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Abstract

Background: More than 90% of neuroblastoma patients are cured in the low-risk group while only less than 50%
for those with high-risk disease can be cured. Since the high-risk patients still have poor outcomes, we need more
accurate stratification to establish an individualized precise treatment plan for the patients to improve the long-term
survival rate.

Results: We focus on extracting features and providing a workflow to improve survival prediction for neuroblastoma
patients. With a workflow for gene co-expression network (GCN) mining in microarray and RNA-Seq datasets,
we extracted molecular features from each co-expressed module and summarized them into eigengenes.
Then we adopted the lasso-regularized Cox proportional hazards model to select the most informative eigengene
features regarding association to the risk of metastasis. Nine eigengenes were selected which show strong association
with patient survival prognosis. All of the nine corresponding gene modules also have highly enriched
biological functions or cytoband locations. Three of them are unique modules to RNA-Seq data, which
complement the modules from microarray data in terms of survival prognosis. We then merged all eigengenes from
these unique modules and used an integrative method called Similarity Network Fusion to test the prognostic power
of these eigengenes for prognosis. The prognostic accuracies are significantly improved as compared to using all
eigengenes, and a subgroup of patients with very poor survival rate was identified.

Conclusions: We first compared GCNs mined from microarray and RNA-seq data. We discovered that each
data modality yields unique GCNs, which are enriched with clear biological functions. Then we do module
unique analysis and use lasso-cox model to select survival-associated eigengenes. Integration of unique and
survival-associated eigengenes from both data types provides complementary information that leads to more accurate
survival prognosis.

Reviewers: Reviewed by Susmita Datta, Marco Chierici and Dimitar Vassilev.

Keywords: Neuroblastoma survival time predict, Gene co-expression network, Integrative cluster

* Correspondence: kunhuang@iu.edu
3Department of Medicine, Indiana University School of Medicine,
Indianapolis, USA
6Regenstrief Institute, Indianapolis, USA
Full list of author information is available at the end of the article

© The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Han et al. Biology Direct            (2019) 14:4 
https://doi.org/10.1186/s13062-018-0229-2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IUPUIScholarWorks

https://core.ac.uk/display/225126809?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1186/s13062-018-0229-2&domain=pdf
http://orcid.org/0000-0002-8530-370X
mailto:kunhuang@iu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Neuroblastoma (NB) is one of the most common can-
cers in children. The patients of high-risk (HR) subtype
usually have the poorer prognosis [1]. Better survival
prediction for these HR patients will help doctors adjust
their treatment plans, thus improve the patient’s chances
of survival. With abundant high-throughput transcrip-
tomic data [2–4], a better prognosis method may benefit
from an integrative approach which extracts highly
correlated molecular features and identifies them as po-
tential biomarkers for patient survival prognosis [5].
However, there are two major challenges for the integra-
tive approach: (1) the relatively small number of samples
compared to a large number of measurements; and (2)
complementary nature of the information provided by
different types of data [6, 7]. In this paper, we provide an
effective workflow to tackle these problems, the work-
flow is shown in Fig. 1. For complementary nature in
NB transcriptomic data, a study has compared RNA-Seq
and Agilent microarray gene expression profiles for clin-
ical endpoint prediction of 498 pediatric patients and
found the two technology platforms do not significantly
affect performances of the models [8]. However, instead
of examining data for the large number of genes, which
contain noise and poses a problem on the statistical
power of prognosis, we reduce the data dimensionality
by mining gene co-expression network (GCN) first. Spe-
cifically, we identified densely connected GCN modules,
then summarized each module into an “eigengene” using
the protocol described in [9, 10]. To distinguish this
study from another study we did on NB, which was
focus on efficiently integration of the transcriptomic data
and clinical data using consensus clustering, in this
paper we probed into details for these eigengenes and
their biological functions, and identified GCN modules
that can be used as potential biomarkers to improve ac-
curacy for NB patient survival prognosis. Therefore,
after the eigengene construction and analysis, we built a
lasso-regularized Cox proportional hazards (lasso-Cox)
model to compute the risk index for each patient in the
HR group with all the eigengenes to identify the ones
significantly contributing to the prediction. Finally, we
applied an integrative method called Similarity Net-
work Fusion (SNF) [11] to merge these eigengenes
and test the power of their prognostic power as po-
tential biomarkers.

