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Abstract
It has been observed that both cancer tissue cells and normal proliferating cells (NPCs) have the 

Warburg effect. Our goal here is to demonstrate that they do this for different reasons. To accomplish 

this, we have analyzed the transcriptomic data of over 7000 cancer and control tissues of 14 cancer 

types in TCGA and data of five NPC types in GEO. Our analyses reveal that NPCs accumulate large 

quantities of ATPs produced by the respiration process before starting the Warburg effect, to raise the 

intracellular pH from ~6.8 to ~7.2 and to prepare for cell division energetically. Once cell cycle starts, the 

cells start to rely on glycolysis for ATP generation followed by ATP hydrolysis and lactic acid release, to 

maintain the elevated intracellular pH as needed by cell division since together the three processes are 

pH neutral. The cells go back to the normal respiration-based ATP production once the cell division 

phase ends. In comparison, cancer cells have reached their intracellular pH at ~7.4 from top down as 

multiple acid-loading transporters are up-regulated and most acid-extruding ones except for lactic acid 

exporters are repressed. Cancer cells use continuous glycolysis for ATP production as way to acidify the 

intracellular space since the lactic acid secretion is decoupled from glycolysis-based ATP generation and 

is pH balanced by increased expressions of acid-loading transporters. Co-expression analyses suggest 

that lactic acid secretion is regulated by external, non-pH related signals. Overall, our data strongly 

suggest that the two cell types have the Warburg effect for very different reasons. 

KEYWORDS: Cancer; Warburg effect; Fenton reaction; Cell proliferation; pH homeostasis 



  

Introduction
Otto Warburg published his seminal paper in 1927 on the observation that cancer cells tend to allocate 

substantial fractions of glucose to glycolytic ATP production followed by lactate generation rather than 

by the TCA cycle and the respiration chain regardless of the O2 level, which is referred to as the Warburg 

effect [1] and serves as the basis for PET/CT based cancer detection. This observation has perplexed 

generations of cancer researchers, since the respiration pathway is considerably more efficient for ATP 

generation than glycolysis, with the former producing 36 ATPs and the latter producing 2 ATPs per 

glucose. Multiple hypotheses have been put forward about why cancer cells do this as follows. (1) 

Cancer cells may have dysfunctional mitochondria, which was later proved to be incorrect [2−4]. (2) The 

glycolytic pathway is faster than the respiration pathway for synthesizing the same number of ATPs from 

glucose, hence selected to support the rapid cell proliferation in cancer [5]; but this view is challenged as 

ATP is shown to be not a rate-limiting factor in cancer proliferation [6]. (3) Cancer cells have reduced 

mitochondrial activities due to hypoxia, partially because of the increased generation of reactive oxygen 

species (ROS) [7] and nitric oxide production [8]; however, cancer cells are known to have respiration 

activities across different cancer types and high levels of such activities are reported in some cancers [9]. 

(4) Cancer cells are lack of NAD+, hence using the conversion of pyruvate to lactate for NAD+ production 

[5], which was argued against since most of the relevant carbons were excreted, hence there is no net 

NAD+ production [10]. And (5) Warburg effect is a common characteristic of all proliferating cells, 

including cancer cells and NPCs [5]. While other hypotheses are largely considered as unacceptable [11], 

the last one has gained popularity in the past few years [12,13], which we address here. 

We have approached this problem from the perspective of intracellular acid-base homeostasis. It is 

known that healthy human epithelial cells have a mildly acidic intracellular pH at ~6.8 and a basic 

extracellular pH at ~7.2, while cancer cells have reversed these pH levels with intracellular pH at 7.2−7.4 

[14] and extracellular pH at 6.6−6.8 [15]. To understand how cancer cells have reversed the intracellular 

and extracellular pH levels, we have examined the gene expression levels of all H+, OH- and HCO3
- related 

plasma-membrane transporters across 14 cancer types, which include all the cancer types in the TCGA 

database with sufficiently large numbers (at least 10) of cancer tissues. To our surprise, we note that all 

cancer cells consistently up-regulate the expressions of multiple acid-loading transporters and repress 

the expressions of most acid-extruding transporters except for the lactic acid exporters throughout the 

progression of the cancers examined. This strongly suggests that there must be some unidentified 

metabolic processes that continuously produce alkaline molecules, since that the gradient-driven lactic 



  

acid exporters cannot accomplish the reversal between the intracellular and extracellular pH levels, at 

least not by the transporters alone.

We have recently predicted [16], through mining cancer tissue transcriptomic data and 

mathematical modeling, that cancer cells have Fenton reactions: Fe
2+ + H2O2 → Fe

3+ +  + OH- in their ∙ OH

cytosol. Fenton reactions result from local iron accumulation and elevated H2O2 concentration due to 

increased local populations of innate immune cells, specifically neutrophil and macrophages. We predict 

that cancer cells of all the 14 cancer types examined have such reactions persistently using superoxide (

), produced by local innate immune cells and the host cells’ mitochondria, as the key reducing O ∙‒
2

element of Fe
3+. We have further shown that OH- produced by such reactions would ultimately 

overwhelm the cytosolic pH buffer, and hence drive up the intracellular pH. As response, various 

processes are induced to acidify the intracellular space to maintain the acid-base homeostasis [16]. 

We have predicted that glycolytic ATP synthesis represents a key responding process for acidifying 

the intracellular pH, since glycolytic ATP synthesis is pH neutral, while respiration-based ATP production 

consumes one proton per ATP and hydrolysis of any ATP releases one proton [17]. That is, synthesis of 

each glycolytic ATP releases one net proton when it is consumed while a respiration-synthesized ATP will 

be neutral when the ATP is hydrolyzed. In addition, it is also known that the level of glycolysis correlates 

strongly with the level of the predicted cytosolic Fenton reaction [16]. 

