
3-D SCENE RECONSTRUCTION FOR PASSIVE RANGING USING DEPTH

FROM DEFOCUS AND DEEP LEARNING

A Dissertation

Submitted to the Faculty

of

Purdue University

by

David R. Emerson

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

Purdue University

Indianapolis, Indiana

August 2019

ii

THE PURDUE UNIVERSITY GRADUATE SCHOOL

STATEMENT OF DISSERTATION APPROVAL

Dr. Lauren A Christopher, Chair

Department of Electrical Engineering

Dr. Zina Ben Miled

Department of Electrical Engineering

Dr. Brian King

Department of Electrical Engineering

Dr. Paul Salama

Department of Electrical Engineering

Approved by:

Dr. Brian King

Head of the Graduate Program

iii

This dissertation is dedicated to my wife, Meggan, and my two wonderful kids,

Mackenzie and Braelyn, who encouraged me to pursue my dreams and put up with

all of the stress and late nights.

iv

ACKNOWLEDGMENTS

Foremost, I would like to thank my committee chair, Dr. Lauren Christopher,

for her support and expert guidance in my studies. I would also like to thank my

committee members Dr. Brian King, Dr. Zina Ben Miled and Dr. Paul Salama for

their support in these endeavors.

For the use of Indiana University’s super computer cluster Big Red II, I would like

to acknowledge the supported in part by Lilly Endowment, Inc., through its support

for the Indiana University Pervasive Technology Institute, and in part by the Indiana

METACyt Initiative. The Indiana METACyt Initiative at IU was also supported in

part by Lilly Endowment, Inc.

I would like to thank NVIDIA R© for their donation of a Titan Xp GPU through

their Academic GPU Grant Program (https://developer.nvidia.com/academic_

gpu_seeding). Without their generous donation we would not have been able to

complete this research in a practical amount of time.

I would also like to thank the Science, Mathematics And Research for Transfor-

mation (SMART) Scholarship for Service Program for the opportunity to continue

my higher education in pursuit of my degree.

I would like to thank the NSWC Crane for allowing me to participate in the Crane

PhD Fellowship to complete my degree.

Finally I would like to thank Sherrie Tucker for all of her support in getting this

document prepared and ready for publishing.

v

TABLE OF CONTENTS

Page

LIST OF TABLES . viii

LIST OF FIGURES . x

LIST OF ALGORITHMS . xxii

ABBREVIATIONS . xxiii

ABSTRACT . xxv

1 INTRODUCTION . 1

1.1 Active Depth Estimation Methods . 1

1.2 Passive Depth Estimation Methods . 2

1.2.1 Depth From Stereo . 3

1.2.2 Depth From Focus . 5

1.2.3 Depth From Defocus . 7

2 GEOMETRICAL OPTICS . 10

2.1 Thin Lens . 11

2.2 Circle of Confusion . 13

2.3 Depth of Field . 18

2.4 Depth Resolution . 19

2.5 Summary . 21

3 DATASETS . 22

3.1 Synthetically Blurred Dataset . 22

3.2 Real World Dataset . 28

3.2.1 Camera & Microfludic Lens . 28

3.2.2 LIDAR . 29

3.2.3 Real World Data Collection . 30

3.2.4 Real World Scene Configuration 32

vi

Page

3.2.5 Real World Data Processing . 34

3.3 Error Metrics . 39

3.3.1 Normalized Root Mean Square Error 39

3.3.2 Normalized Mean Absolute Error 40

3.3.3 Structural Similarity Index . 41

3.4 Summary . 44

4 DEPTH FROM DEFOCUS USING THE GRAPH CUTS ALGORITHM . . 45

4.1 Algorithm Overview . 45

4.2 Synthetically Blurred Dataset Results 52

4.3 Summary . 61

5 DEPTH FROM DEFOCUS USING A DEEP LEARNING ALGORITHM . . 62

5.1 Algorithm Overview . 62

5.2 DfD-Net Training . 72

5.2.1 Training Data Augmentation 72

5.2.2 Training Function . 74

5.3 Synthetic Blur Dataset Results . 78

5.4 Architecture Confidence Testing . 92

5.4.1 Training Repeatability . 92

5.4.2 9-Fold Cross Validation . 94

5.4.3 Training Patch Size Analysis . 96

5.4.4 Training With Noise Analysis 98

5.4.5 Up/Down Sampling Filter Size 99

5.5 Summary . 100

6 DFD-NET PARAMETER OPTIMIZATION 102

6.1 DfD-Net Performance Optimization Using The Particle Swarm Opti-
mization Algorithm . 102

6.2 DfD-Net Complexity Reduction Using An Unsupervised Clustering Al-
gorithm . 108

6.3 Summary . 114

vii

Page

6.3.1 PSO Summary . 114

6.3.2 Complexity Reduction Summary 114

7 DEPTH FROM DEFOCUS WITH A MICROFLUIDIC LENS 116

7.1 Real World Dataset Synthetic Blur Results 116

7.2 Real World Dataset . 127

7.2.1 Microfluidic Lens Issues . 127

7.2.2 Architecture Overview and Training 130

7.2.3 DfD-Net Real World Results 132

7.3 Summary . 139

8 SUMMARY . 141

9 RECOMMENDATIONS FOR FUTURE RESEARCH 145

REFERENCES . 147

A Dataset Scene Overview . 153

B Timing Analysis Test Hardware . 157

C DfD-Net Middlebury College Dataset PSO Results 158

C.1 PSO Algorithm Details . 158

C.2 PSO Algorithm Results . 164

D DfD-Net Middlebury College Dataset Filter Reduction Results 173

D.1 Filter Reduction Algorithm Details 173

D.2 Filter Reduction Algorithm Results 175

E DfD-Net Real World Dataset Synthetically Blurred Results 186

F DfD-Net Real World Dataset Results . 234

viii

LIST OF TABLES

Table Page

2.1 Example Lens/Camera Imager Parameters 17

3.1 Microfluidic Lens/Camera Imager Specifications 29

3.2 OS-1 LIDAR Specifications . 30

3.3 Camera Data Capture Settings . 32

3.4 Five hypothetical sets (cases) of 4 errors, and their corresponding totals,
MAEs and RMSEs [30] . 40

3.5 Sample Error Calculations for Figure 3.14 43

4.1 Discontinuity Preserving Smoothness Functions [32] 48

4.2 Top 5 and Bottom 5 Graph Cuts Performance Results for the Middlebury
College Stereo Vision Dataset . 58

4.3 Graph Cuts Performance Mean & Standard Deviation 60

4.4 Average Graph Cuts Run Time for the Middlebury College Stereo Vision
Dataset . 61

5.1 Middlebury Training and Testing Dataset Images 79

5.2 Top 5 and Bottom 5 DfD-Net Performance Results for the Middlebury
College Stereo Vision Dataset . 83

5.3 DfD-Net Performance Mean & Standard Deviation for the Middlebury
College Stereo Vision Dataset . 84

5.4 Average DfD-Net Run Time for the Middlebury College Dataset 86

5.5 Graph Cuts, U-Net & DfD-Net Average Performance Comparison 88

5.6 Repeatability Trials Test Performance Results 92

5.7 DfD-Net Middlebury Synthetic Dataset 9-Fold Cross Validation Perfor-
mance Results . 94

6.1 DfD-Net & PSO DfD-Net Average Performance Comparison 106

7.1 Top 5 and Bottom 5 DfD-Net Performance Results for the Synthetically
Blurred Real World Dataset . 120

ix

Table Page

7.2 Samsung Galaxy S8 Rear Camera Specifications 125

7.3 DfD-Net Real World Synthetically Blurred Overall Test Results 125

7.4 Real World Training and Testing Dataset Scenes 131

7.5 Quantized Blur Radius Difference and Average Performance Results . . . 135

7.6 DfD-Net Real World Dataset Overall Test Performance Results 136

7.7 Top 5 and Bottom 5 DfD-Net Performance Results for the Real World
Dataset . 139

B.1 Test Hardware Platforms . 157

C.1 Convolutional Layer Optimization Parameters 161

C.2 Activation Layer Optimization Parameters 162

C.3 Training Crop Size Optimization Parameters 163

D.1 SOM Clustering Results for the Baseline DfD-Net Architecture 174

D.2 DfD-Net Reduction Test Configurations 176

D.3 DfD-Net Configuration Average Runtime Results 177

x

LIST OF FIGURES

Figure Page

1.1 Geometry setup of a typical Depth from Stereo setup. Image adapted
from [3,4] . 3

1.2 Lego R© man focal stack example. (a) The yellow space man is in focus; (b)
the blue space man is in focus and (c) the black space man is in focus. . . 6

2.1 Representative Thick Lens Light Ray Travel 10

2.2 Representative Thin Lens Geometry Setup [24,25] 11

2.3 Extended View of the Thin Lens Geometries with Additional Similar Tri-
angles Added [24,25] . 12

2.4 Circle of Confusion Geometry Configuration [25] 14

2.5 Object Distance vs. Blur Radius Chart . 17

3.1 Middlebury College Stereo Aloe Plant Illumination and Exposure Level
Example . 23

3.2 Middlebury College Stereo Vision Dataset Exposure Time Charts 24

3.3 Sum of the Absolute Differences Between Blur Kernels 25

3.4 Synthetic Blurring Example on Middlebury College Aloe Image [7, 8] . . . 26

3.5 Middlebury College Dataset Overall Depth Map Distribution 27

3.6 Example Microfluidic Lens Cross-Section 28

3.7 Camera/LIDAR Capture Rig . 30

3.8 Example LIDAR Panoramic Scene . 32

3.9 Real World Dataset Depth Map Distribution 33

3.10 Real World Dataset Scene Configuration Example 33

3.11 LIDAR Coordinate Reference Frame . 35

3.12 LIDAR Recursive Upsampling Example 37

3.13 Example Image Scene Exposure Levels and Corresponding Ground Truth
LIDAR Data . 38

xi

Figure Page

3.14 Example Depth Map Error Conditions: (a) Original Image, (b) Mean Shift
Image, (c) Blurred Image, (d) Noised Image and (e) Solid Image 42

4.1 Depth from Defocus Block Diagram . 45

4.2 Graph-Cuts Example Node . 49

4.3 Graph-Cuts Example Node . 50

4.4 Graph-Cuts Runtime Chart . 51

4.5 Graph Cuts Performance Results for Middlebury College Dataset - Illu-
mination 1 . 53

4.6 Flowerpots Images Under Illumination 1 Conditions 54

4.7 Graph Cuts Performance Results for Middlebury College Dataset - Illu-
mination 2 . 56

4.8 Graph Cuts Performance Results for Middlebury College Dataset - Illu-
mination 3 . 57

4.9 Top 5 and Bottom 5 Performance Results for the Middlebury College
Stereo Vision Dataset. (a) & (e) Infocus Image, (b) & (f) Defocused Image,
(c) & (g) Ground Truth Depth Map, (d) & (h) Graph-Cuts Computed
Depth Map. 59

5.1 Example Segmentation (Traditional vs. Semantic) [39] 63

5.2 U-Net Semantic Segmentation Deep Learning Architecture [17] 64

5.3 Example U-Net Convolution Block . 65

5.4 Example DfD-Net Residual Block . 69

5.5 Graphical Representation of the DfD-Net Network Architecture 70

5.6 Enhanced Image Crop Data Expansion Example 73

5.7 Basic vs. Enhanced Training Method Comparison 75

5.8 Enhanced Cropper Distributions . 76

5.9 Ground Truth vs. Training Depth Map Value Distribution Comparison . . 77

5.10 Depth Map Value Distribution for Middlebury College Training and Test-
ing Datasets . 78

5.11 DfD-Net Performance Results for Middlebury College Dataset - Illumina-
tion 1 . 80

xii

Figure Page

5.12 DfD-Net Performance Results for Middlebury College Dataset - Illumina-
tion 2 . 81

5.13 DfD-Net Performance Results for Middlebury College Dataset - Illumina-
tion 3 . 82

5.14 Top 5 and Bottom 5 Performance Results for the Middlebury College
Stereo Vision Dataset. (a) & (e) In-focus Image, (b) & (f) Out-of-focus
Image, (c) & (g) Ground Truth Depth Map, (d) & (h) DfD-Net Computed
Depth Map. 85

5.15 Illumination Level 1: DfD-Net & Graph Cuts Performance Comparison . . 89

5.16 Illumination Level 2: DfD-Net & Graph Cut Performance Comparison . . 90

5.17 Illumination Level 3: DfD-Net & Graph Cut Performance Comparison . . 91

5.18 DfD-Net Multi-Training Event Test Results Distribution 93

5.19 K03 Cross Validation Training & Testing Depth Map Distribution 95

5.20 K03 Cross Validation Midd2 Testing Depth Map Comparison. (a) Ground
truth, (b) DfD-Net depth map, (c) Mask of under represented values and
(d) depth map error . 96

5.21 DfD-Net Training Patch Size Performance Results 97

5.22 DfD-Net Test Results with Various Noise Added During Training 98

5.23 DfD-Net Test Results with Various Convolutional Filter Up/Down Sam-
pling Filter Sizes . 100

6.1 Graphical Representation of the DfD-Net PSO Particle 104

6.2 Graphical Representation of the DfD-Net PSO Network Architecture . . 105

6.3 Top 5 and Bottom 5 PSO Performance Results for the Middlebury College
Stereo Vision Dataset. (a) & (e) In-focus Image, (b) & (f) Out-of-focus
Image, (c) & (g) Ground Truth Depth Map, (d) & (h) PSO DFD-Net
Computed Depth Map. 107

6.4 DfD-Net Layer 50 Filter Output: (a) Filter #070, (b) Filter #084 and (c)
Filter #108 . 110

6.5 DfD-Net Reduction Test Results . 113

7.1 Top 5 and Bottom 5 Performance Results for the Synthetically Blurred
Real World Dataset. (a) & (e) In-focus Image, (b) & (f) Out-of-focus
Image, (c) & (g) LIDAR Ground Truth Depth Map, (d) & (h) DfD-Net
Computed Depth Map. 118

xiii

Figure Page

7.2 DfD-Net Synthetically Blurred Real World Performance Results 119

7.3 Depth Map Value Distribution for the Middlebury College Training Dataset
and the Real World Test Datasets . 121

7.4 K52 & K24 Depth Map Value Distribution 122

7.5 Depth Map Error Comparison for the k24/50ms Exposure scene. (a)
In-Focus Image (b) Out-of-Focus Image (c) Ground Truth, (d) DfD-Net
Depth Map, (e) Error Map, (f) Pixel Mask and (g) Under Represented
Pixel Mask an Error Map Overlay . 123

7.6 Depth Map Error Comparison for the k52/10ms Exposure scene. (a)
In-Focus Image (b) Out-of-Focus Image (c) Ground Truth, (d) DfD-Net
Depth Map, (e) Error Map, (f) Under Represented Pixel Mask and (g)
Pixel Mask and Error Map Overlay . 124

7.7 Scene k52 In-Focus and Out-of-Focus Image Comparison. (a) In-Focus
Image, (b) Synthetically Blurred Image and (c) High Resolution In-Focus
Image . 124

7.8 DfD-Net Synthetically Blurred Real World Exposure Time Performance
Comparison . 126

7.9 Quantized Pixel Blur Radius for the Chameleon 3 Camera and Microfluidic
Lens . 127

7.10 Lens Test Targets . 128

7.11 Image Sharpness vs. Camera Temperature 129

7.12 Image Sharpness vs. Voltage Step . 130

7.13 Depth Map Value Distribution for the Real World Training and Testing
Datasets . 132

7.14 Depth Map Value Distribution for the Pruned Real World Training and
Testing Datasets . 133

7.15 Voltage Step Comparison: 141 and 129 134

7.16 Example Input Image Pair for k35 (a) Image at Voltage Step 141 and (b)
Image at Voltage Step 129 . 136

7.17 DfD-Net Real World Exposure Time Performance Comparison 137

7.18 Top 5 and Bottom 5 Performance Results for the Synthetically Blurred
Real World Dataset. (a) & (e) In-focus Image, (b) & (f) Out-of-focus
Image, (c) & (g) LIDAR Ground Truth Depth Map, (d) & (h) DfD-Net
Computed Depth Map. 138

xiv

Figure Page

A.1 Middlebury College Dataset Overview 154

A.2 Real World Dataset Overview - Part 1 155

A.3 Real World Dataset Overview - Part 2 156

C.1 PSO Performance Results for the Middlebury College Dataset - Part 1.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 165

C.2 PSO Performance Results for the Middlebury College Dataset - Part 2.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 166

C.3 PSO Performance Results for the Middlebury College Dataset - Part 3.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 167

C.4 PSO Performance Results for the Middlebury College Dataset - Part 4.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 168

C.5 PSO Performance Results for the Middlebury College Dataset - Part 5.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 169

C.6 PSO Performance Results for the Middlebury College Dataset - Part 6.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 170

C.7 PSO Performance Results for the Middlebury College Dataset - Part 7.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 171

C.8 PSO Performance Results for the Middlebury College Dataset - Part 8.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 172

D.1 Graphical Representation of the DfD-Net Network Architecture 174

D.2 Filter Reduction Performance Results for the Middlebury College Dataset
- Part 1. (a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth
Depth Map and (d) DfD-Net Computed Depth Map. 178

D.3 Filter Reduction Performance Results for the Middlebury College Dataset
- Part 2. (a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth
Depth Map and (d) DfD-Net Computed Depth Map. 179

xv

Figure Page

D.4 Filter Reduction Performance Results for the Middlebury College Dataset
- Part 3. (a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth
Depth Map and (d) DfD-Net Computed Depth Map. 180

D.5 Filter Reduction Performance Results for the Middlebury College Dataset
- Part 4. (a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth
Depth Map and (d) DfD-Net Computed Depth Map. 181

D.6 Filter Reduction Performance Results for the Middlebury College Dataset
- Part 5. (a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth
Depth Map and (d) DfD-Net Computed Depth Map. 182

D.7 Filter Reduction Performance Results for the Middlebury College Dataset
- Part 6. (a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth
Depth Map and (d) DfD-Net Computed Depth Map. 183

D.8 Filter Reduction Performance Results for the Middlebury College Dataset
- Part 7. (a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth
Depth Map and (d) DfD-Net Computed Depth Map. 184

D.9 Filter Reduction Performance Results for the Middlebury College Dataset
- Part 8. (a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth
Depth Map and (d) DfD-Net Computed Depth Map. 185

E.1 Example Image Order . 186

E.2 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 1. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth
Map and (d) & (h) DfD-Net Computed Depth Map. 187

E.3 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 2. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth
Map and (d) & (h) DfD-Net Computed Depth Map. 188

E.4 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 3. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth
Map and (d) & (h) DfD-Net Computed Depth Map. 189

E.5 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 4. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth
Map and (d) & (h) DfD-Net Computed Depth Map. 190

xvi

Figure Page

E.6 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 5. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth
Map and (d) & (h) DfD-Net Computed Depth Map. 191

E.7 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 6. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth
Map and (d) & (h) DfD-Net Computed Depth Map. 192

E.8 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 7. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth
Map and (d) & (h) DfD-Net Computed Depth Map. 193

E.9 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 8. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth
Map and (d) & (h) DfD-Net Computed Depth Map. 194

E.10 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 9. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth
Map and (d) & (h) DfD-Net Computed Depth Map. 195

E.11 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 10. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 196

E.12 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 11. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 197

E.13 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 12. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 198

E.14 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 13. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 199

xvii

Figure Page

E.15 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 14. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 200

E.16 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 15. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 201

E.17 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 16. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 202

E.18 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 17. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 203

E.19 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 18. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 204

E.20 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 19. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 205

E.21 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 20. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 206

E.22 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 21. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 207

E.23 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 22. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 208

xviii

Figure Page

E.24 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 23. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 209

E.25 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 24. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 210

E.26 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 25. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 211

E.27 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 26. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 212

E.28 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 27. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 213

E.29 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 28. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 214

E.30 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 29. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 215

E.31 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 30. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 216

E.32 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 31. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 217

xix

Figure Page

E.33 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 32. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 218

E.34 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 33. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 219

E.35 K01-K03 Scene Type Performance Results for the DfD-Net on the Syn-
thetically Blurred Real World Dataset - Part 34. (a) & (e) In-focus Image,
(b) & (f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map
and (d) & (h) DfD-Net Computed Depth Map. 220

E.36 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 1. (a) & (e) In-focus Image, (b) & (f)
Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and (d)
& (h) DfD-Net Computed Depth Map. 222

E.37 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 2. (a) & (e) In-focus Image, (b) & (f)
Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and (d)
& (h) DfD-Net Computed Depth Map. 223

E.38 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 3. (a) & (e) In-focus Image, (b) & (f)
Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and (d)
& (h) DfD-Net Computed Depth Map. 224

E.39 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 4. (a) & (e) In-focus Image, (b) & (f)
Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and (d)
& (h) DfD-Net Computed Depth Map. 225

E.40 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 5. (a) & (e) In-focus Image, (b) & (f)
Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and (d)
& (h) DfD-Net Computed Depth Map. 226

E.41 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 6. (a) & (e) In-focus Image, (b) & (f)
Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and (d)
& (h) DfD-Net Computed Depth Map. 227

xx

Figure Page

E.42 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 7. (a) & (e) In-focus Image, (b) & (f)
Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and (d)
& (h) DfD-Net Computed Depth Map. 228

E.43 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 8. (a) & (e) In-focus Image, (b) & (f)
Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and (d)
& (h) DfD-Net Computed Depth Map. 229

E.44 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 9. (a) & (e) In-focus Image, (b) & (f)
Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and (d)
& (h) DfD-Net Computed Depth Map. 230

E.45 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 10. (a) & (e) In-focus Image, (b) &
(f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and
(d) & (h) DfD-Net Computed Depth Map. 231

E.46 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 11. (a) & (e) In-focus Image, (b) &
(f) Out-of-focus Image, (c) & (g) Inverted Ground Truth Depth Map and
(d) & (h) DfD-Net Computed Depth Map. 232

E.47 K00 Scene Type Performance Results for the DfD-Net on the Synthetically
Blurred Real World Dataset - Part 12. (a) In-focus Image, (b) Out-of-focus
Image, (c) Inverted Ground Truth Depth Map and (d) DfD-Net Computed
Depth Map. 233

F.1 Performance Results for the DfD-Net on the Real World Dataset - Part 1.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 235

F.2 Performance Results for the DfD-Net on the Real World Dataset - Part 2.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 236

F.3 Performance Results for the DfD-Net on the Real World Dataset - Part 3.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 237

F.4 Performance Results for the DfD-Net on the Real World Dataset - Part 4.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 238

xxi

Figure Page

F.5 Performance Results for the DfD-Net on the Real World Dataset - Part 5.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 239

F.6 Performance Results for the DfD-Net on the Real World Dataset - Part 6.
(a) In-focus Image, (b) Out-of-focus Image, (c) Ground Truth Depth Map
and (d) DfD-Net Computed Depth Map. 240

xxii

LIST OF ALGORITHMS

Algorithm Page

C.1 Particle Swarm Optimization Algorithm 160

D.1 Link Distance Calculation Algorithm . 173

xxiii

ABBREVIATIONS

2-D 2-dimensional

3-D 3-dimensional

4-D 4-dimensional

abbr Abbreviation

CCD Charge-Coupled Device

CMOS Complementary Metal Oxide Semiconductor

CNN Convolutional Neural Network

CoC Circle of Confusion

CV Computer Vision

DAG Directed Acyclic Graph

DCM Differential Contrast Method

DfD Depth from Defocus

DfF Depth from Focus

DfS Depth from Stereo

DoF Depth of Field

DNN Deep Neural Network

ELU Exponential Linear Unit

FPGA Field Programmable Gate Arrays

GA Genetic Algorithm

GC Graph Cuts

HVS Human Visual System

ICM Intensity Contrast Method

MRF Markov Random Field

MSE Mean Square Error

xxiv

NMAE Normalized Mean Absolute Error

NRMSE Normalized Root Mean square Error

OLS Ordinary Least Squares

PC Personal Computer

PSO Particle Swarm Optimization

pReLU Parametric Rectified Linear Unit

ReLU Rectified Linear Unit

SBC Single Board Computer

SGD Stochastic Gradient Descent

SGM Semi-Global Method

SOM Self-Organizing Map

sReLU s-Shaped Rectified Linear Unit

SSIM Structural Similarity Index Measure

Std Standard Deviation

UDP User Datagram Protocol

USB Universal Serial Bus

vs. Versus

xxv

ABSTRACT

Emerson, David R. Ph.D., Purdue University, August 2019. 3-D Scene Reconstruction
for Passive Ranging Using Depth from Defocus and Deep Learning. Major Professor:
Lauren A. Christopher.

Depth estimation is increasingly becoming more important in computer vision.

The requirement for autonomous systems to gauge their surroundings is of the utmost

importance in order to avoid obstacles, preventing damage to itself and/or other sys-

tems or people. Depth measuring/estimation systems that use multiple cameras from

multiple views can be expensive and extremely complex. And as these autonomous

systems decrease in size and available power, the supporting sensors required to esti-

mate depth must also shrink in size and power consumption.

This research will concentrate on a single passive method known as Depth from

Defocus (DfD), which uses an in-focus and out-of-focus image to infer the depth of

objects in a scene. The major contribution of this research is the introduction of a

new Deep Learning (DL) architecture to process the the in-focus and out-of-focus

images to produce a depth map for the scene improving both speed and performance

over a range of lighting conditions. Compared to the previous state-of-the-art multi-

label graph cuts algorithms applied to the synthetically blurred dataset the DfD-Net

produced a 34.30% improvement in the average Normalized Root Mean Square Error

(NRMSE). Similarly the DfD-Net architecture produced a 76.69% improvement in the

average Normalized Mean Absolute Error (NMAE). Only the Structural Similarity

Index (SSIM) had a small average decrease of 2.68% when compared to the graph

cuts algorithm. This slight reduction in the SSIM value is a result of the SSIM metric

penalizing images that appear to be noisy. In some instances the DfD-Net output is

mottled, which is interpreted as noise by the SSIM metric.

xxvi

This research introduces two methods of deep learning architecture optimization.

The first method employs the use of a variant of the Particle Swarm Optimization

(PSO) algorithm to improve the performance of the DfD-Net architecture. The PSO

algorithm was able to find a combination of the number of convolutional filters, the

size of the filters, the activation layers used, the use of a batch normalization layer

between filters and the size of the input image used during training to produce a

network architecture that resulted in an average NRMSE that was approximately

6.25% better than the baseline DfD-Net average NRMSE. This optimized architecture

also resulted in an average NMAE that was 5.25% better than the baseline DfD-Net

average NMAE. Only the SSIM metric did not see a gain in performance, dropping

by 0.26% when compared to the baseline DfD-Net average SSIM value.

The second method illustrates the use of a Self Organizing Map clustering method

to reduce the number convolutional filters in the DfD-Net to reduce the overall run

time of the architecture while still retaining the network performance exhibited prior

to the reduction. This method produces a reduced DfD-Net architecture that has a

run time decrease of between 14.91% and 44.85% depending on the hardware archi-

tecture that is running the network. The final reduced DfD-Net resulted in a network

architecture that had an overall decrease in the average NRMSE value of approxi-

mately 3.4% when compared to the baseline, unaltered DfD-Net, mean NRMSE value.

The NMAE and the SSIM results for the reduced architecture were 0.65% and 0.13%

below the baseline results respectively. This illustrates that reducing the network

architecture complexity does not necessarily reduce the reduction in performance.

Finally, this research introduced a new, real world dataset that was captured using

a camera and a voltage controlled microfluidic lens to capture the visual data and a

2-D scanning LIDAR to capture the ground truth data. The visual data consists of

images captured at seven different exposure times and 17 discrete voltage steps per

exposure time. The objects in this dataset were divided into four repeating scene

patterns in which the same surfaces were used. These scenes were located between

1.5 and 2.5 meters from the camera and LIDAR. This was done so any of the deep

xxvii

learning algorithms tested would see the same texture at multiple depths and multiple

blurs. The DfD-Net architecture was employed in two separate tests using the real

world dataset.

The first test was the synthetic blurring of the real world dataset and assessing

the performance of the DfD-Net trained on the Middlebury dataset. The results of

the real world dataset for the scenes that were between 1.5 and 2.2 meters from the

camera the DfD-Net trained on the Middlebury dataset produced an average NRMSE,

NMAE and SSIM value that exceeded the test results of the DfD-Net tested on the

Middlebury test set. The second test conducted was the training and testing solely

on the real world dataset. Analysis of the camera and lens behavior led to an optimal

lens voltage step configuration of 141 and 129. Using this configuration, training the

DfD-Net resulted in an average NRMSE, NMAE and SSIM of 0.0660, 0.0517 and

0.8028 with a standard deviation of 0.0173, 0.0186 and 0.0641 respectively.

