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Abstract

Sequence data are the backbone for many biological research areas including but
not limited to genomics, proteomics as well as proteogenomics. Sequence acquisi-
tion is facilitated by a wide selection of advanced technologies such as Next Genera-
tion Sequencing and Mass Spectrometry. These high-throughput methods produce
substantial volumes of data with decreasing financial and time-based expenditures.
These volumes of data render manual processing impossible and therefore require
state-of-the-art computational methods for adequate analysis and interpretation. In
proteogenomics the potential of combining omics methods to improve on sequence
quality and availability is frequently emphasized, in particular for non-model organ-
isms. In this thesis, we highlight and address several challenges in the “life cycle”
of omics sequence data, from genome sequence acquisition through integrated eval-
uation to extensive utilization of comprehensive sequence collections.

We describe several methods with applications in different omics areas and em-
phasize means of potential integrative analysis. First, we introduce a method for
de novo assembly contig quality ranking based on machine learning. Thereby, we
demonstrate special potential for the application on metagenomic sequence data
which usually feature a variety of previously sequenced as well as unsequenced, non-
model organisms. Next, we elaborate on sequence availability of target sequences in
databases considered for taxonomic classification of tandem MS spectra. Thereby,
the effect of different sequence sources as well as different search strategies on taxo-
nomic depth is taken in account. Finally, we introduce a novel approach for extensive
taxonomic classification by iteratively processing recent and comprehensive protein
sequence databases. We discuss diverse possibilities as well as the limits of our
methods with respect to current public data basis. Thereby, we illustrate potential
benefits of the presented methods for non-model organisms.

iii



Acknowledgements

First of all, I want to thank Bernhard Renard for the opportunity to write my thesis
under his supervision, for his profound support under every circumstances and his
persistent patience with me.

Furthermore, I want to thank Thomas Otto for reviewing my thesis.
I want to thank my co-authors Piotr Wojtek Dabrowski, Vitor Piro, Andreas

Nitsche, Thilo Muth and Bernhard Renard for their excellent contributions and
collaboration.

In addition, I want to thank all my colleagues at the RKI for the constructive as
well as entertaining time we spend together, on and off work.

Special thanks go to my girlfriend Bine for her continuous and loving support.

iv



Contents

1. Introduction 1
1.1. Next Generation Sequencing Application in Genomics . . . . . . . . 1
1.2. Mass Spectrometry-based Proteomics . . . . . . . . . . . . . . . . . . 2
1.3. Integrative Applications of Omics Data . . . . . . . . . . . . . . . . 3
1.4. Non-Model Organisms . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.5. Challenges in Omics Data Analysis . . . . . . . . . . . . . . . . . . . 4
1.6. Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. Supervised Ranking of Contigs in De Novo Assemblies 10
2.1. Training and Prediction of Contig Quality . . . . . . . . . . . . . . . 11
2.2. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3. Limits of Detection of Microbial Non-Model Organisms 21
3.1. Simulation and Identification of Related Organisms . . . . . . . . . . 23
3.2. Comprehensive and Targed Database Evaluation . . . . . . . . . . . 25
3.3. Experimental Validation . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4. Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. Iterative and Untargeted Strain Level Identification 30
4.1. Traversing the Comprehensive Search Space . . . . . . . . . . . . . . 32
4.2. Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5. Summary and Conclusion 42

A. Appendix 47
A.1. Additional Material for Chapter 2 . . . . . . . . . . . . . . . . . . . 47
A.2. Additional Material for Chapter 3 . . . . . . . . . . . . . . . . . . . 66
A.3. Additional Material for Chapter 4 . . . . . . . . . . . . . . . . . . . 69

Bibliography 74

v



1. Introduction

1.1. Next Generation Sequencing Application in Genomics

High-throughput omics methods are the modern work horses in biological and med-
ical science including but not limited to next generation sequencing (NGS) applica-
tion in genomics as well as mass spectrometry (MS) application in proteomics.

Modern nucleotide sequencing technologies referred to as next generation sequenc-
ing enable analysis of genomes and transcriptomes in a cost-effective, fast and high-
throughput manner. After the first generation sequencing driven by Sanger, second
generation sequencing was defined by massive parallelization of short-reads followed
by recent advancements in the third generation towards elongated and direct DNA
sequencing referred to as single-molecule real-time sequencing (Goodwin et al., 2016;
Heather and Chain, 2016). Sequencing methods are implemented in a plethora of
instruments including but not limited to Illumina, Roche/454 and Ion Torrent as
second generation, as well as Oxford Nanopore and Pacific BioSciences as third gen-
eration platforms, each featuring their own advantages and disadvantages (Glenn,
2011; Quail et al., 2012). While third generation sequencing improves upon previ-
ous technology, second generation sequencer such as the Illumina HiSeq platforms
remain popular and prevalent in modern labs due to cost effectiveness as well as low
error rates with established error profiles (Glenn, 2011; Goodwin et al., 2016).

Computational methods for genome or transcriptome reconstruction by use of
NGS reads can be roughly classified either as alignment (often referred to as map-
ping) or de novo assembly procedures (Flicek and Birney, 2009; Horner et al., 2010).
Alignment procedures make use of an corresponding reference genome or transcrip-
tome and “map” the reads to likely positions of origin using for instance initial
hash- or index-based heuristics followed by exact alignment verification (Reinert
et al., 2015). In contrast, de novo assembly procedures allow sequence reconstruc-
tion completely without using a reference template by joining reads to contiguous
sequences based on for instance overlap or de Bruijn graphs (Nagarajan and Pop,
2013; Sohn and Nam, 2016). In comparison to mapping, de novo assembly is often
able to recover more individual or sample specific features such as genetic varia-
tions (Chaisson et al., 2015) and is an essential tool for sequencing genomes without
close reference such as non-model organisms (Henson et al., 2012; Ekblom and Wolf,
2014).

Apart from whole genome sequencing (WGS), NGS supports several diverse ap-
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1. Introduction

plications such as transcriptome sequencing (RNA-Seq) and differential expression
analysis (Wang et al., 2009; Ozsolak and Milos, 2011; Hrdlickova et al., 2017),
(meta)genome-wide association studies (Luo et al., 2011; Chaitankar et al., 2016;
Wang and Jia, 2016) as well as whole genome and 16S profiling and quantification
of microbial communities (Chen and Pachter, 2005). Furthermore, genome sequenc-
ing provides the basis for major protein resources such as UniProtKB (The UniProt
Consortium, 2017) or NCBI RefSeq (O’Leary et al., 2016) which apply automated
annotation and manual curation procedures to populate their databases, thereby
enabling a wide variety of proteomic studies.

1.2. Mass Spectrometry-based Proteomics

Mass spectrometry is the current de facto standard for protein identification since
it is superior when it comes to providing high-throughput in combination with high
accuracy (Käll and Vitek, 2011). Mass spectrometry technology and workflows vary
widely and are commonly characterized by the type of ion source including elec-
trospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI)
as well as mass analyser used such as ion traps, time-of-flight (TOF) or Fourier
transform ion cyclotron (Aebersold and Mann, 2003).

Typical combinations include the MALDI-TOF for peptide mass fingerprinting
(PMF) and ESI with two or more TOF sections or an ion trap for tandem MS peptide
sequencing (Domon and Aebersold, 2006; McHugh and Arthur, 2008). For PMF, the
peptide mass profile (fingerprint) of purified and digested proteins is matched and
identified against spectral or protein databases. In addition, tandem MS enables
to infer the full amino acids sequences of peptides. Here, proteins are digested
(e.g. with trypsin), separated by liquid chromatography and then subject to MS
analysis (LC-MS/MS). In addition to peptide mass acquisition, a few peptides per
scan are selected by intensity, are randomly fragmented by for instance collision-
induced dissociation and analysed in a second individual scan. The resulting peak
pattern is used to infer peptide sequences, either by matching artificial spectra in
a database search or by de novo sequencing (Nesvizhskii et al., 2007; McHugh and
Arthur, 2008). This workflow is also referred to as shotgun bottom-up proteomics
and is most frequently used for proteomic studies (Domon and Aebersold, 2006; Käll
and Vitek, 2011).

Mass spectromic-based proteomics support a wide range of applications including
but not limited to analysis of peptide sequences, proteome profiles, interactions
and modifications (Aebersold and Mann, 2003), analysis and profiling of microbial
mixtures and environmental samples (referred to as metaproteomics) (Hettich et al.,
2013; Muth et al., 2016) as well as (differential) proteome quantification using label-
free (e.g. tandem spectra counting and peak feature integration) or isotope labelling
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1. Introduction

methods (e.g. SILAC or iTraq) (Nesvizhskii et al., 2007; Käll and Vitek, 2011).

1.3. Integrative Applications of Omics Data

The field of proteogenomics takes advantage of different omics methods such as
NGS and MS by integrative data acquisition, analyses and interpretation. Thereby,
it combines the strength of different fields and technologies while simultaneously
enabling a mutual gain in knowledge (Renuse et al., 2011; Armengaud et al., 2013).
Originally, proteogenomics described the integration of omics methods to improve
gene and genome (re-)annotations (also referred to as proteogenomics sensus stricto).
However, a more wide application of the term (referred to as proteogenomics sensus
lato) may also apply to studies focusing on improved protein identifications or visual-
ization (Armengaud et al., 2014). Main applications such as gene annotation utilizes
6-frame translations or predicted open-reading frames (ORFs) of genome or tran-
scriptome sequences as protein databases for tandem MS spectra searches in order
to discover novel genes or protein-coding regions and to refine genome annotations
in terms of e.g. exon/intron boundaries and alternative splicing (Nesvizhskii, 2014;
Locard-Paulet et al., 2016). In addition, such customized databases aid peptide
identification rates and the identification of novel peptides in cases where a compre-
hensive reference proteome is not available or enable comparative proteome profiling
under different physiological conditions (Armengaud et al., 2014; Nesvizhskii, 2014).
A third objective associated with proteogenomics is the mapping of previously iden-
tified spectra to genomic coordinates to enable integrative visualization (Sanders
et al., 2011; Kuhring and Renard, 2012; Schlaffner et al., 2016).

Proteogenomics features many practical applications such as biomarker discov-
ery for improved disease diagnosis, monitoring and therapy (Renuse et al., 2011;
Armengaud et al., 2013), personalized medicine and monitoring (Locard-Paulet
et al., 2016), analysis of cancer mechanisms and pathways (referred to as onco-
proteogenomics) (Renuse et al., 2011; Menschaert and Fenyö, 2015; Locard-Paulet
et al., 2016), improved characterisation of (human) pathogens and microbe-host
interactions (Renuse et al., 2011; Locard-Paulet et al., 2016) as well as antibody
sequencing and venomics (Menschaert and Fenyö, 2015). While proteogenomics fa-
cilitate general improvement in protein identification, non-model organisms with few
or none reference sequence material benefit the most from combined omics analysis
(Armengaud et al., 2014).

1.4. Non-Model Organisms

Experimental efforts in genomics and proteomics are often limited to established
targets, i.e. model organisms. Therefore, reference proteomes of a great number

3



1. Introduction

of organisms remain unavailable, incomplete or lack quality annotations. How-
ever, advancements in sequence technologies result in increased application of pro-
teogenomic methods for unsequenced or partially sequenced organisms (Nesvizhskii,
2014). Non-model organisms play a key role in current and future research to ac-
knowledge the full extent of biological diversity and thus benefit from continuous
method development and transfer (Armengaud et al., 2014). The gain of popu-
larity of non-model organisms is partially due to the constantly increasing amount
of metagenomic and metaproteomic studies (Armengaud et al., 2014) since organ-
isms in microbial communities are often poorly characterized (Nesvizhskii, 2014).
The analysis of non-model organisms often relies on strategies including homolo-
gous organisms (Junqueira et al., 2008; Armengaud et al., 2014; Nesvizhskii, 2014)
and is either limited to conserved proteins or needs to apply error-tolerant spectra
identification (Renard et al., 2012). Thereby, microbes and unicellular organisms
are particularly challenging for homology-based strategies due to their generally
high diversity and occasional non-homologous coding-sequences (Armengaud et al.,
2014). In contrast, microbial communities may additionally feature highly homolo-
gous groups of microbes which are difficult to distinguish (Nesvizhskii, 2014). Fur-
thermore, homology-based search strategies are impractical for analysis with very
meticulous objectives such as maximal taxonomic resolution or classification. In gen-
eral, sample preparation somewhat follows “universal biochemical properties” and
therefore adaptation of classic model organism methods for non-model organisms is
relatively simple. In contrast, the computational analysis is considered the greater
challenge with respect to unsequenced organisms with no close relatives available in
reference databases (Armengaud et al., 2014) and therefore presents opportunities
for methodological improvement.

1.5. Challenges in Omics Data Analysis

Next generation sequencing and mass spectrometry as well as genomics, proteomics
and proteogenomics feature a highly diverse set of technologies, methodologies as
well as applications. This results in a diverse set of unsolved problems and challenges,
despite excellent preceding, recent and ongoing research in the respective fields.
Nevertheless, the theme of sequence quality and availability is prevalent and common
to all of these fields, in particular when methods are integratively used such as in
proteogenomics.

Proteogenomic studies demonstrate the possibility of overcoming the lack of refer-
ence proteomes by simultaneously obtaining or consulting a draft genome. Acquiring
a draft genome with the aid of NGS becomes continuously easier and more afford-
able. While mapping is most commonly used to create draft genomes based on NGS
data for proteogenomic analysis (Menschaert and Fenyö, 2015), the application of de
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novo assembly is necessary for many non-model organisms without a close reference
genome (Henson et al., 2012; Ekblom and Wolf, 2014). However, low draft genome
quality is a risk for applications in proteogenomics or gene annotation in general
(Armengaud et al., 2013) since nucleotide uncertainties (in particular for transcrip-
tome reads) and assembling errors increase the risk of errors in protein identification
and sequencing based on, for instance, frame-shifts or incorrect ORF termination
(Armengaud et al., 2014). In general, draft genomes as used in applications such
as proteogenomics or gene annotation benefit from high quality genome sequencing
and assembly procedures as it decreases the risk of misinterpreting subsequent anal-
ysis (Armengaud et al., 2013). Therefore, improved quality assessment and control
of de novo assembled genomes can substantially support the analysis of non-model
organisms, for instance in a proteogenomic context.

Apart from novel custom databases based on 6-frame translated draft genomes,
tandem MS spectra analysis traditionally utilize existing and established protein
sequences as provided by curated databases such as NCBI RefSeq and UniProtKB.
However, independently of resources and application spectra database searches are
based on two key assumptions: First, all genes of an organism are completely and
thoroughly annotated and, second, their protein products are available in the refer-
ence database (Nesvizhskii, 2014). Completeness, integrity and overall high quality
of protein databases are essential for identification performance but frequently not
attainable, in particular for non-model organisms (Armengaud et al., 2014; Pible
et al., 2014). Furthermore, the condition of the target database should not only be
considered in final result interpretation but should support the choice of methodology
applied. Therefore, databases need to be examined for their identification potential
with respect to taxonomic resolution limits while considering different search condi-
tions including exact and error-tolerant peptide matching as well as proteomic and
proteogenomic databases.

Although current protein databases are still limited in content, for instance, with
respect to non-model organisms, public curated as well as uncurated protein re-
sources accumulate sequences day by day. Therefore, resources such as the NCBI
Protein database (Wheeler et al., 2008) feature great potential for comprehensive
tandem MS spectra database searches, not only for proteogenomics and non-model
organisms but for detailed taxonomic classification in general, for instance for un-
targeted strain level identification. On the one hand, current MS biotyping meth-
ods are often limited to sets of common microbes (Singhal et al., 2015), specific
species (Gekenidis et al., 2014; Pfrunder et al., 2016) or a restricted taxonomic
depth (Alves et al., 2016; Boulund et al., 2017) and don’t take full advantage of
protein sequence data available, potentially excluding non-model organisms. On the
other hand, proteogenomic studies, among others, regularly illustrate the impact
of increasing search spaces and risks for accurate false discovery rate (FDR) esti-
mation (Nesvizhskii, 2014). The likelihood of false-positive matches increases with
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database size leading to a decrease in confidence and total number of identified pep-
tides (Renuse et al., 2011; Jeong et al., 2012; Armengaud et al., 2014; Nesvizhskii,
2014; Menschaert and Fenyö, 2015). In addition, increasing numbers of ambiguous
hits as well as contaminations (Pible et al., 2014) yield further challenges in the ap-
plication of comprehensive database resources such as the NCBI Protein database.
Therefore, viable taxonomic classification down to strain level needs to approach
such database sufficiently and comprehensively enough to retain relevant taxa, but
restricted enough to prevent false hits and to maintain confidence in identification.
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1. Introduction

1.5.1. List of abbreviations

Abbreviation Explanation

bp Base pairs
FDR False Discovery Rate
FPR False Positive Rate
GC Guanine-Cytosine content

LCA Lowest Common Ancestor
mad Median absolute deviation
MS Mass Spectrometry

MS/MS Tandem Mass Spectometry
NCBI National Center for Biotechnology Information
NGS Next Generation Sequencing
PSM Peptide Spectrum Match

RefSeq Reference Sequence database of the NCBI
ROC Receiver Operating Characteristic

sd Standard deviation
SRA NCBI Sequence Read Archive
TPR True Positive Rate
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1. Introduction

1.6. Thesis Outline

This thesis introduces several computational methods for NGS and tandem MS data
analysis with applications in (meta-)genomics, (meta-)proteomics as well as poten-
tially proteogenomics. Chapter 2, 3 and 4 address the three previously described
challenges related to sequence quality and availability and present possible solutions
each. Chapter 5 discusses and summarizes the three contributed methods and corre-
sponding results. All contributions were developed under the guidance of Bernhard
Renard who participated in overall software and experimental design as well as in
drafting manuscripts for publication. Software and experimental design for Chap-
ter 2 were supported by Piotr Wojtek Dabrowski, Vitor Piro and Andreas Nitsche.
Vitor Piro additionally contributed extensively to the evaluation of metagenomic
analysis. Furthermore, Thilo Muth contributed to software and experimental design
of Chapter 4.

