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Water oxidation by a manganese-potassium
cluster: Mn oxide as a kinetically dominant “true”
catalyst for water oxidationf

Younes Mousazade,® Mohammad Reza Mohammadi, @ ¢ Petko Chernev, @4
Rahman Bikas, @ *¢ Robabeh Bagheri, Zhenlun Song, @' Tadeusz Lis,?
Holger Dau @°® and Mohammad Mahdi Najafpour @ *2"

Nature uses an Mn cluster for water oxidation, and thus, water oxidation using Mn clusters is interesting
when used in artificial water-splitting systems. An important question is whether an Mn cluster is a true cat-
alyst for water oxidation or not. Herein, an Mn-K cluster was investigated for electrochemical water oxida-
tion to find the true and the kinetically dominant catalyst using X-ray absorption spectroscopy, scanning
electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray dif-
fraction, and electrochemical methods. The experiments showed that conversion into nanosized Mn oxide

rsc.li/catalysis

Introduction

The design and synthesis of an efficient and stable water-
oxidizing catalyst are big challenges in science and
technology."® An interesting part of the photosystem II re-
action center in oxygenic photosynthetic organisms is the
oxygen-evolving complex (OEC) or water-oxidizing complex
(WOC).'"* The WOC contains a CaMn,O5(H,0), cluster,
which accumulates four oxidizing equivalents from four
photochemical reactions. The structure is a significant de-
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occurred for the cluster, and the nanosized Mn oxides are the true catalyst for water oxidation.

velopment by nature for the ability of storing oxidizing
equivalents."”™® This is necessary because water oxidation
is a four-electron process, but photochemistry is a one-
electron process.'”™** The CaMn,O; cluster is coordinated
by four water molecules, six carboxylate groups and one im-
idazole of the amino acid residues. The Mn,CaO; cluster is
the only known system to catalyze water oxidation in
nature.'®™® Recently, a structural model for the site has
been reported.™*

Mn compounds are very interesting when used as water-
oxidizing catalysts. In 1974, Calvin reported [(bpy),Mn"™(y-
0),Mn"(bpy),]*" for water splitting and photosynthetic solar
energy conversion.'”> Mononuclear Mn complexes are rarely
reported for water oxidation.'®"?

The Smith group reported Mn(n)-pyridinophane complexes
[(Py,NR,)Mn(H,0),*" (R = H, Me, ¢-Bu) for the formation of
0,."® The complex with bulky substituents (R = t-Bu) has cata-
Iytic activity for water oxidation.'® Mn™ complexes of the
type [MnL(H,O)]*", L: Schiff base ligand, have been shown to
induce water oxidation under different conditions,"”** but,
the true catalyst for water oxidation was not known.

Dimeric tetraarylporphyrins with water-oxidizing activity at
potentials greater than 1.20 V vs. Ag/Ag* were reported.>**!
[(OH,)(terpy)Mn(u-O),Mn(terpy)(OH,)]**  (terpy:  2,2":6',2"-
terpyridine), an important compound introduced in 1999, is
one of the most important Mn-based complexes for water oxi-
dation in the presence of HSO; or CIO™.**** A dinuclear Mn
complex with imidazole groups has also been reported with
water-oxidizing activity.>*

A series of Mn;,04,(0Ac);6 ,L(H,0), (L = acetate, benzo-
ate, benzenesulfonate, diphenylphosphonate, and

This journal is © The Royal Society of Chemistry 2018
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dichloroacetate) was reported.® These clusters were studied
as catalysts for water oxidation on a fluorine-doped tin ox-
ide glass electrode (FTO). Four [Mn;,0,,] compounds
showed water oxidation activity at pH 7.0, 640-820 mV with
0.2 mA cm > and high Faradaic efficiency (85-93%). More
than 200 turnovers were observed after 5 minutes for the
most active complex. The research group proposed that
these complexes need at least a one-electron oxidation to
become active catalysts. A greater degree of distortion at
two Mn ions in the structure also correlated with the higher
catalytic activity.”