In contrast, NPCs generate ATPs through the respiration pathway and accumulate ATPs before cell 

proliferation. NPCs will partially switch to glycolytic ATP production when sufficiently large numbers of 

ATPs are intracellularly accumulated, hence driving up the intracellular pH as well as preparing for cell 

division energetically. During proliferation, consumption of an ATP leads to the release of a proton, 

coupled with the lactate generated from pyruvate at the end of glycolysis. Therefore, serving two 

purposes, that is, to maintain the raised pH level needed for proliferation and replenish each consumed 

ATP. 

Results
Warburg effects in cancer vs. in activated NPC samples

We have used the following criteria to determine if a cancer tissue (and a NPC sample) has the Warburg 

effect: (i) Expressions of the genes encoding lactate dehydrogenase unit A or B, LDHA or LDHB, and of 



  

the genes encoding the main lactic acid exporters, SLC16A1 or SLC16A3, are considerably up-regulated 

(fold change > 2) in cancer tissue (and activated NPC cells) in comparison to the controls; and (ii) the 

proportion of the glycolytic flux via pyruvate kinase (PK, encoded by PKM) into the TCA cycle via 

pyruvate dehydrogenase (PDH, encoded by PDHB) decreases in cancer tissues (and activated NPC cells) 

in comparison to controls. Here, we use the normalized expression of PDHB against that of PKM as an 

approximation to the fraction of the metabolic efflux out of PK into the TCA cycle via PDH. 

We note that the expression of LDHA is up-regulated in the cancer tissues of all 14 cancer types 

examined except for LIHC (Figure S1). In addition, the expression of either SLC16A1 or SLC16A3 is up-

regulated in the cancer tissues of all 14 cancer types except for COAD (see Materials and Methods for 

definition), which is known to have weak Warburg effect and hence generally not detected via PET/CT. 

In addition, the relative ratio of PDHB/PKM decreases in cancer tissues across different stages in 

comparison to the controls. Similarly, we found increased expression of SLC16A1 and LDHA(or LDHB) in 

all the five NPC types (Figure S2). However, the relative PDHB/PKM ratio is reduced only in CD4+ T cells 

and effector T cells but remains comparable in the other three cell types in comparison to the matched 

controls. Hence, we predict that all the cancer types and the NPCs under consideration have the 

Warburg effect. 

Opposite behaviors of pH-related transporters in cancer vs. NPCs

We have examined the gene expression levels of all the selected pH-related plasma-membrane 

transporters in cancer and in NPCs (see Materials and methods). We now go through the key 

differences between the expression patterns of these genes in groups in cancer vs. NPCs, with the 

detailed comparisons given in Figure 1. Note that in the following, the first three groups of 

genes are acid-loading transporter genes, and the next four are acid-extruding ones.

Acid -loading transporter genes 

Among the acid-loading transporter genes, the expressions of SLC4A1AP, SLC4A2, and SLC4A3 

are up-regulated or remain unaltered in cancer tissues vs. controls across most of the 14 cancer 

types. In comparison, the expressions of these genes are mostly down-regulated or remain 

unchanged across all the NPCs except for SLC4A1AP, which is up-regulated in iPSC. 



  

The expression of SLC26A6 is up-regulated or remains the same in 11 of the 14 cancer types 

except for COAD, KIRC, and KIRP. In comparison, the expression of SLC26A6 is not changed 

in the activated NPC samples vs. controls except for the iPSC samples. 

For the ATP6V genes, we have considered the expressions of ATP6V0B and ATP6V0C since 

their protein products are known to be localized in plasma membrane and have the same 

expression by definition. Table S1 shows the subcellular locations for the ATP6V0 protein 

products predicted by Genecards [18], and Table S2 gives the predicted ATP6V0B expressions in 

both cancers and NPCs. We can see from the table that the gene is up-regulated across all cancer 

types except for KIRC and KIRP; and it has no change or is down-regulated in its expressions 

across all the NPC samples in the activated state vs. the control. 

Acid-extruding transporter genes

Among the four groups of acid-extruding transporter genes, SLC4A4/9 are down-regulated or 

show no changes in their expressions across all cancer types except for PRAD with SLC4A4 

being up-regulated. In comparison, these genes show no changes or are up-regulated in their 

expressions in all the activated NPCs vs. the controls except for iPSC and effector T cell, in 

which SLC4A4 and SLC4A9 are down-regulated, respectively. 

For SLC9A2, 3, 4, 9, they are mostly down-regulated in cancer vs. controls, mostly by 

SLC9A9 and SLC9A2, while majority of these genes show no changes in their expressions in the 

activated NPCs vs. controls. 

SLC26A9 is predominantly down-regulated in cancer, and has no change in NPCs. 

The only group of genes considered here has the same behaviors between cancer vs. NPCs is 

SLC16A1/3, with their expressions up-regulated in both cancer and the activated NPCs. 

In sum, expressions of the acid-loading transporter genes are largely up-regulated, whereas 

expressions of the acid-extruding transporter genes are down-regulated in cancer vs. controls 

except for SLC16A1/3. For the acid-loading transporter genes, NPCs generally show the opposite 

gene-expression patterns to those in cancer while the acid-extruding transporters mostly show no 

changes in their expressions. Hence we conclude that cancer cells use the transporters under 

consideration to acidify their intracellular pH while NPCs alkalinize it. Given that both cancer 

and NPCs have comparable intracellular pH level [14,19], we infer that cancer cells reach their 

pH level from above while NPCs get there from below. 