Materials and methods
Dataset and preprocessing
The data used in this study is obtained from the Neuro-
blastoma Data Integration Challenge of CAMDA 2017.
It contains tumor samples of 498 neuroblastoma pa-
tients from seven countries: Belgium (n = 1), Germany
(n = 420), Israel (n = 11), Italy (n = 5), Spain (n = 14),
United Kingdom (n = 5), and United States (n = 42). The
patients’ age at diagnosis varied from 0 to 295.5 months
(median age, 14.6 months).
Transcriptome datasets from both microarray (Agilent

44 K oligomicroarray) and RNA-seq are obtained for the
498 patients with known clinical endpoints. The RNA-seq
includes 60,788 transcripts and Agilent microarray data
for 45,198 probesets, both from 498 primary neuroblasto-
mas. Tumor stage was classified according to the Inter-
national Neuroblastoma Staging System (INSS): stage 1
(n = 121), stage 2 (n = 78), stage 3 (n = 63), stage 4 (n =
183), and stage 4S (n = 53). 176 patients are labeled as
high-risk, which are the patients with stage 4 disease more
than 18months at diagnosis and patients of any age and
stage with MYCN-amplified tumors [1]. We identified
9583 unique genes whose expression profiles are present
in both RNA-seq and microarray datasets with matched
gene symbols for further analysis and data integration.

Gene co-expression analysis and eigengene
summarization
While our first goal is to extract these gene data feature
before integration, the large gene number poses a chal-
lenge on the statistical power. Therefore, instead of fo-
cusing on individual genes, we first carry out gene
co-expression network analysis (GCNA) to cluster genes
into co-expressed modules and summarize each module
into an “eigengene”. This approach not only substantially
improves statistical power but also allows us to focus
more on important biological processes or genetic varia-
tions associated with the co-expressed gene modules,
making the results more interpretable. We applied our
recently developed weighted network mining algorithm
local maximum Quasi-Clique Merging (lmQCM) for
GCN mining [12]. Unlike the widely used WGCNA
package that uses hierarchical clustering and does not
allow overlaps between clusters [13, 14], lmQCM is a
greedy approach and allows genes to be shared among
multiple clusters, agreeing with the fact genes often

Fig. 1 Graphical representation of the Integration workflow
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participate in multiple biological processes. Also, it has
been shown to be able to find smaller co-expressed gene
clusters that are often associated with structural muta-
tions such as copy number variations in cancers. The ad-
jacency (weight) matrix was constructed using Spearman
Correlation Coefficient (SCC) for every pair of gene
studied, as SCC can accommodate the large non-linear
range of RNA-Seq data better than Pearson Correlation
Coefficient. Four parameters in lmQCM algorithm need
initialization, they are λ, α, t, andβ. Among them, λ is
the most important one. It determines the initiation of a
new cluster by setting the weight threshold for the first
edge of the cluster as a sub-module. In our GCN ana-
lysis, we transform the absolute values of the SCC be-
tween expression profiles of genes into weights using a
normalization procedure adopted from spectral cluster-
ing [14], which has been shown to be effective in previ-
ous studies. Based on previous work [15, 16], we chose
λ=0.80, t = 1, α = 1, and β= 0.4, which yielded 38
co-expressed gene clusters from microarray and 24
co-expressed gene clusters from RNA-seq with balanced
sizes and clear biological interpretations.

Lasso-regularized cox proportional hazards model
After using lmQCM reduced data dimension, we want
to find more important survival-associated modules as
features of subsequent integration algorithms. Thus, we
built a lasso-regularized Cox proportional hazards (las-
so-Cox) model to compute the risk index of each pa-
tient, using the eigengenes generated from GCN [18].
Lasso penalty (i.e. L1 penalty) generates sparsity and
outputs an informative subset of features [19]. To help
select the parameters, we used a two-level cross valid-
ation (CV) strategy - first leave-one-out CV then 10-fold
CV to select the optimal regularization parameter. Regu-
larized Cox proportional hazards model was built on the
training set using the selected parameter to compute the
risk indices of all patients. After that, patients were split
into low-risk and high-risk groups according to the me-
dian of risk indices of the training examples. At last, we
tested if these two groups have distinct survival outcome
using Kaplan-Meier estimator and log-rank test, where p
less than 0.05 was considered significant. Since our initial
goal is to screen for all possible survival-associated fea-
tures, we did not apply multiple test compensation control
such as FDR. The lasso-Cox model was trained on the

selected survival-associated features. Cox proportional
hazards regression model was applied, and 95% confi-
dence intervals were computed to determine the prognos-
tic values of our lasso-Cox risk indices and clinical stage.
With the lasso-regularized Cox proportional hazards

model, we can obtain eigengenes that are strongly asso-
ciated with survival times. However, if only consider se-
lected features of one dataset were used to predict the
endpoint of patients, it will result in the lack of infor-
mation as this lasso Cox model is based on the median
of risk indices of the training examples. To obtain a
more reasonable classification result, a more effective
way might be to make full use of all the information,
but we know that in essence microarray and RNA-Seq
data are the same, it calls for extra caution to incorpor-
ate these datasets.
We use two steps to address this problem: First, based

on the unique module analysis, we can identify the unique
modules in survival-associated features (co-expression
modules) selected by Lasso-cox model of each gene data-
set. Secondly, respectively building patients similarity net-
work based on about unique modules in each gene
dataset, then integrate these two networks. The Similarity
Network Fusion(SNF) is a state-of-the art network inte-
grative method and is adopted here.

