size being 200, the inner knots

number for cubic B spline of X1 was chosen to be 2, therefore α(1) is a vector of 6

parameters. So are α(2), β(1), β(2). For each of the 1000 random samples, we obtained

(α̂(1), α̂(2)) using the OLS-based method for Y and use them to predict m(D). Sim-

ilarly, (β̂(1), β̂(2)) were obtained using the spline-based MLE for A and were used to

predict π(D). The average over the 1000 predicted mean and propensity scores were

then plotted, respectively, in the left and right panels of Figure 3.1, where the black

dots presents the true curves and the red line is for the average of estimated curves

for D2 = 1; the blue line is for the average of estimated curves for D2 = 0. Figure 3.1

clearly indicates that the cubic B-splines sieve method yields consistent estimation of

the true scores.

3.4.1.3 Competing Methods

Benchmark. We included a hypothetical scenario that we knew exactly the

outcome model (3.16) and implemented the MLE method to achieve an efficient

estimation of ATE of 6. MLE from the true outcome model is expected to be the

most efficient estimator of τ . Therefore, result from this hypothetical analysis is used

as our benchmark to evaluate all the competing methods.

IPW. In addition to the classic Horvitz-Thompson IPW estimator of ATE,

which we denoted as τ
(1)
IPW , we also considered its two variants τ

(2)
IPW and τ

(3)
IPW dis-

cussed in (Lunceford and Davidian, 2004). These two versions of IPW differ from the

τ
(1)
IPW in the way of creating inverse weights from the estimated propensity scores. As

(Lunceford and Davidian, 2004) showed, τ
(2)
IPW is helpful in stabilizing inverse prob-

ability weights and τ
(3)
IPW improves in precision over τ

(1)
IPW and τ

(2)
IPW . More details of
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FIGURE 3.1: Simulation study (1): consistent estimation of the mean and propensity
scores using cubic B-splines in stage 1
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the relevant theoretical justification can be found in their paper.

τ
(2)
IPW =

(
n∑
i=1

Ai
π̂(Xi)

)−1 n∑
i=1

YiAi
π̂(Xi)

−

(
n∑
i=1

1− Ai
1− π̂(Xi)

)−1 n∑
i=1

Yi(1− Ai)
1− π̂(Xi)

(3.18)

τ
(3)
IPW =

(
n∑
i=1

Ai
π̂(Xi)

(1− C1

π̂(Xi)
)

)−1 n∑
i=1

YiAi
π̂(Xi)

(
1− C1

π̂(Xi)

)
−(

n∑
i=1

1− Ai
1− π̂(Xi)

(1− C0

1− π̂(Xi)
)

)−1 n∑
i=1

Yi(1− Ai)
1− π̂(Xi)

(
1− C0

1− π̂(Xi)

)
(3.19)

where

C1 =

∑n
i=1

{
Ai−π̂(Xi)
π̂(Xi)

}
∑n

i=1

{
Ai−π̂(Xi)
π̂(Xi)

}2 ;C0 = −

∑n
i=1

{
Ai−π̂(Xi)
1−π̂(Xi)

}
∑n

i=1

{
Ai−π̂(Xi)
1−π̂(Xi)

}2

For each of the three versions of IPW estimator listed above, we considered two

scenarios with propensity scores from (i) true parametric propensity model (IPW-pT)

given in (3.15); (ii) wrongly specified ordinary logistic regression model (IPW-pW)

with covariates X1, X2 and the interaction term X1X2.

AIPW. For AIPW, we examined all four possible scenarios: (i) both the

mean and propensity score models were specified correctly (AIPW-mT&pT) as given

in (3.17) and (3.15), respectively; (ii) the mean score model was specified correctly

as given in (3.17) but the propensity score model was specified wrongly as for the

IPW-pW estimator (AIPW-mT&pW); (iii) the propensity score model was specified

correctly as given in (3.15) but the mean score was wrongly specified as the ordi-

nary linear regression model (AIPW-mW&pT) with covariates X1, X2 and X1X2;
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(iv) both the mean and propensity score models were wrongly specified as aforemen-

tioned (AIPW-mW&pW).

Hahn’s estimator. We implemented Hahn’s estimator given by (1.5) and

evaluated its performance in two scenarios (i) the true propensity score are known:

(Hahn-Tp); (ii) propensity scores are estimated from the correctly specified propensity

given in (3.15): (Hahn-pT). To obtain the nonparametric estimators for the condi-

tional mean of AY given X and (1−A)Y given X , in both scenarios, we adopted the

cubic B-spline sieve estimation method and computed Ê(AY |X) and Ê((1−A)Y |X)

as

Ê(AY |X) = (BTB)
−
BTY ∗

Ê((1− A)Y |X) = (BTB)
−
BTY ∗∗

where B is made of the same basis functions as we use in the estimation of m(X) and

π(X); Y ∗ = (A1Y1, · · · , AnYn)T ; Y ∗∗ = ((1− A1)Y1, · · · , (1− An)Yn)T .

3.4.1.4 Results from Study (1)

We presented the simulation results for sample size 200, 400, and 800 in Table

3.1 with summary of the estimation bias (Bias), Monte-Carlo standard deviation (M-C

SD) based on 1000 repetitions, average standard error (ASE) based on 100 bootstrap

samples, and 95% coverage probability (95% CP) of the Wald 95% confidence interval.

The results from our proposed method were labeled as “MF” in the table. To visualize

the asymptotic property for all the estimators, we plotted the distribution of all

estimators based on 1000 repetitions and presented them in Figure 3.2 and Figure

3.3. Some comments regarding the results are made as follows.
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(i) Our model-free estimator is comparable to MLE and AIPW with the mean

model be correctly specified, and performs much better than IPW even when the

propensity model is correctly specified. It is numerically stable with virtually ignor-

able estimation bias. The Monte-Carlo standard deviation is very small, only slightly

bigger than that based on the MLE method when the outcome model is completely

known to allow the maximum likelihood estimation, indicating a minor loss of esti-

mation efficiency. Moreover, the average standard error estimate is very close to the

M-C SD even with sample size 200 and the coverage probability of 95% CI is also

close to the nominal value of 0·95. The histogram of τ̂mf from 1000 random samples

shows that our proposed method leads to an asymptoticly normally distributed esti-

mator in this numerical experiment. It suggests that our method allows the standard

statistical inference procedure to be applied for making causal inference on average

treatment effect in finite sample.

(ii)When the propensity model is wrong the IPW estimators are severely bi-

ased and not reliable. When the propensity model is correctly specified, all the three

versions of IPW yield consistent estimator of ATE in this simulation study. The

coverage probability of the 95% CI are fine. Actually, biases from τ̂
(1)
IPW , τ̂

(2)
IPW , τ̂

(3)
IPW

are very similar, but their corresponding variances are in the order of var(τ̂
(1)
IPW ) >

var(τ̂
(2)
IPW ) > var(τ̂

(3)
IPW ), which is exactly what (Lunceford and Davidian, 2004) ar-

gued in their paper. We only presented the histogram of τ̂
(1)
IPW in Figure 3.2 since the

other two are very similar to it. Although in this experiment, the inverse probability

weighting method results in asymptotic normally distributed estimator of ATE, its

variation is apparently much bigger compared to our proposed method. For example,
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for sample size 200, the ASE of our proposed estimator is 0.156 while for all the three

IPW estimators the ASE is around 1.

(iii) As anticipated, the AIPW method performs much better than the IPW

method, especially when the mean model is correctly specified. Its estimation bias is

virtually ignorable even when sample size is only 200, comparable to MLE; the aver-

age standard error is close to the Monte-Carlo standard deviation, particularly when

sample size increases to 800; the coverage probability of the 95% CI is around the

nominal value of 0·95. The double robustness property of the AIPW is also demon-

strated in the settings of AIPW-mT&pW and AIPW-mW&pT for this simulation

study, as the estimation bias is very close to zero. It appears that when the mean

score model is correctly specified, the estimation results for the two AIPW scenarios

are very similar regardless whether the propensity model is correctly specified or not.

In this experiment, we indeed find that AIPW with wrong mean score model but

correct propensity model improves the precision over the simple IPW with correct

propensity model. However, when both scores are wrongly specified, the estimation

is totally off the mark resulting in a very large estimation bias, similarly as the simple

IPW estimator with wrongly specified propensity model.

(iv) Hahn’s proposed estimator can be viewed as an IPW type estimator there-

fore we see its similar performance compared to IPW in this simulation. First, it is

interesting but not surprising to note that the ASE of τHahn based on the true propen-

sity score is larger than the estimator with propensity score estimated from the correct

propensity model. (Tsiatis, 2006) already showed that even if the propensity score

is known the IPW estimator based on an estimated propensity score is at least as

efficient as the IPW estimator that uses the known propensity score. This is to say
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that the variance of the influence function for IPW with estimated propensity scores

is not larger than the variance of the influence function for known propensity score

(Kennedy, 2016). Thus even when the propensity scores are known, it is preferable to

estimate the propensity score from the data according to the correct model. Second,

with E(AY |X) and E((1 − A)Y |X) estimated using nonparametric technique and

consistently estimated propensity scores from correctly specified propensity model,

τHahn is unbiased and asymptotically normally distributed. But as it is based on

inverse probability weighting, it still yields much larger variance compared to our

proposed estimator, as clearly shown in Table 3.1 and Figure 3.2. In his paper, Hahn

proposed to estimate propensity scores also using nonparametric method. Although

we didn’t present the result in the Table 3.2 and Figure 3.2, we did compute the

τHahn using the same π̂(X)’s as used in the calculation for τmf and found that its

variation is even larger than that based on the estimated propensity score from the

true parametric propensity model.

3.4.2 Simulation Study (2)

In simulation study (1), we constructed the true propensity score function to

create a relatively ideal scenario for IPW type estimators with the true propensity

scores are within a nice range so that the estimated propensity scores were expected

to stay away from 0 and 1. In many situations, it is possible that the true propensity

scores could be close to 0 or 1. The positivity assumption only states that propensity

score should be bounded away from 0 or 1, which does not guarantee that estimated

propensity scores staying away from 0 and 1. Therefore, we conducted this second

simulation study in order to investigate the performance of our proposed estimator
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FIGURE 3.2: Histogram of estimated treatment effects from all methods in study (1)
with sample size 400: true effect is 6
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FIGURE 3.3: Boxplots of estimated treatment effects from all methods in study (1)
with sample size 800: true effect is 6
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and all other competing methods when the true propensity scores may possibly be

very close to 0 or 1.

3.4.2.1 Design of Study (2)

In this Monte Carlo simulation, we considered only one covariate X generated

from N(0, 1). The following logistic model defines the true propensity score as a

function of X

π(X) = P (A = 1|X) =
exp(−1 · 5− 1 · 2X +X2)

1 + exp(−1 · 5− 1 · 2X +X2)
(3.20)

As π(X) is completely determined by X, by adjusting the value of X we can force

the corresponding propensity scores to be within a certain range (l, u). To do so, we

generated X from N(0, 1), evaluated π(X) using (3.20) and kept X’s only if they

satisfy l <= π(X) <= u for proceeding to the next step of generating A. Thus,

by varying the values of l and u, the true propensity scores can be controlled as

desired. With a selected X, the treatment assignment indicator A was then generated

from Bernoulli(π(X)). Based on X and A, the outcome Y was generated from the

following model

Y = −2 + 1 · 6X − 0 · 4X2 + 1 · 2Xe−X + 6A+ ε (3.21)

where the random error ε is independent of (A,X) and is normally distributed with

N(0, 2). So the true ATE is still 6.