Agapie's group reported tetranuclear manganese com-
plexes featuring three six-coordinated and one five coordi-
nated Mn centers displaying hydrogen bonding networks as
more accurate structural models of the biological water oxi-
dation. These species support electrocatalytic water oxidation
to H,0,, albeit in low yield.>®

Recently, Maayan's and Christou's groups reported the
synthesis and characterization of [Mn;,0,,(0,CC¢H3(OH),)16
(H,0),].>” The authors reported the complex as a unique ex-
ample of this class of compounds because of its high solubil-
ity and stability in water.”” The research groups indicated
that the cluster is a stable homogeneous water-oxidizing
electrocatalyst operating at pH 6 with an exceptionally low
overpotential of only 334 mV.*’

Finding the kinetically dominant catalysts in different re-
actions is a challenge. Finding the true catalyst in a reaction
can be important for the design and synthesis of efficient
and stable catalysts for the said reaction. In some cases, the
evidence showed that some Mn complexes and salts under
different reduction and oxidation reactions are not stable
and decompose to Mn oxide,** ' which in some cases is the
true catalyst. However, understanding “what is the true cata-
lyst” under oxidation or reduction conditions is a challenge.
From a molecular orbital theory (MOT) side and based on a
simple view, adding and removing electron(s) from a metal
complex causes changes depending on the bonding, anti-
bonding or non-bonding character of the frontier orbitals of
the complex. Such changes destabilize the complexes because
removing electron(s) from the highest occupied molecular or-
bital (HOMO), which usually possesses bonding character,
can weaken the framework of the complexes. On the other
hand, adding electron(s) to the lowest unoccupied molecular
orbital (LUMO), which usually has anti-bonding character
can also weaken the framework.** Therefore, it is not surpris-
ing that usually the highly oxidized or reduced complexes are
unstable toward decomposition. The products of decomposi-
tion and details of such decompositions were not usually
investigated.

Herein, an Mn-K cluster (1) was synthesized, character-
ized and investigated under electrochemical water-oxidation
conditions. By several methods, we showed that for such a
cluster, conversion into nanosized Mn oxide occurs during
the water-oxidation reaction. Our experiments showed that
such nanosized Mn oxides are the true catalyst for water
oxidation.

This journal is © The Royal Society of Chemistry 2018
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Experimental

Materials and instrumentation

KMnO, (Sigma-Aldrich Company, assay >99.0%), Nafion (5%;
Sigma-Aldrich Company), Mn(OAc),-4H,0 (Sigma-Aldrich Com-
pany, >=99%) and pivalic acid (Sigma-Aldrich Company, assay =
99%) were purchased and used as received. The solvents (Al-
drich Company) were used without further purification.

Instrumentation

TEM was carried out using an FEI Tecnai G* F20 transmission
electron microscope (TF20 200 kV). SEM and EDX were carried
out using a VEGA\TESCAN-XMU. The X-ray powder patterns
were recorded with a Bruker D8 ADVANCE (Germany) diffrac-
tometer (CuK, radiation). The infrared spectra were obtained
on a FT-IR Bruker Vector spectrometer using a pressed KBr pel-
let. Electrochemical experiments were performed using an
EmStat®" from PalmSens Company (the Netherlands). Fluorine-
doped tin oxide (FTO) and Pt foil were the working and the aux-
iliary electrodes, respectively. The elemental analysis (carbon,
hydrogen and nitrogen) results were obtained using a Carlo
ERBA Model EA 1108 analyzer.

Synthesis of [Mnus(p-O)4(|,l-OH)2(Piv] 16(PiV—H)(CH3CN)]
.CH;COOH (1)

1 was synthesized by the reaction of KMnO, (0.158 g, 1.00
mmol), Mn(OAc),-4H,0 (0.735 g, 3.00 mmol) and pivalic acid
(0.511 g, 5.00 mmol) in acetonitrile (20 mL). The mentioned
amounts of the materials were placed in the main arm of a
branched tube. The solvent was carefully added to fill the
arms and the tube was sealed. The reagent containing arm
was immersed in an oil bath at 65 °C, while the other arm
was kept at ambient temperature. After one day, dark-red
plate crystals were deposited in the cooler arm. After two days,
the crystals were isolated from the tube, washed with cold ace-
tonitrile and dried at room temperature. Yield (based on Mn)
~70% (0.84 g). Anal. calc. for CgsH,5;K,MngNO,,-C,H,0, (MW
= 2394.84): C, 43.13; H, 6.61; N, 0.58; K, 3.27; Mn, 18.35.
Found: C, 43.39; H, 6.68; N, 1.19; K, 3.29; Mn, 18.54%. FT-IR
(KBr, cm™): 3429 (br, s), 2961 (s), 2930 (m), 2873 (m), 1699
(m), 1594 (vs), 1470 (s), 1555 (s), 1531 (m), 1483 (vs), 1459
(m), 1413 (vs), 1359 (s), 1329 (m), 1226 (s), 1031 (w), 937 (w),
894 (w), 870 (W), 789 (W), 614 (vs), 590 (s), 511 (s), 430 (vs).