  

A natural question would be: how can cancer cells maintain a basic intracellular pH when they are 

continuously acidified by powerful transporters? First, we posit that SLC16A1/3 are not the reason since 

they are driven by proton gradients, hence impossible for them to reverse the intracellular and 

extracellular pH. More importantly, there are numerous up-regulated acid-loading transporters with 

comparable expression levels (Figure 1), and multiple such transporters have higher Vmax values than 

SLC16A1/3. For instance, the Vmax of V-ATPase is 3−4 orders of magnitude higher (~40 nmol/min/mg) 

[20] than that of SLC16A1/3 (~63.0 pmol/min/mg) [21]. These data indicate that the acidification rate is 

substantially higher than the alkalinization rate by these transporters. 

Actually cancer tissue cells are known to utilize a number of other metabolic processes to acidify 

their intracellular space. These include: (i) diffusion of fatty acids from blood circulation into cancer cells 

, hence acidifying the intracellular space since their pKa values are approximately 4.5 [22], lower than 

the intracellular pH; (ii) diffusion of NH3 out of cancer cells into blood circulation [23], thus making the 

intracellular pH more acidic, knowing that its pKa is 9.26 [22]; (iii) biosynthesis and deployment of large 

quantities of sialic acids and gangliosides [24], making the intracellular pH more acidic [25]; and (iv) 

glycolytic ATP production (see the next section).

All these data strongly suggest one possibility that there are unknown metabolic processes that 

continuously produce alkaline molecules inside cancer cells, which may have triggered all the above 

processes to continuously acidify the intracellular space to keep the cells viable. 

Fenton reactions in cancer cells and their impact on intracellular pH

We have recently build a computational model based on gene expression data of cancer vs. control 

tissues of all the 14 cancer types examined in this study, to demonstrate that all cancer tissue cells have 

Fenton reactions in their cytosol [16]. We outline the general idea of the study, for readers’ 

convenience.

It has been widely observed that cancer tends to be associated with chronic inflammation 

[26], which will give rise to elevated H2O2 level [27]. In addition, it has also been widely noted 

that cancer tends to have local accumulation of iron [28]. The combination of the two will result 

in an inorganic chemical reaction, called Fenton reaction: Fe
2+ + H2O2 → Fe

3+ +  + OH-. ∙ OH

Multiple authors have reported the observation of Fenton reactions in cancer across numerous  



  

cancer types [28,29]. In our previous study , we have predicted that cancer cells generally use 

superoxide ( ) as the reducing molecule to convert Fe
3+ to Fe

2+, produced predominantly by O ∙‒
2

local innate immune cells including neutrophil and macrophages [16]. This will lead to persistent 

Fenton reaction, which can be rewritten as

O ∙‒
2  + H2O2→ ∙ OH + OH ‒ + O2

(also known as Haber-Weiss reaction) with Fe2+ as the catalyst and not consumed, where Fe2+ 

could be in iron-sulfur clusters or labile-iron pool [30]. Essentially, the reaction continuously 

produce  and , fueled by  and  generated predominantly by local immune cells ∙ OH OH ‒ O ∙‒
2 H2O2

and catalyzed intracellular Fe2+. 

Knowing that  can only be produced intracellularly by Fenton reactions when cells are ∙ OH

not exposed to radiation [31], we have predicted if a cell harbors Fenton reaction in its cytosol if 

the quantities on two sides of the above chemical reaction strongly correlate with each other, 

given the level of Fe2+, specifically between [ , where [X] ∙ OH] 𝑣𝑠. [H2O2], [O ∙‒
2 ] and [Fe2 + ]

represents the quantity of X. The rationale is that (1) we have observed that each of these 

quantities can be reliably estimated using the expressions of selected genes; and (2) the level of 

correlation between the two sides is highly consistent with the level of Fenton reaction [16]. File 

S1 and Table S3 show the statistical correlation between the two sides for all the cancer tissues 

of the 14 cancer types considered in our study [16]. Based on the data, we predict that all the 

cancer tissues have Fenton reactions in their cytosol. 

In addition, we have also shown that Fenton reaction-produced OH- can overwhelm the cytosolic pH 

buffer within a relatively short amount of time [16]. Then a range of processes is triggered to acidify the 

intracellular space, including the transporters under study, thus keeping its pH from becoming too high, 

since changes in intracellular pH can alter the whole biochemistry in a fundamental manner. In 

comparison, we predict that the activated NPCs have no or slight Fenton reactions based on data given 

in Table S4. 

Increased glycolytic ATP production is a response to cytosolic Fenton reactions

To pin down the possible reasons for the observed behaviors of the transporters in the first Results 

section, we searched for genes whose expressions correlate positively with those of the acid-loading 

transporter genes and simultaneously negatively with those of the acid-extruding ones for each cancer 



  

type. Table S5 lists the pathways enriched by such genes for each cancer type, with the detailed 

enrichment procedure given in File S1. Functional analyses reveal that these pathways largely fall into 

four categories: (1) cell proliferation and development; (2) macromolecular damages and degradation; 

(3) immune activities; and (4) stress response. These results point to the possibility that the behaviors of 

the transporters might be relevant to cytosolic Fenton reactions since as we previously shown [16] and 

outlined in the previous section that (i) Fenton reactions are the results of immune response to 

persistent irritations at the disease sites; and (ii) cytosolic Fenton reactions damage intracellular 

macromolecules by their , and drive cell division by the persistent nucleotide synthesis induced as ∙ OH

response to continuous production of OH- [16]. 

