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Abstract

Symmetry is a fundamental phenomenon in science, and symmetry breaking is often the origin of

subsequent processes which are important in chemistry, physics and biology. As is well-known, a

laser pulse can break the electronic symmetry in atoms and molecules by creating a superposition of

electronic eigenstates with different irreducible representations, which typically initiates attosecond

ultrafast charge migration.

In the first part of this dissertation, an original theory of coherent laser control is proposed to induce

the symmetry restoration of the electronic structure in atoms and molecules after symmetry breaking,

with application to the oriented benzene molecule and to the 87Rb atom. Four different strategies are

proposed and corresponding sufficient conditions for symmetry restoration are derived analytically.

The numerical and analytical results agree perfectly with each other. Meanwhile, the theoretical pre-

dictions for the 87Rb atom have been confirmed by experimental partners in Japan, by means of high

contrast Ramsey interferometry with a precision of about three attoseconds.

The second part is devoted to the electronic flux during charge migration in oriented benzene

molecule. Two different patterns of adiabatic attosecond charge migration are investigated by laser

induced preparation of two different non-aromatic superposition states. From the knowledge of the

time-dependent many-body wave functions as a linear combination of many-electron wave functions

obtained from conventional quantum chemistry calculations, we derive expressions for the time-

evolution of the one-electron density and the electronic flux. This allows to specify the number of

electrons flowing during a given charge migration process, together with the mechanism of charge

migration.

In conclusion, this dissertation shows, for the first time, that the symmetry of electronic structure in

atoms and molecules can not only be broken but also be restored by means of simple laser pulses. The

coherent control strategies require strict control over the time-dependent phases of electronic wave

functions. In practice, the precision required is few attoseconds - much shorter than the timescale of

charge migration in such systems. The analysis of charge migration indicates that similar superposi-

tion states may lead to quantitative differences in the number of electrons flowing.
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Kurzzusammenfassung

Symmetrie ist ein fundamentales Phänomen in der Naturwissenschaft, und Symmetriebrechung

kann bedeutende Folgeprozesse in der Chemie, Physik und Biologie auslösen. Insbesondere kann

die elektronische Symmetrie von Atomen und Molekülen bekanntlich durch einen Laserpuls gebro-

chen werden, und zwar durch die Erzeugung einer Superposition von elektronischen Zuständen mit

verschiedenen irreduziblen Darstellungen - dies bewirkt dann typischerweise ultraschnelle Ladungs-

migration auf der Attosekundenzeit-skala.

Der erste Teil dieser Dissertation entwickelt eine grundlegende Theorie der kohärenten Laserpuls-

Kontrolle mit dem Ziel der Wiederherstellung der elektronischen Symmetrie in Atomen und Mo-

lekülen nach Symmetriebrechung, mit Anwendungen auf das orientierte Benzolmolekül sowie auf

das 87Rb Atom. Es werden insgesamt vier Strategien zur Wiederherstellung der Symmetrie vorge-

stellt, wobei hinreichend zielführende Bedingungen analytisch hergeleitet werden. Die analytischen

Ergebnisse stimmen exzellent mit numerischen Quantendynamiksimulationen überein. Die theoreti-

schen Vorhersagen für das 87Rb Atom wurden inzwischen mit Hilfe der hoch-kontrastreichen Ramsey

Interferometrie von experimentellen Partnern in Japan mit einer Genauigkeit von drei Attosekunden

bestätigt.

Der zweite Teil untersucht den Elektronenfluss während der Ladungsmigration in orientierten Ben-

zolmolekülen. Dabei werden für zwei unterschiedliche nicht-aromatische elektronische Superpositi-

onszustände verschiedene Typen der adiabatischen Ladungsmigration auf der Attosekundenzeits-

kala aufgezeigt. Aus der Kenntnis der zeitabhängigen Viel-Elektronen-Wellenfunktion als Linear-

kombination elektronischer Eigenfunktionen, die mit Hilfe konventioneller Verfahren der Quanten-

chemie berechnet werden, werden Ausdrücke für die Zeit-Evolution der Ein-Elektronen-Dichte und

des Elektronenflusses hergeleitet. Daraus ergibt sich die jeweilige Zahl der Elektronen, die zur La-

dungsmigration beitragen, sowie der Mechanismus der Ladungsmigration.

Zusammenfassend zeigt diese Dissertation erstmals, dass die Symmetrie der Elektronenstruktur

von Atomen und Molekülen mit Hilfe von einfachen Laserpulsen nicht nur gebrochen, sondern auch

wiederhergestellt werden kann. Die Strategien der kohärenten Laserkontrolle verlangen dazu die

strenge Kontrolle der zeitabhängigen Phasen der elektronischen Wellenfunktionen. Praktische An-

wendungen erfordern dafür eine zeitliche Genauigkeit von wenigen Attosekunden - also noch viel

genauer als die ohnehin schon ultrakurze Zeitskala der Ladungsmigration. Untersuchungen der La-

dungsmigration zeigen, dass vergleichbar ähnliche Superpositionen elektronischer Wellenfunktionen

zu quantitativ verschiedenen Elektronenflusszahlen führen können.
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Chapter 1

Introduction

Symmetry is a fundamental phenomenon in science and plays a central role in describing the laws of

physics and chemistry for our understanding of matter. Symmetry breaking is often the origin of in-

numerable important effects, such as the universe evolution, biological evolution, chemical reactions,

Jahn-Teller effects and so on, from elementary particle physics,
[1]

biology
[2]

to cosmology
[3]

.

In this dissertation, symmetry is defined in terms of point group symmetry. The characters deter-

mine the irreducible representations (IRREPs) for a given symmetry. Symmetry IRREPs are helpful

for understanding the energy eigenfunctions and discovering the selection rules for transitions among

molecular eigenstates. The symmetries in molecule manifest themselves in the form of the potential

energy surface, as well as in the electronic wave functions of the molecule.
[4]

These symmetries in turn

dictate symmetries in the molecular dynamics. Breaking the symmetry of the electronic structure is

to redistribute the electronic configuration such that the wave function can no longer be assigned to

a single IRREP of the original symmetry point group, and restoring the symmetry is to reshape the

wave function such that the IRREPs can be re-assigned into the original symmetry point group.

In most cases, symmetry breaking is irreversible, but there are also some famous exceptions of

symmetry generation or restoration. For example, the formation of the Buckminsterfullerene C60

with icosahedral symmetry
[5]

demonstrates that the symmetry can be generated in chemical synthesis.

Laser induced high harmonic generation (HHG)
[6–10]

also denotes a kind of symmetry restoration,

in which laser pulses are applied to a highly symmetric ground state. In a first step, the system is

ionized by a laser pulse, breaking the symmetry. In a second step, the laser brings the photo-emitted

electron back to the ion-core such that it forms a highly asymmetric excited collision pair. In a third

step, the system is de-excited back to the high symmetric ground state by spontaneous emission of

high harmonics. This can be considered as spontaneous symmetry restoration, although it was never

recognized as such. Moreover, the efficiency of symmetry restoration by HHG is quite small e.g.

much less than 1%. Here we are aiming at developing a theory to restore the symmetry > 99.9%

coherent controlled by ultrashort laser pulses. The first indication of the possibility of laser control
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Chapter 1 Introduction

symmetry breaking and restoration in atoms may be related to some early works on Ramsey fringes

in Rydberg atoms by Alber et al
[11]

and Noordam et al.
[12]

They showed that after coherently exciting a

superposition state, one can de-excite the system back to the ground state by applying a second pulse.

Although conceptually similar, no one recognized underlying phenomenon symmetry restoration as

such.

In a similar experiment, Arasaki et al
[13]

excited a wave packet of the excited states of NO2 molecule

(with C2v symmetry in ground state) and let it evolve to a conical intersection. Thus breaking the

molecular symmetry from C2v to Cs. After some time, the original symmetry C2v appears again after

the wave function missed the conical intersection . This can be considered as symmetry restoration

controlled by laser, but it is a transient phenomenon for a very short time dictated by the topology the

potential energy surface. We will show in this dissertation another strategy of laser control stationary

symmetry breaking and restoration, which is based on a perturbation of the electronic state of the

system and can be of much longer durations.

Electronic structure symmetry breaking and restoration can be treated as spatial redistribution of

electronic charge in atoms and molecules, which is the most important primary events in all photoin-

duced processes. The concept of symmetry restoration is intimately related to that of phase retrieval

in quantum information technologies.
[14]

It is already well known that a laser pulse can break the

symmetry
[8, 11–24]

of atoms and molecules by creating a superposition state of ground and excited state,

which initiates ultrafast charge migration
[20, 25–34]

with period from few femtoseconds (fs) down to few

hundreds of attoseconds (as), which depends on the energy difference between the electronic ground

state and the excited state. Its observation and control in real time represents rather a challenge in

coherent control
[14, 35–37]

for state-of-the-art experimental techniques.

Understanding these dynamics at the atomic level generally requires a time resolution in the at-

tosecond time domain to visualize electronic motion. This accuracy essential not only to obtain fun-

damental insights into these processes but also, on a longer perspective, for improving the associated

applications.
[38]

For instance, laser control symmetry restoration of electronic structure is very useful in chemical

reactions
[39–41]

and charge migration processes.
[20, 25–34]

The recent applications using counterrotating

right and left circularly polarized laser pulses open new application perspectives, e.g., switching in-

tramolecular ring currents and induced magnetic fields,
[42]

the production of electron vortices,
[43]

se-

lective generation of circularly polarized high harmonics depending on the conformity of the symme-

tries of the laser field and the molecule,
[44–46]

and time-dependent monitoring of symmetry breaking.
[47]

Ultrashort laser pulses is an extremely powerful tool for the investigation, manipulation and control
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of ultrafast processes occurring on timescales down to the attosecond regime. Especially, pairs of

ultrashort laser pulses have been a matter of particular interest due to their controllable temporal

delay and the relative phase shift between the two pulses.
[48]

By using quantum control calculation

one can selectively manipulate the molecules, and by controlling electronic dynamics one can control

molecular properties such as the electronic structure symmetry breaking and restoration.

Here, we investigate a new physical phenomenon: coherent control of intra-atomic and intra-

molecular symmetry breaking and symmetry restoration. The goal of this dissertation is to show

that laser pulse can not only break the symmetry but also can restore the symmetry. For this purpose,

a very simple but with highly symmetric ground state is chosen — the oriented benzene molecule,

which is also motivated by a recently fundamental work of laser control aromaticity of benzene

molecule by Ulusoy and Nest.
[49]

Further, the 87Rb atom with an isotropic electronic structure in its

ground state is also a very good choice for laser control symmetry breaking and restoration, which is

motivated by many various fundamental effects for the excitations of Rydberg states that have been

discovered.
[50–54]

For the purpose of coherent control symmetry breaking and restoration, we develop four strategies.

Paper SR1 establishes a new theory of coherent control symmetry breaking and restoration by means

of two time-delayed circularly ultrashort laser pulses, with applications to the benzene molecule and

87Rb Rydberg atom. Here, we excite the molecule by applying the first circularly polarized pulses from

the electronic ground state to a superposition of the ground and an excited state. After creating the

superposition state, in general the symmetry of the electronic structure is reduced, thus the symmetry

is broken. Then the second identical time-delayed pulse is used to de-excite the superposition back

to the ground state for symmetry restoration with the same IRREP. The first pulse pumps some of the

amplitude into excited state, while the second pulse either enhances the population of excited state or

pumps the previously create amplitude back to the ground state. The time delay between two pulses

must be sufficiently long and their durations are short such that the system evolve in quasi-field-free

environment at the central time. The time delay between two pulses must be short enough so that the

nuclear motion can be neglected within our simulation of 10 f s. Numerical simulations and analytical

results are presented for both models, and the feasibility of symmetry restoration is confirmed by a

high contrast Ramsey interferometry experiment for 87Rb atom in 3 as attosecond precision.

Paper SR2 presents the second different strategy, in which we apply two time reversed copy of

linearly polarized laser pulses and chirp-up, chirp-down pulses to break and restore the symmetry

in ground state with phase condition satisfied. For these two scenarios, we achieve the symmetry

restoration by repopulating the IRREP. Is it possible to restore the symmetry with a different IRREP?

3
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To answer this question, in Paper SR3 we investigate a general way to restore the symmetry in excited

state with different IRREPe 6= IRREPg but in same symmetry point group. For this method, the two

pulses for symmetry breaking and restoration require neither identical as in SR1, nor time-reversed

copy as in SR2. The first pulse can be arbitrary, while the sum of these two pulses has to be a π-pulse to

completely excite the system from its electronic ground state to a pure excited state. We quantitatively

analyze the time evolution of the final population of the excited state and the dependence of the phase

difference on time delay. Paper SR4 shows a special case of 50% excitation population, which serves

as a bridge of Paper SR1, SR2 and SR3. For this case, one can either restore the symmetry in ground

state with same IRREPs in same point group or in excited state with different a IRREP in same point

group, which depends on the time delay. The studies in the Paper SR1 - SR4 focus on the analysis of

the dependence of the final population of the excited state on the time delay, and the sensitivity of the

phase difference to the time delay.