Single crystal X-ray structural analysis

The dark-red plate crystals of 1 were obtained from CH;CN
by the thermal gradient method. The crystals of 1 crystallized
in the monoclinic space group P2,/n. The X-ray data were col-
lected at 80 K using an Xcalibur, Ruby diffractometer with
MoK, radiation A = 0.71073 A. Analytical absorption correc-
tion was applied with maximum and minimum transmis-
sions of 0.797 and 0.947.>* The structure was solved by direct
methods using SHELXS97 (ref. 34) and refined with the full-
matrix least-squares method on F> with the use of the
SHELX-2014 program package.’®> The hydrogen atoms have

Catal. Sci. Technol., 2018, 8, 4390-4398 | 4391
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been located from the difference electron density maps and
constrained during refinement. The data collection and re-
finement processes are summarized in Table S1.f The se-
lected bond lengths, angles and characters for the hydrogen
bonds are presented in Tables 1, S2 and S3,} respectively.

Cyclic voltammetry

For the investigation of the electrochemical behavior of 1, cy-
clic voltammetry (CV) in a three-electrode cell was performed
in which Ag/AgCl, a platinum sheet and FTO were used as
the reference, the counter and the working electrodes, respec-
tively. 3.0 mg (1.25 pmol) of 1 was added to 30 mL water and
dispersed by sonication. Cyclic voltammetry was performed
in the range of 0.2 to 1.6 V (vs. Ag/AgCl) at room tempera-
ture at a 50 mV s~ scan rate in phosphate buffer (1.0 M, pH
= 6.7). 50 cycles of measurement were made to follow the
cluster behavior in long time operation. The same measure-
ment was performed for FTO without 1.

Amperometry

3.0 mg (1.25 pmol) of 1 was added to 30 mL water and dis-
persed by sonication, and then, this dispersed mixture (30
uL) was dropped on an FTO electrode (1.0 cm?®) and dried at
ambient temperature. The amperometry measurement at 1.4
V was performed in a solution of phosphate buffer (1.0 M,
PH = 6.7) and by using Ag/AgCl and a platinum sheet as the
reference and auxiliary electrodes, respectively.

Such electrodes were used for the SEM experiments. The
mechanically separated solid from the FTO electrode was
used for TEM, FT-IR and XRD experiments. The same proce-
dure was repeated for a bare FTO electrode for comparison
with the water oxidation activity of 1.

XAS measurements

3.0 mg (1.25 umol) of 1 was added to 30 mL of water and dis-
persed by sonication, and then, this dispersed mixture (30
uL) was dropped on an FTO electrode (1.0 cm?®) and dried at
ambient temperature. The amperometry measurement at 1.4

Table 1 Selected bond lengths around the Mn(i) ions for 1

Bond Length (A) Bond Length (A)
Mn1-Mn1' 2.8575(15) Mn2-Mn3 3.1019(15)
Mn2-Mn3 3.1090(18) Mn3-Mn4 3.2781(15)
Mn1-O1 1.881(3) Mn3-03' 1.896(3)
Mn1-01! 1.908(3) Mn3-O1E 1.929(3)
Mn1-03 1.929(3) Mn3-02 1.930(3)
Mn1-O1A 1.953(3) Mn3-01G 1.944(3)
Mn1-O1B 2.252(3) Mn3-O1F 2.144(3)
Mn1-01C 2.258(3) Mn3-02B' 2.231(3)
Mn2-02 1.896(3) Mn4-02 1.864(3)
Mn2-01 1.906(3) Mn4-02D 1.940(3)
Mn2-02C 1.945(3) Mn4-O2F 1.947(3)
Mn2-01D 1.950(3) Mn4-O1H 1.963(3)
Mn2-02A 2.150(3) Mn4-02G 2.118(3)
Mn2-O2B 2.209(3) Mn4-02H 2.356(3)

Symmetry code: (i) -x + 1, -y, -z + 1.

