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Abstract

The Trait-based test that uses the Extended Simes procedure (TATES) was developed as a method 

for conducting multivariate GWAS for correlated phenotypes whose underlying genetic 

architecture is complex. In this paper, we provide a brief methodological critique of the TATES 

method using simulated examples and a mathematical proof. Our simulated examples using 

correlated phenotypes show that more TATES p-values fall outside of the confidence interval 

Corresponding authors: faliev@vcu.edu (FA) and jesalvatore@vcu.edu (JES).
*Denotes that FA and JES contributed equally as shared first authors.

Compliance with Ethical Standards
Research involving human participants. Not applicable.
Informed consent. Not applicable.

Disclosure of potential conflicts of interest. The authors declare that they have no conflicts of interest.

HHS Public Access
Author manuscript
Behav Genet. Author manuscript; available in PMC 2019 March 01.

Published in final edited form as:
Behav Genet. 2018 March ; 48(2): 155–167. doi:10.1007/s10519-018-9890-6.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relative to expectation, and thus the method may result in systematic inflation when used with 

correlated phenotypes. In a mathematical proof we further demonstrate that the distribution of 

TATES p-values deviates from expectation in a manner indicative of inflation. Our findings 

indicate the need for caution when using TATES for multivariate GWAS of correlated phenotypes.
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The Trait-Based Association Test that uses the Extended Simes procedure (TATES) was 

developed in an effort to increase power for multivariate GWAS for phenotypes with 

complex genetic architectures (van der Sluis et al. 2013). TATES combines p-values across 

univariate GWAS in order to calculate a single trait-based p-value, while correcting for the 

correlations among the phenotypes (van der Sluis et al. 2013). As such, it is suggested that 

TATES provides an efficient and flexible approach for multivariate GWAS for phenotypes 

whose underlying genetic architecture is either unknown or not likely to conform to a model 

where genetic variants have a causal effect on the higher-order multivariate phenotype.

Our goal in this paper is to provide a methodological critique of TATES using simulated 

examples and a mathematical proof.Specifically, we examine the assumption that the TATES 

method controls for Type I error. For this, we provide simulated examples showing that 

TATES p-values fall outside of confidence interval more than the expected number of times, 

thus resulting in inflation of the test results (Type I error), and potentially leading to 

incorrect conclusions. We further provide a mathematical proof for the simplest two-variable 

case showing that the distribution of TATES p-values deviates from uniform around 0 when 

variables are correlated (i.e., if there is no inflation, then around 0 the probability density 

function of a p-value distribution should be equal to or less than 1). Although there are 

several critiques regarding limitations of the TATES method relative to other combination 

methods (e.g., Galesloot et al. 2014; Yang et al. 2016), we note that the observed deviation 

from the expected “uniform around 0” distribution is novel concern.

Methods

TATES

The TATES test is a modification of the Simes (Simes 1986) and GATES (Li et al. 2011) 

corrections for multiple testing. The Simes test is a modification of the Bonferroni correction 

intended to adjust for multiple testing. Assume that p1, p2,…, pm are p-values corresponding 

to test statistics Z1, Z2,…, Zm of multiple tests H1, H2,…, Hm, respectively. It is assumed 

that the test statistics are continuous. Then, under the null hypothesis the distribution of the 

p-values is uniform on [0,1]. For any given significance level α the test is defined as follows: 

with p(1) ≤ p(1) ≤ … ≤ p(m) ordered, reject H0={H1, H2,…, Hm] if p(j) ≤ α j / m for any j = 

1,2,…, m and is based on the inequality:

Pr ∪
j = 1

m
(p( j) ≤ α j/m) ≤ α
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The resulting Simes p-value is:

pSimes = min
j

m
j p( j) .

For example, consider three p-values from independent tests for the same null hypothesis: 

p1=0.045, p2=0.046, p3 =0.047. The Bonferroni-corrected p-value needed to reject the null 

hypothesis for three tests is 0.016 (i.e., 0.05/3); thus, the null hypothesis is not rejected in 

this example. In contrast, the Simes test rejects the null hypothesis because

p(1) = 0.045, p(2) = 0.046, p(3) = 0.047,

pSimes = min{3
10.045, 3

20.046, 3
30.047} = 0.047 < 0.05 .