In all our studies of symmetry breaking and restoration, after applying the first ultrashort pulse a

superposition is prepared, which initiates the attosecond ultrafast charge migration process between

two degenerate superposition states. However, this ultrafast process is not studied quantitatively

in Paper SR1 - SR4. Charge migration is an ubiquitous phenomenon with profound implications

throughout many areas of chemistry, physics, biology and materials science.
[38]

It arises whenever

multiple electronic states are coherently populated and the measurement and controlling of charge

migration is a key goal of attosecond science.
[38]

It is induced by pure electronic dynamics, which

is different from charge transfer driven by nuclear motion and much slower than charge migration.

Charge migration was first discussed in 1944 in Quantum Chemistry textbook written by Eyring et

al
[55]

and the first experimental observation was made in 1995 by Weinkauf and Schlag et al.
[56–59]

The

phenomenon was studied mostly by Levine and Remacle,
[26, 60, 61]

Cederbaum and Kuleff et al,
[25, 62–67]

Corkum and Bandrauk et al,
[23, 68, 69]

Fujimura and Lin et al
[28, 29, 70]

but also by other groups.
[20, 27, 30, 71–74]

With the current development of laser techniques, it is possible to trace the electronic dynamics with

attosecond time resolution.
[7, 8, 75–83]

Recently, the first experimental observation of the attosecond ultra-

fast charge migration in ionized iodoacetylene
[31]

took place. Due to its ability of solving fast temporal

events down to the attosecond time scale, charge migration attracts continuous interest since decades

years.
[38]

The charge migration involved in non-aromatic electronic superposition states of benzene molecule

was first investigated by Ulusoy and Nest.
[49]

They prepared two non-aromatic superpositions of the

electronic ground and two lowest-lying singlet excited states by using a sequence of laser pulses,

which initiate charge migration in attosecond time scale. They indicated that the six delocalized π-
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electrons in an oriented benzene molecule
[84–90]

are either localized on alternating bonds for Kekulé

structures
[49, 91]

or partially on alternating carbon atoms for the other Lewis structure.
[49]

Furthermore,

they estimated that totally 4.2 electrons move around the ring system for Kekulé structures and 1.5

electrons move in the other non-aromatic superposition. They gave a semi-quantitative estimation

that the charge migration between two Kekulé structures is a pincer-type motion but without giving

any quantitative analysis of the electron flow, for which we will confirm in Paper CM1.

The quantitative analysis for benzene molecule was done by Schild and coworkers,
[92]

in which

they indicated that 0.2 electrons move by stimulating the vibrational motion along the Kekulé mode.

Whereas this process refers to charge transfer instead of charge migration. Our interest here is: How

do the electrons really move during a charge migration process in ref. [49]?

To answer this question, in Paper CM1 and CM2 we illustrate two processes of quantum control of

adiabatic attosecond charge migration (AACM) for two different non-aromatic superposition states

of benzene molecule. In Paper CM1, we prepared two Kekulé structures by exciting the molecule

from its electronic ground state to the first lowest-lying singlet excited state by means of series of laser

pulses. Accordingly, the electron charges circulate in the ring system in attosecond time scale . Since

the nuclei are essentially frozen at this time domain, thus the effect of kinetic couplings (also called

non-adiabatic coupling) are negligible, e.g. the process is adiabatic attosecond charge migration. For

comparison, the theory for diabatic transitions (with much longer than 10 fs time scale) has been de-

veloped by Takatsuka and coworkers.
[93–96]

there are some theoretical works
[20, 26, 31, 49, 57]

on adiabatic

process but not enough for addressing our questions listed above. for determining the direction of

the electron motion and the number of electrons that participate in AACM process, we need to ana-

lyze the electronic flux and density difference. The adiabatic attosecond charge migration (AACM) is

analogous to coherent tunnelling irrespective of different time scales, different meaning of the states

and different preparation of the initial state. Therefore, in Paper CM1, our goal is to transfer (but not

copy) the theory of electronic flux during coherent tunnelling to AACM and develop a new theory

of electronic fluxes during AACM in an oriented ring system - benzene molecule. Another task of

CM1 is to analyze the angular electronic fluxes quantitatively and determine the direction of electron

charge move and further specify the number of electrons that participate in the AACM process. The

methods that used here was originally derived for concerted electronic and nuclear fluxes during the

coherent tunnelling process, see ref. [97].

In Paper CM2, the similar analysis is done for the other non-aromatic superposition state of ben-

zene molecule that was created in ref. [49]. We prepare the superposition by exciting the system from

the electronic ground state to the second lowest-lying singlet excited state via series of laser pulses.

5
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Based on the theory and methods that we have developed in Paper CM1, we will determine the elec-

tronic flux of the partial charges on alternating carbon atoms during AACM and specify the number

of electrons that involved in the charge migration. The simulation results indicate that the electron

charge flow from the localized alternating carbon atoms to other carbon atoms in pincer-type motion.

The studies of Paper CM1 and CM2 focus on the quantitative analysis of the electronic dynamics. In a

nutshell, this dissertation covers the researches that address the following questions. How to restore

the symmetry of electronic structure in atoms and molecules? Which condition should be satisfied

for successful symmetry restoration? How do the electron charges really move during the attosecond

ultrafast charge migration? How many electrons participate in the charge migration?

The dissertation is organized as follows. The Chapter 2 introduces briefly the basic quantum me-

chanical theory that will be used for the simulations of this dissertation. The Chapter 3 is the basic

theory of coherent control symmetry breaking and restoration that we have developed. The Chapter

4 serves as a list of the academic publications during my doctoral study. At the end, in Chapter 5 I

summarize the primary results and propose an outlook based on the present work.

6



Chapter 2

Theoretical Background

In this chapter, I will give a brief review of some quantum chemistry basic concepts and give a theoret-

ical background, which are necessary for understanding all publications presented in this dissertation.

2.1 The Time-Dependent Schrödinger Equation[4, 98]

We assume that the nuclei and electrons are point masses and neglect spin-orbit and other relativistic

interactions. In non-relativistic quantum systems, the time evolution of the molecular wave function

is determined by the time-dependent Schrödinger equation,
[99]

which is written as

ih̄
∂

∂t
|Φtot(q, Q, t)〉 =

[
Ĥtot(r, R) + V̂int(r, R, t)

]
|Φtot(q, Q, t)〉 (2.1)

with h̄ and i the reduced Plank constant and the imaginary unit, respectively. The total molecu-

lar wave function Φ(q, Q, t) depends on time t, 4Ne electronic coordinates q = {q, θ} ≡ {ri, θi}Ne
i=1

with 3Ne electronic spatial coordinates r and Ne spin coordinates θ, and 4Nn nuclear coordinates

Q = {R, Θ} ≡ {Rα, Θα}Nn
α=1 with 3Nn nuclear spatial coordinates Q and Nn nuclear spin coordinates

Θ. Ĥtot(r, R) is the time-independent molecular Hamiltonian and V̂int(r, R, t) is the time-dependent

interaction operator of the molecular system interacting with an external electric field, which can be

defined in the semiclassical dipole approximation as following

V̂int(r, R, t) = −~d(r, R) ·~ε(t) (2.2)

Here ~d(r, R) is the molecular dipole operator, and~ε(t) is the electric field operator.

7



Chapter 2 Theoretical Background

The total molecular Hamiltonian operator Ĥtot(r, R) is written as

Ĥtot(r, R) = ∑
i
− h̄2

2m
∇2

i + ∑
i

∑
j>i

e2

4πε0|ri − rj|
+ ∑

α

− h̄2

2Mα
∇2

α + ∑
α

∑
β>α

ZαZβe2

4πε0|Rα − Rβ|
+ ∑

α
∑

i
− Zαe2

4πε0|ri − Rα|

= T̂e(r) + V̂e(r) + T̂N(R) + V̂N(R) + V̂eN(r, R)

(2.3)

where α, β refer to the nuclei and i, j refer to the electrons. {r,∇i} refers to the electron coordinates

and momenta, {R,∇α} refers to the nuclear coordinates and momenta. m, e are the rest mass and

charge of the electron, respectively. Mα, Zα are the mass and the charge of the α− th nuclei. ε0 is the

vacuum permittivity. The first term in (2.3) is the electronic kinetic energy operator. The second term

is the interelectronic Coulomb repulsions. The third term is the nuclear kinetic energy operator. The

fourth term is the internuclear Coulomb repulsions. The last term is the electron-nuclear attractions.

The total molecular Hamiltonian (2.3) is formidable enough to terrify the quantum chemists. Because

even for the simplest molecule H+
2 , which consists of three particles, it’s impossible to solve its time-

independent Schrödinger equation analytically. To overcome this difficulty, we need to make further

approximations.

2.1.1 The Born-Oppenheimer approximation
[4, 98, 100]

Since the nuclei are much heavier than the electrons, they move much more slowly than the electrons.

Thus one can consider that the electrons in a molecule are moving in the mean field of fixed nuclei

- the Born-Oppenheimer approximation,
[100]

which is called the most fundamental approximation in

quantum chemistry. Within this approximation, the third term of (2.3) can be neglected and the fourth

term of (2.3) can be considered to be a constant. But any constant added to an operator has no effect on

the operator eigenfunctions and only adds to the operator eigenvalues. Hence, within the clamped-

nuclei approximation, we neglect the fourth term of (2.3), the remaining terms in (2.3) are called the

electronic Hamiltonian, which written as:

Ĥe(r; R) = ∑
i
− h̄2

2m
∇2

i + ∑
i

∑
j>i

e2

4πε0|ri − rj|
+ ∑

α
∑

i
− Zαe2

4πε0|ri − Rα|
(2.4)

The electronic Hamiltonian Ĥe(r; R) depends parametrically on the nuclear coordinates R. For each

fixed nuclear configuration, the time evolution of the electronic eigenfunction can be obtained by

solving the time-independent electronic Schrödinger equation

Ĥe(r; R)|Ψλ(r; R)〉 = Eλ(R)|Ψλ(r; R)〉. (2.5)
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2.1 The Time-Dependent Schrödinger Equation
[4, 98]

Here |Ψλ(r; R)〉 is the stationary electronic wave function, which describes the motion of the electrons

and explicitly depends on the electronic coordinates, and also depends parametrically on the nuclear

coordinates. |Ψλ(r; R)〉 is a different function of the electronic coordinates for different arrangements

of nuclei. Different arrangements are adopted and the calculation are repeated, thus we get a set of

Eλ(R) by solving the eqn. (2.5). This set of the energies describes the motion of nuclei. The function

denotes the molecular potential energy surface.

According to the Hermitian property of the electronic Hamiltonian Ĥe(r; R), the orthonormality

condition of the

〈Ψλ|Ψν〉 ≡
∫

Ψ∗λ(r; R)Ψν(r; R)dr = δλν (2.6)

which shows that the Dirac notation of the inner product of two wave functions indicates an integra-

tion over all the electronic coordinates r. The electronic wave functions obtained from the solution

of eqn. (2.5) form a complete basis set, thus the total molecular wave function can be expanded as a

linear combination of these basis functions by using the Born-Huang ansatz
[101]

|Φtot(q, R, t)〉 = ∑
λ

|Ψλ(q; R)〉|χλ(R, t)〉 (2.7)

with |χλ(R, t)〉, a function of the nuclear coordinates, acting as time-dependent expansion coeffi-

cients, referring to the nuclear vibrational wave functions. |Ψλ(q; R)〉 is an electronic wave func-

tion, which depends parametrically on the nuclear geometry. Inserting this ansatz into the time-

dependent Schrödinger equation (2.1) and integrating over the electronic wave functions by multi-

plying 〈Ψλ(q; R)| from the left, we get the equation of the motion for the nuclei

ih̄
∂

∂t
|χλ(R, t)〉 =

[
T̂N(R) + Eλ(R) +

(
∑
ν

Λλν(R)

)
+ V̂int(R, t)

]
|χλ(R, t)〉 (2.8)

where the non-adiabatic (or kinetic) coupling term Λλν(R) is the dynamical interactions between the

electronic and nuclear motion, which can be written as

Λλν(R) = −
Nn

∑
α

h̄2

2Mα

[
2~Λ(1)

λν (R) · ~∇~Rα
+ Λ(2)

λν (R)
]

. (2.9)

Here, the first-order coupling terms ~Λ(1)
λν (R) = 〈Ψλ|~∇~Rα

|Ψν〉 are vectorial quantities, and the second-

order coupling terms Λ(2)
λν (R) = 〈ΨΨλ|∇2

~Rα
|Ψν〉 are scalar functions.

[4, 102]
Neglecting these two non-

adiabatic coupling terms, e.g. the uncoupling electronic states for field-free Hamiltonian, leads to the

Born-Oppenheimer approximation.
[100]

For a system with time-dependent Hamiltonian, the analysis of the electron dynamics can quanti-
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Chapter 2 Theoretical Background

tatively reveal the mechanistic details of the internal system.

2.1.2 Analysis of Electron Dynamics

In this dissertation, we will not consider the nuclear vibrational-rotational problem but only focus on

the electronic problems for closed shell systems with neglecting the spin coordinates. The electronic

Time-Dependent Schrödinger Equation is written as

ih̄
∂

∂t
|Ψ(r, t)〉 =

[
∑

i
− h̄2

2m
∇2

i + ∑
i

∑
j>i

e2

4πε0|ri − rj|
+ ∑

α
∑

i
− Zαe2

4πε0|ri − Rα|
+ V̂int(r, R, t)

]
|Ψ(r, t)〉

(2.10)

If the Hamiltonian operator does not depend on the time explicitly, the solution is

Ψ(r, t) = e−iĤtott/h̄Ψ(r), (2.11)

which represents the evolution of the complex phases associated with the stationary states. The spatial

part Ψ(r) satisfies the time-independent Schrödinger equation.