Chapter 2 addresses the quality control of de novo assembled draft genomes which
provide the basis for proteogenomic studies in the short term and for annotated, cu-
rated as well as publicly available proteomes in the long term. SuRankCo, a novel
machine learning-based tool for quality ranking of de novo assembled contigs is pre-
sented and discussed. Benchmarks on datasets with known ground truth feature are
presented and illustrate potential benefit, in particular for the integrative application
within metagenomic samples. The chapter is based on the publication:

SuRankCo: supervised ranking of contigs in de novo assemblies. M. Kuhring,
P. W. Dabrowski, V. C. Piro, A. Nitsche and B. Y. Renard. BMC Bioinfor-
matics, 16, 240, 2015.

Furthermore, the presented contribution in Chapter 2 builds upon preceding work
in the master thesis:

Estimation Of De Novo Assembly Contig Quality With Random Forests. M.
Kuhring. Master Thesis, Freie Universität Berlin, 2012.

In the master thesis, features and scores were established and the utility of ran-
dom forest as classifier was evaluated using several de novo assemblies of single
organism sequencing samples. The contribution to this thesis improves on the over-
all prediction performance by introducing binary classification of preliminary contig
scores by means of quantiles of fitted exponential distributions. Furthermore, scores
were aggregated to enable contig rankings whilst taking into account the classifi-
cation probability. Experiments and evaluations were substantially extended with
respect to datasets and assemblers used. In particular, the additional application for
metagenomic samples was investigated at length. Additionally, the machine learn-
ing strategy was compared to related published work on de novo assembly quality
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1. Introduction

assessment. Finally, the developed method prospered from an initial prototype into
a complete and published software tool.

Chapter 3 discusses a possible solution to assess sequence data availability for tan-
dem MS based microbial identification. Several examples illustrate the taxonomic
performance for model as well as non-model target organisms with respect to pos-
sible influences of error-tolerant peptide searches in comparison to exact strategies.
Furthermore, the impact of database extension with translated genomic sequence
data is highlighted. The chapter is based on the publication:

Estimating the computational limits of detection of microbial non-model or-
ganisms. M. Kuhring and B. Y. Renard. Proteomics, 15, 3580–3584, 2015.

Chapter 4 concludes on the subject of sequence availability by addressing the
application of comprehensive databases for untargeted strain level identification of
tandem MS samples. With TaxIt, an iterative approach is presented that enables
the selective differentiation of suitable strain proteomes by identifying a candidate
species first. Strain identification is demonstrated on several viral and bacterial
samples. The chapter is based on the publication:

TaxIt: An iterative and automated computational pipeline for untargeted strain
level identification of microbial tandem MS spectra. M. Kuhring, T. Muth and
B. Y. Renard. Manuscript in preparation.
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2. Supervised Ranking of Contigs in De
Novo Assemblies

In contrast to mapping procedures, de novo assembled sequences lack the direct com-
parison to a reference genome and thus have no ground truth-based quality control
readily available. Commonly, evaluation of de novo assemblies and their contigs is
based on single metrics (such as the N50) and their individual interpretation (Brad-
nam et al., 2013) or on evaluations of accumulated metrics or mis-assembly features
(Phillippy et al., 2008; Vezzi et al., 2012a,b; Gurevich et al., 2013). Several methods
and tools were released lately that introduced a new degree of quality detail on a
nucleotide level, such as ALE (Clark et al., 2013), CGAL (Rahman and Pachter,
2013), LAP (Ghodsi et al., 2013) or REAPR (Hunt et al., 2013). They provide log-
likelihoods based on probabilistic assumptions to allow quality comparison between
different assemblies.

In this contribution, we focus on the aspect of quality control within a de novo
assembly. We introduce a machine learning based method to evaluate and rank
contigs within a single de novo assembly, called SuRankCo (Supervised Ranking
of Contigs). The method takes advantage of data already generated in related
sequencing experiments. It allows the selection of a suitable subset of contigs for
subsequent processing and analysis.

In general, not every contig can be assumed to be error-free and it may save time
and resources to re- strict downstream analysis to reliable information. In doing so,
for instance, conflicts in finishing procedures may be prevented (Salzberg and Yorke,
2005; Nielsen et al., 2009), expensive validation experiments can focus on contigs of
sufficient quality (Hsu et al., 2012; Mascher et al., 2013) and ambiguities in derived
gene annotations may be explained by contig quality (Vázquez-Castellanos et al.,
2014).

Surankco ranks contigs by their quality and can help in identifying the error source
by the various scores it produces. However, it is outside of the scope of this thesis
to improve low-ranking contigs and repair their errors. There are other strategies
and tools which are applicable, e.g. the integration of different assembler types
with non-overlapping error profiles (Salzberg et al., 2012), the application of error
correcting tools for the reads (Kelley et al., 2010), or the critical visual inspection
and manual correction (Nielsen et al., 2009).

The main idea of SuRankCo is to rely on knowledge generated from contigs from
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2. Supervised Ranking of Contigs in De Novo Assemblies

sequencing experiments of related organisms for which a genome reference is avail-
able. Aligning these contigs to the reference yields scores which can be used as
targets for a machine learning approach. Contigs from a new assembly can then be
examined and classified with respect to the learnt target scores based on different
features.

In the following, we introduce the methodology and implementation of SuRankCo,
evaluate it on bacterial de novo genome assemblies and compare to ALE as an
existing and related method.

2.1. Training and Prediction of Contig Quality

Figure 2.1.: Modularization and workflow of SuRankCo. The four modules of SuRankCo
allow two workflows, training and prediction, indicated by grey and white arrows, re-
spectively.

SuRankCo is divided into four modules (illustrated in Figure 2.1), including the
extraction of contig features, the calculation of alignments and single scores, the
training based on features and the prediction of single scores based on features to
build the ranking. These modules can be combined to either perform training or
prediction. In addition, intermediate data such as the features, single scores or
trained classifiers can be examined or used within other applications.

Information on characteristics of contigs from a de novo assembly are extracted
by the SuRankCo-Feature module. These features include common characteristics
such as length (unpadded and padded), coverage, quality values, read counts, read
lengths and read quality values. Additional features were developed, including core
coverage, coverage confirmation and coverage drops. For a full list of features and
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2. Supervised Ranking of Contigs in De Novo Assemblies

descriptions refer to Appendix A.1. SuRankCo-Feature accepts assemblies either as
a pair of ace and fastq files or fasta and sam/bam files, respectively.

Training contigs are scored by comparison to a corresponding reference genome
sequence. The SuRankCo-Score module utilizes BLAT (Kent, 2002) and accompa-
nying tools to build alignments. Next, several single scores are calculated for each
contig based on these alignments. Some scores are computed for each contig as a
whole and some for certain critical areas such as the contig ends. Additionally, some
scores are varied by introducing different normalizations, for instance based on con-
tig or alignment length. A full list and descriptions of the single scores is given in
Appendix A.1.

The classification of contigs in SuRankCo is performed using a random forest
classifier (Breiman, 2001). Here, we rely on a random forest classifier as it adapts
to different scenarios without the need for parameter tuning, can handle discrete
and continuous input and can also uncover non-linear relationships. The training of
the random forests is preceded by a separation of each single score into two classes
to allow for binary classification using quantiles of fitted exponential distributions.
Alternatively, a manual adjustment is possible based on histograms provided by
the SuRankCo-Score module. A detailed description is given in Appendix A.1.
Finally, the SuRankCo-Training module uses contig features and the transformed
single scores to train a classification random forest for each score.

The SuRankCo-Prediction module estimates single score classes from contigs and
their respective features by using the previously trained random forests. Different
estimates are aggregated in a voting procedure to provide a final SuRankCo contig

score. It is defined as
∑|S|

i=1 Si × Pi where Si is the iths single score classification
(0 or 1) and Pi denotes the probability of Si being classified to that class, which is
provided by the random forests. The SuRankCo contig score determines the final
position in the ranking of the contigs.

2.2. Experiments

We evaluate the application and classification quality of SuRankCo by using various
publicly available genome sequencing data sets. In the first experiment, we ap-
ply SuRankCo on the well-studied Escherichia coli strain K-12, substrain MG1655
(Blattner et al., 1997) and compare to ALE as an existing and related method. We
constructed four de novo assemblies of Illumina Genome Analyzer II reads from the
NCBI Sequence Read Archive (SRA), three for training and one for prediction and
evaluation (accession numbers are provided in Appendix A.1). The training and
the evaluation of the predictions make use of an established high quality reference
[NCBI:NC 000913.3]. However, it should be noted that using the same organism for
training and prediction is an artificial application as a proof-of-principle. Details on
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the data preparation are given in Appendix A.1.
We calculated the classification quality for each single score by comparing pre-

dicted classes versus real classes. As additional validation with ground truth data,
we compared the ranking based on the SuRankCo contig scores to the percentage
identity (pIdent) of Blast hits in the current NCBI E. coli taxon [taxid:562], assum-
ing that more reliable contigs should show better identity values.

Current methods for quality control in de novo assemblies do not score individual
contigs, but rather focus on comparing complete assemblies. In order to still provide
a meaningful comparison, we counted potential contig errors based on ALE sub-
scores. Therefore, we manually evaluated the sub-scores and defined error thresholds
(see Appendix A.1 - Figure A.1). Sub-scores below their corresponding thresholds
are counted as error and errors are summed per contig over all positions. For the
the E. coli prediction data set, these ALE contig scores were then compared to the
Blast pIdent values in the same way as the SuRankCo contig scores. More details
on the application of ALE are given in Appendix A.1.

To demonstrate the applicability for different organisms and assemblers, we ap-
plied SuRankCo on the staggered mock community of the Human Microbiome
Project (Turnbaugh et al., 2007) and the bacteria assemblies of the GAGE study
(Salzberg et al., 2012). We used three different settings for the mock community:
(i) a metagenomics assembly, (ii) an organism specific assembly with different as-
semblers, and (iii) a combined training on assemblies by various assemblers. For
(i), we constructed a meta-assembly of the complete community. We then assigned
the resulting contigs to the respective organisms and then randomly divided the
set of organisms in the community into a training and a prediction group. For
(ii), we extracted all reads for each organism by a reference mapping procedure to
have single organism sequencing data with identical technical origin. Each organism
was then assembled separately using the assemblers Mira (Chevreux et al., 1999),
SOAPdenovo (Luo et al., 2012) and Velvet (Zerbino and Birney, 2008). Training
and prediction was performed for each assembler separately with a separation of
organisms as in the metagenomics assembly experiment. For (iii), the assemblies
of the different assemblers in (ii) were merged to provide a training and prediction
data set across all organisms and assemblers. Details on the data preparation are
given in Appendix A.1.

For the SuRankCo analyses of the GAGE bacteria, we made use of the assemblies,
reads, and genomes provided for Staphylococcus aureus and Rhodobacter sphaeroides.
In particular, we used the S. aureus assemblies for training and R. sphaeroides for
prediction. We used two different settings for the GAGE assemblies: (i) an assembler
specific training, and (ii) a combined training on assemblies by various assemblers.
For (i), training and prediction was performed for each assembler used in the GAGE
study separately. For (ii), the assemblies of the different assemblers were merged to
provide a training data set across all assemblers. Details on the data preparation
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2. Supervised Ranking of Contigs in De Novo Assemblies

are given in Appendix A.1.
To evaluate the mock and GAGE experiments, we compared the SuRankCo score

rankings to Blast hits of contigs mapped against the corresponding known refer-
ence genomes. In particular, we calculate a contig evaluation score by forming the
harmonic mean between the Blast pIdent and the Blast query coverage (qcovhsp).
We then assigned the contigs based on the ground truth into a low-quality and a
high-quality group and evaluated the performance of SuRankCo by ROC curves.

In addition, we compared the SuRankCo results of the GAGE assemblies to the
corresponding GAGE evaluation metrics including contig number, errors, N50, and
corrected N50. We calculated mean values of final SuRankCo contig scores per as-
sembler in order to enable ranking based comparisons assuming a correlation between
SuRankCo score distribution order of the different assemblies and their correspond-
ing GAGE evaluation metrics.

2.3. Results and Discussion
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Figure 2.2.: Evaluation of the SuRankCo rankings on the E. coli test data. (A) shows
the distribution of SuRankCo contig scores. They form two clusters based on the high
correlation of target scores in this data set. Clusters are skewed due to classification
probabilities incorporated into the SuRankCo contig scores. (B) shows a scatterplot
comparison of the ranking and the pIdent of Blast matches against the E. coli taxon.
High and low density areas are indicated in red and blue, respectively. Data points below
95 % pIdent are not shown to improve the scaling (25 of 11336).

The E. coli experiment illustrates three key characteristics of the single scores.
First, the contigs used in training show good quality in their alignments to the
reference sequence. Thus, they feature low variance in the single score distributions.
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Second, these variances are still sufficient to allow an automated separation into
two classes (see Appendix A.1 - Figure A.2). Third, a successful prediction can
be made with a low number of false positives and false negatives in the test data
(Appendix A.1 - Figure A.3). Further, the validity of the SuRankCo contig score
is supported by a comparison to the percentage identity of the corresponding Blast
hits (Figure 2.2 B) with Pearson and Spearman correlation coefficients of 0.77 and
0.72, respectively.
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Figure 2.3.: Evaluation of ALE contig score of E. coli test data. The figure shows a
scatterplot comparison of the ALE contig scores and the pIdent of Blast matches against
the E. coli taxon. High and low density areas are indicated in red and blue, respectively.
The ALE contig scores are shown in reversed order to allow a simpler comparison to
Figure 2.2. Data points below 95 % pIdent are not shown to improve the scaling (25 of
11336).

Figure 2.3 shows a comparison of ALE contigs scores and Blast pIdent values. In
addition, the comparative evaluation results for SuRankCo and ALE on contigs of
varying length is shown in Table 2.1. Correlations between Blast pIdent values and
SuRankCo contig scores are generally higher than correlations between Blast pIdent
values and ALE contig scores, independent of whether Spearman or Pearson corre-
lation is used and how long contigs are. However, it should be noted that ALE was
applied here outside its regular scope and results should by no means be interpreted
as general criticism of the tool. To the contrary, differences in the performance be-
tween SuRankCo scores and ALE scores only emphasize the differences regarding
their approaches and objectives. The fact that ALE does not provide contigs scores
directly further supports this observation.

For SuRankCo, a high correlation between the single scores is notable in the E. coli
experiment (as shown in Appendix A.1 - Figure A.6). However, correlated scores do
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Table 2.1.: Comparative evaluation of SuRankCo and ALE. The table shows the Spearman
and Pearson correlations of SuRankCo and ALE contig scores to the percentage identity
of corresponding Blast hits. The correlations are calculated for all contigs as well as
separately for short contigs (with lengths below the 10% quantile) and long contigs (with
lengths above the 90% quantile).

Score Contig Length CorPearson CorSpearman

SuRankCo all 0.77 0.72
ALE all 0.35 0.49
SuRankCo ≤ Q0.1 0.58 0.55
ALE ≤ Q0.1 0.16 0.37
SuRankCo ≥ Q0.9 0.75 0.68
ALE ≥ Q0.9 0.19 0.12

not corrupt the predictions, but favor clustering of contigs within the ranking rather
than a more uniform distribution (compare Figure 2.2 A). In general, contig scores
may be less correlated and thus provide a wider distribution of SuRankCo contig
scores in the ranking as shown for the data of the metagenomics mock community
experiment in Appendix A.1 - Figure A.7. In addition, the variety of SuRankCo
contig scores enables a broader integration and indentification of common assembly
error types (see Appendix A.1 - Table A.5 and A.6).
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Figure 2.4.: Evaluation of the SuRankCo predictions of the mock community test data.
Each plot illustrates a ROC curve of the contig evaluation score grouping in contrast
to a varying grouping of the SuRankCo scores. Thereby, the changing color of the
graph represents the changing threshold for the SuRankCo score grouping. Here, the
predictions for the different organisms in the test group are combined to feature ROC
curves of specific, combined and meta-assemblies.

