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Abstract

Early change in memory performance is a key symptom of many brain diseases, but its underlying 

mechanism remains largely unknown. While structural MRI has been playing an essential role in 

revealing potentially relevant brain regions, increasing availability of diffusion MRI data (e.g., 

Human Connectome Project (HCP)) provides excellent opportunities for exploration of their 

complex coordination. Given the complementary information held in these two imaging 

modalities, we hypothesize that studying them as a whole, rather than individually, and exploring 

their association will provide us valuable insights of the memory mechanism. However, many 

existing association methods, such as sparse canonical correlation analysis (SCCA), only manage 

to handle two-way association and thus cannot guarantee the selection of biomarkers and 

associations to be memory relevant. To overcome this limitation, we propose a new outcome-

relevant SCCA model (OSCCA) together with a new algorithm to enable the three-way 

associations among brain connectivity, anatomic structure and episodic memory performance. In 

comparison with traditional SCCA, we demonstrate the effectiveness of our model with both 

synthetic and real data from the HCP cohort.
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1. INTRODUCTION

Memory loss is among the earliest symptoms for many brain diseases and its clinical 

evaluation is essential for early diagnosis. Although the main cause is known due to the 

physical brain changes, the underlying mechanism remains largely unknown. Brain imaging 

has been playing an essential role in tackling this challenge. For example, using structural 

magnetic resonance imaging (MRI), anatomical changes in hippocampus and entorhinal 

cortex have been found to be highly associated with memory performance [1]. Recent 

availability of diffusion MRI data (e.g., Human Connectome Project (HCP) 

(www.humanconnectome.org)) provides excellent opportunities for exploration of the 

complex coordination among brain regions underlying memory performances.

We propose to jointly exploit anatomic and connectomic data and explore their association 

for more valuable insights of the memory mechanism. Compared to sparse regression 

models that search for multiple-to-one relationship, bi-multivariate sparse association 

models provide a more powerful option to explore the multi-to-multiple relationship 

between anatomic and connectomic features[2]. However, existing association methods, e.g. 

sparse canonical correlation analysis (SCCA) [3], can only handle two-way associations. 

The biomarkers and their associations identified are not necessarily related to memory 

performance unless the input features include only candidate biomarkers [4].

To overcome this limitation, we propose an outcome-relevant SCCA (OSCCA) to explore 

the three-way association among connectivity, anatomic structure and memory performance. 

We perform an empirical comparison between OSCCA algorithm and a widely used SCCA 

implementation [3]. Based on both synthetic data and real data from the HCP cohort, the 

empirical results show that the proposed OSCCA outperformed traditional SCCA on both 

association performance and variable selection.

2. OUTCOME-RELEVANT SCCA (OSCCA)

In this section, we denote vectors as boldface lowercase letters and matrices as boldface 

uppercase ones. For a matrix M = (mij), we denote its i-th row and j-th column to mi and mj 

respectively. Let X = [x1; …; xn] ⊆ ℜn×p be the anatomic structure data and Y = [y1; …; yn] 

⊆ ℜn×q be the connectivity data, where n is the number of participants, p and q are the 

number of regions of interest (ROIs) and fibers.

Sparse canonical correlation analysis (SCCA) is a bi-multivariate method that explores the 

linear transformations of variables X and Y to achieve the maximal correlation between Xu 
and Yv, which can be formulated as:

maxu, v uTXTYv
s . t . uTXTXu = 1, vTYTYv = 1, u 1 ≤ c1, v 1 ≤ c2

(1)

where u and v are canonical loadings or weights, reflecting the contribution of each feature 

in the identified associations. The L1 penalty over u and v encourages the global sparsity for 
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easy interpretation where only a small set of features in both modalities can be selected and 

thus can avoid the overfitting problem when the feature size outnumbers the sample size.

However, SCCA can only manage to explore the two-way associations. It can identify a list 

of highly associated ROIs and fibers, but they may not all be related to memory. To address 

this problem, we propose a novel outcome-relevant SCCA (denoted as OSCCA) model to 

enable three-way association analysis. An extra penalty term P(u) will be introduced to 

incorporate the outcome, or the 3rd modality, to help yield outcome-relevant biomarkers and 

associations.

