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Abstract: 

The morphological evolution of tin particles with different sizes during the first lithiation and 

delithiation processes has been visualized by an in operando synchrotron transmission X-ray 

microscope (TXM). The in operando lithium ion battery cell was operated at constant current 

condition during TXM imaging. Two-dimensional projection images with 40 nm resolution 

showing morphological evolution were obtained and analyzed. The analysis of relative area 

change shows that the morphology of tin particles with different sizes changed simultaneously. 

This phenomenon is mainly due to a negative feedback mechanism among tin particles in the 

battery electrode at a constant current operating condition. For irregular-shaped tin particles, the 

contour analysis shows that the regions with higher curvature started volume expansion first, and 

then the entire particle expanded almost homogeneously. This study provides insights for 

understanding the dynamic morphological change and the particle-particle interactions in high 

capacity lithium ion battery electrodes.  

Keywords: Lithium ion battery, Synchrotron transmission X-ray microscopy, Tin anode, 

Morphological evolution, In operando imaging 
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1. Introduction

Advanced lithium ion battery (LIB) technologies have been considered promising in the

realization of electric vehicles because they have high energy and power density relative to other 

cell chemistries [1-4]. During the last decade, many research efforts have been made to develop 

alloy-type anode materials for LIBs, because of their much higher storage capacity compared to 

graphite (372 mAh g-1) [5]. Tin (Sn) is one of the alloy-type materials and it has a theoretical 

capacity of 994 mAh g-1 (for the charged Li22Sn5 phase) [6-8]. Sn is also non-toxic, abundant and 

inexpensive. However, the major challenge in the development of Sn anode is the large 

volumetric change (about 360%) involved in the reaction scheme, which could result in particle 

fracture and electrode delamination from the current collector, thereby leading to a rapid loss of 

specific capacity [6, 9-13]. Particle fracture can be alleviated by nano-structuring the alloy-type 

anode materials due to the facile strain accommodation and the short diffusion path for electron 

and lithium transport in the nano-structured electrodes [14-18]. However, nano-structured 

particles have low tap density and lead to lower energy density anodes, making scale-up difficult 

[19]. In addition, the surface area of the material increases with decrease in particle size, which 

leads to a large irreversible capacity loss due to the formation of the solid electrolyte interphase 

(SEI) [6]. Another approach to withstanding the massive strain in high capacity anode materials 

is to design composites containing both high capacity anode material and stress-accommodating 

phase [6]. Although the composite anode material can alleviate the particle fracture, the large 

volume change still exists and it is a dynamic process during the cycling of a LIB. Therefore, it is 

essential to understand the dynamic morphological change of Sn electrodes in LIB cycling 

processes.  
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To this end, several in situ studies have been conducted to investigate the morphological 

change of Sn electrodes. For instance, Ebner et al. used X-ray tomography to visualize and 

quantify the origin and evolution of electrochemical and mechanical degradation of a tin oxide 

electrode [20]. Sun et al. used in situ synchrotron radiography to investigate the lithiation and 

delithiation mechanisms of multiple Sn particles in a customized flat radiography cell [21]. 

Wang et al. studied the microstructural change of a Sn electrode using in situ synchrotron X-ray 

nano-tomography [22]. Recently, Zhou et al. reported the evolution of the microstructure of a 

single Sn particle battery using in situ focused ion beam-scanning electron microscopy [12]. 

These in situ and operando studies have revealed the dynamic morphology and microstructure 

change of Sn particles. However, the real LIB electrodes are composed of Sn particles with 

different sizes and shapes, and the electrochemical performance of the whole cell is on the 

multiple-particle scale. We hypothesize that the interaction between particles and the shape 

irregularity of the particle could affect the dynamic morphological change of Sn particles. The 

single particle study and the homogeneous electrode assumption (same particle size and spherical 

shape) cannot help to test this hypothesis.  

 

Therefore, the objective of this paper is to investigate the morphological evolution of a Sn 

electrode made of particles with different sizes and shapes. We want to answer the following two 

questions in this paper. (1) Does the morphology of Sn particles with different sizes change 

simultaneously? (2) Does an irregular-shaped Sn particle have a homogeneous morphology 

change? In this work, we studied morphological evolution of Sn electrodes via in operando 

synchrotron transmission X-ray microscopy (TXM) at the Beamline 8-BM-B of Advanced 

Photon Source (APS) which is operated by the National Synchrotron Light Source-II (NSLS-II) 
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through an NSLS-II transition program. Two-dimensional (2D) projection images of Sn particles 

in the Sn electrode were obtained and analyzed to study the effect of particle size and shape on 

the dynamic morphological change during the lithiation and delithiation processes. Ex situ X-ray 

diffraction (XRD) was implemented to monitor the crystalline change and the XRD results were 

used to interpret the morphological evolution data. 