Unique module analysis
We used Jaccard index less than 0.05 and Fisher exact
test p-value greater than 0.05 as the metrics to deter-
mine the uniqueness of co-expression modules between
the Microarray and RNA-Seq data (Additional file 1:
Table S1).

Evaluation of modules
In order to further evaluate the correlative relationship of
genes within each module, we also introduced the term
Correlation Index using SCC matrix [17]. Correlation
Index (C) of a module with K genes is formulated as:

C ¼ W−IK�Kk k2F
K 2 ð1Þ

P-value is also computed for each C value by randomly
selecting K genes for 1000 times that sampling was done
within the given module, and calculating Correlation
Index (C*) each time

p ¼ #ðC� > CÞ
1000

ð2Þ

Similarity network fusion (SNF)
SNF [11] construct similarity weight matrix (patients
network) of the sample for each available data type and
then fusing these into one network that represents the

Table 1 P-value of Correlation Index of genes with 10 unique
RNA-seq modules in RNA-seq data

R7 R9 R13 R15 R17

P-value 0.001 0.001 0.001 0.001 0.001

R20 R21 R22 R23 R24

P-value 0.001 0.001 0.001 0.001 0.001
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full spectrum of underlying data. There are three param-
eters in SNF: K is the number of neighbors, α is a hyper-
parameter, t is the number of Iterations. We found that
by setting the three parameters to 30, 0.8, and 20, re-
spectively, it can obtain the best classification result.
The key step of SNF is to iteratively update similar-

ity weight matrix corresponding to each of the data
types as follows:

~W
1ð Þ
tþ1 ¼ S 1ð Þ �W 2ð Þ

t � S 1ð ÞT ð3Þ

~W
2ð Þ
tþ1 ¼ S 2ð Þ �Wt

1ð Þ � S 2ð ÞT ð4Þ

Where W ðm_Þ is defined as:

~W
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W mð Þ
i; j

2
X

k≠i

W mð Þ
i;k

1
2

8
>>>><

>>>>:

if i≠ j
if i ¼ j

ð5Þ

Let D(i) represent a set of xi’s neighbors including xi in
G. Given a graph, G, we use K nearest neighbors (KNN)
to measure local affinity. So S(m) is defined as:

S mð Þ
i; j ¼

W mð Þ
i; j

2
X

k∈Ni

W mð Þ
i;k

0

8
>><

>>:

if i≠ j
if otherwise

ð6Þ

That W ðm_Þ carries the full information about the simi-
larity of each patient to all other patients whereas S(m)

only encodes the similarity to the K most similar pa-
tients for each patient. This procedure updates the
weight matrices each time generating two parallel inter-
changing diffusion processes. After t steps, the overall
weight matrix is computed.

W � i; jð Þ ¼
~W

1ð Þ
t i; jð Þ þ ~W

2ð Þ
t i; jð Þ

2
ð7Þ

Enrichment analysis of the gene set
The online gene list enrichment tool ToppGene (http://
toppgene.cchmc.org) developed by Cincinnati Children’s

Hospital Medical Center [20] was used for all of the
module functional enrichment analysis. ToppGene not
only carries out enrichment analysis on standard Gene
Ontology, it also generates enrichment results from
more than 20 different sources including pathway data-
bases, human and mouse phenotypes, NCBI PubMed,
transcription factor binding sites, and drug information.