Furthermore analyses have revealed that these transporter genes indeed strongly correlate 

genes/pathways used to define cytosolic Fenton reactions as detailed in Table S6 and Figure 2. 

Specifically, as shown in Figure 2, the expressions of proteasome (PSM) genes, one of the three gene 

groups used to define Fenton reaction (see later discussion of this section) positively correlate with 

those of the acid-loading transporter genes and negatively correlate with those of the acid-extruding 

transporter genes across all 14 cancer types. By these and the above paragraph, we predict the 

behaviors of these transporters are related to the OH- produced by Fenton reactions. In contrast, the 

above correlations do not exist for NPC samples, as detailed in Table S7. 

Interestingly, the correlation between PKM and SLC16A1 in cancers is considerably weaker than it 

in NPCs as shown in Figure 3A and Figure S3, hence suggesting that the role of SLC16A1 might be 

different from the other pH-related transporters. 

We now show statistically that glycolytic ATP production is also relevant to cytosolic Fenton 

reactions. To accomplish this, we have calculated correlations between the level of glycolytic ATP 

production as reflected by the expression of PKM and (i) the level of protein damage as reflected by the 

expression of the PSM genes, (ii) the level of iron uptake represented by the expressions of TFRC 

(transferrin receptor) and TFR2, and (iii) the intracellular H2O2 level reflected by the expressions of TXN 

(thioredoxin), TXN2, GCLC (glutamate-cysteine ligase catalyst) and GCLM, respectively, with detailed 

results shown in Figure 3B. Note that the three groups of genes (i – iii) are used for establishing cytosolic 

Fenton reactions [16]. Hence, we conclude that the level of glycolytic ATP production strongly correlates 

with the level of Fenton reaction. 



  

To see how glycolytic ATP production may be relevant to cytosolic pH, we note that the production 

of an ATP by respiration: ADP3- + HPO4
2- → ATP4- + OH- consumes one proton, while ATP generation by 

glycolysis: glucose + 2ADP3- + 2HPO4
2- → 2 lactate + 2 ATP4- is pH neutral [17]. And hydrolysis of any ATP: 

ATP4- + H2O → ADP3- + HPO4
2- + H+ releases one proton. Hence, we conclude that glycolytic ATP 

production generates one net H+ for ATP when the ATP is hydrolyzed while in comparison, respiration 

based ATP production is pH neutral when the ATP is consumed. 

By integrating all the above results, we predict that glycolytic ATP biosynthesis is a cellular response 

to the persistent OH- production by cytosolic Fenton reactions across all 14 cancer types. 

One puzzling issue remains: why do cancer cells secrete lactic acids (lactate + proton) when they 

face a major challenge to keep the intracellular pH from becoming too alkaline to remain viable? To 

address this issue, we have conducted correlation analyses between the expression levels of SLC16A1 

and all the up-regulated genes in each cancer type, followed by pathway-enrichment analyses of these 

genes. We have then examined the 100 most enriched pathways in each cancer type. We find that the 

most enriched pathways are involved in the biological processes related to immune system, cell cycle, 

and response to stress (Figure 4), hence suggesting that the secretion of the lactic acid might be 

regulated by external signals. This observation is consistent with previous studies suggesting that 

expression of SLC16A1 is regulated by hypoxia [32], hyaluronic acid receptor CD44 [33], and local 

stromal cells [33] in cancer. 

Previous studies have suggested that lactic acids might serve protective roles in cancer against 

attacks by T cells [34]. Therefore, we conclude that lactic acid secretion by SLC16A1 is most likely not 

related to intracellular pH homeostasis, instead it serves a protective role for cancer.  

Glycolytic ATP synthesis maintains the elevated intracellular pH during NPC proliferation 

To understand the functional roles of glycolytic ATP production followed by lactic acid secretion in NPCs, 

we have performed correlation analyses between the expressions of PKM and genes related to the 

predicted cytosolic Fenton reaction on the NPC data. The analyses revealed that unlike cancer cells, no 

or very little correlation between expressions of glycolytic ATP production (PKM gene) and the Fenton 

reaction-defining genes, namely proteasome, iron uptake, and H2O2 genes in NPCs, as shown in Figure 

S3, hence suggesting that the reason for glycolytic ATP production in NPCs is different from that in 

cancers. 



  

To probe why NPCs utilize glycolysis to produce ATP during their proliferating phase, we first review 

how unicellular organisms such as E. coli and yeast control their cell cycle. It has been well established 

that in E. coli, nutrients are first used towards ATP production via the respiration process. This process 

switches largely to nucleotide and nucleotide-sugar syntheses once the cellular ATP concentration rises 

to a certain level, as result of that ATP production rate is higher than that of ATP consumption. Clearly, 

this will lead to increased cellular concentrations of nucleotides and nucleotide-sugar. It has been 

established that the cellular nucleotide-sugar concentration serves as the cue for cell cycle progression 

in E. coli [35] and Bacillus subtilis [36]. Hence when the cell cycle starts, the cells already have 

substantial levels of ATP accumulated needed for cell division.

The accumulation of the respiration-synthesized ATP also leads to an increase in the intracellular pH, 

as needed for the proliferation phase [37]. The reason is that respiration-based ATP biosynthesis 

consumes one proton per ATP, hence driving the pH up when the ATPs are accumulated. Since cell 

proliferation requires an elevated intracellular pH (from 6.8 to 7.2−7.4 [38]), cells must alter its way of 

ATP synthesis as otherwise the consumption of each ATP will release one H+, hence decreasing the pH. 