4392 | Catal Sci. Technol., 2018, 8, 4390-4398

View Article Online

Catalysis Science & Technology

Fig. 1 The molecular structure of 1; i = x + 1, -y, -z + 1. The
hydrogen atoms of the -CH3 groups for pivalic acid and the disordered
atoms are omitted for clarity. The green dashed lines show O-H---O
hydrogen bonds.

V for two hours was performed in a solution of phosphate
buffer (1.0 M, pH = 6.7) and by using Ag/AgCl and a platinum
sheet as the reference and auxiliary electrodes, respectively.
XAS measurements (EXAFS, XANES) at the manganese
K-edges for the obtained sample after amperometry and for a
sample before amperometry were performed at the KMC-3
beamline at the BESSY II synchrotron facility (Helmholtz-
Zentrum Berlin, Germany) at 20 K in a liquid-helium cooled
cryostat  (Oxford-Danfysik). The
performed in the top-up mode of the BESSY II storage ring,
at a 250 mA ring current.

The angle between the sample surface and the incident
beam was approximately 45°. Fluorescence-detected X-ray ab-
sorption spectra at the manganese K-edge were collected
using a 13-element Ge detector (Ultra-LEGe detector, Can-
berra GmbH) installed perpendicular to the incident X-ray
beam.

measurements were

Oxygen evolution measurements

The oxygen evolution measurements were carried out at 25.0
°C using an optical-probe oxygen meter (HQ40d from Hach

This journal is © The Royal Society of Chemistry 2018
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Fig. 2 Comparison of CV results for 1 in 25.0 mL of phosphate buffer (1.0 M, pH = 6.7) (cycle no = 35; red) and phosphate buffer in the
absence of the cluster (black) (a). Continuous LSV measurements for 1 in 25.0 mL of phosphate buffer (1.0 M, pH = 6.7) (LSV no 1 (orange) and
LSV no 100 (dark green) with overpotentials of 790 and 700 mV, respectively) (b). Comparison of the water-oxidation activity of FTO in the
presence (red) and absence (black) of 1 via amperometry at 1.4 V for 2 h (c). 50 CV measurements of 1 on FTO in 25.0 mL of phosphate buffer
(1.0 M, pH = 6.7) (d). Expanded range of the 50 CV measurements to visualize Mn redox peaks in the -0.2 to 1.4 area (e). Oxygen evolution/
amperometry of 1 (red) and a fresh FTO electrode (black) at 1.8 V (f). In all the cases, the reference and counter electrodes were Ag/AgCl and a

Pt sheet, respectively.

Company, Diisseldorf, Germany) via amperometry in 1.4 V vs.
the Ag/AgCl reference electrode with and without of 1 on the
FTO electrode in phosphate buffer (1.0 M, pH = 6.7). In each
case, the potential was applied after 5 min of oxygen evolu-
tion measurements.

This journal is © The Royal Society of Chemistry 2018

Results and discussion
Syntheses and spectroscopy

The facile reaction of KMnO, with Mn(OAc),-4H,0 and pivalic
acid in acetonitrile afforded 1. 1 was characterized by

Catal. Sci. Technol., 2018, 8, 4390-4398 | 4393
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Fig. 3 XRD patterns of 1 before (red) and after (blue) the
amperometry at 1.4 V for 2 h in 25.0 mL of phosphate buffer (1.0 M,
pH = 6.7) (Mn,O5 (ref. code: 00-001-1061): green; birnessite (ref. code
01-080-1098): orange).

elemental analysis, spectroscopic methods, and single crystal
X-ray analysis.