Figure 3.4 displays a randomly sample (size=400) with the range of propensity

scores specified as (0.01, 0.99). From the plot of true propensity score functional curve,
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we can see that at the two ends when X is close to -2 or 3, the true propensity scores

reach 0.99, very close to 1. We considered this as a typical example in which possible

extreme propensity scores occur.

3.4.2.2 Results from study (2)

We examined all the competing methods described in simulation study (1).

As our main purpose was to investigate their performance in presence of extreme

propensity scores, for IPW and AIPW methods, we presented the Bias, M-C SD,

ASE, 95% CP statistics only for the scenario when propensity model or mean score

model was correctly specified in Table 3.2. Table 3.2 and Figure 3.5 reveal that when

the true propensity scores are restricted in the range of (0.1, 0.9), all the competing

methods have similar performance as seen in the simulation study (1), i.e, unbiased

and asymptotically normal. However, when some of the true propensity scores are

possibly as low as 0.01 or as high as 0.99, all IPW methods turned out to perform

poorly due to some extreme weights, as shown in Figure 3.6 and Figure 3.7. Although

the bias is still negligible except IPW(3)-pT, the average of ASE is not close to the

M-C SD therefore the 95% CP is off 0.95. As for AIPW, when the mean model for

outcome was correctly specified, the estimation of ATE is fine. But when AIPW relies

on the correct sepecification of the propensity model, it has similar behavior as IPW.

The same argument applies to Hahn’s estimators. On the contrast, our proposed

estimator shows its robustness against the extreme values of the propensity score and

hence has a great advantage in applications. Thus we conclude that the proposed

model-free estimator outperforms all IPW type estimators as it removes the impact

of individual propensity score weights in the computation of ATE.
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FIGURE 3.4: A typical sample generated according to the design of study (2) with
extreme true propensity scores
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TABLE 3.2: Simulation study (2) under two scenarios: comparison of bias, Monte
Carlo standard deviation, asymptotic standard error and 95% coverage probability
among all the methods

Bias M-C SD ASE 95% CP

True propenisty score range (0·1 - 0·9)
IPW(1)-pT 0·010 0·296 0·299 0·960
IPW(2)-pT 0·005 0·287 0·285 0·950
IPW(3)-pT 0·002 0·273 0·268 0·942
AIPW-p&mT 0·007 0·256 0·254 0·953
AIPW-pW&mT 0·007 0·253 0·252 0·955
AIPW-pT&mW 0·001 0·276 0·273 0·945
Hahn-pT 0·039 0·287 0·293 0·957
Hahn-Tp 0·072 0·501 0·494 0·928
MLE 0·007 0·245 0·243 0·953
MF 0·005 0·246 0·245 0·950

True propenisty score range (0·01- 0·99)
MLE -0·012 0·250 0·248 0·941
IPW(1)-pT 0·009 1·380 0·797 0·788
IPW(2)-pT 0·063 0·908 0·578 0·807
IPW(3)-pT 0·198 0·417 0·362 0·838
AIPW-p&mT 0·011 0·287 0·293 0·946
AIPW-pW&mT 0·020 0·272 0·288 0·954
AIPW-pT&mW 0·026 0·942 0·568 0·857
Hahn-pT 0·133 1·250 1·152 0·864
Hahn-Tp 0·108 1·215 0·938 0·797
MF 0·017 0·251 0·250 0·943

M-C SD: Monte Carlo standard deviation from 1000 iter-
ations
ASE: standard deviation from 100 bootstrapping samples
95% CP: 95% coverage probability
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FIGURE 3.5: Distribution of estimated treatment effect from all methods (scenario
1: true propensity scores range 0.1− 0.9 )
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FIGURE 3.6: Distribution of estimated treatment effect from all methods (scenario
2: true propensity scores range 0.01− 0.99 )
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FIGURE 3.7: Estimated treatment effect from all methods for simulation study 2
with sample size 400
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3.5 A Case Study

3.5.1 JIA Study Background

Juvenile idiopathic arthritis (JIA) describes a type of chronic inflammatory

disease characterized by arthritis that begins before age 16 and persists for a min-

imum of 6 weeks. As one of the most common type of rheumatologic disease in

children, JIA may result in disability and has incident rate of approximately 10 per

100,000 for girls and 5.7 per 100,000 for boys (Oberle et al., 2014). Currently, the

cause of childhood arthritis is unknown with limited understanding of the disease

etiology and pathogenesis (JIA, 2017). A variety of therapies have been used in

treating JIA. Nonsteroidal anti-inflammatory drugs (NSAIDs), including ibuprofen

and naproxen are the conventional early treatment for children with JIA to ease pain

and inflammation. However, since NSAIDs do not prevent joint damage, they are not

considered as disease-modifying agents and usually used in combination with other

disease-modifying antirheumatic drugs (DMARDs). DMARDs are anti-inflammatory

medicines capable of preventing joint damage, such as cartilage and bone destruction.

There are two types of DMARDs: non-biologic DMARD and biologic DMARD. The

most commonly prescribed non-biologic DMARD is methotrexate among others such

as sulfasalazine, leflunomide and hydroxychloroquine. Biologic DMARDs including

abatacept, adalimumab, canakinumab etc. are targeted to alter a specific step in the

pathogenesis of the inflammatory response associated with the disease (Guo et al.,

2018). Currently the most prevalent clinical practice for the treatment plan of JIA is

to start patient on a non-biologic DMARD as the first line of treatment, then step-up

by switching to or adding biologic DMARDs if the patients fail to make sufficient
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progress. The effectiveness of early combination of DMARDs vs. the monotherapy of

non-biologic DMARDs has been reported in studies in adult RA population (Gabay

et al., 2015). In pediatric population the evidence has been limited. There were,

however, studies with focus on pediatric population suggesting that there is a win-

dow of opportunity where early effective treatment could address underlying disease

pathophysiology, prevent structural damage in joins, and thus promise for earlier and

sustainable control of disease (Wallace et al., 2012).

This case study was designed with the goal to evaluate the effectiveness of the

early aggressive (early combination of nonbioloigc DMARD and biologic DMARD) vs.

step-up consensus treatment plan (CTP, starting on a non-biologic DMARD followed

by switching to or adding biologic DMARDs) among pediatric patients with newly on-

set of JIA disease. The primary data resource is the electronic medical records (EMR)

extracted from the Cincinnati children’s hospital medical center(CCHMC)’s Epic sys-

tem. All the rheumatology clinical encounters for patients diagnosed with pcJIA

(Polyarticular-course JIA) were extracted from Epic between January 1st 2009 and

December 31, 2017. Patients diagnosed with pcJIA for at least two distinct visits by

the pediatric rheumatologists were identified as pcJIA patients. The study sample was

made of 509 eligible pcJIA patients who were 1-19 years old,and newly diagnosed (< 6

months) with pcJIA following the CARRA operational definition based on the ILAR

(international league of association for Rheumatology, http://www.ilar.org/) code.

The study individuals received prescription of either early combination DMARDs

or non-biologic DMARD monotherapy as the first line treatment within 9 months

of diagnosis and didn’t have the comorbid conditions of inflammatory bowel disease

(IBD), celiac disease, and trisomy 2. This study was approved by the IRB at Cincin-
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nati children’s hospital medical center, and was registered at CT.gov (NCT02524340)

and HSRProj (20153590).

3.5.2 Baseline Characteristics of the Study Population

Out of a total of 509 eligible patients, there were 407 in either the early aggres-

sive treatment arm or in the Step-up arm. Patients treatment identification was ob-

tained by retrospective chart review of the medical records. The baseline visit for each

patient was defined as the time that the patient initialized his/her first DMARD. The

primary outcome of interest is the clinical juvenile disease activity score (cJADAS)

within the 6 month window (4 to 8 months) after baseline visit. cJADAS is a sum-

mary score made of 3 components : physician's global rating of overall activity (MD

global), parent/child ratings of well-being (Wellbeing), and counts of active joints

(AJC). Each of these 3 components takes values from 0 to 10 with 10 indicating the

most severe disease status. So cJADAS has the possible highest value of 30. As there

were 80 subjects missing their 6-month cJADAS the final sample for analysis was

further reduced to the 327 patients with observed 6-month outcome, among whom

225 from the early aggressive treatment arm and 102 from the step-up arm. Since

some of the patients with available 6-month cJADAS outcome miss some of the base-

line characteristics, we adopted the popular R package {MICE} (van Buuren and

Groothuis-Oudshoorn, 2011) to impute the baseline information from the predicted

mean matching approach (PMM method) and obtained 5 datasets with complete

baseline information for the following analysis.

Table 3.3 provides the summary statistics of two baseline characteristics, cJADAs

and pain, of the patients grouped by the treatment arms. P values presented are based
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TABLE 3.3: Baseline cJADAs and pain by treatment arms

Baseline Covariates Step-up Early Combination P value

cJADAs 12.8 ± 6.07 15.4 ± 7.34 0.001

Pain 4.23 ± 2.67 5.07 ± 2.75 0.01

on Wilcoxon test. Pain is the most common symptom of JIA disease and has been

suggested to be linked with disease activity. Pain is also a score ranging from 0 to 10

with 10 indicating the highest severity in pain. Table 3.3 indicates that selection of

patients into the early-combination group is associated with the patient's prognosis.

patients with severe baseline disease, i.e. large score of baseline cJADAs and pain,

were more likely to be assigned to the early combination group. Figure 3.8 gives

an indication of beneficial effect of biological DMARD on lowing down the cJADAS

score in this study population: the change of cJADAS from baseline to 6-month visit

is −8.22 and −5.18 for the early combination group and step-up group, respectively.

3.5.3 Estimation of the ATE of Early Use of Biologic DMARD

In this exploratory analysis we considered the two baseline covariates of cJADAS

and pain, as shown in Table 3.3 to be two potential confounders . To evaluate the

average effect of the early aggressive use of biologic DMARD, we first dichotomized

the pain score using cutoff 3 which makes about 42% patients falling in the low-pain

group (pain≤3). Therefore, baseline cJADAS and binary indicator of low pain are

the continuous and binary covariates of X1 and X2, respectively, as described in the

simulation study (1). We used the same estimating strategy described in that sim-

ulation study to estimate both marginal mean score and propensity score: applying

cubic B-spline only to baseline cJADAS but including its interaction with low pain in
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FIGURE 3.8: cJADAs at baseline and 6 month by treatment group
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the modeling. With sample size being 327 the interior knots number for constructing

such cubic B spline was chosen to be 3 and knots were placed at the 25%, 50%, 75%

percentiles of cJADAS.

We also implemented outcome regression, IPW and AIPW approaches with

the same two covariates to estimate the treatment effect. To make a fair compar-

ison, for other methods, the outcome and treatment assignment were also modeled

nonparametrically as:

(i) Y = f(X1, X2) + αA + ε where f(X1, X2) was approximated by adopting

exactly the same sieve estimating strategy as used in mean score and propensity score

estimation in our proposed method. This is essentially a partial linear regression

approach to estimate α̂ as the targeted treatment effect.