1

1. INTRODUCTION

Depth estimation is considered to be one of the most challenging problems in

computer vision (CV) today. The human visual system (HVS) takes advantage of

several cues to determine distances of objects, the most important being the binocular

cue which results ”from the fact that both eyes see an object under a different angle”

[1]. With the ever increasing advancements in robotics and autonomous systems the

need for improved (accurate and fast) depth estimation algorithms and techniques

is essential. The integration of self-driving cars and other autonomous systems into

main-stream society means that these systems can no longer rely on a simple 2-

dimensional (2-D) image to completely understand the world in which these systems

are operating.

Depth information can be determined in many different ways. These methods can

generally be broken down into two broad categories; 1) Active Methods and 2) Passive

Methods. While the majority of this research will concentrate on one particular

method of passive depth inference, it is important to understand the engineering

trade-offs between active and passive depth estimation methods and the ultimately

the trade-offs between the passive methods themselves.

1.1 Active Depth Estimation Methods

Active ranging methods are a very diverse set. Systems can use ultrasonic ranging,

they can use visible light in the form of structured light patterns, non-visible laser

light like that used in laser range finders and LIDAR systems, or electromagnetic

emissions in the radio frequency (RF) spectrum like that of radar. Whatever the

system employed, they all have at least two things in common. They each require

a transmitter which emits a signal in the band of interest and they need a matched

2

receiver which will receive and decode the returned signal. These methods can be

highly accurate because they are directly measuring the distance to a point of interest

in 3-D space. However, their size and expense can be prohibitive when smaller au-

tonomous systems require accurate depth information. For example imagine placing

an $8,000 LIDAR system on a $1,000 quad copter. In some applications, like covert

surveillance, the system needs to be passive so as not to draw attention to the depth

estimation system. Therefore, there is a need to invest in passive, small, lightweight

and power efficient technologies.

1.2 Passive Depth Estimation Methods

Passive methods have no active transmission, so the depth estimation occurs

through what is termed depth inference, which is to say the depth is estimated by

using specific cues that indicate the potential depth of an object. These methods have

several advantages over the active methods. The largest is that they do not require

a matched transmitter, which can add additional cost, weight and complexity to a

depth estimation system. A drawback to the passive methods is that the algorithms

used to infer the depth can be computationally expensive and may not be as accurate

as the active methods. The passive depth estimation methods discussed here are 1)

Depth from Stereo, 2) Depth from Focus and 3) Depth from Defocus.

When considering the various methods to infer depth from a series 2-D images,

one has to keep in mind that there are two interdependent systems at work. The

first being the algorithmic system in which computer vision and statistical techniques

are used to develop depth maps based on the required algorithm inputs. The second

system is the physical system which includes the digital imaging sensor, and a lens

which has properties described in Chapter 2. Only when the two systems are correctly

paired are the results accurate.

3

1.2.1 Depth From Stereo

Depth from Stereo (DfS), also known as Stereo Vision, is a technique for inferring

depth by triangulation from two cameras that are a set distance apart from each

other [2]. This is very similar to the way human vision works. The relative depths of

objects in a given scene are obtained by comparing the two images and performing

a matching correspondence between the same objects in the scene. This creates a

disparity map, which is inversely proportional to the scene depth at the corresponding

pixel location [3]. The term disparity in the realm of stereo vision refers to the

difference in distance that an object projects onto the image plane of each camera.

Fig. 1.1. Geometry setup of a typical Depth from Stereo setup. Image
adapted from [3,4]

DfS methods were once considered to be more sensitive (i.e. have higher resolu-

tion) than either Depth from Focus or Depth from Defocus methods. However, it

has been shown that mathematically the disparity produced by DfS methods and

the Depth from Defocus method are identical [5]. In fact, the only reason that DfS

methods are considered to have higher resolution is a function of the physical configu-

4

ration of the two cameras. This can be seen in Figure 1.1. Effectively the two camera

system forms a synthetic aperture of a larger system [5] which can be several times

larger than a standard camera lens. Where as the Depth from Focus and the Depth

from Defocus methods use a single camera, limiting the aperture size to a single lens

system.

In order to determine the depth of an object, O1 for example, the method of

similar triangles is used. A set of traingles are considered similar if they meet the

following definition: “Triangles ∆ABC and ∆A′B′C ′ are similar iff corresponding

angles are congruent and the lengths of corresponding sides are proportional.” [6]

x1
d1

=
x′1L
f

(1.1)

x1 − b
d1

=
x′1R
f

(1.2)

Starting from a reference origin of the left lens, the ratios are shown in Equations

1.1 and 1.2. Solving each equation for x1, setting them equal to each other and then

solving for the depth of the object d1 results in the following equation:

d1 =
fb

x′1L − x′1R
(1.3)

It should be noted that the accuracy of the depth is also limited by the resolution

of the digital imaging system, since the pixel location is the unit of measure for x′1L

and x′1R. There are however special algorithms that can compute the disparities at

the sub-pixel level [4]. One of the drawbacks to the DfS configuration is that only a

horizontal separation is assumed [4], which means that in order for the algorithms to

work correctly the cameras must be perfectly aligned in the vertical dimension.

In addition to a perfect vertical alignment, it is preferred to have the camera

centerlines parallel. However, the modern algorithms used in DfS can accommodate

for some angular rotation in the cameras. That being said, too much rotational

5

difference and the same object will no longer be in both the left and right image

image planes. Another limitation to the DfS setup is object occlusion. This is where

one object masks another object(s) in one of the cameras, but not the other camera.

This prevents the algorithms from correctly corresponding objects in the left/right

image plane.

Many different algorithmic approaches have been proposed to solve the challenge

of developing depth maps from stereo image pairs. In fact [2, 7] have proposed

using Markov Random Fields (MRF) to develop the depth map. In addition to

MRFs, Hirschmüller and Scharstein have proposed several other methods including a

correlation-based method [8], the use of the semi-global method (SGM) developed by

Hirschmüller [9] and the use of a global method using graph cuts (GC) was introduced

by Boykov, et al. [10]. In addition to traditional stochastic models, the use of deep

learning models employing convolutional neural networks (CNNs) for DfS have also

been proposed by Žbontar and LeCun [11] and Lou, et al. [12].

1.2.2 Depth From Focus

As with Depth from Stereo, the purpose of Depth from Focus (DfF), also known

as shape from focus, is to estimate the depth of objects in a scene. This method is

considered an ill-posed problem [13], which means that it does not meet the Hadamard

criteria [14]. This method differs from the DfS method, in that instead of using two

cameras that are separated by a given distance, a single camera is used to capture the

scene. The required data consists of a focal stack which is a series of images where each

image has its focus distance increased (or decreased depending on starting location)

so that objects in a scene gradually come in and out of focus.

The central idea is then to assume that for every pixel located at (x, y, z), where x

and y are the pixel locations in an image and z is the index of the focal stack, there is

one pixel that is maximally sharp. The index of the image in the focal stack with the

maximally sharp pixel can then be related to the focus distance, which is the distance

6

from the imaging system to a plane where everything in that plane is maximally in

focus [15]. Unlike the DfS method the DfF method does not have to rely on a precise

two camera configuration, instead only a single camera is required.

Depth estimation in a DfF system is performed by searching for a combination of

lens/camera parameters that result in an object being in focus at a given distance from

the camera/lens. This may be achieved by changing either the lens to sensor distance,

the focal length or the object distance, or any combination thereof [5]. Figure 1.2

shows an example subset of images in a focal stack at various focal distances.

(a) Foreground Focus (b) Midground Focus (c) Background Focus

Fig. 1.2. Lego R© man focal stack example. (a) The yellow space man
is in focus; (b) the blue space man is in focus and (c) the black space
man is in focus.

This method has several drawbacks, one of which is the requirement to generate

multiple images to create the focal stack. This means that there is an increased

requirement for image storage since each scene will require several images to determine

the depth of an object in a scene. And the depth resolution is directly related to the

number of images taken. For example if only 25 images are taken then the maximum

number of depth levels that can be differentiated is 25. If the images in the focal stack

are taken at equidistant focal distances then the depth resolution is the focal distance

step size. However, there is nothing to limit the focal stack creation to a uniform

step. In fact the step can be of arbitrary distance only limited by the imaging system

physical properties. Depending on scene complexity equidistant or even varied focal

distance step sizes may not provide enough depth levels to accurately represent the

scene.

7

Similarly to the DfS methods, Gaganov and Ignatenko have successfully applied

MRFs to develop the depth maps from a focal stack [16]. A variational approach

has been proposed by [15] in which an energy term consisting of a combination of a

data fidelity term and a regularization term are minimized to create the desired depth

map. In addition to more traditional statistical methods, deep learning and CNN’s

have been used for DfF by Hazirbas, et al. [13] showing a lot of promise. In fact

their work takes advantage of Ronneberger, et al. [17] whose work with deep neural

networks and semantic segmentation led to the development of the U-Net, which is

also the basis for this this research.

1.2.3 Depth From Defocus

Depth from Defocus (DfD) is inspired by Pentland’s research into the imperfec-

tions of biological lens systems [18], in this case the HVS. This research led to the first

significant advancement in depth estimation by using the blur of the scene. Much

like DfF, the DfD method is again an ill-posed problem [15]. The DfD method also

relies only on a single camera imaging system. DfD differs from the DfF method,

in that instead of taking several images at various focal distances the DfD method

uses only very few images [15]. In fact, only a minimum of two images per scene

are required to accurately generate a depth map. The DfD method takes one image

considered to be in-focus and a second image considered to be out-of-focus image. In

place of creating a focal stack as in the DfF method, the DfD method instead creates

a synthetic stack by using the in-focus image and blurring it using N different blur

kernels, effectively creating an N-level stack. This has the distinct advantage over the

DfF method by not needing to take more image data if the focus stack was not large

enough to accurately model the depth of the objects in the scene. Since control of

this synthetic stack is entirely dependent on the blur kernel we have a lot of control

over the depth estimation resolution. In the case of a Gaussian blur kernel, changing

the σ value in a linear fashion would generate a stack that would be equivalent to

8

the DfF method with an equidistant focal distance step. However, a non-linear step

in σ values would also be a potential method to create a suite of blur kernels. DfD

also does not suffer from the same correspondence issues as does the DfS methods,

because it is a single camera.

Schechner and Kiryati [5] introduced a point that, while DfS does suffer from the

problem of occlusions, the DfD method also suffers from the same problem, only to

a lesser degree. If the occluded part is small compared to the support of the blur-

kernel, and its depth is close to that of the occluding object, the resulting error will

be small [5].

As with the DfS and DfF methods, traditional and some more novel statistical

methods have been applied to solving the ill-posed DfD problem. Watanbe and Nayar

developed a novel algorithm that used a class of broadband operators that when

combined produces accurate depth maps of a given scene [19]. Crofts developed an

interesting approach of depth estimation by developing a 4-D lookup table that could

be applied to planar surfaces in the images to infer the depth [20]. Liu experimented

with MRFs and graph cuts methods to develop accurate depth maps [21]. And

recently Pasinetti, et al. used the intensity contrast method (ICM) and the differential

contrast method (DCM) to generate depth maps [22]. The DfD problem is just now

being pushed in the realm of deep learning. Zhang, et al. have proposed a hybrid

deep learning network architecture that uses both the in-focus/out-of-focus image

pairs and the left/right stereo image pairs to generate the depth map [23].

This thesis presents a new DfD depth inference method that uses only an in-focus

and out-of-focus image pair in conjunction with a new deep learning architecture. The

novel aspects of this research are; 1) the development of a deep learning architecture

that improves overall performance and inference speed as compared to the current

stat-of-the-art methods and 2) the application of this deep learning architecture to

data collected with a camera/microfluidic lens combination with ground truth data

collected with a 2-D LIDAR.

9

Chapter 2 provides the theoretical background for the geometric optics which gov-

erns the physics behind the depth estimations methods, including the DfD method.

Chapter 3 describes the datasets used in this research and discusses the error metrics

that will be used to evaluate the new DfD deep learning architecture against the

current state of the art graph cuts algorithm. Chapter 4 describes the current state

of the art method using a graph cuts algorithm and the algorithm’s performance on

the datasets outlined in Chapter 3. Chapter 5 describes the new improvements to

the state of the art using the DfD deep learning architecture, and presents the ex-

perimental results. Chapter 6 introduces two methods geared towards optimizing the

performance of the DfD-Net, one method designed to improve the results of the per-

formance metrics and the other method designed to reduce the complexity/increase in

processing speed of the network. Chapter 7 discusses the application of the DfD-Net

to images that were blurred using a microfluidic lens. Finally Chapter 8 concludes

the discussion and Chapter 9 contains the recommendation for future research.

10

2. GEOMETRICAL OPTICS

To understand the underlying principles of depth estimation methods, we first

need to gain an understanding of the physical nature of a lens. For the purposes of

this analysis we will only consider a single lens system that employs a thin convex lens.

What is meant by thin is that the refraction at each of the lens interfaces is neglected.

Figure 2.1 shows the path of the light rays through a thick lens as they pass through

various thicknesses of the lens. Figure 2.2 shows the thin lens assumption, in which

the light rays only refract once at the center of the lens. In essence the thickness

of the lens is neglected and the light ray refractions is assumed to take place at the

vertical axis (center) of the lens [24].

Fig. 2.1. Representative Thick Lens Light Ray Travel

A secondary assumption about the optical system is that the lens is symmetric,

both axially along the vertical axis and rotationally symmetric about the principle

axis.

11

2.1 Thin Lens

Fig. 2.2. Representative Thin Lens Geometry Setup [24,25]

To develop the governing equations for a thin lens model, Figure 2.2 is used.

This figure sets up the basic geometries to develop the equations which govern the

interactions between the focal length (f), the distance an object is away from the lens

(do) and the distance of the image of the object from the lens (di). ho represents the

natural height of the object and hi represents the height of the image of the object.

It should be noted that the image of the object is shown on the opposite side of the

lens, however, the image can also be on the same side of the lens as the object. The

image is then considered to be imaginary, but the governing mathematical equations

still hold. Without loss of generality, only the case where the object image is real is

considered for this analysis.

Figure 2.3 expands upon the geometries to emphasize the similar triangles that are

used to develop the thin lens equation. The triangle which contains the lines do and

A is similar to the triangle which contains the lines di and B. Using the properties

of similar triangles the ratios of the line segment do and di can be related to the

12

Fig. 2.3. Extended View of the Thin Lens Geometries with Additional
Similar Triangles Added [24,25]

line segments A and B. In addition the line segments f and di − f are also similarly

related to the ratio of A and B. Equation 2.1 defines these relationships.

do
di

=
A

B
=

f

(di − f)
(2.1)

Rearranging Equation 2.1 yields the following:

do(di − f) = dodi − dof = fdi

dodi = f(do + di)

Finally gathering like terms the thin lens equation is shown in Equation 2.2.

1

f
=
do + di
dodi

=
1

di
+

1

do
(2.2)

13

Using the similar triangle relationship, a formula for the ratio of the object height

to the image height can be related to the object distance from the lens and the image

distance from the lens (Equation 2.3).

do
di

=
A

B
=
ho
hi

(2.3)

Rearranging the equation in terms of the image height results in Equation 2.4.

This equation is also known as the magnification equation for the lens.

hi = ho
di
do

(2.4)

Equations 2.2 and 2.4 will be the base equations used for further derivations in

this chapter.

2.2 Circle of Confusion

The circle of confusion (CoC), also known as the blur diameter or point spread

function of a lens, can be determined in a similar manner as the thin lens equation

itself. Figure 2.4 shows a similar geometric configuration as Figure 2.2. However,

instead of an object with a given height, a single point placed on the principal axis

of the lens is used for the analysis and equation development. Here, do represents

the distance at which the point is perfectly in focus, (CoC is equal to zero) and df

is the far distance at which the image of the point is blurred with some diameter c.

Similarly dn is the near distance at which the image of the same point produces the

same diameter c blur. As before, di is the distance from the lens to the image plane.

Two separate equations must be developed to understand the circle of confusion.

First, using the far point denoted by df and using the similar triangle relationship

between the triangle with a base length of D and a height of df and the triangle with

a base of C and a height of df − do Equation 2.5 can be established. For the purposes

14

Fig. 2.4. Circle of Confusion Geometry Configuration [25]

of this analysis it is assumed that df will always be larger than do, i.e. the out of

focus object will always be further away from the lens as compared to the in focus

object.

D

C
=

df
(df − do)

(2.5)

Rearranging Equation 2.5 and solving for C yields the following relationship:

C = D
df − do
df

(2.6)

It should be noted that this equation would also be the same equation if we were to

use the radius (D/2) and (C/2) since we are using the ratio of the two. For this reason

the term blur radius will be used instead of blur diameter. Using the relationship

developed in Equation 2.4 and substituting in the appropriate variables Equation 2.4

now becomes:

15

c = C
di
do

(2.7)

Substituting the results of Equation 2.6 into Equation 2.7 results in the following:

cfar = D
(df − do)

df

di
do

= Ddi

(
1

do
− 1

df

)
(2.8)

What is left to solve for is di. Rearranging the thin lens equation (Equation 2.2)

to solve for di produces the following equation:

1

f
=

1

do
− 1

df
=⇒ di =

fdo
(do − f)

(2.9)

Substituting Equation 2.9 into Equation 2.8 generates the following relationship

between the circle of confusion radius and the given lens parameters.

cfar = D

(
df − do
df

)
di
do

= D
fdo
do − f

(
1

do
− 1

df

)
(2.10)

To further simplify this equation, the lens’ f-number (n) which is the ratio of the

lens focal length f and the lens aperture (in this case D) can be substituted into

Equation 2.10. This results in the final equation for the circle of confusion radius:

cfar =
dof

2

n(do − f)

(
1

do
− 1

df

)
(2.11)

The maximum circle of confusion radius for a given lens can be determined by

setting df equal to inf. This reduces Equation 2.11 to the following:

cmax =
f 2

n(do − f)
(2.12)

16

The same process can be used to develop an equation for the CoC for the near

point denoted by dn. Using the similar triangle relationship between, C, D, do and

dn Equation 2.13 is created.

D

C
=

do
do − dn

(2.13)

The relationship between c and C for the near point is defined as:

c = C
di
dn

(2.14)

Rearranging Equation 2.13 in terms of C and substituting into Equation 2.14

yields Equation 2.15.

cnear = D

(
do − dn
do

)
di
dn

= Ddi

(
1

dn
− 1

do

)
(2.15)

Once again using the rearranged version of the thin lens Equation (2.9), substitut-

ing in for di and using the relationship between the f-number and the lens aperture

(D), Equation 2.15 now becomes the following:

cnear =
dof

2

n(do − f)

(
1

dn
− 1

do

)
(2.16)

While an equation for the maximum CoC can be derived from the definition of cfar,

the same cannot be said for the derivation of a similar formula using the definition of

cnear. This is because as the point gets closer to the lens the 1/dn term grows and is

unbounded. Therefore the maximum circle of confusion for the near point is limited

by the size of the image plane or digital sensor used to capture the image plane. Using

Equations 2.11, 2.12, 2.16 and the parameters outlined in Table 2.1 a range of values

for the blur radius and the quantized blur radius can be calculated.

17

Table 2.1.
Example Lens/Camera Imager Parameters

Parameter Value

Lens F-Number (n) 3.7

Focal Length (f) 9.6 mm

Focus Distance (do) 0.5 m

Imager Pixel Size 4.8 x 4.8 µm

Figure 2.5 shows the plot of the blur radius versus the distance from the lens for

each of the piecewise functions. The blue line represents the blur radius based on the

functions defining cnear and cfar. It can be seen that the cfar curve is monotonically

increasing, asymptotically approaching cmax (green line) for objects in the far region

and the cnear curve is also monotonically increasing and unbounded.

Fig. 2.5. Object Distance vs. Blur Radius Chart

18

In a digital system light is captured by an imaging sensor, typically a Comple-

mentary Metal Oxide Semiconductor (CMOS) or a Charge-Coupled Device (CCD)

sensor. These sensors quantize the amount of light received and this quantizing unit

is known as a pixel. The stepped black line in Figure 2.5 shows the quantized version

of blur radius using the same parameters listed in Table 2.1. It can be seen that the

further away from the lens an object gets the more difficult it becomes to distinguish

a distance from the lens based solely on the blur radius. Because digital imaging

sensors are not binary quantizers, each pixel offers some additional blur radius dis-

crimination by the way of changing intensity values. However, this is highly sensor

dependent and could vary based on a number of factors, including sensor pixel size,

pixel sensitivity, etc.

2.3 Depth of Field

The depth of field (DoF) is a term that denotes the range of distances both in front

of the focus distance and behind the focus distance where the CoC does not change.

The relationship between the DoF and the CoC is based on the lens and image plane

geometries. In addition, the DoF is also directly dependent on the sensor (i.e. 35mm

film, CCD imager) and what is termed an acceptable level of blur. In a digital camera

system this acceptable level is typically when the circle of confusion radius is less than

or equal to the physical size of one pixel on the imager. To determine the farthest

distance an object can be while still meeting the acceptable blur criteria Equation

2.11 is rearranged to solve for df .

cfar =
dof

2

n(do − f)

(
1

do
− 1

df

)
=⇒ df =

dof
2

f 2 − nc(do − f)
(2.17)

When the term nc(do − f) ≥ f 2 the far distance is considered to be∞. The same

rearranging process can be done for Equation 2.16 to solve for dn.

19

cnear =
dof

2

n(do − f)

(
1

dn
− 1

do

)
=⇒ dn =

dof
2

f 2 + nc(do − f)
(2.18)

Both the near and far discriminators have been dropped from the equations be-

cause when determining the DoF the CoC radius is the same for both the near and

far distances. The depth of field is then simply the difference between the far distance

df and the near distance dn:

DoF = df − dn (2.19)

2.4 Depth Resolution

Using Figure 2.5 as a reference it can be quickly seen that the quantizing nature of

the pixel and the non-linear curve describing the far object blur radius leads to zones

where the depth of an object will be indistinguishable based on the blur. This leads to

three distinct scenarios that need to be considered when attempting to differentiate

the distances of objects in a scene using only the blur information.

1. A change in focus distance does not cause a change in the object’s blur radius.

2. A change in focus distance causes an object’s blur radius to change and the

object remains on the same side of the inflection point.

3. A change in focus distance causes an object’s blur radius to change but the

object moves from one side of the inflection point to the other.

The first scenario simply means that the object was either too far from the initial

focus point or the change in focus distance was so small that the change was not

enough to register in another pixel. In this case it will not be possible to determine

the depth of the object from the blur radius change. The second scenario is the

optimal scenario. The change in blur radius will allow algorithms to determine the

depth based on the increase or decrease in blur radius. The third scenario is the most

20

difficult because in the real world we may not know if this situation has happened.

Algorithms will be able to determine the depth, but depending on the algorithm it

may not accurately determine the correct depth.

In order to be able to differentiate objects at various distances based on their

change in blur, the change must be large enough to be detectable in an imaging

sensor. In the digital realm this means that the blur difference between two objects

must be greater than or equal to one quantizing unit (pixel). Using Equation 2.11 a

relationship between the CoC for two separate objects can be developed in terms of

a pixel.

|c1 − c2| =
dof

2

n(do − f)

∣∣∣∣ (1

d2
− 1

d1

) ∣∣∣∣ (2.20)

Equation 2.20 is the absolute difference in CoC between two objects located in

the far field, where c1 is the CoC for one object and c2 is the CoC for a second object.

This does not provide enough information in order to determine if the two objects

will be in different blur zones. In order to garner this last bit of information the pixel

size itself must be used and, as stated before, the absolute difference between the

CoC for each object must be greater than or equal to one.

|c1 − c2|
pixel size

=
dof

2

n(do − f)

∣∣∣∣ (1

d2
− 1

d1

) ∣∣∣∣ (1

pixel size

)
≥ 1 (2.21)

21

2.5 Summary

This chapter introduced the physical geometric configuration of a thin, single,

convex lens system and the underlying mathematical equations that govern its be-

havior. This chapter also discussed the circle of confusion and how the blur radius

can be determined based on the object distance from the focus distance. In addition

the depth of field and depth resolution were discussed. A description and analysis of

the datasets that were used in this research will be discussed in the next chapter.

22

3. DATASETS

This chapter will introduce the datasets used and the methodology used to create

a blurred version of the dataset. This chapter will also discuss the metrics used to

evaluate the performance of the depth inference methods describe in Chapters 4 and

5 and to ultimately provide a means of comparing the two methods.

3.1 Synthetically Blurred Dataset

The synthetically blurred dataset consists of the third size images from the Mid-

dlebury College Stereo Datasets from 2005 and 2006 [7, 8]. Originally these datasets

were intended to be used to develop and test DfS algorithms, however based on pre-

vious depth from defocus work [21] this dataset was re-purposed to be used in this

research.

The images in this dataset consist of various scenes using common household

objects with various coloring and textures. The images were taken at three different

illumination levels and three different exposure times per illumination level. Each

scene was captured from two separate camera viewpoints (left and right). Figure 3.1

shows an example of the illumination and exposure levels for the aloe plant dataset.

These lighting conditions allow the machine learning algorithms to be exposed to a

variety of possible lighting conditions that could be seen in the wild. This wide range

of illumination and exposure levels allows the models to generalize to work in various

lighting conditions.

Figure 3.2 shows the exposure times for each of the three illuminations. The red

bars represent the exposure level 0 times, the green bars represent the exposure level

1 times and the blue bars represent the exposure level 2 times. From these graphs it

can be seen that the exposure times were not uniform across the dataset for any of

23

Fig. 3.1. Middlebury College Stereo Aloe Plant Illumination and Ex-
posure Level Example

the illumination settings. It will be shown in Chapter 4 that these illumination and

exposure levels have a direct effect on the performance of the current state of the art

algorithm and that the proposed deep learning architecture presented in Chapter 5

is superior.

In addition to the visual color views of the scenes, these datasets also contain the

ground truth depth map for each scene. The ground truth data was collected using

the structured light method. Structured light is the “active illumination of the scene

with a specially designed 2-D spatially varying intensity pattern” [26]. The pattern

is generated in a horizontal orientation and then again in a vertical orientation.

Structured light works by taking advantage of the fact that if the surface of an

object is flat there will be no distortions of the light pattern. However if the object

surface is not flat, then the geometry of the surface will produce distortions in the

24

Fig. 3.2. Middlebury College Stereo Vision Dataset Exposure Time Charts

light pattern. The depth can then be determined based on the relationship between

the original structured light pattern and the observed light pattern. There are many

different possible patterns that can be used to determine the depth. Scharstein, et

al. used a 10-bit Gray-code sequence and its inverse [27] as the desired pattern. The

Middlebury researchers used a liquid crystal display (LCD) projector to project the

Gray-code, both horizontal and vertical, onto the objects in the scene. They were

then able to produce the required depth maps.

In order to create the synthetically blurred images, the corresponding depth map

is used in the following manner: First a series of blur kernels based on a Gaussian

blur filter is created using Equation 3.1. Where m is an odd number and is the size

of the blur kernel, and x and y are the position in the kernel.

ki(x, y) =
1√

2πσi
e

−(x−bm2 c)
2(y−bm2 c)

2

2σ2
i x, y ε {0... m− 1} (3.1)

25

For each depth class (i) a new blur kernel is generated based on a desired sigma

value. The sigma value is determined based on the number of classes in the problem

and the range of maximum and minimum sigma values. The sigma value is calculated

using the following equations:

σstep =
σr
N

(3.2)

σi =

σmin + iσstep σmin 6= 0

σmin(i+ 1) σmin = 0
i ε {0... N − 1} (3.3)

Where σr is the maximum desired change in sigma value, σmin is the minimum

allowable sigma value and the maximum sigma value is related to σmin and σr in the

following manner: σmax = σr + σmin. Initially, Liu [21] had used a minimum sigma

value of zero, however it was discovered that the difference in blur kernels was not

changing until sigma reached a value of approximately 0.24.

Fig. 3.3. Sum of the Absolute Differences Between Blur Kernels

26

Figure 3.3 shows the sum of the absolute difference of the blur kernels for each

sigma value ranging from zero to ten. It can be seen that there is a minimal difference

between the kernels with the smaller values of sigma. Small σr values and a large

number of classes mean that there will be several class levels that result in a blur

kernel that will produce the same results when convolved with the in-focus image.