P(u) = u O = uTXTLXu = 1
2 ∑

i, j = 1

p
Si j (Xiu − X ju) 2

2
(2)

Here, S ⊆ ℜn×n is the similarity matrix. Let M ⊆ ℜn×k be the outcome data, where k is the 

total number of outcome features. Sij indicates the similarity between subjects i and j based 

on their outcome profiles Mi and Mj. L is the Laplacian matrix of S. This new penalty term ||

·||O incorporates the similarity matrix to encourage the closeness of subjects with similar 

outcome profiles in Xu space. L1 norm is kept to ascertain the selection of only a few brain 

ROIs and fibers. This model is expected to jointly perform bi-multivariate association and 

outcome-relevant biomarker selection. The final objective function of OSCCA can be 

formulated as follows:

maxu, v uTXTYv − β
2 P(u)

s . t . uTXTXu = 1, vTYTYv = 1, u 1 ≤ c1, v 1 ≤ c2

(3)

Note that ||·||O is only applied to one modality because maximizing the correlation between 

Xu and Yv will finally encourage Yv to yield a similar pattern as Xu. This can significantly 

reduce the computation cost as there will be less parameters to tune and no need to calculate 

YTLY in the following algorithm. Eq. (3) is known as a bi-convex problem, which can be 

easily solved using an alternating algorithm [3]. By fixing u and v respectively, we will have 

the following two minimization problems shown in Eq. (4) and (5). To simplify the problem, 

we follow [3] and set XTX = I and YTY = I.

minu − uTXTYv + β
2 P(u), s . t . uTu = 1, u 1 ≤ c1 (4)

minv − uTXTYv, s . t . vTv = 1, v 1 ≤ c2 (5)
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Eq. (4) can be solved using the Nesterov’s accelerated algorithm [5] and Eq. 5 can be solved 

using Algorithm 3 in [3]. Let g(u) = − uTXTYv + β
2 P(u) in Eq. 4. The Lipschitz constant of g

′(u) is the spectral norm of g″(u) = βXTLX [6], which can be used as the stepsize to further 

accelerate the Nesterov’s algorithm by removing the iterative searching (Steps 4–10 of 

Algorithm 3 in [5]). The detailed proof is not included due to the space limitation. Algorithm 

1 summarizes the optimization procedure. πG is the Euclidean projection function defined in 

[5]. The convergence is based on the value changes of canonical loadings, where |ut−ut−1| ≤ 

10−4 and |vt − vt−1| ≤ 10−4 were used as stop criteria.

Algorithm 1

Outcome-relevant SCCA (OSCCA)

Require:

X = {x1, …, xn}, Y = {y1, …, yn}, L ⊆ ℜn×n

Ensure:

Canonical vectors u and v.

1: t = 1, Initialize u0 ∈ ℜp×1, v0 ∈ ℜq×1;

2: while not converge do

3:  i = 1, Initialize w1 = w0 = ut−1, k−1 = 0, k0 = 1, ℓ = ||βXT LX||2

4:  while not converge do

5:

  Set αi =
ki − 2 − 1

ki − 1
, si = wi + αi(wi − wi−1)

6:
   wi + 1 = πG(si − 1

ℓ( − XTYvt − 1 + 2βXTLXsi))

7:

  Set ki =
(1 + 1 + 4ki − 1

2 )
2

8:   i = i + 1.

9:  end while

10:  ut = wi

11:  Solve Eq. (5) using step 2(a) in Algorithm 3 in [3] and obtain vt;

12:  t = t + 1.

13: end while

3. RESULTS

In this section, we evaluate OSCCA model and compare it with SCCA [3]. We use 5-fold 

nested cross-validation to tune the parameters and apply the same fold partition in both 

methods for fair comparison.

3.1. Results on Synthetic Data

We generated the anatomic data X and connectivity data Y (n = 90, p = 100, q = 120), 

assuming the subjects belonging to three groups. The similarity matrix is built that the 

subjects in the same group have value 1 and −1 otherwise. We set 10 anatomic and 12 
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connectivity features to be related. 5 anatomic features are outcome-relevant and generated 

as xj = ujz + nj, j = 1, …, 5, where nj ~ (0, σ2In×n) is a noise vector and z is a random 

vector generated using a 3-component Gaussian mixture model. Subjects form three clusters 