TATES is a modification of the Simes test (which requires phenotypes/tests to be 

independent) for multiple tests corresponding to different phenotypes when the phenotypes 

are dependent. Assume that given any particular SNP, X1, …, Xm are p-values for m 
generally dependent phenotypes (Pheno 1,…, Pheno m). The probability of having at least 

one true genetic signal among Pheno 1 to Pheno m is estimated with the extended Simes 

procedure:

pTATES = min
j

{(me/mej)X( j)} .

Here me is the effective number of independent phenotypes, mej is the number of 

independent phenotypes among top j phenotypes (after ordering by p-value). To estimate me 

and mej, the TATES test uses phenotypic information and the argument that p-value 

correlations and phenotype correlations are related. van der Sluis et al. (2013) used a 6 

degree polynomial to approximate the correlations between the p-values and the phenotypes 

(i.e., the relationship between phenotypic correlation (x) and the p-value correlation (y)), as 

follows:

y = 0.2179x6 − 0.0219x5 + 0.1095x4 + 0.0149x3 + 0.6226x2 − 0.0023x − 0.008,

R2 = 0.992 .

When phenotypes are independent, the TATES test is the same as the Simes test. The 

estimated number of independent phenotypes/p-values among top j phenotypes is defined as:

mej = j − ∑
i = 1

j
(λi − 1)I(λi − 1),
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where I is an indicator function and λi is ith eigenvalue of the approximated p-value 

correlation matrix based on top j phenotypes. We note that this formula corresponds to 

formula (2) from van der Sluis and et al. (2013) and mem = m − ∑i = 1
m (λi − 1)I(λi − 1) = me.

Testing the Distribution of the TATES Statistic

Assuming that p-values come from continuous phenotypes, the method used to calculate 

TATES p-values should, in theory, produce p-values that are distributed in a way that does 

not increase Type I error. In the ideal case the distribution will be uniform (Bland 2013; 

Murdoch et al. 2008). However, even in less than ideal cases, for all “good” statistics, the 

left side of probability distribution function (pdf) must be <= 1. Otherwise, the results will 

be inflated, corresponding to how much the pdf > 1. Since the construction of the TATES 

test corresponds to a continuous null hypothesis, in this case the p-value distribution should 

be uniform or at least not exceed 1 around 0. Violation of this assumption (i.e., observing 

inflation in p-values, as indicated by pdf > 1 around 0) would suggest that the TATES 

procedure produces an excess of Type I errors, potentially leading to inaccurate conclusions.

To test whether this assumption was met, we conducted simulations in R version 3.1.1 (R 

Development Core Team 2014) using normally distributed phenotypes. In this paper we 

provide examples with two and three phenotypes, but the same arguments are true with more 

than three phenotypes as well. The correlated normal phenotypes were created as linear 

combinations of independent standard normal distributions. We used two seeds for genotype 

and phenotype creation and changed coefficients of normal distributions to get different 

correlations between created phenotypes. The R script for this example, which illustrates 

inflation in TATES p-values, can be found in Appendix 1. By changing script parameters it 

is possible to run up to six phenotype examples. Appendix 1 also contains example of three 

phenotype simulations. For more than six phenotypes, the script can be slightly modified to 

add more coefficients. For example, to run 8 phenotypes we need to choose n_pheno=8 and 

add lines coeff[7,]=…, coeff[8,]=… after 

coeff[6,]=c(0.7,0.9,0.4,0.4,0.1,0.9) line. Similarly, to add more normal 

variables we need to change n_norm and also number of columns of coeff[,] matrix like 

coeff[6,]=c(0.7,0.9,0.4,0.4,0.1,0.9,0.4,0.5,0.7). The TATES p-values are 

calculated using the general formulas for any number of phenotypes, as described in van der 

Sluis et al. (2013).