The mock experiments allow a detailed view on parameters influencing SuRankCo
results. Altogether, results indicate good prediction with regard to true positive rates
(TPR) and false positive rates (FPR) (see Figure 2.4). However, some exceptions
can be observed on the organism and on assembler level as exemplified in Appendix
A.1 - Figure A.4. In general, merging the training data from various assemblers
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does not improve on individual assembler results, but rather has negative effects.
This indicates that there are assembler specific error types that can be learnt with
SuRankCo. Comparing assembler results, the evaluation of Velvet assemblies per-
forms poorly in contrast to the other assemblers. However, for Velvet we observed
the lowest number of contigs with low quality based on the blast generated ground
truth. This indicates that the performance of SuRankCo decreases for assemblies
of very high quality since there is only few variance left for proper training or pre-
diction. For organisms, we note that comparatively poor results are obtained for
S. epidermidis, in particular for Mira, Metavelvet and the combined assemblers, al-
though an apparently closely related organism (S. aureus) is present in the training
data. However, examining the relation of mock organisms based on sequencing data
reveals low similarities in general (as shown in Appendix A.1 - Table A.7).

Table 2.2.: Contig metric values of R. sphaeroides assemblies as provided by the GAGE
study. Note, ABySS2 metric values were not available.

Assembler Num N50 Errors N50corr

ABySS 1915 5.9 76 4.2
ALLPATHS-LG 204 42.5 49 34.4
Bambus2 177 93.2 373 12.8
MSR-CA 395 22.1 52 19.1
SGA 3067 4.5 12 2.9
SOAPdenovo 204 131.7 422 14.3
Velvet 583 15.7 43 14.5

Table 2.3.: Comparative evaluation of SuRankCo and GAGE. The table shows the Spear-
man correlations between assembly ranks based on SuRankCo score means and GAGE
metrics for R. sphaeroides assemblies. Correlations are calculated for SuRankCo ranks
based on assembler specific trained classifier as well as combined trained classifier.

Num N50 Errors N50corr

Specific Training 0.7208 -0.7857 -0.6071 -0.6071
Combined Training 0.6847 -0.6786 -0.1786 -0.8571

Similar to the mock experiments, the GAGE experiments result in overall ac-
curate predictions as illustrated by the ROC curves in Figure 2.5. However, few
assemblies yield low prediction power including MSR-CA and SGA. The compa-
rably low error rate in these two assemblies (as shown in Table 2.2) supports the
conclusion that the performance of SuRankCo decreases for assemblies with very
few errors. Since SuRankCo is a learning based approach, it requires also negative
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Figure 2.5.: Evaluation of the SuRankCo predictions of the GAGE assemblies. Each plot
illustrates a ROC curve of the contig evaluation score grouping in contrast to a varying
grouping of the SuRankCo scores. Thereby, the changing color of the graph represents the
changing threshold for the SuRankCo score grouping. Here, one ROC curve represents
the evaluation of R. sphaeroidis assemblies classified by the combined training classifier.
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Figure 2.6.: Scatterplot of the SuRankCo score mean ranks and GAGE metric ranks.
The figure shows scattorplots of ranks for GAGE assemblies of R. sphaeroidis based
on the SuRankCo score means vs. each GAGE metric including contig number, errors,
N50, and corrected N50. A. features SuRankCo score mean ranks based on assembler
specific trained classifier and B. based on the combined trained classifier, respectively.
To improve visualization, the contig number ranks have been inverted since they are the
only ones yielding positive correlation.

examples containing errors in the assemblies. If these are missing, artifacts may
arise more frequently. In summary, assemblies which provide a few, but potentially
error-prone contigs may benefit more from SuRankCo than assemblers with a high
number of short, but error-free contigs. In contrast to the mock experiment, on aver-
age there is no significant difference between predictions based on assembler specific
(Appendix A.1 - Figure A.5) or combined training (Figure 2.5). However, the cor-
relation of SuRankCo score means with the GAGE error metric shows a significant
decrease from assembler specific to combined training based predictions (Table 2.3).
Again, this indicates that there are assembler specific characteristics that can only
be learnt and discriminated by separate training. Apart from that, the comparison
of SuRankCo and GAGE yields good rank correlations with values of up to 0.85 as
shown in Table 2.3 and Figure 2.6 for both, assembler specific and combined training
and prediction. Therefore, based on independent ground truth data, the correlations
indicate that SuRankCo infers the relationship of different assemblies in terms of
quality, even if trained separately. Nonetheless, as also indicated by the diversity of
the metrics in the GAGE study itself, it is difficult to perfectly represent the quality
of assemblies in few scores. Thus, it cannot be expected to observe a direct one-to-
one correspondence of SuRankCo scores with single GAGE metrics. At the same
time, it should be noted that SuRankCo was developed to score individual contigs
and that the overall ranking of assemblies by their mean ranking score – while well
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correlated with the metrics in the GAGE study – is not its standard usage.
In classic assembly metrics such as the N50, a high value is placed on obtaining

longer contig scores. However, it has been frequently noted that longer contigs scores
do not necessarily coincide with higher contig quality (Narzisi and Mishra, 2011).
SuRankCo scores are evaluated with regard to the identity and query coverage of
the reference genome. Increasing values in these metrics may correlate with longer
contigs, but are by no means ensured and rather focus on the number of matches
and mismatches.

Overall, several factors may influence the assembly of contigs significantly and
thereby also influence the performance of SuRankCo. These include for instance
sequencing parameters such as coverage and read length, sequencer error profiles,
organism relationships, biases such as GC content and characteristics of read pro-
cessing algorithms such as these used for de novo assembly. Thus, SuRankCo is
mainly designed with a focus on stable workflows applied within a lab. SuRankCo
has been mainly developed for and tested on microbial genomes, however, there is
no theoretical limitation which should restrict the application to other genomes.

2.3.1. Conclusions

We introduced SuRankCo as a tool for a learning-based quality prediction and rank-
ing of contigs within a de novo assembly. To take full advantage of the machine
learning approach and for optimal performance, training and test data have to be
similar in their key characteristics. In our benchmark, we observe promising results
in terms of sensitivity and specificity and favorable comparison to existing method-
ology. We foresee practical application in ranking contigs for downstream analyses.

SuRankCo is available for download under open-source license at http://sourceforge.
net/projects/surankco/.
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3. Limits of Detection of Microbial
Non-Model Organisms

In recent years, there has been an increasing interest in using mass spectrometry for
studying microbial non-model organisms (Armengaud et al., 2014). In particular,
this holds true in metaproteomic studies which allow studying the composition of
more complex and heterogeneous microbial communities (Muth et al., 2013; Pen-
zlin et al., 2014). Non-model organisms are often only inaccurately covered or even
entirely missing in available protein reference databases. As a consequence, the iden-
tification of spectra from these experiments is not completely achievable via common
protein database searches, leaving an unknown number of proteins or even organ-
isms undetected. Due to constant evolution of microbial organisms and the resulting
vast diversity, even ongoing sequencing efforts will not overcome this challenge. De-
pending on database size and coverage, spectra of novel organisms often match to
sequences of more or less related organisms resulting in peptide identifications in
different taxonomic levels such as genus, family or class. The quantity and ratio of
matches to these taxonomic levels is, however, not directly assessable for organisms
with uncertain origin. Thus, a final taxonomic classification of such organisms is
often inaccurate and unreliable.

Some research has been carried out on improving the identification of MS/MS
spectra in general by the use of error-tolerant hybrid approaches integrating de novo
sequencing and database searches (Renard et al., 2012) or by metaproteogenomic
approaches (Seifert et al., 2013). However, the effect of extended search strategies on
taxonomic classification of non-model organisms remains unknown prior to experi-
ments. In particular, whether an available database is sufficient or should be sup-
ported by additional methods and data is inherently difficult to assess. Thus, when
designing experiments often only a rough estimation can be performed to decide on
the subsequent search strategy, e.g. whether parallel sequencing experiments are
undertaken to allow proteogenomic approaches. In Figure 3.1 A, we illustrate which
benefits extended search strategies can provide to databases with varying coverage:
With a complete reference database, both standard and error-tolerant search will
identify the correct organism for an MS/MS spectrum. In contrast, when there is no
perfect match, only error-tolerant strategies may still identify the closest matching
organism.

Within this contribution, we introduce the LiDSiM (LImits of Detection SImula-
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Figure 3.1.: Comparison of search strategies vs. database content and schematic LiDSiM
workflow. A) illustrates the identification process for an MS/MS spectrum depending on
the search strategy used and database completeness. A single query peptide (spectrum)
is used as an example in all cases. Error-tolerant matches are indicated by orange tick
marks. B) illustrates how LiDSiM estimates the number of expected matches per tax-
onomic level for an error-tolerant search against a database of interest. This comprises
the extraction of an organism, the iterative matching of its peptides against the remain-
ing database and the classification of the taxonomic distances of the matches to infer
taxonomic level ratios.
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tion for Microbes) method. The focus of LiDSiM is to evaluate whether a database
is suitable for a specific identification task. Therefore, LiDSiM systematically esti-
mates the ratio of MS/MS spectra that are identifiable at various taxonomic levels
via exact and error-tolerant search strategies, based on available database infor-
mation as well as next generation sequencing reads. We do not regard spectral
information as numerous tools are available for this (Sturm et al., 2008; Muntel
et al., 2014), but rather exclusively focus on estimating whether the database will
contain the corresponding sequences.

A schematic workflow of LiDSiM is illustrated in Figure 3.1 B. The workflow
indicates how to estimate the number of expected matches per taxonomic level for
an error-tolerant search. For a given organism, all proteins are extracted from the
database and digested into peptides. These are then searched against the remainder
of the database. Thereby, the absence of an organism from a target database is
simulated and peptides need to be identified at higher taxonomic distance. Peptide
identification and taxonomic classification are repeated over all peptides to obtain
taxonomic level ratios. The error-tolerant search enables the identification of more
closely related peptides (as depicted by the example peptide) resulting in higher
ratios of lower taxonomic levels. In contrast, a standard search would yield, for
instance, less genus hits and more unidentified peptides.

3.1. Simulation and Identification of Related Organisms

The described extraction procedure is extended to all organisms in the database
under analysis. This corresponds to a cross-validation-inspired strategy. Similar to
leave-one-out cross-validation, individual organisms or taxonomic branches (repre-
sentative for the species of interest in the experiment, e.g. the closest known rela-
tives) are removed from the protein database of interest one by one. Additionally,
the database can be partially extended by a proteogenomic approach, by including
(simulated) genome sequencing data to examine its impact on the taxonomic clas-
sification. For instance, six-frame translations of annotated contigs may introduce
an even higher, homology-based error-tolerance and therefore yield more identifica-
tions. Finally, the given origin of the artificial spectra allows the classification of the
taxonomic distance of the search results. Thereby, we estimate to which extent the
sequences of related organisms can be used to identify an organism not contained in
the database.

The implementation of LiDSiM comprises several stages including database and
taxonomy parsing, subset extraction, peptide generation, the database search and
the taxonomic classification of the matches. The protein database is expected to be
annotated with NCBI GIs to allow the classification within the NCBI taxonomy. An
annotation with GI identifiers may be obtained by using, for instance, the UniProt ID
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mapping service (The UniProt Consortium, 2014). A taxonomic tree representation
is constructed from local files including GI-to-taxid mappings and tree nodes with
parent and rank information. Given the taxonomy, one or more query subsets are
extracted from the database. These subsets represent the proteins measured in
an MS/MS experiment. A subset could contain, for instance, a single species or
even major taxonomic segments such as genera, families etc. For larger subsets and
databases, representative organisms can be specified or sampled. For each subset,
the remaining proteins represent the target database used for spectra identification.
Query protein sequences are in silico digested at the common trypsin cleavage site
(after K and R, if not followed by P). All ”I”s are substituted by ”L” since they
are not distinguishable due to their equal molecular mass. In addition, peptides
are filtered for lengths of 8 to 35 and can randomly be downsampled in number
to speed up the computational process. Since the focus of LiDSiM is to evaluate
the database, we do not simulate the peptide spectrum match itself, but rather
evaluate the matching of sequences across species in a database and the benefit
of error-tolerant searches and proteogenomic approaches. For this aim, we rely on
established string matching algorithms for sequence comparisons. These include the
Wu-Manber algorithm (Wu and Manber, 1994) for exact parallel pattern matching
and the approximate Boyer-Moore algorithm (Tarhio and Ukkonen, 1993) to allow
matches with a definite maximal hamming distance. Wu-Manber and Boyer-Moore
allow the deterministic search of pattern strings (spectra respective peptides) in
target strings (protein database) without missing a possible hit. Thereby, the later
algorithm allows the simulation of error-tolerant spectra identifications. Finally, for
each match the lowest common ancestor (LCA) is calculated between query peptide
and target protein. For each query, the match and rank of the closest LCA is
reported. Counting these ranks results in the number of queries matching to certain
taxonomic levels. Thus, we refer to the proportion of all ranks as taxonomic level
ratio.

For particular organisms in the database, results can benefit from integrating
genome sequencing data in a proteogenomic approach. However, it requires a de novo
assembly for those organisms, either from experimental data or, at least, constructed
from simulated reads. A simulated assembly can be generated, for instance, by using
the Mason read simulator (Holtgrewe, 2010) and a de novo assembler such as Mira
(Chevreux et al., 1999). The contigs of an assembly are six-frame translated using
EMBOSS transeq (Rice et al., 2000) and a basic annotation is conducted by using
BLAST+ (Camacho et al., 2009) against the database excluding the query proteins
and selecting the best hit (i.e. the first hit with the smallest e-value). Besides the
provided basic annotation procedure, the LiDSiM analysis can also be combined
with more sophisticated gene annotations of the user’s choice.
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3.2. Comprehensive and Targed Database Evaluation

To illustrate the application of LiDSiM, we applied the simulation on databases
composed of NCBI RefSeq bacteria proteins (Release 66) of selected phyla, in par-
ticular the Proteobacteria phylum (taxid 1224). We provide a cross section view of
detection levels by extracting each genus one at a time. For each genus, a repre-
sentative organism is selected randomly and sampled down to 1000 peptides. Each
resulting subset is searched in the corresponding genus-free phylum database, once
with an exact peptide search and once with error-tolerance allowing one amino acid
substitution.

In addition to the phyla cross validation, we demonstrate the effect of additional
search strategies on particular organisms with varying degree of exploration. We
selected two bacteria with high contrast in the number of relatives in their corre-
sponding phylum databases. The first bacterium is Escherichia coli which is highly
common in terms of scientific exploration and taxonomic density of relatives in the
RefSeq database. And second, we selected the by contrast relatively uncommon
bacterium Deinococcus deserti. Both bacteria were extracted to varying extent from
their corresponding phylum databases (Proteobacteria phylum, taxid 1224, 4192793
proteins and Deinococcus-Thermus phylum, taxid 1297, 57694 proteins, resp.). This
includes extracting the species, genera and families each (taxids 562, 561 and 543 for
E. coli and taxids 310783, 1298 and 183710 for D. deserti, resp.). Representatives
were selected manually to enable validation with experimental data and include the
E. coli O157:H7 strain Sakai (taxid 386585) and the D. deserti strain VCD115 (taxid
546414). In the simulation, query peptides were sampled down to 1000 peptides each
and searched in the corresponding databases with and without error-tolerance.

3.3. Experimental Validation

We evaluate the simulation by comparing against real data. Therefore, we selected
publicly available MS/MS spectra from the PRIDE archive including an E. coli
O157:H7 strain Sakai experiment (PXD000583) (Kocharunchitt et al., 2014) and a
D. deserti strain VCD115 experiment (PRD000139) (Baudet et al., 2010). Spectra
were selected and prepared as described in Appendix A.2. We applied MS-GF+
(v9979) (Kim and Pevzner, 2014) to identify the spectra with an exact database
search. For details on parameters refer to Appendix A.2. We sampled 1000 spectra
from each dataset to improve runtime and to be consistent with the simulation. The
sampled spectra were searched in the corresponding species-free phylum database
(taxid 1224 and 1297, resp.). Results were filtered via a decoy-based false discovery
rate (FDR) cutoff of 0.01. Given the origin of the spectra, we calculated and reported
the matches with the closest LCA just as in the simulation. Since the focus of
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LiDSiM is on protein identification rather than quantification, we only regarded the
first occurrence of a spectrum for a protein rather than counting every occurrence.
Thereby, we account for protein abundance in the experimental data which is not
present in the simulation. The simulation may still contain a minor bias since
unexpressed proteins cannot be predicted and removed. However, the impact is
negligible in contrast to the excessive number of peptides resulting from highly
expressed proteins. Finally, to investigate spectra sampling variance we repeated
the complete procedure with 10 sampling replicates per bacterium each.