We predict that this is the reason that NPCs switch to glycolytic ATP production when cell proliferation 

starts. Details follow. Recall that the synthesis of each glycolytic ATP is pH neutral and produces on 

lactate [39]. When the respiration based ATP is consumed for cell proliferation, one H+ is generated. 

Now cells release this proton along with the lactate in the form of lactic acid. This serves two purposes: 

(1) maintaining the intracellular pH and (2) replenishing the consumed ATP. Again, it is worthy 

reemphasizing that the proton released along with lactate is NOT from glycolysis, instead, from 

hydrolysis of an ATP previously generated by respiration. 

While this has not been demonstrated for normal human proliferating cells, we hypothesize that 

they basically follow a similar process to maintain a pH level needed for cell proliferation through 

glycolytic ATP production followed by lactic acid secretion. To provide supporting evidence, we have 

conducted a co-expression analysis between SLC16A1 and all the up-regulated genes in each set of NPC 

samples, followed by pathway enrichment analyses. We find that majority of the enriched pathways are 

growth or development related. Moreover, over two thirds of the pathways that are most commonly 

shared by different NPCs are also growth or development related (Table S8), hence suggesting our 

prediction that the cellular roles of SLC16A1 is different in cancer and in NPCs.

While we do not have experimental data to directly support the prediction that increased 

intracellular pH is essential to human cell proliferation, there are data that indirectly support our 



  

prediction. Specifically, we have analyzed a gene expression dataset (GSE77239) that was generated in 

an study aimed to examine the effect of inhibiting an acid-extruding pump in endothelial cells [40]. We 

have found that the expression levels of cell proliferation and glycolytic genes were reduced when the 

cells were treated by the inhibitor of the pump (Table S9).

We have also studied the time-course data in one of the NPC datasets, GSE11292 for regulatory T 

cells and effector T cells. The dataset contains gene-expression data of the cells collected every 20 min 

at 19 time points starting from time zero. We have specifically examined genes involved in the 

respiratory chain, glycolysis, lactic acid secretion, and the gene, PRKAA1, involved in AMP degradation, 

whose expression level is known to be proportional to the intracellular ATP level [41], as shown in Figure 

5. We find that the expression levels of the respiratory chain genes decrease continuously while the 

expressions of glycolytic ATP synthesis genes increase. In the meantime, the intracellular ATP 

concentration with the expression of PRKAA1 as a readout reaches and stays at a high level and then 

gradually goes down starting at time T3 This observation is consistent with our model, namely, that (i) 

cell proliferation starts at a point when the intracellular ATP concentration reaches a high level; and (ii) 

the cells increase glycolytic ATP production and reduces respiration-based ATP synthesis during 

proliferation. Highly similar patterns are observed in other similar cases, as detailed in Figure S4.

It is noteworthy that unlike E. coli, respiratory ATPs are generated in mitochondria rather than in 

cytosol. Since cytosolic proton movement into mitochondria via the ATP synthase (or UCP transporters) 

is driven by proton gradient [42], we postulate that the increased mitochondrial pH would lead to 

increased cytosolic pH. 

To estimate the number of respiratory ATPs that need to be accumulated to raise the intracellular 

pH from 6.8 to 7.4 (pH value needed for cell proliferation) in a normal human cell, we have calculated 

the number of protons needed to make such a change. Here we assume that the volume of the cell is 

100 μm3, based on human cell data [43]. For the intracellular pH to change from 6.8 to 7.4, the 

concentration of the H+ needs to change from 10-6.8 to 10-7.4. Assuming that the pH buffering coefficient 

of the cell is  for this pH range [44], the number of protons needed to make such a change is 2 ×  105

calculated as, 

(10 ‒ 6.8 ‒  10 ‒ 7.4) ×  100 ×  2 ×  105 ×  10 ‒ 15 ×  6.02 ×  1023≅1.43 ×  109



  

where  is the Asogadro constant. Hence, it takes approximately  protons, 6.02 ×  1023 1.43 ×  109

hence this number of ATPs to make the desired pH change. Knowing that there are ~6 ×  109

nucleotides in human genome and it takes approximately five ATPs to synthesize one nucleotide on 

average, we predict that a cell must accumulate at least the number of ATPs needed to synthesize ~4.7% 

(143/3000) of a human DNA to raise the pH from 6.8 to 7.4. 

Figure 6 summarizes the key differences between the Warburg effects in cancer cells vs. NPCs. 

Based on all the analyses, we predict that while both normal proliferating cells and cancer cells have the 

Warburg effect, they do it for fundamentally different reasons.

Discussion
Several papers suggest that the Warburg effect is a common characteristic of all proliferating cells, 

including cancer and normal proliferating cells. Our comparative analyses of gene expression data 

between cancer tissue cells and NPCs provide strong evidence that they do this for fundamentally 

different reasons. Specifically, cancer cells do this mainly to produce net protons for neutralizing OH- 

that is generated persistently by cytosolic Fenton reactions, whereas NPCs do this to maintain the 

elevated cytosolic pH needed for the optimal performance of the ribosomal proteins [37]. Moreover, 

cancer cells secrete lactic acids largely independent of lactate generation and they do this probably for 

protecting cancer cells from destruction by immune cells. 

To avoid possible noises introduced by non-cancerous cells, we have selected in our analyses 

cancer tissue samples that are predicted to contain cancer cells with high purity. However, the results 

derived using such samples are essentially the same with the results derived from all samples of the 14 

caner types in TCGA without this selection. 