We repeated each of 10 simulations 100,000 times, where we had 1,000 individuals and 

1050 SNPS with minor allele frequency (MAF)=0.5. We ran linear regressions between 

phenotypes and genotypes and then calculated TATES p-values. These simulations check 

both the false positive rate and calculate the proportion of times the p-value estimate for the 

TATES statistic exceeded the expected confidence interval. In 100,000 simulations, we 

expect that at most 5% of the count of the p-values < 0.05 among 1050 independent SNPs 

will be >64.

Mathematical Proof

In addition to the simulated example, we also include a mathematical proof (Appendix 2) 

that provides further evidence that when the univariate GWAS p-values are correlated that 
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the combined TATES p-values violate the distribution assumption around 0. This proof is 

detailed below under the Results.

Results

We used simulation-based methods to test the critical assumption that the pdf of the TATES 

p-value distribution is <=1 around 0. In our first simulation example, the TATES statistic 

was based on normal phenotypes. The number of effective phenotypes ranged between 1.28 

and 1.98, and was estimated in R using the formula defined in van der Sluis et al. (2013).

The simulation results are summarized in Table 1. The “false positive ratio column” is 

calculated based on 1050 × 100,000 simulations (i.e. based on all SNPs created in all 

iterations). This column shows the proportion of TATES p-values <=0.05 among all 1050 

×100,000 simulations (TATES p-values). The columns “coefficients of normal variables for 

phenotype 1(2)” show the linear coefficients of the normal variables involved in creating 

phenotypes. For example, if we denote normal variables (created in each of 100,000 

iterations) z1, z2, z3, z4 then column value (0.6, 0.7, 0.1, 0.4) for phenotype 1 means that 

phenotype 1 is defined as 0.6z1+0.7z2+0.1z3+0.4z4 for all individuals. The simulated 

phenotypes and genotypes for the iterations are independent; accordingly, any significant 

TATES p-value (i.e. TATES p-value <= 0.05) is considered as a false positive.

For the confidence interval check, we created 1050 SNPs in each of the iterations and count 

the number of times the TATES false positive p-values fell outside of the corresponding 95% 

confidence interval, which in the case of 1050 SNPs is 

1050·0.05 + 1.645· 1050·0.05·0.95 = 64.12. The last column “out of CI ratio” is the proportion 

of counts of p-values <= 0.05 among 1050 exceeding 64.12 (>= 65). As the values in this 

column show, the false positive rate exceeded the expected level of 5%, and increased with 

increasing correlations between the two phenotypes. This table shows that with highly 

correlated phenotypes, TATES p-values fall out of the 95% CI up to 18% of the time, which 

is much more than expected 5%. With small correlations this percent drops to 6–7%. The 

reason for this is that if the correlation is small then the TATES p-value structure for two 

phenotypes is

min{(1 + correlation) min(p1, p2), max(p1, p2)}

meaning that only one of the p-values (the smallest one) could multiply by (1 + correlation) 

which is close to one when the correlation is small.

In Table 2 we provide false positive ratios for a three phenotype example. We used the same 

script as for two phenotype example, changing the number of phenotypes in the script and 

the corresponding coefficients of three random normal variables. Three columns of the table 

showing coefficients defined the same way as in two phenotype case. For example (0.6, 0.7, 

0.1) for phenotype 1 means that phenotype 1 is defined as 0.6z1+0.7z2+0.1z3. Note that in 

three phenotype case we used linear combinations of three normal variables.

Aliev et al. Page 5

Behav Genet. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The concerns raised in the simulated example are further evidenced in the mathematical 

proof where we calculate the exact distribution of the TATES statistic for a two variable 

example (Appendix 2). In this example we first defined some number d between 0 and 1, 

then created two variables with uniform distributions. Then we used the first one directly as 

the p-value for the first phenotype. For the second phenotype’s p-value, we used a random 

combination of two initially created uniform variables (note the first uniform variable 

directly defined the p-value for phenotype 1). We defined the p-value for phenotype 2 by 

assigning the first uniform variable with probability d, and the second one with probability 

1−d. In Appendix 2 we prove that the second p-value also has a uniform distribution and, 

interestingly, the correlation between the two p-value variables is d. The exact pdf of the 

TATES variable based on p-values of two phenotypes is calculated as 

f XT
(t) = 2 − d2

2 − d − 2d(1 − d)
2 − d t.