Results
Co-expression modules compared between microarray
gene expression and RNA-seq
Previous studies compared RNA-Seq and Agilent micro-
array gene expression profiles for clinical endpoint pre-
diction of 498 children patients. Evaluation of factors
potentially affecting model performances reveals that
prediction accuracies are most strongly influenced by
the nature of the clinical endpoint, whereas techno-
logical platforms (RNA-Seq vs. microarrays), RNA-Seq
data analysis pipelines, and feature levels (gene vs. tran-
script vs. exon-junction level) do not significantly affect
performances of the models [2]. But these studies did
not focus on the comparison of co-expression network
structures and the GCN modules in these two kinds of
data. After applying lmQCM, 38 co-expression modules
from microarray and 24 from RNA-seq were identified.
In order to determine if data modality affects the correl-
ation as well as modules identified, a comparison was
performed between each pair of modules from micro-
array and RNA-seq. Among them, 17 GCN modules
from microarray and 10 from RNA-seq are unique to its
own data type (Additional file 1: Table S1), and several
of them are enriched with different biological processes,
molecular functions, or specific pathways related to can-
cer physiology or neurological functions (Additional file
2: Table S2). We also tested the correlation of the genes
in testing sets use concordance index (a metric we de-
veloped previously to test the correlation of genes in a
co-expressed module) to test their stability. The result
shown in Supplement (Additional file 3: Figures S1 and
Additional file 4: S2). By computing the correlation indi-
ces of these unique modules (Tables 1, 2, 3 and 4), we
discovered that most of the unique GCN modules from
the RNA-seq data are not highly correlated in micro-
array data (Fig. 2(a)), whereas the unique GCNs in the
microarray data are often correlated in RNA-seq data
(Fig. 2(b)).

Survival-associated gene modules
Nine survival-associated eigengenes were selected by
using (lasso-Cox) model. Among them, five are the
survival-associated eigengenes from microarray data
(M2, M7, M10, M36, and M37), and four from RNA-seq
(R2, R7, R17, R21). Especially, R7, R17, R21 are from
RNA-seq only modules, these modules are not present

Table 2 P-value of Correlation Index of genes with 17 unique
Microarray modules in Microarray data

M3 M4 M5 M8 M9 M11 M13

P-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001

M19 M20 M21 M22 M28 M30 M31

P-value 0.001 0.001 0.001 0.001 0.001 0.001 0.001

M32 M34 M38

P-value 0.001 0.001 0.001
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in Microarray data. Most of the nine modules are highly
enriched with biological functions: M2 (127 genes) and
R2 (268 genes) are highly enriched with cell cycle genes
(containing 39 and 64 cell cycle genes respectively and
Bonferroni-corrected-p-values being 1.05e-70 and 3.88e-
78). M10 and M37 are highly enriched with immune re-
sponse genes, M7 is highly enriched with extracellular
matrix organization genes (p-value 3.01e-12). All of
these agree with the previous pan-cancer study that the
top three most common GCN in cancer are cell cycle,
immune response and extracellular matrix organization
genes [21]. M36 contains no enriched molecular func-
tion or biological process, but five of the genes are
co-localized on the same cytoband, which indicates a po-
tential structural variant in NB patients. R17 and R21
are enriched with RNA polymerase II transcription regu-
latory genes.

Prognostic prediction based on integrative method
To test prediction power of our integration workflow,
this was carried out in two steps: First, we tested GCNs
for prognosis from microarray and RNA-Seq separately

and compared the prognosis results between above se-
lected eigengenes with all of the eigengenes in one data
type. We used spectral clustering to classify the NB
patients first by the 5 selected eigengenes and all 38
eigengenes from microarray, then by the 4 selected
eigengenes and all 24 eigengenes from RNA-seq re-
spectively. The results show that the nine selected
eigengenes can effectively separate the patients into
groups with significant difference in survival times: in
microarray data, the p-value is reduced from 0.0147
to 0.00464 (Fig. 3(a) and Fig. 3(b)) while in RNA-seq
data, the p-value is reduced from 0.0241 to 0.00135
(Fig. 3(c) and Fig. 3(d)). Secondly, we applied SNF ap-
proach to integrating five microarray eigengenes with

Fig. 2 log(Correlation index) in different data. a. Correlation index with each unique microarray module genes in microarray, RNA-seq data, and
equal number random genes in microarray data. b. Correlation index with each unique RNA-seq module genes in RNA-seq data, microarray,and
equal number random genes in RNA-seq data

Table 3 P-value of Correlation Index of genes with 10 unique
RNA-seq modules inMicroarray data

R7 R9 R13 R15 R17

P-value 0.001 0.001 0.001 0.001 0.001

R20 R21 R22 R23 R24

P-value 0.001 0.001 0.001 0.001 0.001
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three RNA-Seq eigengenes which were shown to be
highly correlated to survival by Lasso-Cox model and
unique by the above analysis. The log-rank test
p-value is reduced to 6.99e-5 (Fig. 4). The prognosis
is also better than using clinical staging (p-value
0.106 Fig. 5). More importantly, the prognosis using
the eight eigengenes are able to stratify the high-risk
patients further. One additional subgroup of patients
with extremely poor survival was identified. The sur-
vival rate of the worst group is less than 30% within
the first 50 months (Fig. 4).