(30 each) with centers μ = −5, 0,−5 respectively. The other 5 anatomic features are outcome-

irrelevant and generated as xj = ujw+nj, j = 6, …, 10, where w are i.i.d. drawn from a zero-

mean unit-variance Gaussian distribution. 6 connectivity features are outcome-relevant and 

generated as yℓ = vℓz′ + nℓ, ℓ = 1, …, 6, where z′ = cz + 1 − c2ε and c = 0.8 is the true 

correlation. ε is a random vector independent of z and have the same Euclidean norm such 

that corr (z′, z) ≈ c. The other 6 connectivity features are outcome-irrelevant and generated 

as yℓ = vℓw′ + nℓ, ℓ = 7, …, 12. w′ is generated similarly as z′. All other features are 

generated according to (0, σ2In×n). In both training and test data, we observed comparable 

association performance of OSCCA and SCCA, both close to the ground truth. However, 

most features identified in OSCCA are outcome-relevant, whereas those in SCCA are mostly 

outcome-irrelevant. We further evaluated the classification performance of the canonical 

components, Xu and Yv, for each pair of groups. For OSCCA, u and v obtained from 

training data were used to generate Xu and Yv for testing data. With these two features, 

support vector machine (SVM) was then applied (LIBSVM package) (OSCCA+SVM). We 

evaluated the performance of SCCA using the same strategy (SCCA+SVM). In addition, the 

classification power of original data was examined using elastic net (Elnet). Table. 1 

summarizes 5-fold classification performance in test data. The canonical components 

generated by OSCCA are more discriminative than those by SCCA. It also outperforms 

elastic net and shows a potential in both feature extraction and multi-class classification.

3.2. Results on Real Data

From the HCP (www.humanconnectome.org), we downloaded the structural MRI (sMRI), 

diffusion MRI (dMRI) and memory performance data of 93 unrelated subjects (19 males/74 

females, age: 29.91 ± 2.91). The dMRI data was first denoised and corrected for motion and 

distortion [7]. Tractography was performed in Camino [8] based on white matter fiber 

orientation distribution function (ODF). Streamlines were modeled with a multi-tensor 

modeling approach, where voxels will fit up to two fiber orientations. Second, the sMRI 

image was registered to the b0 volume of dMRI data using the FNIRT toolbox [9] and 278 

brain regions of interest (ROIs) were extracted following [10]. The final networks were 

constructed using streamlines going through white matter and connecting ROIs. Here, we 

use the fiber density for the following association analysis, which is the fraction between 

number of streamlines and the average surface of grey-matter regions i and j. 20346 

connectivity measures with non-zero variation were included. For anatomic data, we 

downloaded the Freesurfer results from HCP and extracted cortical thickness and volume 

measures from 90 ROIs. For memory performance, we focused on episodic memory and 

downloaded three scores: one from Picture Sequence Memory Test and two from PennWord 

Memory Test. We calculated the Euclidean distance between subjects based on these scores 

and then generated the similarity measures by taking the element-wise inverse. All the 

measures were adjusted for the age and gender, with intracranial volume as extra covariate 

for brain connectivity and structural measures.
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Fig. 1 shows the 5-fold canonical loadings, indicating a set of associated anatomic and 

connectomic markers relevant to episodic memory. Lateral ventricle, accumbens, and middle 

posterior corpus callosum (1(a)) were found to be memory-relevant and be attributed to the 

wiring within subcortical regions. Around 700 connectivity measures are selected and shown 

in Fig. 1(b) are the canonical loadings in one example fold. It shows that most of the 

significant connectivities are within subcortical regions. Mapping 278 ROIs to Automated 

Anatomical Labeling (AAL) atlas, memory-related ROIs, e.g. bilateral hippocampi, are 

found to be linked by these significant fibers. But the hub regions are postcentral, temporal, 

and frontal lobe instead. This suggests the essential role of some key brain regions in both 

anatomic variation and memory performance.

4. CONCLUSION

We proposed a new association model to explore the three-way association among anatomy, 

connectivity and memory. OSCCA showed superior performance than SCCA in both 

association and outcome-relevant feature selection. In real data, OSCCA identified a small 

set of associated regions and fibers. This suggests the potential role of brain wiring 

mechanism in both anatomic variation and memory.
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Fig. 1. 
Brain anatomic and connectomic markers associated with episodic memory. (a) 5-fold 

canonical loadings of brain anatomic features. Regions labeled blue are unilateral. (b) 

Canonical loadings of brain connectomic features in one example fold. Top panel indicates 

different regions: Visual (VIS), Somato-Motor (SM), Dorsal Attention (DA), Ventral 

Attention (VA), Limbic system (L), Fronto-Parietal (FP), Default Mode Network (DMN), 

subcortical regions (SUBC) and cerebellum (CER). (c) brain connectomic features with non-

zero weights in (b) mapped to brain.
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