The time- and space-resolved analysis of ultrafast electronic processes are necessary for fully under-

standing the intrinsic mechanism of electron dynamics in a molecule. In such a case, time-dependent

one-electron density

ρ(~r, t) = ∑
λν

∫
dR[χ∗ν(R, t)χν(R, t)]ρλν(~r; R) (2.12)

is often used for the analysis of correlated electron dynamics. Here χλ(R, t) is the nuclear wave

function and ρλν(~r; R) is the time-dependent electronic transition density between electronic state λ

and ν, written as

ρλν(~r; R) =
∫

...
∫

d~r2...d~rNe Ψλ(r; R)Ψν(r; R) (2.13)

The time-derivative of the time-dependent one-electron density refers to as electron flow, and the

spatially resolved instantaneous flow of electrons is explained by the time-dependent electronic flux

density as follows

~j(~r, t) = ∑
λν

∫
dR[χ∗ν(R, t)χν(R, t)]~jλν(~r; R) (2.14)

The time-independent electronic transition flux density from state λ and state ν is

~j(~r; R) = − ih̄
2m

∫
...
∫

d~r2...d~rNe(Ψν(r; R)∇~rΨλ(r; R)−Ψλ(r; R)∇~rΨν(r; R)) (2.15)

Within clamped nuclei approximation, diagonal terms correspond to the adiabatic electronic flux den-
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2.2 The Solution of the Time-Independent Electronic Schrödinger equation
[4, 98, 99]

sity and is zero when the electronic states are real-valued. The relation between the time-dependent

electron density ρ(~r, t) and the electronic flux density~j(~r, t) is called the electronic continuity equation
[99]

∂

∂t
ρ(~r, t) +∇~r ·~j(~r, t)) = 0. (2.16)

The integration of the time-derivation of the electron density for a certain time interval [t0, t] from a

given initial condition is called the density difference, taking the following form

∆ρ(~r, t) =
∫ t

t0

∂ρ(~r, t′)
∂t′

= ρ(~r, t)− ρ(~r, t0), (2.17)

which is often used to analyse the charge migration process. Furthermore, the integration of the

density difference gives the number of electrons that flow

y =
∫

∆ρ(~r, t)dt (2.18)

The accuracy depends on the wave function. The following section will focus on the methods to get

an acceptable wave function.

2.2 The Solution of the Time-Independent Electronic Schrödinger

equation [4, 98, 99]

From eqn. (2.5) we can get the molecular equilibrium geometry and vibrational frequencies, and the

electronic wave function contains lots of useful information about molecular properties such as dipole

moments, polarizability, etc. That’s the reason why we want to solve the electronic Schrödinger equa-

tion. The solution of the Schrödinger equation is still so complicated even after making the Born-

Oppenheimer approximation (even for H+
2 ). Therefore, further approximations must be applied.

2.2.1 The Hartree-Fock Method

Central to the solution of such problems is the Hartree-Fock approximation, in which the electron-

electron repulsion is treated in the average field υ̂e f f (ri; R) - Hartree-Fock potential, which due to the

presence of the other electrons. If the one-electron Hamiltonian can include the effects of electron-

electron repulsion in an average way, the Ne-electron Hamiltonian is a sum of Ne one-electron Hamil-

11



Chapter 2 Theoretical Background

tonians. Within this mean-field method, the overall electronic Hamiltonian can be written as

Ĥe(r; R) =
Ne

∑
i

(
− h̄2

2me
∇2

i + υ̂e f f (ri; R)

)
+ V̂N(R), (2.19)

where the internuclei repulsion V̂N(R) is a constant factor, electrons are all indistinguishable. So the

time-independent electronic Schrödinger equation can be reduced from a Ne-electron problem to Ne

coupled one-electron problems. The overall wave function is built from products of one-electron wave

functions (Hartree Product).

ΨHP(q1, q2, ..., qNe ; R) = ψ1(q1; R)ψ2(q2; R) · · · ψNe(qNe ; R) (2.20)

Each one-electron wave function ψa(qi; R), corresponding to an orthonormal spin orbital a occupied

by an electron i, can be defined as the product of a spatial orbital φa(ri; R) and a spin function σ(θi).

ψa(qi; R) = φa(ri; R)σ(θi) (2.21)

σ(θi) is either a spin up or a spin down function for fermions. For a many-electron problem, the

wave function must be antisymmetric with respect to the interchange of the coordinate q of any two

electrons, which is called the Pauli exclusion principle or antisymmetry principle.

Ψ(q1, ..., qi, ..., qj, ..., qNe ; R) = −Ψ(q1, ..., qj, ..., qi, ..., qNe ; R). (2.22)

But a basic deficienty in the Hartree Product is that it takes no account of the indistinguishability of

electrons, but distinguishes each electron a specific spin orbital. So that the Hartree Product does not

satisfy the antisymmetry principle.

For making up this disadvantage, it comes up an approach to make Ne electrons occupying Ne spin

orbitals without specifying the which electron is in which orbital, which is known as Slater determi-

nant. For a Ne-electron system, the generalization of the antisymmetric wave function can be written

as a Slater determinant

ΨSD(qi; R) =
1√
Ne!

∣∣∣∣∣∣∣∣∣∣∣∣∣

ψa(q1; R) ψa(q2; R) · · · ψa(qNe ; R)

ψb(q1; R) ψb(q2; R) · · · ψb(qNe ; R)

...
...

. . .
...

ψNe(q1; R) ψNe(q2; R) · · · ψNe(qNe ; R)

∣∣∣∣∣∣∣∣∣∣∣∣∣
≡ |ψaψb · · ·ψNe〉 (2.23)

12



2.2 The Solution of the Time-Independent Electronic Schrödinger equation
[4, 98, 99]

Here,
1√
Ne!

is the normalization factor. ψa(qi; R) is the ath spin orbital occupied by electron i with its

spatial molecular orbital (MO) and spin function qi ≡ {ri, θi}. We can see that the sign of the deter-

minant changes when we interchange the coordinates of any of two electrons by interchanging two

corresponding rows of the determinant, which means that the Slater determinant meet the require-

ment of the antisymmetry principle. A Ne electron closed shell system contains Ne/2 spin orbitals

with spin-up function and Ne/2 spin orbitals with spin-down function, which leads a spin-free repre-

sentation of the wave function when we integrate over all Ne spin orbitals. The Slater determinant is

invariant for any linear transformation of the occupied spatial orbitals.

Within the Hartree-Fock approximation, a single Slater determinant is used to model the total

electronic wave function of the ground state in the time-independent electronic Schrödinger equa-

tion (2.5). By minimizing the energy with respect to the choice of the spin orbitals in the Slater deter-

minant wave function (2.23), we can obtain a set of effective one-electron eigenvalue equations, the

Hartree-Fock equations. For a closed shell system, the spin part of wave function can be integrate

out to get a spin-free representation of the wave function. The Hartree-Fock equation for closed shell

system can be derived as following

f̂ (ri; R)ψa(ri; R) = Ea(R)ψa(ri; R) (2.24)

Ea(R) is the orbital energy of the ath spin orbital; f̂ (ri; R) is the Fock operator, which refers to the

effective Hamiltonian of the one-electron eigenvalue equation

f̂ (ri; R) = − h̄2

2me
∇2

ri
−

Ne

∑
i

Nn

∑
α

Zαe2

4πε0|ri − Rff|
+ υ̂e f f (ri; R). (2.25)

The effective potential consists of the classical Coulomb potential energy operator Ĵb(ri; R) and non-

classical exchange potential energy operator K̂b(ri; R)

υ̂e f f (ri; R) =
Ne

∑
b

[
Ĵb(ri; R)− K̂b(ri; R)

]
. (2.26)

In this expression, the sum is over all spin orbitals. The Coulomb operator Ĵb(ri; R) and exchange

operator K̂b(ri; R) are defined as follows:

Ĵb(ri; R) =
∫

ψ∗b (ri; R)
e2

4πε0|ri − rj|
ψb(ri; R)dri

K̂b(ri; R) =
∫

ψ∗b (ri; R)
e2

4πε0|ri − rj|
ψa(ri; R)dri.

(2.27)
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The Coulomb and exchange operators are defined in terms of spin orbitals rather than in terms of

spatial wave functions. By solving the eqn. (2.24) with corresponding Fock operator f̂ (ri; R), we can

get all the spin orbitals. However, f̂ (ri; R) depends on the (n − 1) occupied spin orbitals, thus one

has to make a trial set of spin orbitals to formulate the Fock operator; Then solve the Hartree-Fock

equations (2.24) to get a new set of spin orbitals and feedback to optimize the Fock operator, and so on.

The reformulation is repeated until a convergence criterion is satisfied and one get a self-consistent

solution. This self-consistent procedure is named as Self-Consistent Field (SCF).

At the point, it is clear that the Hartree-Fock SCF procedure is available for atomic numerical calcu-

lations, but no feasible procedures for obtaining molecular numerical solutions, thus the improvement

measures have to be done. For such a purpose, Roothaan and Hall independently gave a suggestion

to expand the spatial part of the spin orbitals as a linear combination of a set of basis functions, which

is well known as Molecular Orbitals as Linear Combination of Atomic Orbitals ansatz (MO-LCAO).

ψa(ri; R) =
Nn

∑
α

nAO(α)

∑
iα

C(a)
iα φiα(ri − Rα) (2.28)

where C(a)
iα is the (iα)th molecular coefficient of MO a, and φiα(ri − rα) denotes the n(α)

AO atomic orbitals

centered at atom α.

It is important to choose a proper basis set to get a reasonably accurate AOs, especially for the

ground state MO. But the computational cost increases sharply with the basis set getting larger, so

AOs have to be justified chosen. The application of the MO-LCAO ansatz leads to the Hartree-Fock-

Roothaan-Hall matrix eigenvalue equation

FC = SCε (2.29)

with the Fock matrix in the AO basis Fkk′ = 〈φk|F̂(ri; R)|φk′〉, the MO coefficient matrix C, the overlap

matrix of the basis function S, and the diagonal MO energy matrix ε. One can not solve the equation

directly, because the the matrix F involves Coulomb and exchange integrals which also depend on the

spatial wave functions. Therefore, again we must adopt a SCF approach, obtaining with each iteration

a new set of coefficients C and repeating until a convergence criterion is reached.

One can get as many MOs as MO basis functions, but only Ne lowest spin orbitals, which are re-

ferred to as the occupied spin orbitals, contribute to the total molecular energy. All other remaining

unoccupied orbitals are called virtual spin orbitals.
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2.2 The Solution of the Time-Independent Electronic Schrödinger equation
[4, 98, 99]

2.2.2 The Configuration Interaction Method
[4, 98, 103]

Hartree-Fock approximation is quantitatively successful in most cases, but still has its limitations.

For example, the restricted Hartree-Fock method cannot describe the dissociation correctly; unre-

stricted Hartree-fock method can give a qualitatively correct description on dissociations but fails to

give an accurate potential energy surface. It ignores the electron correlation, e.g. it considers neither

the instantaneous electrostatic interactions between electrons, nor the quantum mechanical effects on

electron distributions. So that the energy of Hartree-Fock calculation is always larger than the lowest

possible ground state energy in a given basis set. The energy difference between the exact energy and

the Hartree-Fock energy is the correlation energy, which is negative. In order to obtain the correlation

energy to improve the results, many post-Hartree-Fock methods have been developed to approach

the exact energy limit. Of all post-Hartree-Fock method, the Configuration Interaction (CI) method

is conceptually the simplest one, in which the exact wave functions of the electronic ground and ex-

cited states can be expressed as a linear combination of all possible Ne−electron Slater determinants

arising from a complete set of spin orbitals by using the linear variational method. One can use these

MOs to form Configuration State Functions (CSFs), then the molecular wave function can be written

as a linear combination of the CSFs. Each CSF is a linear combination of Slater determinants and an

eigenfunction of the spin angular momentum operator with molecular spatial symmetry. Therefore,

we can write the exact electronic wave function for any state of the system in the form

|ΨCI〉 = D0|Ψ
(0)
HF〉+

(
1
1!

)
∑
ar

Dr
a|Ψ

(0)
HF〉

r
a +

(
1
2!

)2

∑
abrs

Drs
ab|Ψ

(0)
HF〉

rs
ab + · · · (2.30)

where |Ψ(0)
HF〉 is the determinant formed from the Ne lowest energy spin orbitals, and the n−tuply

excited Slater determinants |Ψ(0)
HF〉rs

ab... can be constructed from the Hartree-Fock reference wave func-

tion. The CI coefficients Dr
a, Drs

ab, ... can be optimized by applying the variational principle. A singly

excited determinant Dr
a refers to excite a single electron from occupied spin orbital Ψa to a virtual spin

orbital Ψr; a doubly excited determinant Drs
ab denotes to excite one electron from Ψa to Ψr and one

from Ψb to Ψs by imposing specific spin, likewise for other excited determinants. The energy associ-

ated with the exact wave function of the ground state in the form (2.30) is the exact non-relativistic

ground state energy within the Born-Oppenheimer approximation. In a molecular full CI calculation,

one begins with a set of AO basis functions, does a SCF HF calculation to find a set of SCF occu-

pied and virtual MOs. A full CI calculation includes all CSFs of the appropriate symmetry, which

are used for a given finite basis set. But the number of determinants increases factorially with the

number of electrons and basis functions, such that the computational expense for this exact ansatz is
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only affordable for very small systems. Therefore, for most cases, the expansion in eqn. (2.30) must be

truncated by considering which types of configurations make significant contributions to |ΨCI〉. One

truncation scheme is to take a certain excitation levels into account, such as including the singly (S)

and doubly (D) excited configuration functions (CISD), or only includes the singly excitations (CIS).