Conclusion
In this study, we first compared GCNs mined from
microarray and RNA-seq data. We discovered that
each data modality yields unique GCNs, which are
enriched with clear biological functions. By multivari-
ate lasso-Cox regression analysis, we identified nine
survival-associated eigengenes features from micro-
array data (five eigengenes) and RNA-seq data (four
eigengenes) that eight of them is unique. To test the
power of the combination of these eight unique
eigengenes as prognostic biomarkers, we use spectral
clustering as well as SNF for survival prognosis, these

eight eigengenes significantly improved the survival
prognosis by several magnitudes in terms of log-rank
test p-value, as compared to results obtained using all
of the modules, modules from one data type, or the
clinical stage information. These results suggest in-
stead of focusing on individual genes, using gene
co-expression network analysis (GCNA) to cluster
genes into co-expressed modules and summarize each
module into an “eigengene” is a better way to deal
with large number gene data. Module unique analysis
and lasso-cox model will further help us choose
unique survival-associated eigengenes. Integration of
unique and survival-associated eigengenes of both
data types provides more complementary information
will help achieve a more accurate survival prognosis.
Also, we identified one subgroup of patients with very
poor survival among high-risk patients. Currently, the
underlying reasons for the differences between the
GCN structures of the two data modalities are still
being investigated.

Reviewer comments
Reviewer’s report 1: Susmita Datta
The goal of this paper is to find eigengenes that can
serve as potential biomarkers for improving the progno-
sis of high-risk patients and to give a biological descrip-
tion of these eigengenes. Overall, the authors’ methods
and approach are valid (but see major recommendation
1), and their results are promising.
In the methods section, it isn’t clear whether the

lmQCM algorithm for determining modules and corre-
sponding eigengenes was applied to the entire dataset or
only to the training data. If the former, then the cross
validation performed later to assess the performance of
the lasso-cox model might be biased. The concern is
that, even though the lmQCM is unsupervised (i.e. the
survival times aren’t used), if the eigengenes are not
stable then using the whole dataset to construct them
may lead to underestimation of the error rate during CV
(because we are selecting features favorable to both the
train and test data). It would be good to check that simi-
lar eigengenes are obtained from just the training data
alone.
Author’s response: As correctly pointed out by re-

viewer, lmQCM does not use any information about
the survival and thus it is an unsupervised method.
As the reviewer suggested that the eigengenes stability
is very important. We therefore tested the correlation
of the genes in testing sets use concordance index (a
metric we developed previously to test the correlation
of genes in a co-expressed module) to test their sta-
bility. The result shown in Additional file 3: Figure
S1 and Additional file 4: Figure S2 below. The

Table 4 P-value of Correlation Index of genes with 17 unique
Microarray modules in. RNA-seq data

M3 M4 M5 M8 M9 M11 M13

P-value 0.981 0.992 0.999 0.995 0.999 0.999 0.999

M19 M20 M21 M22 M28 M30 M31

P-value 0.199 0.125 0.943 0.662 0.993 0.001 0.061

M32 M34 M38

P-value 0.953 0.001 0.001

Fig. 3 Spectral clustering predict the survival outcomes with different
features: (a) all 38 eigengenes from microarray data; (b) 5 survival
associated eigengenes from microarray data; (c) all 24 eigengenes from
RNA-seq data; (d) 4 survival associated eigengenes from RNA-seq data
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co-expression modules were first detected from train-
ing set, and then the concordance indices were calcu-
lated for each gene module in the testing set. The
observation is that the concordance indices are stable
between the training and testing sets for all the mod-
ules and are significantly higher than randomly se-
lected gene sets, which demonstrated the stability of
the modules and our approach.
The primary tool for assessing the prognostic ability

of the eigengenes is through Kaplan-Meier (KM)
curves and the log-rank test. The KM curve using
INSS stage (1, 2, 3, 4, and 4 s) is used as a baseline,
however this is not adequate. The stratification of pa-
tients into risk groups in practice takes other clinical
into variables. For example, MYCN amplification is
well known to be highly predictive of high-risk pa-
tients. A fair evaluation of the authors’ method would
be to use the KM curve constructed using the (clinic-
ally evaluated) high-risk indicator that is already