(ii) All the three versions of IPW using the nonparametricly estimated propen-

sity scores in our proposed method.

(iii) AIPW with outcome modeled in the same way in (i) and propensity scores

the same as in our proposed method and IPW.

For the purpose of assessing the validity of the propensity score estimation

based on the cubic B-spline regression, we looked into the degree of overlapping in

the distribution of estimated propensity scores for the two groups and covariate bal-

ancing statistics. As shown in Figure 3.9, the overlapping is quite satisfactory and

greater balance is achieved for cJADAs and low pain indicator: in unweighted sample,

standardized mean difference for cJADAs and low pain are 0.41 and 0.12, respectively.

In weighted sample, standardized mean difference for cJADAs and low pain are re-

duced to 0.03 and 0.005, respectively. These balance diagnosis statistics indicate that

the adequacy of the specification of the propensity-score model is desirable.
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FIGURE 3.9: Distribution of the estimated propensity scores using cubic B-splines
of baseline cJADAs and its interaction with low pain indicator in JIA study
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We presented results of the estimated average treatment effect, the estimated

standard error as well as the 95% confidence intervals in Table 3.4. The average

treatment effects showed in Table 3.4 were averaged across the 5 imputed dataset

and we used 500 bootstrap samples to obtain an estimate of the within-imputation

standard error for each imputed dataset and adopted Rubin’s rule of multiple impu-

tation (Barnard and Rubin, 1999) to combine estimators and standard errors from

the 5 datasets. Under the assumption of homogeneous treatment effect, our pro-

posed model-free method gives the estimated average treatment effect -1.27 with 95%

CI (−2.65, 0.11), in contrast to partial linear regression estimator −1.22(−2.6, 0.15),

IPW1 −1.07(−3.21, 1.08), IPW2 −1.06(−2.41, 0.46), IPW3 −1.06(−2.49, 0.36), AIPW

−1.04(−2.57, 0.48), Hahn’s method −0.76(−2.5, 0.97). The results indicate that early

aggressive use of biologic DMARDs can be effective. The averaged treatment effect

estimated using the proposed method suggests that the early aggressive use of bio-

logic DMARDs leads to about 1.27 point reduction in cJADAs in treating children

with newly diagnosed pcJIA. Partial linear outcome regression yields similar results

with comparable standard error and confidence interval. All the IPW type methods

give effects around −1 but with larger standard errors and therefore wider confidence

intervals, especially from IPW1.
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TABLE 3.4: Estimated average causal effects of early aggressive use of biologic
DMARD based on baseline cJADAs and low pain indicator in JIA study assuming
homogeneous treatment effect

Method Estimate Ste. 95%lower limit 95%upper limit

Regression -1.222 0.701 -2.595 0.152

IPW1 -1.066 1.093 -3.208 1.076

IPW2 -1.063 0.777 -2.587 0.460

IPW3 -1.064 0.723 -2.488 0.361

AIPW -1.042 0.779 -2.568 0.484

HAHN -0.765 0.886 -2.501 0.971

Model Free -1.271 0.702 -2.648 0.106

74



CHAPTER 4

Extension of the OLS-based Method to Estimate ATE in Heterogeneous

Treatment Effect Scenario

4.1 Heterogeneity of Treatment Effects

In many real-world applications, individuals in the study population usually

differ in their background characteristic as well as how they respond to a given treat-

ment. For example, in a typical biomedical observational study using medical records

from healthcare databases, patients possess diverse characteristics such as age, gen-

der, race, disease etiology and severity, presence of comorbidities, and some genetic

risk factors etc.. As a given treatment might affect the outcome of interest for patients

with different characteristics in different ways, the causal treatment effects are poten-

tially modified by these varying patient characteristics instead of being homogeneous

across the population. Heterogeneity of treatment effects, in other words, indicates

that there exists interactions between treatment and certain patient characteristics.

So the individual treatment effects τi = τ + εi with the error term εi dependent on

covariates. τi’s are not identifiable due to the fundamental problem of missingness in

potential outcomes but as it was argued in Chapter 3, under standard causal assump-

tions the conditional average treatment effect can be used to characterize the subpop-

ulation average treatment effects given the covariates. In heterogeneous treatment

effect scenario, these conditional average treatment effects can then be aggregated to

yield population average treatment effect.
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In Section 3.2 of Chapter 3, the core linear equation for estimating ATE in

our proposed method was given as

E(Y |A = a,X) = m(X) + (a− π(X))τ(X) (4.1)

where τ(X) denotes the conditional average treatment effect or covariates specific

treatment effect function. When the homogeneous treatment effect assumption is not

warranted, i.e. τ(X) 6= τ , in order to obtain an estimator of τ based on (4.1), it is

necessary that the estimation of τ(X) should be accomplished first. One may see that

an intuitive way to achieve this goal is simply to impose a parametric model of τ(X)

so that the estimation of τ becomes analogous to the homogeneous treatment effect

case. As an illustrating example, suppose X represents age and we wish to conduct

subgroup analysis assuming that the treatment has different effect on age > 60 group

and age ≤ 60 group. Then simply, we can define τ(X) = a0 +a1I(X > 60) where 1(.)

is the indicator function. With such formulation of τ(X), the two-stage estimation

method discussed in Chapter 3 can be directly applied to obtain estimators of â0

and â1 for a0 and a1, respectively. The population ATE τ can then be taken as the

average effect over the two age groups with â0 and â1.

Parametric modeling of τ(X) greatly simplifies the task of estimating τ(X)

and τ . It however introduces the additional assumption of heterogeneity mechanism

that deviates from the spirit of model-free. Just like the fact that in reality we

don’t possess accurate knowledge of outcome generating process and the treatment

assignment mechanism, we usually are not knowledgeable about the underlying het-

erogeneity pattern of the treatment effect and should try to avoid making parametric
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assumptions. In this Chapter, we describe the way of extending our proposed model

free method to heterogeneous treatment effect scenario. With the desire to maintain

the model-free feature of our proposed estimator of τ in the heterogeneous treatment

effect scenario, we propose to add in one more stage of sieve estimation of τ(X) into

the two-stage estimation procedure. The nice linear structure of (4.1) makes such

extension natural and easily implementable. With the help of splines as useful non-

parametric estimation tool, we show that the proposed spline-based nonparametric

extension maintains the model-free feature of the average treatment effect estimator.

Moreover, we demonstrate that such extension is not only capable of estimating ATE

consistently but also has the great advantage of studying treatment effect heterogene-

ity through the estimated covariate-specific treatment effect function, which may be

more meaningful than studying the population ATE in many applications.

4.2 Model-Free Method for Heterogeneous Treatment Effect

4.2.1 Motivation

To implement our model-free estimation strategy for τ in heterogeneous treat-

ment effect scenario, we first assume both the mean and propensity scores are known

in (4.1). It is obvious that the estimation of τ(X) with known m(X) and π(X)

becomes exactly the same non-parametric regression problem as (2.1) discussed in

Chapter 2. Therefore, the regression-spline based nonparametric sieve estimation

method can be directly applied to estimate τ(X).
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Following the same argument of sieve estimation discussed before, we seek to

estimate τ(x) in a sieve space spanned by B-splines

τ(x) =

qn∑
j=1

δjBj(x)

where Bj(x), j = 1, · · · , qn, the pre-specified spline basis functions, are given in Sec-

tion 2.3 of Chapter 2. qn specifies the dimensionality of the sieve space and increases

as sample size increases. The spline coefficients δ = (δ1, · · · , δqn) are then estimated

by δ̂ = (δ̂1, · · · , δ̂qn) based on OLS

δ̂ = arg min
δ

n∑
i=1

{
Yi −m(Xi)− {(Ai − π(Xi))}

qn∑
j=1

δjBj(Xi)

}2

(4.2)

Denote

D =


A1 − π(X1)

. . .

An − π(Xn)



B =



B1(X1) B2(X1) . . . Bqn(X1)

B1(X2) B2(X2) . . . Bqn(X2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B1(Xn) B2(Xn) . . . Bqn(Xn)


=



B(X1)

B(X2)

...

B(Xn)


where B(x) = (B1(x), · · · , Bqn(x)). Thus the OLS-estimation of δ is given by

δ̂ = (δ̂1, · · · , δ̂qn)
T

= ((DB)TDB)
−

(DB)T (Y −M) = (BTD2B)
−

(DB)T (Y −M)
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where Y = (Y1, · · · , Yn)T ,M = (m(X1), · · · ,m(Xn)T and

D2 =


(A1 − π(X1))

2

. . .

(An − π(Xn))2


The sieve estimator of τ̂(x) is then

τ̂(x) =

qn∑
j=1

δ̂jBj(x) (4.3)

To obtain the final estimator of τ , since τ = EX(τ(X)), we propose to estimate

τ using the empirical mean of τ̂(X). That is

τ̂ =
1

n

n∑
i=1

τ̂(Xi) =
1

n

n∑
i=1

qn∑
j=1

δ̂jBj(Xi) (4.4)

4.2.2 Three-Stage Estimation Procedure

Since m(X) and π(X) are unknown in reality, we need to replace them with

their corresponding estimators in order to compute τ̂(x) in (4.3) and τ̂ in (4.4). These

can be accomplished in the following three-stage estimation procedure.

• Stage 1: Nonparametric estimation of mean and propensity scores.

This stage remains the same as what we described in Section 3.3.1 of Chapter 3.

By using regression-spline based nonparametric sieve least-squares estimation
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method, m̂(x) may be obtained as

m̂(x) = α̂TB =

qn∑
j=1

α̂jBj(x)

where α̂j, j = 1, · · · , qn are the estimated spline coefficients

α̂ = (α̂1, · · · , α̂qn)T = (BTB)
−
BTY

Similarly, the regression-spline based nonparametric maximum likelihood esti-

mation (NPMLE) method yields π̂(x) with

π̂(x) =
exp

(∑qn
j=1 β̂jBj(x)

)
1 + exp

(∑qn
j=1 β̂jBj(x)

)

where β̂j, j = 1, · · · , qn are solved from

n∑
i=1

Bj(Xi)

Ai − exp
(∑qn

j=1 βjBj(Xi)
)

1 + exp
(∑qn

j=1 βjBj(Xi)
)
 = 0; j = 1, · · · , qn

by Newton-Raphson algorithm.

• Stage 2: Sieve estimation of τ̂(X) with plug-in estimated mean and propensity

score.

The estimated π̂(X) from Stage 1 is then substituted for the corresponding

π(X) in D for the sieve OLS estimation of δ̂; and the estimated m̂(X) from
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Stage 1 replaces the corresponding m(X) in the vector M . Let

D̂ =


A1 − π̂(X1)

. . .

An − π̂(Xn)


and M̂ = (m̂(X1), · · · , m̂(Xn)T ,

then

δ̂∗ = (BT D̂2B)
−

(D̂B)
T

(Y − M̂)

that yields a model free estimator of τ(X) given by

τ̂mf (x) =

qn∑
j=1

δ̂∗jBj(x)

• Stage 3: Empirical mean of τ̂mf (x) as the final estimator of τ .