Which means that several classes could become indistinguishable from each other

in terms of the error between the synthetically blurred images and the out of focus

image. For this reason, a σmin value of 0.32 was chosen to ensure that each blur kernel

would be unique. To produce the synthetic stack, the in-focus image, f , in Equation

3.4 is convolved with the kernel from Equation 3.1.

bi = ki ∗ f (3.4)

The depth map value at a given pixel location is used as the index of the blurred

set of images, and the resulting blurred pixel value is used in the synthetically blurred

image. For example if there were 256 possible depth map levels then there would be

256 synthetically blurred versions of the original image and if a depth map value

of 200 was at a given pixel location (x, y) then the 200th blurred image would be

selected and the value of the pixel at (x, y) would be copied into the synthetically

blurred image at pixel location (x, y).

(a) Original Image (b) Depth Map (c) Blurred Image

Fig. 3.4. Synthetic Blurring Example on Middlebury College Aloe Image [7, 8]

27

Figure 3.4 shows a representative example of the in focus image, the depth map

and the final synthetically blurred image as applied to the Middlebury College Aloe

image [7,8]. It can be seen that the higher valued (brighter) depth map values result

in less blurring, while the lower valued (darker) depth map values produce more

blurring as expected.

As with any natural scene the distribution of the depth map values is not uniformly

distributed across the range of [0 ... 255]. Figure 3.5 shows the combined distribution

for the entire Middlebury Stereo Vision dataset [7, 8]. This dataset is lacking depth

values at each end of the distribution. While the current state of the art graph cuts

method does not have a dependence on the distribution of the depth map values,

when considering some deep learning algorithms, the distribution of the depth map

values can become very important. This is true when the training set does not have a

particular depth map value, but the test set does. It would be unreasonable to expect

the algorithm to perform well in the absence of particular training examples.

Fig. 3.5. Middlebury College Dataset Overall Depth Map Distribution

28

3.2 Real World Dataset

The following section describes the hardware and the procedures used to collect

the real world camera dataset. This section also outlines the data processing steps

used to match the imagery data with the depth ground truth data.

3.2.1 Camera & Microfludic Lens

Fig. 3.6. Example Microfluidic Lens Cross-Section

The camera that was used for this data collect was a FLIR R© (formerly Point

Grey Research) Chameleon3 1.3 MP Color USB3 vision camera (CM3-U3-13Y3C-

CS) coupled with a Varioptic R© Caspian M12-316-9.6 liquid lens. Figure 3.6 shows an

example cross-section of a typical microfluidic lens. The liquid lens uses a property

known as electrowetting, which occurs when “a drop of insulating liquid (e.g. oil

drop) is deposited on a flat surface, made of a conductive material covered with an

insulating and hydrophobic layer, and then both the drop and surface are immersed in

a conductive liquid (e.g. electrolyte). Voltage is then applied between the conductive

substrate and the conductive liquid causing the liquid drop to change shape” [28].

The liquid lens requires a high voltage driver that was designed in house. The voltage

driver produces a voltage that ranges from 9.8V to 62.075V in 256 discrete steps,

29

where each step represents a voltage change of approximately 0.205V. The lens driver

is operated in an open loop control manner which means that there is no feedback to

the voltage driver to ensure that the lens focus point remains stable. The lens was

configured according to the Varioptic R© documentation with the focus point set to 1

meter. The camera and lens properties are outlined in Table 3.1.

Table 3.1.
Microfluidic Lens/Camera Imager Specifications

Parameter Value

Lens

Effective Focal Length 9.6 mm

F-Number 3.7

Image Circle Diameter 9.1 mm

Camera

Resolution (h x w) 1024 x 1280, 1.3 MP

Frame Rate 149 FPS

Sensor On Semi P1300, CMOS 1/2”

Readout Method Global Shutter

Pixel Size 4.8 x 4.8 µm

ADC 10-bit

3.2.2 LIDAR

Like the Middlebury College dataset, ground truth labels are required in order to

train and evaluate the performance of the depth estimation algorithms on real world

datasets. The ground truth data was collected using an Ouster OS-1 64-beam 2-D

LIDAR. The LIDAR was configured in the high resolution mode with a scan time of 10

Hz and produces a panoramic 64 x 2048 point depth map. Table 3.2 lists the LIDAR

specifications. The LIDAR sends the data back to a PC via a User Datagram Protocol

30

(UDP) Ethernet connection. Each data packet consists of 16 azimuth measurements

with 64 range values per azimuth measurement. To get a complete 360 degree scan

of the environment 128 UDP data packets are required.

Table 3.2.
OS-1 LIDAR Specifications

Parameter Value

Beams 64

Resolution (h x w) 64 x 2048

Vertical Resolution 0.52 deg

Azimuth Resolution 0.18 deg

Rotation Rate 10 Hz

Range 0.5m - 120m

3.2.3 Real World Data Collection

Fig. 3.7. Camera/LIDAR Capture Rig

31

The camera and LIDAR were mounted on a 30mm x 30mm piece of 80/20 extruded

aluminum T-slot framing system using custom 3-D printed mounting brackets. The

vertical optical axis of the camera was aligned as best as possible with the vertical

centerline of the LIDAR. The horizontal optical axis of the camera and the horizontal

axis of the LIDAR are separated by approximately 93mm. Figure 3.7 shows the

configuration and placement of the camera and LIDAR mounted on a standard tripod.

The data was collected on various textured objects. These objects were textured

using various patterns and materials of varying color. The scene was setup with

various objects and surfaces that ranged between 1.5 and 2.5 meters from the camera.

The camera was configured with an exposure time that was varied from 70 ms to 10 ms

in 10 ms increments. This varied exposure time allows for the generation of images

with varied lighting conditions that range from slightly under exposed to slightly

over exposed. These lighting conditions expose the machine learning algorithms to

a variety of possible lighting conditions that could be seen in the wild. For each

exposure time the microfluidic lens was set to 17 different voltage steps ranging from

127 to 143 with a voltage step of 135 resulting in the most in-focus image. Table 3.3

lists the camera settings that were used to capture the data. For each combination of

lens voltage step and exposure time, four images were taken and averaged on a per

pixel basis to form the final output image. This was done to alleviate some of the

noise which was inherent in the camera. A total of 64 scenes were collected.

For each scene a ground truth depth map was also captured using the Ouster OS-1

LIDAR. Five scans were taken of the scene and then averaged to attenuate the noise

from the LIDAR. Figure 3.8 shows an example of the raw panoramic data collected

from the LIDAR. The area of pixels in the top center third are what the camera is

capturing. Figure 3.9 shows the combined depth distribution for the entire real world

dataset.

32

Table 3.3.
Camera Data Capture Settings

Parameter Value

Image Capture Size (h x w) 728 x 736

Offset (x, y) 272, 148

Brightness 4.00

Gain (dB) 8.00

Sharpness 2500

Frame Rate 5 FPS

Fig. 3.8. Example LIDAR Panoramic Scene

3.2.4 Real World Scene Configuration

The following section will describe how each scene was setup for the real world

data collect. Figure 3.10 shows the configuration of the scene for each of the first four

datasets. The blue line represents a surface in which various textures and patterns

were attached. The field of view represents what the camera and LIDAR will see

33

Fig. 3.9. Real World Dataset Depth Map Distribution

Fig. 3.10. Real World Dataset Scene Configuration Example

after the data has been post processed following the steps outlined in Section 3.2.5.

For each of the four scenes the same pattern/texture was used and only one surface

was used at a time. For example the k00 scene was a flat surface perpendicular to the

camera and LIDAR and was approximately 2.5 meters from the capturing equipment.

The k01 scene, took the same texture and rotated it so that the surface was oblique

to the camera/LIDAR centerline with the closet side of the surface on the left and the

34

farthest side of the surface on the right. The k02 scene was identical to the k01 scene

except the closet side to the camera and LIDAR was on the right and the farthest

side was on the left. Based on the field of view the surface ranged between 1.5 and 2.2

meters from the camera and LIDAR. The k03 scene was setup similar to the k00 scene

except the surface was set to 1.5m from the camera and LIDAR. The entire 4-tuple

scene was constructed in such a way that the deep learning algorithm would see the

same texture at multiple depths. Every fourth scene in the dataset is a duplicate in

its geometry of the first four scenes, for example the k04 scene has the same setup as

the k00 scene except the texture was changed. Similarly, the k05 scene is the same

configuration as the k01 scene with the same texture as the k04 scene. This pattern

was repeated for 16 different textures to give a total of 64 scenes for the dataset.

3.2.5 Real World Data Processing

Since the image data and the LIDAR data are of different scales/resolutions and

spectrums a method of scaling and registering the two datasets was developed. The

procedure listed below outlines the process to create a final dataset.

1. The first step in the process was to determine the sharpest image for a given

exposure time. This was done by taking the 2-D Discrete Fourier Transform

(using the 2-D FFT) of each image/voltage step within a given exposure time.

The sum of the magnitude of the FFT was then taken. The sum of the energy

is used as a measure of the amount of high frequency content within the image.

An image with high frequency content indicates that edge transitions in the

image are sharper which means the image is more in-focus. Similarly, a lower

energy sum indicates that there is less high frequency content which means that

the image is less in-focus. Once the in-focus image is found for each exposure

time all of the images are cropped to 630 x 630 pixels (height x width).

2. The LIDAR data was converted to an XY Z Cartesian coordinate system from

the native polar coordinate system. Figure 3.11 shows the X and Y axes for the

35

Cartesian coordinate reference frame. The Z axis is coming out of the image,

creating a right-handed coordinate system. This conversion is accomplished

using Equations 3.5-3.9. Where meas ID (measurement ID) is an index to the

LIDAR data. This index ranges between 0 and 2047 and is part of the raw data

that is provided by the LIDAR system. The beam az index is a correction factor

to the measurement ID and is part of the LIDAR calibration data provided by

the unit and is specific to a particular LIDAR system. For the LIDAR unit used

to collect the data this quantity ranged from -19 to +19. The beam alt angle

is the altitude angle for each of the 64 laser beams emitted from the LIDAR.

This quantity is also part of the calibration data and is specific to the LIDAR.

These values ranged from -16.8294 to +16.4486. Finally, r is the raw LIDAR

range data. Once the data was converted the X values were then used as the

range from the LIDAR to surfaces in the scene. The data at this point is 64 x

2048 and is then cropped at +/- 150 points on the horizontal axis, centered at

point 1024 (0 degrees in the LIDAR coordinate system).

Fig. 3.11. LIDAR Coordinate Reference Frame

36

θ = 2π

(
mod(meas ID + beam az index[i], 2048)− 1023.5

2048

)
(3.5)

φ = 2π (beam alt angle[i]) (3.6)

X = rcos(θ)cos(φ) (3.7)

Y = −rsin(θ)cos(φ) (3.8)

Z = rsin(φ) (3.9)

3. Once the LIDAR data has been cropped it is filtered with a 7x1 and then a 1x7

median filter. A traditional 7x7 median filter was not used because, while in

general a median filter will preserve edges while removing noise, the corners of

objects in the data will tend to round with such a large filter.

4. The next step was to scale the LIDAR data values themselves. Because the

LIDAR data is in units of millimeters and the scene was set to a maximum

distance of 2.5 meters from the camera/LIDAR. The LIDAR values were divided

by 10 and floored to bring the distance measurements into the range of 0 to

255.

5. Next, because the LIDAR data is 64x300 it has to be scaled up to match the

image size. Because the scales in each dimension are vastly different, the LIDAR

data was scaled up in a recursive manner using nearest neighbor interpolation.

After each time the ground truth data was upsampled, the data went through

a 13x1 and a 1x13 median filter. Figure 3.12 shows an example of the recursive

scaling for each of the six steps used in the upsampling process starting with

the input size of 64x300.

37

Fig. 3.12. LIDAR Recursive Upsampling Example

6. The next step in the process was registering the LIDAR data to the camera

images. For this step a tool was developed that creates a sliding window of

630x630 pixels for the LIDAR data and the image data then overlays the two

datasets. The window for each can be moved within the bounds of the original

data to ensure a proper alignment. The tool allows the user to introduce trans-

lation shifts, rotations and skewing to he LIDAR data to allow alignment of the

two datasets. Once the proper alignment was found a transformation matrix

was created and applied to the LIDAR data.

Figure 3.13 shows an example of one of the scenes that was captured for this

dataset after all of the data processing steps have been completed. Figures 3.13a -

3.13g show the cropped image scene taken with the seven different exposure times

and Figure 3.13h shows the cropped, scaled and filtered ground truth LIDAR data.

The LIDAR data has been colorized to accentuate the minute changes in depth for

the scene.

38

(a
)
10

m
s

(b
)
20

m
s

(c
)
3
0
m
s

(d
)
4
0
m
s

(e
)
50

m
s

(f
)
60

m
s

(g
)
7
0
m
s

(h
)
L
ID

A
R

G
ro
u
n
d
T
ru
th

F
ig

.
3.

13
.

E
x
am

p
le

Im
ag

e
S
ce

n
e

E
x
p

os
u
re

L
ev

el
s

an
d

C
or

re
sp

on
d
in

g
G

ro
u
n
d

T
ru

th
L

ID
A

R
D

at
a

39

3.3 Error Metrics

In order to accurately compare results across multiple algorithms and multiple

datasets an error metric is needed. Since the error metric performs a dimensionality

reduction on a large dataset to a single number there is no one-size-fits-all metric that

can accurately distinguish between various algorithms and datasets. For this reason

three separate error metrics were selected based on their strengths and offsetting

weaknesses.

3.3.1 Normalized Root Mean Square Error

The Normalized Root Mean Square Error (NRMSE) is a normalized version of

the Root Mean Square Error (RMSE) which is defined in Equation 3.10, where Xi

is the ground truth depth map and Yi is the estimated version of the ground truth

depth map and N is the total number of samples.

RMSE(X, Y) =

√√√√ 1

N

N∑
i=1

(Xi − Yi)2 (3.10)

In this case the smaller RMSE values indicate that the estimated depth map is in

closer agreement with the ground truth depth map. A by-product of squaring the dif-

ference between the ground truth and estimated depth maps is that the RMSE metric

gives errors with larger differences more weight than errors with smaller differences.

This can be misleading in terms of a total error metric since a few high variance

outliers can lead to a higher error [29]. However, due to its nature the RMSE is well

suited to representing error distributions that behave in a more Gaussian manner.

The act of normalization produces a dimensionless statistic which helps with the

performance evaluation between different datasets and/or different algorithms which

are used to generate the estimated depth maps. The normalized version of the RMSE

is defined in Equation 3.11.

40

NRMSE(X, Y) =
RMSE

max(X)−min(X)
(3.11)

A nice property of the RMSE and consequently the NRMSE is that it is symmetric,

i.e NRMSE(X, Y) = NRMSE(Y,X).

3.3.2 Normalized Mean Absolute Error

The Normalized Mean Absolute Error (NMAE) was chosen as the second perfor-

mance metric. The MAE is defined in Equation 3.12. Similarly to the RMSE, smaller

MAE values indicate a closer agreement between the ground truth depth map and

the estimated depth map.

MAE(X, Y) =
1

N

N∑
i=1

|Xi − Yi| (3.12)

Table 3.4.
Five hypothetical sets (cases) of 4 errors, and their corresponding
totals, MAEs and RMSEs [30]

Variable Case 1 Case 2 Case 3 Case 4 Case 5

e1 2 1 1 0 0

e2 2 1 1 0 0

e3 2 3 1 1 0

e4 2 3 5 7 8

MAE 2.00 2.00 2.00 2.00 2.00

RMSE 2.00 2.24 2.65 3.55 4.00

Chai and Drexler have determined that the MAE is suitable to describe uniformly

distributed errors [29]. Because MAE is an average error metric it has the distinct

advantage over RMSE as it does not suffer from the same fate produced by outliers.

41

In fact Willmott and Matsuura produce an excellent comparison table on 5 separate

error cases [30]. In that table they show that the MAE remains constant while the

RMSE error continues to grow based on an increase in the variance of the error-

magnitude. Table 3.4 is recreated for ease of comparison between the various cases

and to illustrate the point.

It is also interesting to note that the RMSE lower bound is governed by the MAE,

in fact MAE ≤ RMSE. Similarly the NMAE and NRMSE follow the same trend.

The normalized version of the MAE metric is defined in Equation 3.13. Following the

same properties of the RMSE the MAE and consequently the NMAE is a symmetric

metric, i.e NMAE(X, Y) = NMAE(Y,X).

NMAE(X, Y) =
MAE

max(X)−min(X)
(3.13)

3.3.3 Structural Similarity Index

In addition to the above error metrics an image quality metric is used to assess how

well the resulting depth map resembles the ground truth depth map. The Structural

Similarity Index (SSIM) which was developed by Wang, et al. [31] as an image/video

quality metric was chosen as the third metric for algorithm and dataset comparison.

It was designed to more accurately represent the HVS and humans ability to quantify

image quality. SSIM uses a combination of three separate and relatively independent

quantities (luminance, contrast and structure) to make the comparison [31]. The

SSIM metric is defined in Equation 3.14, where X and Y are the input images, µx

and µy are the respective means of the input images, σ2
x and σ2

y are the respective

variances for the input images and σxy is the covariance between the two input images.

The constants c1 and c2 are defined as c1 = (k1L)2 and c2 = (k2L)2 where k1 and k2 are

typically 0.01 and 0.03, respectively. The value for L is 2(# of bits representing a pixel) − 1.

For all of the depth maps used in this research the value of L was set to 255. The c1

42

and c2 constants were added to the equation to provide numeric stability when one

or more of the denominator terms containing the constants are close to zero [31].

SSIM(X, Y) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
(3.14)

According to Wang, et al. [31], the SSIM has several nice properties, including the

symmetry property where SSIM(X, Y) = SSIM(Y,X). The SSIM is also bounded

on the upper end by 1 (SSIM(X, Y) ≤ 1). And finally the SSIM has a unique

maximum: SSIM(X, Y) = 1⇐⇒ Xi = Yi, ∀i ∈ x, y [31]. This last property indicates

that only when the two images are identical is the SSIM equal to one, otherwise it is

always less than one.

Using this 3-tuple metric evaluation scheme provides insight into the source and

cause of potential errors. As an example the images in Figure 3.14 represent a sample

ground truth depth map (Figure 3.14a) and the sample depth map with various

distortion errors added to the image (Figure 3.14b-3.14d).

(a) (b) (c) (d) (e)

Fig. 3.14. Example Depth Map Error Conditions: (a) Original Image,
(b) Mean Shift Image, (c) Blurred Image, (d) Noised Image and (e)
Solid Image

Table 3.5 shows the results of the three metrics for each of the four images in

Figure 3.14. The mean shifted image shown in Figure 3.14b is the original image

with the value of 10 added to each pixel. Here it can be seen that the NRMSE and

the NMAE are the same value, which is to be expected since the errors here are

43

exactly as outlined in Table 3.4. The SSIM shows a value of 0.9453 which indicates

that the mean shift image is very similar to the original image, which is as expected

since structurally the images are indeed very similar with only a difference of 10

between pixels.

Table 3.5.
Sample Error Calculations for Figure 3.14

Image Mean NMAE NRMSE SSIM

Original Image 57.7543 - - -

Mean Shift Image 67.7543 0.0465 0.0465 0.9453

Blurred Image 57.7543 0.0114 0.0466 0.9541

Noised Image 57.7141 0.0407 0.0470 0.4384

Solid Image 23.0000 0.1819 0.3643 0.7443

The blurred image in Figure 3.14c is a Gaussian blurred version of the original

image. The NRMSE is almost identical to the previous image, but when compared to

the NMAE value it can be seen that the NRMSE is suffering from the outlier syndrome

in which these outliers are amplified by the squaring process in the NRMSE. Both

the NRMSE and the NMAE show relatively low error rates, which is due to the fact

that the error between the original image and the blurred image is only occurring as

a ring around the edge of the circles.

The noised image in Figure 3.14d has a uniformly distributed noise in the range of

[-17,17] added to the original image. This again produces very similar NRMSE values

to the other two distorted images. The NMAE is also the same order of magnitude

as the mean shifted image. The SSIM, on the other hand is extremely low, with a

value of 0.4384, which indicates that the two images have little structural similarity.

While the HVS may be able to cut through the noise to discern the depth map value

the SSIM metric clearly indicates that this image is not an accurate estimate of the

depth map in general.

44

The last image, Figure 3.14e has all of its pixels set to 23. The background pixel

value for the original depth map example is 20. The NRMSE and NMAE show a very

large error difference, however if the non-background depth map values were closer

to the background the solid image errors would become much smaller indicating a

potentially good results which is obviously not the case. The SSIM value is very high

for the fact that the solid image in no way represents a good match to the original

image. Without the other two metrics the SSIM could provide a misleading conclusion

that the resulting depth map is a better representation of the original depth map than

the noised image.

3.4 Summary

This chapter introduced the synthetically blurred dataset based on the images

from the Middlebury College Stereo Vision Dataset [7, 8]. The method of creating

the blurred versions of the Middlebury images was also discussed. This chapter also

discussed the error metrics, NMAE, NRMSE and SSIM that will be used to provide

a comparison of the performance of the various algorithms and datasets used in this

research.

This chapter also introduced the real world dataset that was created using a

FLIR R© Chameleon3 1.3 MP Color USB3 Vision camera coupled with a Varioptic R©

microfluidic lens. The ground truth data was collected using an Ouster OS-1 64-beam

2-D scanning LIDAR. The data collection and processing methods were also described

in this chapter. The next chapter will present an analysis of the current state of the

art DfD algorithm on the datasets out lined in this chapter.

45

4. DEPTH FROM DEFOCUS USING THE GRAPH CUTS

ALGORITHM

In this chapter the current state-of-the-art DfD algorithm and graph cuts energy

minimization algorithm will be introduced. A detailed discussion will be presented

on each of the major components of the algorithm and finally the results will be

presented for each of the datasets discussed previously in Chapter 3.

4.1 Algorithm Overview

Fig. 4.1. Depth from Defocus Block Diagram

Figure 4.1 outlines the overall algorithmic approach taken. The first step in the

process is to take two images of a scene. One image is considered to be in-focus and

the other image is considered to be defocused, or out-of-focus. The out-of-focus image

is taken by adjusting the focus distance either closer to or farther from the camera.

The images are then converted to 32-bit floating point images and then transformed

into the YCrCb color space. Once the images are converted, the in-focus image is

then blurred using the same Gaussian kernel which was defined in Equation 3.1. For

each class (i) a new blur kernel is generated based on a desired sigma value (σi).

The sigma value is determined based on the number of classes in the problem, in

this case 256, and the range of maximum and minimum sigma values, σmax and σmin

46

respectively. For the format of the depth maps that are in the current datasets the

number of depth map levels is equal to 256 [0 ... 255] which corresponds to an 8-bit

grayscale depth map image. The sigma value is again calculated in the same manner

as discussed in Section 3.1 using equations 3.2 and 3.3.

Initially, Liu [21] had used a σmin value of zero, however it was discovered that

the difference in blur kernels was not changing until sigma reached a value of approx-

imately 0.24. For this reason a σmin value of 0.32 was chosen to ensure that each blur

kernel would be unique.

After the N blurred versions of the in focus image have been created the next step

is to generate the error terms. The error terms are created using Equation 4.1. Where

XY , XCr and XCb represent each color component of the out of focus image. X̂
(i)
Y ,

X̂
(i)
Cr and X̂

(i)
Cb are the color components for each of the synthetically blurred versions

of the in focus image and c is a constant. The term eri represents the sum of the

squared errors of each color channel for each of the classes. This error term is what is

to be minimized in order to find the best (most accurate) depth map for a given scene.

This minimization occurs in the form of a graph cuts algorithm. As a baseline for

comparison against the deep learning algorithms explored in this research the graph

cuts method used by Liu [21] will be used as the standard to compare against.

eri = c

[(
XY − X̂(i)

Y

)2
+
(
XCr − X̂(i)

Cr

)2
+
(
XCb − X̂(i)

Cb

)2]
i ε {0... N − 1} (4.1)

The first variants of the graph-cuts algorithm were designed for solving binary

problems, for example foreground/background region segmentation in which only

two classes exist. In this context the algorithm is guaranteed to find the global

minimum [32]. When more than two classes exist, such as in the problem of depth

estimation where there are 256 possible classes, the algorithm cannot be guaranteed

to obtain the global minimum. Recent advancements by Boykov, Kolmogorov, et

al. [10,33,34] have led to the theory of multi-label graph cuts algorithms which handle

multiple classes. While the algorithm may no longer be guaranteed to find a global

47

minimum, it does have certain nice properties, like convergence in a finite number of

iterations and that the algorithm is known to approximate the global minimum cost

by a factor of two. This particular variant of the graph cuts algorithm that can handle

more than two classes is known as the α− expansion method and was developed by

Boykov, Kolmogorov, Veksler and Zabih [10,33,34].

The graph cuts algorithm is part of a family of min cut/max flow energy opti-

mization algorithms. The goal in this particular case is to optimize a Gibbs Energy

equation (4.2).

E(L) =
∑
iεV

Ei
data (L(i)) +

∑
iεε

∑
jεε

Ei
smoothness (L(i), L(j)) (4.2)

Where the data term, Ei
data (L(i)), is the term eri defined in Equation 4.1. For

the smoothness term there are many possible choices, however it must meet two

important criteria. Firstly the smoothing term must be a convex function [35] and

second the smoothing term must also be a metric. Steen and Seebach outline a set

of criteria that a function must meet in order to be deemed a metric [36]:

d(x, y) ≥ 0

d(x, y) = 0⇔ x = y

d(x, y) = d(y, x)

d(x, z) ≤ d(x, y) + d(y, z)

(4.3)

Where d(x, y) is a distance between x and y [36]. There are many choices for

the smoothing function that meet the definition of a metric. The goal is to pick a

function that can handle potential abrupt changes in the depth map values. Table

4.1 outlines several potential smoothing functions that avoid over-penalizing sharp

changes in the disparity between neighboring pixel, while generally favoring disparity

maps in regions that have similar labels [32]. Table 4.1 is reproduced from [32] and

illustrates several popular smoothing functions.

48

Table 4.1.
Discontinuity Preserving Smoothness Functions [32]

Name Esmoothness(L(i), L(j))

Truncated Quadratic β ·min (K, (L(i)− L(j))2)

Truncated Absolute β ·min(K, |L(i)− L(j)|)

Potts Model

K, ifL(i) 6= L(j)

0, otherwise

Intensity-Adaptive Potts Model

2K, if |I1(i)− I2(j)| ≤ β and L(i) 6= L(j)

K, if |I1(i)− I2(j)| > β and L(i) 6= L(j)

0, otherwise

Boykov, et al. proposed the use of the truncated absolute smoothness term with

β = 1 and K = 4 [10]. However, because of the potential for a very large disparity

change in the depth map, (e.g. transitioning from a value of 0 to a value of 255 or vice

versa), this function cannot handle such large jumps. Liu proposed a modification

to the recommended smoothness function in which K = 255 which is the maximum

disparity value for the given datasets [21].

The graph cuts algorithm is based on the mathematical principals of graph theory.

For example, let G be a weighted graph defined by Equation 4.4.

G = 〈V , E〉 (4.4)

Where V is a set of vertices or nodes and E is a set of edges in the graph. In

the graph cuts method each graph also contain two special vertices, known as the

source terminal (S) and the sink terminal (T). In the application of the graph cuts

49

optimization to the DfD problem, the vertices are related to the squared error differ-

ences between the pixels of the defocused image and the pixels of the synthetically

blurred images. The terminals are the set of labels, in this case the depth map values,

typically the source represents the α or label that will replace the current label and

the sink is the label that will be kept. Initially each terminal is connected to each

node by an edge.

The α− expansion method can consider any combination of neighboring pixels,

in this instance the method only takes into account the neighboring pixels that are

north, south, east and west of the current pixel, or data point, of interest. This is

also known as 4-adjacency or 4-neighbor. The neighboring pixels are connected to

each other by links called N-links and the terminals are connected to each data term

links called T-links.

Figure 4.2 shows a simplified graph connection. The solid black double arrow

lines represent the N-links, the T-links between the source (S) and each pixel are

represented by the blue dashed lines and the T-links between the sink (T) and each

pixel are represented by the red dashed line. The example shows the α− expansion

for α = 0. The sample input is the cut by the green dashed line resulting in the

expansion of the α label which can be seen in the resulting output.

Fig. 4.2. Graph-Cuts Example Node

50

Each edge E has a non-negative weight associated with it, and this weight is used

to determine the optimal cut in the graph. These edges can be thought of more simply

as a transport mechanism such as a tube carrying water, hence the term max flow.

The algorithm looks at the weights of all of the edges to determine maximum flow, or

in other words the highest total weight value for each path from the source terminal

to the sink terminal. Once the flows are computed along each edge the maximum

flows from each source to each sink represent the minimum cut. A cut (C) is defined

as a subset of the edges in the graph (C ⊂ E) such that the terminals are separated

in the induced graph [10]. Once the minimum cuts have been determined the nodes

that have been separated from the source are given the label of the α depth map value

and the nodes that were not separated keep their existing depth map labels [32].