We applied BICEPS (v1.0) (Renard et al., 2012) to increase the error-tolerance
of spectra identification by allowing one amino acid substitution per spectrum. BI-
CEPS is an error-tolerant search approach that allows overcoming 1-2 amino acid
substitutions in a peptide sequence within a database search. Thereby, by using
BICEPS, a higher number of matches to related species – which are likely to show
some amino acid substitutions - can be identified. BICEPS results of identified sub-
stitutions can then be used as input to a standard MS-GF+ search to have the same
scoring scheme as in exact searches without error-tolerance.

To analyze the impact of complementary genome sequencing data on the sim-
ulation, we constructed simulated de novo assemblies for E. coli O157:H7 strain
Sakai and D. deserti strain VCD115 and, in addition, a de novo assembly for E. coli
based on experimental reads (SRR587217) from the NCBI Sequence Read Archive
(Leinonen et al., 2011). The sampling of artificial Illumina reads and the assembly
procedures are described in Appendix A.2. The assemblies have been annotated as
described above, added to the corresponding RefSeq protein target databases and
searched with error-tolerance.

3.4. Results and Discussion

The iterative extraction of genera from the Proteobacteria phylum database resulted
in 267 taxonomic level ratio estimations. The simulation results are shown in Figure
3.2 A and Figure 3.2 B for searches with and without error-tolerance. The exact
search yields many extractions with a high number of unidentified peptides. On
average, over 80% of peptides have not been identified at all. In contrast, only very
few samples possess such high ratios for identified peptides. In comparison, the
simulation with error-tolerance of one amino acid shows a substantial increase of
identifications. The number of unidentified peptides is reduced to 60% on average
yielding considerably more identified peptides, in particular within the family rank.
In general, the majority of identified peptides are classified within the family rank,
i.e. the peptides matched to proteins of rather close relatives.

The taxonomic level ratio estimations of the selected bacteria E. coli and D.
deserti and the corresponding real spectra identifications are illustrated in Figure
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Figure 3.2.: Taxonomic level ratios of genus extractions. A and B show the simulations of
peptide searches with an exact search and error-tolerant search, respectively. Each genus
extraction is represented by a column in the heat map, with the same position in A and
B. Extractions are sorted by the number of unmatched peptides (no match), phylum,
class, order and family in the exact search. Minor taxonomic ranks (incl. sub, super,
infra and parv ranks) are pooled with their corresponding major rank.
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Figure 3.3.: Taxonomic level ratios of selected bacteria. For both, E. coli O157:H7 strain
Sakai (A) and D. deserti strain VCD115 (B) the plots show the taxonomic level ratios
of the first real spectra identification sample (real), the standard simulation (sim) and
the proteogenomic simulation (sim-g). Results are shown for searches against databases
with the corresponding species removed in an exact (e) and error-tolerant (t) search,
respectively.

3.3. The results show favorable similarities between estimations and real spectra
identifications, in particular for the ratios of identified and unidentified spectra.
However, for E. coli real spectra are more often classified as genus matches than es-
timated. Additionally, the benefits introduced by error-tolerant and proteogenomic
approaches are rather small but still apparent. In contrast, the number of D. de-
serti identifications significantly increases when error-tolerant and proteogenomic
approaches are applied.

The results reveal a discrepancy between simulation and real spectra identifi-
cations for the E. coli experiments. This may be explained by several variables
the simulation does not account for. While the simulation is a basic determinis-
tic procedure, real spectra identifications are subjected to several additional effects
of different origin, including, for instance, variations and errors in peak mass and
intensity, different resolutions and noise. In addition, as previously mentioned the
simulation might have sampled proteins from the database which are not expressed
in the experimental data. However, the results of multiply sampled spectra for the
real spectra identifications (see Appendix A.2 - Figure A.10) show a notable variance
for unidentified spectra and thereby account for the ratio discrepancy of identified
and unidentified peptides between simulation and real spectra identifications.

Both, the iterative genus extractions and the selective species extractions demon-
strate the high variance in taxonomic level ratios between different samples or or-
ganisms. This variance originates from the varying density of relative organisms
and sequences in the target databases. However, the analysis highlights the im-
pact of error-tolerant and proteogenomic searches. In particular, a great benefit can
be expected for comparably underexplored organisms such as the D. deserti strain
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VCD115 in contrast to well explored organisms such as E. coli O157:H7 strain Sakai
which only features minor improvements in the taxonomic level ratios.

In this contribution, we presented a method to estimate the taxonomic level ra-
tios of MS/MS spectra identifications and, in particular, the amount of unidentified
spectra with respect to a target database. The simulation evaluates the detection
potential and limits of a specific database when applied for MS/MS spectra iden-
tifications. Furthermore, the simulation evaluates how these limits are affected by
error-tolerant spectra identifications provided by capable search methods or pro-
teogenomic approaches. While providing a comprehensive overview across organ-
isms, the presented results are by no means intended for a direct application on
other organisms and databases. To the contrary, we designed LiDSiM to support
experiments by estimating the effect of error-tolerant and proteogenomic searches on
particular databases as needed. Thereby, we provide a tool for experimental design,
allowing researchers to decide in the planning stage of an experiment which benefit
to expect from various strategies.

LiDSiM is developed in Java and R and is available for Linux and (with minor
restrictions) for Windows at https://sourceforge.net/projects/lidsim/.
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4. Iterative and Untargeted Strain Level
Identification

LC-MS/MS driven strain identification is a crucial yet challenging task. Many mi-
crobial strains feature significant phenotypic differences within a species including
differences in pathogenicity, zoonotic potential, cell attachment and entry, host-virus
interaction and clinical symptoms (Bengali et al., 2009, 2012; Doellinger et al., 2015).
Strain level knowledge is important to infer virulence (Choi et al., 2002; Genersch
et al., 2005) and drug resistance (Boulund et al., 2017) for appropriate therapy.
However, inferring strain information from proteomic samples remains challenging,
in particular when the taxonomic status of a sample is unknown.

In the recent years, MALDI-TOF mass spectrometry gained in popularity as a
fast, sensitive and economical method for microbial biotyping. However, identify-
ing strains via peptide mass fingerprints requires curated and generally proprietary
spectral databases (Singhal et al., 2015). Several commercial platforms for microbial
biotyping down to species or strain level are available such as the Bruker MALDI
Biotyper Systems (Bruker MALDI), the Bruker Strain typing with IR Biotyper
(Bruker IR) and the Ibis T5000 Universal Biosensor (Ecker et al., 2006).

Several studies report on insufficient performance of MALDI-TOF biotyping for
strain level identifications and advocate advancements towards tandem MS marker
peptide detection. However, database searches are often already targeted or re-
stricted to particular species or limited sets (Gekenidis et al., 2014; Pfrunder et al.,
2016). In contrast, untargeted tandem MS typing approaches are limited to species
level identification (Alves et al., 2016; Boulund et al., 2017). However, in general
tandem MS is preferred for the analysis of complex unpurified peptide mixtures
as it is considered to provide more distinct and unambiguous peptide and protein
identifications (Aebersold and Mann, 2003) and thus increased proteome resolution
(Domon and Aebersold, 2006) as well as higher statistical confidence (McHugh and
Arthur, 2008). In particular, unknown organisms benefit from peptide sequence-
based identification (Liu et al., 2007). Furthermore, advances in instrumentation
including higher resolutions, mass accuracy and dynamic range increasingly allow
for identification of the majority of all fragmented peptides (Mann and Kelleher,
2008) resulting in higher sensitivity, higher coverage of target proteomes and thus
higher availability of distinctive features.

Taking advantage of the vast amount of available protein sequences for tandem
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MS strain level identification is challenging. On one hand, constraining the search
space may result in unidentified strains or incorrectly assigned taxa, in particular
for non-model organisms (Kuhring and Renard, 2015). On the other hand, applying
large databases is not recommended either since it decreases peptide identification
rates (Jeong et al., 2012) and thus eventually impedes taxonomic inference. Fur-
thermore, with increasing database size sequence quality often decreases (e.g. when
using the complete NCBI Protein in comparison to the NCBI RefSeq database)
and contaminations may occur more often (Pible et al., 2014). Therefore, extended
databases should only be used when necessary. However, strain level identifica-
tion of tandem MS spectra from samples with unclear taxonomic status requires
an untargeted search against comprehensive databases holding as many strains as
possible.

A common and popular concept to handle increased search spaces is the applica-
tion of multiple identification steps in general, independently of target application
such as strain level identification. These tandem MS search strategies are described
by several different terms such as multi-step (Craig and Beavis, 2003), iterative
(Nesvizhskii et al., 2006; Rooijers et al., 2011), multi-stage (Ning et al., 2010), two-
step (Jagtap et al., 2012, 2013, 2014) as well as cascade search (Kertesz-Farkas et al.,
2015) and they find application in proteomics, metaproteomics (Rooijers et al., 2011;
Jagtap et al., 2012) and proteogenomics (Chapman and Bellgard, 2014; Jagtap et al.,
2014). Most of these strategies do not only overlap in their objective of increasing
the identification rate or identification confidence but share methodological princi-
ples as well. This includes the concept of identifying primarily unassigned spectra
with databases of increasing complexity (for instance, by employing altered diges-
tion parameters, additional post-translational modifications or additional spectral
and genomic databases) (Craig and Beavis, 2003; Nesvizhskii et al., 2006; Ning
et al., 2010; Rooijers et al., 2011; Kertesz-Farkas et al., 2015) as well as the recur-
ring theme of database size reduction (Craig and Beavis, 2003; Rooijers et al., 2011;
Jagtap et al., 2012, 2013; Chapman and Bellgard, 2014; Jagtap et al., 2014). In
addition, some methods rely on spectral quality assessment to enhance subsequent
identification steps (Nesvizhskii et al., 2006; Chapman and Bellgard, 2014) or exhibit
a focus on algorithmic runtime reduction (Craig and Beavis, 2003).

These multi-step procedures illustrate the effect of database size on identifica-
tion confidence and the advantage of applying concise, prefiltered or specialized
databases. Thus, we transfer the general concept of multi-step procedures to ap-
proach the increased search space necessary for untargeted and detailed taxonomic
classification. We present TaxIt, an iterative workflow for untargeted strain level
identification of microbial protein samples. By applying two separate identification
steps for species and strain level classification, we circumvent the immediate need for
a comprehensive strain sequence database. Thereby, a first untargeted search allows
the selection of a relevant species and enables to focus a second search on a highly
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reduced but adequate choice of strain proteomes, resulting in increased identifica-
tion confidence and reduced taxonomic ambiguity. Moreover, the workflow takes
advantage of a free, publicly available and continuously growing protein sequence
resource (NCBI Protein) and is thus suitable for most common established tandem
MS instrumentation and workflows.

4.1. Traversing the Comprehensive Search Space

Host DB

Spectra
Search FDR Classification FilterHost Filter

(optional)

Global Search
(1. Iteration)

Counting Correction
Untargeted DB

Spectra

Search FDR Classification Download

Local Search
(2. Iteration) Species DB

Spectra

Counting CorrectionSearch FDR Classification Results

Figure 4.1.: Overview of the TaxIt workflow. In up to three stages, spectra are searched
against a host proteome (optional) to pre-filter host proteins, against an untargeted
database for global species identification (primary iteration) and against a targeted,
species-based and automatically fetched database for strain level identification (secondary
iteration).

The TaxIt workflow for strain identification consists of several recurring mod-
ules interconnected, controlled (in terms of input and output) and automatically
executed by the Snakemake workflow management system (Köster and Rahmann,
2012). The designed workflow executes up to three stages including an optional host
filter, species identification (primary iteration) and strain identification (secondary
iteration). A concise overview of the workflow is illustrated in Figure 4.1. The main
iterations comprise the execution of a peptide search engine, false discovery rate
(FDR) control, taxonomic classification, taxa counting and adjustment as well as
candidate selection and visualization. The download of strain proteomes bridges the
primary and secondary iteration. The procedures of the main modules are described
in detail below.

4.1.1. Peptide Search

The central step in tandem MS spectra analysis is an efficient peptide search.
Therefore, we rely on established and reliable open-source search engines such as
X!Tandem (Craig and Beavis, 2004) in combination with the XTandem Parser (Muth
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et al., 2010) or MS-GF+ (Kim and Pevzner, 2014). However, any command-line
search engine including proprietary ones could be implemented via additional Snake-
make rules. We apply a classic target-decoy approach for false discovery rate (FDR)
control. Decoy sequences are created upfront and independently of the search engine
with fasta-decoy.pl (Masselot) by reversing the target sequences (including contami-
nant proteins, for instance cRAP (The Global Proteome Machine)) and both target
and decoy databases are concatenated as suggested by Jeong et al. (Jeong et al.,
2012). Peptide spectrum matches (PSMs) are subjected to an FDR cutoff based on
a per-match FDR calculated as Ndecoy/Ntarget, with Ndecoy being the number of de-
coys in between targets (Ntarget) in a list of matches sorted by e-value (Jeong et al.,
2012; Nesvizhskii, 2014). To acknowledge established false positive hits of previous
iterations, decoy sequences left after FDR control are passed on and concatenated
to the database of the next iteration.

4.1.2. Taxonomic Classification

We make use of the NCBI Taxonomy to assign PSMs to corresponding taxa and re-
distribute shared hits introduced by proteins associated with higher taxonomic level
such as genus. First, NCBI protein accessions are mapped to NCBI taxids using the
NCBI protein id mapping file (ftp.ncbi.nih.gov/pub/taxonomy/accession2taxid/
prot.accession2taxid.gz). Next, taxonomic relations are inferred from the NCBI
Taxonomy nodes dump file (ftp.ncbi.nih.gov/pub/taxonomy/taxdump.tar.gz)
and PSMs are reassigned to a taxonomic level based on the objective of the current
iteration. In general, PSMs assigned to higher taxa such as genus are propagated
as shared hits to corresponding leaf taxa as long as the target leaves already exhibit
matches on their own. In addition, in the first iteration, PSMs are summarized at
species level.

4.1.3. Count Adjustment

For each candidate taxa (i.e. species in primary and strains in secondary iteration,
respectively), raw counts are calculated by summing over all assigned PSMs includ-
ing non-unique matches. To account for taxonomic biases due to shared matches,
we integrate a simple weighting scheme based on the level of uniqueness using the
global frequency of a PSM. Here, a PSM count per taxa is adjusted by the number
of occurrences in all candidate taxa. Thereby, unique PSMs gain in value for the
final taxa selection without fully neglecting the importance of high numbers of non-
unique matches which are often highly present within closely related taxa such as
strains.
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4.1.4. Selection and Downloads

After count adjustment, the most dominant candidate taxon is selected as the most
likely species or strain, respectively. In the final step of the first iteration, the
selected species is utilized to query strain level material for the strain identification
in the second iteration. Once more, we rely on the NCBI Taxonomy and infer all
available strains for the candidate species via the nodes dump file. Next, strain
proteins are automatically downloaded from NCBI Protein using the NCBI Entrez
API (Wheeler et al., 2008) in combination with the jsoup: Java HTML Parser
(Hedley). This includes all available RefSeq as well as non-RefSeq sequences since
the availability of curated strain material is often limited. Finally, the obtained
protein sequences are merged into one database and redundant entries are removed
using seqkit rmdup (Shen et al., 2016).

4.2. Experiments

We compare TaxIt against classic comprehensive search strategies based on straight
non-iterative taxonomic identification supported by unique PSMs or abundance sim-
ilarity correction as provided by Pipasic (Penzlin et al., 2014).

TaxIt will utilize NCBI RefSeq proteins of selected kingdoms as reference databases
for initial species identification followed by automated and selective strain protein
incorporation. Uniques- and Pipasic-based strategies however, will apply compre-
hensive databases integrating as much strain level sequences as possible at once
including all protein sequences from the NCBI Protein database for selected king-
doms. In general, a preselection of kingdoms may be supported by clinical findings
based on, for instance, symptoms or microscopic examination (Laue, 2010). Both,
uniques- and Pipasic-based strategies utilize the same procedures for peptide search,
FDR control and taxonomic classification as described in the iterative workflow.
However, PSMs are not summarized at species level and counts are directly inferred
at the lowest possible taxonomic level. For the uniques-based strategy, adjusted
counts are based on PSMs which occur only once. Pipasic’s abundance similarity
correction utilizes the similarity of expressed proteomes between taxa to account for
attribution biases. Originally intended for metaproteomic abundance correction, it
is here applied to highlight the most likely strain. Since Pipasic is sensitive to a high
amount of taxa, we limit the input to taxa with a minimum of two hits as well as to
the most 100 abundant taxa. Expressed proteins per taxa are extracted according
to the taxonomic classification and digested peptides with a minimum length of six
amino acids are prepared using trypsin digestion (yafeng, 2017). PSMs and tryptic
peptides are then passed to Pipasic to obtain corrected relative counts.