X-ray structure of 1

The single-crystal X-ray structural analysis shows that 1 is a
neutral octanuclear Mn(u1) complex which also contains two
K(1) ions. A perspective view of the molecular structure with
an atom numbering scheme is shown in Fig. 1, and selected
bond lengths and angles relevant to the Mn(m) coordination
sphere are listed in Tables 1 and S2.f The single crystal X-ray
structure of the plate red crystals of 1 revealed that the asym-
metric unit of the crystal packing contains half of the com-
plex, wherein the other half is generated by symmetry inver-
sion. All of the manganese ions in this complex are Mn(m)
ions which are connected together by the oxygen atoms of
carboxylate groups and oxide-bridging ligands. The Mn---Mn
distances are in the range of 2.855-3.492 A. All Mn(m) ions
have a distorted octahedral coordination environment and
show a Z-out Jahn-Teller effect which is usually seen in
Mn(m) ions with an HS-d* electron configuration. The p-O(H)
groups are coordinated to three Mn(m) and one K ions and
have distorted tetrahedral geometry. The p-O(H) groups act
as a bridge between the Mn1 and Mn3 ions and form strong
intramolecular hydrogen bonds with the oxygen atoms of the
coordinated pivalate ligand (Table S2t). The carboxylate
groups connect the metal ions in p-1,3, p-1,1,3 and p-1,1,3,3
bridging modes. The potassium ion is also connected to the
Mn(m) ions by six oxygen atoms of the carboxylate and oxide
groups.

Electrochemical studies

The CV and LSV results of 1 are shown in Fig. 2a and b,
which indicates that compared to a fresh FTO electrode,
water-oxidation activity was observed by adding 1 to the FTO
electrode after some CV or LSV measurements. The
overpotential for the onset of water oxidation under these
conditions is 700 mV. The fresh FTO under the same condi-

4394 | Catal Sci. Technol., 2018, 8, 4390-4398
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Fig. 4 SEM images of 1 before (a and b) and after (c and d)
amperometry at 1.4 V for 2 h in 25.0 mL of phosphate buffer (1.0 M,
pH = 6.7). The schematic image shows a proposed conversion of Mn
oxide by the decomposition of 1 (e). Under the water oxidation, leaking
of Mn(i) ions, which resulted from the water-oxidation reaction or dis-
proportions of Mn(in), and re-oxidizing of these Mn(i) ions could con-
vert 1 to Mn oxide.

tions, but in the absence of 1 (Fig. S1T) showed lower activity
for water oxidation (overpotential for the onset of water oxi-
dation: 790 mV). Repeated LSV measurements showed an in-
crease in the water oxidation. This could indicate the decom-
position of 1 under water oxidation toward a water-oxidizing
catalyst.

The repeated LSV measurements indicated a new peak at
0.8 V attributed to Mn oxidation of the Mn oxides.*® The ef-
fect of the activation of 1 in the water-oxidation reaction was

This journal is © The Royal Society of Chemistry 2018
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Fig. 5 EDX-map of 1 before (a) and after (b) amperometry at 1.4 V for 2 h in 25.0 mL of phosphate buffer (1.0 M, pH = 6.7). Element ratio before
(red) and after (black) amperometry at 1.4 V for 2 h in 25.0 mL of phosphate buffer (1.0 M, pH = 6.7) (C: blue; O: yellow; Na: green; P: purple; K:
brown; Mn: red). The diagram shows the amounts of the element before (black) and after (red) the water-oxidation reaction on the surface of FTO

(c).

also observed in the amperometry results (Fig. 2¢). The rate
of water oxidation by 1 was increased by continuous CV
(Fig. 2d), which could show that the true catalyst may not
have a molecular structure as that of 1. The details of the CV
results showed that the attributed oxidation peaks at 0.55 V
showed a few changes under continuous CV (Fig. 2e). Signifi-
cant changes from 0.30 to 0.45 V were observed with the at-
tributed reduction peak under continuous CVs (Fig. 2e). The
oxygen evolution/amperometry using 1 and a fresh electrode
was compared in Fig. 2f. As shown in Fig. 2f, water oxidation

100 nm

Fig. 6 (HR)TEM images of 1 after amperometry at 1.4 V for 2 h in 25.0
mL of phosphate buffer (1.0 M, pH = 6.7).

This journal is © The Royal Society of Chemistry 2018

in the presence of the cluster is two times higher than that
using a fresh FTO electrode under similar conditions.