Fig. 4.3. Graph-Cuts Example Node

One iteration consists of expanding each of the potential depth labels. For example

at the start of the algorithm the α value would be zero. The algorithm would expand

all pixels that have a minimum cut with respect to the current α label. After the

completion of the expansion the next label is assigned to α and the process of finding

the minimum cuts for the new α is performed. This process is then repeated for each

51

of the potential label classes. Figure 4.3 shows the expansion process for various α

values. At each iteration through the labels many pixels are allowed to change their

values simultaneously.

After completion of all of the required cuts the final product is the estimated

depth map. This algorithm is very robust to input image size and the number of

label classes. It also does not need any a− priori information about the scene or the

number of classes. Its major drawback are the computational requirements to iterate

through each pixel and each class label. It must traverse the whole image space and

select from one of the available classes for each of the pixels. This also means that the

algorithm run time is completely dependent on the input image size and the number

of possible classes. Figure 4.4 shows the algorithm run time versus the number of

pixels in an image presented to the algorithm. The results are averaged across 30

runs for each image size, and it can be seen that as the images increase in size the

algorithm run time also increases which is to be expected.

Fig. 4.4. Graph-Cuts Runtime Chart

52

4.2 Synthetically Blurred Dataset Results

The results presented here for the synthetically blurred Middlebury College data-

sets are broken down by illumination and exposure levels. Figure 4.5 shows the

NMAE, NRMSE and the SSIM results for the graph cuts method for each of the left

and right scenes for the images in the Illumination 1 category. The images that are in

the exposure level 0 category produce the worst results for each of the three metrics.

The other two exposure levels (exposure level 1 and exposure level 2) produce very

similar performance results for each of the three metrics. The poor results of the

exposure level 0 images indicate that the lighting conditions can affect the ability of

the graph cuts algorithm to differentiate the various depth levels.

Figure 4.6 shows an example of the Flowerpots images in the illumination 1 cat-

egory. It can be seen that the exposure level 0 image has lost a lot of the object

definition and boundaries. The lower exposure level also prevented capturing a lot

of the textures that can be seen in the other two exposure level images. This lack of

texture makes it very difficult to determine the blur differences between the in-focus

and the out-of-focus image.

53

F
ig

.
4.

5.
G

ra
p
h

C
u
ts

P
er

fo
rm

an
ce

R
es

u
lt

s
fo

r
M

id
d
le

b
u
ry

C
ol

le
ge

D
at

as
et

-
Il

lu
m

in
at

io
n

1

54

(a) Exposure Level 0 (b) Exposure Level 1 (c) Exposure Level 2

Fig. 4.6. Flowerpots Images Under Illumination 1 Conditions

Image processing methods can improve the underexposure problem, the most basic

process being an increase in the image mean by adding a constant value to each pixel.

This has the drawback of also amplifying the noise in the image. A more advanced

method developed by Park, et al. is an optimization-based method to enhance low-

light images using the spatially adaptive Retinex model [37]. Recently there has been

some work towards deep learning to improve the performance of image restoration

techniques. Chen, et al. have developed a deep learning method that can process

extreme low-light images “with severe noise and color distortion that is beyond the

operating conditions of existing enhancement pipelines” [38]. These methods add

additional steps in preprocessing the input images before they can be run through

the graph cuts algorithm.

Figure 4.7 shows the NMAE, NRMSE and the SSIM results of the graph cuts algo-

rithm for the images in the illumination 2 category. As with the previous illumination

1 results the exposure level 0 results are worse than the other two exposure levels.

Figure 4.8 show similar performance results for the NMAE, NRMSE and the SSIM

results of the graph cuts algorithm for the images in the illumination 3 category. The

missing plot points in each chart indicate that there was no data taken for a given

image and illumination/exposure level combination. This is mainly due to the fact

that the data was not usable. In all cases the images with the shortest exposure time

55

have the poorest results. This is again due to the fact that the texture of the objects

in the scene is lost and therefore the difference in blurs is no longer discernible making

it very difficult for the graph cuts algorithm to determine the depth map levels.

Table 4.2 lists the top 5 image pairs and the bottom 5 image pairs where the graph

cuts algorithm performed the best and worst respectively. The primary metric used

for ranking the results is based on the NRMSE metric with the NMAE metric used

as a tie breaker. It should be noted that there is a large disparity in the performance

results between the top and bottom results for each of the three metrics. The image

pair where the algorithm performed the best was approximate 6.1 times better by

the NRMSE metric, approximately 5.5 times better by the NMAE metric and had an

SSIM improvement of 0.2725 over the image pair where the algorithm performed the

worst. For this reason an average NRMSE is not reported across the entire dataset,

but instead is reported for each exposure level. The same is also true for the NMAE

and the SSIM metrics.

Table 4.3 outlines the mean and standard deviation for each illumination and

exposure level combination for each of the evaluation metrics. The table also shows

the overall combined mean and standard deviation for each exposure level in the

dataset. The table shows that the exposure level 0 images for each illumination level

have the largest mean and standard deviation for the NRMSE and NMAE metrics.

Similarly the mean SSIM metric for the exposure level 0 images is lower as compared

to the other exposure levels. This again points to a weakness in the graph cuts

algorithm’s ability to process images in low lighting conditions.

56

F
ig

.
4.

7.
G

ra
p
h

C
u
ts

P
er

fo
rm

an
ce

R
es

u
lt

s
fo

r
M

id
d
le

b
u
ry

C
ol

le
ge

D
at

as
et

-
Il

lu
m

in
at

io
n

2

57

F
ig

.
4.

8.
G

ra
p
h

C
u
ts

P
er

fo
rm

an
ce

R
es

u
lt

s
fo

r
M

id
d
le

b
u
ry

C
ol

le
ge

D
at

as
et

-
Il

lu
m

in
at

io
n

3

58

Table 4.2.
Top 5 and Bottom 5 Graph Cuts Performance Results for the Mid-
dlebury College Stereo Vision Dataset

Name View Illumination Exposure NRMSE NMAE SSIM

Top 5

Cloth2 Left 3 2 0.05564 0.04564 0.96617

Cloth2 Left 1 2 0.05580 0.04583 0.96685

Cloth2 Left 2 2 0.05600 0.04605 0.96606

Cloth2 Right 3 2 0.05635 0.04449 0.96364

Cloth2 Right 1 2 0.05665 0.04442 0.96179

Bottom 5

Flowerpots Right 1 0 0.28269 0.22632 0.76750

Flowerpots Left 1 0 0.28892 0.21530 0.75375

Midd2 Right 1 0 0.29444 0.23722 0.69981

Monopoly Left 1 0 0.30607 0.23134 0.71187

Monopoly Right 1 0 0.34040 0.25169 0.69369

Figure 4.9 shows the resulting depth maps. The best results are shown on the

left side of the figure and the worst results are shown on the right side of the figure.

While the results on the left are very impressive, the results on the right are not

so impressive. The algorithm effectively loses objects in the darker regions of the

images. The wooden box in front of the Monopoly R© board is completely missing, the

lampshade and teddy bear are completely missing and the flower pots on the right

hand side of the image are missing as well. A further look into some of the other

results shows a similar effect, in that objects are lost or the algorithm smears the

depth map values across objects that are not at the same depth.

59

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
4.

9.
T

op
5

an
d

B
ot

to
m

5
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
M

id
d
le

b
u
ry

C
ol

le
ge

S
te

re
o

V
is

io
n

D
at

as
et

.
(a

)
&

(e
)

In
fo

cu
s

Im
ag

e,
(b

)
&

(f
)

D
ef

o
cu

se
d

Im
ag

e,
(c

)
&

(g
)

G
ro

u
n
d

T
ru

th
D

ep
th

M
ap

,
(d

)
&

(h
)

G
ra

p
h
-C

u
ts

C
om

p
u
te

d
D

ep
th

M
ap

.

60

Table 4.3.
Graph Cuts Performance Mean & Standard Deviation

NRMSE NMAE SSIM

Lighting Mean Std Mean Std Mean Std

Exp 0 Illum 1 0.1733 0.0679 0.1321 0.0533 0.8627 0.0701

Illum 2 0.1496 0.0505 0.1141 0.0372 0.8783 0.0584

Illum 3 0.1486 0.0556 0.1132 0.0415 0.8877 0.0503

Overall 0.1574 0.0593 0.1200 0.0452 0.8759 0.0609

Exp 1 Illum 1 0.1186 0.0439 0.0938 0.0320 0.9092 0.0574

Illum 2 0.1124 0.0419 0.0910 0.0325 0.9146 0.0551

Illum 3 0.1046 0.0302 0.0852 0.0217 0.9259 0.0391

Overall 0.1121 0.0396 0.0902 0.0294 0.9163 0.0517

Exp 2 Illum 1 0.1051 0.0379 0.0881 0.0303 0.9231 0.0524

Illum 2 0.0979 0.0309 0.0823 0.0249 0.9329 0.0401

Illum 3 0.0975 0.0247 0.0823 0.0221 0.9338 0.0382

Overall 0.1004 0.0320 0.0844 0.0262 0.9296 0.0444

Table 4.4 shows the average run times for the graph cuts algorithm. Based on

the average run times the algorithm is extremely dependent on the exposure level.

In fact, the graph cuts algorithm takes longer to process the image pairs with lower

illumination and exposure levels versus the image pairs with higher illumination and

exposure levels.

61

Table 4.4.
Average Graph Cuts Run Time for the Middlebury College Stereo Vision Dataset

Run Time (s)

Lighting Exposure 0 Exposure 1 Exposure 2

Illumination 1 301.756 190.978 162.000

Illumination 2 268.622 180.911 166.371

Illumination 3 254.951 190.873 170.427

4.3 Summary

In this chapter the overall DfD algorithm which employed the graph cuts energy

minimization algorithm was discussed. The results for the synthetically blurred data-

sets were presented. The algorithm produces a wide range of results based on the

input image pair illumination and exposure levels, primarily performing better when

the lighting conditions are optimal. The data also shows that the graph cuts algo-

rithm run time is very dependent on the illumination and exposure levels, as the

exposure level increased the run time decreased. In the next chapter the proposed

DFD-Net, a deep learning approach to solving the DfD problem will be presented.

62

5. DEPTH FROM DEFOCUS USING A DEEP

LEARNING ALGORITHM

With the recent advancements in machine learning techniques that take advantage

of fully connected neural networks and convolutional neural networks (CNN) there

are several potential algorithms and concepts to explore. These new methods can

be thought of more as architectures instead of algorithms due to their building block

nature. This chapter will explore the application of these deep learning architectures

to the solution of the DfD depth estimation task. In order to narrow down the

search from such a wide scope, the candidate architecture was taken from a semantic

segmentation solution.

5.1 Algorithm Overview

The output of a semantic segmentation task is very similar to the output of a

depth map task and for this reason the deep learning architectures that perform this

segmentation task are considered as the starting point for the application of deep

learning to the DfD task. Because the candidate architecture is based on semantic

segmentation a little background on semantic segmentation is warranted. Semantic

segmentation is the process of segmenting an image based on the objects in a given

scene versus the more traditional segmentation process where similarly valued pixels

that are within a given threshold are lumped together regardless of the object to

which the pixels belong.

Figure 5.1 shows an example of the difference between the traditional segmenta-

tion and semantic segmentation. Figure 5.1a and 5.1c are provided by the Visual

Object Classes Challenge 2012 (VOC2012) [39]. It can be seen that the traditional

segmentation method, Figure 5.1b, simply groups like valued pixels, and in this case

63

the pixels are assigned an average value from a given segmentation patch. The se-

mantic segmentation method groups pixels together for the same object (motorcycle,

rider and background).

(a) Original Image (b) Traditional Segmentation (c) Semantic Segmentation

Fig. 5.1. Example Segmentation (Traditional vs. Semantic) [39]

The basis for this work is rooted in the semantic segmentation architecture known

as the U-Net developed by Ronneberger, et al. [17]. The U-Net was originally designed

to perform a binary classification at the pixel level of images of cellular structures

into either cells, “1”, or background, “0”. The success of the U-Net has led to its

use across many other tasks. Figure 5.2 shows the graphical representation of the

U-Net. The U-Net can be thought of as an encoder/decoder style network where

on the left-hand side of the network the input image is encoded into distinct feature

maps and on the right-hand side of the network the feature maps are then decoded

into a semantic segmentation map.

The U-Net, itself, was based on a fully convolutional network designed for semantic

segmentation [40]. This network took in a full size image and gradually contracted

the image to a very small feature map (height and width), but with a large number

of these feature maps (4096). The network then performs a single large expansion at

the end to produce a segmentation map similar in size to the original input.

The U-Net removes this single large expansion in favor of several smaller, gradual

expansions. The design of the U-Net is such that it is symmetric with respect to the

contraction and expansion that occurs to the input image. The U-Net also adds skip

connections that concatenate the output of a particular layer prior to a contraction

64

Fig. 5.2. U-Net Semantic Segmentation Deep Learning Architecture [17]

to the output of an expansion layer. This concatenation of tensors allows the U-Net

to perform improved localization of features within the image. This is because the

expansion, by nature, produces a coarse representation of the decoded feature map

and the concatenation of the encoded feature map prior to a contraction allows fine

grain details to be reintroduced into the decoding chain, which is what allows the

network to produce fine grain feature localization [17]. The arrangement of the U-

Net in Figure 5.2 is designed to show where each contraction and expansion occur,

with each level indicating when the size of the tensor image has been changed.

The U-Net is essentially a mapping function that maps a grayscale input image of

cells to a binary map of the location of the cells. This mapping is shown in Equation

5.1, where G is a function that maps the input image (X) to the label space (L). It

is assumed that this mapping is a surjective mapping, as denoted by the “→→”. This

simply means that each label will be mapped to by a given input.

G : X →→ L (5.1)

65

Where XεRR482 , xi ε [0, ..., 255] and L ε [0, 1]. The dimensionality of X is deter-

mined by the size of the input. When considering the input space for the U-Net the

sizes of the receptive fields at each level contribute to the minimum allowed input size.

The receptive field is essentially the area of the image that is used to make a decision.

Since the largest convolutional filter size for the U-Net is 3x3 the receptive field is

3x3, however this is not the input receptive field, but the smallest receptive field at

the lowest level of the U-Net architecture. Because the U-Net gradually contracts the

input, the minimum input size that results in a 3x3 receptive field at the lowest level

is 48x48 pixels.

The U-Net is constructed of pairs of convolutional layers and Rectified Linear Unit

(ReLU) layers. Figure 5.3 shows the arrangement of these layers to create the U-Net

convolutional block. The numbers N1 and N2 are the number of convolutional filters

in each convolutional layer and the 3x3 represents the size of each of the filters.

Fig. 5.3. Example U-Net Convolution Block

Equation 5.2 represents the overall equation that governs the behavior of this

block, where x is the input to the block and y is the output.

y = F(x) (5.2)

The function F is defined in Equation 5.3, where Wi is the set of convolutional

filters in layer i, bi is the bias term within the convolutional layer and θr is the ReLU

activation layer.

66

F = θr(W2 · θr(W1x+ b1) + b2) (5.3)

The ReLU is a non-linear activation layer which is used to constrain the output of

the previous layer. The ReLU layer was developed by Hahnloser and Seung [41] and is

designed to only pass the positive outputs from the previous layer. The mathematical

behavior describing the ReLU is shown in Equation 5.4.

θr(x) =

x, x > 0

0, otherwise
(5.4)

The Depth from Defocus Network (DfD-Net) is based on this U-Net structure

where blocks of convolutional filters and activation layers transform the input data

and then pass the transformation on to downsampling or upsampling layers as well

as bypassing lower levels. The major modification that was made to the U-Net to

create the DfD-Net was replacing the basic convolutional/ReLU layer pairs, shown in

Figure 5.3, with a “residual” block. This block was originally developed by He, et al.

as a means to reduce model complexity and improve overall performance [42]. The

original residual block is defined by Equation 5.5, where x is the input to the block,

Wi are the weights of the convolutional filters to be learned and y is the output of

the residual block.

y = F(x, {Wi}) + x (5.5)

The residual block can be broken down into two separate paths. The first is the

residual mapping path described by the function F in Equation 5.6 and is the learned

portion of the path [42]. The second path is the “identity” path in which the input

is simply added to the output of the residual path.

F = W2 · θr(W1x+ b1) + b2 (5.6)

67

Both the U-Net and the original residual block use the ReLU activation function,

but the ReLU has a drawback. It can enter a state where the neuron effectively dies,

preventing information from being passed forward to the next layer. The gradient is

also diminished, which means that the gradients are prevented from flowing backwards

through the network during the back propagation steps in the training [43]. To combat

this problem He, et al. developed the the parametric ReLU (pReLU) [44], which adds

an additional learned parameter (α) that allows input values less than zero to pass

through the function. By allowing these negative input values to pass, the pReLU

avoids the vanishing gradients problem [44]. The governing equation for the pReLU

has the following form:

θp(x) =

x, x > 0

αx, otherwise
(5.7)

Within the DfD-Net residual block the ReLU has been replaced by the pReLU

activation function. Another change that was made to the original residual block

was the introduction of the batch normalization process. This process, developed by

Ioffe and Szegedy, performs a transformation that normalizes the features within a

network, “by making it have the mean of zero and the variance of one” [45].

The batch normalization process has the advantage of ensuring that the distribu-

tion of the training data remains consistent across the entire training process, which

allows the network to train faster [45]. This normalization occurs independently

across each dimension, i.e. individual convolutional filter outputs, within a training

mini-batch B = {x(k)1 , x
(k)
2 , ..., x

(k)
m }, where k represents the dimensional output of the

previous layer, or the number of feature maps, x
(k)
i is a particular input within the

mini-batch and m represents the size of the mini-batch. Equations 5.8 - 5.10 outline

the normalization process across the entire mini-batch [45]. In Equation 5.10 the con-

stant, ε, is added in order to maintain numerical stability in the event the variance,

σ2
B, goes to zero.

68

µ
(k)
B =

1

m

m∑
i=1

x
(k)
i (5.8)

σ2
B =

1

m

m∑
i=1

(
x
(k)
i − µ

(k)
B

)2
(5.9)

x̂
(k)
i =

x
(k)
i − µ

(k)
B√

σ2
B + ε

(5.10)

Once the normalized input has been calculated an additional scale and shift op-

eration is performed on the normalized input. This step ensures that the batch

normalization transform can represent the “identity” transform [45]. Equation 5.11

shows the final step in the batch normalization process, where γ(k) is the scaling fac-

tor and β(k) is the shifting factor. These parameters are learned during the training

process.

BNγ(k),β(k)(x
(k)
i) = γ(k)x̂

(k)
i + β(k) (5.11)

Figure 5.4 shows the modified residual block used in the DfD-Net. The numbers

N1 and N2 are the number of convolutional filters in each convolutional layer and the

3x3 represents the size of each of the filters. The number N0 represents the number

of inputs into the residual block from the previous layer(s). It is important to note

that in order to avoid a tensor addition imbalance N2 must equal N0.

Based on the modifications made to the original residual block the residual func-

tion, F , is now defined in Equation 5.12. The bias term, b1, associated with the

weights, W1, is now subsumed in the β term within the batch normalization function.

F = W2 · θr(BN(W1x)) + b2 (5.12)

The residual function, by way of the convolutional filters, performs a localized

transformation of the input. This is because the convolutional filters are at most

3x3. Therefore, only the values directly neighboring the anchoring input influence

69

Fig. 5.4. Example DfD-Net Residual Block

the output of the convolutional filters. However, the identity path adds the global

features of the input back to the locally transformed input. It is the merger of local

and global features that give the residual block its improved performance, especially

in a deep learning task that requires accurate spatial localization of features, like

generating depth maps.

The second major difference between the DfD-Net and the U-Net is the use of a

convolutional block to perform the downsampling. The original U-Net used the tra-

ditional max pooling strategy to perform the downsampling, in this case a 2x2 block

with a stride of 2 in the horizontal and a stride of 2 in the vertical directions [17]. The

max pooling operator works by taking the max pooling window and overlaying it on

top of the output of the convolutional filter and extracting the maximum value within

that block. The window is then moved exactly like a 2-D convolutional operator. This

effectively becomes a feature downsampling operation. In contrast, the DfD-Net uses

a 2x2 convolutional layer with a stride of 2x2 to perform the downsampling action.

Compared to the max pooling downsampling layer, these convolutional downsamplers

have the added benefit of learnable parameters in the form of the convolutional filter

weights that perform the downsampling operations. This increases the model flexibil-

ity by including the number of filters used to perform the downsampling as a tunable

70

hyper-parameter. The upsampling method used in the U-Net architecture “consists

of an upsampling of the feature map followed by a 2x2 up-convolution that halves the

number of feature channels” [17]. However, in the DfD-Net, the upsampling is again

solely performed by the use of a fractional 2x2 convolutional layer with a stride of

2x2. This has the same pros and cons of the convolutional downsampler.

The third difference between the two architectures is the number of levels. The

original U-Net used 5 levels (4 of which perform image tensor downsampling by a

factor of 2 in each dimension). The DfD-Net only uses 3 levels (2 of which perform

image tensor downsampling by a factor of 2 in each dimension) to perform the depth

map generation. Figure 5.5 shows the graphical representation of the DfD-Net ar-

chitecture. The offset structure of the network diagram is designed to show that for

each level the image tensors are the same dimensions due to the downsampling and

upsampling operations. The numbers inside the convolutional blocks represent the

number of filters for each layer. The smaller numbers under the blocks indicate the

layer number as built in the Dlib framework [46].

Fig. 5.5. Graphical Representation of the DfD-Net Network Architecture

The final difference between the U-Net and the DfD-Net is the number of input

channels. The input for the U-Net, is a single grayscale image. However, the DfD

71

algorithm requires, at a minimum, two images as the input to the algorithm. There-

fore, the DfD-Net also requires a minimum of two images, which is the equivalent to

an input image with six channels. These two input images provide the contextual

blur information for each of the three color channels, red (R), green (G) and blue (B)

at the pixel level. The DfD-Net operates on the differences in the blur levels between

the same color channels to develop the final depth map output.

Compared to the graph cuts method, where the RGB input images were converted

to the YCrCb color space, YCrCb images were not used in the DfD-Net. This is

because the YCrCb pixel is simply a linear combination of the RGB pixel and it

is expected that the convolutional layers within the DfD-Net will learn a mapping

that would convert either an RGB image or a YCrCB image to the same space.

To illustrate this point, take the set of functions H(x) that convert an RGB pixel,

(PRGB), to a YCrCb pixel, (PY CrCb) in Equation 5.13.

H(PRGB) = PY CrCb (5.13)

Applying a second function, G(x), to both sides of Equation 5.13 results in Equa-

tion 5.14, where F(x) = G(H(x)).

F(PRGB) = G(PY CrCb) (5.14)

This shows that the output of a function operating on a YCrCb pixel can be

equal to the output of a set of functions operating on an RGB pixel. For this reason

the YCrCb color space was not considered as an input to the DfD-Net.

Much like the U-Net, the DfD-Net can be thought of as a mapping function that

maps the in-focus and out-of-focus image pairs, X to the label space L. The same

high level mapping function that describes the U-Net mapping (Equation 5.1) can

be used to describe the DfD-Net mapping. The only difference is the dimension of

the input space, XεRR6·122 , xi ε [0, ..., 255]. The input size is again determined by the

receptive field size of the DfD-Net and the number of downsampling stages within

72

the network architecture. Because the DfD-Net gradually contracts the input, the

minimum input size that results in a 3x3 receptive field at the lowest level, is 12x12

pixels and the multiplication by six represents the 6 channel input.

The output label space has also been expanded, whereas, the output of the U-Net

was a single channel image representing N = 2 classes, the output of the DfD-Net

is a single channel image containing N = 256 classes, therefore L ε [0, ..., 255]. It is

the combination of these changes that allow the DfD-Net to produce accurate depth

maps for a given pair of input images.

5.2 DfD-Net Training

The DfD-Net architecture was built using the Dlib - Machine Learning Toolkit [46].

The training of the network is performed much like the training for traditional deep

learning architectures. The input into the network consists of the 3-channel RGB

in-focus image and the 3-channel RGB out-of-focus image. The architecture works

directly with the RGB color images, which is different from the prior graph cuts

method which performed the best using the YCrCb color space. The ground truth

for the training is the single channel grayscale depth map with values that range from

0 to 255.

5.2.1 Training Data Augmentation

In order to increase the amount of available training data to the training algorithm

and to increase the generality of the network, a data expansion technique is required.

Originally the technique used was a cropping mechanism that randomly picks images

patches from the 6-channel input and then mirrors the image in the left-right direction

(L-R flip) with a probability of 50% and then flips the resulting image in the up-down

direction (U-D flip) with a probability of 50%. However, after further research it

was found that this scheme was limited. For this reason a new enhanced cropping

mechanism was developed. The new cropping method begins by randomly selecting

73

an image from the training set and then randomly selecting a 32x32 pixel image patch

from that image. Once the image patch is selected the patch is rotated by 0, 90, 180

and 270 degrees. Then each rotation is mirrored in a left-right (L-R) flip. Figure 5.6

shows an example of this data expansion where one input image crop is expanded to

eight training examples.

(a) Original Crop (b) Rotate 90o (c) Rotate 180o (d) Rotate 270o

(e) Flip L-R (f) 90o Flip L-R (g) 180o Flip L-R (h) 270o Flip L-R

Fig. 5.6. Enhanced Image Crop Data Expansion Example

A comparison of the two different data expansion methods is presented in Figure

5.7. For each cropping method the training step batch size was set so that each method

provided the same number of examples per step. Aside from the data expansion

method the training parameters for each expansion method are identical. The basic

expansion method took over 48 hours to train, while the enhanced expansion method

took just over 21 hours to train. The NRMSE, NMAE and SSIM test results for

the basic expansion method was 0.0500, 0.1057 and 0.6590 respectively. For this

training run, the enhanced expansion method produced a better resulting NRMSE,

NMAE and SSIM of 0.0197, 0.0687 and 0.9007, respectively. What is interesting to

note is that for the basic cropping method the model is over fitting, as seen by the

divergence of the test and training results for each of the three metrics as training

74

progressed over time. Seen in Figure 5.7 with the solid lines. The enhanced method

substantially eliminates overfitting, as seen in the dotted lines, and also converges in

half the number of training steps.

Figure 5.8a shows the distribution of the random image selection process during

an entire training event. Each image was selected on average 8753.74 times. The

distribution is very uniform which is exactly what it should be to ensure that each

scene is used equally during the training. Figure 5.8b and 5.8c shows the distribution

of the pixels that were selected for the 127th image (least selected image) and the

42nd image (most selected image) in the training set. The heatmap images show the

individual pixel usage in a given image. The more a particular pixel was used in the

training the redder that pixel is, and the less the pixel was used the bluer the pixel.

In general this enhanced cropping method allows the algorithm to see more than is

typically available during the training. Figure 5.9 shows the comparison between the

distribution of the Middlebury ground truth data (blue) and the total number of times

a particular depth map values was used during training (red). The average number

of times the DfD-Net was trained with a given depth map value was approximately

422 times more than the number of times that depth map value is in the dataset.

5.2.2 Training Function

The output of the last layer of the network is a softmax layer which performs

the classification. The error function used in the training is the cross-entropy loss

function. The training is performed using the Adam optimization method developed

by Kingma and Ba [47]. The Adam optimizer is a stochastic optimization method that

has been proven to converge in less time and require less memory resources than the

traditional stochastic gradient descent (SGD) method [47]. The optimizer has three

hyper-parameters that can be defined at training time: 1) α, the weight decay step

size, 2) β1, an exponential decay rate factor and 3) β2, a second exponential decay

rate factor. The authors in [47] explain that “The algorithm updates exponential

75

F
ig

.
5.

7.
B

as
ic

v
s.

E
n
h
an

ce
d

T
ra

in
in

g
M

et
h
o
d

C
om

p
ar

is
on

76

(a) Random Image Selection Distribution

(b) Image 127 Pixel Selection Distribution (c) Image 042 Pixel Selection Distribution

Fig. 5.8. Enhanced Cropper Distributions

moving averages of the gradient (mt) and the squared gradient (vt) where the hyper-

parameters β1, β1 ε [0, 1) control the exponential decay rates of these moving averages.