While our analyses provide generally consistent results across the 14 cancer types, we notice that 

kidney cancers tend to show different characteristics in maintaining their cytosolic acid-base 

homeostasis from other cancers, suggesting that further studies are needed. 

We have also examined the protein abundances of the up-regulated genes in our model in the 

relevant cancer types (when available) from the Human Protein Atlas, and found that virtually all the 

highly up-regulated genes also have significant increase in protein abundance in the same cancer types 



  

if such data are available, hence indicating that our gene-expression based analyses are as valid as 

protein abundance based analyses if they were available.

Overall, the discovery made in this study offers a novel angle to examine cancer from the 

perspective of acid-base homeostasis. Our unique way in connecting coarse-grained information derived 

from gene-expression data with detailed chemistry properties of cells such as pH may offer a novel 

approach to tackle complex diseases like cancer, hence potentially leading to deeper understanding 

about cancer formation and development. 

Materials and methods
Data processing and normalization

We have used RNA-seq data of 1612 samples covering 14 cancer types from the TCGA database [45], 

each having at least 13 cancer and (not necessarily paired) control samples, with gene expression levels 

indicated using normalized FPKM (with log2 transformation). 

The purity of cancer tissue samples was predicted using five programs, namely ESTIMATE, 

ABSOLUTE, LUMP, IHC, and CPE [46]. Cancer tissue samples with the highest purity for each cancer type 

were selected, based on consensus results by the five methods. The detailed information about how 

tissue purity is assessed is given in File S1. 

In addition, 143 samples of five NPC types with microarray-based gene expression data were 

selected from the GEO [47]. These include activated CD4+ T cells (GSE60235, GPL570) [48], induced 

pluripotent stem cell (GSE25970, GPL3921) [49], re-epithelialization cells (GSE28914, GPL570) [50], 

activated regulatory T cells (GSE11292, GPL570), and activated effector T cell (GSE11292) [51]. Each 

dataset consists of gene-expression data for both activated and inactive cell, used as controls. These 

cells are good representatives among proliferating noncancerous human cells, with the related datasets 

representing good qualities among all the relevant datasets in GEO. For a gene with multiple probes, we 

chose the probe having the highest average expression level to represent its expression. MAS5 in the R 

package “affy” [52] was used to normalize the gene expression data.

Table 1 summarizes the sample information for both cancer and NPC data used in this study. The 

original information of the cancer samples collected from TCGA before selection is given in Table S10 

and Figure S5. 



  

The expression levels of all genes in all cancer samples of each type form a bimodal distribution 

(Figure S6), where the first peak (from left to right) represents genes that are not expressed and the 

second peak is for the expressed genes. For each cancer type, genes with expression values lower than 

or equal to the lowest point of the valley between the two peaks is considered as not expressed. The 

same criteria apply to the controls as well as the NPC samples from GEO. 

Selection of pH-related transporter genes

We examined all the genes in the transporter families, including bicarbonate transporters, sodium-

proton exchangers, anion exchangers, V-ATPase, lactic acid transporters, Ca2+-ATPase, and K+/H+ ATPase. 

A few transporters localized in plasma membrane were considered as reliable acid-loading or acid-

extruding transporters. Details follow.

The family of bicarbonate-transporter genes consists of eleven SLC4 genes. SLC4A1, 2, 3 are 

known to exchange extracellular Cl- for intracellular HCO- [53], hence serving as acid loaders; 

and SLC4A4-10 tend to cotransport extracellular Na+ and HCO3
- into cells [54], hence acid 

extruders. It is known that SLC4A11 does not transport bicarbonate, hence not considered; and 

SLC4A6 has not been identified yet. Out of the remaining ones, SLC4A8 and A10 are not 

expressed in any samples, cancer or control. SLC4A1 and SLC4A5 are each expressed in only 

one tissue type: 4A1 in kidney and 4A5 in thyroid. SLC4A7 tends to be located in focal adhesion 

sites, in addition to plasma membrane, making their interpretation challenging. Hence, we do not 

consider any of these SLC4 transporters, which leaves SLC4A1AP (an adaptor protein of 

SLC4A1), A2, A3 as acid loaders, and SLC4A4 and A9 as acid extruders.  

The family of sodium-proton exchangers consists of nine SLC9A genes, which generally 

exchange extracellular Na+ for intracellular H+ (or NH4
+), hence acid extruders [55]. The 

following five SLC9A genes are not considered for different reasons in our study. SLC9A1 and 

A7 can be localized to at least three subcellular compartments [56]. SLC9A8 is localized only in 

Golgi. SLC9A5 is not expressed in any samples studied here. SLC9A6 is predominantly 

expressed in endosome [57]. This leaves SLC9A2, 3, 4, 9 for further analyses. 

Among the SLC26 anion exchangers, only six may exchange Cl- for HCO3
-, namely 

SLC26A3−4, 6−7, 9, 11 [58]. SLC26A3 and A4 are not expressed in majority of the tissue types 

under study, hence not considered. SLC26A7 is mainly a chloride channel, which exchanges Cl- 



  

for a range of intracellular anions [59], hence not considered. SLC26A11 can be localized to five 

subcellular compartments, hence too non-specific and not considered. This leaves two genes in 

our study: SLC26A6 and A9. Interestingly, while both transporters exchange Cl- for an anion, 

including HCO3
-, they facilitate Cl- flux in the opposite directions, namely SLC26A6 moving 

extracellular Cl- into cells [60] and A9 moving intracellular Cl- out [61]. 