In the next step, we characterized the film on the FTO
electrode using several methods. Comparing the XRD pat-
terns for 1 before and after the water-oxidation reaction, sig-
nificant changes were observed (Fig. 3). Although 1 is

-
o
1

o
©
1

Transmission%
=] =]
H o
1 1
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500 1000 1500 2000 2500 3000 3500 4000
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Fig. 7 FT-IR spectra of 1 before (blue) and after (black) amperometry
at 1.4 V for 2 h in 25.0 mL of phosphate buffer (1.0 M, pH = 6.7). The
red arrow shows the peak attributed to Mn-O-Mn.
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Fig. 8 XANES spectra (a) and Fourier-transform of the EXAFS spectra
(b) of 1 (black) and the obtained compound after amperometry (blue)
at 1.4 V for 2 h in phosphate buffer (1.0 M, pH = 6.7). The thick lines
show experimental data, and the thin red lines show simulations. Phase
shift not corrected. The k*-weighted EXAFS oscillations are shown in
Fig. S5.1 The fit parameters for the simulations are given in Table 2.

crystalline with many peaks attributed to the different inter-
planar spacing in a molecular structure of 1, after the water-
oxidation reaction, it is converted to an amorphous com-
pound with weak peaks that can be assigned to Mn,O; (ref.
code: 00-001-1061; crystal system: cubic space group: Ia3;
space group number: 206; @ = b = ¢: 9.41 (A); a = f = y: 90(°)).
Mn,0; is the phase different from the proposed one using the
Pourbaix diagram by water oxidation,*” which is Mn(wv) oxide.
We hypothesize that under these conditions, high concentra-
tions of the organic compound act as a solvent on the surface
of FTO and inhibit the formation of high-valent Mn oxides
(such as MnO,). It was also reported that organic compounds
in the presence of MnO, lower the oxidation state of Mn.*

View Article Online
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The SEM images of 1 on FTO before the water-oxidation
reaction showed thick layers, which are significantly aggre-
gated and agglomerated forming particles (ca. 0.2-1 pm)
(Fig. 4a and b; Fig. S21). Each particle contains many amor-
phous nanoparticles (ca. 10-20 nm). However, after the
water-oxidation reaction, a nanolayered morphology (thick-
ness 50-80 nm) was observed on the surface of FTO
(Fig. 4c and d; Fig. S31). If we assume that the thickness of
each monosheet is 1 nm, each nanolayer in the structure con-
tains 50-80 monosheets. Such a morphology has usually been
observed under leakage/oxidation processes.’® Under these
conditions, first leaking of Mn(u) from the disproportionation
of Mn(m) occurs, which could be detected by atomic absorp-
tion spectroscopy. In the next step, re-oxidation of Mn(u) on
the surface of FTO forms such nanolayers (Fig. 4e).

The EDX-SEM data from 1 showed that the compound
contains (atomic) C (~58.29%), O (34.47%), Mn (~5.79%)
and K (~0.92%). The formula of the surface of FTO in the
presence of 1 can be written as Mng3KCe33035.5. After the
water-oxidation reaction, the EDX-SEM data from the
obtained film contains O (62.18%), C (~13.39%), Na
(~12.61%), P (~9.34%) and Mn (~2.27%). The formula of
the surface of the electrode can be written as
MnNas; 5P 41Cs.90,7.4 (Fig. 5). Thus, EDX results showed that
the compound after the water-oxidation reaction is
completely different from 1. After the water-oxidation reac-
tion, the amount of carbon decreased and the Na* and PO,*"
from the buffer were found on the surface of the converted
catalyst.

TEM images of the mechanically separated solid from the
FTO after the water-oxidation reaction indicated a compli-
cated morphology similar to that of a net system (Fig. 6; Fig.
S41). The HRTEM images indicated the lattice fringes with
interplanar distances of 2.6-2.9 A, which is consistent with
the XRD results (20 = 30-34°). After the water-oxidation reac-
tion, the low crystallinity of the compound could be observed
in the HRTEM images (Fig. 6; Fig. S47).