The other truncated CI method is Restricted-Active-Space Configuration Interaction (RASCI), where

the the electronic wave functions of ground and excited states are obtained as the CI expansion over

a restricted set of Slater determinants.
[104, 105]

However, an important problem of truncated CI meth-

ods is their size-inconsistency, which means the energy of two infinitely separated particles is not the

sum of the energies of the single particles. Also truncated CI expansions are not size-extensive, which

means that the calculated energies scale not properly with the number of particles, so the methods are

restricted to small molecules.

As an attractive, Multi-Configurational Self Consistent Field (MCSCF) methods have been devel-

oped and widely used in many fields of the molecular sciences. The central idea of MCSCF method is

to obtain the electronic wave function with the lowest possible energy by reducing the required con-

figurations and optimizing all the molecular orbitals
[106]

. MCSCF methods generate accurate wave

functions for chemical problems of strong non-dynamical correlation energy, such as bond breaking

and dissociations, conical intersections, symmetry breaking problems, spectroscopy and so on. MC-

SCF wave functions are often used as reference wave function for subsequent multi-reference config-

uration interaction to include the dynamical correlation.
[107]

Because it can describe the static electron

correlation by including the nearly degenerate electron configurations in the wave function and can

get qualitatively correct reference states of molecules by optimizing orbitals and CI coefficients simul-

taneously. MCSCF method can be considered as the combination of CI and HF, whereas since this

combination increases the complexity of the wave function, one usually applies restrictions to both

sets of parameters, e.g. core orbitals may be kept fixed and only a small subset of orbitals are selected

as an active space, in which all possible configurations are considered.

Complete Active Space SCF method (CASSCF) is the most commonly used MCSCF approach be-

cause the wave function can be completely defined by selecting the active orbitals.
[107]

In CASSCF

calculation, the spin orbitals are divided into inactive orbitals, virtual orbitals and active orbitals.

All possible configurations constructed from this set of active orbitals with correct space and spin

symmetry form a configuration space, where a full configuration interaction (FCI) wave function is

generated, and at the same time the orbitals are optimized via relaxing the orbitals and CI coefficients

among the selected spaces. The wave function of CASSCF can be expanded as a linear combination
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[4, 98, 99]

in terms of all CSF with expansion coefficients

|ΨCASSCF〉 = D0|Ψ
(k)
HF〉+

(
1
1!

)
∑
ar

Dr
a|Ψ

(k)
HF〉

r
a +

(
1
2!

)2

∑
abrs

Drs
ab|Ψ

(k)
HF〉

rs
ab + · · · (2.31)

|Ψ(k)
HF〉 is a Hartree-Fock SCF reference configuration. In order to increase the accuracy of the wave

function, one usually increases the number of configurations or the size of active space, but the num-

ber of CSFs rises factorially with respect of the number of the electrons and orbitals in the active space,

and so does the computational cost. The current limitation of conventional CASSCF implementations

is 16 electrons in 16 orbitals. As we see, CASSCF is constructed from a limited set of electronic configu-

rations, therefore does not cover most instantaneous electron-electron interactions, so called dynamic

electron correlation. There are some cases we have to include dynamical correlation, such as the neg-

ative ions are bound only when a large fraction of the dynamical correlation is taken into account and

the shape of some excited states of molecules depend strongly on dynamic correlation effects.
[108]

One such scheme is Restricted Active Space SCF method (RASSCF), where the active orbitals are

divided into three subsets, each including a different constraint on the number of electrons. An-

other scheme for covering dynamic electron correlation is Multi-Reference Configuration Interaction

(MRCI), where all singly, doubly, ... excited determinants are included. In MRCI calculation, selected

CSFs from CASSCF wave function as reference configurations and then CASSCF calculation is re-

stricted to include only the static correlation effects to determine the orbitals. MCSCF wave functions

are often used as reference states and excited determinants are formed from a set of reference con-

figurations for use in CI calculation. Then CI is reformed to optimize all coefficients of the included

determinants. The reference determinants are singly and doubly excited determinants with respect

to the HF SCF wave function, and include single and double excitations from the reference deter-

minants. Therefore the final MRCI calculation will include some triply and quadruply determinants

excited from HF SCF wave functions. Due to this, MRCI can cover a large fraction of the exact corre-

lation energy with a much smaller number of determinants, such that MRCI can significantly reduce

the size-inconsistency. For balancing the computational cost and accuracy, MRCI is widely used to

explore potential energy surfaces, non-adiabatic effects, conical intersections and so on.
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Chapter 3

Attosecond Control Symmetry Breaking and Restoration

This chapter is divided into three sections. In Section 3.1, I first give a brief introduce molecular sym-

metry to demonstrate what is the symmetry of molecule and how to determine the molecular symme-

try. Section 3.2 introduces the basic theory of ultrafast attosecond laser control symmetry breaking and

restoration in the ground state. Section 3.3 describes the extended theory for breaking the electronic

structure symmetry of atoms and molecules electronic ground states and restoring the symmetry in

the excited state. All derivations in this chapter are preformed within the Born-Oppenheimer approx-

imation framework.

3.1 Molecular Symmetry[103, 109, 110]

The molecular symmetry has an important effect on physical properties and chemical processes.
[111]

It can be used to predict or explain a molecule’s properties, such as dipole moment, polarizability

and its allowed spectroscopic transitions. The molecular symmetry for different electronic states are

classified by the Irreducible Representations (IRREPs), which is the simplest representation of the

characters of different symmetry operations. In this dissertation, symmetry is defined as symmetry

point group, which is a set of all symmetry operations of a molecule. Breaking the symmetry is to

distort the electronic wave function such that the IRREPs of the wave function can not be assigned to

the initial symmetry point group; and restoring the symmetry is to reshape the electronic wave func-

tion such that the IRREPs of the wave function can be reassigned into the original symmetry point

group, irrespective of any changes of IRREPs. In a point group, molecular symmetry is described by

five types of symmetry element: symmetry axis, plane of symmetry, center of symmetry, rotation-

reflection axis, identity. Each symmetry element corresponds to a symmetry operation, which carries

a molecule into an equivalent configuration that physically indistinguishable from the original con-

figuration.

E The identity operation.

19



Chapter 3 Attosecond Control Symmetry Breaking and Restoration

(1) (2) (3)

(4) (5) (6)

Figure 3.1: All symmetry operations associated with symmetry elements for benzene molecule. There are seven
symmetry axis with one C6 axes and six C2 axis, and seven symmetry planes with one molecular plane and
six planes perpendicular to the molecular plane. (1) shows the operations of C6 axis with a red arrow; the
improper operation of S6 is carried out by two steps: first a proper rotation by 360/6 degrees through C6 axis
and then a reflection in a plane that is perpendicular to the C6 axis. (2) and (3) show six symmetry operations
of the symmetry planes C2, which take place by rotating 360/2 degrees through associated six symmetry axis
C2. (4) shows the symmetry operations i and σh. The inversion operation through the center of the symmetry
corresponds to the inversion element i and the reflection operation associated with the horizontal mirror plane
σh that perpendicular to the symmetry axis C6 in (1). (5) shows the three reflection symmetry operations of three
vertical mirror planes σv that includes the symmetry axis C2 in (2). (6) shows the three reflection symmetry
operations of the mirror planes σd that includes the symmetry axis C2 in (3).

Cn An n−fold rotation operation, corresponds to a rotation by 2π/n around a symmetry axis.

σ A reflection operation.

i An inversion operation through a center of symmetry.

Sn An n−fold improper rotation operation about an axis of improper rotation.

There are few rules for such a group:

1) The product of any two elements or the square of each element must be an element in the group.

2) One element in the group much commute with all others and leave them unchanged.

3) The associative law of multiplication much hold.

4) Every element must have a reciprocal, which is also an element of the group.

The characters associated with specific operations determine the IRREPs for a given symmetry. The

symmetry operations and associated symmetry elements diagram of benzene molecule is shown in

Fig. 3.1.
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3.2 Symmetry Breaking and Restoration at the Ground State

3.2 Symmetry Breaking and Restoration at the Ground State

In this Section, I introduce the general theory of ultrafast attosecond laser control electronic struc-

ture symmetry breaking and restoration at the ground state by using circularly polarized pulses and

linearly polarized pulses. There are four Subsections in this Section. Subsection 3.2.1 introduces the

general theory and derivative of laser control symmetry restoration. Subsection 3.2.2 describes how

to design the circularly polarized pulses to control the electronic structure symmetry. Subsection 3.2.3

shows the design of the linearly polarized pulses for the purpose of symmetry restoration in the elec-

tronic ground state. Subsection 3.2.4 denotes a strictly unitary numerical propagator that we used

for the attosecond precise simulation of ultrafast laser control symmetry breaking and restoration.

All work presented here is based on Born-Oppenheimer approximation, in which nuclear motion is

neglected.

3.2.1 General Theory for Symmetry Restoration at Ground State

With the molecule interaction with laser fields, the Time Dependent Schrödinger Equation (TDSE) is

written as

ih̄
∂

∂t
|Ψ(t)〉 = H(t)|Ψ(t)〉 (3.1)

where

H(t) = He − ~d ·~ε(t) (3.2)

with the scalar product ~d ·~ε(t) represents the semiclassical interaction of the electronic dipole moment

operator ~d and the electric field operator~ε(t).

The laser driven electronic quantum dynamics of the system is described by the time-dependent

wave function |Ψ(t)〉, which can be expanded as a linear combination of the eigenstates of the station-

ary Hamiltonian at a chosen level of theory (see Chapter 2).

|Ψ(t)〉 = ∑
k

ck(t)|Ψk〉 (3.3)

where the sum over k includes a finite set of eigenstates |Ψk〉 with different IRREPs, and ck(t) are the

coefficients. The electronic eigenstates |Ψk〉 and their eigenvalues Ek are obtained as the solutions of

the Time-Independent Schrödinger Equation (TISE), which reads

He|Ψk〉 = Ek|Ψk〉. (3.4)
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Chapter 3 Attosecond Control Symmetry Breaking and Restoration

The labels k denote quantum numbers, or sets of quantum numbers, including the IRREPs. Specifi-

cally for a two-level system, we define k = g and k = e denoting the electronic ground state and the

target excited state. For molecules, the electronic Hamiltonian He accounts for the electronic kinetic

energies and intramolecular Coulomb interactions with all particles including electrons and fixed nu-

clei.

The ansatz (3.3) allows to rewrite the TDSE in matrix form

ih̄
∂

∂t
c(t) = H(t)c(t) (3.5)

with vector c(t) denoting the column vector of the coefficients ck(t). Accordingly, the vector c(t) =(
cg(t), ce(t)

)−1, with initial condition c(ti) = (1, 0)−1. The Hamiltonian matrix elements are obtained

by

Hkl(t) = 〈Ψk|H(t)|Ψl〉 = Ekδkl − ~dkl ·~ε(t). (3.6)

Here δkl denotes the Kronecker symbol, and ~dkl = 〈Ψk|~d|Ψl〉 is the k → l transition dipole matrix

element. For symmetry reasons, the diagonal elements vanish, ~dkk = 0. Using the two-state approx-

imation with transition dipole matrix elements in eqn. (3.6) for selective excitation from the ground

state |Ψg〉 to the target state |Ψe〉with different IRREPs, we obtain the specific form of the 2× 2 Hamil-

ton matrix,

H(t) =

 Hgg Hge(t)

Heg(t) Hee

 =

 Eg V(t)

V∗(t) Ee

 (3.7)

with laser-molecule interaction term

V(t) = − 1√
2

d ·
[
εbsb(t) · eiωc(t−tb) + εrsr(t) · eiωc(t−tr)

]
(3.8)

where the d is the transition dipole moment, εb is the electric field amplitude of the first laser pulse

for symmetry breaking, sb(t) is the electric field envelope, ωc is the carrier frequency, tb is the center

of the first laser pulse. εr, sb(t), ωc, tr are the corresponding variables of the second laser pulse for

symmetry restoration. The first term of eqn. (3.8) serves to break the electronic structure symmetry

and the second term to restore the symmetry. The details of design the electric fields will be shown

later on in Subsection 3.2.2 and 3.2.3.