The ATP6V genes encoding the V-ATPase complex tend to have multiple subcellular 

locations. Considering that only those localized to plasma membrane are relevant to our study, 

we have developed a computational method to de-convolute the observed expressions of the 

ATP6V genes to tease out the portions of these genes whose protein products are localized in the 

plasma membrane (see File S1). Table S2 lists the estimated average expression levels of the 

ATP6V genes whose protein products are localized in plasma membrane across different cell 

types. 

Both lactic acid transporter genes, SLC16A1 and A3, are included in our analyses. Neither the 

Ca2+-ATPase (encoded by the ATP2B1-4 genes) nor the K+/H+ ATPase (encoded by the ATP4A, 

B genes) is particularly informative, hence we did not include them in our analyses.

Calculation of correlation and statistical significance 

To calculate the correlation between the expression of a given gene g and a set of M genes in a sample 

set, we choose the first two principle components (PCs) to represent the gene set if they can explain at 

least 75% of the data variance. A linear regression model was constructed as shown below.

  (1)𝑒(g) ~ 𝛽1𝑃𝐶1 + 𝛽2𝑃𝐶2 + 𝛽0

where  is the expression of gene ;  and  are the first and second PCs of the expression of  𝑒(g) g 𝑃𝐶1 𝑃𝐶2

the gene set in the given samples; and {  are regression parameters. If  and  fail to explain at 𝛽𝑖} 𝑃𝐶1 𝑃𝐶2

least 75% of the data variance, we use the following procedure to assess the statistical significance of 

the detected correlation between the gene g and the set of M genes. First, we calculate the Pearson 

correlations between g and each of the N genes in the human genome (N = 20,000) as the background; 

and then we conduct a multiple-hypothesis test using the false discovery rate control, to select n genes 

from N to achieve statistical significance for each correlation with g (P < 0.01). The P value for the 

correlation is calculated as: 



  

   (2)𝑃 = 1 ‒ ∑𝑚 ‒ 1
𝑖 = 0

(𝑀
𝑖 )(𝑁 ‒ 𝑀

𝑛 ‒ 𝑖 )
(𝑁

𝑛)
where m is the number of genes in the union of the n- and M- gene sets. For two gene sets GS1 

and GS2 and their gene expression matrices M1 and M2 (across samples), we first calculate their 

principal curves [62] to capture the nonlinear variance within matrices M1 and M2. We then 

project each sample of M1 or M2 onto the corresponding principal curve, denoted as DP1 and 

DP2, respectively. Pearson’s correlation coefficient (PCC) between DP1 and DP2 is then 

calculated to indicate the correlation between the two gene sets and the relevant p-value. R 

package “pathifier” was applied to calculate the principal curve of the gene expression matrix.

Identification of differentially-expressed genes

We have applied Wilcoxon signed-rank test for cancer samples vs. matching controls and NPCs vs. 

controls to identify differentially- expressed genes (DEGs). A gene is considered to be significantly 

differentially expressed if the difference in its expression is at least 1.3 fold between cancer (or NPCs) 

and their relevant control samples (FC > 1.3), with the false discovery rate < 0.01.
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Figure legends
Figure 1  Heatmaps for differential expressions of the selected transporter genes

The first zone is for acid-loading transporters, the second for acid-extruding transporters, and the last 

for lactate acid extruding transporters. Gene expression levels are indicated with FPKM presented as 

log2FC, with log2FC > 0.6 for up-regulated genes and log2FC < −0.6 for down-regulated genes. FC, fold 

change.

Figure 2  Co-expression of proteasome(PSM) genes and acid-loading or acid-extruding transporter 

genes in 14 cancer types and NPCs

Co-expression was measured using Pearson correlation coefficient. The positive and negative 

correlations are indicated in green and black, respectively, with the size of each square representing the 

correlation level. Proteasome genes is given in Table S6.

Figure 3  Correlations between Fenton reaction level and ATP production genes

A. Correlation between PKM and one acid-loading and two acid-extruding transporter genes: SLC4A3, 

SLC4A4, and SLC9A9, SLC16A1, and SLC16A3. “-” represents the lack of the significant correlation. B. 



  

Pearson correlation between glycolytic ATP production genes (PKM and PGK1) and genes reflecting the 

levels of cytosolic Fenton reactions (proteasome genes, iron uptake genes and H2O2 related genes in 

Table S6) in cancer.

Figure 4  The most commonly enriched pathways by genes strongly correlated with SLC16A1 across 

the 14 cancer types

The length of a bar represents the number of cancer types where the pathway is enriched with genes 

whose expression strongly correlates with the expression of SLC16A1. 

Figure 5  Time-specific expression data of key genes involved in Warburg effect, electron transport 

chain and nucleotide synthesis pathways in GSE11292 

The left panel shows the expression levels of PKM, SLC16A1, NDUFS2, SDHD, UQCRFS1, and COX10, four 

representative genes for electron transport chain Complex I, II, III and IV, respectively, where the time 

course data with 18 time points are grouped into six segments with each containing three consecutive 

points and Ti represents the ith segment, 0 ≤ i ≤ 5. The right panel shows the expression levels of PPAT, 

GART, PRPS2, and HPRT1 (blue), key genes in nucleotide synthesis pathways, as well as the expression 

level of PRKAA. 

Figure 6  Schematic illustration of the key differences between the Warburg effects in cancer cells vs. 