The moving averages themselves are estimates of the 1st moment (the mean) and the

2nd raw moment (the un-centered variance) of the gradient”. These parameters were

set to the following: α = 0.0005, β1 = 0.5 and β2 = 0.99 for the DfD-Net

The initial learning rate was set to 0.0001 and the learning rate schedule is gov-

erned by Dlib’s internal learning rate solver. The Dlib approach is better than the

77

Fig. 5.9. Ground Truth vs. Training Depth Map Value Distribution Comparison

traditional approach because the learning rate does not need user intervention to

check when the loss stops improving to move to a lower learning rate. Other methods

just blindly pick an arbitrary number of iterations to train and then stop. The Dlib

solver works by assuming that the loss per training iteration can be modeled as a

time series dataset corrupted by Gaussian noise with a mean of 0 and a variance

of σ2 [48]. The ordinary least squares (OLS) function is used to estimate the slope

of the loss values. Learning progress is made when the slope of the loss function is

less than zero. The Dlib learning rate scheduler uses this approach with two user

definable settings. The first is the number of training iterations where no learning

progress is made, i.e. the slope of the loss is greater than zero, and the second is

the learning rate reduction factor which is used to reduce the learning rate when the

number of training iterations without progress is met. For the training performed

in this research the number of training iterations without progress was set to 2500

and the learning rate reduction factor was set to 0.1. Which means that when there

were 2500 consecutive training iterations where the loss did not decrease the current

learning rate was multiplied by the reduction factor of 0.1. The training was stopped

78

when the learning rate reached a value of 1e-10. The average training time can range

anywhere from 19 hours up to 160 hours depending on the architecture parameters

and the image crop size.

5.3 Synthetic Blur Dataset Results

Just as important as the architecture is the data that is used to train the network.

The dataset split between training and testing for the Middlebury College dataset [7,8]

was done in a very deliberate manner. The guiding principle behind the placement

into training or testing was based on the distribution of the depth maps. After

analyzing the distribution of the depth map values, the images that were selected

for the test set were such that their depth map value distribution was contained

within the distribution of the training images. Figure 5.10 shows the depth map

value distribution of the training images (blue) and the test images (red).

Fig. 5.10. Depth Map Value Distribution for Middlebury College
Training and Testing Datasets

Table 5.1 lists the Middlebury College Stereo Vision [7,8] images that are used as

the training examples for the DfD-Net and the testing examples. In total there were

79

404 image pairs in the training set and there were 54 image pairs in the test set. This

represents an 88.2%/11.8% split for the training and testing data.

Table 5.1.
Middlebury Training and Testing Dataset Images

Training Dataset Images

• Aloe • Cloth 1 • Lampshade 1 • Monopoly

• Baby 1 • Cloth 2 • Lampshade 2 • Plastic

• Baby 2 • Cloth 2 • Laundry • Rocks 1

• Baby 3 • Cloth 4 • Midd 1 • Rocks 2

• Bowling 1 • Dolls • Midd 2 • Wood 1

• Bowling 2 • Flowerpots • Moebius • Wood 2

Testing Dataset Images

• Art • Books • Reindeer

Once the training has completed, the test dataset is run through the network

architecture to determine its overall performance and the results are presented here.

Figures 5.11, 5.12 and 5.13 shows the NMAE, NRMSE and the SSIM performance re-

sults for the images in the illumination 1, illumination 2 and illumination 3 categories

respectively. From the graphs it can be seen that the DfD-Net performance across

each image is very consistent for each of the evaluation metrics. This indicates that

the DfD-Net’s performance is not dependent on the illumination or exposure levels

as compared to what was seen in the prior graph cuts algorithm results.

Table 5.2 lists the top 5 image pairs where the DfD-Net method performed the best

and the bottom 5 image pairs where the DfD-Net method performed the worst. Once

again the primary metric used for ranking the results is based on the NRMSE metric

and the NMAE metric is used as a tie breaker. Unlike the performance deviation of

the graph cuts method the DfD-Net performance deviation is much tighter.

80

F
ig

.
5.

11
.

D
fD

-N
et

P
er

fo
rm

an
ce

R
es

u
lt

s
fo

r
M

id
d
le

b
u
ry

C
ol

le
ge

D
at

as
et

-
Il

lu
m

in
at

io
n

1

81

F
ig

.
5.

12
.

D
fD

-N
et

P
er

fo
rm

an
ce

R
es

u
lt

s
fo

r
M

id
d
le

b
u
ry

C
ol

le
ge

D
at

as
et

-
Il

lu
m

in
at

io
n

2

82

F
ig

.
5.

13
.

D
fD

-N
et

P
er

fo
rm

an
ce

R
es

u
lt

s
fo

r
M

id
d
le

b
u
ry

C
ol

le
ge

D
at

as
et

-
Il

lu
m

in
at

io
n

3

83

Table 5.2.
Top 5 and Bottom 5 DfD-Net Performance Results for the Middlebury
College Stereo Vision Dataset

Name View Illumination Exposure NRMSE NMAE SSIM

Top 5

Books Left 1 0 0.0406 0.0118 0.9447

Books Left 3 0 0.0409 0.0111 0.9458

Books Left 2 1 0.0410 0.0109 0.9452

Books Left 3 1 0.0420 0.0107 0.9475

Books Left 2 0 0.0430 0.0122 0.9391

Bottom 5

Art Right 1 1 0.0701 0.0174 0.8915

Reindeer Left 3 2 0.0712 0.0240 0.9157

Reindeer Right 1 0 0.0738 0.0293 0.8845

Reindeer Right 3 0 0.0758 0.0324 0.8736

Reindeer Left 3 0 0.0763 0.0349 0.8608

Table 5.3 outlines the mean and standard deviation for each illumination and

exposure level combination for each of the evaluation metrics. The table also shows

the overall combined mean and standard deviation for each exposure level in the

dataset. The small standard deviations for each metric indicate that the results are

holding very close to the means of each metric. The consistency in the illumination

level mean values between exposure levels indicates that the DfD-Net does not have

performance problems with low lighting conditions.

Figure 5.14 shows the top 5 and bottom 5 performance results for the DfD-Net.

The four images on the upper left represent the highest performing results with an

NRMSE, NMAE and SSIM of 0.0406, 0.0118 and 0.9447, respectively. While the four

images on the lower right indicate the worst performance results with an NRMSE,

NMAE and SSIM of 0.0763, 0.0349 and 0.8608 respectively. With an average score of

84

0.0552, 0.0163 and 0.9180 for the NRMSE, NMAE and SSIM, respectively. It can be

seen that the resulting depth maps are very blotchy for the worst depth map results.

Table 5.3.
DfD-Net Performance Mean & Standard Deviation for the Middlebury
College Stereo Vision Dataset

NRMSE NMAE SSIM

Lighting Mean Std Mean Std Mean Std

Exp 0 Illum 1 0.0582 0.0126 0.0192 0.0075 0.9095 0.0276

Illum 2 0.0522 0.0068 0.0166 0.0042 0.9160 0.0191

Illum 3 0.0603 0.0152 0.0205 0.0105 0.9040 0.0356

Overall 0.0569 0.0119 0.0188 0.0076 0.9098 0.0270

Exp 1 Illum 1 0.0529 0.0103 0.0140 0.0022 0.9274 0.0238

Illum 2 0.0520 0.0105 0.0136 0.0024 0.9280 0.0243

Illum 3 0.0534 0.0101 0.0149 0.0030 0.9227 0.0231

Overall 0.0528 0.0097 0.0142 0.0024 0.9260 0.0224

Exp 2 Illum 1 0.0546 0.0078 0.0148 0.0014 0.9204 0.0205

Illum 2 0.0541 0.0078 0.0152 0.0027 0.9215 0.0224

Illum 3 0.0588 0.0091 0.0176 0.0042 0.9128 0.0222

Overall 0.0558 0.0081 0.0159 0.0031 0.9182 0.0208

85

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
5.

14
.

T
op

5
an

d
B

ot
to

m
5

P
er

fo
rm

an
ce

R
es

u
lt

s
fo

r
th

e
M

id
d
le

b
u
ry

C
ol

le
ge

S
te

re
o

V
is

io
n

D
at

as
et

.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

,
(d

)
&

(h
)

D
fD

-N
et

C
om

p
u
te

d
D

ep
th

M
ap

.

86

Table 5.4 shows the average run times for each combination of illumination and

exposure level. The timing analysis was done on both a single CPU and an NVIDIA R©

GTX-1080 GPU. The hardware used for both the CPU on and GPU test was the

Desktop 2 configuration outlined in Table B.1. The DfD-Net run time does not

depend on the illumination levels or exposure levels, which is in contrast to the graph

cuts algorithm, Table 4.4, which was extremely dependent on the illumination and

exposure levels.

Table 5.4.
Average DfD-Net Run Time for the Middlebury College Dataset

CPU Run Time (s) GPU Run Time (s)

Lighting Exp 0 Exp 1 Exp 2 Exp 0 Exp 1 Exp 2

Illumination 1 9.961 10.155 10.061 0.396 0.396 0.396

Illumination 2 10.000 10.050 10.079 0.396 0.395 0.396

Illumination 3 9.981 9.996 9.981 0.397 0.396 0.396

Since the DfD-Net is based on the U-Net architecture, a training run was per-

formed using the U-Net along with all of the same training parameters used in the

DfD-Net training. Table 5.5 shows the comparison of the mean performance numbers

between the graph cuts method, the U-Net architecture and the DfD-Net architecture

for each of the metrics and each exposure/illumination level. The DfD-Net has such

a limited test set, so the comparison is only made between the image sets listed in

the Test Image section of Table 5.1. For each exposure and illumination level the

DfD-Net outperforms the graph cuts method in both the NRMSE and NMAE met-

rics. The graph cuts method, however, does produce better SSIM results for exposure

level 1 and 2 and exposure level 0 - illumination level 3. However, referring back to

Table 3.5 and Figure 3.14 the example depth map with noise produced worse SSIM

results as compared to the solid image. The DfD-Net produces depth maps that have

more noise, which can drive the SSIM metric lower versus the graph cuts method

87

that produces depth maps that can be more singular in value. Figures 5.15, 5.16 and

5.17 show the performance comparisons between the DfD-Net architecture and the

graph cuts algorithm for each of the three illumination levels. The original U-Net also

performed better than the graph cuts method when comparing the NMAE metric,

but did not out perform the graph cuts or DfD-Net in the NRMSE or SSIM metrics.

88

T
ab

le
5.

5.
G

ra
p
h

C
u
ts

,
U

-N
et

&
D

fD
-N

et
A

ve
ra

ge
P

er
fo

rm
an

ce
C

om
p
ar

is
on

G
ra

p
h

C
u
ts

U
-N

e
t

D
fD

-N
e
t

L
ig

h
ti

n
g

N
R

M
S

E
N

M
A

E
S
S
IM

N
R

M
S
E

N
M

A
E

S
S
IM

N
R

M
S
E

N
M

A
E

S
S
IM

E
x
p

0
Il

lu
m

1
0.

09
98

0.
08

00
0.

90
66

0.
12

24
0.

06
15

0.
76

16
0
.0

5
8
2

0
.0

1
9
2

0
.9

0
9
5

Il
lu

m
2

0.
09

52
0.

07
56

0.
91

27
0.

11
91

0.
05

87
0.

77
25

0
.0

5
2
2

0
.0

1
6
6

0
.9

1
6
0

Il
lu

m
3

0.
10

80
0.

08
60

0
.9

2
2
2

0.
11

25
0.

05
60

0.
76

76
0
.0

6
0
3

0
.0

2
0
5

0.
90

40

O
ve

ra
ll

0.
10

10
0.

08
06

0
.9

1
3
8

0.
11

80
0.

05
88

0.
76

73
0
.0

5
6
9

0
.0

1
8
8

0.
90

98

E
x
p

1
Il

lu
m

1
0.

07
65

0.
06

52
0
.9

5
4
3

0.
10

98
0.

05
43

0.
77

32
0
.0

5
2
9

0
.0

1
4
0

0.
92

74

Il
lu

m
2

0.
07

52
0.

06
40

0
.9

5
6
8

0.
10

72
0.

05
17

0.
77

49
0
.0

5
2
0

0
.0

1
3
6

0.
92

80

Il
lu

m
3

0.
07

87
0.

06
73

0
.9

5
7
4

0.
11

07
0.

05
32

0.
77

60
0
.0

5
3
4

0
.0

1
4
9

0.
92

27

O
ve

ra
ll

0.
07

68
0.

06
55

0
.9

5
6
2

0.
10

92
0.

05
31

0.
77

47
0
.0

5
2
8

0
.0

1
4
2

0.
92

60

E
x
p

2
Il

lu
m

1
0.

07
27

0.
06

30
0
.9

6
1
0

0.
09

20
0.

04
96

0.
78

52
0
.0

5
4
6

0
.0

1
4
8

0.
92

04

Il
lu

m
2

0.
07

47
0.

06
44

0
.9

6
0
3

0.
09

56
0.

04
86

0.
78

61
0
.0

5
4
1

0
.0

1
5
2

0.
92

15

Il
lu

m
3

0.
07

47
0.

06
37

0
.9

5
7
6

0.
09

72
0.

05
11

0.
78

17
0
.0

5
8
8

0
.0

1
7
6

0.
91

28

O
ve

ra
ll

0.
07

41
0.

06
37

0
.9

5
9
7

0.
09

49
0.

04
98

0.
78

43
0
.0

5
5
8

0
.0

1
5
9

0.
91

82

89

F
ig

.
5.

15
.

Il
lu

m
in

at
io

n
L

ev
el

1:
D

fD
-N

et
&

G
ra

p
h

C
u
ts

P
er

fo
rm

an
ce

C
om

p
ar

is
on

90

F
ig

.
5.

16
.

Il
lu

m
in

at
io

n
L

ev
el

2:
D

fD
-N

et
&

G
ra

p
h

C
u
t

P
er

fo
rm

an
ce

C
om

p
ar

is
on

91

F
ig

.
5.

17
.

Il
lu

m
in

at
io

n
L

ev
el

3:
D

fD
-N

et
&

G
ra

p
h

C
u
t

P
er

fo
rm

an
ce

C
om

p
ar

is
on

92

5.4 Architecture Confidence Testing

Due to the stochastic nature of the weight initialization process, the training

input image patch selection and the Adam optimizer, a series of tests were conducted

to determine if the initial results are truly indicative of the network architecture’s

capability and not because the random processes perfectly aligned. The two tests

that were performed are: a training repeatability test and a k-fold cross validation

test.

5.4.1 Training Repeatability

The training repeatability test was performed to assess how repeatable the training

process is. This test repeatedly trained the DfD-Net from scratch 30 times. Figure

5.18 shows the distribution for each of the metrics. The light blue area represents

±2σ from the mean (dark blue dashed line) of the test results and the black dots

are the individual test results from each of the training events. Table 5.6 shows the

overall minimum, mean, maximum and standard deviation of the test results for the

30 training events. The only test that was not within the bounds was trial 18. This

test produced performance results that exceeded the 2σ criteria.

Table 5.6.
Repeatability Trials Test Performance Results

NRMSE NMAE SSIM

Minimum 0.0552 0.0163 0.9000

Mean 0.0632 0.0183 0.9075

Maximum 0.0699 0.0200 0.9180

Std Deviation 0.0039 0.0009 0.0045

93

F
ig

.
5.

18
.

D
fD

-N
et

M
u
lt

i-
T

ra
in

in
g

E
ve

n
t

T
es

t
R

es
u
lt

s
D

is
tr

ib
u
ti

on

94

5.4.2 9-Fold Cross Validation

The k-fold cross validation test breaks the datasets into k groups where k − 1

groups are used as the training dataset and one group is used as the validation test set.

For each “fold” one group is selected as the validation set and the other k − 1 groups

are the training set. For the Middlebury College dataset k was set to nine. Table 5.7

shows the combined results of each trial. The “Test Data Scene” column indicates

which scenes were used as the validation test set. When comparing the results of

each of the folds, the test set that exhibits a significant reduction in performance is

the K03 set. To better understand why this particular set performed far worse than

the other sets an examination of the depth map distributions for both the training

and test sets is required. Figure 5.19 shows the overall training and testing depth

map distribution. The inset shows the areas where the number of depth map values

in the testing distribution exceeds the training distribution. The box labeled “1” is

the under represented distribution for the Midd2 scene.

Table 5.7.
DfD-Net Middlebury Synthetic Dataset 9-Fold Cross Validation Per-
formance Results

Test Test Data Scene NRMSE NMAE SSIM

K01 Reindeer, Wood1, Wood2 0.04854 0.01878 0.9205

K02 Monopoly, Rocks1, Rocks2 0.06844 0.02304 0.9120

K03 Midd1, Midd2, Plastic 0.17032 0.11322 0.7204

K04 Lampshade1, Lampshade2, Moebius 0.07570 0.03451 0.8809

K05 Dolls, Flowerpots, Laundry 0.06131 0.01880 0.9002

K06 Cloth2, Cloth3, Cloth4 0.04298 0.01335 0.9459

K07 Bowling1, Bowling2, Cloth1 0.04755 0.02066 0.9007

K08 Baby1, Baby2, Baby3 0.08727 0.03220 0.9002

K09 Aloe, Art, Books 0.06106 0.01785 0.9018

95

Fig. 5.19. K03 Cross Validation Training & Testing Depth Map Distribution

Figure 5.20 shows an example of the test results for the Midd2 dataset. Figure

5.20a is the ground truth depth map for the scene, Figure 5.20b is the resulting depth

map determined by the trained DfD-Net. Figure 5.20c is a mask highlighting the

location of the depth map values 35-38 that are underrepresented in the training set,

and Figure 5.20d shows the resulting absolute error difference between the ground

truth and the DfD-Net depth maps. The brighter areas indicate where the largest

error differences are located. Comparing the mask and the error it can be seen that

as expected, the largest depth map errors occur where the underrepresented depth

map samples are located.

The 9-fold cross validation test results show that the architecture is robust across

various training/test set combinations, even with the stochastic nature of the training

process. The results of the 9-fold cross validation show that all but one fold produces

similar results to the initial training described in Section 5.4.1. The one fold that

produced a poorly trained network was due to the fact that the training samples for

the most heavily concentrated depth map values were under represented in the train-

ing process which means that the network did not see enough examples to accurately

96

(a) (b) (c) (d)

Fig. 5.20. K03 Cross Validation Midd2 Testing Depth Map Compar-
ison. (a) Ground truth, (b) DfD-Net depth map, (c) Mask of under
represented values and (d) depth map error

recreate the given depth values for the test dataset. However, the training samples

that were well represented in the dataset were accurately recreated as evident in the

depth map error shown in Figure 5.20d.

5.4.3 Training Patch Size Analysis

Throughout various phases of testing to determine the best architecture, it was

discovered that the training image patch size affected how well the final trained net-

work performed on the test dataset. Once this trend was discovered a secondary

exploration into the effect of patch size vs. network performance was conducted.

Figure 5.21 outlines the DfD-Net performance on the test data for various patch

sizes used during training. Similar to Figure 5.18, the light blue area represents the

DfD-Net test distribution. From the figure it can be seen that the 32x32 patch size

produces the best results for each of the three metrics as compared to the other patch

sizes. Although based on the test result distribution discussed in Section 5.4.1 it may

also be possible, with more training vignettes, for the 24x24, 28x28, 36x36 and/or

the 40x40 patch sizes to produce similar results to the 32x32 image patch size.

97

F
ig

.
5.

21
.

D
fD

-N
et

T
ra

in
in

g
P

at
ch

S
iz

e
P

er
fo

rm
an

ce
R

es
u
lt

s

98

5.4.4 Training With Noise Analysis

To determine the robustness of the DfD-Net with respect to noisy images the

DfD-Net was trained with various degrees of noise. Gaussian noise with a mean of

zero, and three separate standard deviations, (σ = {1, 2, 3}) was added to both focus

images simulating camera noise. The noise was added during the patch selection

process outlined in Section 5.2.1. Once the image patch was selected noise was added

to each pixel on each of the six input channels. Each noise scenario was trained

independently 10 times to get the distribution of the test accuracy for a given noise

input.

Fig. 5.22. DfD-Net Test Results with Various Noise Added During Training

Figure 5.22 shows the results of training with the three noise levels. Similar to

Figure 5.18, the light blue area represents the DfD-Net test distribution when trained

with no noise. The red dots indicate the mean test accuracy and the bars represent

±2σ from the mean. The green dots represent the minimum and maximum test

accuracy for the 10 training vignettes. This figure shows that the performance of

99

the DfD-Net degrades with increasing noise used during training. To compare, the

Chameleon3 real world data collection camera configured according to Table 3.3 an

image with an average pixel value of approximately 127 has a noise level that can be

approximated by a normal distribution, N (0, 3.1).

5.4.5 Up/Down Sampling Filter Size

In a traditional image processing spatial aliasing is a concern when an image

is either downsampled or upsampled. In the case of downsampling high frequency

content within the image may appear to be at a lower frequency. To alleviate this

aliasing a low pass filter should be applied to the image prior to downsampling.

Furthermore, when upsampling an image the results should be passed through a low

pass filter.

There is a concern that aliasing may occur within the DfD-Net as a result of the

downsampling and upsampling convolutional filter size at each level in the architec-

ture. To determine if the sampling filter size impacts the performance of the DfD-Net

several different filter sizes were tested. For each filter size scenario, the DfD-Net was

trained independently 10 times to get the distribution of the test accuracy. Figure

5.23 shows the results of testing various convolutional filter sizes. The same size filter

was used for both downsampling and upsampling the tensors within the network. The

light blue area represents the DfD-Net test distribution for the 2x2 filter sizes.

From these results it can be seen that deviating from the 2x2 filter size does not

produce a significant improvement. For the NRMSE and NMAE the average results

were inline with the baseline average results for each filter size except the 6x6 filter

size which had a larger average error for each metric. The results of the SSIM metric

follow the same trend as the other two metrics with the exception that the 1x1 filter

was slightly worse than the 3x3, 4x4, and 5x5 filter sizes. This indicates that if any

aliasing occurs during the downsampling and upsampling it does not degrade the

depth map generation process.

100

Fig. 5.23. DfD-Net Test Results with Various Convolutional Filter
Up/Down Sampling Filter Sizes

5.5 Summary

In this chapter the DfD-Net deep learning architecture was discussed. The results

for the synthetically blurred datasets were presented. In general the DfD-Net outper-

formed the graph cuts algorithm when comparing the NRMSE and NMAE metrics.

However the DfD-Net did not outperform the graphs cuts algorithm when comparing

the SSIM metric results.

While the process of training sample selection and the Adam optimizer introduce

variability in the final results, the standard deviation for each metric is very tight.

In fact the distribution for each metric were within ±2σ from the mean, with the

exception one test that produced results outside the 2σ bounds (most accurate of the

30 trials).

The DfD-Net single CPU run time was an average of 10.0293 seconds per image.

The run time for the CPU/GPU configuration was an average of 0.3977 seconds per

101

image. The run time of the DfD-Net is significantly improved compared to the run

time of the graph cuts algorithm, running at between 16 and 30 times faster than the

graph cuts method depending on illumination and exposure level. More importantly

the algorithm runtime is not dependent on exposure of illumination level.

The next chapter will discuss optimizing the performance of the DfD-Net using a

variant of the Particle Swarm Optimization (PSO) algorithm and a new method of

clustering filter outputs using the self-organizing map (SOM) to determine a minimum

number of required filters per layer.

102

6. DFD-NET PARAMETER OPTIMIZATION

As deep learning systems continue to increase in size and complexity there will be

a need to optimize the parameters that drive the network’s performance. The goal

is to determine an optimal set of parameters that produce a fully trained network

whose performance is better than that of the network prior to optimization.

There is ongoing research to optimize the hyperparameters in a deep learning

architecture using techniques such as Bayesian optimization [49–51]. These techniques

use the results of prior hyperparameter function evaluations to generate a predictive

distribution to guide the algorithm to find a set of hyperparameters that results

in a minimized objective function, in this case the error of the output of a given

DNN. Others are using evolutionary algorithms like Genetic Algorithms (GA) [52] to

determine the optimal set of hyperparameters.

In this chapter two separate optimization methods will be discussed. The first

is the use of the Particle Swarm Optimization (PSO) algorithm to improve the per-

formance of the DfD-Net. The second method is one that determines the minimum

number of convolutional filters and/or fully connected layers required by the network

architecture to perform its given task. This method is intended to decrease the overall

runtime of the network architecture while still maintaining or exceeding the level of

performance prior to the optimization.

6.1 DfD-Net Performance Optimization Using The Particle Swarm Op-

timization Algorithm

PSO has begun to gain attention from works by Ye [53] and Lorenzo, et al. [54] in

the application of DNN hyperparameter optimization. PSO is an iterative random-

ized search optimization algorithm that was originally developed by Eberhart and

103

Kennedy [55] and was modeled after social interactions between that of swarming in-

sects or that of flocking birds. This research uses a variation developed by Clerc and

Kennedy [56] in which a constriction factor was used to speed up the rate of conver-

gence. The swarm consists of candidate solutions, called particles. Each particle is a

vector which contains a potential solution to the problem that requires optimizing. In

the case of Lorenzo, et al. their research concentrated on optimizing only the convo-

lutional layers (size of the filters and number of filters per layer) and the maxpooling

layers (size and stride) [54] in a given network architecture, while Ye expanded the

particle to include the Stochastic Gradient Descent parameters (learning rate, decay

and momentum) and the dropout rate used in a given network architecture [53].

In this research, the PSO algorithm is used to improve the performance of the

DfD-Net, by finding a network configuration whose results exceed the baseline per-

formance metrics for the Middlebury College [7, 8] synthetically blurred dataset pre-

sented in Chapter 5.3. Compared to previous works, the PSO particle in this research

increases the number and type of hyperparameters to be optimized. The new PSO

particle includes the parameters that affect the convolutional filter layers, the batch

normalization layers, the activation layers and the size of the image crop used during

training. The PSO algorithm used in this research is the global best algorithm also

known as the G-best algorithm and is intended to find the globally optimal solution

for a given objective function. One of the advantages of the PSO algorithm over other

optimization algorithms is that it does not need to differentiate the objective func-

tion. This is particularly useful when the objective function to be minimized is not

easily differentiable or not continuously differentiable. This makes the use of PSO to

optimize the parameters within a deep learning architecture particularly appealing.

The objective function that the PSO algorithm will minimize is defined in Equa-

tion 6.1, where the “tr” subscript represents the results for a given metric for the

training dataset and the “te” subscript represents the results for a given metric for

the test dataset. The γ is a weighting factor that determines the importance of the

training and test results, and for this research γ = 0.3.

104

f(x) = γ(NMAEtr +NRMSEtr + (1− SSIMtr))

+ (1− γ)(NMAEte +NRMSEte + (1− SSIMte))
(6.1)

Figure 6.1 shows the general structure of the particle along with the quantities

that will be optimized by the PSO algorithm. The parameters are: 1) the number

of convolutional filters and their height and width, 2) the non-linear activation func-

tions, 3) the use of a batch normalization layer between the convolutional layers and

the activation layers and 4) the image crop size used during training. Traditionally

the PSO algorithm is used to optimize real number parameters. Since, all of the

parameters for the DfD-Net are either integers or not numbers at all and are also not

necessarily contiguous, e.g. the convolutional filter height and width are odd, map-

ping functions were used to convert the resulting PSO particle into valid parameters

for the DfD-Net architecture. The parameters and limits for each of the particles is

outlined in Appendix C.

Fig. 6.1. Graphical Representation of the DfD-Net PSO Particle

The entire PSO process is outlined in Algorithm C.1. In this research the number

of particles used in each iteration was set to 20, and the maximum number of iterations

was set to 50. For each iteration 20 versions of the DfD-Net were generated and each

105

network was trained independently on the synthetically blurred dataset. At the end

of each iteration the objective function for each particle/network architecture was

calculated. Using the objective function results the personal best for each particle

and the global best particle were determined (See Section C.1 for complete details).

This was repeated until the maximum number of iterations was reached.

Figure 6.2 shows the graphical representation of the DfD-Net architecture that has

been optimized by the PSO algorithm. The PSO algorithm determined that, in all

but one case, the pReLU was the best activation function for the network. A sigmoid

layer was selected as the first activation layer after the input. The PSO algorithm also

determined that the batch normalization layer should be used in exactly the same

locations as they were in the original DfD-Net architecture. And of course the largest

difference between the original DfD-Net and the PSO DfD-Net are the changes to

the number of filters in each of the convolutional layers. The PSO algorithm also

determined that a training crop size of 32x32 pixels produced the best results.

Fig. 6.2. Graphical Representation of the DfD-Net PSO Network Architecture

Figure 6.3 shows the top 5 and bottom 5 performance results for the DfD-Net.

The four images on the upper left represent the highest performing results with an

NRMSE, NMAE and SSIM of 0.0340, 0.0093 and 0.9477, respectively. While the four

106

images on the lower right indicate the worst performance results with an NRMSE,

NMAE and SSIM of 0.0873, 0.0264 and 0.8457, respectively. With an average score

of 0.0517, 0.0154 and 0.9156 for the NRMSE, NMAE and SSIM, respectively.