The system evolving from the electronic ground state at initial time ti to a superposition state at
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3.2 Symmetry Breaking and Restoration at the Ground State

central time tc, the coefficients at tc can be obtained by the following formal solution

c(tc = 0) = U(tc, ti)c(ti)

= T̂e−i
∫ 0

ti
dt′H(t′)/h̄c(ti)

(3.9)

where U(tc, ti) is the unitary matrix representation of the time evolution operator, T̂ is the time order-

ing operator. The complex conjugate of eqn. (3.9) is

c∗(0) = T̂ei
∫ 0

ti
dt′H∗(t′)/h̄c(ti)

= T̂ei
∫ 0

ti
dt′H(−t′)/h̄c(ti)

= e−2iηc(0),

(3.10)

thus the coefficients at central time tc = 0 are real-valued with an irrelevant global phase factor

e−2iη . As one of the conditions for successful symmetry restoration, the Hamiltonian is required to be

adjunct upon time reversal

H(t) = H∗(−t) (3.11)

Then we invert eqn.(3.9) and get:

c(ti) = U−1(tc, ti)c(tc = 0)

= T̂e−i
∫ −ti

0 dt′H(t′)/h̄c∗(0)

= e−2iη T̂e−i
∫ t f

0 dt′H(t′)/h̄c(0)

= e−2iηU(t f , tc)c(tc = 0)

= e−2iηc(t f )

(3.12)

This denotes that the wave functions at final time t f and at initial time ti are the same, so that the

associated electronic structure symmetries at ti and t f are also the same, irrespective of an irrelevant

phase factor e−2iη . Therefore, we say that the first laser pulse breaks the electronic structure symmetry

by exciting the system from its electronic ground state to a superposition state, and the second laser

pulse is applied with a proper time delay to stop the charge migration and restore the symmetry via

de-exciting the system from the superposition state back to its electronic ground state.
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Chapter 3 Attosecond Control Symmetry Breaking and Restoration

We can obtain the coefficients at an arbitrary time t by solving the TDSE (3.1) analytically
[112]

cg(t) = cos
{

d
[

εb

∫ t

ti

dt′sb(t′) + εr

∫ t

ti

dt′sr(t′)
]

/
√

2h̄
}

,

ce(t) = i sin
{

d
[

εb

∫ t

ti

dt′sb(t′) + εr

∫ t

ti

dt′sr(t′)
]

/
√

2h̄
}

e−i∆E(t−tb)/h̄

= i sin
{

d
[

εb

∫ t

ti

dt′sb(t′) + εr

∫ t

ti

dt′sr(t′)
]

/
√

2h̄
}

e−i∆E(t−tb)/h̄.

(3.13)

Here we set the electric field is a Gaussian shape function, therefore, by making use of the Gaussian

integration
∫ +∞
−∞ eax2

dx =

√
π

a
and setting α =

√
πdεbτb/h̄, the coefficients at tc can be determined as

cg(tc) = cos
[

1√
2

dεb

∫ tc

ti

dt′sb(t′)/h̄
]
= cos α,

ce(tc) = i sin
[

1√
2

dεb

∫ tc

ti

dt′sb(t′)/h̄
]

e−i∆E(tc−tb)/h̄

= sin α · e−i∆E(tc−tb)/h̄+iπ/2

= sin α · e−iπtd/T+iπ/2

= sin α · ei∆η(tc)

(3.14)

Here the central time tc = (tb + tr)/2, time delay between two laser pulses td = tr − tb, T is the

charge migration period, which depends on the energy gap between the ground and excited state,

thus determined by

T =
h

Ee − Eg
=

h
∆E

(3.15)

For symmetry restoration at the ground state, the second pulse ~εr(t) has to have the same polar-

ization as the first pulse~εb(t) with a phase factor to make a zero net effect on the system. Therefore,

cos [ωc(tb − tr)] = −1, from which we obtain the time delay between the two laser pulses

td = tr − tb = (N + 1/2)T, N = 1, 2, 3... (3.16)

for our case in Paper SR1 N = 8 for benzene molecule. Inserting eqn. (3.16) into eqn. (3.14) yields the

phase difference between two components of the wave function at the central time tc

∆η(tc) = −πtd/T + π/2 = −Nπ modulo 2π


0, if (N is even)

±π, if (N is odd)
(3.17)
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3.2 Symmetry Breaking and Restoration at the Ground State

According to eqn. (3.14), the propagator in matrix form U(tc, ti) in eqn. (3.9) reads

U(tc, ti) = eiη

 cos α − sin α · e−i∆η(tc)

sin α · ei∆η(tc) cos α

 (3.18)

ηe(tc) = ∆η(t′ = 0) = {0,±π} at tc = 0, thus

U(tc, ti) = eiη

 cos α ∓ sin α

± sin α cos α

 (3.19)

When the time delay td extends to t′d = td + t′, the corresponding unitary matrix U(t′, tc) for the

field-free propagation from tc to t′ has elements,

Ukl(t′, tc) = e−iEkt′/h̄δkl (3.20)

The diagonality implies that U(t′, tc) has the same block-diagonal structure as U(tc, ti). The total time

evolution operator for propagation from ti via tc = 0 and t′ to t′f is

U(t′f , ti) = U(t′f , t′)U(t′, tc)U(tc, ti)

= U(t f , tc)U(t′, tc)U(tc, ti)
(3.21)

In the second part of eqn. (3.21), we use the fact that time evolution operator depends only on time

intervals but not on initial and final times.

From above we get the following relation

U(t f , tc) = U−1(tc, ti) = U†(tc, ti) (3.22)

Inserting eqn. (3.22) into (3.21) yields the final coefficients at t′f ,

cg(t′f )

ce(t′f )

 = U(t′f , t′)U(t′, tc)U(tc, ti)

1

0

 =

 cos2 α + sin2 α · e−i∆Et/h̄

− cos α sin α + cos α sin α · e−i∆Et/h̄

 . (3.23)

The final population of the excited state is the square of the associated coefficients, and it take the

following analytical form

Pe(t′f ) = 4Pg(tc)Pe(tc) ·
[

1
2
− 1

2
cos

(
2πt′

T

)]
. (3.24)
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It varies periodically with amplitude 2Pg(tc)Pe(tc) and period T. For different time delays t′d = td +

kT/8, k = 1, 2, ..., 7, the charge migrates between the two degenerate superposition states (cg|Ψg〉+

ceΨe〉) and (cg|Ψg〉 − ceΨe〉) with period T.

Within two-state approximation, the laser pulses induce exclusively transitions between the ground

state |Ψg〉 and the selective excited target state |Ψe〉 and excludes transition to the other degener-

ate excited state |Ψe′〉. Moreover, the durations of the laser pulses imply sufficiently narrow widths

Γ = 0.5h̄/τ that exclude dipole-allowed one-photon transitions to any other excited states. There-

fore, we assume that multi-photon processes to other excited states are negligible and a two-state

approximation can be safely used.

To restore the electronic structure symmetry for a three-level system, the pulse~εb(t) for symmetry

breaking contains two sub-pulses, which is written as

~εb(t) =
2

∑
j=1

εbjsbj(t) ·
{

cos [ωci(t− tb)]~ex + sin [ωci(t− tb)]~ey
}

. (3.25)

with sbj(t) = e−(t−tb)
2/2τ2

bj . τbi and ωci are the pulse durations and carrier frequencies of two sub-

pulses, respectively. The design of two laser pulses for symmetry breaking and restoration will be

explained in Subsection 3.2.2. The resulting Hamilton matrix then takes the form


Hgg Hgm(t) Hge(t)

Hmg(t) Hmm Hme(t)

Heg(t) Hem(t) Hee

 =


Eg Vgm(t) 0

V∗gm(t) Em Vme(t)

0 V∗me(t) Ee

 (3.26)

where

Vkl(t) = −
1√
2

dkl

2

∑
j=1

εj

[
sbj(t) · eiωcj(t−tb) + srj(t) · eiωcj(t−tr)

]
, kl = {gm, me} (3.27)

The Hamilton matrix (3.26) satisfies the Hamiltonian condition (3.11) for successful symmetry restora-

tion.

The first pulse~εb(t) partially excites the initial electronic ground state |Ψg〉 via an intermediate state

|Ψm〉 to an excited state |Ψe〉 that has a different symmetry as the electronic ground state to break the

electronic structure symmetry. The second pulse ~εr(t) then de-excites the system from the excited

state via the intermediate state back to the electronic ground state to restore the electronic structure

symmetry. Paper SR1 shows the details of the symmetry breaking and restoration for two models,

benzene molecule and 87Rb atom.
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3.2.2 Design of Circularly Polarized Pulse

The initial electronic ground state |Ψg〉 and the lowest pair of degenerate excited states are |Ψx〉 and

|Ψy〉. Since |Ψx〉 and |Ψy〉 is optically accessible by linearly x− and y−polarized laser pulse respec-

tively, we can in principle reach the target excited state |Ψe〉

|Ψe+〉 =
1√
2

(
|Ψx〉+ i|Ψy〉

)
(3.28)

by excitation using a right circularly polarized pulse. Alternatively, the state

|Ψe−〉 =
1√
2

(
|Ψx〉 − i|Ψy〉

)
, (3.29)

can be excited via a left circularly polarized pulse. For example, we choose the target excited state

|Ψe〉 = |Ψe+〉. We set ~εb(t) for symmetry breaking as a right circularly polarized laser pulse, which

is centered at tb < 0 with amplitude εb, Gaussian shape sb(t), duration τb and carrier frequency ωc.

The two laser pulses for symmetry breaking ~εb(t) and restoration ~εr(t) centered at tr = −tb < 0 are

designed as follows

~εb(t) =
(

εbx(t), εby(t), 0
)
= εbsb(t) · (cos [ωc(t− tb)] , sin [ωc(t− tb)] , 0) ,

~εr(t) =
(
εrx(t), εry(t), 0

)
= εrsr(t) · (cos [ωc(t− tr)] , sin [ωc(t− tr)] , 0) .

(3.30)

with electric field amplitude εr = εb. At time t = tb, ~εb(t) has the maximum field strength along~ex.

The resonant carrier frequency ωc is related to the photon energy h̄ωc, and the wavelength λ = cT =

2πc/ωc.

sb(t) = e−(t−tb)
2/2τ2

b ,

sr(t) = e−(t−tr)2/2τ2
r .

(3.31)

with τr = τb = τ. Thus the total electric field is the sum of two pulses

~ε(t) = ~εb(t) +~εr(t). (3.32)

Note that the conditions for successful electronic structure symmetry breaking and restoration con-

trolled by attosecond laser pulses require the two attosecond laser pulses must be well separated from

each other.
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3.2.3 Design of Linearly Polarized Pulse

However, to restore the electronic structure symmetry of atoms and molecules, we can not only use

circularly polarized pulse, but also linearly polarized pulse. One can excite the electronic ground state

from |Ψg〉 to the excited state |Ψx〉 and |Ψy〉 by linearly x− and y−polarized laser pulses, respectively.

The first linearly y− polarized pulse centered at tb < 0 is given by

~εb(t) = εbsb(t) · sin [ωb(t) · (t− tb) + ηb]~ey. (3.33)

The laser carrier frequency may depend on time

ωb(t) = ωc + ω′ · (tb + t) (3.34)

where ωc is the resonant carrier frequency, and the parameter ω′ allows applications to various sce-

narios with linear up-chirp (ω′ > 0), zero chirp (ω′ = 0), or down-chirp (ω′ < 0). The second laser

pulse~εr(t) for symmetry restoration centered at tr = −tb > 0 is designed as time− reversed copy of

the pulse that breaks symmetry,

~εr(tr − t) = ~εb(t + tb), (3.35)

and

~εr(t) = −εbsr(t) · sin [ωr(t) · (t− tr)]~ey, (3.36)

where

ωr(t) = ωc −ω′ · (t− tr), (3.37)

The total electric field of the two laser pulses~ε(t) is, therefore, time-reversible,

~ε(t) = ~ε(−t) (3.38)

The matrix representation of the Hamiltonian H(t) in eqn. (3.7) is, therefore, also time reversible,

H(t) = H(−t). (3.39)

For linearly polarized laser pulses, the matrix representations are real-valued, thus

H(t) = H∗(−t) (3.40)
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which satisfies the Hamiltonian condition in eqn. (3.11) for successful symmetry breaking and restora-

tion coherent controlled by ultrafast attosecond laser pulse.

According to eqn. (3.18), the time delay td has to be properly chosen such that the coefficients at

tc = 0 is real-valued. Therefore, the phase difference at tc is

∆η(t′) = η′e − η′g − ∆E · t′/h̄, modulo 2π =


0 if td = NT(N is even)

±π if td = NT(N is odd)
. (3.41)

For various time delays t′d = td + kT/8, k = 1, 2, ..., 7, instead of restoring the electronic structure sym-

metry at the ground state, we observe the charge migration between two degenerate superposition

states (cg|Ψg〉+ ce|Ψy〉) and (cg|Ψg〉 − ce|Ψy〉) with period T. The final population of the excited state

also varies periodically as a function of the chosen time delay, as implied by eqn. (3.24).

The first linearly y-polarized pulse or chirp pulse ~εb(t) breaks the electronic structure symmetry

by exciting a system from the electronic ground state |Ψg〉 to a superposition state (cg|Ψg〉+ ce|Ψy〉),

which has a different symmetry from the ground state. The second pulse ~εr(t) stops the ultrafast

charge migration at a proper time tr and successfully restores the electronic structure symmetry by de-

exciting the superposition state back to the electronic ground state. Paper SR2 shows the application

of symmetry breaking and restoration in benzene molecule controlled by linearly polarized pulse.