Fig. 4 SNF based on 8 unique survival associated co-expression gene modules

Fig. 5 Clinical stage predict the survival outcomes
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provided for each patient. Alternatively, since
high-risk patients are of primary interest, the authors
can subset on these patients and see whether their
method can significantly sub-classify those patients.
As it stands, it is not clear if the eigengenes provide
any prognostic value beyond that provided by clinical
variables currently in use.
Author’s response: The patients of focus are

already labeled as high-risk, which are the patients
with stage 4 disease more than 18 months at diagno-
sis and patients of any age and stage with MYCN-
amplified tumors. The MYCN cannot make more
contribution for classification of the high-risk pa-
tients. But our workflow can give a better classifica-
tion than use the clinical stage with these patients.
This study uses overall survival as the outcome,

but how does this approach perform for predicting
event-free survival? Are there eigengenes that are as-
sociated with this outcome as well? And if so, are
they different from the ones associated to overall
survival.
Author’s response: We thank the reviewer for this

important point. In this paper with the selection of
data we focus on overall survival, the event-free sur-
vival for events such as relapse and metastasis will re-
quire more comprehensive set of data beyond the
scope of this paper even though but our methods will
be applicable on these data.
Since copy number variation (CNV) data is available for

these patients, and the authors suggest (page 3 line 8) that
lmQCM can find modules that are association with struc-
tural mutations (like CNV). The CNV data provides an
opportunity to verify that claim. It was also mentioned
(page 5 line 32) that some M36 genes are “co-localized on
the same cytoband, which indicates a potential structural
variant in NB patients.” the CNV data can be used to in-
vestigate this.
Author’s response: We totally agree and the inte-

gration/comparison with CNV data is part of our on-
going work.
Page 3, eq. (1): Is this using the Frobenius norm? The

norm used is not stated.
Author’s response: Yes, we clarified this in the revision.
Page 3, line 46: Computing p-values is done by “ran-

domly selecting K genes for 1000 times”. Is this sampling
done within the given module or among all genes? If the
latter, is it sampling with replacement.
Author’s response: This sampling is performed within

the given module. We provide a more detailed descrip-
tion in the paper.
Page 4, line 27: “We found that by setting and o be 30,

0.8, 20 respectively, …” contains typos. Consider “We
found that by setting the three parameters to 30, 0.8,
and 20, respectively”.

Author’s response: We revised the description.
8. Page 5–6: The figure references do not match.

Figure 2(a-g) in the text should be changed to Fig.
3(a-g).
Author’s response: We modified the figure captions

in the paper.

Reviewer’s report 2: Marco Chierici
The authors state that “based on the clinical data, 259
patients were assigned in low risk group while 239 were
assigned to the high risk group”: Unfortunately, this is
not correct for two reasons. First, according to the pro-
vided clinical characteristics file, the high-risk patients
are 176; secondly, the patients not marked as “high-risk”
are not “low-risk” but can be either low or intermediate
risk, thus they should be considered as “non high-risk”.
Based on this classification, there are 13 patients among
the non high-risk group that are not alive, differently
from what stated in the paper. Please clarify this point
and revise the results.
Author’s response: We thank the reviewer’s thoughtful

comment. In the original version of the paper, the 239
patients in the high-risk group was labeled based on our
classification result from a companion paper using our
algorithm. In this revision instead we focused on the 176
high-risk patients which are provided by clinical charac-
teristics labeling from the CAMDA competition. And we
recalculated the result showed substantial improvement
over clinical staging. We have clarified this in the
revision.
About data preprocessing, were the microarray probes

summarised at the gene level? If so, how? Parameter
tuning in lmQCM was “based on previous work”, but
this is unreferenced: Please provide a reference if
available.
Author’s response: We provided a reference to our pre-

vious paper in this revision.
What about the rationale behind parameter tuning?

Was it used in a similar condition? Was cross-validation
used?
Author’s response: Based on our extensive previous

work, we have empirical knowledge about the range of
four the parameters. We compared the different param-
eter in this range, lmQCM method used these parameters
in the paper as they often led to balanced sizes of the
gene modules with clear biological interpretations for in-
dividual modules.
Regarding the parameter tuning in SNF: Did the au-

thors try a grid search over the three SNF parameters,
using cross-validation to evaluate the performance? How
were the classification results evaluated in practice?
Author’s response: We applied a grid search over the

three SNF parameters.
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The references to figures in the main text are out of
sync with the actual figure numbers, i.e. there are refer-
ences up to Fig. 2 but there are 4 figures. Moreover, the
caption for Fig. 3 is missing. Figure 5 A-d lacks a legend
explaining the colors and is not referenced in the text;
moreover, a different type of plot could better vehicle
the information in a more compact way.
Author’s response: We modified the figure captions.
Please address minor typos such as missing spaces (as

in the title of the methods section about SNF) and miss-
ing symbols (as the parameters in the SNF section).
Some long sentences may be simplified (e.g., “To test the
power of the combination (...) or the clinical stage infor-
mation.” in conclusions).
Author’s response: We corrected the typos and simpli-

fied long sentences.