We perform all three strategies on several viral and bacterial tandem MS spec-
tra samples with available strain level knowledge. This includes a Cowpox virus
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(Brighton Red) strain (in-house sample), an Avian infectious bronchitis virus (strain
Beaudette CK) (Dent et al., 2015) and a Bacillus subtilis BSN238 (Trappe et al.,
2017) which we will refer to as cowpox, bronchitis and bacillus sample, respectively.
B. subtilis BSN238 is a transgenic organism resulting from horizontal gene transfer
(HGT) of the DivIVA protein from Listeria monocytogenes strain EGD-e to Bacillus
subtilis subsp. subtilis str. 168. Since B. subtilis BSN238 is not yet present in the
NCBI Taxonomy nor NCBI Protein database and only one protein is modified, we
expect B. subtilis subsp. subtilis str. 168 to be selected as final strain candidate.
Bacillus samples are examined twice, once complete with 28902 spectra (bacillus all)
and once randomly reduced to 1000 spectra (bacillus 1k) to improve performance
with respect to the vast bacterial search space. A detailed description of sample
acquisition and the search parameters for all samples is provided in Appendix A.3.

For the viral samples we used all viral NCBI RefSeq proteins (via Entrez on July
10, 2017) in the iterative workflow and additionally all viral non-RefSeq proteins
(via Entrez on July 11, 2017) for the uniques- and Pipasic-based strategies. Viral
spectra were filtered beforehand using corresponding host proteomes (all isoforms)
including the UniProt Homo sapiens reference proteome (UP000005640, May 23,
2017) for the cowpox sample and Gallus gallus Red jungle fowl reference proteome
(UP000000539, May 16, 2017) for the bronchitis sample.

For the iterative examination of the bacillus samples, all bacterial NCBI Ref-
Seq proteins were downloaded via FTP (ftp.ncbi.nlm.nih.gov/refseq/release/
bacteria/, release 82). Since downloading all NCBI Protein entries for bacteria
(taxid 2) is impractical and requires too much time using the Entrez API, we uti-
lized the NCBI Blast NR database as most comprehensive, common and readily
available protein resource. This database can be obtained in fasta format via FTP
(ftp.ncbi.nlm.nih.gov/blast/db/FASTA/, release 19.07.2017) and the bacteria
subset was extracted with in-house scripts to create the databases for the uniques-
and Pipasic-based strategies.

4.3. Results

The final selections of the top taxa candidates for all samples and all three com-
pared identification strategies are summarized in Table 4.1. For the cowpox sample,
identification results agree the most. TaxIt (Figure 4.2) and the Pipasic strategy
(Appendix A.3 - Figure A.12) are both able to identify the expected Cowpox virus
(Brighton Red) strain. However, unique PSMs are limited to the parent Cowpox
virus species and not available at strain level, thereby giving place to an incorrect
identification of Bat astrovirus Hil GX bszt12 (Appendix A.3 - Figure A.12).

In comparison, bronchitis and bacillus samples feature notable variability in pro-
posed taxa candidates. For bronchitis, TaxIt is able to identify the expected Avian
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Figure 4.2.: Relative counts of TaxIt cowpox sample analysis. Relative counts are il-
lustrated as result of the TaxIt workflow. Original and weighted relative counts are
summarized by means of one vertical stacked bar each. Candidate strains are labeled
and color-coded and ratios highlighted as percentages within bars. The original counts
do not allow to distinguish the expected strain from competing candidates. In contrast,
the weight-based correction method implemented in TaxIt resolves the present tie and
emphasizes the correct strain, Brighton Red.
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Figure 4.3.: Relative counts of bronchitis sample analysis. Relative counts are illustrated
as result of the TaxIt (top) or Pipasic approach (bottom), respectively. TaxIt’s original
and weighted relative counts as well as Pipasic’s original, filtered (a minimum of two hits
and only the most 100 abundant taxa) and corrected relative counts are summarized by
means of one vertical stacked bar each. Candidate strains are labeled and color-coded
and ratios highlighted as percentages within bars. Despite applying a small correction
based on weighting, TaxIt is not able to fully resolve the expected strain Beaudette CK
but features a highly constrained selection of candidates in the first place. In contrast,
the Pipasic-based strategy results in considerably more initial candidates and eventually
promotes the incorrect strain 6/82.
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infectious bronchitis virus (strain Beaudette CK) strain. However, final candidate
selection is not limited to one strain but additionally includes the closely related
Avian infectious bronchitis virus (strain Beaudette US) (Figure 3). Pipasic on the
other hand supports the incorrect Avian infectious bronchitis virus (strain 6/82)
strain (Figure 4.3). No unique PSMs are available for the bronchitis sample, ren-
dering the identification of a strain impossible with this strategy.

Using TaxIt, the expected B. subtilis str. 168 strain is identified correctly in the
reduced as well as in the complete sample. Pipasic consistently rejects the correct
strain and species in favor of Bacillus cereus strains such as Bacillus cereus SJ1 and
Bacillus cereus B4264. The uniques-based strategy is able to include the true strain
B. subtilis str. 168 into the final candidate list of the bacillus 1k sample. However,
it fails to separate the strain from several distinct species due to equal amounts
of uniques as illustrated in Appendix A.3 - Figure A.14. Even more, analysing
the complete bacillus sample results in the species Paenisporosarcina quisquiliarum
being predominantly present in terms of uniquely assigned PSMs.
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Figure 4.4.: Runtime and memory benchmarks. Total runtime in minutes and maxi-
mum memory usage in gigabyte is represented per sample and color-coded identification
strategy.

Analysis was performed with X!Tandem as database search engine and limited to
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Table 4.1.: Expected and identified taxa per sample and strategy

Species/Strain NCBI
taxid

Cowpox Expected Cowpox virus (Brighton Red) 265872
TaxIt Cowpox virus (Brighton Red) 265872
Uniques Bat astrovirus Hil GX bszt12 1748291
Pipasic Cowpox virus (Brighton Red) 265872

Bronchitis Expected Avian infectious bronchitis virus (strain Beaudette CK) 160235
TaxIt Avian infectious bronchitis virus (strain Beaudette CK)

Avian infectious bronchitis virus (strain Beaudette US)
160235

Uniques no unique PSMs available
Pipasic Avian infectious bronchitis virus (strain 6/82) 11121

Bacillus 1k Expected Bacillus subtilis subsp. subtilis str. 168 224308
TaxIt Bacillus subtilis subsp. subtilis str. 168 224308
Uniques Acidobacteria bacterium RIFCSPLOWO2 12 FULL 59 11

Anaerobacillus alkalilacustris
Bacillus lentus
Bacillus niacin
Bacillus sp. Marseille-P2384
Bacillus subtilis subsp. subtilis str. 168
Bacteroides luti
Candidatus Glassbacteria bacterium RIFCSPLOWO2 12 FULL 58 11
cyanobacterium TDX16
Sporolactobacillus laevolacticus
Streptomyces griseus

1797187
393763
1467
86668
1805475
224308
1297750
1817867
1503470
33018
1911

Pipasic Bacillus cereus SJ1 699184

Bacillus all Expected Bacillus subtilis subsp. subtilis str. 168 224308
TaxIt Bacillus subtilis subsp. subtilis str. 168 224308
Uniques Paenisporosarcina quisquiliarum 365346
Pipasic Bacillus cereus B4264 405532
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Table 4.2.: Runtime and maximal memory consumption (resident set size) per identifica-
tion strategy and sample

Runtime (h:m:s) Memory (max RSS MB)
TaxIt Uniques Pipasic TaxIt Uniques Pipasic

Cowpox 0:09:53 0:09:59 0:12:16 1638.28 4949.69 4951.09
Bronchitis 0:12:20 0:09:41 0:16:45 2946.19 4579.61 4579.84

Bacillus 1k 3:15:59 3:12:41 15:01:04 193357.94 276134.38 276134.28
Bacillus all 9:29:06 13:00:55 125:53:07 202574.46 290719.44 290487.57

24 threads on a server with Debian GNU/Linux 8.9 (jessie), 64 cores (128 threads)
of type Intel(R) Xeon(R) CPU E5-4667 v4 @ 2.20 GHz, 512 GB of RAM and SSD
storage. Runtime and memory consumption for all samples and strategies are il-
lustrated in Table 4.2 and Figure 4.4. Applying the iterative approach reduces
memory usage down to one third for viral strain identification and two third for
bacterial strain identification. While Pipasic’s runtime is comparably high, TaxIt
shows no substantial change in runtime in comparison to the uniques-based strat-
egy for small databases such as the collective viral sequences or small sample sizes.
However, analyzing the full bacillus sample reveals a gain in runtime when utilizing
NCBI RefSeq proteins plus selected strain proteomes instead of the extensive NCBI
Blast NR database.

4.4. Discussion

In summary, the TaxIt approach is able to unambiguously identify organisms of all
samples down to a low taxonomic level, with the minor exception of a tie for the
bronchitis sample. However, the uniques-based identification strategy is repeatedly
deficient in strain level PSMs or features highly ambivalent results. Furthermore,
Pipasic frequently favors an incorrect strain or even incorrect species. In general,
for some samples correct strains are observed as a top candidate even in the original
counts, independently of database choice and prior to count adjustments. Neverthe-
less, all samples benefit from either the iterative and focused database usage, the
count adjustment procedure or reduced resource consumption while the outcome
remains legitimate.

TaxIt improves on the count based ranking independently of count adjustments
by limiting candidates to strains of one species early on. For instance, the search of
bronchitis samples against the NCBI Blast NR bacteria subspace results in a rather
uniform distribution of original counts for Infectious bronchitis virus strains with the
strains Beaudette, Beaudette CK and Beaudette UK being only slightly increased in
comparisons to other strains (Figure 4.3). In comparison, the iterative approach re-
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sults in less strain candidates of the same species focusing solely on Beaudette strains
when selectively searching against Avian coronavirus strains in the secondary iter-
ation (Figure 4.3). This is partly a consequence of how and whether parental or
multispecies proteins are associated with strains or taxa in general within the NCBI
database. In case of the iterative approach, fewer mutual species or genus proteins
are consulted in the strain identification iteration. However, the extend of this effect
varies between samples or taxonomic kingdoms, respectively. For instance, bacte-
rial strain proteomes such as the Bacillus subtilis strains feature numerous directly
assigned mutual protein sequences and thus result in an extended range of candi-
date strains of the same species (Appendix A.3 - Figure A.14-A.15). Nevertheless,
the restriction to a specific set of strain proteomes prevents manifold primary mis-
assignments to distant species, genera or even phyla as can be observed for Pipasic-
and uniques-based original counts, respectively, which cannot be sufficiently resolved
after correction (Appendix A.3 - Figure A.14-A.15). In general, the iterative and
selective database usage ensures that final strain selection is limited to strain candi-
dates of an appropriate species, thus prevents false positive hits on distinct strains
of other taxa including species, genera and phyla and allows for a more confident
final strain candidate selection.

Furthermore, uniform distributions and even consensus in original counts of strain
candidates demonstrate the need and benefit of count adjustment methods. The
implemented weighting procedure is able to resolve ties between strains such as in
the TaxIt cowpox sample analysis (Figure 4.2) or at least amplifies the correct strain
and increases the distance to competing candidates.

TaxIt is able to infer exactly one strain for the presented samples each with the
exception of the bronchitis sample where the final differentiation between the strains
Beaudette CK and Beaudette UK fails. We observed that the corresponding PSMs
are fully shared between the two proteomes. Although different proteins are available
for each strain in general, peptide hits are either assigned to shared proteins of the
parent strain Infectious bronchitis virus or to homologous proteins which differ only
in identifier but not in sequence. Though a more granular taxonomic relation cannot
be ascertained from the NCBI taxonomy, we expect the Beaudette strains to feature
a considerably closer relationship as compared to other Infectious bronchitis virus
strains. Therefore, we consider the draw between Beaudette strains as sufficiently
appropriate strain identification.

As for the uniques-based strategy, we observed a poor availability of uniques
PSMs on strain level. While the exploitation of purely unique features is a common
theme for species level identification, the low amount of unique PSMs in strains is
insufficient for strain level inference. However, in general the frequency of spectra
matching to distinct proteins and proteomes remains a valuable parameter for strain
differentiation when considering and weighing both, unique and the plethora of non-
unique matches.

40



4. Iterative and Untargeted Strain Level Identification

TaxIt has a comparable runtime for small samples and databases (such as the
viral data) despite utilizing a constrained search space. This is primarily a result
of the additional strain proteome downloads since the NCBI Entrez API is not de-
signed and optimized for large scale downloads and proteins need to be fetched in
numerous iterations of small chunks. However, the download overhead fades into
the background when considering full bacterial samples such as bacillus all (Table
4.2 and Figure 4.4) and gives place to a runtime improvement of three quarters
when compared to NCBI Blast NR database searches. In contrast, Pipasic’s run-
time is afflicted with additional sequence comparisons necessary for constructing the
similarity matrix which, in addition, is highly influenced by increasing numbers of
PSMs and taxa to compare. Finally, the memory footprint of TaxIt in comparison to
the uniques- and Pipasic-based strategies remains constantly less for all samples, as
would be expected when utilizing substantially less proteins in the search databases.

4.4.1. Conclusion

Untargeted strain level identification via tandem MS spectra is a challenging task
with respect to the excessive quantity of strains which need to be considered compet-
itively. To this end, we present an iterative approach focusing on species identifica-
tion first and thus limiting strain identification to concise selected target databases.
Both iterations take advantage of publicly available data from the NCBI Taxon-
omy and Protein databases. In general, strain level identification performance is
limited by the availability or integrity of taxa and proteomes in these databases.
However, constantly increasing quality and quantity of the NCBI Taxonomy and
Protein databases will induce constant improvement of strain level identification
strategies such as the presented iterative workflow.

TaxIt is available for download under open-source license at https://gitlab.

com/rki_bioinformatics.
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5. Summary and Conclusion

Proteogenomics (among others) illustrates the importance of sequence quality and
availability in the “life cycle” of omics sequence data. From de novo assembled
draft genomes, through 6-frame translated protein sequences and protein databases
in general to eventual application in gene annotation or peptide identification, each
step benefits from improved quality and evaluation in a successive manner. In this
thesis, we provide methods that focus on sequence and database quality and compre-
hensiveness. We contribute to initial acquisition of quality sequences and evaluation
of resulting or available sequence databases and finally take full advantage of these
sequences database in terms of comprehensiveness and potential taxonomic range
and depth. Thereby, we support applications in (meta-)genomics, (meta-)proteomics
and eventually proteogenomics. While all methods were designed for universal ap-
plication in genomic or proteomic sequence data analysis respectively, they possess
special potential for the analysis of non-model organisms.

The quality of genome sequences is vital for countless applications in (meta-)
genomics, (meta-)proteomics and proteogenomics, among others. Quality control
for de novo assembled sequences is particularly challenging since reference-based
ground truth is not available. Nevertheless, de novo assembly is an essential instru-
ment, especially for the study of unsequenced organisms. In Chapter 2, we presented
SuRankCo as a novel approach for de novo assembly contig quality assessment based
on machine learning. We observed a high dependency of the prediction performance
on the similarity of training and test data with respect to sequencing, organism and
assembly parameters and characteristics. However, as demonstrated this results in
promising performance for metagenomics samples. In particular, the training can
be based on already known and sequenced organisms to enable the scoring and thus
quality control of the remaining unsequenced organisms in the same sample. This
procedure takes advantage of the uniformity of characteristics within one sample.
Furthermore, the metagenomic analysis illustrated the special benefit for non-model
organisms as sequence quality knowledge may be transferred to several unsequenced
organisms of one sample at once. Thereby, SuRankCo supports the preparation of
quality controlled draft genomes of non-model organisms (among others) for poten-
tial applications in, for instance, proteogenomics or general contribution to genome
and thus eventually protein sequence databases.

The suitability of protein sequence databases for tandem MS spectra identifi-
cation with respect to taxonomic depth is influenced by two main factors: The
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number of related organisms and their similarity among each other. Both determine
whether a suitable close related proteome is available for detailed taxonomic classifi-
cation. Thereby, the knowledge of the database’ suitability can support the choice of
methodology applied. Non-model organisms may especially benefit from extended
search strategies if their respective neighbourhood in the target database is sparse.
With LiDSiM we presented in Chapter 3 a method to estimate the suitability for
the database of interest. Thereby, the impact of alternative search strategies such
as error-tolerant searches as well as of database extension strategies are taken into
consideration. In particular, we illustrated the improvements in taxonomic clas-
sification of D. deserti strain VCD115 by extended search strategies and thereby
demonstrated the application and benefit for non-model organisms.