For Xi = xi; i = 1, · · · , n we compute its empirical mean and obtain the model-

free estimator of τ by

τ̂mf =
1

n

n∑
i=1

τ̂mf (Xi)

4.2.3 Some Comments

• In the proposed three-stage procedure for the estimation of τ , the estimation of

τ(X) acts as an intermediate step. This intermediate step actually provides rich

and meaningful information in the analysis of heterogeneous treatment effect

other than estimating the overall average treatment effect. If the main pur-

pose of a causal study is to compare treatment effect among different groups of

people such as precision medicine, examining treatment heterogeneity will be a
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central task. The function τ̂mf (X) can be used to examine how the treatment

effect varies according to covariates X. So by making use of this estimated

covariates-specific treatment effect function, we are able to evaluate the specific

treatment effect for a given individual when the relevant covariates of the indi-

vidual X is provided. It is also easy to use τ̂mf (X) to characterize the group of

patients who are expected to benefit most from the treatment so that in prac-

tice researchers may learn from the data whom are the subjects that should

be treated. The IPW-type methods, however, cannot be directly applied to

examine heterogeneity through inverse weighting. Note that

E

(
AY

π(X)

)
= E

(
E

(
AY (1)

π(X)
|X
))

= E

(
Y (1)E(A|X)

π(X)

)
= E(Y (1)),

and E
(

(1−A)Y
1−π(X)

)
= E(Y (0)). It is clear that IPW doesn’t give estimators of

E(Y (a)|X); a = 1, 0 and results in an estimator with interpretation of popula-

tion ATE. Although this makes it simple to estimate ATE without bothering

treatment heterogeneity, it has the disadvantage of being inflexible to look into

the picture of heterogeneity.

• Another interesting question regarding the estimation of ATE in the presence of

heterogeneity is to see if our proposed method yields a consistent estimation of

τ when the treatment heterogeneity is ignored. Homogeneous treatment effect

can be considered as a special case of heterogeneous treatment effect. Since
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when τ(X) = τ , B = In
T , D̂B = (A1 − π̂(X1), · · · , A1 − π̂(Xn))T and

τ̂ =
1

n

n∑
i=1

τ̂mf (Xi)

=

∑n
i=1 {(Yi − m̂(Xi))(Ai − π̂(Xi))}∑n

i=1(Ai − π̂(Xi))2
(4.5)

On the other hand, in the case of τ(X) 6= τ if we ignore this fact of heterogeneity

and estimate τ by (4.5), then since (4.1) can be rewritten as

E(Y |A,X) = m(X) + (A− π(X))τ + (A− π(X)) (τ − τ(X)) (4.6)

and (A − π(X)) (τ − τ(X)) 6= 0. So the estimating equation derived from the

ordinary least-squares method is not unbiased and hence generally it won’t

result in a consistent estimator of τ .

4.3 Simulation Studies

4.3.1 Design

In this numerical study, we adopted similar simulation design as simulation

study (1) in Chapter 3. Two observed baseline covariates X1 ∼ uniform(−3, 3) and

X2 ∼ Bernoulli(0 · 4) act as confounders in the causal relationship of treatment A to

outcome Y without other observed or unobserved confounders. The true propensity

function is defined as

π(X) = P (A = 1|X1, X2)

=
exp(−2 + 0.4X2

1 + 0.3log(X2X
2
1 + 1)

1 + exp(−2 + 0.4X2
1 + 0.3log(X2X2

1 + 1)
(4.7)
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A = 1 associated with X was generated from Bernoulli(π(X)). Under this treatment

assignment mechanism, the true propensity scores are expected to fall in the range of

(0 · 1, 0 · 9). To create a heterogeneous treatment effect scenario, given the treatment

assignment indicator A and covariates (X1, X2), the outcome Y was generated based

on the following model

Y = −2 + 1.2X2
1 +X3

1X2 + τ(X1, X2)A+ ε (4.8)

where the random error ε ∼ N(0, 1.5) is independent of X = (X1, X2). We especially

designed the true conditional average treatment effect function τ(X1, X2) to reflect the

general situation in real world applications when the treatment heterogeneity pattern

is complicated and hard to predict: τ(X1, X2) = 1−4 exp(X1

2
)+2 ·5X2(X1+1)+2X2

1 .

The true population ATE τ is given by E(τ(X1, X2)) =
∫
τ(X1, X2) df(X1, X2). So

true τ is

τ = 1− 4/3× exp(3/2)− exp(−3/2)

6
+ 7 ≈ 2 · 32

4.3.1.1 Cubic B-spline Approximation of τ(X1, X2)

For the implementation of the first stage estimation of mean and propensity

scores, we still adopted the cubic B-spline based sieve method. Cubic B-spline was

only applied to X1 as X2 is a binary group indicator. The sequence of qn inner knots

(a = κ1 = κ2 = ξ3 = κ4 < κ5 < · · · < κqn < κqn+1 = κqn+2 = κqn+3 = κqn+4 =

b; a <= X1 <= b) for generating B-spline basis functions were placed at the qn − 3

quantiles of X1 with qn =
[n1/3]

2
. The mean and propensity scores were modeled the
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same fashion as in homogeneous case

m(X) =

qn∑
j=1

α
(1)
j Bj(X1) +

qn∑
j=1

α
(2)
j Bj(X1)X2

and

log

{
π(X)

1− π(X)

}
=

qn∑
j=1

β
(1)
j Bj(X1) +

qn∑
j=1

β
(2)
j Bj(X1)X2,

where Bj(X) is the normalized B-spline basis functions at the knots κj for j =

1, · · · , qn.

With m̂(X), π̂(X) obtained from the first stage, we examined the performance of

sieve estimation of τ̂(X1, X2) in the second step by modeling τ(X) as

τ(X) =

qn∑
j=1

δ
(1)
j Bj(X1) +

qn∑
j=1

δ
(2)
j Bj(X1)X2 (4.9)

We present the comparison of true curves and the corresponding estimated τ̂(X1, X2)

for sample size 300 in Figure 4.1. To plot the true curves and the estimated functional

curves shown in Figure 4.1, we first created a sequence of 300 data points Z1(i), i =

1, · · · , 300 in the interval [−3, 3]. A binary indicator Z2 was created in two scenarios

(i) all 1; (ii) all 0 with size 300. The true individual causal effects for each pair of

(Z1(i), Z2(i) = 1) and (Z1(i), Z2(i) = 0) were evaluated based on τ(Z1, Z2), respectively.

To obtain the estimated δ’s, we then generated 1000 datasets each with size 300 and

conducted the first stage estimation of mean scores and propensity scores with the

inner knots number for cubic B-spline of X1 being 3 within each simulated sample.

Thus
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D̂ and M̂ for each of the 1000 random samples are

D̂ =


A1 − π̂(X1(1), X2(1))

. . .

A300 − π̂(X1(300), X2(300))


;

M̂ = (m̂(X1(1), X2(1)), · · · , m̂(X1(300), X2(300))
T

For each sample, we obtained (δ̂(1), δ̂(2)) for (4.9) based on (B
T
D̂2B)

−
(D̂B)

T
(Y −M̂)

where B is

B =



B1(X1(1)) . . . B7(X1(1)) B1(X1(1))X2(1) . . . B7(X1(1))X2(1)

B1(X1(2)) . . . B7(X1(2)) B1(X1(2))X2(2) . . . B7(X1(2))X2(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B1(X1(300)) . . . B7(X1(300)) B1(X1(300))X2(300) . . . B7(X1(300))X2(300)



The predicted τ̂(Z1, Z2) was then obtained as τ̂(Z1, Z2) =
∑qn

j=1 δ̂
(1)
j Bj(Z1) +∑qn

j=1 δ̂
(2)
j Bj(Z1)Z2. The average over the 1000 predicted τ̂(Z1, Z2) were plotted vs.

Z1 for Z2 = 1 and Z2 = 0, respectively. In Figure 4.1, the black dots present the

true curves of τ(Z1, Z2) and the red dashed line is for the estimated curve of τ̂(Z1, 1);

the blue dashed line is for the curve of τ̂(Z1, 0). Figure 4.1 indicates that cubic B-

spline estimator of τ(Z1, Z2) in Stage 2 results in quite consistent estimation of the

true treatment effect function. As can be clearly seen in this figure, the estimated

functional curves of τ̂(Z1, 1) and τ̂(Z1, 0) are nearly the same as their corresponding
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FIGURE 4.1: Estimation of τ(X1, X2) with sample size 300

true curves. This means that (i) τ̂(Z1, Z2) is a consistent estimator of the heterogene-

ity; (ii) 1
300

∑300
i=1 τ̂(Z1(i), Z2(i)), the empirical mean of τ̂(Z1, Z2), is expected to be a

consistent estimator of τ .

An interesting point regarding the sieve estimation of τ̂(X) is whether it also

works in homogeneous treatment effect scenario. Theoretically, homogeneity can be

viewed as a special case of heterogeneity. Since in real applications the nature of

true underlying treatment effect pattern is usually unknown, we may hesitate to

make strong assumption of homogeneity. The question is when the true τ(X) is a

constant but we compute τ̂(X) following the three-stage estimation procedure for
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dealing with treatment heterogeneity, will τ̂(X) yield a consistent estimator of the

true constant effect? We used the simulation study (1) introduced in Chapter 3 to

gain some insights into this question. In simulation study (1), the true τ(X1, X2)

was set to be a constant 6. To estimate τ̂(X1, X2) (although now it is a constant)

based on the three-stage procedure in this simulation setting, we adopted the same

sets of (Z1(i), Z2(i) = 1), (Z1(i), Z2(i) = 0), i = 1, · · · , 300 and modeling strategies for

creating Figure 4.1 and presented the two estimated curves in Figure 4.2. The true

τ(Z1, Z2 = 1) and true τ(Z1, Z2 = 0) are 6 as depicted by the black horizontal line

in Figure 4.2. The red and blue dashed lines were plotted based on the estimated

τ̂(Z1, 1) and τ̂(Z1, 0), respectively. As shown in Figure 4.2, the black, red and blue

lines overlap with each other very well except for some slight discrepancies at the two

ends of X1. The average of τ̂(Z1, 1) and τ̂(Z1, 0) are reasonably close to the true 6,

6.023 and 6.006, respectively. This experiment gives empirical evidence that in general

we may employ the three-stage estimation procedure for the purpose of estimating

average treatment effect in both homogeneous and heterogeneous treatment effect

scenarios.

4.3.1.2 Estimators of τ from Various Competing Methods

The same set of competing methods described in Chapter 3 were used to com-

pare the performance of our proposed estimator with other conventional methods.

The hypothetical scenario that the outcome model (4.8)is known including the true

function form of τ(X1, X2) and we simply performed the maximum likelihood esti-

mation method was used as the benchmark for comparison as it gives the efficient

estimator of τ . For IPW methods, we considered two scenarios (i) true parametric
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FIGURE 4.2: Spline-based sieve estimator of τ(X1, X2) when the true τ(X1, X2) is
constant
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propensity model (IPW-pT) given in (4.7); (ii) wrongly specified ordinary logistic

regression model (IPW-pW) with covariates X1, X2 and the interaction term X1X2.