3.2.4 Numerical Propagator

For solving the TDSE, there exist various ways,
[113]

which range from direct numerical integration

using e.g. Runge-Kutta
[114]

to the Split-operator method
[115]

and Krylov-Subspace techniques.
[116, 117]

For

the purpose of symmetry restoration, it is important that the propagator of the wave packet is strictly

unitary (see eqns. (3.10), (3.12)). Further, it requires an accuracy on the attosecond timescale. But all

existing propagators do not satisfy both these two conditions. Hence, we have developed a strictly

unitary spectral propagator that meets the tight accuracy requirements for symmetry restoration.

The numerical propagation from the initial coefficients c(ti) to the final coefficients c(t f ) is carried

out on an evenly spaced temporal grid ti, ti + ∆t, ..., tk, tk + ∆t, ..., t f , with attosecond time step ∆t,
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using the approximations

c(t f ) ≈∏
k

T̂e−i
∫ tk+∆t

tk
dt′H(t′)/h̄c(ti)

≈∏
k

T̂e−iH(tk+∆t/2)∆t/h̄c(ti)

≈∏
k

T̂V†(tk + ∆t/2)e−iE(tk+∆t/2)∆t/h̄V(tk + ∆t/2)c(ti).

(3.42)

Here H(tk + ∆t/2) is the Hamiltonian matrix at the center of the time interval [tk, tk + ∆t]. It is diag-

onalized either analytically for a two-level system or numerically using the routine zheev of LAPACK

otherwise. The resulting eigenenergies at time tk + ∆t/2 are stored in a diagonal matrix E(tk + ∆t/2);

the matrix V(tk + ∆t/2) contains the eigenvectors. Hamiltonian condition in eqn. (3.11) and time de-

lay conditions in eqn. (3.17), (3.41) and (3.49) are two sufficient conditions for successful symmetry

breaking and restoration coherent controlled by ultrafast attosecond laser pulse. To make the sym-

metry restoration numerically successful, one has to adjust time delay td with a precision of a few

attoseconds and it should be short enough to avoid the decoherence effect due to nuclear motion.

3.3 Extended Theory for Symmetry Restoration at the Excited State

The final population of excited state that is shown in eqn. (3.24) demonstrates that we can also restore

the electronic structure symmetry at the excited state once the symmetry of |Ψe〉 is same as the ground

state. Namely, after the first laser pulse breaks the symmetry of the initial electronic ground state by

exciting it to the superposition state, we find that the second laser pulse can also restore the symmetry

by exciting the superposition state further to the pure excited state, if the electronic structure symme-

try of excited state belongs to the same symmetry point group as the ground state. In this context,

we interpret symmetry restoration as redistributing the electronic structure such that the electronic

structure symmetry can be reassigned into the initial symmetry point group by creating a pure IRREP

in a given group. For complete population transfer, the pulse has to be a resonant π-pulse.
[4, 112]

This

suggests the concept that

first laser pulse + second laser pulse = resonant π−pulse. (3.43)

This condition holds irrespectively of the polarizations of the laser pulses, namely they can be linearly

x- or y-polarized, or circularly right (+) or left (-) polarized. The resonant condition means that the

photon energy h̄ω matches the energy gap between the ground and excited states. For this purpose,
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the second laser pulse~εr(t) in eqn. (3.30) has to be designed such that its electric field at tr is along the

same polarization as tb. For the case of a circularly polarized pulse in an ideal two-level system, we

get the following conditions

tr = −tb = NT/2, N = 1, 2, 3...

td = tr − tb = NT, N = 1, 2, 3....
(3.44)

The two pulses for symmetry breaking and restoration in the excited state are then designed as

~εb(t) = εbsb(t) · (cos [ωc(t− tb)] , sin [ωc(t− tb)] , 0) ,

~εr(t) = εrsr(t) · (cos [ωc(t− tr)] , sin [ωc(t− tr)] , 0)

= εrsr(t) · (cos [ωc(t− tb)] , sin [ωc(t− tb)] , 0) .

(3.45)

The total electric field again takes the form

~ε(t) = ~εb(t) + ~εr(t)

= [εbsb(t) + εrsr(t)] · (cos [ωc(t− tb)] , sin [ωc(t− tb)] , 0) .
(3.46)

For a complete population transferring from ground state |Ψg〉 to an excited state |Ψe〉 = |Ψe+〉 by

two laser pulses, which means that

d
[

εb

∫ t f

ti

dt′sb(t′) + εr

∫ t f

ti

dt′sr(t′)
]

/
√

2h̄

=
√

πd(εbτb + εrτr)/h̄

=
√

πdεπτπ/h̄

= π/2,

(3.47)

It implies that the product επτπ of the field amplitude times the parameter for the duration of the π

pulse yields the same results as the combination of two laser pulses. The concept in eqn. (3.43) can be

rewritten as

εbτb + εrτr = επτπ . (3.48)

If the first resonant right (+) circularly polarized laser pulse with field amplitude εb, with Gaussian

shape function sb(t), duration τb for breaking the electronic structure symmetry of the ground state,

then one can employ the second resonant right (+) circularly polarized laser pulse with field amplitude

εr = επ − εb with Gaussian shape function sr(t) and the same duration τr = τb to restore symmetry

at the electronic excited state. According to eqn. (3.44), to restore the symmetry in the excited state
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successfully, the phase difference at tc should be

ηg(tc) = 0,

∆ηe(tc) = ηe(tc) modulo 2π =


−π/2 if N = 1, 3, 5, ...(odd)

+π/2 if N = 2, 4, 6, ...(even)

(3.49)

It demonstrates that the success again depends on the time delay between the laser pulses, which im-

plies that the time delay td must be equal to an integer number N of the period T of charge migration.

As a convention, we set ηg(tc) = 0. From eqn. (3.14), the coefficients at tc can be written as

cg(tc)

ce(tc)

 =

 cos α

±i sin α

 . (3.50)

According to eqn. (3.18), we can obtain the corresponding unitary matrix U(tc, ti), for propagating the

initial coefficients c(ti) to c(tc)

U(tc, ti) =

 cos α ±i sin α

±i sin α cos α

 . (3.51)

The first column of the matrix in eqn. (3.51) is imposed by the coefficients in eqn. (3.50), the second

column is due to the unitarity of U(tc, ti). Since here we want to restore the electronic structure

symmetry at the excited state at final time t f , namely |ce(t f )|2 = 1. Therefore, the unitary matrix

for propagating the system from the initial time ti to the final time t f is

U(t f , ti) = eiηe f

0 1

1 0

 (3.52)

with irrelevant phase factor eiηe f . Moreover, the evolution operator U(t f , ti) can be divided into two

parts for symmetry breaking and restoration

U(t f , ti) = U(t f , tc)U(tc, ti) (3.53)

Inserting eqn. (3.51) and (3.52) into eqn. (3.53) yields the evolution operator for propagating the system
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from tc to t f ,

U(t f , tc) = eiηe f

±i sin α cos α

cos α ±i sin α

 . (3.54)

For various time delays t′d = td + kT/8, k = 1, 2, ..., 7, the final coefficients at time t′f = t f + t′ are then

obtained as cg(t′f )

ce(t′f )

 = U(t′f , t′)U(t′, tc)U(tc, ti)

1

0

 =

− cos α sin α(1− eiη′)

cos2 α + sin2 α · eiη′

 . (3.55)

As a function of the time delays, the final population of the excited state

Pe(t′f ) = |ce(t′f )|
2 =

(
cos2 α + sin2 α · eiη′

)
·
(

cos2 α + sin2 α · e−iη′
)

= 1− 2 cos2 α sin2 α(1− cos η′)

= 1− 2Pg(tc)Pe(tc)

[
1− cos(

2πt′

T
)

]
.

(3.56)

various periodically with amplitude 2Pg(tc)Pe(tc) and period T, with comparison with eqn. (3.24).

The first laser pulse breaks the electronic structure symmetry by exciting the electronic ground state

|Ψg〉 to a superposition state of the ground and an excited state |Ψe〉. The second laser pulse stops the

charge migration and restore the electronic structure symmetry via excitation of the superposition

state and completely to a pure excited state. For successful symmetry restoration, the time delay

between the two peaks of two laser pulses has to be chosen as the integer number of the charge

migration period in few attosecond precision.
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Chapter 4

Publications

The following chapter demonstrates the academic publications, which are the main of the dissertation.

The publications consist of published articles and book chapters. They can be classified into two

themas:

• SR Ultrafast laser control molecular and atomic symmetry breaking and restoration

• CM Charge migration process

35





Symmetry Restoration

Paper SR1

”Attosecond Control of Restoration of Electronic Structure Symmetry”

C. Liu, J. Manz, K. Ohmori, C. Sommer, N. Takei, J. C. Tremblay, and Y. Zhang

Phys. Rev. Lett. 121, 173201 (2018)

DOI: 10.1103/PhysRevLett.121.173201

URL: http://dx.doi.org/10.1103/PhysRevLett.121.173201
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Figure 4.1: Graphical Abstract. Reprint with permission from Liu et al. SR1 (©2018 American Physical Society)

Author contributions

The project was suggested by Jörn Manz and he also did most of the conceptual theory. Jean Christophe

Tremblay generated the propagator. Kenji Ohmori, Nobuyuki Takei, Yichi Zhang and Christian Som-

mer did the Ramsey interferometry experiment for 87Rb atom. I did the numerical calculations for

benzene molecule and 87Rb atom, with energy levels and transition dipole moments of 87Rb atom

from Nobuyuki Takei. I prepared all the figures, with the snapshots of benzene molecule from Jean

Christophe Tremblay and the snapshots of 87Rb atom from Nobuyuki Takei, the graphical method

Concerning the snapshots for the 87Rb atom was developed by Christian Sommer and Nobuyuki

Takei. All coauthors discussed the final results. The zero draft manuscript for theoretical part was

written by Jörn Manz and our experimental partners wrote the experimental part for 87Rb atom. All

coauthors contributed to the final version of this manuscript.
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Paper SR2

”From Molecular Symmetry Breaking to Symmetry Restoration by Attosecond Quantum Control, In:

Yamanouchi K., Martin P., Sentis M., Ruxin L., Normand D. (eds) Progress in Ultrafast Intense Laser

Science XIV”

C. Liu, J. Manz, and J. C. Tremblay

Springer Series in Chemical Physics, Springer, Cham vol.118, 117-141 (2018)

DOI: 10.1007/978-3-030-0376-4

URL: http://dx.doi.org/10.1007/978-3-030-0376-4
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Figure 4.2: Graphical Abstract. Reprint with permission from Liu et al. (©Springer Nature Switzerland AG 2018)

Author contributions

The project was suggested by Jörn Manz and he also did most of the conceptual theory. Jean Christophe

Tremblay plotted the snapshots. I did the numerical calculations based on the numerical propagator

in Paper SR1 and prepared all the figures. All coauthors discussed the final results. The manuscript

was predominantly written by Jörn Manz. All coauthors contributed to the final version of this

manuscript. In addition, I presented the results at the conference ”11th Triennial Congress of the

World Association of Theoretical and Computational Chemists” in Munich, and won one of the nine

”The Best Poster” from more than 900 were posters presented at the conference.
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Symmetry Restoration

Paper SR3

”From Symmetry Breaking via Charge Migration to Symmetry Restoration in Electronic Ground and

Excited States: Quantum Control on the Attosecond Time Scale”

C. Liu, J. Manz, and J. C. Tremblay

Appl. Sci. 9, 953 (2019)

DOI: 10.3390/app9050953

URL: http://dx.doi.org/10.3390/app9050953

Figure 4.3: Graphical Abstract. Reprint with permission from Liu et al. (©2019 by the authors. Licensee MDPI,
Basel, Switzerland.)

Author contributions

Jean Christophe Tremblay and Jörn Manz proposed the new strategy of quantum control of electronic

structure symmetry breaking and restoration. Jörn Manz discovered the concept, derived most part

of the theory and wrote the zero draft manuscript. I obtained the analytical expression of the pop-

ulation of excited state, carried out all quantum dynamics simulations and prepared all the figures

(the snapshots of the one-electron density were plotted by Jean Christophe Tremblay). All coauthors

discussed the final results. All coauthors contributed to the final version of this manuscript.
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Figure 4.4: Graphical Abstract. Reprint with permission from Bacic et al. (©The Royal Society of Chemistry 2018)

Paper SR4

”Molecules in confinement in clusters, quantum solvents and matrices: general discussion”

Z. Bacic et al

Faraday Discuss. 212, 569-601 (2018)

DOI: 10.1039/C8FD90053A

URL: http://dx.doi.org/10.1039/C8FD90053A

Author contributions

The project was suggested by Jörn Manz and he also did most of the conceptual theory. Jean Christophe

Tremblay plotted the snapshots. I did the numerical simulations based on the numerical propagator

in Paper SR1 and prepared all the figures. I presented the results in the conference - Faraday Disscu-

sion. All coauthors discussed the final results. The manuscript was predominantly written by Jörn

Manz. All coauthors contributed to the final version of this manuscript.
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Charge Migration

Paper CM1

”Multidirectional Angular Electronic Flux during Adiabatic Attosecond Charge Migration in Excited

Benzene”

G. Hermann, C. Liu, J. Manz, B. Paulus, J. F. Pérez-Torres, V. Pohl, and J. C. Tremblay

J. Phys. Chem. A 120, 5360-5369 (2016)

DOI: 10.1021/acs.jpca.6b01948

URL: http://dx.doi.org/10.1021/acs.jpca.6b01948

Figure 4.5: Graphical Abstract. Reprint with permission from Hermann et al. (©2016 American Chemical Society)

Author contributions

The research framework of this work was outlined by Jörn Manz and Jhon Fredy Pérez-Torres. Jhon

Fredy Pérez-Torres did preliminary CI calculations. I prepared preliminary results and prepared

the preliminary figures for the novel methodology. Vincent Pohl performed the CASSCF calcula-

tions, which are presented in the final version of the paper, with input from Beate Paulus and Jean

Christophe Tremblay. The final result used in the paper was done by Gunter Hermann and Vincent

Pohl. They also prepared the figures for the publication. All authors were involved in the concluding

discussion of the results and contributed to the final version of the manuscript, which was mainly

written by Jörn Manz.
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Paper CM2

”Attosecond Angular Flux of Partial Charges on the Carbon Atoms of Benzene in Non-Aromatic Ex-

cited State”

G. Hermann, C. Liu, J. Manz, B. Paulus, V. Pohl, and J. C. Tremblay

Chem. Phys. Lett. 683, 553-558 (2017)

DOI: 10.1016/j.cplett.2017.01.030

URL: http://dx.doi.org/10.1016/j.cplett.2017.01.030

Figure 4.6: Graphical Abstract. Reprint with permission from Hermann et al. (©2017 Elsevier B.V. All rights
reserved.)