Table 6.1 shows the mean performance numbers for each of the metrics for each

exposure/illumination level for the PSO DfD-Net. In addition the best results for the

DfD-Net are also shown as a comparison. The PSO DfD-Net produced better results

for both the NRMSE and NMAE for all of the exposure level 0 and 1 images. The

PSO DfD-Net also produced an overall better SSIM result for the exposure level 0

images versus the original DfD-Net, however, the original DfD-Net produces a higher

SSIM value for the exposure level 1 and 2 images.

Table 6.1.
DfD-Net & PSO DfD-Net Average Performance Comparison

DFD-Net PSO DFD-Net

Lighting NRMSE NMAE SSIM NRMSE NMAE SSIM

Exp 0 Illum 1 0.0582 0.0192 0.9095 0.0524 0.0178 0.9092

Illum 2 0.0522 0.0166 0.9160 0.0499 0.0157 0.9128

Illum 3 0.0603 0.0205 0.9040 0.0515 0.0176 0.9092

Overall 0.0569 0.0188 0.9098 0.0512 0.0171 0.9104

Exp 1 Illum 1 0.0529 0.0140 0.9274 0.0469 0.0132 0.9247

Illum 2 0.0520 0.0136 0.9280 0.0476 0.0126 0.9277

Illum 3 0.0534 0.0149 0.9227 0.0482 0.0142 0.9187

Overall 0.0528 0.0142 0.9260 0.0476 0.0133 0.9237

Exp 2 Illum 1 0.0546 0.0148 0.9204 0.0526 0.0149 0.9173

Illum 2 0.0541 0.0152 0.9215 0.0529 0.0143 0.9189

Illum 3 0.0588 0.0176 0.9128 0.0634 0.0187 0.9022

Overall 0.0558 0.0159 0.9182 0.0564 0.0159 0.9128

107

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
6.

3.
T

op
5

an
d

B
ot

to
m

5
P

S
O

P
er

fo
rm

an
ce

R
es

u
lt

s
fo

r
th

e
M

id
d
le

b
u
ry

C
ol

le
ge

S
te

re
o

V
is

io
n

D
at

as
et

.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

,
(d

)
&

(h
)

P
S
O

D
F

D
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

108

6.2 DfD-Net Complexity Reduction Using An Unsupervised Clustering

Algorithm

Edge node computing allows one to process data at the edge of a distributed

network, sending only the pertinent data back (image classification, bounding box

locations, etc...) to a centralized location versus sending back millions of bytes of

data to have the central node perform the processing. Processing at the edge al-

leviates the network congestion that would occur otherwise, and allows the central

node to spend less time processing the data and more time on other important tasks.

However, these edge nodes have low computing capability, they generally are small

single board computers. The introduction of new single board computers dedicated to

deep learning architectures [57] and the embedded hardware industry pushing R&D

efforts to implement DNNs on FPGAs [58] has greatly increased the potential of edge

node computing. Even with these advancements, the embedded systems still have

finite resources. By working to reduce the number of parameters, e.g. the number of

neurons in a fully connected layer or the number of filters in a convolutional layer,

the overall computational requirements are reduced and potentially increasing the

processing speed of the network.

There has been some prior research dedicated to complexity reduction. Chu and

Krzyżak proposed a method of filter reduction by analyzing the size of the convolu-

tional filter [59]. Their research suggests for a single grayscale input image the upper

bound on the number of non-redundant filters would be 256r
2

where r is the radius

of the filter. This has limitations in that they assume that the difference between

any grayscale value is negligible and collapse the problem down to representing the

feature maps in a binary fashion which reduces the number of non-redundant filters

to 2r
2
. Based on their proposed equation, the number of non-redundant filters begins

to grow quickly if you consider color images and more than one convolutional layer.

RoyChowdhury, et al. proposed a method that analyzes the filters to determine

their redundancy. They used the “cosine similarity,
〈

wi
‖wi‖ ,

wj
‖wj‖

〉
with 〈...〉 denoting

109

the inner product between the two filters” [60] as a measure of how similar the filters

are. They would then take the similar filter means and replace all of the similar filters

with a single filter. This requires that they manually rewire the network to account

for the fact that there are m less filters. Their method was also not able to discern

differences in their CNN test architecture which was a variant of the LeNet-5 CNN

architecture [61].

Another reduction method developed by Yang, et al. [62] uses the amount of

energy consumed by the architecture on a given platform as a measure of reducing

the number of filters in a DNN. Their method removes filters from a trained network,

much like the work done by RoyChowdhury, et al, however they add an additional fine

tuning step that utilizes a closed-form least-squares method to improve the accuracy.

The drawback is that this has to be done on the individual platform to realize the

performance gains.

In this research, the application of an unsupervised clustering algorithm on the

outputs of a DNN layer is used to determine the minimum number of convolutional

filters and/or fully connected layers in a DNN architecture. This reduction in model

complexity is performed while still maintaining a similar level of test accuracy that

was achieved prior to the reduction.

The datasets used are the synthetically blurred Middlebury College Stereo Data-

sets from 2005 and 2006 [7, 8] as described in Sections 3.1. The DfD-Net described

in Section 5.1 will serve as the baseline architecture for comparison of the reduction

efforts. The training repeatability analysis conducted in Section 5.4.1 and shown in

Figure 5.18 will serve as the baseline performance measure for each metric. These

results will be used to compare against the reduction results in order to assess the

performance gain or loss of the reduction candidates. Any result that exceeds the

mean for each metric is considered to be a successful reduction candidate.

A representative sample from each of the test scenes was run through the network

and the outputs of each layer for each scene was recorded. Figure 6.4 shows an

example of the output for the first pReLU layer (layer 50) for one of the Art test

110

input images. The three images are examples of the output from a pReLU layer

where they are nearly identical, with only small variances between the images.

(a) (b) (c)

Fig. 6.4. DfD-Net Layer 50 Filter Output: (a) Filter #070, (b) Filter
#084 and (c) Filter #108

The non-linear layers were chosen as the analysis points because they have the

potential to bring less similar outputs from the previous layer closer together. For

example, the pReLU layer has the potential to align dissimilar inputs to produce a

similar output. Referring back to the equation for a pReLU (Equation 5.7), if α = −1

then f(1) = f(−1) = 1. In addition to the pReLU layers the points of tensor addition

for the residual blocks were also analyzed. For the upsampling and downsampling

layers there were no pReLU layers following them, therefore these layers were ana-

lyzed directly. Normally the points of tensor concatenation should also be considered

as analysis points, however buffer convolutional layers (layers 24 and 12) were in-

serted into the design to help manage tensor imbalance on the upsampling side of the

network. For this reason the tensor concatenation points were not considered.

In order to determine the minimum number of convolutional filters per layer an

unsupervised clustering method called the self-organizing map (SOM) algorithm orig-

inally developed by Kohonen [63] was chosen. It has several advantages over other

popular clustering algorithms. The main advantage is that the SOM uses competitive

neurons that fight to match their own weights to the values of a particular input. This

competition also allows for the possibility that a particular neuron may never activate

for the given set of input vectors. This means that if a neuron fails to activate for any

111

input then another neuron will activate for multiple inputs, which results in clustering

N inputs into C classes. This has the advantage over other clustering algorithms like

k-means in that we don’t necessarily know the number of clusters in the output of

a particular layer, only the upper bounds. For each of the representative samples,

the outputs were clustered using the SOM algorithm. This resulted in a different

number of clusters for each layer/residual block analyzed. For this reason the cluster

minimum, mean and maximum cluster values were used as the basis for the filter

reduction.

The first reduction approach was an ensemble method where the number of filters

for all of the layers were modified at one time. The number of filters for each layer

were taken directly from the SOM algorithm results outlined in Table D.1. This

resulted in nine different combinations of filter values. Each combination was trained

for 15 independent training events to ascertain the test distribution for each of the

three metrics.

The second method is an iterative reduction approach. Instead of reducing all

of the layers simultaneously, the residual blocks were reduced one at a time. The

decision of which block to begin with is now the question. To understand better we

can simply look at the number of multiplies occurring within a given convolutional

filter. The logical choice would be to try and reduce the largest number of filters

first, however due to the DfD-Net’s architecture and the means by which the inputs

get downsampled and then upsampled the network is symmetric and each level, in

general, has the same number of multiplications. Since there is no “one good” residual

block to begin the reduction analysis, the strategy taken was to start at the input to

the network and work across the same level. Once the level was completely analyzed

and the number of filters was determined, the network was retrained from scratch

using the reduced filter numbers. After training was completed the second level was

analyzed to determine the number of filters for each layer. This process was repeated

for each level until the last level was reached. At each level the filter combinations that

resulted in the best performance metrics were selected. Once at the final level, the

112

minimum, mean and maximum number of filters were determined. Each combination

was trained for 15 independent training events to ascertain the test distribution for

each of the three metrics.

Table D.2 shows the final combinations of convolutional filters for each layer. The

layer numbers are color coded to match the layer type as depicted in Figure 5.5. The

numbers in each column represent the number of convolutional filters for a given layer

as determined by the SOM algorithm and selected permutations of the minimum,

mean and maximum values from Table D.1. The network configurations designated

with ‘B’ are the configurations that were determined by performing the ensemble

reduction analysis and the network configurations designated with ‘F’ are the results

of the iterative reduction analysis. This is not an exhaustive search of the space. For

this particular architecture the upper bounds on the number of possible combinations

is defined in Equation 6.2, where n is a function of the number of residual blocks

and independent convolutional filters. Based on the DfD-Net architecture there are

413 = 67, 108, 864 possible filter reduction combinations.

Reduction Combinations = 4n (6.2)

Figure 6.5 shows the results of each of the network configurations listed in Table

D.2. The red dots indicate the mean test accuracy and the bars represent ±2σ from

the mean. The green dots represent the minimum and maximum test accuracy for the

15 training vignettes. The labels on the x-axis represent the network configuration.

The F-02-02 network produced the best results with a minimum NRMSE and NMAE

of 0.06095 and 0.0184 respectively and a maximum SSIM value of 0.9062. The F-

02-02H and F-02-02L network configurations are specialized versions of the F-02-02

network configuration in which the number of filters was rounded up to a multiple of

eight (F-02-02H) or rounded down to a multiple of eight (F-02-02L). This was done

to see if the GPU architectures gave a performance advantage to filters that were a

multiple of eight.

113

F
ig

.
6.

5.
D

fD
-N

et
R

ed
u
ct

io
n

T
es

t
R

es
u
lt

s

114

A timing analysis was performed on each of the network configurations outlined in

Table D.2. Table D.3 shows the results of this analysis for each of the four hardware

platforms listed in Table B.1 in Appendix B. The B-01-01 network configuration had

the fastest performance for the Laptop (57.5% speed increase), Jetson TX2 (52.44%

speed increase) and Desktop 2 (34.26% speed increase) while the F-01-02 network

configuration has the fastest performance for the Desktop 2 hardware (23.62% speed

increase). From The results shown in Figure 6.5 network configuration F-02-02 pro-

duced the best performance results for each of the three metrics. This network con-

figuration produced an average speed increase of 44.85%, 40.04%, 14.91% and 26.70%

for the Laptop, Jetson TX2, Desktop 1 and Desktop 2 respectively. As a side note

the F-02-02L and F-02-02H network configurations did not provide any significant

speed increases above the root F-02-02 network configuration.

6.3 Summary

6.3.1 PSO Summary

It was expected that the variance observed in Section 5.4.1 and Figure 5.18 be-

tween identical network configurations would make it difficult for the PSO algorithm

to converge to a solution. However, the PSO algorithm did determine an improved

solution that produced an average NRMSE that was approximately 6.25% below the

DfD-Net average NRMSE. Similarly, the PSO DfD-Net produced an average NMAE

that was 5.25% below the DfD-Net average NMAE. However the SSIM value for the

PSO DfD-Net was 0.26% lower, but substantially similar to the baseline DfD-Net

average SSIM value.

6.3.2 Complexity Reduction Summary

The method of clustering convolutional filters to reduce the number of required

filters produces network architectures that run faster than the baseline network ar-

115

chitecture. This method also demonstrates that the network performance does not

have to suffer as a result of the reduction process. With low complexity a combi-

nation of convolutional filters that produced performance results that exceeded the

baseline mean by 3.4% for the NRMSE was determined. The NMAE and the SSIM

were only slightly worse than the baseline means with a decrease of only 0.65% and

0.13% respectively. In addition to keeping within the bounds of the metrics for the

original network configuration, the new configuration also significantly reduced the

average runtime per image for each of the four test platforms.

While the reduction strategy and/or the analysis points will vary depending on

the particular network architecture, the iterative reduction approach yielded better

performance results when compared to the more aggressive ensemble approach. How-

ever, the iterative approach will require at most 4n reduction iterations to reach the

final network configuration.

The next chapter will discuss the application of the DfD-Net architecture to the

real word dataset.

116

7. DEPTH FROM DEFOCUS WITH A MICROFLUIDIC

LENS

This chapter will discuss the applications of deep learning and the DfD-Net to the

real world dataset introduced in Section 3.2. This research expands upon the research

that was previous conducted by Liu, et al. [21,64] in which the graph cuts method was

used on images captured with a microfluidic lens and Pasinetti, et al. [22] in which

the ICM and DCM methods were used to infer depth from a microfluidic lens using

the image contrast. The research shows the potential of using a microfluidic lens as

a means to capture in-focus and out-of-focus images.

The first section introduces the application of the synthetic blurring process to

the real world dataset and assessing the performance of the DfD-Net trained on the

Middlebury College dataset. In the second section, an analysis of the data collection

hardware was performed and some issues are discussed that were discovered during

this research. Additionally, this chapter will also discuss the training of the DfD-Net

entirely from scratch on the real world dataset and reporting those results.

7.1 Real World Dataset Synthetic Blur Results

An experiment was created to test the performance of the real world dataset using

synthetically blurred camera data. To compare the camera and LIDAR data the in-

focus image for each scene and exposure time was selected, then synthetically blurred.

However, in order to use the LIDAR data, it is inverted compared to the Middlebury

College ground truth data, where larger depth map values in the Middlebury College

dataset represent surfaces that are closer to the camera, and the larger LIDAR values

represent surfaces that are farther from the camera. Since the LIDAR data was scaled

to a range between 0 and 255 the LIDAR data can be inverted using Equation 7.1.

117

DepthMapinv = 255−DepthMap (7.1)

Once the inverted depth maps were generated for each scene the in-focus image

was blurred using the same process (and the same σ values) outlined in Section 3.1

using Equations 3.1 through 3.4. The synthetically blurred real world dataset was

then run through the original (baseline) DfD-Net trained on the Middlebury College

dataset described in Section 5.1. The top 5 and bottom 5 performers were determined

based on the NRMSE score with the NMAE used in the event of a tie. Table 7.1

shows the top 5 and bottom 5 performance results for the real world synthetically

blurred dataset. Figure 7.1 shows the comparison between the inverted ground truth

LIDAR data and the depth map inferred by the DfD-Net for the top 5 and bottom 5

results.

For the top 5 performers the results are exceedingly good, surpassing the top 5

performance numbers of the Middlebury test dataset (Table 5.2). However, the results

for the bottom 5 are far worse than those of the DfD-Net bottom 5 results (Table 5.2)

or the graph cuts bottom 5 results (Table 4.2) when comparing the NRMSE numbers.

Figure 7.2 shows the average results for each scene for each of the three metrics

(NRMSE, NMAE and SSIM). What immediately stands out is where the largest

errors occur for each of the three metrics. The errors are occurring every fourth scene

starting with the first scene, k00. From Section 3.2.4 the 4-tuple scene configuration

starts with a surface that is 2.5m from the camera and is repeated every fourth scene.

It is this scene configuration that is failing to produce good results.

To better understand why these particular scenes did not produce results that were

on par with the other scenes, an analysis of the training and test depth maps values

was performed. Figure 7.3 shows the distribution of the Middlebury College training

data (blue) based on the enhanced cropping method, detailed in Section 5.2.1, used

in the training of the DfD-Net, and the real world test data (red). The depth map

values of 4 through 8 are not in the training dataset, and the values of 9 through

118

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
7.

1.
T

op
5

an
d

B
ot

to
m

5
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
L

ID
A

R
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

,
(d

)
&

(h
)

D
fD

-N
et

C
om

p
u
te

d
D

ep
th

M
ap

.

119

F
ig

.
7.

2.
D

fD
-N

et
S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

P
er

fo
rm

an
ce

R
es

u
lt

s

120

Table 7.1.
Top 5 and Bottom 5 DfD-Net Performance Results for the Syntheti-
cally Blurred Real World Dataset

Name
Exposure

Time (ms)
NRMSE NMAE SSIM

Top 5

k35 30 0.00358 0.00244 0.99717

k35 40 0.00362 0.00238 0.99692

k35 20 0.00365 0.00257 0.99748

k63 50 0.00377 0.00275 0.99639

k63 40 0.00377 0.00271 0.99611

Bottom 5

k52 50 0.19443 0.19307 0.41257

k52 60 0.19558 0.19393 0.40980

k52 70 0.19583 0.19411 0.40810

k52 20 0.19858 0.19716 0.39257

k52 10 0.21352 0.20993 0.32512

11 for the real world dataset are under represented in the training dataset. The two

scenes that produced the highest average NRMSE value, (the worst performers), are

the k52 and k24 scenes.

Figure 7.4a shows the comparison between the training depth map distribution and

the distribution of the k52 scene, which produced the worst NRMSE score. Similarly,

Figure 7.4b shows the distribution for the k24 scene that produced the second worst

NRMSE score. The k52 scene has its depth map value completely covered by the

training set and the k24 scene only has the depth map values of 9 through 11 under

represented.

Taking the ground truth depth map, input image pair and the resulting inferred

depth map from the k24 scene at an exposure time of 50ms, (highest NRMSE of all

121

Fig. 7.3. Depth Map Value Distribution for the Middlebury College
Training Dataset and the Real World Test Datasets

exposure times) a comparison is made to show that while some of the depth map

values may have been under represented in the training set, the error in the depth

map inference is not due to this fact. Figures 7.5a and 7.5b depict the in-focus and

out-of-focus image pair. Figures 7.5c and 7.5d show the ground truth, and the depth

map determined by the DfD-net, respectively. The depth maps have been colorized in

order to accentuate small differences in depth values that would otherwise be difficult

to visually detect in a grayscale image. Figure 7.5e shows the absolute error between

the two depth maps (DM) as determined by Equation 7.2. Figure 7.5f shows the

location of the depth map values of 9 through 11 map, in white, while Figure 7.5g

overlays the location of these values over top of the error map. Figures 7.6a - 7.6g

show the same analysis for the k52 scene at an exposure time of 10ms. Clearly it

can be seen that the errors are not localized to the under represented values, but are

more systemic. For the k24 scene the larger errors are occurring at the transitions

between strips in the darker blue areas.

ε = |DMgt −DMDfD−Net| (7.2)

122

(a) Scene k52, Exposure: 10ms Distribution

(b) Scene k24, Exposure: 50ms Distribution

Fig. 7.4. K52 & K24 Depth Map Value Distribution

For the k52 scene the source of the error becomes a little more clear. Figure

7.7a shows a small, unmagnified portion of the in-focus image from the dataset and

Figure 7.7b shows the synthetically blurred version of the same image. To contrast,

Figure 7.7c shows the same pattern taken at the same distance with a higher reso-

lution Samsung Galaxy S8 cellphone camera with the parameters outlined in Table

123

(a) (b) (c) (d)

(e) (f) (g)

Fig. 7.5. Depth Map Error Comparison for the k24/50ms Exposure
scene. (a) In-Focus Image (b) Out-of-Focus Image (c) Ground Truth,
(d) DfD-Net Depth Map, (e) Error Map, (f) Pixel Mask and (g) Under
Represented Pixel Mask an Error Map Overlay

7.2. It should be noted that the pixel size of the cellphone camera is approximately

3.4 times smaller than the Chameleon3 camera used to collect the real world dataset.

The camera resolution is too coarse to resolve the finer details of some of the pat-

terns/textures within the dataset, especially at a distance of 2.5m from the camera.

The distinguishing features and edges are lost in the in-focus image and the problem

only compounds when the synthetic blur is applied. Even some of the color is lost,

because from Figure 7.7c it can be seen that the surface being imaged is a green and

white hounds tooth pattern and not a dark gray pattern.

Because the camera and lens combination are not capable of resolving details to

the level required for the scenes located at 2.5m the synthetically blurred results were

only analyzed for the scenes that ranged between 1.5 and 2.2 meters from the camera.

Figure 7.8 shows the performance results for each scene and each exposure time. There

are three prevalent trends in the results. The first is that for a particular scene the

124

(a) (b) (c) (d)

(e) (f) (g)

Fig. 7.6. Depth Map Error Comparison for the k52/10ms Exposure
scene. (a) In-Focus Image (b) Out-of-Focus Image (c) Ground Truth,
(d) DfD-Net Depth Map, (e) Error Map, (f) Under Represented Pixel
Mask and (g) Pixel Mask and Error Map Overlay

(a) (b) (c)

Fig. 7.7. Scene k52 In-Focus and Out-of-Focus Image Comparison.
(a) In-Focus Image, (b) Synthetically Blurred Image and (c) High
Resolution In-Focus Image

results are consistent across all of the exposure times. The second trend is that the

shortest exposure times result in performance numbers that are far worse than the

125

Table 7.2.
Samsung Galaxy S8 Rear Camera Specifications

Parameter Value

F-Number 1.7

Resolution (h x w) 3024 x 4032, 12 MP

Frame Rate 30+ FPS

Sensor Sony IMX333, CMOS 1/2.55”

Pixel Size 1.4 x 1.4 µm

longer exposure times. This is most obvious in scenes k25, k26, k27 and k41. This

is because the overall texture that was used was very dark and the shorter exposure

times resulted in images that lost a lot of the texture information as compared to the

longer exposure times for the same scene. The last trend is one where the performance

drops as the exposure times increase. The k05, k06, k55 and k56 scenes exhibit this

behavior. Here the particular textures are very bright and as the exposure time

increased the image brightness increased to the point where the images were slightly

over saturated. Table 7.3 presents the overall performance for each of the three

metrics.

Table 7.3.
DfD-Net Real World Synthetically Blurred Overall Test Results

NRMSE NMAE SSIM

Minimum 0.0036 0.0024 0.6475

Mean 0.0129 0.0082 0.9702

Maximum 0.0835 0.0703 0.9984

Std Deviation 0.0105 0.0069 0.0418

126

F
ig

.
7.

8.
D

fD
-N

et
S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

E
x
p

os
u
re

T
im

e
P

er
fo

rm
an

ce
C

om
p
ar

is
on

127

7.2 Real World Dataset

7.2.1 Microfluidic Lens Issues

In Chapter 2 the derivation of the geometric optics equations was introduced.

These equations described the behavior of a thin lens systems for a given f-number

and focal length, and provided a theoretical model for predicting the blur radius

and quantized blur radius based on the physical size of a pixel in an imaging sensor

(refer to Figure 2.5 for an example based on the supplied specifications of the lens

and camera used in the real world data collect). While the manufacturer of the lens

provided a single set of specifications for the microfluidic lens, it was discovered that

the lens changes optical characteristics based on the voltage step applied.

Fig. 7.9. Quantized Pixel Blur Radius for the Chameleon 3 Camera
and Microfluidic Lens

Figure 7.9 shows representative samples of the quantized blur radius of the micro-

fluidic lens based on the voltage step and distance from the camera. These values

were measured using a black and white target similar to the one shown in Figure

7.10a with the camera centered at the intersection of the two black rectangles. Mea-

surements for each voltage step were taken at 0.1m intervals between 0.3m and 4.0m.

128

As the voltage step increased from 127 to 143 the focus distance (do) moved closer to

the camera. What is also important to note is that one of the lens parameters, the

f-number (n), that governs the shape of the near and far focus curves changes with

the voltage step as well.

(a) Blur Radius Target (b) Point Source Target

Fig. 7.10. Lens Test Targets

After getting familiar with the camera and microfluidic lens, several undesirable

properties of the combined system were identified. The first was that the temperature

of the lens can affect the sharpness of the image taken. To compound the problem

the camera’s operating temperature changes over time, this temperature change is

imparted to the fluid in the lens. In order to assess the effect of the camera’s temper-

ature on the lens and the dataset a test was conducted to capture and understand the

affects. The data was collected using a test image similar to the one shown in Figure

7.10b, with the camera positioned 1m from the target image. The voltage step was set

to 135 and the exposure time was set to 40 ms. Images were captured as the camera

was started up at an initial operating temperature of 27.25 oC and were continued to

be captured as the camera warmed up to a temperature of approximately 54.75 oC.

When the camera is completely warmed up it operates at an average temperature of

approximately 54 oC. Using the Discrete Cosine Sharpness Measure (DCSM) devel-

oped by De and Masilamani [65] the sharpness of each image was calculated. The

sharpness of the noise was also calculated by removing the white dot from each image

and replacing it with the average background pixel value. The results of the DCSM

129

for each image are shown in Figure 7.11 which indicates that the image sharpness

increases with temperature. Figure 7.11 also shows that the noise of the background

also increases with temperature. However, the increase in noise does not completely

account for the increase in sharpness of the image.

Fig. 7.11. Image Sharpness vs. Camera Temperature

The second undesirable property is a hysteresis that occurs when transitioning

from one voltage step to another. It was discovered that the lens focal point didn’t

always return to the same point as set by the voltage step setting. To capture this

behavior an experiment was conducted with the camera configured to the same set-

tings outlined in Table 3.3, with the exposure time set to a single value of 30 ms and

the voltage steps were varied across the range used in the data collection. The image

used in this test is a single white dot 5mm in diameter on a field of black, similar

to the image shown in Figure 7.10b, with the camera positioned 1m from the target

image. At each voltage step an image of the target was captured and the DCSM was

calculated [65]. Figure 7.12 shows the behavior of the lens as the voltage step was

changed. The blue line represents starting at a voltage step of 126 and then capturing

an image at each voltage step from 127 to 143. The red line represents setting the

130

voltage step to 144 and then capturing the same image moving from voltage step 143

to 127. The images were all taken at a temperature of approximately 51 oC to ensure

that the camera temperature did not affect the results. The chart shows that the

sharpness of the image at a particular voltage step will vary depending on the voltage

step that the lens was previously configured.

Fig. 7.12. Image Sharpness vs. Voltage Step

7.2.2 Architecture Overview and Training

Several variants of the original DfD-Net presented in Section 5.1 and shown in

Figure 5.5 were explored. These include adding additional convolutional filters to the

architecture and increasing the number of levels in the architecture. However, these

modifications did not improve the overall performance of the network, and in some

cases the architectures began to overfit to the training data. The training method

employed was the same method as described in Section 5.2. The only change in the

training was an increase in the number of training iterations without progress from

2500 to 3000.

131

Table 7.4.
Real World Training and Testing Dataset Scenes

Training Dataset Scenes

• k00 • k01 • k02 • k03 • k04 • k05 • k06 • k07

• k08 • k09 • k10 • k11 • k12 • k13 • k14 • k15

• k16 • k17 • k18 • k19 • k20 • k21 • k22 • k23

• k24 • k25 • k26 • k27 • k28 • k29 • k30 • k31

• k36 • k37 • k38 • k39 • k40 • k41 • k42 • k43

• k48 • k49 • k50 • k51 • k52 • k53 • k54 • k55

• k56 • k57 • k58 • k59 • k60 • k61 • k62 • k63

Testing Dataset Scenes

• k32 • k33 • k34 • k35 • k44 • k45 • k46 • k47

Table 7.4 lists the real world dataset scenes that are used as the training sets for

the DfD-Net and the testing sets. In total there were 392 image pairs in the training

set and 56 image pairs in the test set, which represents an 87.5%/ 12.5% split for

the training and testing data. The dataset split between training and testing for the

real world dataset was determined in much the same way as the training and testing

sets were chosen for the Middlebury College synthetically blurred dataset. The real

world dataset training and test set selection was based on the distribution of the

depth maps. In addition, the test image scenes were selected based on the size and

pattern of the texture used to create the scene. The k32 - k35 test scenes had a very

small repeating pattern with very little area where there was no texture and the k44

- k47 test scenes had a pattern where there were areas in which there was no texture

change, i.e. a solid background. Figure 7.13 shows the depth map value distribution

for the training set (blue) and the test set (red).