2. Experimental

2.1 Materials 

Sn powder (Sn, 10 µm, 99% trace metals basis, Sigma-Aldrich), super C65 conductive 

carbon black (Timcal Co., Ltd.), polyvinylidene fluoride binder (PVDF, 12 wt.%, Kureha 

Battery Materials Japan Co., Ltd.), 1-methyl-2-pyrrolidinone (NMP, anhydrous 99.5%, Sigma-

Aldrich), 1M LiPF� electrolyte in 1:1 volume ratio mixture of ethylene carbonate and dimethyl 

carbonate solution (BASF Corporation), pyrolytic graphite sheet as current collector (MTI 

corporation), lithium ribbon (thickness of 0.38mm, 99.9% trace metals basis, Sigma-Aldrich) 

were purchased from commercial corporations and utilized as received.  

2.2 Preparation of Sn electrode 

To investigate the morphological and phase change of Sn particles, Sn electrodes for TXM 

and XRD were fabricated from a 25:45:30 (weight%) mixture of Sn, carbon black, and PVDF. A 

low percentage of Sn was used to avoid the overlaps of Sn particles during TXM imaging. The 

mixture was added into NMP solution and mixed homogeneously by a magnetic stir bar in a vial 

for 20 h. The gel-like slurry was coated onto a thin pyrolytic graphite sheet via a film casting 
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doctor blade (EQ-Se-KTQ-100, MTI, Richmond, CA, USA). Graphite sheet was used as the 

current collector to avoid strong X-ray absorption from the current collector during TXM 

imaging. The electrode was dried at 100 °C in a vacuum oven for 12 h.  As shown in Fig. 1a, Sn 

particles were uniformly distributed and the particle size was between 1 to 10 µm. The thickness 

of the Sn electrode is about 9 µm as shown in Fig. 1b. Circular discs with 1.11 cm in diameter 

were cut out of the Sn electrode film for cell assembly. The mass loading of Sn on the graphite 

current collector is approximately 0.3 mg cm-2. All the cut Sn electrodes were stored in an argon-

filled glove box.  

 

 

Fig. 1. SEM images for (a) the top surface and (b) the cross-section a Sn electrode. The Sn 

electrode was fabricated from a 25:45:30 (weight%) mixture of Sn, carbon black, and PVDF. 

The scale bar is 10 µm. 

 

2.3 Coin cell assembly and electrochemical evaluation 
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CR2032 coin cells were modified and used in this study. Briefly, 2 mm diameter holes were 

punched at the center of the anode and cathode cases. 30 µm thick Kapton tape was used to seal 

the hole on both sides of the case. The cells were assembled in an argon-filled glovebox (under 

O2 < 0.1 ppm, H2O < 0.1 ppm; Unilab 2000, Mbraun, Stratham, NH, USA) as shown in Fig. 2a. 

First, a Sn electrode was placed on the anode case with the graphite side facing down, followed 

by adding 15 µL electrolyte. A Celgard 2400 separator was placed on top of the Sn electrode and 

another 15 µL electrolyte was added on top of the separator. Then a piece of lithium metal (1.27 

mm in diameter) was placed on the separator. Finally, a stainless-steel plate (with a 2 mm hole at 

the center) covered the lithium metal with a spring as the spacer. The cell was crimped and taken 

out of the glove box for electrochemical evaluation. 

 

The in operando coin cell was galvanostatically cycled from open circuit potential to 0.01 V 

at 0.1 C during the first lithiation, at 0.05 C for the second lithiation, and from 0.01 to 1.2 V at 

0.1 C for delithiation using an Arbin 2000 battery cycler. The second 0.05 C lithiation was 

implemented because no morphological changes were detected by the TXM at the end of the first 

0.1 C lithiation. 
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Fig. 2. Schematics of (a) the in operando coin cell assembly and (b) the synchrotron transmission 

X-ray microscopy setup [22]. 

 

2.4 In operando transmission X-ray microscopy  

Transmission X-ray microscopy is a non-destructive technology to perform nano-imaging. 