The FT-IR spectrum of 1 showed strong bands at 1500-
1600 cm™' which can be assigned to the C=0 bond of
carboxylate groups attributed to the organic ligand around
the cluster (Fig. 7).>' The broad peak around 3400 cm™
confirms the presence of OH groups involved in hydrogen
bond interactions.”’ Comparing the FT-IR spectra of 1 and
that of the mechanically separated solid on FTO after the
water-oxidation reaction showed that the organic ligand in

Table 2 Parameters obtained by the simulation of the k*-weighted EXAFS spectra shown in Fig. 8. For 1, the sum of the coordination numbers (CN) of
the O shells was set to 6, and the sum of the Mn CN was set to 3.25, as suggested by the molecular structure. The energy shift (AEy, —2.8 €V) and De-
bye-Waller parameters (s, 0.058 A and 0.033 A for O and Mn, respectively) determined from this fit were then used for the simulation of the sample af-
ter the operation. The filtered R-factors were 16 and 14 for the initial complex and the operated one, respectively, and the reduced »? values were 2.5

and 4.1. More details are given in the ESI

Sample Mn-O Mn-O Mn-Mn Mn-Mn Mn-Mn

Initial complex (1) Distance [A] 1.91 £ 0.01 2.22 + 0.01 2.81 + 0.03 3.18 + 0.01 3.33 +0.01
Coordination number 3.8+0.1 2.2 +0.1 0.2 +0.1 1.3 +0.1 1.7 £0.1

After the operation Distance [A] 1.93 + 0.01 2.16 + 0.01 2.91 + 0.02 3.13 £ 0.01 3.45 +0.01
Coordination number 4.3+0.2 1.9+0.3 0.4 +0.2 0.9 0.2 1.0 £ 0.3
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1 was removed after the water-oxidation reaction and a
peak at 500-600 cm ' attributed to Mn-O-Mn was ob-
served.>*® On the other hand, the peaks attributed to
carboxylates from pivalate at 1550-1610 cm ' were not
observed.*’

In the next step, we used X-ray absorption spectroscopy
(XAS) to get information about the conversion.

Fig. 8a shows that the Mn K-edge shifts from 6549.5 eV to
6550.6 €V during operation, which corresponds to the average
Mn oxidation states of 2.9 and 3.2, respectively.*! The shape
of the edge also changes after the operation, and its structure
becomes similar to that of a mixture of Mn,0;, Mn;O, and
MnO,. A linear combination fit of the edge region using ref-
erence samples yields an average Mn oxidation state after the
operation slightly higher than 3 (3.04).

The Fourier transform of the experimental EXAFS-
spectrum of 1 can be readily reproduced by a simulation that
directly uses its molecular structure (Fig. S61). The spectrum
shows a high main Mn-O peak that can be simulated by two
Mn-O shells at 1.91 A and 2.22 A for 1 and Mn-O shells at
1.93 and 2.16 A for the operated sample (Fig. 8b, Table 2).
The spectrum of 1 has two broad Mn-Mn peaks with low am-
plitude, corresponding to di- and mono-p-oxo bridged Mn;
the two peaks merge after the operation, suggesting that the
Mn-Mn distances become more uniform in length after the
water oxidation reaction. This peak can be attributed to two
main Mn-Mn distances of 3.13 A and 3.45 A, which is typical
for manganese oxide, e.g. Mn;0,.

1 is an interesting model for the water-oxidizing complex
in photosystem II. However, the instability of this structure
under the water-oxidizing conditions shows that important
strategies should be used to form a stable water-oxidizing
cluster as nature uses it. It is clear that the polypeptide
around the Mn cluster is important in stabilizing the attrib-
uted cluster in the biological system.'®"® Although a very
similar decomposition is known for photosystem II, nature
uses a self-healing mechanism to heal the biological water-
oxidizing cluster.*?

Conclusions

In conclusion, by X-ray absorption spectroscopy, scanning
electron microscopy, transmission electron microscopy, Fou-
rier transform infrared spectroscopy, X-ray diffraction, and
electrochemical methods, we showed that 1, although being
a structural model for the water-oxidizing complex in photo-
system II, under water-oxidation conditions is not a cluster-
based catalyst for water oxidation. Under the water oxidation,
1 was decomposed to an Mn oxide which is the true catalyst
for water oxidation. The challenge is whether a true Mn-
based cluster as a water-oxidizing catalyst can be designed
that offers a technological perspective. Such a cluster should
have a very stable ligand. In addition to that, the cluster
should oxidize water at a low overpotential to inhibit ligand
oxidation. Alternatively, a metal cluster with a self-healing
mechanism could be very promising.

This journal is © The Royal Society of Chemistry 2018
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