For AIPW, we again examined all four possible scenarios (i) AIPW-mT&pT: both

mean and propensity scores where modeled correctly by (4.8) and (4.7), respectively;

(ii) AIPW-mT&pW: the mean score model was specified correctly as given in (4.8)

but the propensity score model was specified wrongly as for the IPW-pW estimator;

(iii) AIPW-mW&pT: the propensity score model was specified correctly as given in

(4.7) but the mean score was wrongly specified as the ordinary linear regression model

with covariates X1, X2, X1X2, AX1, AX2 and AX1X2; (iv) AIPW-mW&pW: both the

mean and propensity score models were wrongly specified as aforementioned. Simula-

tion results for sample size 200, 400, and 800 are presented in Table 4.1, in which we

summarized Bias, M-C SD based on 1000 repetitions, ASE based on 100 bootstrap

samples, and 95% CP of the Wald 95% confidence interval. Our proposed method

was implemented in two ways: (i) MF(HME): estimating τ ignoring heterogeneity,

i.e. treating it as homogeneous treatment effect scenario; (ii) MF(HTE): modeling

τ(X1, X2) by (4.9).

Firstly, for our proposed method, Table 4.1 suggests that simply ignoring

heterogeneity by assuming τ(X1, X2) to be constant ( MF(HME) ) results in much

larger bias and variance than the estimators from modeling τ(X1, X2) nonparamet-

rically ( i.e, MF(HTE) ). This is not surprising since the nonparametric estimator of

τ(X1, X2) is consistent that it has a small bias for a wide range of underlying regres-

sion functions, but a constant estimator for τ(X1, X2) will only have a low bias if the

assumption of homogeneity holds i.e., τ(X1, X2) = τ , and can otherwise suffer from

large bias. Apparently, increasing sample size did not help for the bias. So when
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there exists heterogeneity MF(HME) is not a consistent estimator as shown in Figure

4.3 and its the coverage probability of 95% CI is totally off from 0·95. In contrast,

Table 4.1 indicates that MF(HTE) yields consistent estimator of τ with both bias

and variability only slightly inferior to MLE and AIPW with correctly specified mean

model. When sample size is large, the ASE and the M-C SD are quite close with the

coverage probability of 95% CI fairly close to 0·95. Asymptotic normality property

of MF(HTE) was also clearly shown in Figure 4.3.

Secondly, the IPW type methods including simple IPW, AIPW, Hahn’s method,

display the same pattern of bias, variability, coverage probability as in Table 3.1 for the

homogeneous treatment effect case: with correctly specified propensity model, IPW

resulted in unbiased estimators but are severely biased and not reliable when propen-

sity model was misspecified. Although in our simulation design the true propensity

scores are not expected to be extreme, we can still see much higher variability (com-

paring to MLE and MF(HTE)) even when the propensity score was correctly specified,

as indicated in Figure 4.3. The AIPW method with correctly specified mean model

performed much better than the IPW method and was helpful in reducing the high

variability due to inverse weighting. AIPW estimators with both misspecified mod-

els for mean and propensity scores are severely biased just as in IPW-pW. In this

simulation setting, Hahn’s methods seemed to perform well with propensity scores

estimated from correctly specified treatment assignment model and outcome modeled

nonparametrically. However, comparing to our proposed estimator, it still gave quite

larger variability due to inverse weighting.
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FIGURE 4.3: Distribution of Estimators from Various Methods for the simulation
study with heterogeneous treatment effect: True τ u 2.32
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4.4 Application of Model-Free Method in Estimating Heterogeneous Treat-

ment Effect in JIA Study

In Chapter 3, we described the exploratory analysis of estimating the treat-

ment effect of early aggressive use of biologic DMARDs vs. the Step-up treatment

plan among the eligible 327 pcJIA pediatric patients with complete 6-month cJADAs

outcome. Specifically, we assumed that the effect of early combination of biologic

DMARDs and non-biologic DMARDs in treating JIA is homogeneous across the

study sample and estimated the causal effect based on two clinical relevant baseline

characteristics: cJADAs, binary indicator of low pain (pain ≤ 3). Under the homo-

geneous treatment effect assumption, our propose model-free method gives an effect

of −1.271 with 95% confidence interval (−2.648, 0.106). Since in reality we are not

certain that this assumption of homogeneity holds, it is desirable to apply our ex-

tended model-free method discussed in this chapter to infer the heterogeneity in the

treatment effects. We explored the effectiveness of early aggressive use of biologic

DMARDs by addressing two questions: (i) whether patients with different baseline

disease severity are likely to respond differently to biologic DMARDs treated at early

stage ; (ii) by taking into the fact of heterogeneity whether or how much the estimated

ATE will differ?

We still considered the two covariates cJADAs and low pain indicator in exam-

ining the potential heterogeneous pattern of treatment effect. Therefore, we modeled

the mean and propensity scores in the same way as in the simulation study discussed

in section 4.3. The cubic B- spline of cJADAs was constructed exactly the same as

described in Chapter 3: 3 interior knots were placed at 25%, 50%, 75% percentiles of
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the baseline cJADAS. For each of the 5 imputed datasets, we conducted the spline

estimation of τ(X) at the second stage using three-stage estimation procedure and

presented all the estimated individual treatment effects based on the 5 datasets in

Figure 4.3 with red dots denoting patients from the low pain group and green dots for

patients from the moderate to severe pain group. The green line and red line are the

smoothing curves over the green dots and red dots, respectively, using LOESS tech-

nique (with smoothing parameter span defined as 0.75). The vertical black dashed

line in Figure 4.3 represents median value of cJADAs (score 15) and the horizontal

black dashed line is for borderline effect (0).

Figure 4.3 implies that the treatment effect is likely to be heterogeneous in

terms of baseline cJADAs and severity of pain among the study patients. The average

treatment effect for the low pain group was estimated to be about -1.47 while for its

reference group about -0.97. The green dots and red dots clearly display different

patterns in term of baseline cJADAs. When cJADAs is above median (15 or more),

both the red line and green line are below the horizontal reference line and going down

as cJADAs increases, which indicates that both groups benefit from the early use of

biologic DMARDs if their baseline cJADAs score is 15+ and the effect is seen to be

even more pronounced with higher cJADAs scores for patients in low pain. However,

when cJADAs is below 15, the trend of treatment effects are quite different and tells

different story for the two groups. Early use of biologic DMARDs started to show

effect to reduce the cJADAs for the low pain group when their baseline cJADAs score

is 4 and above and for those patients experiencing low pain and cJADAs score around

7 to 10, the benefit from biologic DMARDs is likely to reach the maximum of about

-5. For the patients in the moderate to high group, it seems to be opposite as most
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of the green dots locate above the horizonatal reference line of border effect when

the baseline cJADAs is between 7 and 15, which is interesting. We can also see from

this plot that the moderate to high pain group also tended to have extreme larger

baseline cJADAs scores (> 25) while patients in the low pain group are more likely to

have baseline cJADAs scores < 5 so data is sparse at the two ends for either groups

although the distribution of low pain show good balance when cJADAs is between

5 and 25. As our analysis was limited to these two covariates and the sample size

is only around 300, not very large, care might need to be taken to interpret these

findings of treatment heterogeneity in terms of baseline cJADAs. Nevertheless, there

is an indication based on this analysis that patients with different baseline disease

severity might respond to biologic DMARDs differently. At lower level of the baseline

cJADAs, patients experiencing no or mild pain will likely to benefit more from early

use of biologic DMARDs in treating their JIA disease while at high level of cJADAs

this benefit seems to be more sounding for patients who experienced moderate to high

pain.

To make statistical inference about the average treatment effect while taking

into the consideration of heterogeneity, we implemented the three stage estimation

procedure for each of the 5 imputed datasets and used 500 bootstrap samples to obtain

standard errors. The result shows that with modeling of treatment heterogeneity in

baseline cJADAS low pain, the population average treatment effect was a bit smaller

than the estimator assuming homogeneous effect: −1.154. The estimated standard

error is round 0.732, slightly larger than that in homogeneous effect scenario. The

corresponding 95% confidence interval is (−2.589, 0.281).
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FIGURE 4.4: Estimated functional (in terms of baseline cJADAs and low pain) curves
of heterogeneous treatment effects
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CHAPTER 5

Application of OLS-based Method in Observational Studies with A Large

Set of Covariates

5.1 Curse of Dimensionality and Machine Learning Methods in Causal

Inference

It was emphasized in the previous analyses of JIA study that only two base-

line characteristics were incorporated in the estimation of the treatment effect of early

combination of biological DMARDs. As introduced in Chapter 3, in addition to these

two selected covariates, there are many more baseline characteristics that could be

potential confounders and modifiers of the treatment effect. A more accurate estima-

tor of treatment effect relies on a scrutinization of the complete set of confounders

and treatment effect modifiers. With many baseline characteristics taken into con-

sideration, it is not feasible to apply traditional nonparametric methods as discussed

in the two-stage or three-stage estimation procedure in order to estimate the treat-

ment effect. Due to curse of dimensionality, this limitation does not just apply to our

proposed model-free method but also to all methodologies involving nonparametric

estimation.

This curse of dimensionality in nonparametric estimation can be illustrated

using the data from JIA study. With baseline cJADAs and binary indicator of low

pain, in the cubic B-spline regression with 3 interior knots for estimating mean scores

(also propensity scores and treatment effect function), there are 7+7 = 14 spline basis
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functions constructed so 14 coefficients needs to be estimated based on 327 observed

samples. Suppose now we are knowledgeable that another measure of baseline disease

severity, loss motion of range (lom for short), is also an important counfounder and

better to be taken into account in the propensity score estimation. If cubic B-splines

are to be applied with 3 interior knots for lom, there are 7 more basis functions from

this additional covariate. And if we would like to consider the pairwise interactions

(tensor splines) among cJADAs, lom, low pain indicator, there will be 14 × 7 = 98

coefficients in total to be estimated based on the 327 observed samples. As can be

imagined, with more covariates added into the nonparametric estimation process,

the dimension of model parameter space increases in a polynomial order and causes

computing trouble with a moderate data set in traditional MLE or OLS approaches.

For modeling with large number of covariates, one often considers generalized

additive models (Hastie and Tibshirani, 1986) as it compromises the curse of dimen-

sionality in nonparametric modeling techniques. Suppose we want to make inference

about an unknown function f that predicts the average treatment effect τ using a p

dimensional vector of inputs X = (x1, · · · , xp), i.e

τ(X) = f(x1, · · · , xp)

For an additive model, f(x1, · · · , xp) is modeled by

f(x1, · · · , xp) = g1(x1) + · · ·+ gp(xp)
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With the additive model, the dimension of model parameter space would not grow in a

polynomial order of the number of covariates. Hence it may make the nonparametric

estimation implementable. In the above example, if model τ(X) is modeled additively

with the 3 covariates: cJADAs, lom and low pain. With the same strategy of applying

cubic B-splines to cJADAs and lom, the total coefficients to be estimated will be

reduced to 7 + 7 + 1 = 15, which is much smaller than 98 and make the computation

much easier.