Author contributions

The idea behind this work was conceived by Jörn Manz. Vincent Pohl and Gunter Hermann per-

formed the CASSCF calculations with input from Beate Paulus and Jean Christophe Tremblay. I ap-

plied the methodology of Paper CM1 and prepared results for the comparison to the new improved

methodology. Based on this program Vincent Pohl and Gunter Hermann implemented the new im-

proved methodology, and prepared the final results. The first version of the manuscript was written

by Jörn Manz. All coauthors contributed to the final version of this manuscript.
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Chapter 5

Summary

This chapter gives a brief summary of the key results of the academic publications contained in the

context, which is divided into two topics:

(i) attosecond coherent control of electronic structure Symmetry breaking and Restoration (SR) in

atoms and molecules;

(ii) laser control of attosecond ultrafast Charge Migration (CM).

As will be illustrated below, the primary topic is intimately connected to charge migration. This

dissertation aims at developing a general theory of coherent control electronic structure symme-

try breaking and restoration by ultrashort laser pulses, with applications in two models: benzene

molecule (with highly symmetric electronic ground state) and 87Rb Rydberg atom (with highly sym-

metric isotropic ground state). There are four strategies of attosecond control symmetry breaking

and restoration of electronic structure in atoms and molecules developed in this dissertation. Paper

SR1 refers Strategy 1, which shows the theory of attosecond control electronic structure symmetry

breaking and restoration in electronic ground state by means of two identical circularly polarized

pulses. Paper SR2 refers Strategy 2, which represents that two time-reversed copy of linearly polar-

ized pulses drive symmetry breaking and restoration in electronic ground state. Paper SR3 refers

Strategy 3, which demonstrates that two general pulses can be used for attosecond control of sym-

metry breaking in electronic ground state but symmetry restoration in excited state. Paper SR4 refers

Strategy 4, which implies the possibility of restoring the electronic structure symmetry twice during

one charge migration period. In the following context, I will go through these four strategies. For con-

venience, symmetry breaking and restoration in the following context all refer to symmetry breaking

and restoration of the electronic structure.

Ulusoy and Nest
[49]

demonstrated that well-designed laser pulses can control the aromaticity of ori-

ented benzene molecule, for which they selectively excited two non-aromatic electronic superposition

states of the benzene molecule by applying optimal control theory. This work motivated us to control

the electronic structure symmetry of the benzene molecule via laser excitation. We assume that the
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atomic centers of the molecule are placed in the laboratory xy−plane, with the nuclei frozen at their

equilibrium geometry such that two of the carbon nuclei located on the y−axis. The x−axis is defined

as the direction of the field with maximum amplitude. The electronic ground state has IRREP = A1g

in D6h symmetry point group.
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Figure 5.1: Attosecond control symmetry breaking and restoration in benzene molecule by y-circularly polarized
pulses. (a) Envelope and x-component of two laser pulses centered at tb and tr for symmetry breaking and
restoration, respectively. (b) Evolution of final population of the excited state for various time delays. (c) Final
population of the excited state versus time delay. (d) Phase difference at temporal central time between wave
functions of the ground state and excited state. The figure is adapted from Paper SR1.

Our target excited state is a complex-valued superposition state of two real-valued degenerate ex-

cited states, which are optically accessible by right or left-circularly polarized pulses. The degenerate

excited states have IRREP = E1u in D6h symmetry point group. For achieving attosecond control

symmetry restoration, we design two identical ultrashort few-cycle transform limited circularly po-

larized pulses in Paper SR1, e.g. two pulses have same polarizations, Gaussian envelops, amplitudes,

carrier frequencies and durations. The pulse durations of two laser pulses for symmetry breaking and

restoration have to be short enough to avoid the effect of nuclear motion, and they have to be sepa-

rated well such that around the central time tc (see Fig. 5.1a) is a quasi-field-free environment. The

mean durations of the pulses are ∆τ = 0.403 f s and the error of the excitation energy is ∆E = 0.817 eV,

therefore, the target state is the only one that can be excited from the electronic ground state, according

to one-photon transition. Thus we assume that multiphoton processes are negligible and two-state

approximation is safely applied. In this representation the matrix of the system Hamiltonian with
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semiclassical coupling with the laser field is adjunct upon time reversal.

We design the first right-circularly polarized laser pulse for symmetry breaking centered at tb < 0

(see Fig. 5.1a), which excites 0.37% population of the electronic ground state to an excited state, and a

superposition is created. The IRREP of the superposition state can no longer be assigned to the origi-

nal symmetry point group D6h, but belongs to Cs symmetry point group — a subgroup of D6h, which

means the symmetry breaking from D6h to Cs. Since the superposition state is not an eigenstate of the

system, it documents ultrafast attosecond circular charge migration between two degenerate super-

position states with period T = 504as for the benzene molecule. The period depends on the energy

difference between the electronic ground state and the target excited state. The larger energy gap is,

the faster charge migrates. Without external interactions, the ultrafast attosecond charge migration

will last for very long time between two degenerate superposition states.

Note that in the case of the benzene molecule, this period will be affected by the choice of electronic

structure method and basis set. For 87Rb atom, the energy scale (and the time difference) was deter-

mined experimentally. The second identical right-circularly polarized laser pulse is designed to be

centered at tr = −tb > 0 (see Fig. 5.1a) to stop the ultrafast attosecond charge migration and restore

the symmetry in the electronic ground state by de-exciting the superposition state back to the initial

state with a proper time delay td. Here, time delay td = tr − tb is defined to be the time difference

between the peaks of two laser pulses. A semiclassical formula is derived to describe the motion of

the electron charge and analyze the time-delayed two-photon process. The population of the excited

state can go back to zero depending on the time delay, which can be rather long.

The success of symmetry restoration depends on the time delay in few attoseconds precision such

that the phase difference at central time tc is 0 or ±π. For few attoseconds precision, we are required

to develop strict unitary numerical propagator, which is explained in Section 3.2.4. The mechanism of

laser control symmetry breaking and restoration is illustrated in Fig. 5.1. Only when the time delay

is chosen as td =

(
N +

1
2

)
T, (N is integer number) such that the wave function is real-valued at

the central time with phase difference is 0 or ±π, one can switch off the ultrafast attosecond charge

migration and successfully achieve the symmetry restoration in electronic ground state for possibility

close to 100%. All other time delays document the ultrafast attosecond charge migration between

two degenerate superposition states, and correspond to different final populations of the excited state

as shown in Fig. 5.1b. The final population of the excited state varies periodically with amplitude

2Pg(tc)Pe(tc) and period T. Numerical results are plotted for comparison with the analytical results,

which denotes a very good agreement as shown in Fig. 5.1c. In the quasi-field-free environment

near the central time, the superposition state evolves field freely and the related populations of the

159



Chapter 5 Summary

electronic ground state and target excited state are constant. The phase difference at the central time

decreases linearly (modulo 2π) with time, which is shown in Fig. 5.1d.

another application of the same theory of attosecond control symmetry breaking and restoration is

in 87Rb atom, which is motivated by various fundamental effects that have been discovered for the

system. For this purpose, a two-photon excitation and three-level system is applied. Two identical

right-circularly polarized pulses are required for the processes of symmetry breaking and symmetry

restoration, and each pulse contains two sub-pulses. The first laser pulse non-resonantly excites 0.37%

population of the 87Rb atom from its initial state 52S1/2,F=2,mF=2 with isotropic electronic structure via

an intermediate state 52P3/2,F=3,mF=3 to an excited state 422D5/2,F=4,mF=4 and a superposition state

with anisotropic structure is recreated. It reveals symmetry breaking, which is monitored by mea-

suring the nonzero population of the excited state. The superposition state documents the ultrafast

attosecond charge migration with period T = 992 as for 87Rb atom. The second laser pulse achieves

the reverse process of de-exciting the superposition state via the intermediate state back to the initial

ground state, which implies the symmetry restoration. The first pulse induces off-resonant transi-

tion from the ground state to intermediate state to avoid the population localization. The theoretical

results are confirmed for 87Rb atom by a high contrast Ramsey interferometry measurement of the

dependence of the population of the excited state on time delay. The details of Ramsey interferome-

try experiment are written in supplementary materials of Paper SR1. For this strategy of attosecond

control symmetry breaking and restoration in the electronic ground state, traditional femtosecond

pump-probe pulses are not suited for such interferometry experiments. Note that in this excitation

process, we shall use a weak laser, since the very high intensity may cause secondary effect such as

multiphoton excitations or ionization on 87Rb atom.

For visualizing the process of symmetry breaking and restoration, we analyze the N-electron dy-

namics generated by the electronic continuity equation. The final population of the excited state and

the phase difference for 87Rb atom follow the same rules as for the benzene molecule. In these two

applications, the excitation is only 0.37%, but the phenomenon of symmetry breaking and restoration

is clearly visualized by the snapshots of one-electron density proof-of-principle. The theoretical pre-

diction of symmetry restoration for 87Rb atom is confirmed by a high contrast Ramsey interferometry

experiment by measuring the time-delay dependence of the final population of the excited Rydberg

state with ±3 as precision. However, the ±3 as time resolution in 50 ps time domain still induces an

error between experimental observation and theoretical results. In this experiment, the experimental

contrast of the Ramsey interferogram is about 0.94, where the contrast is defined to be the ratio of the

amplitude of the fitted sinusoidal function to its mean value. The high contrast denotes that almost all
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the population in the excited state is de-excited back to the symmetric ground state for specific time

delays, for which the phase difference is 0 or ±π. This means that a very small inaccuracy in respect-

ing of the conditions for symmetry restoration induce a large experimental error. The experiment can

observe the period and measure the excited state population and keep very high contrast 0.94 with

±3 as time resolution even when two pulses are separated by 50 ps.

In Paper SR1, we originally establish a basic theory of attosecond control symmetry breaking and

restoration of electronic structure in atoms and molecules. For this purpose, we derive two sufficient

conditions for successful symmetry restoration numerically:

(i) the Hamiltonian must be adjunct upon time revesal;

(ii) the phase difference at the central time is 0 or ±π.

This work for the first time demonstrates that the laser pulse can not only break the symmetry but can

also restore the symmetry theoretically and experimentally. Paper SR1 gives an analytical formula

for the time evolution of the final population of the excited state and the dependence of the phase

difference on the time delay. This strategy also serves as a switch of the ultrafast attosecond charge

migration by manipulating the time delay between two pulses. The experiment reveals that control

the phase factor with attosecond precision is almost sufficient to reach the theoretical condition for

symmetry restoration.

Based on the theory and conditions of successful symmetry breaking and restoration for the ben-

zene molecule and 87Rb atom that we have derived in Paper SR1, Strategy 2 in Paper SR2 shows that

linearly and chirped pulses are also be used for symmetry breaking and restoration in the ground

state. The target excited state is excited eigenstate which can be accessed via linearly x-polarized

or y-polarized pulse. Two linearly y-polarized pulses are designed as time-reversed copy of each

other. The first linearly y-polarized pulse breaks the symmetry by resonantly exciting 50% popula-

tion of the ground state (with IRREP = A1g in D6h symmetry point group) to an excited state (with

IRREP = E1u in D6h symmetry point group) and a superposition state (with C2v symmetry) is pre-

pared, which initiates attosecond ultrafast charge migration with period T = 504 as. We can easily

recognizes its C2v symmetry from the snapshots of one-electron density in Fig. 5.2 (top-left), with

part of electronic density localized on the ”south pole”. The second time-reversed copy of linearly

y-polarized pulse is applied to switch off the ultrafast attosecond charge migration, and restore the

symmetry by de-exciting the superposition state back to its initial ground state with a proper time

delay such that the phase difference is 0 or±π at the central time. This implies that the wave function

at the central time is real-valued, which means zero electronic fluxes, e.g. no charge migration occurs

at the specific time. Namely, one can restore the symmetry in electronic ground state only from the
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target superposition state when the electron charges are localized on ”south pole”. The red arrow in

Fig. 5.2 refers the success case of coherent control symmetry breaking and restoration in the ground

state. The black round arrows refer to attosecond charge migration process between two degenerate

superposition states with charge migration period T = 504 as. The other seven color arrows refer to

failed cases of coherent control symmetry restoration in ground state. For various time delays, the

final population of the excited state varies periodically with amplitude 2Pg(tc)Pe(tc) and period T,

and the phase difference at the central time (modulo 2π) decreases linearly with time.