In order to have a uniform distribution, the coefficient of t, i.e., −2d(1−d)/(2−d) of fXT(t) 
must be zero. Furthermore, for non-inflated values, we expect that values of the pdf fXT(t) 
for t will not exceed 1. However, as t approaches 0, we get fXT(0) = (2−d)2/(2−d) > 1 (d > 0). 

Again, for the Simes test, which corresponds to the case d = 0 (i.e., no correlation between 

phenotypes), the distribution is correct. This proof shows that the maximum inflation point 

is d = 2 − 2 and fXT(0) = 1.1716, which corresponds to an inflation of approximately 17% 

for this two variable case. Thus, we see 17% more p-values than expected around 0. The 

results from this proof thus provide an additional demonstration that when the univariate 

GWAS phenotypes/p-values are correlated, the combined TATES p-value violates the 

approximate uniform distribution assumption around zero.

Discussion

TATES was developed as a tool to summarize GWAS results across multiple phenotypes in 

order to obtain a single p-value, while also accounting for the correlations among the 

phenotypes (van der Sluis et al. 2013). Notable proposed strengths of the TATES method are 

that it does not assume that a specific genetic model underlies the multiple phenotypes, and 

it can identify genetic effects that are either phenotype-specific or common among multiple 

phenotypes.

To control type I error for continuous phenotypes, a statistic must have a pdf <=1 around 

values close to 0. We accordingly expected the TATES p-values to have a uniform 

distribution around 0. However, our examples using simulated data showed that it is possible 

to get inflated results when calculating TATES combined p-values. This concern was further 

evidenced in a mathematical proof for the simplest two phenotype scenario. These results 

call into question the use of TATES to test for association across correlated phenotypes, 

since the TATES test does not satisfy the theoretical assumption that the statistic must be 

distributed such that the pdf <=1 around 0. The implication of this finding is that TATES 

may not successfully summarize GWAS results across correlated phenotypes because it can 

produce results that are inflated (increasing the risk of erroneously rejecting the null 

hypothesis; Type I error).
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Summary and Conclusions

To summarize, TATES was developed as a tool to accommodate complex genetic 

architectures when conducting multivariate GWAS for correlated phenotypes. However, we 

note that in many--and likely most--cases TATES p-values are not uniformly distributed 

around 0, which violates the assumption of a “good” statistic and indicates that TATES p-

values are prone to systematic inflation. Our analyses suggest that caution is warranted when 

using the TATES method to combine p-values across correlated phenotypes.
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Appendix 1

R scripts showing inflation in TATES.

### 1. Two phenotypes four normal variables case

coef1=c(0.8,0.1,0.2,0.1) ## coefficients to create normal phenotype

coef2=c(0.8,0.6,0.1,0.1)

polynomm<-function(x) # polynom from TATES paper

{ if (x==1) {1} else {−0.0008–0.0023*x+0.6226*x^2+0.0149*x^3+

                      0.1095*x^4-0.0219*x^5+0.2179*x^6}

}

### setting initial values for simulation

set.seed(236792)  ## seed to keep same genotypes

n_iter=100000     ## number of iterations

n_ind=1000        ## number of individuals

n_snps=1050       ## number of SNPs

maf=0.5           ## MAF

prob=0.05         ## tested probability

## one sided CI limit

confidone=n_snps*prob+1.645*sqrt(n_snps*prob*(1-prob))

## Variable Geno is the table to keep genotypes

Geno=matrix(nrow=n_ind,ncol=n_snps)

for (snp in 1:n_snps)  ##filling genotype values

{ Geno[,snp]=sample(c(2,1,0),size=n_ind,replace=T,

          prob=c(maf^2,2*maf*(1-maf),(1-maf)^2))

}

# In each iteration we create two phenotypes y1,y2

# Then run association and keep both p-values

false_positives1=NULL # to keep tates false positives

false_positives2=NULL # to keep p-value based false positives

set.seed(311456711)   # put new seed for phenotypes

conf_sum1=0

for (iter in 1:n_iter)