Alternatively, some machine learning methodologies can be adopted for case

studies with large number of covariates to obtain practical solutions. Machine learning

is a modern technology that has been widely used in the statistical analysis including

prediction, classification, learning association, regression etc. for high dimensional

data. This thesis is not intended to give a thorough discussion regarding the topics

of machine learning or developing a new approach. Rather, we focus on the applica-

tion of a couple of existing popular machine learning methods and discuss how their

strengths in dealing with a large set of covariates can be borrowed into our proposed

model-free method in estimating the two summary scores. Compared to the additive

modeling approach, machine learning methods are more powerful as they typically

also take care of interactions among a large set of covariates. For making prediction

in both regression and classification problems, tree-based machine learning methods

have become quite popular due to its flexibility in fitting interactions and nonlineari-

ties. Many tree-based algorithms, for example, boosting (Freund and Schapire, 1997;

Friedman, 2001) , random forests (Breiman, 2001) and bagging (Breiman, 1996), gen-

eralized boosted models or gradient boosting machine (GBM) (Natekin and Knoll,

2013; Ridgeway, 2005), Bayesian additive regression tree (BART) (Chipman et al.,
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2010) have been developed with computing softwares available in R. We choose BART

and GBM for study in this thesis and briefly introduce the two methods as follows.

• BART is a Bayesian method for estimating a nonparametric function using

sums of regression trees. Consider the problem of nonparametric estimation of

some unknown function f in the regression problem of Y = f(Z) + u given

in (2.1) in Chapter 2 where var(u) = σ2 < ∞ and Z = (z1, · · · , zp) is a p

dimension of predictor space. BART models f(Z) as a sum of distinct m trees

f(z) =
m∑
i=1

gi(z;T,H)

where each function gi(z;T,H) represents a binary tree whose structure de-

noted by T and terminal nodes (leaves) given by H = {µ1, · · · , µl}. Each tree

gi(z;T,H) specifies how an observation goes through according to the splitting

rules (typically in the form of zp ≤ c; p = 1, · · · , d with c being a threshold value

within the range of values of zp ) defined by its internal nodes until reaching

its terminal node. In other words, each tree gi(Z;T,H) contains information

of how an observation should be partitioned and stops at a certain terminal

value. The sum of all such trees, i.e
∑m

i=1 gi(z;T,H) is also called an ensemble-

of-trees. Different from other ensemble-tree-based machine learning methods,

BART adopts three Bayesian nonparametric priors for T , H and σ2, respec-

tively. The joint prior probability can be expressed as

P (gi(z;T,H), · · · , gm(z;T,H), σ2) =

[
m∏
i=1

P (H i|T i)P (T i)

]
P (σ2)

=

[
m∏
i=1

l∏
h=1

P (H i
h|T i)P (T i)

]
P (σ2)
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P (T i) controls the complexity of the ith tree with two important parameters:

the relative location of a nonterminal node to the root, also called the depth;

(P1, · · · , Pp);
∑p

j=1 Pj = 1, a vector of specified probabilities of being chosen for

serving as the splitting variable among all the available predictors. P (H i|T i)

defines the prior for leaf parameters and in regression problem it typically adopts

a normal distribution resulting in the ”best guess” of ŷ = µl in the partition

of predictor space. The prior for error variance P (σ2) is often chosen to shrink

P (H i|T i) towards the center of the distribution of y and plays a role in model

regularization. BART relies on Markov Chain Monte Carlo (MCMC) technique

for sampling from posterior distributions. At each iteration step, given the

three sets of priors the algorithm specifies the likelihood of y in the leaves as

y ∼ N(µl, σ̂
2) where µl is the current best fit of partition and σ̂2 is the current

best guess of the variance. With the total number of trees to be fitted being

m, to obtain posterior distribution of P (gi(z;T,H), · · · , gm(z;T,H), σ2|y) and

make prediction, BART uses the Gibbs sampler (Geman and Geman, 1984) to

conduct Bayesian back-fitting (Hastie and Tibshirani, 2000), in which the ith

tree fitted iteratively while keeping the other m − 1 tress fixed to construct

partial residuals that explained only by the ith tree. Then by drawing a large

number of MCMC samples over the ensemble-of-trees model space evaluated

at zj, a posterior mean estimate of the target function f for a given value of

zj can be obtained by taking the average of these draws. Detailed discussion

regarding BART algorithm, how the MCMC is implemented as well as how

BART deals with classification problem can be found in (Chipman et al., 2010;

George and Jensen, 2014; Kapelner and Bleich, 2016). Some popular R packages
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for BART include {BART} (McCulloch et al., 2019), {bartMachine} (Kapelner

and Bleich, 2018).

• GBM is a popular tree-based machine learning method using gradient-descent

based boosting algorithms (Freund and Schapire, 1997; Friedman, 2001). Fun-

damentally, estimation of f(Z) in the above nonparametric regression problem

based on boosting is achieved by minimizing some type of specified loss function,

such as the classical L2 squared loss function when y is continuous. Using the

notation in (Natekin and Knoll, 2013), f̂(z) = arg minf(z)Ez [Ey(Ψ(y, f(z))|z]

where Ψ(y, f) is the loss function. Like in BART, the unknown function f

is first parametrized in the additive form of
∑m

i=0 fi(z) with f0(z) being the

initial guess and m the number of total iterations called boosts. To initiate

the iterative process, a base-learner function denoted as h(z, θ) is first defined

based on which the successive functional increments are constructed through

greedy search. The optimization rule for the function estimate at the dth it-

eration is defined by f̂d−1 + ρdh(z, θd)→ f̂d and (ρd, θd) are estimated through

optimization

arg min
ρ,θ

N∑
i=1

Ψ(yi, f̂d−1(zi)) + ρh(zi, θ)

where Ψ(yi, f̂d−1(zi)) are the residuals from the previous step of fitting. In

the implementation of the gradient-descent boosting algorithm, particularly we

first evaluate the negative gradient {gd(zi)} over the observed data points of

(zi, yi); i = 1, · · · , n as

gd(z) = Ez

[
∂Ψ(y, f(z))

∂f(z)
|z
]
f(z)=f̂(d−1)(z)
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and then choose a new function h(z, θd) such that

(ρd, θd) = arg min
ρ,θ

n∑
i=1

−gd(zi) + ρh(zi, θ)

Simply speaking, GBM repetitively trains the residuals from the previous step

of fitting and improve the overall fit by adding new increments to the ensemble

of trees sequentially. For the classification problems using GBM, the rational

behind the iterative process is similar as in regression problem except that the

loss function should be defined appropriately for categorical outcome. Chal-

lenges of applying GBM in real application arise as it is tricky to choose the

tuning hyperparameters for optimal fit and prediction. The most commonly

used tuning hyperparameters in GBM implementations include the total num-

ber of trees to fit, the depth of trees controlling the complexity of the boosted

ensemble, the learning rate or shrinkage controlling the speed the algorithm

proceeds down the gradient descent and subsampling controlling whether or

not a fraction of the available training observations is used for fitting. There

are also a few choices of software in R for implementing GBM, such as {gbm}

(Hijmans et al., 2019), {dismo} (Hijmans et al., 2017).

BART or GBM can be used in multiple ways for the purpose of estimating treat-

ment effect depending on the methods we shall adopt to solve the problem. One

intuitive way is to use them in the outcome regression and based on the idea of G-

computation to make prediction for E(Y 1) and E(Y 0), respectively, and then compute

τ̂ = Ê(Y 1) − Ê(Y 0). That is, we consider applying BART or GBM to estimate an

unknown function g that predicts outcome Y using the treatment indicator and a p di-
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mensional vector of inputs X = (x1, · · · , xp) (i.e, E(Y |X,A) = g(A, x1, · · · , xp)). Al-

ternatively, both methods can be applied to estimate an unknown function f that esti-

mates the propensity scores using a q dimensional vector of inputs X∗ = (x1, · · · , xq)

(i.e, P (A = 1|X∗) = E(A|X∗) = f(x1, · · · , xq)). X could be the same as X∗ but

not necessarily. The non-parametrically estimator P̂ (A = 1|X∗) can then be fed

into either IPW or AIPW methods to compute τ̂ . It is straightforward that both of

BART and GBM can also be incorporated easily into the first stage of our proposed

model free method to estimate mean and propensity scores, the only difference is

that to estimate mean scores, we seek to estimate an unknown function g∗ such that

E(Y |X) = g∗(x1, · · · , xp). So in general applying our proposed method to studies

involving large set of covariates X will necessarily include the following steps:

(i) using the existing machine learning methods to compute m̂(X) and π̂(X).

(ii) determining the set of covariates Xo used for the estimation of τ(Xo)

based on prior knowledge of potential treatment modifiers. In this step, to avoid

computation difficulties, we will apply additive models or at most consider only the

interactions of some binary covariates and continuous covariates.

(iii) obtaining the final estimator of average treatment effect τ̂ by taking av-

erage of τ̂(Xo).

(iv) computing the standard error through bootstrapping to make statistical

inference.

5.2 Application of Various Machine Learning Methods in JIA Study

The purpose of this final analysis discussed in this Chapter is to obtain a

more accurate estimator of the treatment effect of using early combination of biologic

105



DMARDs compared to the step-up treatment plan by considering all the baseline

characteristics listed in Table 5.1 in addition to baseline cJADAs and pain. P values

in Table 5.1 are from Wilcoxon test (for continuous variables) or Fisher’s exact test

(for categorical). These baseline characteristics include baseline age (age), indicator

of private insurance (private), gender (Female), ANA positive indicator (ANA posi-

tive), loss range of motion (lom), race (white), well being, md global assessment (md

assessment), active joint count (AJC), esr, indicator of B27 being positive (B27),

indicator of rheumatoid factor positive (RF positive), time to diagnosis relative to

baseline visit (timediag), morning stiff levels (1: no stiffness, 2: 15 min or less, 3:

> 15 minutes) (ms1, ms2), Jra disease subtypes (1: RF (-), 2: RF (+), 3: oligoartic-

ular, 4: other ) (subtype1, subtype2, subtype3). We used the widely used R packages

{bartMachine}, {gbm} to implement the BART, GBM methods in the estimation of

treatment effect of interest for JIA study. Equipped with these tools, we can easily

incorporate all the baseline characteristics listed above into the estimation process.

In addition, for the propensity score estimation we also used the R package {CBPS}

(Fong et al., 2019) to obtain the so-called covariate balancing propensity scores, which

are not based on machine learning methods but have the desired property of providing

optimal balancing for the covariate being considered.