While evaluations, as provided by LiDSiM, reveal potential limits of protein
databases in terms of taxonomic classification, the accumulation and collective ap-
plication of more and more protein sequences may improve the range and depth
for tandem MS-based taxon identification. Thereby, public resources such as the
NCBI Protein database provide the most comprehensive collection readily available.
However, the negative impact of database size has been repeatedly reported and
therefore needs to be taken into consideration. In Chapter 4 we presented TaxIt
for untargeted strain level identification of tandem MS spectra. By applying an
iterative procedure, the method can take advantage of the full taxonomic potential
offered by the NCBI Protein database while still limiting the number of proteomes
actually used. Strain level identification was successfully demonstrated for viral as
well as bacterial samples.

Although methods such as TaxIt are able to approach comprehensive search spaces
such as provided by the NCBI Protein database and enable the identification of a
large group of microbial organisms, they are nevertheless limited by proteome avail-
ability - in particular with respect to non-model organisms. Therefore, in-depth
applications such as strain level identification benefit substantially from improve-
ments at various levels. Including for instance increased draft genome quality or
reformed sequence database evaluation, which will eventually result in yet more
comprehensive resources. On the one hand, the underrepresentation of non-model
organisms illustrates the need of constant sequence acquisition and evaluation. On
the other hand, it emphasizes the apparent positive synergy effects of methods from
initially distinct areas of omics research. Advances in genomic and proteomic tech-
nology and methodology will reveal more and more potential links and overlaps,
jointly fill existing gaps and holes in sequence databases step by step and therefore
push the limits of omics data analysis on and on.

Future research While the presented methods in this thesis contribute to the over-
all improvement of omics data processing and utilization with respect to quality,
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availability and level of detail, many problems and challenges remain and admit of
improvement. In particular, advancements and changes in omics technologies con-
currently allow and demand for continuous adaption and fundamental redevelopment
of appropriate methodology.

The contig ranking in de novo assemblies provided by SuRankCo is highly de-
pending on preceding technology used. Consequently, changes in sequencing, se-
quence characteristics and error-profiles as well as assembly procedures will affect
the ranking performance and demand the adaption and complementation of appro-
priate features and scores. Since the prediction accuracy is amendable in general,
an adaption with respect to more recent advances in machine learning may improve
overall results. For instance, deep learning has been frequently and successfully ap-
plied on different omics sequence data (Angermueller et al., 2016). Furthermore, to
improve on general usability of ranked contigs clear cutoffs should be identified to
completely separate supposedly superior contigs from poor quality contigs. Here,
possible approaches range from mixture model fitting to the incorporation of marker
contigs to evaluate their placement in the ranked contig set similar to the target-
decoy approach for tandem MS database searches (Nesvizhskii, 2010; Jeong et al.,
2012).

The simulated evaluation of protein databases in terms of integrity and utility
for taxonomic classification possess one major disadvantage. The simulation as cur-
rently implemented in LiDSiM repeatedly removes a proteome which would have
been available in actual applications. Thereby, the procedure overestimates the
limit of taxonomic classification of the assessed database. While this has minor ef-
fects on the estimations for highly represented organisms such as E. coli, it could
underrate the potential of taxa which feature a very sparse neighborhood in the tar-
get database including non-model organisms. Therefore, further progression of the
method should include a non-removal based estimation. One possibility would be
the simulation of close related artificial surrogate proteomes, for instance by altering
several proteins using probabilistic profile hidden Markov models as made possible
by the HMMER software (Eddy, 1998; HMMER). Furthermore, the simulation is a
deterministic procedure based on efficient string matching algorithms and therefore
doesn’t account for factors which influence real spectral analysis such as variations
and errors in peak mass and intensity. An approach based on simulated spectra
for instance based on MSSimulator (Bielow et al., 2011) in combination with actual
database search engines such as MS-GF+ would be possible in general, but is im-
practical due to high amount of iterations when considering several or all organisms
of comprehensive databases.

As a pipeline relying on several substeps and modules, TaxIt is highly qualified for
continues improvement and development. Taxonomic range or resolution of strains
might be improved by relying on additional sequence resources. For instance, the
NCBI Genome database in combination with 6-frame translation or ORF predic-
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tion would be a valuable and comprehensive extension. Local specialized custom
sequence databases could extend public resources but would require proper custom
taxonomic mappings to enable adequate species and strain proteome extraction and
inference. In general, the integration of any additional strain databases would be
possible as long as compatibility with the NCBI taxonomy is ensured and, in case of
public databases, a proper interface for automated access is available. Identification
performance could be improved by utilizing the consensus of different search engines
(McHugh and Arthur, 2008) as demonstrated by MSblender (Kwon et al., 2011) or
the PeptideShaker platform (Vaudel et al., 2015) but should be carefully considered
with respect to required identification speed. Furthermore, strain inference confi-
dence could be supported by additional metrics such as unified e-values (Alves et al.,
2016) in comparison to sole spectral count rankings. Improvements on runtime could
be achieved by introducing novel high-speed search engines such as MSFragger (Kong
et al., 2017), spectral clustering and peak filtering methods such as MaRaCluster
(The and Käll, 2016) and MS-REDUCE (Awan and Saeed, 2016), respectively, or
by dismissing protein decoys (which represent half of the database to be searched)
in favor of mixture-model approaches such as PeptideProphet (Ma et al., 2012).
Additionally, early on strain identification may be achieved by step-by-step analysis
of spectra subsamples with increasing confidence over time. Finally, with increas-
ing interest in environmental samples the extension of TaxIt with metaproteomic
profiling capabilities on strain level is an encouraging objective. Here, the adap-
tion of metagenomic strain discrimination methods as demonstrated by Pipasic is a
promising approach and should be continued by taking latest advances in metage-
nomic abundance correction such as DiTASiC (Fischer et al., 2017) into account.

Although all three presented methods were independently developed and not ac-
tually linked yet, they possess the potential for integrative application as for instance
in a proteogenomic setting. This integrative concept is hypothetical so far and has
yet to be implemented and evaluated. However, a general scenario of joint and
consecutive application may look like this: An unsequenced microbial non-model
strain sample is analysed via NGS sequencing, a draft genome is created by de novo
assembly with assistance of SuRankCo. Peptide sequences for tandem MS analysis
could be created either by 6-frame translation for immediate proteogenomic appli-
cations or, in the long term, by submitting the draft genome to a public genome
database and relying on automated annotation and integration processes of public
protein database as provided by NCBI or UniProt. The overall effect on taxonomic
classification for related taxa by the latest addition of the non-model organism can
then be examined with LiDSiM by comparing databases with and without the novel
peptide sequences. Finally, TaxIt can take advantage of the additional strain data
in public databases (if adequately assigned in the NCBI Taxonomy) and potentially
improve on prospective untargeted strain identifications. Overall performance of
this scenario may be validated by simultaneous tandem MS analysis of the same
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microbial sample followed by TaxIt identification under varying conditions includ-
ing an unmodified database as well as database extended by the draft genome, once
with and once without quality control.
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A.1. Additional Material for Chapter 2

A.1.1. Contig Features

The features applied by SuRankCo are listed in Table A.1 with name, description
and variants.

Some features are based on single values and thus have no variants. Other fea-
tures consisting of several values per contig (such as coverage, read count etc.) are
summarized by six common variants to describe their statistical distribution. This
includes the mean, the standard deviation (sd), the median, the median absolute
deviation (mad), the minimum and the maximum.

Further variants are noted in the description as additional variants, if appropriate.

Table A.1.: Contig Features

Name Description Variants

Length Unpadded length, i.e. length of the
final contig.

Base Count Padded length, i.e. length of the
consensus of a read alignment, in-
cluding potential gaps introduced
by inserts in reads which are not
consistent with the majority.

Base Segment Count Number of continuous gapless seg-
ments in the padded contig.

Read Count Number of reads contributing to
the contig.

Read Complement Fraction The fraction of complement reads
in the total number of reads con-
tributing to the contig.

N50 Relation Relation between contig length
and N50.
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Estimated Genome Size The expected genome size (EGS),
either indicated by a parameter
or estimated as the sum of contig
lengths.

Genome Relation Relation between the contig length
and the estimated genome size.

Contig Qualities Pooled base-wise quality values of
the contig as provided from assem-
blers (e.g. in Ace files).

X

Read Qualities Pooled base-wise quality values of
the reads as provided from base-
callers (e.g. in Sff files).

X

Read Length Pooled original lengths of the
reads.

X

Read Length Padded Pooled padded lengths, i.e. lengths
of the reads in the alignment, in-
cluding potential gaps introduced
by deletions in other reads which
are not consistent with the major-
ity (compare Base Count).

X

Read Length Quotient Relation between original read
length and padded read length (for
all six variants).

Read Length Clipped Pooled lengths of clipped reads,
i.e. the lengths of the padded read
parts which are actually used and
thus contribute to the contig (for
instance, some read ends do not).

X

GC-Content The fraction of GC-content in the
contig.

Coverage Pooled number of reads contribut-
ing to each position in the contig.
Additional variants: Contig ends
coverage is reported in addition,
with end size equal to read length
mean.

X
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Core Coverage Pooled number of reads contribut-
ing to each position in the contig
with the same nucleotide as the
one selected for the consensus.
Additional variants: Contig ends
core coverage is reported in addi-
tion, with end size equal to read
length mean.

X

Base Confirmation Significance of the core coverage in
contrast to the coverage per posi-
tion, tested with a binomial test
with k = core coverage, n =
coverage and p = 0.98. p = 1 −
error rate, where error rate de-
notes the average sequencing error.
With an error rate of 2% the ex-
pectation of reads contributing the
same correct nucleotide to each po-
sition is therefor 98%.
Additional variants: Contig ends
base confirmation is reported in
addition, with end size equal to
read length mean.

X

Coverage Comparison Coverage comparison within an as-
sembly represented by the relation
of the contig coverage to the mean
coverage of all contigs in the as-
sembly. Additional variants: Con-
tig ends coverage comparisons are
reported in addition, with end size
equal to read length mean.
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Coverage Curve Drops Coverage curve drops indicate lo-
cal minima in the coverage of a
contig with a value of less than
25% and 50% in contrast to their
adjacent maxima within a fixed
window size w. The coverage is
preprocessed with a sliding win-
dow smoothing with window size
w which is chosen as the mean
read length of a contig. The num-
ber of drops is reported normal-
ized by the contig length as well as
the biggest drop, i.e. maximal dif-
ference between a minima and its
smaller adjacent maxima.

K-mer Uniqueness Global Number of K-mers unique in a
contig in contrast to other contigs
within the assembly normalized
by the contig length (since longer
contigs comprise more unique K-
mers by chance). K-mers are ex-
tracted with a size of 8, and only
K-mers containing standard nu-
cleotide symbols (i.e. A,C,G and
T) are considered.

K-mer Uniqueness Ends Number of K-mers unique in a con-
tig end in contrast to both ends of
other contigs within the assembly.
Reported as minimal and maximal
K-mer uniqueness to avoid implicit
orientation of the contig. The read
length mean of a contig is chosen
as end size.
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A.1.2. Contig Scores

Table A.2 provides an overview of the single contig scores calculated by SuRankCo.
The scores are either based on match counts or error counts (edit distance, including
mismatches and gaps) of contig-reference alignments.

Table A.2.: Contig Scores

Name Description & Motivation

General Scores Account for mismatches/errors in general as well
as insertions and deletions to the contig (Normed
Match Count 1 resp. Normed Match Count 2).
These scores provide a basic penalization for small
errors in general.

Normed Match Count 1 Number of alignment matches normalized by the
contig length.

Normed Match Count 2 Number of alignment matches normalized by the
alignment length.

Normed Error Count 1 The edit distance respectively error count normal-
ized by the contig length.

Large Error Scores Account for very large errors or unstable regions
which might originate from mis-joins or badly se-
quenced/covered regions, resp. While small errors
are only considered by the General Scores, critical
large errors are additionally penalized hereby.

Max. Contiguous Error The largest contiguous stretch of alignment errors
normalized by the contig length.

Max. Region Error The largest number of alignment errors in a fixed
region size (100 bp).

End Scores Similar to Large Error Scores but applied to contig
ends only. Errors in this region are rather critical
for subsequent applications (e.g. for scaffolding)
are therefore additionally penalized.

Max. End Error Stretch Largest stretch of errors right at the contig ends
(unfixed length) normalized by the contig length.

Max. End Error Count The largest number of alignment errors in the ends
(fixed length of 100 bp).

Other Scores Additionally account for insertions and critical mis-
joins.

Normed Contig Length Relation of contig length to alignment length.
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A.1.3. Training Class Definitions

Each contig score applied by SuRankCo is separated into two classes to allow for
binary classification. The separation into the two classes can be either set manually
or automatically by fitting exponential distributions. A threshold selection may be
supported by histograms provided by the SuRankCo-Score module (as shown in
Figure A.2).

The automatic exponential fitting makes use of the MASS R package (Venables
and Ripley, 2007). It fits an exponential distribution to each single score distribution
of the training contigs. Finally, a certain quantile of a fit is considered as the
threshold for the score class separation. The selection of a quantile should be based
on the concrete training data and be adjusted accordingly. However, 25% yielded a
good separation for the E. coli contigs. See Figure A.2 for examples.

A.1.4. Experiment Preparation

A.1.5. E. Coli

To demonstrate the usage of SuRankCo, we chose four next-generation sequencing
experiments available in the NCBI Sequence Read Archive (SRA) (Wheeler et al.,
2008). The reads were all sequenced with an Illumina Genome Analyzer II. Addi-
tional properties are listed in Table A.3.

Table A.3.: SRA Experiments

Experiment ID # of Spots # of Bases

SRR400617 14,299,251 514.8M
SRR400618 13,539,459 487.4M
SRR400619 16,720,568 601.9M
SRR400620 16,359,717 588.9M

The reads were assembled using Mira (Chevreux et al., 1999) with basic set-
tings. A sample configuration for one experiment is provided in listing A.1. Finally,
the four resulting assemblies were randomly divided into three training assemblies
(SRR400617, SRR400618 and SRR400619) and one test assembly (SRR400620).

Listing A.1: Mira Configuration Manuscript

p r o j e c t = SRR400617
job = genome , denovo , accurate

readgroup = Il luminaReads
data = SRR400617 . f a s t q
techno logy = so l exa
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parameters = −GE: not=10 −NW: cmrnl=warn −OUT: ora=on

A.1.6. ALE

To compare the SuRankCo results of the E. coli experiment to ALE, the reads of the
prediction data (SRR400620) were mapped against the corresponding contigs using
Bowtie2 with default settings. Thereby, ambiguous reads where assigned according
to the best alignment. The resulting sam file were sorted and, together with the
contigs provided to ALE.

Since ALE does not provide a score per contig, ALE sub-scores were transformed
to error counts and summed up per contig. For each ALE sub score, a histogram
over all contigs and positions was created to manually choose a threshold (as shown
in Figure A.1). Each contig position below the threshold of a sub-score is counted
as a potential error. The counts were summed for each contigs and normalized by
the contigs length and the total number of sub-scores.
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Figure A.1.: Histogram of ALE sub-scores. For each sub-score, histogram were constructed
over all contigs and position. Thresholds were set manually to -5, -0.5, 0 and -0.5 for the
ALE sub-scores Log Depth Likelihood, Log Place Likelihood, Log Insert Likelihood and
Log kMer Likelihood, respectivly.
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A.1.7. Mock Community

To demonstrate the usage of SuRankCo in conjunction with several organisms and
assemblers, we make use of the staggered mock community of the Human Mi-
crobiome Project. The data set is available in the NCBI Sequence Read Archive
[SRA:SRR172903] with a total number of 7,932,819 reads and 595M bases. Organ-
isms in the mock community are represented in Table A.4 as well as the reference
sequences used to classify reads and contigs and for evaluation. The mock data is
evaluated in three different settings, a meta-assembly, single organism assemblies
and a merged evaluation of single organism assemblies of different assemblers.

Mock Meta-Assembly

The meta-assembly of the mock community is constructed using MetaVelvet (Namiki
et al., 2012) with kmer size 31 and no scaffolding. The resulting contigs are assigned
to organisms by using Blast (Altschul et al., 1990) against all reference sequences
and selecting the best hits according to the e-value. For training and prediction of
SuRankCo scores, the organisms are randomly divided into two equal groups. The
grouping and number of assigned contigs is depicted in Table A.4. The MetaVelvet
output is converted to ace files using AMOS (Treangen et al., 2011).