{ tt=rnorm(4*n_ind)   # normal variable size; 4 times n_ind

  z1=tt[1:n_ind]      # first normal variable

  z2=tt[(n_ind+1):(2*n_ind)]   # second normal variable

  z3=tt[(2*n_ind+1):(3*n_ind)] # third normal variable

  z4=tt[(3*n_ind+1):(4*n_ind)] # fourth normal variable

  # creating phenotypes y1,y2 as linear comb. of z's

  y1=coef1[1]*z1+coef1[2]*z2+coef1[3]*z3+coef1[4]*z4

  y2=coef2[1]*z1+coef2[2]*z2+coef2[3]*z3+coef2[4]*z4
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  # calculate Tates based on phenotypes

  # defining correlation matrises using polynom from TATES paper

  summand_tates=2-abs(polynomm(cor(y1,y2)))

  false_positives1[iter]=0

  false_positives2[iter]=0

  x1=NULL; x2=NULL

  for (snp in 1:n_snps)

  { # run association of y's with each snp and keep p-value

    # x1, x2 are variables to keep association p-values

    genn=Geno[,snp]

    x1[snp]=summary(lm(y1~genn))$coef[2,4] #p-value of phenotype 1

    x2[snp]=summary(lm(y2~genn))$coef[2,4] #p-value of phenotype 2

    tates_pheno_cor=min(summand_tates*min(x1[snp],x2[snp]),

      max(x1[snp],x2[snp]))

    false_positives1[iter]=false_positives1[iter]+

      (tates_pheno_cor<=prob)

  }

  conf_sum1=conf_sum1+(false_positives1[iter]>confidone)

  print(paste(iter,cor_p1p2,cor(y1,y2),

    sum(false_positives1[1:iter])/(iter*n_snps), conf_sum1/iter))

  flush.console()  ##to print to the screen

}

cor(y1,y2)

cor_p1p2

### 2. Three phenotypes three normal variables case

n_pheno=3

n_norm=3

set.seed(231456799) ## seed to create genotypes

n_iter=100000       ## number of iterations

n_ind= 1000         ## number of individuals

n_snp=1   # or 1050 ## number of snps

maf=0.5             ## MAF

prob=0.05           ## tested probability

## matrix of random coefficients (must have n_pheno rows, and

## at least n_norm columns)

coeff=matrix(0,nrow=max(n_pheno,6),ncol=max(n_norm,6))

## coefficients of dependent normal variables to create

## phenotypes as a linear combinations

coeff[1,]=c(0.2,0.4,0.2,0.0,0.0,0.0)

coeff[2,]=c(0.2,0.1,0.6,0.0,0.0,0.0)

coeff[3,]=c(0.2,0.7,0.6,0.0,0.0,0.0)

coeff[4,]=c(0.2,0.5,0.6,0.1,0.2,0.3)

coeff[5,]=c(0.1,0.4,0.4,0.4,0.1,0.9)

coeff[6,]=c(0.7,0.9,0.4,0.4,0.1,0.9)
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polynomm<-function(x)

{ # polynom from TATES paper

  if (x==1)

  { retpol=1

  } else

  { retpol=−0.0008–0.0023*x+0.6226*x^2+0.0149*x^3+

      0.1095*x^4-0.0219*x^5+0.2179*x^6

  }

  retpol

}

## setting initial values for simulation

## table to keep genotypes

Geno=matrix(nrow=n_ind,ncol=n_snp)

for (snp in 1:n_snp)

{ Geno[,snp]=sample(c(2,1,0),size=n_ind,replace=T,

          prob=c(maf^2,2*maf*(1-maf),(1-maf)^2))

}

## In each iteration we create phenotypes x1,x2,x3(x4,x5,x6),

## run association test and keep all p-values

false_positives=NULL     ## to keep tates false positives

s=0

set.seed(31456711)       ## 3145671 put new seed for phenotypes

for (iter in 1:n_iter)

{ z=matrix(nrow=n_norm,ncol=n_ind)

  for (i in 1:n_norm)