5.2.1 Notation for Estimators from Various Methods

In order to compare the estimators among various methods, we consider the

following combinations:

• Outcome regression from BART and GBM, denoted as BART-G and GBM-G,

respectively.
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TABLE 5.1: Baseline characteristics of the JIA study population by the two treatment
arms

Baseline Covariates Step-up Early Combination P value

Age 10.2 ± 5.07 10.2 ± 4.61 0.88

Female 161 (71.6%) 74 (72.5% ) 0.89

White 195(86.7%) 91(89.2%) 0.59

Private insurance 153(68%) 65(63.7%) 0.45

Jra subtype Polyarticular RF (-) 79(35.1%) Polyarticular RF (-) 46(45.1%) 0.3

Polyarticular RF (+) 17(7.6%) Polyarticular RF (+) 9(8.8%)

oligoarticular 68(30.2%) oligoarticular 24(23.5%)

other 61(27.1%) other 23(22.5%)

Time to diagnosis (in month) 1.30 ± 1.93 1.41 ± 2.16 0.58

Active joint count 4.92 ± 3.58 6.13 ± 3.72 0.01

Wellbeing 3.50 ± 2.42 4.36 ± 2.63 0.007

MD Assessment 4.37 ± 2.46 4.96 ± 2.84 0.12

Morning stiffness no stiffness 65(28.9%) no stiffness 17(16.7%) 0.04

15 min or less 35(15.6%) 15 min or less 15(14.7%)

> 15 minutes 125(55.6%) > 15 minutes 70(68.6%)

Loss range of motion 5.60 ± 7.19 10.1 ± 12.2 0.0001

Esr 20.6 ± 19.0 27.2 ± 26.1 0.06

Rheumatoid Factor postive 14(6.2%) 13 (12.7%) 0.05

Antinuclear Antibodies positve 17(7.6%) 15(14.7%) 0.07

HLA-B27(Yes) 9(4%) 9(8.8%) 0.11
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• IPW-psCB, IPW-psBART, IPW-psGBM with propensity scores from CBPS,

BART, GBM, respectively.

• All the combinations of methods in outcome and propensity score estimation

for AIPW: for example AIPW-BART-psCB denotes the AIPW with the out-

come modeled with BART and propensity scores with CBPS. The others op-

tions are: AIPW-BART-psBART, AIPW-BART-psGBM, AIPW-GBM-psCB,

AIPW-GBM-psBART, AIPW-GBM-psGBM.

• As for our proposed method, we considered heterogeneous treatment effects

along with all the combinations of different methods in mean scores and propen-

sity scores estimation. So we came up with 6 estimators: MF(BART-psCB),

MF(BART-psBART), MF(BART-psGBM), MF(GBM-psCB), MF(GBM-psBART)

and MF(GBM-psGBM). For example, MF(BART-psCB) denotes the method

with mean scores based on BART, propensity score from CBPS.

To define the set of covariates for τ(X), in addition to baseline cJADAs and low

pain indicator considered in the previous analyses of heterogeneous treatment

effects, we added in two more variables: the actual follow-up time (denoted as

diffVisits) for the assessment of 6-month outcome and the morning stiffness.

The 6-month outcome assessment time for each study patient was defined as

the closest visit time to 6 month after baseline visit within the window of 4 to

8 months and if a patient didn’t have follow-up visit within this window but

had 3 month visit, we then imputed the 6-month outcome by carrying over

the 3-month outcome forward. As a result, the 6-month outcome assessment

time varies across the study sample. Out of the 327 patients with defined

6-month cJADAs score, it was found that about 75% of them actually were
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assessed before 6 month with about 25 % were even around 3 months. Since

it is highly likely that the treatment effect of early use of biological DMARDs

is time dependent, we consider the diffVisits as a potentially important vari-

able for examining treatment effect heterogeneity. Morning stiffness is also an

important measure of disease severity that may associate with the effect of bi-

ological DMARDs. With three levels of morning stiffness, one dummy variable

was created as I(MF = 3). Thus, we have two continuous variables cJADAs

and diffVisits, two binary indicators including low pain, morning stiffness level

being 3. We adopted the following modeling techniques in the spline estimation

of τ(X)

E(τ |x1, x2, x3, x4) = f1(x1) + f2(x2) + αx3 + f3(x1)× x4

where f1(x1) and f2(x2) are cubic B-spline expansion of cJADAs and diffVisits,

respectively. x3 and x4 are dummy variables of I(MF = 3) and I(pain ≤ 3),

respectively. This means that x1, x2, x3 are additive but as we found possible

interaction between cJADAs and low pain indicator in previous analysis, we

still kept this interaction term in the model of τ(X).

• Reg-parm: estimator from parametric multiple linear outcome regression while

considering interactions between treatment and cJADAs, treatment and diffVis-

its, treatment and low pain, treatment and morning stiffness.
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5.2.2 Relative Importance of Variables and Interactions in the Estima-

tion of Mean and Propensity Scores

The introduction of machine learning methods aims at estimating mean and

propensity scores at the first stage. We started with a complete set of baseline co-

variates (a total of 19) and let BART/GBM do the rest job of estimation. Although

our main purpose is to obtain m̂(X) and π̂(X) without bothering of digging into the

details about how the models being fitted, investigation of the important variables

in predicting outcome as well as treatment assignment is helpful for gaining some in-

sights into the observed data and the underlying associations among these variables.

Moreover, as two different machine learning algorithms were used, the question of

whether these two approaches are comparable in the outcome regression or propen-

sity score modeling is worth of exploration. To answer this question, we inspected the

relative importance of variables for the mean score estimation and propensity score

estimation based on BART and GBM, respectively. In ensemble-tree-based meth-

ods, the relative importance of variables is considered as an important guideline for

variable selection as it is calculated according to the “inclusion proportion” in the

trees during the iteration process of model fitting. In GBM, the measure of relative

importance for each variable is based on the number of times that variable is selected

for splitting, weighted by the squared improvement to the model as a result of each

split, and averaged over all trees (Natekin and Knoll, 2013). Similarly, in BART,

for any given predictor this quantity is calculated as the proportion of times that

this predictor is involved in defining a splitting rule out of all rules appearing in the

sum-of-trees model among the posterior draws(Kapelner and Bleich, 2016).
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We randomly chose one out of the 5 imputed datasets for the illustration of

variable selection in BART and GBM. It was found that the performance of prediction

is not much sensitive to the chosen tuning hyper parameters in this case. We report

the final results based on the following specified values for tuning parameters (i)

BART: default values in bartMachine package for the hyperparameters of defining

the prior probabilities. The number of trees to be grown: 200; number of burn-in

iterations: 500; post-burn-in samples for prediction: 1000 (ii) GBM: tree complexity:

3; learning rate or shrinkage 0.005; bagging fraction: 0.5, number of trees to be grown

depends on the tree complexity and shrinkage. Relative importance of all covariates,

two-way interactions in estimation of the two summary scores from both methods are

represented in Figure 5.1 and Figure 5.2.

• According to Figure 5.1, the ranks (from highest to least relative importance)

of the top 10 selected variables based on BART are baseline cJADAs, lom,

private, subtype3, white, subtype1, ms1, RF postive, age,subtype2. Based on

GBM, this order is baseline cJADAs, age, lom, md assessment, pain, timediag,

subtype3, well being, white, esr. So the two methods agree on the most im-

portant variable, i.e the baseline cJADAs and there are 5 common variables

among the top 10 selected variables by each method. The Pearson correlation

of the predicted mean scores from the two methods is about 0.93. As for the

relative importance of two-way interactions among the 19 variables, in BART,

results indicate that the top 5 important two-way interactions are: subtype1 by

white, subtype3 by baseline cJADAs, lom by baseline cJADAs, ANA positive

by baseline cJADAs, white by pain. In GBM, however, the variables from the
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top 5 two-way interactions involving baseline cJADAs include baseline age, lom,

white, timediag and subtype3.

• Figure 5.2 shows that in the propensity model fitting, the top 10 important

variables selected by BART are lom, baseline cJADAs, B27, ANA positive, RF

positive, timediag, ms2, well being, pain and age, while in GBM these top 10

important variables are baseline cJADAs, lom, timediag, esr, age, pain, well

being, ANA positive, md assessment and pain. Although there are 8 common

variables, the most important variable given by the two methods don’t agree

with each other. The Pearson correlation of the predicted propensity scores

from the two methods is about 0.88. For the two-way interactions, the top 5

important ones from BART are B27 by lom, lom by RF positive, timediag by

ANA postive, subtype1 by private and B27 by timediag, from GBM are esr by

lom, timediag by baseline cJADAs, timediag by lom and baseline cJADAs by

esr.

We also present the scatter plot of estimated mean/propensity scores from BART

against that from GBM in Figure 3. Figure 3 suggests that although there exists

discrepancies in the variable selection procedures of the two methods, the resulted

mean scores and propensity scores are highly correlated and comparable.

5.2.3 Diagnosis of Propensity Scores from Different Methods

In real applications involving propensity score estimation, to assess whether

propensity score modeling resulting in valid propensity scores, it is a common prac-

tice to examine the degree of overlapping of the estimation propensity scores between

the two treatment arms, and the baseline covariates balancing before and after being
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FIGURE 5.1: Relative variable importance of the baseline covariate and their two
way interactions in mean score estimation
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FIGURE 5.2: Relative variable importance of the baseline covariate and their two
way interactions in propensity score estimation
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FIGURE 5.3: Scatter plots of estimated mean and propensity score from BART verse
from GBM
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weighted by the estimated propensity scores. We showed in Figure 5.3 that BART

and GBM yield comparable propensity scores. To make comparison of all the three

different methods, i.e. CBPS, BART and GBM adopted in propensity scores model-

ing, we used the boxplots to present the distributions of estimated propensity scores in

Figure 5.4. As indicated in Figure 5.4, the overlapping of the two treatment groups for

all three methods are satisfactory although the GBM method gave relatively higher

propensity scores for the early combination group (therefore more separated) than

the other two methods. The covariates balancing diagnosis was illustrated in Figure

5.5. As the three methods are comparable, we only presented the statistics based on

BART method in this plot. The threshold of standardized mean difference for assess-

ing the balance of covariates between the two treatment arms is usually 0.2. Figure

5.5 suggests that more balance for the majority of the baseline characteristics was

achieved in the weighted sample after incorporating the estimated propensity scores

from BART. The standardized mean difference for all the 20 variables are less than

0.2 in the weighted sample. This indicates that the estimated propensity scores are

valid and appropriate for use in the inference for causal treatment effects.

5.2.4 Heterogeneous Treatment Effects

With the variables diffVisits and morning stiffness added into the treatment

effect function modeling, we reexamined the heterogeneous pattern of the treatment

effects and presented the heterogeneity from different perspectives in Figure 5.6. The

dots in Figure 5.6 are the estimated individual treatment effects and the colored

curves are the corresponding smoothing LOESS curves. The left two panels from up

to down are for the estimated curves of treatment effect as a function of follow-up
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FIGURE 5.4: Distribution of estimated propensity scores from CBPS, BART and
GBM, respectively, by treatment groups
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FIGURE 5.5: Diagnosis of estimated propensity scores for assessing the covariates
balancing
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time stratified by morning stiffness and low pain, respectively. In the right two panels

from up to down, we plotted the estimated curves of treatment effect as a function of

baseline cJADAs by morning stiffness and low pain, respectively. We also used the

vertical line at exactly 6 month to detect possible different trend before and after 6

month. The reference score for cJADAs is still 15, the median. First, the left two

plots imply that treatment effect is kind of stable before 5 month of follow up and

starts getting stronger after around 6.5 month. There is much variation in the effects

between 5 and 6 month, but the overall effect is positive. The trends for the two

morning stiffness groups and the two pain groups are similar over time. Second, the

right two plots show similar trend of treatment effect with respect to cJADAs as seen

in Figure 4.3: more beneficial effect of early use of biologic DMARDs was seen among

those patients with cJADAs score 15+ than those had less cJADAs score at baseline.