The synchrotron TXM with a large field of view of 40 µm by 40 µm at 40 nm pixel size was 

employed in this study. This TXM hosted on beamline 8-BM at APS was operated by NSLS-II 

through an NSLS-II transition program. The 2D in operando TXM images were consecutively 

collected to visualize and quantify morphological changes of Sn particles under operating 

condition. We employed a 10 min time interval for data acquisition. Ten different positions were 

collected consecutively with an exposure time of 3 s for each capture. During the image 

collecting process at each position, 10 images were captured and averaged to improve accuracy. 

The overall image collection took 5 min and we adopted a 5 min gap between each series of 

acquisition. The schematic of the TXM is shown in Fig. 2b.  

 

2.5 X-ray diffraction 

An ex situ XRD measurement was performed on a Bruker D8 Discover XRD Instrument 

equipped with Cu Kα radiation at the Integrated Nanosystems Development Institute (INDI) with 

a photon wavelength of 1.5406Å. Each coin cell to be measured was cycled to a specific voltage. 

Electrodes were obtained by dissembling the coin cells. The cycled electrodes were rinsed with 

diethyl carbonate solution, dried under vacuum for 30 min, and sealed in Kapton tape. We 

measured 2θ from 20 ° to 60 ° with an increment of 0.02 ° for the XRD experiment. The 
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exposure time for each increment was 0.5 s. The XRD data were calibrated using the corundum 

standard and analyzed via DIFFRAC.EVA software.  

 

2.6 Image processing 

Image processing was conducted via a commercial software Avizo®. Motion artifacts were 

observed in the operando experiment due to the movement of the sample during the 

measurement, such as volume expansion or shrinking of active materials and tilting of the 

electrode during the data acquisition. Hence, image filtering was employed as the first step in 

image analysis. All the grayscale images in this work were subject to non-local means filtering to 

remove noise and blur due to its high efficiency at noise removal [23], followed by register 

image algorithm in Avizo®. Image registration is the process to transform different sets of 

images into one coordinate system based on the gravitational center and contour lines for 

conducting further analysis. 

 

3. Results and discussion 

The voltage profile of a Sn cell is shown in Fig. 3a. The Sn electrode was lithiated twice at 

different C rates (0.1 C and 0.05 C) in order to achieve full lithiation. Fig. 3b shows a series of 

TXM images at one of the ten positions during the first cycle. As shown in Fig. 3b, the entire 

electrode had a clear deformation during the first cycling process. The electrode moved to the 

left side during the first 0.1 C lithiation and reached 4 µm movement. At the end of the second 

0.05 C lithiation, the electrode moved an additional 5 µm to the left. Before the delithiation 

process, the 9 µm movement was calibrated so that all the particles have their original positions. 
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The electrode moved to the opposite direction during delithiation and 4 µm movement was 

achieved at the end of delithiation. It was noticed that the first 4 µm movement might potentially 

due to the sample holder shift during motion. However, the movement during the second 

lithiation is larger within a shorter period of time which indicates that the movement is mainly 

due to the volume change of Sn particles while the sample holder shift during the data 

acquisition has minor influences. 

 

Fig. 3. (a) Voltage and current profiles of an in operando Sn cell. (b) TXM images at one of the 

ten positions during the first cycling process showing the movement of the electrode during 

lithiation and delithiation processes (as indicated in white during lithiation and black for 

delithiation) caused by electrode deformation and sample holder shift. The scale bar is 10 µm. 

 

At the ten positions for imaging, several hundreds of particles with different sizes have been 

monitored by the in operando TXM. Less than 3% of the particles don’t have any volume change 

during the first cycle. We believe that the main reason is the loss of electrical connection for 

those particles. Among the active particles, 4 particles at different positions with different sizes 

were selected to evaluate the effect of size on the dynamic morphological changes. In order to 
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eliminate the effect of shape, spherical particles were selected. The largest one is not spherical 

because there was no spherical one at this size. As shown in Fig. 4, the original sizes are 1 µm, 2 

µm, 3.4 µm, and 10 µm in diameter or area equivalent diameter in pristine condition. The 

contours in these selected particles demonstrate the area change of the projection images during 

the first cycling process. The relative area which stands for the ratio between the current area to 

its original area was measured via contour analysis in ImageJ based on the intensity gradient of 

each specific image. The particles have relatively smooth contours and a 150% overall 2D area 

expansion (on average) was achieved at the end of the 0.05 C lithiation as shown in Fig. 5. At the 

end of the first delithiation, the particles shrink around 10% and they are not able to recover their 

original sizes. The reasons could be the formation of nanopores inside the particle [12, 24-26] 

during delithiation and the loss of electrical connection [19, 27, 28].  