Reviewer’s report 3: Dimitar Vassilev
Major merit of the study is the originality of the used
methodology in the context of the applied procedures
and approaches for emerging the dependance between
the co-expressed genes and the potential of survival time
prediction of the patients studied. All those methodo-
logical steps are composed in a workflow which has a
potential capacity to be used in another cancer studies
Author’s response: We thank the reviewer for the en-

couraging comments on this work.
The suggested approaches for data integration based

on mining gene co-expression network (GCN) is
known and already applied in the studies, but the
problem here is related to the selection of features in
the context how to build and how to apply such a
model (i.e. GCN) my remarks here can be related not
to the applied method but again to the “tuning” of
initial parameters and the potential of possible valid-
ation of them. And finally the method of similarity
network fusion (SNF) for merging the eigengenes and
to test their potential for functional biomarkers drops
in semantics of the results in particular to the poorly
explained functional annotation through the gene
ontology enrichment. As it was presented and de-
scribed, the workflow demands some clarification in
terms of functionality of each step in it as well the
total idea for validation of the functionality of the
prognosticated biomarkers concerning the risk assess-
ment for the survival time of the studied patients
Author’s response: We provided more clarification for

the functionality of each step in the workflow.
There are also some potential remarks in using “our

recently developed wighted network mining algorithm”
based on local maximum click optimisation - where is
not so clear for the point of view of defining of some ini-
tial parameters and their comparability

Author’s response: Based on our extensive previous
work, we have empirical knowledge about the range of
for the parameters. We compared the different parameter
in this range, lmQCM method used these parameters in
the paper as they often led to balanced sizes of the gene
modules with clear biological interpretations for individ-
ual modules.
The submitted material needs of a thorough revision

in English - both grammar and morphology which will
improve significantly the and semantics of sentences.
The illustrations are possibly the most questionable part
of the study. I think the authors can renew the design of
some of the figures which can be related in quite better
manner to the obtained results (Fig. 5a, d)
Author’s response: We checked the grammar and lay-

out of the paper. Since Fig. 5 was confusing to readers, it
was removed in the new version of the paper.
The number and inclusion of references are limited

and not enough for such an original work
Author’s response: We added more references to sup-

port our work.
Conclusions are as well recommended to be corrected

in the context of the suggested workflow and the com-
pleteness of the work provided by that workflow
Author’s response: We revised the description.
Also avoiding for example such freely hanging phrases

having obvious lack of comparability as “...which not
only help achieve a more accurate survival prognosis...”
will give the work better merit
Author’s response: We revised the text accordingly.
There are some obvious errors in grammar - in par-

ticular in the use of complex sentences and verbs with
different tenses. The style can be improved also as a re-
sult of correction of the text in the context of spelling
and grammar.
Author’s response: We checked the spelling and gram-

mar and made revisions accordingly.
The level of the submitted material will be improved

significantly by renewing some of the graphics (Fig. 5a,
d)
Author’s response: Since Fig. 5 was confusing to

readers and was redundant to Fig. 2, it was removed in
the new version of the paper.
The data preprocessing and subsequent clusterization:

Due to the highly unbalanced nature of the data there
might be problems in defining categories as high or low
risk. How the authors overcome the unbalancedness and
the heterogenity of the data? Do the authors measure in
someway the possible errors due to this problem?
Author’s response: We thank the reviewer to point out

the unbalanced data problem. If the reviewer refers to
the clinical stage and clinical risk. Yes, there is unbal-
ance issue. The number of patients labeled as stage 4 s
and high risk are smaller/higher? (check it to be specific).
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However, we want to find survival-associated features.
After we combined the deceased patients, the 105 pa-
tients deceased among total of 498 patients (21%), and
among them, 92 patients are clinical high-risk in total of
176 clinical high-risk patients (55%). We think the sam-
ple sizes and proportions are appropriate for our statis-
tical analysis. Furthermore, we used Regularized Cox
proportional hazards model to calculate the risk indices
of all patients. The median of risk indices of the training
examples was used as a threshold to split patients into
low-risk and high-risk groups. The same threshold was
applied to classify the single held-out patient into one of
the two groups, which means we were not using the same
clinical categories as originally curated, which does not
incur the unbalanced data issue. At last, we tested if
these two groups have distinct survival outcome using
Kaplan-Meier estimator and log-rank test. We divided
patients into two groups (low and high group) where the
median of each feature was used as a cut-off point. By
using median as cutoff in the above two steps, we miti-
gated the unbalanced data issue in our survival associ-
ation analysis.
The suggested lmQCM approach for the purposes of