Mock Single Assembly

For the single organism approach, the mock reads are mapped against all references
and thereby assigned to organisms by using Bowtie2 (Langmead and Salzberg, 2012)
with default settings. We selected all organisms with sufficient coverage for the
following assemblies, including E. coli (∼ 9x), M. smithii (∼ 11x), R. sphaeroides
(∼ 30x), S. aureus (∼ 38x), S. epidermidis (∼ 35x) and S. mutans (∼ 20x). This
selection agrees with organisms comprising a suitable amount of contigs in the meta-
assembly as shown in Table A.4. The reads for each organism are then assembled
separately with Mira (Chevreux et al., 1999), Soap (Luo et al., 2012) and Velvet
(Zerbino and Birney, 2008) with default settings, except in the following cases. For
Soap and Velvet assemblies are constructed over a range of kmers from 1 to 75
and for each organism the assembly with the highest N50 is selected for further
analysis. Since not all assemblers used here provide alignment information but
contig sequences only, the corresponding reads are remapped to the assemblies by
using Bowtie2 with default settings to produce sam files as input for SuRankCo.
For training and prediction, organisms are assigned to the same groups as for the
meta-assemblies.
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Mock Single Assembly Merged

For the third evaluation, the single organism assemblies from Mira, Soap and Velvet
are merged into combined datasets. Thus the training set and the prediction set
consist each of assemblies of three organisms from three assemblers.

In general, SuRankCo is used with default settings for all mock experiments.
However, contigs are filtered for a minimum size of 350 bases since commonly no
valuable information such as genes are expected to be covered by shorter sequences.

A.1.8. GAGE Study

To further demonstrate the usage of SuRankCo in conjunction with several assem-
blers, we make use of the bacterial assemblies provided by the GAGE study. We eval-
uate all available assemblies of Staphylococcus aureus and Rhodobacter sphaeroides
including ABySS, ABySS2, Allpaths-LG, Bambus2, MSR-CA, SGA, SOAPdenovo,
Velvet. However, the CABOG assembly of R. sphaeroides could not be evaluated
since there is no CABOG assembly of S. aureus available.

Since none of the GAGE assemblies provide alignment information but contig
sequences only, the corresponding reads are remapped to the assemblies by using
Bowtie2 with default settings to produce sam files as input for SuRankCo. For each
assembly, we used either the original read set or a corrected read set in accordance
with the GAGE supplementary material.

The GAGE bacteria assemblies are evaluated in two different settings including
the evaluation of single assemblies and a merged evaluation of the assemblies of
different assemblers. In both settings S. aureus has been used for training and R.
sphaeroides for prediction. In the first setting, each assembly of R. sphaeroides is
evaluated by training SuRankCo on the corresponding assemblies of S. aureus from
the same assembler. For the second evaluation, the assemblies of S. aureus are
merged into a combined training datasets. Then, each R. sphaeroides assembly is
evaluated based on this merged training. SuRankCo is used with default settings
for all GAGE experiments. However, contigs are filtered for a minimum size of 350
bases since commonly no valuable information such as genes are expected to be
covered by shorter sequences.
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A.1.9. Additional Result Figures
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Figure A.2.: Histograms of single contig scores and exponential distribution fittings. For
each single score, histograms (in black) are produced from the contigs of the training
data. To further support the threshold selection, exponential distributions (in red) are
fitted to each score. Finally, for the E. coli data 25% quantiles are selected as thresholds
(vertical red lines). The numbers inside each plot indicate the amount of contigs below
and above the threshold. The score ranges of Normed Match Count 1, Normed Match
Count 2 and Normed Contig Length 1 are inverted to enable exponential fittings.
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NormedContigLength1
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Figure A.3.: Classification metrics. For each score, the proportions of correct and incorrect
classifications are indicated by true positives (TP), false positives (FP), true negatives
(TN) and false negatives (FN). Most scores show satisfying numbers of TPs and TNs.
However, the scores Max End Error Stretch and Normed Contig Length 1 have mainly
true TPs, some FP and almost no TNs and FNs. This is due to the very low variance in
the corresponding distributions of the training contigs (see Figure A.2 for comparisons).
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Figure A.4.: Evaluation of the SuRankCo predictions of major organisms in the mock com-
munity test data. The results of the mixed prediction sets are separatly illustrated for
single organisms. Each plot comprises a ROC curve of the contig evaluation score group-
ing in contrast to a varying grouping of the SuRankCo scores. Thereby, the changing
color of the graph represents the changing threshold for the SuRankCo score grouping.
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Figure A.5.: Evaluation of the SuRankCo predictions of the GAGE assemblies. Here, one
ROC curve represents the evaluation of R. sphaeroidis assemblies classified by the single
training dataset. Each plot comprises a ROC curve of the contig evaluation score group-
ing in contrast to a varying grouping of the SuRankCo scores. Thereby, the changing
color of the graph represents the changing threshold for the SuRankCo score grouping.
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Figure A.6.: Correlation of single score predictions. The predictions of the single scores
for the E. coli test data are highly correlated except for the Max End Error Stretch and
Normed Contig Length 1. In general, contig score predictions may be less correlated
since the contigs used in training may have a lower quality with higher variance in their
alignments to the reference sequence.

60



A. Appendix

Surankco Contig Score

F
re

qu
en

cy

0 2 4 6 8

0
5

10
15

20
25

Figure A.7.: Example histogram of the final SuRankCo score. The histogram is con-
structed for the prediction set of meta-assembled mock community data. It shows a
broad distribution of scores in contrast to the clustered scores of the E. coli experiment.
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Figure A.8.: Evaluation of the SuRankCo predictions of the E. coli assembly. For com-
pleteness and comparability, this figure features the ROC curve-based evaluation of the
E. coli experiment as applied for the mock and GAGE experiments. The ROC curve
is based on the contig evaluation score grouping in contrast to a varying grouping of
the SuRankCo scores. Thereby, the changing color of the graph represents the changing
threshold for the SuRankCo score grouping.
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A.1.10. Additional Result Tables

Table A.4.: Organisms of the mock community data, their grouping for the experiments
(T and P), assigned contigs of the meta-assembly and the used references.

Organism Group N. Ctgs Accession N.

Acinetobacter baumannii ATCC 17978 T 0 NC 009085.1, NC 009084.1,
NC 009083.1

Actinomyces odontolyticus F0309 T 0 NZ GG753644.1,
NZ GG753643.1,
NZ GG753642.1,
NZ GG753641.1,
NZ GG753640.1,
NZ GG753639.1

Candida albicans SC5314 T 0 NW 139421.1 - NW 139833.1
(413 sequences)

Enterococcus faecalis V583 T 0 NC 004668.1, NC 004671.1,
NC 004670.1, NC 004669.1

Lactobacillus gasseri ATCC 33323 T 0 NC 008530.1

Methanobrevibacter smithii ATCC 35061 T 500 NC 009515.1

Propionibacterium acnes KPA171202 T 0 NC 006085.1

Rhodobacter sphaeroides 2.4.1 T 953 NC 007493.2, NC 007494.2,
NC 007488.2, NC 007489.1,
NC 007490.2, NC 009007.1,
NC 009008.1

Staphylococcus aureus subsp. aureus N315 T 332 NC 002745.2, NC 003140.1

Streptococcus agalactiae 2603V-R T 0 NC 004116.1

Streptococcus pneumoniae R6 T 0 NC 003098.1

Bacillus cereus ATCC 10987 P 0 NC 003909.8, NC 005707.1

Bacteroides vulgatus ATCC 8482 P 0 NC 009614.1

Clostridium beijerinckii NCIMB 8052 P 3 NC 009617.1

Deinococcus radiodurans R1 P 0 NC 001264.1, NC 001263.1,
NC 000959.1, NC 000958.1

Escherichia coli str. K-12 substr. MG1655 P 72 NC 000913.3

Helicobacter pylori 26695 P 0 NC 000915.1

Listeria monocytogenes EGD-e P 0 NC 003210.1

Neisseria meningitidis MC58 P 1 NC 003112.2

Pseudomonas aeruginosa PAO1 P 7 NC 002516.2
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Staphylococcus epidermidis ATCC 12228 P 301 NC 004461.1, NC 005003.1,
NC 005004.1, NC 005005.1,
NC 005006.1, NC 005007.1,
NC 005008.1

Streptococcus mutans UA159 P 151 NC 004350.2
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Table A.5.: Spearman correlation between SuRankCo Contig Scores and BLAT metrics of
the mock community meta-assembly prediction set.

mismatch Qgapcount Tgapcount blockcount

NormedMatchCount1 -0.8028354 -0.4541743 -0.4047294 -0.4354852
NormedMatchCount2 -0.7737683 -0.4533330 -0.5261784 -0.5462121
NormedErrorCount1 0.7736162 0.4536809 0.5270433 0.5469730
MaxContiguousError 0.7213388 0.4067623 0.4932727 0.5030182
MaxRegionError 0.7496859 0.4630718 0.5411223 0.5592339
MaxEndErrorStretch 0.1095816 0.1295148 0.1097870 0.1188257
MaxEndErrorCount 0.5545051 0.3505190 0.4133438 0.4269306
NormedContigLength1 -0.4434447 -0.7340355 -0.9966364 -0.9461041

Table A.6.: Spearman correlation between SuRankCo Scores and BLAT metrics of the E.
coli experiment.

mismatch Qgapcount Tgapcount blockcount

NormedMatchCount1 -0.3865286 -0.0510903 0.1895618 0.1775827
NormedMatchCount2 -0.26312242 -0.05414976 -0.29729808 -0.29618498
NormedErrorCount1 0.26249300 0.05421344 0.29948468 0.29830996
MaxContiguousError 0.21822948 0.04766507 0.29486387 0.29224683
MaxRegionError 0.3624949 0.0614517 0.3318000 0.3309938
MaxEndErrorStretch -0.33852832 0.03047685 -0.05786300 -0.05406256
MaxEndErrorCount 0.36263360 0.06136507 0.33169810 0.33089688
NormedContigLength1 0.19519882 -0.09248936 -0.99966452 -0.97335101

Table A.7.: Organism relationships based on reads, calculated by a sub-method of the
GASiC tool (Lindner and Renard, 2013)

E.coli M.smithii R.sphaeroides S.aureus S.epidermidis S.mutans

E.coli 1 0 0.0003 0.000105 0.000556 0.000556
M.smithii 0 1 0 0 0 0

R.sphaeroides 0.000736 0 1 0.000065 0.00044 0.000651
S.aureus 0.0004 0 0.000155 1 0.042757 0.003227

S.epidermidis 0.00041 0 0.00015 0.028878 1 0.003173
S.mutans 0.000325 0 0.00014 0.000546 0.002463 1
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A.2. Additional Material for Chapter 3

A.2.1. Spectral search parameter

Both E. coli and D. deserti spectra were analyzed with a tryptic search and fixed
modification cysteine carbamidomethylation (+57.0513 Da). The E. coli spectra
were searched with parent ion mass tolerance of 10 ppm whereas the D. deserti
spectra were searched with parent ion mass tolerance of 5 ppm, additional variable
modification methionine oxidation (+15.9994 Da) and once with and without vari-
able TMPP-Ac modification of N termini and Lys (+572.1811) in accordance with
the respective original publications. In addition, the D. deserti datasets were sub-
jected to tryptic and chemotryptic searches to identify the original digestion of each
dataset.

A.2.2. Preparation of experimental data

To evaluate the E. coli O157:H7 strain Sakai experiment (PXD000583), we randomly
selected ’replicate 1’ and merged the two corresponding datasets of membrane and
soluble proteins. For both bacteria we introduced a spectra quality filter by search-
ing against databases including the corresponding organisms using MS-GF+ (Kim
and Pevzner, 2014). Thus, the simulation validation relies on relevant spectra and
excludes contaminants or unidentifiable low quality spectra. The databases used
consist of RefSeq proteins of E. coli (taxid 562) and E. coli O157:H7 strain Sakai
(taxid 386585) for the E. coli O157:H7 strain Sakai spectra and of RefSeq proteins
of D. deserti (taxid 310783) including D. deserti strain VCD115 (taxid 546414) for
D. deserti strain VCD115 spectra, respectively. Search parameters were chosen as
described above. With respect to the simulation, the filtering search only consid-
ered spectra identifications with peptide lengths between 8 and 35. After applying
an FDR cutoff of 0.01, for E. coli the spectra dataset has been reduced to 17105.
For D. deserti, 110493 spectra have been identified in the tryptic search without
and 98857 with TMPP-Ac modification with an overlap of 89348 spectra. For the
chemotryptic search, 55488 spectra have been identified in the tryptic search without
and 47814 with TMPP-Ac modification with an overlap of 43242 spectra. However,
only tryptic spectra were considered for the evaluation of the LiDSiM simulation.

A.2.3. Preparation of genome data integration

We simulated artificial Illumina paired-end reads including quality values from the
NCBI reference genome sequences of E. coli O157:H7 strain Sakai (NC 002127.1,
NC 002128.1, NC 002695.1) and D. deserti strain VCD115 (NC 002127.1, NC 002128.1,
NC 002695.1) using Mason (v0.1)(Holtgrewe, 2010). We used the default parame-
ters for the Illumina error model with a read length of 150 bp and 30-fold reference

66



A. Appendix

sequence coverage. Reads of reference chromosomes and plasmids were merged into
one artificial sequencing dataset per organism. All datasets including both simulated
datasets and the SRA dataset were assembled using Mira (v4.0.2)(Chevreux et al.,
1999) with job settings genome, denovo and accurate. According to the Illumina
reads, additional parameters indicated Illumina (solexa) as technology, autopairing
and - for the simulated reads only - no proposed end clipping.

A.2.4. Additional results

Figure A.9.: Taxonomic level ratios of selected bacteria. For both, E. coli O157:H7 strain
Sakai (A) and D. deserti strain VCD115 (B) the plots show the taxonomic level ratios
of the standard simulation once with extracted species (s), genus (g) and family (f),
respectively. Results are shown for searches against databases with the corresponding
species removed in an exact (e) and error-tolerant (t) search, respectively.

Taxonomic level ratios of selected extractions of higher ranks including genera
and families are shown in Figure A.9. For E. coli, most peptides with genus matches
recur as family matches when the genus is extracted from the database. However,
excluding the whole family yields in an increased number of unidentified peptides
and only a third is retained by the class. D. deserti shows the same results for
both, genus and family extractions, as well with an increased number of unidentified
peptides. This is due to the fact that the Deinococcus genus (taxid 1298) is the
only genus with available protein sequences within the Deinococcaceae family (taxid
183710).

The analysis of taxonomic level ratio variance due to spectra sampling is illustrated
in Figure A.10. The E. coli sampling features an increased variance, in particular for
unidentified spectra (no match) and genus hits. In contrast, the D. deserti sampling
shows a rather small variance.

A comparative analysis of proteogenomic enhanced taxonomic level ratio estima-
tions of E. coli O157:H7 strain Sakai is shown in Figure A.11. Neither the exact
search nor the error-tolerant search features a significant change in taxonomic level
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Figure A.10.: Variance of spectra sampling. For E. coli and D. deserti, taxonomic level
ratio differences in the 10 different spectra samples are illustrated by boxplots per taxo-
nomic rank. I.e., each boxplot describes the variance of a rank within the 10 samples.

Figure A.11.: Taxonomic level ratios of E. coli with simulated and experimental reads.
The plots show the taxonomic level ratios of E. coli O157:H7 strain Sakai of the evaluation
extended with genome sequences based on simulated reads (sim) and experimental reads
(real). Results are shown for searches against databases with the corresponding species
removed in an exact (e) and error-tolerant (t) search, respectively.
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ratios between the integrated genomic sequences based on either simulated or ex-
perimental reads.

A.3. Additional Material for Chapter 4

A.3.1. Search Parameters

The cowpox sample of strain Cowpox virus (Brighton Red) was acquired in-house.
Spectra were analyzed applying a tryptic search with parent ion mass tolerance of
10 ppm, fixed modification cysteine carbamidomethylation (+57 Da) as well as an
additional variable modification methionine oxidation (+16 Da).

Bronchitis samples of the strain Avian infectious bronchitis virus (strain Beaudette
CK) were downloaded from PRIDE (Vizcáıno et al., 2016) (PXD002936) and the
sample “BeauR2.raw” was randomly selected for analysis. The raw file was converted
to an mgf file using ProteoWizard’s MSConvert GUI (3.0.8764) (Chambers et al.,
2012). Spectra were analyzed with default settings including a tryptic search with
fixed modification cysteine carbamidomethylation (+57 Da) and parent ion mass
tolerance of 100 ppm.

The bacillus sample of the strain Bacillus subtilis subsp. subtilis str. 168 was
download from PRIDE (PXD007242, file 614_NG4_BSN238_Urea-Trp_1ug_SR-LFQ_
4h_161201.mgf). Spectra were analyzed with default settings including a tryptic
search with fixed modification cysteine carbamidomethylation (+57 Da). However,
parent ion mass tolerance was set to 10 ppm in accordance with the original publi-
cation.