 

Fig. 4. Corresponding TXM images for the selected particles at the time steps highlighted in Fig. 

3a. 
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Fig. 5. Dynamic two-dimensional area evolution calculated from the projected TXM images for 

the selected particles. 

 

It was observed that regardless of particle size, volume expansion occurred simultaneously 

which is different from the phenomenon observed by Chao et al. [24, 29]. They found that the 

smaller Sn particles expand in a much faster pace than the larger particles. The major difference 

between the two in operando experiments was the lithiation process after the first constant 

current lithiation. Chao et al. did not observe the volume change at the end of the first constant 

current lithiation. Then a constant voltage lithiation at 0.001 V was implemented. In our case, the 

second lithiation is still constant current. This phenomenon can be explained by the negative 

feedback mechanism proposed by Yan et al. [30]. As shown in Eq.1, lithium ion intercalation 

reaction across the interfaces of electrolyte and Sn particles can be determined by the Butler-

Volmer equation: 
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where LiJ  and J  are the reaction flux of lithium ion and reaction current density respectively, 

R  is the universal gas constant, T  is absolute temperature, F  is Faraday’s constant, 0i  is the 

exchange current density, η  is the surface overpotential, and α  is a symmetry factor that 

represents the fraction of the applied potential promoting the cathodic reaction, α is 0.5 for the 

electrochemical reaction in LIBs. The overpotential η  is defined as below: 

� = ∅	 − ∅� − ���          (2) 

Where ∅	 and ∅� are the potential of Sn particles and electrolyte at the interface respectively, 

and OCPU  is the open circuit potential (OCP) at the interface. It should be noted that the 

overpotential is a negative value during lithiation and a positive value during delithiation. 

 

If the battery is cycled at a low rate, such as 0.1 C and 0.05 C, we can assume that the 

exchange current density 0i  is constant at the Sn particle/electrolyte interface for all the particles 

in the electrode. Then the lithium ion intercalation rate on the surface of Sn particles is 

determined by the overpotential η . Due to the low rate cycling, high electronic conductivity of 

Sn, and high ionic conductivity of the electrolyte, we also can assume that both ∅	 and ∅� have 

very small spatial variation in the electrode and the value of ∅	 - ∅� is the same for all the Sn 

particles in the electrode. Therefore, the difference of lithium intercalation rate on the surface of 

different Sn particles in the electrode is only determined by the OCP. The OCP is determined by 

the lithium ion concentration on the surface of Sn particles. As shown in the literature [6, 22, 31-
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33], the OCP of Sn decreases when the lithium concentration increases on the surface. During a 

constant current lithiation, the value of ∅	 - ∅� also decreases to keep a certain overpotential for 

the constant current. If we assume that the lithium concentration on the surface of smaller Sn 

particles increases faster than it on the surface of larger particles at the beginning of lithiation 

process, the higher lithium concentration on the surface of smaller particles causes smaller OCP. 

According to Eq. 2, overpotential decreases when OCP decreases assuming all the Sn particles 

have the same ∅	 - ∅�, which leads to a lower intercalation rate. The lower intercalation rate 

slows down the lithium concentration increase on the surface. At certain lithium concentration 

level, OCP = ∅	 - ∅� and the overpotential could be zero, which completely stops the 

intercalation reaction. This is a negative feedback mechanism caused by the interaction among 

heterogeneous particles in the electrode. However, if the battery cell is operated at constant 

voltage mode, the value of ∅	 - ∅� almost does not change as the lithiation process proceeds. The 

interaction of particles doesn’t exist, and all the particles react at their own paces. The smaller 

particles proceed faster due to their larger surface to volume ratio. However, the negative 

feedback mechanism could be invalid at high current rates. High current rate means fast electron 

and lithium ion transport, which can cause large polarization and large lithium ion concentration 

difference in the electrode. We cannot assume that 0i  (the exchange current density), ∅	 and ∅� 

(the potential of Sn particles and electrolyte at the interface) have very small spatial variation in 

the electrode with large polarization and lithium ion concentration difference. According to Eqs. 

1 and 2, the dynamic volume change of the particles is related to the local environment of the 

particle. 
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Fig. 6. Contour plots for two selected Sn particles (a,b) during the first 50 min of volume 

expansion and (c,d) at the specified time steps during the lithiation process. The arrows in a and 

b point to the expansion direction. 