  { z[i,]=rnorm(n_ind)   ## creates st. normal

  }

  # creating "y" phenotypes as linear combination of z's

  y=matrix(nrow=n_pheno,ncol=n_ind)

  yord=matrix(nrow=n_pheno,ncol=n_ind)

  for (i in 1:n_pheno)

  { y[i,]=coeff[i,1]*z[1,]

    for (j in 2:n_norm)

    { y[i,]=y[i,]+coeff[i,j]*z[j,]

    }

  }

  ## running association of y's with each snp and keeping p-value

  ## x1,x2,x3,(x4,x5,x6) are variables to keep assoc. p-values

  x=matrix(nrow=n_pheno,ncol=n_snp)

  false_positives[iter]=0

  for (snp in 1:n_snp)

  { genn=Geno[,snp]

    for (i in 1:n_pheno)

    { x[i,snp]=1
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      x[i,snp]=summary(lm(y[i,]~genn))$coef[2,4] #p of pheno i

    }

    sort1=order(x[,snp])

    xord=x[sort1]        ## sort p-values

    for (i in 1:n_pheno) ## sort phenotypes with sorted p-values

    { yord[i,]=y[sort1[i],]

    }

    ## calculate TATES p-value

    indep=rep(1,n_pheno)

    bind0=yord[1,]

    for (i in 2:n_pheno) ## sort phenotypes with sorted p-values

    { bind0=cbind(bind0,yord[i,])

      cor_mat=apply(cor(bind0),c(1,2),polynomm)

      e=eigen(cor_mat)$values

      indep[i]=i         ## find number of indep among top i

      for (m in 1:i)

      { indep[i]=indep[i]-max(e[m]−1,0)

      }

    }

    TATES=xord[1]*indep[n_pheno]

    for (m in 2:n_pheno)

    { TATES=min(TATES,xord[m]*indep[n_pheno]/indep[m])

    }

    false_positives[iter]=false_positives[iter]+(TATES<=prob)

  }

  if ((iter %% 1000)==0) ##output after every 1000

  { print(paste(iter,sum(false_positives[1:iter])/(iter*n_snp)))

    flush.console()

  }

}

print (c(cor(y[1,],y[2,]),cor(y[1,],y[3,]),cor(y[2,],y[3,])))

flush.console()

Appendix 2

Mathematical proof for a two variable case demonstrating the inflation of TATES p-values.

In the case of two phenotypes TATES statistics gets the form

XTATES = min{(me/me1)min(X1, X2), (me/me2)max(X1, X2)} =
= min{(me/1)min(X1, X2), (me/me)max(X1, X2)} = = min{memin(X1, X2), max(X1, X2)}

We have the only one coefficient a = me in the last formula which is the effective number of 

p-values among two phenotypes. TATES method is effective only if a < 2, otherwise, a = 2 is 

the same as the Simes method, so XTATES = min{a min(X1,X2),max(X1,X2)}.
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Example (shows that there are uniform variables such that created TATES statistics is not 

uniform):

Let Z1, Z2 be uniform [0,1], fix any d between 0 and 1 and define the binomial variable 

D = 1, d
0, 1 − d

 and assume Z1, Z2 and D are independent.

Define X1 = Z1, X2 = DZ1 + (1 − D)Z2.

Both X1, X2 have U[0,1] distribution because

Pr{X2 < t} = Pr{X2 < t, D = 1} + Pr{X2 < t, D = 0} = = Pr{DZ1 + (1 − D)Z2 < t, D = 1} + Pr{DZ1 + (1 − D
)Z2 < t, D = 0} = = Pr{Z1 < t, D = 1} + Pr{Z2 < t, D = 0} =
= Pr{Z1 < t}Pr{D = 1} + Pr{Z2 < t}Pr{D = 0} = dt + (1 − d)t = t

Let’s calculate correlation between X1, X2. As both variables are uniform [0,1] we get