Patients with morning stiffness being 3 (> 15 minutes) seem to enjoy less benefit

from early use of biologic DMARDs than the other two reference groups. Also, the

interaction effect of cJADAs and low pain indicator still presents in the right bottom

plot and biologic DMARDs could be effective in lowing down the cJADAs during

follow up for those patients experiencing moderate to sever pain with cJADAs score

15+.

5.2.5 Estimated Average Treatment Effects

Table 5.2 presents a summary of the statistics of all the estimators from various

methods described in section 5.2.1. For each of these estimators, we used 200 boot-

strapping samples to compute its standard error, based on which the 95% confidence
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FIGURE 5.6: Examination of heterogeneous treatment effects with respect to baseline
cJADAs, 6-month outcome assessment time, low pain and severe morning stiffness

120



FIGURE 5.7: Estimators of treatment effect and 95% confidence intervals

intervals was constructed. We also plotted all the estimators with their corresponding

95% confidence intervals in Figure 5.7.

According to Table 5.2 and Figure 5.7, the estimated treatment effects given

by all the estimators are below 0 with the biggest effect given by MF(BART-psBART)

−1.769 and the smallest effect from GBM-G −0.611. All the estimators based on our

proposed methods , i.e. MF(BART-psCB), MF(GBM-psCB), MF(BART-psBART),

MF(GBM-psBART), MF(BART-psGBM) and MF(GBM-psGBM) give 95% confi-

dence intervals below 0. It suggests that there is strong evidence of significant treat-

ment effect of early aggressive use of biological DMARDs among this study popu-
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TABLE 5.2: Comparison of estimated average treatment effect of early combination
among all the methods

Estimator Ste. 95%lower 95%upper

BART-G -1.240 0.564 -2.346 -0.134

GBM-G -0.611 0.653 -1.892 0.669

Reg-parm -1.504 0.687 -2.850 -0.158

IPW-psBART -1.322 0.624 -2.545 -0.100

IPW-psCB -1.344 0.679 -2.674 -0.014

IPW-psGBM -1.404 0.752 -2.879 0.070

AIPW-BART-psCB -1.465 0.632 -2.702 -0.227

AIPW-BART-psBART -1.380 0.608 -2.572 -0.188

AIPW-BART-psGBM -1.434 0.659 -2.726 -0.142

AIPW-GBM-psCB -1.025 0.600 -2.201 0.151

AIPW-GBM-psBART -0.983 0.584 -2.129 0.162

AIPW-GBM-psGBM -1.268 0.667 -2.575 0.039

MF(BART-psCB) -1.725 0.692 -3.082 -0.369

MF(GBM-psCB) -1.229 0.505 -2.218 -0.240

MF(BART-psBART) -1.769 0.748 -3.234 -0.304

MF(GBM-psBART) -1.285 0.549 -2.361 -0.209

MF(BART-psGBM) -1.705 0.759 -3.194 -0.217

MF(GBM-psGBM) -1.333 0.605 -2.519 -0.148
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lation at level 0.05. As presented in Chapter 3 and 4, with only baseline cJADAs

and low pain indicator involved in the treatment effect estimation, the treatment

effect is found to be about −1.1 with non-statistical significance at level 0.05. There-

fore more pronounced treatment effect was revealed after taking into account a more

complete set of baseline covariates. Although we found similarity in the estimated

mean/propensity scores between the two machine learning methods, it is quite inter-

esting to notice that the three estimators with mean score estimated from BART (

MF(BART-psCB), MF(BART-psBART) and MF(BART-psGBM) ) give comparable

effects around −1.7 while the three estimators with mean score based on GBM (

MF(GBM-psCB), MF(GBM-psBART) and MF(GBM-psGBM) ) yield similar results

close to−1.3. And, the standard error associated with MF(BART-psCB), MF(BART-

psBART) and MF(BART-psGBM) are larger than the three estimators with mean

score based on GBM therefore resulting in wider confidence intervals. The most

narrow 95% confidence interval is given by MF(GBM-psCB) while the biggest point

estimator of treatment effect is given by MF(BART-psBART). The results also imply

that in this specific case study the estimated treatment effect is more driven by the

modeling strategy of mean scores than by modeling of propensity scores.

Among the three estimators not involving propensity scores, BART-G and

Reg-parm result in significant average treatment effects at level of 0.05. The variables

used in specifying treatment effect heterogeneity in Reg-parm are the same as in esti-

mators from our proposed method but the resulting treatment effect from Reg-parm

is about −1.5, which is different from those given by our proposed method. As shown

in Figure 5.6 and discussed in the section 5.2.4 of heterogeneous treatment effects,

the estimated curves of treatment effects as function of diffvisit, baseline cJADAs
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may not be simply linear. So effect given by Reg-parm might not be reliable and not

necessarily preferable than the effects given by our proposed methods. Interestingly,

GBM-G gives much smaller effect, −0.61, than BART-G.

Among the three estimators based on IPW, IPW-psGBM doesn’t yield a signif-

icant treatment effect at 0.05 level with widest confidence interval while IPW-psBART

and IPW-psCB give very similar treatment effects, around −1.3. For AIPW, the three

estimators associated with the outcome being modeled by BART show significance

at 0.05 level with the estimated treatment effect around −1.4. With the outcome

modeled by GBM in AIPW the estimated treatment effects are a bit smaller with

no evidence of statistical significance at level 0.05. Since the estimated propensity

scores fall in the range about (0.15, 0.8), no severe issue of extreme inverse proba-

bility weights were observed for the IPW and AIPW. It is however noticeable that

when GBM is used in outcome modeling our proposed method results in smaller

bootstrapping standard errors than its counterpart of AIPW. For example, standard

error associated with AIPW-GBM-psBART is 0.584, larger than that of MF(GBM-

psBART) 0.549. Although when BART is used in outcome modeling our proposed

method gives larger standard errors than those AIPW, but both methods yield sig-

nificant treatment effects.
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CHAPTER 6

Conclusion And Discussion

6.1 Conclusion

In this thesis we proposed some nonparametric spline-based sieve estimation

methods for causal treatment effects in the spirit of ordinary least-squares method.

We elaborated on how this proposed OLS-based method can be applied to estimate

homogeneous treatment effect, and to study heterogeneous effects pattern as well as

to estimate average treatment effect when there exists heterogeneity in treatment ef-

fects. When X is a low-dimensional covariate vector, our method does not need to

specify parametric functional forms for both the mean and propensity score models

and hence can be regarded as a robust and model-free estimation method. The most

notable feature of our method is that unlike the IPW-type methods, the proposed

approach does not need to inversely weight the individual propensity scores and hence

prevents the inflation of the observed outcomes associated with the estimated propen-

sity scores near 0 or 1. As demonstrated in the numerical studies, this methodological

advantage of incorporating the outcome and treatment assignment mechanism results

in numerical stability in estimating the casual treatment effect in comparison with

other IPW-type methods. We showed through multiple simulations that in both

homogeneous and heterogeneous treatment effect scenarios, the proposed model-free

estimator is consistent with limiting normal distribution. We demonstrated that

the ordinary asymptotic normality theory based inference is valid in our proposed
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approach for estimating average treatment effect with moderate sample size. It is

nearly as efficient as the MLE method when the complete stochastic mechanism for

outcomes is known, which is, of course, not practically feasible. In contrast to IPW-

type methods, our approach is capable of studying treatment effect heterogeneity as

well as inferring average treatment effect, which offers a great advantage when ap-

plied to answer casual questions regarding treatment effect heterogeneity. Moreover,

when X is high-dimensional, we showed that the advanced machine learning tech-

niques may be integrated into our method and make the implementation feasible and

thus more generalizable in real world applications. All these nice features lead the

proposed method to be a practically desired approach in making causal inference for

treatment effects in observational studies.

6.2 Discussion

Although we only considered the scenario of comparison between treatment

and control for the sake of simplicity in presentation and for the reason that it is

the most common situation in biomedical studies, the proposed methodology can be

readily extended to a scenario with multiple treatment levels. Suppose we have K

treatment levels (ak for k = 1, · · · , K) in a study with A indicating the treatment

that a subject received. Let Y (ak) denote the potential outcome associated with

treatment level ak for k = 1, · · · , K. Let aK chosen to be the reference treatment

level for comparison and τk = E(Y (ak)−Y (aK)) denote the causal treatment effect for

treatment level ak in comparison with the reference level aK for k = 1, · · · , K−1. Let

πk(X) = pr(A = ak|X) denote the multivariate propensity scores for k = 1, · · · , K−1.

In the scenario of homogeneous causal treatment effects, the equation of the expected
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observed outcome given treatment indicator A and covariate X in simple treatment-

control case can be similarly derived as

E(Y |A,X) = m(X) +
K−1∑
k=1

(1[A = ak]− πk(X)) τk. (6.1)

the two-stage model-free estimator of τ = (τ1, · · · , τK−1) can be explicitly obtained

by solving for the least-squares problem

arg min
τ

n∑
i=1

{
(Yi −m(Xi))−

K−1∑
j=1

(1[Ai = aj]− πj(Xi))τj

}2

,

after obtaining the nonparametric spline-based sieve estimates for m(X) and πk(X)

for k = 1, · · · , K − 1 via the least-squares model and multinomial logistic regression

model conducted in the first stage.

When treatment effects are heterogeneous, the three-stage estimation proce-

dure is still implementable. We first use the sieve method to estimate the covariate-

specific function τk(X) =
∑qn(k)

j=1 δj(k)Bj(x) for k = 1, · · · , K−1 where Bj(x)’s are still

the spline basis functions. The design matrix for computing the spline coefficients

(δ1(1), · · · , δqn(1), · · · , δ1(K−1), · · · , δqn(K−1)) is thus

Υn×(qn(1)+···+qn(K−1)) =

[
B1 B2 B3 . . . BK−2 BK−1

]
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where for k = 1, · · · , K − 1

Bk =



(A1k − π̂1k(X1))B1(k)(X1) . . . (A1k − π̂1k(X1))Bqn(k)
(X1)

(A2k − π̂2k(X2))B1(k)(X2) . . . (A2k − π̂2k(X2))Bqn(k)
(X2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Ank − π̂nk(Xn))B1(k)(Xn) . . . (Ank − π̂nk(Xn))Bqn(k)
(Xn)



So (δ̂1(1), · · · , δ̂qn(1), · · · , δ̂1(K−1), · · · , δ̂qn(K−1)) = (ΥTΥ)
−

ΥT (Y − M̂) where M̂ is the

vector of estimated mean scores. And the average treatment effect of the k−th

treatment level τk can thus be estimated by τ̂k = 1
n

∑n
i=1

∑qn(k)

j=1 δ̂j(k)Bj(xi).

In this thesis, we only considered the continuous outcome. When the outcome

is binary or count, the average treatment effect τ = E(Y (1)−Y (0)) or the covariate-

specific treatment effect function τ(X) = E(Y (1) − Y (0)|X) can be estimated in

the same way as in the continuous outcome case. However, they might not bear

conventional interpretation of causal effects, such as odds ratio for the binary outcome.

Our core linear model derived from the standard causal assumptions will need to be

extended to a “generalized” linear equation with the appropriate link function for

other types of outcome in order to make inference for the conventional causal effects.

This will be the future direction for this research.
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