 

To investigate the effect of shape on the dynamic morphological change of Sn particles, the 

curvature related analysis was performed in Avizo® by registering all contour plots into the 

same coordinate via the combination of contour line and gravitational center. The contours from 

the 2D in operando images in Fig. 6a and b display the dynamic changes during the first 50 min 

when the volume expansion occurred. The increment between each time step was 10 min. The 
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arrows are pointing to the direction of volume expansion. It reveals that the volume expansion of 

irregular-shaped Sn particles is more likely to take place at the surface with higher curvature and 

more details can be found in the video in the supplemental document. We believe that this 

phenomenon was caused by a higher average bulk lithium concentration at the sharp locations. 

Volume change is mainly determined by the average bulk lithium concentration, not by the 

surface lithium concentration. The negative feedback mechanism is still valid in different regions 

of a single particle. The difference between the single particle case and the multiple particle case 

is the transport of lithium. Lithium can move inside a single particle but cannot move between 

particles during the lithiation or delithiation processes. Although the lithium concentration 

should have a small variation on the surface of a single particle, the region with higher curvature 

will have a larger average bulk lithium concentration, which cause earlier expansion, as shown in 

Fig. 6a and b. To further explain this phenomenon, we conducted a numerical simulation on 

lithium transport in a water drop-shaped particle using finite element method as shown in the 

supporting information. The radius of the small curvature end of the particle is 5 µm (0.2 µm-1 

curvature) and that of the large curvature end is 1 µm (1 µm-1 curvature). A fixed lithium ion 

concentration is imposed on the surface of the particle. The lithium ion diffuses from the surface 

to the center because of the concentration difference. As shown in Fig. S1b-d, the average bulk 

lithium ion concentration increases much faster in the large curvature end than it does in the 

small curvature end, which means that the large curvature end expands earlier. Fig. 6c and d 

displayed the contour line of the selected particles at five specific time steps during the lithiation 

process as indicated in the color bar. After the region with high curvature expanded, it was 

observed that the entire particle expanded thereafter.  
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Fig. 7. (a) Voltage and current profiles of an ex situ Sn cell and (b) the corresponding XRD 

patterns at the time steps shown in (a). 

 

An ex situ XRD experiment was performed to monitor the dynamic crystalline changes 

during the first cycle. The states of charge at which the XRD data were collected was depicted on 

the voltage profile shown in Fig. 7a. In this XRD experiment, we applied 0.1 C and 0.05 C for 

lithiation and 0.1 C for delithiation during the first cycle to duplicate the same situation as the in 

operando TXM experiment. As shown in Fig. 7b, we observed that the lithiation and delithiation 

processes of Sn particles complied the following sequence: 

Sn → Li�Sn� → LiSn → Li��Sn� → LiSn → Sn          (3) 

When the cell voltage reaches the first plateau at 0.56 V, the Sn phase starts to vanish and a 

crystalline Li2Sn5 phase is formed. LiSn was observed at the end of the 0.1 C lithiation, but 

Li 22Sn5 phase was not observed. Since LiSn phase (51%) has a relatively smaller volume 

expansion than Li22Sn5 phase (260%), this result verifies why the in operando TXM experiment 
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did not show clear morphological change after the first 0.1 C lithiation. During the second 0.05 C 

lithiation, the Sn particles were lithiated to Li22Sn5 phase. During the 0.1 C delithiation process, 

the XRD results show that Li22Sn5 phase disappears and Sn phase reappears at the end of 

delithiation. This ex situ XRD results are in accord with the in situ synchrotron XRD data of the 

Sn electrode acquired during the first lithiation-delithiation cycle shown in Ref [24]. As shown in 

Fig. 5, most of the Sn particles did not recover their original size after delithiation, which is not 

in accord with the ex situ XRD results. The reasons could be the formation of nanometer-sized 

pores during delithiation [12, 24-26] and the loss of electrical connection [19, 27, 28]. 

 

4. Conclusion 

In this work, the dynamic morphological evolution of Sn particles during lithiation and 

delithiation processes was investigated using an in operando synchrotron TXM imaging 

technique. The relative area analysis based on the in operando 2D TXM images demonstrates 

that all the active Sn particles expanded simultaneously with almost the same pace regardless 

particle size if the battery cell is operated at constant current mode. This phenomenon is due to a 

negative feedback mechanism in a heterogeneous battery electrode. If the particle shape is not 

spherical, the contour analysis results show that the regions with higher curvature in a single 

particle start volume expansion first at the very beginning of the volume change process. After 

that, the entire particle expanded almost homogeneously.  
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