A.3.2. Additional Figures
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Figure A.12.: Relative counts of cowpox. Relative counts are illustrated for TaxIt (top),
uniques- (middle) and Pipasic-based search strategies (bottom). Original, filtered (if
applicable) and corrected relative counts are summarized by means of one vertical stacked
bar each. Taxa are labeled and color-coded based on a limit of 15 final top candidates
(i.e. after correction) with a relative count greater zero. Furthermore, ratios greater 0.05
are highlighted as percentages within bars.
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Figure A.13.: Relative counts of bronchitis. Relative counts are illustrated for TaxIt
(top), uniques- (middle) and Pipasic-based search strategies (bottom). Original, filtered
(if applicable) and corrected relative counts are summarized by means of one vertical
stacked bar each. Taxa are labeled and color-coded based on a limit of 15 final top
candidates (i.e. after correction, except for uniques) with a relative count greater zero.
Furthermore, ratios greater 0.05 are highlighted as percentages within bars.
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Figure A.14.: Relative counts of bacillus 1k. Relative counts are illustrated for TaxIt
(top), uniques- (middle) and Pipasic-based search strategies (bottom). Original, filtered
(if applicable) and corrected relative counts are summarized by means of one vertical
stacked bar each. Taxa are labeled and color-coded based on a limit of 15 final top
candidates (i.e. after correction) with a relative count greater zero. Furthermore, ratios
greater 0.05 are highlighted as percentages within bars.
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Figure A.15.: Relative counts of bacillus all. Relative counts are illustrated for TaxIt
(top), uniques- (middle) and Pipasic-based search strategies (bottom). Original, filtered
(if applicable) and corrected relative counts are summarized by means of one vertical
stacked bar each. Taxa are labeled and color-coded based on a limit of 15 final top
candidates (i.e. after correction) with a relative count greater zero. Furthermore, ratios
greater 0.05 are highlighted as percentages within bars.
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J. Köster and S. Rahmann. Snakemake—a scalable bioinformatics workflow en-
gine. Bioinformatics, 28(19):2520–2522, Jan. 2012. ISSN 1367-4803, 1460-
2059. doi: 10.1093/bioinformatics/bts480. URL http://bioinformatics.

oxfordjournals.org/content/28/19/2520.

M. Kuhring and B. Y. Renard. iPiG: Integrating Peptide Spectrum Matches into
Genome Browser Visualizations. PLoS ONE, 7(12):e50246, Dec. 2012. doi: 10.
1371/journal.pone.0050246. URL http://dx.doi.org/10.1371/journal.pone.

0050246.

M. Kuhring and B. Y. Renard. Estimating the computational limits of detection
of microbial non-model organisms. PROTEOMICS, 15(20):3580–3584, Oct. 2015.
ISSN 1615-9861. doi: 10.1002/pmic.201400598. URL http://onlinelibrary.

wiley.com/doi/10.1002/pmic.201400598/abstract.

T. Kwon, H. Choi, C. Vogel, A. I. Nesvizhskii, and E. M. Marcotte. MSblender:
a probabilistic approach for integrating peptide identifications from multiple
database search engines. Journal of proteome research, 10(7):2949–2958, July
2011. ISSN 1535-3893. doi: 10.1021/pr2002116. URL http://www.ncbi.nlm.

nih.gov/pmc/articles/PMC3128686/.

B. Langmead and S. L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nature
Methods, 9(4):357–359, Apr. 2012. ISSN 1548-7091. doi: 10.1038/nmeth.1923.
URL http://www.nature.com/nmeth/journal/v9/n4/full/nmeth.1923.html.

82

http://www.nature.com/ncomms/2014/141031/ncomms6277/full/ncomms6277.html
http://www.nature.com/ncomms/2014/141031/ncomms6277/full/ncomms6277.html
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3940904/
http://bioinformatics.oxfordjournals.org/content/28/19/2520
http://bioinformatics.oxfordjournals.org/content/28/19/2520
http://dx.doi.org/10.1371/journal.pone.0050246
http://dx.doi.org/10.1371/journal.pone.0050246
http://onlinelibrary.wiley.com/doi/10.1002/pmic.201400598/abstract
http://onlinelibrary.wiley.com/doi/10.1002/pmic.201400598/abstract
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128686/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3128686/
http://www.nature.com/nmeth/journal/v9/n4/full/nmeth.1923.html


BIBLIOGRAPHY

M. Laue. Chapter 1 - Electron Microscopy of Viruses. In T. Müller-
Reichert, editor, Methods in Cell Biology, volume 96 of Electron Microscopy
of Model Systems, pages 1–20. Academic Press, Jan. 2010. URL http:

//www.sciencedirect.com/science/article/pii/S0091679X10960019. DOI:
10.1016/S0091-679X(10)96001-9.

R. Leinonen, H. Sugawara, and M. Shumway. The Sequence Read Archive.
Nucleic Acids Research, 39(Database issue):D19–D21, Jan. 2011. ISSN 0305-
1048. doi: 10.1093/nar/gkq1019. URL http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3013647/.

M. S. Lindner and B. Y. Renard. Metagenomic abundance estimation and diagnostic
testing on species level. Nucleic Acids Research, 41(1):e10, Jan. 2013. ISSN 0305-
1048, 1362-4962. doi: 10.1093/nar/gks803. URL http://nar.oxfordjournals.

org/content/41/1/e10.

T. Liu, M. E. Belov, N. Jaitly, W.-J. Qian, and R. D. Smith. Accurate Mass
Measurements in Proteomics. Chemical Reviews, 107(8):3621–3653, Aug. 2007.
ISSN 0009-2665. doi: 10.1021/cr068288j. URL http://dx.doi.org/10.1021/

cr068288j.

M. Locard-Paulet, O. Pible, A. Gonzalez de Peredo, B. Alpha-Bazin, C. Almunia,
O. Burlet-Schiltz, and J. Armengaud. Clinical implications of recent advances in
proteogenomics. Expert Review of Proteomics, 13(2):185–199, 2016. ISSN 1744-
8387. doi: 10.1586/14789450.2016.1132169.

L. Luo, E. Boerwinkle, and M. Xiong. Association studies for next-generation se-
quencing. Genome Research, 21(7):1099–1108, Jan. 2011. ISSN 1088-9051, 1549-
5469. doi: 10.1101/gr.115998.110. URL http://genome.cshlp.org/content/

21/7/1099.

R. Luo, B. Liu, Y. Xie, Z. Li, W. Huang, J. Yuan, G. He, Y. Chen, Q. Pan, Y. Liu,
J. Tang, G. Wu, H. Zhang, Y. Shi, Y. Liu, C. Yu, B. Wang, Y. Lu, C. Han, D. W.
Cheung, S.-M. Yiu, S. Peng, Z. Xiaoqian, G. Liu, X. Liao, Y. Li, H. Yang, J. Wang,
T.-W. Lam, and J. Wang. SOAPdenovo2: an empirically improved memory-
efficient short-read de novo assembler. GigaScience, 1(1):18, Dec. 2012. ISSN 2047-
217X. doi: 10.1186/2047-217X-1-18. URL http://www.gigasciencejournal.

com/content/1/1/18/abstract.

K. Ma, O. Vitek, and A. I. Nesvizhskii. A statistical model-building perspective to
identification of MS/MS spectra with PeptideProphet. BMC Bioinformatics, 13
(16):S1, Nov. 2012. ISSN 1471-2105. doi: 10.1186/1471-2105-13-S16-S1. URL
https://doi.org/10.1186/1471-2105-13-S16-S1.

83

http://www.sciencedirect.com/science/article/pii/S0091679X10960019
http://www.sciencedirect.com/science/article/pii/S0091679X10960019
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013647/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3013647/
http://nar.oxfordjournals.org/content/41/1/e10
http://nar.oxfordjournals.org/content/41/1/e10
http://dx.doi.org/10.1021/cr068288j
http://dx.doi.org/10.1021/cr068288j
http://genome.cshlp.org/content/21/7/1099
http://genome.cshlp.org/content/21/7/1099
http://www.gigasciencejournal.com/content/1/1/18/abstract
http://www.gigasciencejournal.com/content/1/1/18/abstract
https://doi.org/10.1186/1471-2105-13-S16-S1


BIBLIOGRAPHY

M. Mann and N. L. Kelleher. Precision proteomics: The case for high resolution
and high mass accuracy. Proceedings of the National Academy of Sciences, 105
(47):18132–18138, Nov. 2008. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.
0800788105. URL http://www.pnas.org/content/105/47/18132.

M. Mascher, G. J. Muehlbauer, D. S. Rokhsar, J. Chapman, J. Schmutz, K. Barry,
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M. Sturm, A. Bertsch, C. Gröpl, A. Hildebrandt, R. Hussong, E. Lange, N. Pfeifer,
O. Schulz-Trieglaff, A. Zerck, K. Reinert, and O. Kohlbacher. OpenMS – An
open-source software framework for mass spectrometry. BMC Bioinformatics, 9
(1):163, Mar. 2008. ISSN 1471-2105. doi: 10.1186/1471-2105-9-163. URL http:

//www.biomedcentral.com/1471-2105/9/163/abstract.

J. Tarhio and E. Ukkonen. Approximate Boyer–Moore String Matching. SIAM
Journal on Computing, 22(2):243–260, Apr. 1993. ISSN 0097-5397. doi: 10.1137/
0222018. URL http://epubs.siam.org/doi/abs/10.1137/0222018.

M. The and L. Käll. MaRaCluster: A Fragment Rarity Metric for Clustering Frag-
ment Spectra in Shotgun Proteomics. Journal of Proteome Research, 15(3):713–
720, Mar. 2016. ISSN 1535-3907. doi: 10.1021/acs.jproteome.5b00749.

The Global Proteome Machine. cRAP protein sequences. URL http://www.thegpm.

org/crap/. Last visited 2017-09-29.

The UniProt Consortium. Activities at the Universal Protein Resource (UniProt).
Nucleic Acids Research, 42(D1):D191–D198, Jan. 2014. ISSN 0305-1048, 1362-
4962. doi: 10.1093/nar/gkt1140. URL http://nar.oxfordjournals.org/

content/42/D1/D191.

The UniProt Consortium. UniProt: the universal protein knowledgebase. Nu-
cleic Acids Research, 45(D1):D158–D169, Jan. 2017. ISSN 0305-1048. doi:
10.1093/nar/gkw1099. URL https://academic.oup.com/nar/article/45/D1/

D158/2605721/UniProt-the-universal-protein-knowledgebase.

K. Trappe, B. Wulf, J. Doellinger, S. Halbedel, T. Muth, and B. Y. Re-
nard. Hortense: Horizontal gene transfer detection directly from proteomic
MS/MS data. Sept. 2017. URL https://peerj.com/preprints/3248. DOI:
10.7287/peerj.preprints.3248v1.

T. J. Treangen, D. D. Sommer, F. E. Angly, S. Koren, and M. Pop. Next generation
sequence assembly with AMOS. Current Protocols in Bioinformatics, Chapter 11:
Unit 11.8, Mar. 2011. ISSN 1934-340X. doi: 10.1002/0471250953.bi1108s33.

P. J. Turnbaugh, R. E. Ley, M. Hamady, C. Fraser-Liggett, R. Knight, and J. I.
Gordon. The human microbiome project: exploring the microbial part of our-
selves in a changing world. Nature, 449(7164):804–810, Oct. 2007. ISSN 0028-
0836. doi: 10.1038/nature06244. URL http://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3709439/.

M. Vaudel, J. M. Burkhart, R. P. Zahedi, E. Oveland, F. S. Berven, A. Sickmann,
L. Martens, and H. Barsnes. PeptideShaker enables reanalysis of MS-derived

89

http://www.biomedcentral.com/1471-2105/9/163/abstract
http://www.biomedcentral.com/1471-2105/9/163/abstract
http://epubs.siam.org/doi/abs/10.1137/0222018
http://www.thegpm.org/crap/
http://www.thegpm.org/crap/
http://nar.oxfordjournals.org/content/42/D1/D191
http://nar.oxfordjournals.org/content/42/D1/D191
https://academic.oup.com/nar/article/45/D1/D158/2605721/UniProt-the-universal-protein-knowledgebase
https://academic.oup.com/nar/article/45/D1/D158/2605721/UniProt-the-universal-protein-knowledgebase
https://peerj.com/preprints/3248
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709439/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3709439/


BIBLIOGRAPHY

proteomics data sets. Nature Biotechnology, 33(1):22–24, Jan. 2015. ISSN 1546-
1696. doi: 10.1038/nbt.3109.

W. N. Venables and B. D. Ripley. Modern applied statistics with S. Springer, New
York, NY [u.a., 2007. ISBN 978-0-387-95457-8 0-387-95457-0.

F. Vezzi, G. Narzisi, and B. Mishra. Feature-by-Feature – Evaluating De Novo
Sequence Assembly. PLoS ONE, 7(2):e31002, Feb. 2012a. doi: 10.1371/journal.
pone.0031002. URL UR-http://dx.doi.org/10.1371/journal.pone.0031002,

http://dx.doi.org/10.1371/journal.pone.0031002.

F. Vezzi, G. Narzisi, and B. Mishra. Reevaluating Assembly Evaluations with Fea-
ture Response Curves: GAGE and Assemblathons. PLoS ONE, 7(12):e52210,
Dec. 2012b. doi: 10.1371/journal.pone.0052210. URL http://dx.doi.org/10.

1371/journal.pone.0052210.
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Zusammenfassung

Sequenzdaten bilden das Rückrad für viele biologische Forschungsbereiche, einschließ-
lich (aber nicht beschränkt auf) Genomik, Proteomik sowie Proteogenomik. Se-
quenzierung wird durch eine breite Auswahl an modernen Technologien ermöglicht,
wie beispielsweise Next-Generation-Sequenzierung und Massenspektrometrie. Diese
Hochdurchsatzverfahren erzeugen erhebliche Datenmengen mit immer geringerem
zeitlichen und finanziellen Aufwand. Die anfallenden Datenvolumina lassen manuel-
le Aufbereitung nicht mehr zu und benötigen deshalb modernste rechnerische Me-
thoden für eine adäquate Analyse und Interpretation. In der Proteogenomik wird
das Potential die verschiedene Omik-Technologien zu kombinieren häufig betont,
insbesondere für Non-Model-Organismen. In dieser Dissertation möchten wir einige
Herausforderungen im

”
Lebenszyklus“ der Sequenzdaten hervorheben und uns ein-

gehender mit ihnen befassen, von Genomsequenzierung über integrative Evaluierung
zu extensiver Anwendung umfangreicher Sequenzdatenbanken.

Wir beschreiben einige Methoden mit ihrer Anwendung in unterschiedlichen Omik-
Gebieten und betrachten zusätzlich die Möglichkeiten einer potentiell integrativen
Analyse. Zunächst stellen wir eine Methode für das Ranking von de novo assemb-
lierten Contigs basierend auf maschinellem Lernen vor. Dabei heben wir das beson-
dere Potential für die Anwendung auf metagenomische Sequenzdaten hervor, welche
für gewöhnlich ein große Vielfalt an zuvor sequenzierten als auch unsequenzierten
Non-Model-Organismen aufweisen. Des Weiteren untersuchen wir den Einfluss von
Sequenz-Verfügbarkeit in angewendeten Datenbanken in Bezug auf taxonomischem
Klassifizierungspotential von Tandem-MS-Spektren. Dabei analysieren wir die Ef-
fekte verschiedener Sequenzquellen und Such-Strategien auf die taxonomische Tie-
fe. Abschließend stellen wir einen neuen Ansatz für eine extensive taxonomische
Klassifizierung durch iterativer Aufarbeitung möglichst aktueller und umfangrei-
cher Protein-Sequenz-Datenbanken. Wir diskutieren Potential und Grenzen unserer
Methoden mit Hinblick auf aktuelle Sequenzdaten-Verfügbarkeit. Dabei zeigen wir
potentiellen Nutzen für Non-Model Organismen auf.
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in- oder ausländischen Hochschule oder bei einem anderen Fachbereich beantragt.
Die Bestimmungen der Promotionsordnung sind mir bekannt.

Mathias Kuhring, Berlin, 29.09.2017

93


	Introduction
	Next Generation Sequencing Application in Genomics
	Mass Spectrometry-based Proteomics
	Integrative Applications of Omics Data
	Non-Model Organisms
	Challenges in Omics Data Analysis
	Thesis Outline

	Supervised Ranking of Contigs in De Novo Assemblies
	Training and Prediction of Contig Quality
	Experiments
	Results and Discussion

	Limits of Detection of Microbial Non-Model Organisms
	Simulation and Identification of Related Organisms
	Comprehensive and Targed Database Evaluation
	Experimental Validation
	Results and Discussion

	Iterative and Untargeted Strain Level Identification
	Traversing the Comprehensive Search Space
	Experiments
	Results
	Discussion

	Summary and Conclusion
	Appendix
	Additional Material for Chapter 2
	Additional Material for Chapter 3
	Additional Material for Chapter 4

	Bibliography