defining GCN modules is interesting and having in mind
some previous publications of the authors - it is a well
tested method. However in the submitted material will
be worth to explain what are exactly in this study the
suggested four parameters Lambda, Alfa, t , and Beta.
Definitely the fine tuning of these parameters can influ-
ence the final result in a large scale - it will be good to
have authors explanation for these problems.
Author’s response: Yes, as the reviewers pointed out,

lmQCM has been applied to various types of cancer
studies previously, and the meanings of the parameters
were discussed in details in the previous publications
[10, 16]. To further explain them, we added the fol-
lowing section to the manuscript: There are four pa-
rameters for lmQCM: γ, λ, t, and β. Among them, γ
controls the threshold for the initiation of each new
module, λ and t define the adaptive threshold of the
module density to ensure proper stopping criterion for
the greedy search for each module, and β is the
threshold for overlapping ratio for merging. We used
the same settings for our GCN module mining as in
[16] for those parameters, which have been proved to
generate functionally meaningful modules from mul-
tiple cancer datasets.
The used Lasso-Cox model is a reasonable ap-

proach for defining the so-called risk index of the
patients as it is given in the submitted material. The
problem with such models as lasso regression (also
elastic regression) can arose when they are applied
to multivariate space parameters. Although the re-
duced parameter space by the eigengenes give some

relaxation of such models it will be worth to explain
the options how to control the Lasso-Cox risk index
estimates from certain bias and what is the best way
to validate this process?
Author’s response: We thank the reviewers to point

out this. To address the problem of applying lasso re-
gression to multivariate space, we used a two-level
cross validation (CV) strategy. The first level was lea-
ve-one-out CV. Namely, a single patient was chosen as test
set, with the rest as training set. Then in the training set,
we performed 10-fold CV to select the best regularization
parameter. Regularized Cox proportional hazards model
was built on the training set using the selected parameter,
and based on the model, risk indices of all patients were
calculated.
The data preprocessing and subsequent clusteriza-

tion: The Gene Ontology enrichment analysis might
be not the major objective of the study but it is pre-
sented in a very limited manner. Using only a single
tool for enrichment from an external knowledge
source provokes a lot of questions about the accur-
acy of the defining (co)-expressed genes and in
particular the accuracy of their annotation. My sug-
gestion is that such an ontology enrichment can be
extended at least to the major knowledge sources as
Gene Ontology, NCBI, other. This can open some
parallel to the study problems but from other view
angle can extend and enrich all the suggested work-
flow by the authors.
Author’s response: The online gene list enrichment

tool ToppGene (http://toppgene.cchmc.org) developed
by Cincinnati Children’s Hospital Medical Center [20]
was used for all of the module functional enrichment
analysis. ToppGene not only carries out enrichment
analysis on standard Gene Ontology, it also generates
enrichment results from more than 20 different sources
including pathway databases, human and mouse phe-
notypes, NCBI PubMed, transcription factor binding
sites, and drug information. We clarified in the
revision.
The last two part of the results section “Surviva-

l-associated feature selection using lasso-regularized
Cox proportional hazard model” and the next one
“Prognostic prediction based on integrative analysis”
are written mostly as material and methods part.
There are some problems again how are selected the
features for Lasso-Cox model. The selection and
subsequent clusterization of the selected eigengenes
for obtaining some confidential biomarkers possibly
needs some more methodological work. Nevertheless
it would be good to get some explanation by the au-
thors about the methodological solution and the
obtained results more clearly: why it was done in
this way?
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Author’s response: We thank the reviewer’s com-
ment, it helps for us to rethink and better elucidate
our purpose of study. To address this, we moved part
of contents of the Results section “Survival-associated
feature selection using lasso-regularized Cox propor-
tional hazard model” and the “Prognostic prediction
based on integrative analysis” to the Materials and
methods section. We also added the details of our
method and written in a more methodological form to
explain our workflow.
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Additional file 2: Table S2. Enrichment analysis for unique co-expression
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Additional file 3: Figure S1. The concordance index of the co-expression
17 unique microarray modules obtained from the training set in
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gene modules with equal number of genes in testing set. (ZIP 75 kb)

Additional file 4: Figure S2. The concordance index of the co-expression
24 unique RNA-seq modules obtained from the training set in three
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modules with equal number of genes in testing set. (ZIP 101 kb)
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