EX1 = EX2 = 0.5,    var(X1) = var(X2) = 1/12

E(X1X2) = dE(X1X2 |D = 1) + (1 − d)E(X1X2 |D = 0) = dvar(Z1) + 0.25 = d /12 + 0.25

cor(X1, X2) =
E(X1X2) − EX1EX2

1/12 = d /12
1/12 = d

Distribution function of TATES statistics XTATES = min{a min(X1,X2),max(X1,X2)} in this 

case is
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FXT
(t) = Pr{XT < t} = Pr{min[a min(X1, X2), max(X1, X2)] < t} =

= 1 − Pr{min[a min(X1, X2), max(X1, X2)] ≥ t} = = 1 − Pr{min(X1, X2) ≥ (t /a) ∩ max(X1, X2) ≥ t} =

= 1 − Pr{X1 ≥ (t /a) ∩ X2 ≥ (t /a) ∩ max(X1, X2) ≥ t} = = 1 − [Pr{X1 ≥ (t /a) ∩ X2 ≥ (t /a)} − Pr{X1 ≥ (t /a)

∩ X2 ≥ (t /a) ∩ max(X1, X2) < t}] = = 1 − [Pr{X1 ≥ (t /a) ∩ X2 ≥ (t /a)} − Pr{X1 ≥ (t /a) ∩ X2 ≥ (t /a) ∩ X1 < t

∩ X2 < t}] = = 1 − [Pr{X1 ≥ (t /a) ∩ X2 ≥ (t /a)} − Pr{(t /a) ≤ X1 < t ∩ (t /a) ≤ X2 < t}] =

= 1 − [Pr{X1 ≥ (t /a) ∩ X2 ≥ (t /a) ∩ D = 0} + Pr{X1 ≥ (t /a) ∩ X2 ≥ (t /a) ∩ D = 1} −

− Pr{(t /a) ≤ X1 < t ∩ (t /a) ≤ X2 < t ∩ D = 0} − Pr{(t /a) ≤ X1 < t ∩ (t /a) ≤ X2 < t ∩ D = 1}] =

= 1 − [(1 − d)Pr{Z1 ≥ (t /a) ∩ Z2 ≥ (t /a)} + d Pr{Z1 ≥ (t /a) ∩ Z1 ≥ (t /a)} −

− (1 − d)Pr{(t /a) ≤ Z1 < t ∩ (t /a) ≤ Z2 < t} − Pr{(t /a) ≤ Z1 < t ∩ (t /a) ≤ Z1 < t}] =

= 1 − [(1 − d)(1 − t /a)2 + d(1 − t /a) − (1 − d)(t − t /a)2 − d(t − t /a)] =

= 1 − d(1 − t) − 1 − d

a2 [(a − t)2 − (at − t)2]

Derivative of the above is the pdf of Tates statistic

f XT
(t) = d + (2/a)(1 − d) + 2t(1 − d)(1 − (2/a)) .

To have uniform distribution the coefficient of t of fXT(t) must be zero i.e.,

2(1 − d)(1 − 2/a) = 0 .

It means d = 0 or a = 2. In all other cases the test inflates of deflates results. But d=0 

corresponds to the case X2 = Z2 which means X1, X2 are independent, which is equivalent to 

the Simes procedure. When a = 2, this also corresponds to Simes case. Thus, in all other 

choices of a the statistic inflates or deflates results fXT(0) = d + (2/a)(1 − d) times.

Now let’s find eigenvalues and exact value of a = me for this example

For two variables X1, X2 with corr(X1, X2) = d the correlation matrix has the form

A = 1 d
d 1 ,    det(A − λI) = 0,    det 1 − λ d

d 1 − λ
= 0,

(1 − λ)2 − d2 = 0  and eigenvalues are  λ1 = 1 + d, λ2 = 1 − d .

Coefficient a used in TATES simulated statistic XTATES = min{a min(X1,X2),max(X1,X2)}is
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a = me = m − ∑
λi > 1

(λi − 1) = 2 − (λ1 − 1) = 2 − (1 + d − 1) = 2 − d .

This means fXT(0) = d + (2/a)(1 − d) = (2 − d2)/(2 − d). Maximum inflation point is 

d = 2 − 2 and gives an inflation of approximately 17% for this two variable case.
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