Based on the results of the synthetically blurred dataset and the realization of

the fact that the camera could not capture fine enough details to discriminate the

132

Fig. 7.13. Depth Map Value Distribution for the Real World Training
and Testing Datasets

blur differences for the scenes located at 2.5m from the camera, the training and

testing datasets located in column 1 and column 5 of Table 7.4 were excluded from

the training and testing of the DfD-Net architecture on the real world dataset. Figure

7.14 illustrates the revised depth map distribution. The scenes within the real world

dataset used from training and testing are only located between 1.5 and 2.2 meters.

7.2.3 DfD-Net Real World Results

In Chapter 5 the DfD-Net was trained on the synthetically blurred dataset. This

dataset was generated using an entirely in-focus image and then blurring that image

to create the out-of-focus image. Following the same logic the image recorded at

voltage step 135, which was determined to be the sharpest image, was used as the

in-focus image and the images recorded at the other voltage steps were used as the

out-of-focus images. This led to 16 possible combinations of voltage steps to test.

However, for the images recorded across the range of voltage steps, there was no clear

133

Fig. 7.14. Depth Map Value Distribution for the Pruned Real World
Training and Testing Datasets

and decisive out-of-focus lens voltage step that produced significantly better results

than any other voltage step, and overall the results were not very good.

After collecting and analyzing the quantized blur radius for each voltage step it

was determined that the absolute differences between the voltage steps is just as

important as the actual voltage steps themselves. Figure 7.15 shows an example

comparison of the quantized blur radii between two voltage steps, in this case voltage

step 141 and voltage step 129. The figure also shows the absolute difference between

the two quantized blur radii.

By analyzing the absolute difference between the quantized blur radii produced

by two different voltage steps at varying distances from the camera there are several

potential candidates that should produce better results as compared to the traditional

method of using an entirely in-focus image and selecting another voltage step as the

out-of-focus image. There are two properties that the differences in blur radius should

have, the first is required and the second is desired, but may not always be achievable.

The first property is that the absolute difference between the quantized blur radii

should be either monotonically increasing or monotonically decreasing in the region

134

Fig. 7.15. Voltage Step Comparison: 141 and 129

where the depth map is intended to be inferred. For example, the region of interest

for the surfaces in the real world dataset is between 1.5 and 2.2 meters.

The second property is that the absolute difference between quantized blur radii

should be unique within the region of interest, i.e. there should be no repeating values

in the region. This, however, may not be achievable depending on the resolution/pixel

size of the camera and the length of region of interest.

Table 7.5 shows the absolute difference in quantized blur radius between several of

these candidate voltage step combinations. It can be seen that none of the potential

candidates satisfy this requirement within the region of interest. But, they do come

as close as possible based on the measured quantized blur radii. Table 7.5 also shows

the average performance results of each of the three metrics for each of the potential

candidates. The voltage step combination of 141 and 129 produced the best overall

results. Figure 7.16 provides an example of the k35 test set with the image at voltage

step 141 in Figure 7.16a and the image at voltage step 129 in Figure 7.16b.

Table 7.6 displays the overall performance results for for the voltage step combi-

nation of 141 and 129. Figure 7.17 shows the performance results for each scene and

135

T
ab

le
7.

5.
Q

u
an

ti
ze

d
B

lu
r

R
ad

iu
s

D
iff

er
en

ce
an

d
A

ve
ra

ge
P

er
fo

rm
an

ce
R

es
u
lt

s

V
o
lt

a
g
e

S
te

p
D

is
ta

n
ce

F
ro

m
C

a
m

e
ra

(m
)

P
e
rf

o
rm

a
n
ce

M
e
tr

ic

C
o
m

b
in

a
ti

o
n

1
.5

1
.6

1
.7

1
.8

1
.9

2
.0

2
.1

2
.2

N
M

A
E

N
R

M
S
E

S
S
IM

14
2-

13
0

4
4

5
5

5
6

7
7

0.
05

64
0.

07
00

0.
82

16

14
1-

13
2

5
5

6
6

7
7

7
8

0.
05

84
0.

07
19

0.
79

63

14
1-

13
1

4
4

5
5

5
6

6
7

0.
05

59
0.

06
93

0.
80

07

14
1-

13
0

2
2

4
4

4
4

5
6

0.
05

26
0.

06
67

0.
81

15

1
4
1
-1

2
9

1
1

2
2

3
3

3
4

0
.0

5
1
5

0
.0

6
5
4

0
.8

0
9
9

14
0-

13
2

4
4

4
5

6
6

7
7

0.
05

95
0.

07
21

0.
84

21

14
0-

13
1

3
3

3
4

4
5

6
6

0.
05

82
0.

07
12

0.
81

86

14
0-

13
0

1
1

2
3

3
3

5
5

0.
05

53
0.

06
87

0.
78

94

13
7-

12
8

4
4

3
3

2
1

1
1

0.
05

93
0.

07
12

0.
85

72

136

(a) (b)

Fig. 7.16. Example Input Image Pair for k35 (a) Image at Voltage
Step 141 and (b) Image at Voltage Step 129

each exposure time. One of the more obvious trends is that the error produced by the

third and sixth scenes is larger than those of the other scenes, especially the scenes

that used the same texture. The k35 and k47 scenes are the ones that are located at

approximately 1.5 meters from the camera (refer to Figure 3.10).

Table 7.6.
DfD-Net Real World Dataset Overall Test Performance Results

NRMSE NMAE SSIM

Minimum 0.0506 0.0340 0.7360

Mean 0.0654 0.0515 0.8099

Maximum 0.1013 0.0936 0.8842

Std Deviation 0.0161 0.0173 0.0421

Table 7.7 outlines the top 5 and bottom 5 performance results for the pruned real

world dataset. Figure 7.18 shows the top 5 and bottom 5 performance results of the

DfD-Net trained and tested on the pruned real world dataset.

137

F
ig

.
7.

17
.

D
fD

-N
et

R
ea

l
W

or
ld

E
x
p

os
u
re

T
im

e
P

er
fo

rm
an

ce
C

om
p
ar

is
on

138

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
7.

18
.

T
op

5
an

d
B

ot
to

m
5

P
er

fo
rm

an
ce

R
es

u
lt

s
fo

r
th

e
S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
L

ID
A

R
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

,
(d

)
&

(h
)

D
fD

-N
et

C
om

p
u
te

d
D

ep
th

M
ap

.

139

Table 7.7.
Top 5 and Bottom 5 DfD-Net Performance Results for the Real World Dataset

Name
Exposure

Time (ms)
NRMSE NMAE SSIM

Top 5

k33 30 0.05064 0.03733 0.80069

k33 20 0.05094 0.03794 0.79652

k33 10 0.05101 0.03853 0.75702

k46 60 0.05129 0.03396 0.81221

k45 30 0.05296 0.04092 0.87814

Bottom 5

k47 60 0.0992 0.0869 0.8103

k47 50 0.1003 0.0898 0.8350

k47 40 0.1007 0.0912 0.8497

k47 10 0.1011 0.0895 0.8244

k47 30 0.1013 0.0936 0.8769

7.3 Summary

In this chapter the examination of the real world dataset was discussed. The

real world dataset was initially blurred using the synthetic blurring process that was

applied to the Middlebury College Stereo dataset. Analyzing the synthetically blurred

results led to the discovery of issues with the camera resolution and the difficulties

it has with resolving finer details at ranges greater than 2.5 meters. However, when

analyzing the results of the real world dataset for the scenes that were between 1.5 and

2.2 meters from the camera the DfD-Net trained on the Middlebury dataset produced

an average NRMSE, NMAE and SSIM of 0.0129, 0.0082 and 0.9702 respectively, with

a standard deviation of 0.0105, 0.0069 and 0.0418. These results exceeded the test

results of the DfD-Net tested on the Middlebury test set.

140

Further research into the microfluidic lens revealed issues with the lens’s sensitivity

to temperature and a hysteresis that occurs when changing between voltage steps.

These issues need to be constantly monitored when creating a dataset, as they affect

the image quality and can make it difficult to produce a consistent dataset.

Finally, this chapter discussed the performance of the DfD-Net trained and then

tested solely on the real word dataset. The DfD-Net trained on the pruned real world

dataset produced an average NRMSE, NMAE and SSIM of 0.0654, 0.0515 and 0.8099

with a standard deviation of 0.0161, 0.0173 and 0.0421 respectively. The next chapter

will summarize the research presented in this dissertation.

141

8. SUMMARY

The motivation for this research was to improve upon the existing state of the art

methods applied to the Depth from Defocus challenge. The current state of the art

methods, while accurate are extremely computationally expensive and require a large

amount of time to process. The recent advancements in deep learning architectures,

especially in the realm of semantic segmentation lend themselves well to the DfD

depth estimation task.

One of the major contributions of this research was the introduction of a deep

learning architecture that can process a pair of in-focus and out-of-focus images and

produce a depth map of the given scene. The new DfD-Net architecture is very re-

silient when it comes to varying lighting conditions. While the graph cuts method

performance varied widely with exposure level, the DfD-Net performance is very con-

sistent across the tested combination of illumination and exposure levels. Compared

to the state of the art graph cuts algorithm, the DfD-Net architecture produced an

average NRMSE of 0.0569, 0.0528 and 0.0558 for the images in the exposure level 0, 1

and 2 categories respectively for the synthetically blurred datasets. This is a improve-

ment of approximately 43.66%, 31.25% and 24.70% for exposure level 0, 1 and 2 as

compared to the overall average NRMSE results of the graph cuts method. Similarly,

the DfD-Net architecture produced an average NMAE of 0.0188, 0.0142 and 0.0159

for each exposure level. This is a improvement of approximately 76.67%, 78.325% and

75.04% for exposure level 0, 1 and 2 as compared to the overall average NMAE results

of the graph cuts method. The only metric where the graph cuts algorithm surpasses

the DfD-Net is the SSIM metric. The DfD-Net produced an average SSIM of 0.9098,

0.9260 and 0.9182 for the exposure level 0, 1 and 2 categories, respectively. This is a

decrease in performance of approximately 0.44%, 3.16% and 4.32% for exposure level

0, 1 and 2 as compared to the overall average SSIM results of the graph cuts method.

142

The run time of the DfD-Net far surpasses the run time of the graph cuts method.

The average run time for the DfD-Net on a single CPU was approximately 10.0293

seconds per image, while the average run time of the graph cuts method was 209.65

seconds per image, a 95.22% reduction in run time. When running the DfD-Net on

the Desktop 2 system, with the specifications outlined in Table B.1, the run time

drops to an average of 0.3977 seconds per image. More importantly the algorithm

runtime is not dependent on exposure of illumination level. This is not quite real

time processing, however the run times are approaching this range.

To assess the robustness of the DfD-Net architecture a 9-fold cross validation

was performed. The results of the 9-fold cross validation show that all but one fold

produces similar results and those results were aligned with the test distribution

presented in Section 5.4.1. The one fold that produced a poorly trained network was

due to the fact that the training samples for the most heavily concentrated depth map

values were under represented in the training process which means that the network

did not see enough examples to accurately recreate the given depth values for the test

dataset.

Another major contribution of this research (Section 6.1) is the application of the

Particle Swarm Algorithm to improve the performance of the DfD-Net on the Middle-

bury College dataset. The PSO algorithm used 20 particles, where each particle was

comprised of the number of filters, the height and the width for each convolutional

filter in the DfD-Net. The particle also consisted of the type of activation layer and

the binary choice of batch normalization layers. Finally, the particle also consisted of

the training patch size.

The PSO algorithm determined a solution that produced an average NRMSE that

was approximately 6.25% below the DfD-Net average NRMSE. Similarly the PSO

DfD-Net produced an average NMAE that was 5.25% below the DfD-Net average

NMAE. However, the PSO DfD-Net did not produce an average SSIM value that was

better than the DfD-Net average SSIM value and was 0.26% lower than the DfD-Net

SSIM value.

143

Additionally, we introduced (Section 6.2) a new method of clustering convolutional

filter outputs to determine the minimum number of required convolutional filters

within a deep learning network architecture. The results of this reduction method

are network architectures that run faster than the baseline network architecture prior

to reduction. This method also demonstrates that the network performance does not

have to suffer as a result of the reduction process.

This method was applied to the DfD-Net network architecture and the Middle-

bury College dataset. The final outcome of the reduction method produced a DfD-Net

that resulted in a decrease in the overall NRMSE value of approximately 3.4% when

compared to the baseline mean NRMSE value. The NMAE and the SSIM were only

slightly worse than the baseline means with a decrease of only 0.65% and 0.13% re-

spectively. This network configuration produced an average speed increase of 44.85%,

40.04%, 14.91% and 26.70% for the Laptop, Jetson TX2, Desktop 1 and Desktop 2

respectively (hardware configurations detailed in Table B.1).

Finally, this research introduced the testing of the real world dataset (Chapter 7).

Initially the dataset was synthetically blurred with the same synthetic blurring process

that was applied to the Middlebury College Stereo dataset. This synthetically blurred

dataset was tested using the DfD-Net that was trained on the Middlebury College

dataset. Analyzing the results of the real world dataset for the scenes that were

between 1.5 and 2.2 meters from the camera the DfD-Net trained on the Middlebury

dataset produced an average NRMSE, NMAE and SSIM of 0.0129, 0.0082 and 0.9702

respectively, with a standard deviation of 0.0105, 0.0069 and 0.0418. These results

exceeded the test results of the DfD-Net tested on the Middlebury test set.

Analyzing the synthetically blurred results led to the discovery of issues with the

camera resolution and the difficulties it has with resolving finer details at ranges of

2.5 meters and greater. The real world dataset was pruned to only include surfaces

in the range of 1.5 to 2.2 meters. The performance of the DfD-Net trained and then

tested solely on the pruned real word dataset was assessed. The training produced

an average NRMSE, NMAE and SSIM of 0.0654, 0.0515 and 0.8099 with a standard

144

deviation of 0.0161, 0.0173 and 0.0421 respectively. These results are visually very

similar to the research conduct by Liu [21] with a similar microfluidic lens. However,

his data was collected with objects that were very close to the camera (within 0.5

meters) and there was no means at the time to accurately measure the ground truth

depth information, so a direct comparison cannot be made.

One final contribution of this research is the real world dataset itself. This dataset

is available for future researchers and contains images taken with a microfluidic lens

and ground truth data provided by a 2-D LIDAR. The final chapter in this dissertation

will discuss some possible avenues for continued research in this area.

145

9. RECOMMENDATIONS FOR FUTURE RESEARCH

Based on the results of Chapter 7 the camera and lens used for the data collect

have limitations that need to be overcome in order to further improve results. The

limitations with the camera are the 1.3 MP resolution and sensor noise. Increasing

the camera resolution will allow for capturing finer details at farther distances from

the camera, which in turn will enable the DfD-Net, or newer deep learning algorithms

to resolve depths at further distances. A reduction in camera noise will also improve

the DfD-Net real world results.

The lens limitations with regards to temperature are manageable within the con-

fines of laboratory experiments, but if a system like the one used for the real world

data was employed outside the lab, controlling the temperature of the lens and camera

may not be feasible. The second issue with the lens was the voltage step hysteresis

observed during this research (Figure 7.12). This hysteresis is also manageable, but

care must be taken to ensure that the lens is behaving as expected each time an image

pair is captured. Because the lens driver system is an open loop control system there

is no direct feedback, and therefore no guarantee that the lens is in the desired state.

Each of these limitations affects the performance of the DfD-Net, and because control

may not always be guaranteed it is recommended to begin looking at lenses that do

not have these limitations.

An option for a lens is a voice coil motor lens which is what is currently in most

cellphones. These lenses use a system similar to a speaker, and contain a stationary

permanent magnet and a coil of wire around the lens. A voltage applied to the coil

creates an opposing magnetic field that enables the lens to change focus distances

and blurs. In addition, the resolution on most cellphone rear cameras far exceeds the

current camera resolution that was used to collect the real world dataset.

146

Ground truth resolution is another major hurdle in developing a high quality

dataset. While the LIDAR unit used in this research has very accurate distance

measurements, the number of channels (64) prevents capturing small details at larger

distances from the LIDAR. Newer promising technologies include solid state LIDAR

units that claim to have similar resolution to today’s cameras are starting to emerge

on the consumer market.

On the algorithm side, a look at various other architectures should also be con-

sidered. The DfD-Net is designed to process a pair of images and produce a depth

map of equal size. However, the ground truth LIDAR data is not to the same scale

as the imagery data. Instead of re-sizing the LIDAR data to match the image data,

development of a network architecture that would take in full size images, gradually

reduce the size of the inputs in each dimension to produce a depth map equal in size

to that of the original ground truth data. It would not be recommended to scale

the imagery data down to the LIDAR data size, because the resolution of the image

would be degraded to the point where blur information could potentially be lost.

The minimum number of required images for the DfD-Net and Depth from De-

focus in general is two, however there is no maximum number. Some preliminary

investigations were conducted using three input images, but the results were not con-

clusive. This is mainly due to the fact that the experiments were conducted prior to

a complete understanding of the limitations of the data collection equipment. Future

research should look at the use of 3 or more images to improve the overall performance

of the DfD-Net and future architectures.

REFERENCES

147

REFERENCES

[1] D. F. Schaeffel, “Processing of Information in the Human Visual System,” in
Handbook of Machine Vision, A. Hornberg, Ed. Weinheim, Germany: WILEY-
VCH Verlag GmbH & Co KGaA, 2006.

[2] A. Saxena, J. Schulte, and A. Y. Ng, “Depth Estimation Using Monocular and
Stereo Cues,” Proceedings of the 20th International Joint Conference on Artificial
Intelligence, pp. 2197–2203, 2007.

[3] Wikipedia contributors, “Computer stereo vision - Wikipedia, The Free
Encyclopedia,” 2018, [Accessed 16-May-2018]. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Computer stereo vision

[4] R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision. San Fransisco:
McGraw-Hill, Inc., 1995.

[5] Y. Schechner and N. Kiryati, “Depth from Defocus vs. Stereo: How Different
Really Are They?” International Journal of Computer Vision, vol. 39, no. 2, pp.
141–162, 2000.

[6] T. Q. Sibley, The Geometric Viewpoint: A Survey of Geometries, ser. Addison-
Wesley higher mathematics. Addison-Wesley, 1998.

[7] D. Scharstein and C. Pal, “Learning Conditional Random Fields for Stereo,”
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2007.

[8] H. Hirschmüller and D. Scharstein, “Evaluation of Cost Functions for Stereo
Matching,” IEEE Computer Society Conference on Computer Vision and Pat-
tern Recognition, 2007.

[9] H. Hirschmüller, “Accurate and Efficient Stereo Processing by Semi-Global
Matching and Mutual Information,” Computer Vision and Pattern Recognition,
vol. 2, pp. 807–814, 2005.

[10] Y. Boykov, O. Veksler, and R. Zabih, “Fast Approximate Energy Minimization
via Graph Cuts,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 23, no. 11, pp. 1222–1239, 2001.

[11] J. Žbontar and Y. LeCun, “Stereo Matching by Training a Convolutional Neural
Network to Compare Image Patches,” Journal of Machine Learning Research,
vol. 17, pp. 1–32, 2016.

[12] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient Deep Learning for Stereo
Matching,” in 2016 IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), June 2016, pp. 5695–5703.

148

[13] C. Hazirbas, L. Leal-Taixé, and D. Cremers, “Deep Depth From Focus,”
CoRR, vol. abs/1704.01085, 2017, [Accessed 15-May-2018]. [Online]. Available:
http://arxiv.org/abs/1704.01085

[14] Wikipedia contributors, “Well-posed problem - Wikipedia, The Free
Encyclopedia,” 2017, [Accessed 16-May-2018]. [Online]. Available: https:
//en.wikipedia.org/w/index.php?title=Well-posed problem

[15] M. Moeller, M. Benning, C. Schönlieb, and D. Cremers, “Variational Depth From
Focus Reconstruction,” IEEE Transactions on Image Processing, vol. 24, no. 12,
pp. 5369–5378, 2015.

[16] V. Gaganov and A. Ignatenko, “Robust Shape from Focus via Markov Random
Fields,” in GraphiCon, October 2009, pp. 74–80.

[17] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for
Biomedical Image Segmentation,” CoRR, vol. abs/1505.04597, 2015, [Accessed
10-July-2018]. [Online]. Available: http://arxiv.org/abs/1505.04597

[18] A. P. Pentland, “A New Sense for Depth of Field,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 9, no. 4, pp. 523–531, 1987.

[19] M. Watanbe and S. K. Nayar, “Rational Filters for Passive Depth from Defocus,”
International Journal of Computer Vision, vol. 27, no. 3, pp. 203–225, 1998.

[20] W. E. Crofts, “The Generation of Depth Maps via Depth-from-Defocus,” Ph.D.
dissertation, University of Warwick, 2007.

[21] C. Liu, “Three Dimensional Moving Pictures with a Single Imager and Micro-
fluidic Lens,” Ph.D. dissertation, Purdue University, 2016.

[22] S. Pasinetti, I. Bodini, M. Lancini, F. Docchio, and G. Sansoni, “A Depth From
Defocus Measurement System Using a Liquid Lens Objective for Extended Depth
Range,” IEEE Transactions on Instrumentation and Measurement, vol. 66, no. 3,
pp. 441–450, 2017.

[23] Z. Chen, X. Guo, S. Li, X. Cao, and J. Yu, “A Learning-based
Framework for Hybrid Depth-from-Defocus and Stereo Matching,” CoRR,
vol. abs/1708.00583, 2017, [Accessed 11-July-2018]. [Online]. Available:
http://arxiv.org/abs/1708.00583

[24] R. A. Herman, A Treatise on Geometrical Optics. London: Cambridge Univer-
sity Press, 1900.

[25] A. R. Greenleaf, Photographic Optics. New York: MacMillan Company, 1950.

[26] J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon.,
vol. 3, no. 2, pp. 128–160, June 2011, [Accessed 08-June-2018]. [Online].
Available: http://aop.osa.org/abstract.cfm?URI=aop-3-2-128

[27] D. Scharstein and R. Szeliski, “High-accuracy stereo depth maps using structured
light,” IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, vol. 1, pp. 195–202, 2003.

149

[28] Corning, “Corning R© Varioptic R© Lenses, Market-Leading Adjustable Lens
Solutions for Industrial Application,” 2018, [Accessed 21-June-2018]. [Online].
Available: https://www.corning.com/media/worldwide/Innovation/documents/
FINAL CorningVariopticLenses productbrochure 5.4.18 lowresWEB.pdf

[29] T. Chai and R. R. Draxler, “Root mean square error (RMSE) or mean absolute
error (MAE)? Arguments against avoiding RMSE in the literature,” Geoscien-
tific Model Development, vol. 7, pp. 1247–1250, June 2014.

[30] C. J. Willmott and K. Matsuura, “Advantages of the Mean Absolute Error
(MAE) Over the Root Mean Square Error (RMSE) in Assessing Average Model
Performance,” Climate Research, vol. 30, pp. 79–82, December 2005.

[31] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality
Assessment: From Error Visibility to Structural Similarity,” IEEE Transactions
On Image Processing, vol. 13, pp. 600–612, April 2004.

[32] R. J. Radke, Computer Vision for Visual Effects. Cambridge University Press,
2012.

[33] V. Kolmogorov and R. Zabih, “What Energy Functions can be Minimized via
Graph Cuts?” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 26, no. 2, pp. 147–159, 2004.

[34] Y. Boykov and V. Kolmogorov, “An Experimental Comparison of Min-Cut/Max-
Flow Algorithms for Energy Minimization in Vision,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 26, no. 9, pp. 1124–1137, 2004.

[35] H. Ishikawa, “A Practical Introduction to Graph Cut,” in The 3rd Pacific-Rim
Symposium on Image and Video Technology, 2009, [Accessed 21-June-2018].
[Online]. Available: http://www.f.waseda.jp/hfs/PSIVT2009.pdf

[36] J. Lynn Arthur Steen, J. Arthur Seebach, Counter Examples in Topology. New
York, New York: Holt, Reinhart and Winston, Inc., 1970.

[37] S. Park, S. Yu, B. Moon, S. Ko, and J. Paik, “Low-light Image Enhancement
Using Variational Optimization-Based Retinex Model,” IEEE Transactions on
Consumer Electronics, vol. 63, no. 2, pp. 178–184, May 2017.

[38] C. Chen, Q. Chen, J. Xu, and V. Koltun, “Learning to See in the Dark,”
CoRR, vol. abs/1805.01934, 2018, [Accessed 12-July-2018]. [Online]. Available:
http://arxiv.org/abs/1805.01934

[39] M. Everingham, L. V. Gool, C. Williams, J. Winn, and A. Zisser-
man, “The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Re-
sults,” http://www.pascal-network.org/challenges/VOC/voc2012/workshop/in-
dex.html, 2012, [Accessed 28-December-2017].

[40] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for
semantic segmentation,” CoRR, vol. abs/1411.4038, 2014. [Online]. Available:
http://arxiv.org/abs/1411.4038

[41] R. Hahnloser and H. S. Seung, “Permitted and Forbidden Sets in Symmetric
Threshold-Linear Networks,” in Conference on Neural Information Processing
Systems, December 2001.

150

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition,” in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 770–778.

[43] Wikipedia contributors, “Rectifier (neural networks) - Wikipedia, The
Free Encyclopedia,” 2018, [Accessed 15-July-2018]. [Online]. Avail-
able: https://en.wikipedia.org/w/index.php?title=Rectifier (neural networks)
&oldid=847676984

[44] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers: Surpassing
Human-Level Performance on ImageNet Classification,” in 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), December 2015, pp. 1026–1034.

[45] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” CoRR, vol. abs/1502.03167, 2015.
[Online]. Available: http://arxiv.org/abs/1502.03167

[46] D. E. King, “Dlib-ml: A Machine Learning Toolkit,” Journal of Machine Learn-
ing Research, vol. 10, pp. 1755–1758, 2009.

[47] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
CoRR, vol. abs/1412.6980, 2014, [Accessed 15-May-2018]. [Online]. Available:
http://arxiv.org/abs/1412.6980

[48] D. E. King, “Automatic Learning Rate Scheduling That Really Works,”
http://blog.dlib.net/2018/02/automatic-learning-rate-scheduling-that.html,
February 2018, [Accessed 16-July-2018].

[49] S. Falkner, A. Klein, and F. Hutter, “Practical Hyperparameter Optimization
for Deep Learning,” in International Conference on Learning Representations
(ICLR), 2018. [Online]. Available: \url{https://openreview.net/forum?id=
HJMudFkDf}

[50] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian Op-
timization of Machine Learning Algorithms,” in Advances in Neural
Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 2951–2959. [Online]. Available: http://papers.nips.cc/paper/
4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf

[51] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and Robust Automated Machine Learning,” in Advances
in Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, Eds. Curran Associates,
Inc., 2015, pp. 2962–2970. [Online]. Available: http://papers.nips.cc/paper/
5872-efficient-and-robust-automated-machine-learning.pdf

[52] S. R. Young, D. C. Rose, T. P. Karnowski, S.-H. Lim, and R. M. Patton,
“Optimizing Deep Learning Hyper-parameters Through an Evolutionary
Algorithm,” in Proceedings of the Workshop on Machine Learning in High-
Performance Computing Environments, ser. MLHPC ’15. ACM, 2015, pp.
4:1–4:5. [Online]. Available: http://doi.acm.org/10.1145/2834892.2834896

151

[53] F. Ye, “Particle Swarm Optimization-Based Automatic Parameter Selection
for Deep Neural Networks and Its Applications in Large-Scale and High-
Dimensional Data,” PLoS ONE, vol. 12, pp. 1186–1198, 2017. [Online].
Available: https://doi.org/10.1371/journal.pone.0188746

[54] P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Pastor, “Particle
Swarm Optimization for Hyper-Parameter Selection in Deep Neural Networks,”
in 2017 The Genetic and Evolutionary Computation Conference (GECCO), July
2017, pp. 481–488.

[55] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” in Proceedings of
ICNN’95 - International Conference on Neural Networks, vol. 4, Nov 1995, pp.
1942–1948.

[56] M. Clerc and J. Kennedy, “The particle swarm - explosion, stability, and conver-
gence in a multidimensional complex space,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 1, pp. 58–73, Feb 2002.

[57] “NVIDIA R© Jetson Systems,” https://www.nvidia.com/en-us/autonomous-
machines/embedded-systems-dev-kits-modules/, [Accessed 11-March-2019].

[58] Y. Fu, “Xilinx ML Suite Overview,” https://www.xilinx.com/publications/
events/machine-learning-live/colorado/xDNN ML Suite.pdf, 2018, [Accessed
11-March-2019].

[59] J. L. Chu and A. Krzyżak, Analysis of Feature Maps Selection in Supervised
Learning Using Convolutional Neural Networks, M. Sokolova and P. van Beek,
Eds. Springer, Cham, 2014, vol. 8436.