NPCs

A. Warburg effects in cancer. B. Warburg effects in normal proliferating cells. 

Tables 
Table 1  Samples of cancer tissues of 14 types and of five NPC types used in our study after purity 

selection



  

Supplementary material

File S1  Data and methods

Figure S1  Boxplots represent gene expression levels of Warburg effect related genes across different 

stages of the 13 cancer types

Gene expression levels of Warburg effect related genes SLC16A1/3, LDHA, PKM, and PDHB 

against PKM, across 13 cancer types: n is for control, s1 is for stage 1, s2 is for stage 2, s3 is for 

stage 3 and s4 is for stage 4 from left to right. The stage information of prostate cancer in TCGA 

is not available, hence prostate cancer is not included in the analysis. 

Figure S2  Boxplots represent gene expression levels of Warburg effect related genes in five NPC: 

control and activated 

Gene expression levels of Warburg effect related genes SLC16A1/3, LDHA, PKM, and PDHB against PKM 

across five NPC in control and activated.

 

Figure S3  Pearson correlations between PKM and genes used in Figure 3 in five NPCs 

(1) Proteasome genes, (2) iron uptake genes, (3) SLC16A1/3, and (4) H2O2 related genes. 

Figure S4  Time-specific expression data of key genes involved in Warburg effect, electron transport 

chain and nucleotide synthesis pathways and expression level of PRKAA in GSE60234

Gene expression levels of PKM, SLC16A1(Warburg effect), COX7A1 (electron transport chain), PPAT, 

GART (nucleotide synthesis), and expression level of PRKAA where the time course data with 8 time 

points are grouped into 4 segments with each containing 2 consecutive points and Ti represents the ith 

segment, 0 ≤ i ≤ 4. 

Figure S5  Percentages of cancer samples in different stages 



  

A. Before purity-based selection. B. After purity-based selection. The purity-based selection was 

not performed for ESCA and STAD, due to the incompatibility of the data formats. 

Figure S6  Gene expression density distributions for each cancer type and each NPC type 

A. Expression density distributions for each cancer type, one for cancer samples and one for controls. B. 

Expression density distributions for each NPC type, one for activated samples and one for controls. RNA-

seq data for ESCA and STAD were generated using Illumina HiSeq v1, and all other cancer data examined 

here were generated using Illumina HiSeq v2.

Table S1  Subcellular locations for the ATP6V genes

Subcellular locations predicted with confidence scores 4 or 5 by Genecards [18]are listed in the second 

column and additional ones, if any, with score 3 are listed in the third column.

Table S2  Average expression levels of the ATP6V genes contributed by those located in plasma 

membrane 

A. Expression levels are indicated with FPKM in cancer. B. Expression levels are indicated with 

normalized microarray data in NPCs. 

Table S3  Statistical correlation between the two sides of the Michaelis-Menten equation based 

Fenton reactions

R2 values for the statistical correlation between the two sides of the Michaelis-Menten equation based 

Fenton reactions along with the associated statistical significance of the R2 value. We have then 

conducted 10,000 permutations of the two sides genes. Let N be such R2 value and M the number of 

times out of these permutation tests with significant gene pairs at least being N. The M/100,000 is used 

as the significance value.

Table S4  Number of up-regulated proteasome genes in cancer and NPCs



  

Table S5  Pathways enriched by genes whose expressions correlate positively with acid-loading 

transporters and negatively with acid-extruding ones in cancer (redundant pathways have been 

removed) 

Table S6  Genes used to estimate the occurrence of cytosolic Fenton reaction

Table S7  Correlation and statistic confidence between proteasome genes and acid-loading & 

extruding transporter genes of the 14 cancer types and NPCs

Proteasome genes are given in Table S6, acid-loading and extruding transporter genes are the same with 

gene list in Figure 1.

Table S8  Pathways enriched by genes strongly correlated with SLC16A1 (or SLC16A3 if SLC16A1 is not 

available) in NPCs

We define it strongly correlated if the statistical significance of Pearson correlation below 0.005.

Table S9  Differential expressions of the selected cell proliferation and Warburg effect related genes in 

GSE77239

Table S10  Samples of cancer tissues of 14 types in the TCGA database before purity selection



  



  



  



  



  



  



  

Table 1  Samples of cancer tissues of 14 types and of five NPC types

 Type
No. of 
cancer/activated 
samples

No. of  
control 
samples

Bladder urothelial carcinoma (BLCA) 94 19

Breast invasive carcinoma (BRCA) 153 113

Colon adenocarcinoma (COAD) 55 41

Esophageal carcinoma (ESCA) 184* 13

Head and Neck squamous cell carcinoma (HNSC) 79 44

Kidney chromophobe (KICH) 34 25

Kidney renal clear cell carcinoma (KIRC) 91 72

Kidney renal papillary cell carcinoma (KIRP) 38 32

Liver hepatocellular carcinoma (LIHC) 65 50

Lung adenocarcinoma (LUAD) 92 59

Lung squamous cell carcinoma (LUSC) 59 51

Prostate adenocarcinoma (PRAD) 133 52

Stomach adenocarcinoma (STAD) 238* 33

Thyroid carcinoma (THCA) 56 59

Activated CD4+ T cells (GSE60235) 15 15

Activated effector T cells (GSE11292) 32 6

Activated regulatory T cells (GSE11292)  32 6

Induced pluripotent stem cell (GSE25970) 12 6

Re-epithelizing skin cells (GSE28914) 11 8

Note: * represents a case where all the cancer samples of the cancer type in TCGA are 
used instead those with predicted high purity since some of the programs do not apply to 
the data format of the cancer type.