[60] A. RoyChowdhury, P. Sharma, and E. G. Learned-Miller, “Reducing Duplicate
Filters in Deep Neural Networks,” in Neural Information Processing Systems
2018, 2018.

[61] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-Based Learning
Applied to Document Recognition,” Proceedings of the IEEE, vol. 11, no. 86, pp.
2278–2324, 1998.

[62] T. Yang, Y. Chen, and V. Sze, “Designing Energy-Efficient Convolutional Neural
Networks using Energy-Aware Pruning,” CoRR, vol. abs/1611.05128, 2016,
[Accessed 9-April-2019]. [Online]. Available: http://arxiv.org/abs/1611.05128

[63] T. Kohonen, “The Self-Organizing Map,” in Proceedings of the IEEE, vol. 78,
no. 9, September 1990, pp. 1464–1480.

[64] C. Liu and L. A. Christopher, “Three Dimensional Moving Pictures with a Single
Imager and Microfluidic Lens,” IEEE Transactions on Consumer Electronics,
vol. 60, no. 2, pp. 258–266, 2014.

[65] K. De and V. Masilamani, “Fast no-reference image sharpness measure for
blurred images in discrete cosine transform domain,” in 2016 IEEE Students
Technology Symposium (TechSym), Sept 2016, pp. 256–261.

[66] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate deep net-
work learning by exponential linear units (elus),” in 4th International Conference
on Learning Representations, (ICLR) 2016, May 2016.

152

[67] X. Jin, C. Xu, J. Feng, Y. Wei, J. Xiong, and S. Yan, “Deep learning with s-
shaped rectified linear activation units,” in Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, ser. AAAI’16. AAAI Press, 2016, pp.
1737–1743.

APPENDIX

153

A. DATASET SCENE OVERVIEW

Figure A.1 shows an overview of the scenes within the Middlebury College Stereo

Vision Dataset [7,8]. The representative images are all from the illumination level 2,

exposure level 1 images.

Figures A.2 and A.3 shows an overview of the scenes within the Real World

dataset. The representative images shown were all taken from the 50 ms exposure

time images and the voltage step of 135.

154

F
ig

.
A

.1
.

M
id

d
le

b
u
ry

C
ol

le
ge

D
at

as
et

O
ve

rv
ie

w

155

F
ig

.
A

.2
.

R
ea

l
W

or
ld

D
at

as
et

O
ve

rv
ie

w
-

P
ar

t
1

156

F
ig

.
A

.3
.

R
ea

l
W

or
ld

D
at

as
et

O
ve

rv
ie

w
-

P
ar

t
2

157

B. TIMING ANALYSIS TEST HARDWARE

Table B.1 outlines the operating system (OS) the CPU hardware and the GPU

hardware used to conduct the timing tests. These platforms were chosen because they

represent a broad spectrum of technologies that could be used for the implementation

of deep learning architectures. The Jetson Tx2 was configured with NVIDIA R©’s

JetPack 3.3 with an OS derived from Ubuntu 16.04 but configured for an ARM

processor.

Table B.1.
Test Hardware Platforms

Platform / OS CPU GPU

Laptop

Windows R© 8.1

Intel R© CoreTM

i7-4700HQ @ 2.40GHz

NVIDIA R© GTX770m

Kepler @ 705 MHz

Jetson TX2

Ubuntu 16.04

ARM Cortex-A57 @2GHz,

NVIDIA R© Denver2 @2GHz

NVIDIA R© Tegra

Pascal @ 1300 MHz

Desktop 1

Windows R© 10

Intel R© CoreTM

i7-8700 @ 3.20GHz

NVIDIA R© Titan Xp

Pascal @ 1911 MHz

Desktop 2

Ubuntu 16.04

AMD RyzenTM 7

1800X @ 3.60GHz

NVIDIA R© GTX1080

Pascal @ 1810 MHz

158

C. DFD-NET MIDDLEBURY COLLEGE DATASET PSO

RESULTS

C.1 PSO Algorithm Details

The PSO variant used in this research, developed by Clerc and Kennedy [56], uses

a constriction factor to speed up the rate of convergence. The constriction factor is

defined in Equation C.1 where φ = c1 + c2 with c1 = 2.4 and c2 = 2.1. The constant

c1 is known as the cognitive constant as it influences the behavior of the particles for

the current iteration. The constant c2 is known as the social constant as it influences

the behavior of the particles between the current iteration of the algorithm and the

current global best result from the current iteration and all previous iterations.

κ =
2∣∣∣2− φ−√φ2 − 4φ

∣∣∣ (C.1)

The update function for the velocity component of the PSO particle is defined

in Equation C.2 where x
(k)
i is the ith particle at the kth iteration of the algorithm.

This particle contains all of the optimization parameters. The p
(k)
i term, also known

as the personal best or p-best term, is the ith particle’s position that has resulted in

the smallest objective function value for all previous algorithm iterations. The g(k)

term, or g-best, is a single particle that has minimized the objective function for all

particles and iterations. The ‘◦’ symbol is the Hadamard product operator and indi-

cates a point-wise multiplication of vectors or matrices versus the traditional matrix

multiplication. The velocity of the particle is used to control the direction and rate

of movement for a given particle. This movement is what allows the PSO algorithm

to search the objective function’s space for an optimal solution. Once the updated

159

velocity for each particle has been calculated, each element in the velocity component

is run through a limiting function. This function constrains the minimum/maximum

amount of movement that the particle can move in a single iteration. This prevents

the particle from making excessively large jumps across the search space. This clamp-

ing effectively allows the particle to explore a more local area within the search space

while moving towards the globally optimal solution.

v
(k+1)
i = κ

(
v
(k)
i + c1r

(k)
i ◦

(
p
(k)
i − x

(k)
i

)
+ c2s

(k)
i ◦

(
g(k) − xki

))
(C.2)

The particle update function is defined in Equation C.3. Once the particle has

been updated it is run through another limiting function to ensure that the individual

particle components do not go out-of-bounds for the problem.

x
(k+1)
i = x

(k)
i + v

(k+1)
i (C.3)

The steps required to perform the PSO algorithm are outline in Algorithm C.1.

Where k is the iteration number and N is the number of particles used for each

iteration. In this research N was set to 20. There are two sections for this algorithm:

1) initialization and 2) the main routine. The initialization section begins by setting

k = 0 and then for each particle a random set of parameters (x
(0)
i) and velocities (v

(0)
i)

were generated. Next each particle is placed into p
(0)
i . The DfD-Net was then trained

with each of the x
(0)
i particles. Once each of the N DfD-Net variants was trained the

objective function (Equation 6.1) was evaluated and the particle that resulted in the

smallest objective function was placed into g(0).

The main routine begins by generating two uniformly distributed random vectors

r
(k+1)
i and s

(k+1)
i in the range of (0,1), each of which are the same size as the x

(k)
i

particle. Next the velocity and particle position are updated according to equations

C.2 and C.3 respectively. The DfD-Net is then trained again with each of the twenty

x
(k+1)
i particles. Once each of the twenty DfD-Net variants finished training, the

160

Algorithm C.1. Particle Swarm Optimization Algorithm

Initialization:

k ← 0

for i = 0 to N do

generate random x
(0)
i and v

(0)
i

set p
(0)
i = x

(0)
i

train DfD-Net using x
(0)
i parameters

evaluate f(x
(0)
i) according to Equation 6.1

g(0) = arg min
x∈(x01,...,x0N)

f(x
(0)
i)

Main Routine:

repeat

for i = 0 to N do

generate uniform random r
(k+1)
i and s

(k+1)
i in the range (0,1)

update v
(k+1)
i according to Equation C.2

update x
(k+1)
i according to Equation C.3

train DfD-Net using x
(k+1)
i parameters

evaluate f(x
(k+1)
i) according to Equation 6.1

if f(x
(k+1)
i) < f(p

(k)
i) then

p
(k+1)
i = x

(k+1)
i

else

p
(k+1)
i = p

(k)
i

if ∃ i ∈ (1, ..., N) s.t. f(x
(k+1)
i) < f(g(k)) then

g(k+1) = x
(k+1)
i

else

g(k+1) = g(k)

k ← k + 1

until stopping criteria is met

161

objective function was again evaluated. Next, the current objective function value

was compared to the previous iteration objective function value for each particle. If

the current value is less than the previous value the x
(k+1)
i particle is placed into

p
(k+1)
i . Otherwise, the previous p-best for the particle (p

(k)
i) is placed into p

(k+1)
i .

Once all of the particles have been evaluated, if there exists a particle in the current

iteration that produced a smaller objective function value than the current global

best, it is placed into the new global best particle (g(k+1)). Otherwise the previous

iteration’s globally best particle is placed into g(k+1). Finally the iteration number

is incremented by one. The main routine is repeated until the stopping criteria was

met, which for this research the only stopping criteria used was to set the maximum

number of iterations to 40.

Table C.1 outlines the parameters within the convolutional filter layer. The parti-

cle limits are the lower and upper limits for the particle values. These limits represent

a filter size ranging between 1x1 and 9x9. For the number of filters the range is be-

tween 8 and 512. The velocity limit column indicates the minimum/maximum change

that the velocity component can take in one iteration. These limits were applied to

all convolutional layers. The upsampling and downsampling convolutional blocks had

a reduced set of parameters to optimize. The filter sizes were kept at their original

values of 2x2 to ensure that tensor dimensions were maintained and only the num-

ber of filters in the layer was optimized. The final convolutional layer was also left

completely unchanged.

Table C.1.
Convolutional Layer Optimization Parameters

Parameter Velocity Limits Particle Limits Mapping Function

Filter width [-2, 2] [0, 4] 2 bw + 0.5c+ 1

Filter height [-2, 2] [0, 4] 2 bh+ 0.5c+ 1

Filter number [-16, 16] [8, 512] bn+ 0.5c

162

Table C.2.
Activation Layer Optimization Parameters

PSO Mapping Activation Activation Function Equation

0 ReLU [41] f(x) =

x, x > 0

0, otherwise

1 pReLU [44] f(x) =

x, x > 0

αx, otherwise

2 Sigmoid f(x) =
1

1 + e−x

3 Hyperbolic Tan f(x) =
ex − e−x

ex + e−x

4 ELU [66] f(x) =

x, , ifx ≥ 0

α(ex − 1), otherwise

5 sReLU [67] f(x) =

tri + αri (xi − tri), xi ≥ tri

xi, tri > xi > tli

tli + αli(xi − tli), xi ≤ tli

Table C.2 outlines the activation functions and their governing equations that were

used as potential optimization candidates. Because the PSO algorithm only operates

on numerical values a mapping from an activation function to a numerical value was

created (first column). The velocity limit for the activation function component of

the particle was limited to [-1, 1]. The particle limit for the activation function

was limited to [0, 5]. However, instead of hard clamping the particle value to the

163

minimum or maximum limits the actual particle values were allowed to wrap around

in a modulo n fashion, where n is the number of activation functions available to

the PSO algorithm to test. For example, if the PSO algorithm determined that an

activation function mapping to the number six should be used the actual numerical

mapping would be wrapped around to the first entry and the ReLU activation function

would be selected. Similarly, if the PSO algorithm determined that the activation

function mapping to the number -1 should be used then the sixth activation function

would be selected. This was done because there is no numerical relationship between

the activation functions and they could have be placed in any order.

For the batch normalization layers the optimization choice was to either use a

batch normalization layer or not to use a batch normalization layer. This was mapped

into a binary decision of either ‘0’ (don’t use the batch normalization layer) or ‘1’ (use

the batch normalization layer). The velocity component for the batch normalization

elements of the particles were limited to [-1, 1] and the batch normalization portion

of the particle was limited to [0, 1].

Table C.3.
Training Crop Size Optimization Parameters

Parameter Velocity Limits Particle Limits Mapping Function

Crop width [-1, 1] [0, 13] 4 bn+ 0.5c+ 12

Crop height [-1, 1] [0, 13] 4 bn+ 0.5c+ 12

Table C.3 outlines the training patch size limiting values and mapping function.

The particle limits represent a crop size that was allowed to vary between 12x12 pixels

on the low end and 64x64 pixels on the upper end in 4x4 pixel increments. Only one

parameter was used to determine the crop size which means that the crop sizes were

always square.

164

C.2 PSO Algorithm Results

Figures C.1 through C.8 show the results of the PSO algorithm applied to the

DfD-Net trained and tested on the Middlebury College dataset [7,8]. The images are

arranged in the order of lowest NRMSE score to highest NRMSE score.

165

(a) (b) (c) (d)

Fig. C.1. PSO Performance Results for the Middlebury College
Dataset - Part 1. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

166

(a) (b) (c) (d)

Fig. C.2. PSO Performance Results for the Middlebury College
Dataset - Part 2. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

167

(a) (b) (c) (d)

Fig. C.3. PSO Performance Results for the Middlebury College
Dataset - Part 3. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

168

(a) (b) (c) (d)

Fig. C.4. PSO Performance Results for the Middlebury College
Dataset - Part 4. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

169

(a) (b) (c) (d)

Fig. C.5. PSO Performance Results for the Middlebury College
Dataset - Part 5. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

170

(a) (b) (c) (d)

Fig. C.6. PSO Performance Results for the Middlebury College
Dataset - Part 6. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

171

(a) (b) (c) (d)

Fig. C.7. PSO Performance Results for the Middlebury College
Dataset - Part 7. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

172

(a) (b) (c) (d)

Fig. C.8. PSO Performance Results for the Middlebury College
Dataset - Part 8. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

173

D. DFD-NET MIDDLEBURY COLLEGE DATASET

FILTER REDUCTION RESULTS

D.1 Filter Reduction Algorithm Details

The SOM algorithm algorithm uses a distance function to compute the negative

distance between the neuron weights and the input vector for each example (in this

case the input vectors are the outputs of a given DNN layer). The function used to

determine the distance between each of the neurons was the link distance function.

Algorithm D.1 defines how the neuron distances are calculated, where ‘S’ is the initial

number of neurons. The competitive neuron with weights that result in the smallest

negative distance wins for that particular input. The winning neuron outputs a “1”

while the other neurons output a “0”. The winning neuron also exerts an influence on

the losing neurons within a certain neighborhood to move their weights towards the

winning neuron’s weights. Ultimately the neurons approach an equilibrium, thereby

defining which input vector activates a particular neuron.

Algorithm D.1. Link Distance Calculation Algorithm

Dij = 0, if i == j

Dij = 1, if
√∑

(Pi − Pj)2 ≤ 1

Dij = 2, if k exists,Dik = Dkj = 1

Dij = 3, if k1, k2 exists,Dik1 = Dk1k2 = Dk2j = 1

Dij = N, if k1..kN exists,Dik1 = Dk1k2 = DkN j = 1

Dij = S, otherwise

174

For each layer analyzed, the number of neurons used in the SOM clustering was

set to the number of output filters in each layer, given N filters, there could be no

more than N clusters. We don’t necessarily care which outputs get clustered together,

only how many total clusters are determined. In fact each of the sample inputs yields

a different number of clusters for a given layer. For this reason the cluster minimum,

mean and maximum were used as the basis for the filter reduction. Table D.1 shows

the minimum, mean and maximum number of clusters as determined by the SOM

algorithm. The layer numbers are color coded to match the layer type as depicted in

Figure D.1. Layer 1 cannot be reduced since this layer is the final classification layer.

Fig. D.1. Graphical Representation of the DfD-Net Network Architecture

Table D.1.
SOM Clustering Results for the Baseline DfD-Net Architecture

Layer 52 48 45 42 40 37 34 32 29 27 24 20 17 15 12 8 5 2

min 33 39 96 162 152 115 133 270 126 121 119 125 121 91 20 18 65 50

mean 41 46 99 166 163 122 145 275 140 128 122 135 125 95 20 18 71 61

max 46 54 104 171 171 129 152 283 155 133 127 148 129 100 20 19 74 70

175

The residual layer adds an additional level of complexity when trying to deter-

mine the number of convolutional filters to use. This complexity can be illustrated

by examining the first residual block (layers 48-45) at the input and the buffering

convolutional filter and pReLU (layers 52 and 50). The minimum number of filters

as determined by the SOM algorithm shows that layer 52 should have 33 filters, layer

48 only needs to have 39 filters and layer 45 should have 96 filters. To avoid the issue

of tensor addition imbalance either 33 or 96 should be selected for layers 52 and 45.

So, for every residual block there are two possible candidates. The last four layers

also present an additional level of choice. Layers 12-5 form the same structure as

previously described. The added pReLU (layer 2) before the final classification layer

adds an additional reduction option. For example using the minimum SOM results

the last residual block (layer 12, 8 and 5) could take on the configuration of 20-18-20

and 65-18-65. Or if we used the output of the pReLU (layer 2) the configuration

would be 50-18-50. This results in three possible choices for the minimum, mean and

maximum SOM results.

D.2 Filter Reduction Algorithm Results

Figures D.2 through D.9 show the results of the filter reduction method applied to

the DfD-Net trained and tested on the Middlebury College dataset [7,8]. The images

are arranged in the order of lowest NRMSE score to highest NRMSE score.

176

T
ab

le
D

.2
.

D
fD

-N
et

R
ed

u
ct

io
n

T
es

t
C

on
fi
gu

ra
ti

on
s

N
e
tw

o
rk

L
a
y
e
r

N
u
m

b
e
r

C
o
n
fi
g
u
ra

ti
o
n

5
2

4
8

4
5

4
2

4
0

3
7

3
4

3
2

2
9

2
7

2
4

2
0

1
7

1
5

1
2

8
5

1

O
ri

gi
n
al

12
8

12
8

12
8

25
6

25
6

25
6

51
2

51
2

51
2

25
6

25
6

25
6

25
6

12
8

12
8

12
8

12
8

25
6

B
-0

1-
01

33
39

33
11

5
15

2
11

5
12

6
27

0
12

6
12

1
11

9
12

5
11

9
91

20
18

20
25

6

B
-0

1-
02

96
39

96
16

2
15

2
16

2
13

3
27

0
13

3
12

1
12

1
12

5
12

1
91

65
18

65
25

6

B
-0

1-
03

96
39

96
16

2
15

2
16

2
13

3
27

0
13

3
12

1
12

1
12

5
12

1
91

50
18

50
25

6

B
-0

2-
01

41
46

41
12

2
16

3
12

2
14

0
27

5
14

0
12

8
12

2
13

5
12

2
95

20
18

20
25

6

B
-0

2-
02

99
46

99
16

6
16

3
16

6
14

5
27

5
14

5
12

8
12

5
13

5
12

5
95

71
18

71
25

6

B
-0

2-
03

99
46

99
16

6
16

3
16

6
14

5
27

5
14

5
12

8
12

5
13

5
12

5
95

61
18

61
25

6

B
-0

3-
01

46
54

46
12

9
17

1
12

9
15

2
28

3
15

2
13

3
12

7
14

8
12

7
10

0
20

19
20

25
6

B
-0

3-
02

10
4

54
10

4
17

1
17

1
17

1
15

5
28

3
15

5
13

3
12

9
14

8
12

9
10

0
74

19
74

25
6

B
-0

3-
03

10
4

54
10

4
17

1
17

1
17

1
15

5
28

3
15

5
13

3
12

9
14

8
12

9
10

0
70

19
70

25
6

F
-0

1-
01

96
44

96
10

4
15

0
10

4
14

5
20

6
14

5
12

9
11

2
10

9
11

2
93

71
18

71
25

6

F
-0

1-
02

96
44

96
10

4
15

0
10

4
18

5
20

6
18

5
12

9
11

2
10

9
11

2
93

71
18

71
25

6

F
-0

2-
01

96
44

96
10

4
15

0
10

4
16

0
25

3
16

0
14

5
11

2
10

9
11

2
93

71
18

71
25

6

F
-0

2
-0

2
9

6
4
4

9
6

1
0
4

1
5
0

1
0
4

1
9
0

2
5
3

1
9
0

1
4
5

1
1
2

1
0
9

1
1
2

9
3

7
1

1
8

7
1

2
5
6

F
-0

3-
01

96
44

96
10

4
15

0
10

4
15

5
22

6
15

5
13

9
11

2
10

9
11

2
93

71
18

71
25

6

F
-0

3-
02

96
44

96
10

4
15

0
10

4
18

8
22

6
18

8
13

9
11

2
10

9
11

2
93

71
18

71
25

6

F
-0

2-
02

L
96

40
96

10
4

14
4

10
4

19
2

25
6

19
2

14
4

11
2

11
2

11
2

96
72

16
72

25
6

F
-0

2-
02

H
96

48
96

10
4

15
2

10
4

19
2

25
6

19
2

15
2

11
2

11
2

11
2

96
72

24
72

25
6

177

Table D.3.
DfD-Net Configuration Average Runtime Results

Network Average Runtime/Image (s)

Configuration Laptop Jetson TX2 Desktop 1 Desktop 2

Original 1.75069 3.89837 0.52668 0.41274

B-01-01 0.74395 1.85388 0.41012 0.27135

B-01-02 0.99336 2.46213 0.44992 0.31245

B-01-03 0.96670 2.32889 0.43593 0.30252

B-02-01 0.79274 1.95407 0.41960 0.27731

B-02-02 1.04594 2.57182 0.45406 0.31956

B-02-03 1.01773 2.44731 0.44365 0.31157

B-03-01 0.84491 2.04646 0.42211 0.28223

B-03-02 1.13332 2.70476 0.45760 0.32747

B-03-03 1.13474 2.75342 0.45197 0.33035

F-01-01 0.94893 2.32520 0.40292 0.30775

F-01-02 0.95420 2.32717 0.40229 0.29967

F-02-01 0.95743 2.33158 0.41362 0.30315

F-02-02 0.96554 2.33764 0.44816 0.30252

F-03-01 0.95621 2.32580 0.40632 0.30231

F-03-02 0.95424 2.33922 0.41007 0.30233

F-02-02L 0.96019 2.34308 0.41034 0.30163

F-02-02H 0.97198 2.35826 0.42731 0.30432

178

(a) (b) (c) (d)

Fig. D.2. Filter Reduction Performance Results for the Middlebury
College Dataset - Part 1. (a) In-focus Image, (b) Out-of-focus Image,
(c) Ground Truth Depth Map and (d) DfD-Net Computed Depth
Map.

179

(a) (b) (c) (d)

Fig. D.3. Filter Reduction Performance Results for the Middlebury
College Dataset - Part 2. (a) In-focus Image, (b) Out-of-focus Image,
(c) Ground Truth Depth Map and (d) DfD-Net Computed Depth
Map.

180

(a) (b) (c) (d)

Fig. D.4. Filter Reduction Performance Results for the Middlebury
College Dataset - Part 3. (a) In-focus Image, (b) Out-of-focus Image,
(c) Ground Truth Depth Map and (d) DfD-Net Computed Depth
Map.

181

(a) (b) (c) (d)

Fig. D.5. Filter Reduction Performance Results for the Middlebury
College Dataset - Part 4. (a) In-focus Image, (b) Out-of-focus Image,
(c) Ground Truth Depth Map and (d) DfD-Net Computed Depth
Map.

182

(a) (b) (c) (d)

Fig. D.6. Filter Reduction Performance Results for the Middlebury
College Dataset - Part 5. (a) In-focus Image, (b) Out-of-focus Image,
(c) Ground Truth Depth Map and (d) DfD-Net Computed Depth
Map.

183

(a) (b) (c) (d)

Fig. D.7. Filter Reduction Performance Results for the Middlebury
College Dataset - Part 6. (a) In-focus Image, (b) Out-of-focus Image,
(c) Ground Truth Depth Map and (d) DfD-Net Computed Depth
Map.

184

(a) (b) (c) (d)

Fig. D.8. Filter Reduction Performance Results for the Middlebury
College Dataset - Part 7. (a) In-focus Image, (b) Out-of-focus Image,
(c) Ground Truth Depth Map and (d) DfD-Net Computed Depth
Map.

185

(a) (b) (c) (d)

Fig. D.9. Filter Reduction Performance Results for the Middlebury
College Dataset - Part 8. (a) In-focus Image, (b) Out-of-focus Image,
(c) Ground Truth Depth Map and (d) DfD-Net Computed Depth
Map.

186

E. DFD-NET REAL WORLD DATASET

SYNTHETICALLY BLURRED RESULTS

Figures E.2 through E.35 show the results of the DfD-Net trained on the Middle-

bury College dataset [7, 8] and tested on the subset of the synthetically blurred real

world dataset that are derivatives of the k01, k02 and k03 scenes. The images are

arranged in the order of lowest NRMSE score to highest NRMSE score. Figure E.1

shows the order of arrangement for the images for each page.

Fig. E.1. Example Image Order

187

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

1.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

188

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

2.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

189

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.4
.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

3.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

190

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.5
.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

4.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

191

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.6
.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

5.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

192

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.7
.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

6.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

193

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.8
.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

7.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

194

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.9
.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

8.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

195

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.1
0.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

9.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

196

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.1
1.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

10
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

197

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.1
2.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

11
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

198

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.1
3.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

12
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

199

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.1
4.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

13
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

200

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.1
5.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

14
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

201

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.1
6.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

15
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

202

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.1
7.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

16
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

203

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.1
8.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

17
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

204

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.1
9.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

18
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

205

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
0.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

19
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

206

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
1.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

20
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

207

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
2.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

21
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

208

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
3.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

22
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

209

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
4.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

23
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

210

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
5.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

24
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

211

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
6.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

25
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

212

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
7.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

26
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

213

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
8.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

27
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

214

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.2
9.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

28
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

215

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
0.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

29
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

216

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
1.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

30
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

217

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
2.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

31
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

218

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
3.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

32
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

219

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
4.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

33
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

220

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
5.

K
01

-K
03

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

34
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

221

Figures E.36 through E.47 show the results of the DfD-Net trained on the Middle-

bury College dataset [7, 8] and tested on the subset of the synthetically blurred real

world dataset that is a derivative of the k00 scene. The images are arranged in the

order of lowest NRMSE score to highest NRMSE score. The order of arrangement of

the images follows the same format outlined in Figure E.1.

222

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
6.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

1.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

223

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
7.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

2.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

224

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
8.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

3.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

225

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.3
9.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

4.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

226

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.4
0.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

5.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

227

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.4
1.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

6.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

228

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.4
2.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

7.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

229

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.4
3.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

8.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

230

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.4
4.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

9.
(a

)
&

(e
)

In
-f

o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

231

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.4
5.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

10
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

232

(a
)

(b
)

(c
)

(d
)

(e
)

(f
)

(g
)

(h
)

F
ig

.
E

.4
6.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

11
.

(a
)

&
(e

)
In

-f
o
cu

s
Im

ag
e,

(b
)

&
(f

)
O

u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

&
(g

)
In

ve
rt

ed
G

ro
u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

&
(h

)
D

fD
-N

et
C

om
p
u
te

d
D

ep
th

M
ap

.

233

(a
)

(b
)

(c
)

(d
)

F
ig

.
E

.4
7.

K
00

S
ce

n
e

T
y
p

e
P

er
fo

rm
an

ce
R

es
u
lt

s
fo

r
th

e
D

fD
-N

et
on

th
e

S
y
n
th

et
ic

al
ly

B
lu

rr
ed

R
ea

l
W

or
ld

D
at

as
et

-
P

ar
t

12
.

(a
)

In
-f

o
cu

s
Im

ag
e,

(b
)

O
u
t-

of
-f

o
cu

s
Im

ag
e,

(c
)

In
ve

rt
ed

G
ro

u
n
d

T
ru

th
D

ep
th

M
ap

an
d

(d
)

D
fD

-N
et

C
om

p
u
te

d
D

ep
th

M
ap

.

234

F. DFD-NET REAL WORLD DATASET RESULTS

Figures F.1 through F.6 show the results of the DfD-Net trained and tested on

the real world dataset. The images are arranged in the order of lowest NRMSE score

to highest NRMSE score.

235

(a) (b) (c) (d)

Fig. F.1. Performance Results for the DfD-Net on the Real World
Dataset - Part 1. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

236

(a) (b) (c) (d)

Fig. F.2. Performance Results for the DfD-Net on the Real World
Dataset - Part 2. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

237

(a) (b) (c) (d)

Fig. F.3. Performance Results for the DfD-Net on the Real World
Dataset - Part 3. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

238

(a) (b) (c) (d)

Fig. F.4. Performance Results for the DfD-Net on the Real World
Dataset - Part 4. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

239

(a) (b) (c) (d)

Fig. F.5. Performance Results for the DfD-Net on the Real World
Dataset - Part 5. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

240

(a) (b) (c) (d)

Fig. F.6. Performance Results for the DfD-Net on the Real World
Dataset - Part 6. (a) In-focus Image, (b) Out-of-focus Image, (c)
Ground Truth Depth Map and (d) DfD-Net Computed Depth Map.