For the purpose of exciting 50% of the population of the ground state, these two laser pulses must

be designed as
π

2
-laser pulses. The difference between SR2 and SR1 is that two pulses used here in

SR2 are time-reversed copy of linearly polarized pulses, instead of two identical circularly polarized

pulses in Paper SR1. In addition, the laser pulse is no longer required to take a Gaussian shape and

can be more intensive than the pulses we used in Paper SR1. The pulse durations of the ultrashort

intense linearly y−polarized pulses for symmetry breaking and restoration should be very short so

that the entire propagation time is within 10 fs, where the effect of nuclear dynamics on the laser

driven electronic dynamics of benzene can be neglected. For our case, the two laser pulses are ultra-

short few cycle transform limited pulses. Since the maximum of the intensity (5.873 TW/cm2) is still

below the typical intensity required for multiphoton ionization, thus the ionization process can also

be neglected.
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Figure 5.2: Coherent control symmetry breaking and restoration of electronic structure by means of two time-
reversed copy of linearly polarized ultrashort intense laser pulses (schematic). The figure is adapted from Paper
SR2.

Strategy 2 in Paper SR2 is presented with two scenarios: in the first scenario, time-reversed non-
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chirped ultrashort intensive linearly y-polarized pulses with Gaussian shapes are employed; in the

second scenario, time-reversed ultrashort intense down- and up-chirps are used. Two pulses are well

separated and the central time is in a field-free environment, during the moment the populations

of the ground and excited state are constant with irrespective of a phase factor. The snapshots of

one-electron density visualize the process of symmetry breaking, charge migration and symmetry

restoration. The target excited state is the only state that can be reached from the ground state by

one-photon transition. The phase difference sensitively depends on the time delay between the peaks

of two pulses. In principle, phase conditions should be satisfied exactly, but in practice, little less

accurate may also be acceptable. Therefore, for successful symmetry restoration, one has to adjust the

time delay carefully such that the phase difference is 0 or ±π. The numerical results for linearly and

chirped pulses yield great agreement with the analytical prediction. Each pair of the time evolution

of the population shows multiple wiggles, which are associated with the down- and up-chirp pulses.

Paper SR2 presents a new challenge and opportunities in the field of attosecond coherent control of

electronic symmetry breaking and restoration by means of ultrashort intense laser pulses. This also

improves our fundamental understanding of attosecond science and adds to the arsenal of methods

in the field of quantum control.

For understanding the symmetry restoration process deeper, in Paper SR3 we design a new Strategy

3 to control the symmetry breaking and restoration in excited states of benzene. It develops a general

strategy of electronic symmetry restoration, which shows that the laser pulses for symmetry breaking

and restoration can be designed in a more general way with less severe restrictions. Our target excited

state is same as in Paper SR1. But this new strategy gets rid of the restrictions that the two pulses for

symmetry breaking and restoration must be identical in SR1, and time-reversed copy of each other

in SR2. The first pulse for symmetry breaking can be arbitrary and the second pulse will be tailored

to restore the symmetry in excited state. Since the laser carrier frequencies are much longer than the

molecular size corresponding to the wavelengths, therefore, the electric fields are homogeneous in

the molecular time domain we are interested in. The electronic ground state has D6h symmetry with

IRREP = A1g, and the excited state also has D6h symmetry but with a different IRREP = E1u. We

find that the pure electronic excited state belongs to the same symmetry point group as the ground

state, which implies that it is also possible to restore the symmetry by creating a pure excited state.

We also know that for creating a pure excited state from the ground state by two pulses, totally a

resonant π-pulse is required, which denoting that εeτb + εrτr = επτπ , irrespective of the polarization

of the laser pulses, e.g. they can be linearly or circularly polarized pulses. Here, εe, εr, επ and τb, τr, τπ

are the amplitude of electric field and the pulse duration for the first, second and π-pulse, respectively.
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Each of the pulse for symmetry breaking and restoration can be considered as a fractional π-pulse.

For example, we can set the first pulse as a reference, and set the second pulse with same shape and

duration, then the amplitude of the second pulse εr can be obtained by filling the gap between εb and

επ .

Figure 5.3: Coherent control symmetry restoration in excited state. (Bottom) One-electron density of the ground
state labeled A1g. (Middle) Periodic charge migration from ”A1g − iE1u” via ”A1g + iE1u” back to ”A1g − iE1u”,
with period T = 504 as. (Top) One-electron density of the excited target state labeled E1u. These depictions are
adapted from Paper SR3.

In Fig. 5.3, the electronic ground state of oriented benzene molecule is labeled as A1g (with symme-

try D6h). In order to achieve the symmetry restoration in excited state, the first circularly polarized

pulse is centered at tb = −4.5T. It breaks symmetry by exciting the electronic ground state to the

superposition (labeled ”A1g − iE1u”) of the ground and the excited state. This laser excitation process

is symbolized by the first red arrow (lower one). The superposition state has symmetry Cs at any time

. The charge migration between the two degenerate superposition states is symbolized by the two

black curved arrows, with snapshots of the one-electron density for state ”A1g − iE1u” (left) at time

t = 0, T, 2T, .. and for state ”A1g + iE1u” (right) at time t = T/2, 3T/2, 5T/2.... The second laser pulse

centered at tr = 4.5T restores D6h symmetry by transferring the superposition state completely to the

pure excited state with IRREP = E1u. This laser excitation is symbolized by the second red arrow.

The different IRREPs of the electronic ground (A1g) and excited state (e1u) leads a very little difference
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of the one-electron density for ground and excited state shown in Fig. 5.3. The bandwidths of the laser

pulses may cover few energy levels with different IRREPs, whereas our target excited state is the only

one that have the specific IRREP according to the symmetry selection rule.

For successful symmetry restoration in excited state of benzene, the time delay between the peaks

of the laser pulses must be equal to an integer number of charge migration period, such that the

phase difference at the central time is ±π

2
. All other crossed color arrows in Fig. 5.3 corresponding

to incomplete cycles of charge migration period are failed cases of restoring the symmetry in excited

state. The new methodology shows the successful quantum control symmetry breaking in the ground

state with IRREP = A1g but symmetry restoration in the excited state with a different IRREP = E1u.

Strategy 4 in Paper SR4 denotes a special case of 50% excitation from the electronic ground state of

benzene to an excited state (IRREP = A1g) by a right-circularly polarized pulse, which documents a

circular attosecond charge migration. The numerical findings indicate that one can restore the sym-

metry either in the electronic ground state with the same IRREP when the phase difference is 0 or±π,

or restore the symmetry in the excited state with a different IRREP when the phase difference is ±π

2
.

Each pulse is a
π

2
-pulse. The phase difference depends sensitively on the time delay in few attosec-

onds. When the time delay td =

(
N +

1
2

)
T, the second pulse de-excites the superposition state back

to the electronic ground state, and restore the symmetry in ground state as in Paper SR1. Otherwise,

when the time delay td = NT, the second pulse excites the superposition state further completely

to the pure excited state, namely stop the attosecond charge migration and restore the symmetry in

excited state as in Paper SR3. For this case, the second pulse serves either as a pump or dump pulse,

depending on phase difference, which depends on the time delay in few attoseconds precision. It

implies that we can restore the symmetry twice per period when two pulses are
π

2
-pulse.

The analytical formula of the final population of the excited state in Paper SR4 serves as a bridge

between Paper SR1, SR2 and SR3. The two laser pulses for symmetry breaking and restoration in

Paper SR1, SR2 and SR4 are either identical or time reversed copy of each other, e.g. with the same

Gaussian shape, same carrier frequencies, same maximum field strengths etc. But in Paper SR3, these

two laser pulses are arbitrary as long as the net effect of these two laser pulses can be summarized to

be a complete excitation from the ground state to a pure excited state with a different IRREP, which

implies that the sum of the two laser pulses must be a π-pulse and each pulse can be considered as a

fractional π-pulse.

Paper SR1 - SR4 document a new physical phenomenon of electronic symmetry breaking and

restoration in atoms and molecules, together with four new strategies for the control. The results

of the publications that are shown up in this dissertation demonstrate that the laser pulse can not
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Table 5.1: Comparison of four different strategies for laser control of electronic structure symmetry restoration

paper SR1 SR2 SR3 SR4

pulse circularly linearly, chirp circularly circularly

excitation 0.37% 50% 30% 50%

time delay td =

(
N +

1
2

)
T — td = NT td =

(
N +

1
2

)
T or NT

phase difference {0,±π} {0,±π}
{
−π

2
,+

π

2

}
{0,±π} or

{
−π

2
,+

π

2

}
population 4Pg(tc)Pe(tc)

[
1− cos

(
2πt

t

)]
1− 2Pg(tc)Pe(tc)

[
1− cos

(
2πt
T

)]
symmetry restoration ground state ground state excited state ground or excited state

only break the symmetry, but also can restore the symmetry. The four strategies described above offer

us a choice to restore the symmetry either in the ground state or in an excited state coherent controlled

by well-designed ultrashort laser pulses. The success depends on the Hamiltonian condition and the

associated phase conditions, which depend on the time delay between the peaks of two pulses in few

attoseconds precision. All important information of the four strategies are listed in Table 5.1.

In the first part of this dissertation, we give a discussion of attosecond coherent control of symmetry

restoration in atoms and molecules using semiclassical formulism. In particular, we give an essentially

numerical analysis of the population of excited state driven by two time-delayed ultrashort pulses and

study the influence of the time delay on the phase difference. The first pulse creates a superposition

state, while the second time-delayed pulse can either de-excite the superposition back to the ground

state, which is associated with symmetry restoration in ground state with same IRREP; or excite the

superposition further to a pure excited state, which is associated with symmetry restoration in excited

state with a different IRREP. For a time delay equals half time the charge migration period, the second

pulse will de-excite the superposition back to the ground state. For a time delay equals an integer

number of the charge migration period, the second pulse excites the superposition state created by

the first pulse further more to the excited state. The phase difference is extremely sensitive of the

time delay between two pulses. The total population of the excited state after the pulse sequence is

modulated by the time delay. Our work show that careful manipulation of the phase conditions can

be used to trace and control the ultrafast attosecond process in atoms and molecules. We present a

controlled switching of symmetry from highly symmetric electronic ground state to a less symmetric
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superposition and back to a highly symmetric pure state by sequence time-delayed pulses.

In conclusion, the general procedure for quantum control symmetry breaking and restoration in

excited state contains three steps:

(1) symmetry breaking by the first laser pulse;

(2) ultrafast attosecond charge migration, and determine phase difference;

(3) design the second laser pulse for symmetry restoration.

This work may have a fascinating effect to attosecond science.
[8–10, 22, 24]

The remaining of this dis-

sertation will thus focus on this very important aspect of attosecond chemistry. This methodological

framework is then applied for quantitative investigations of attosecond charge migration processes in

different superposition states of the oriented benzene molecule. Charge migration plays an important

role in symmetry restoration, as it determines the phase of the electronic wave function around the

central time.
Chapter 4 Summary

Figure 4.1: Mechanistic studies of the attosecond charge migration in different superposition states of the
benzene molecule. (a,b) The time evolution of the electron density (lower row) and the associated Lewis
structures of (a) the S0(11A1g) + S1(11B2u) and (b) the S0(11A1g) + S2(11B1u) superposition state of the
benzene molecule. The red arrows highlight the charge migration mechanisms. Each arrow corresponds to the
motion of (a) 0.1 and (b) 0.2 electrons. (c) Demonstration of the control of the charge migration mechanism. By
varying the polarization of the laser pulses, different superposition stats of the 11A1g electronic ground state and
the degenerate 11E1u excited state are populated. While the initial and final electron distribution is identical,
the charge migration mechanisms are qualitatively different. The Lewis structures correspond to representative
snapshots of the time evolution of the electron density of the respective charge migration processes. From left
to right: before the preparation, at t = 0, t = τ̄ /4, and t = τ̄ /2, where τ̄ = 504 as is the period. The arrows
highlight the charge migration mechanisms. These depictions are adapted from Papers A1–A3.

electronic probability density by exploiting symmetry conditions and the electronic continuity equation.

The electronic flux is an insightful quantity allowing one to make quantitative mechanistic statements

for charge migration. This is illustrated in the first applications of this methodology.[A1,A2] Based

on state-averaged CASSCF(6,6) calculations for the wave functions and additional MRCI singles and

doubles calculations for the excitation energies, we determined the angular electronic fluxes for the

S0 + S1 and the S0 + S2 superposition state. While the calculations in Paper A1 were restricted to

using the dominant Slater determinant, the development of our new program detCI@ORBKIT[B1,B2]

allowed us to consider the full wave functions in follow-upPaper A2. Here, we found that, although the

charge migration mechanisms stayed unchanged, the renormalization slightly changed the magnitude

of the flux.

As graphically summarized in Figs. 4.1a and 4.1b, the two scenarios S0 +S1 and S0 +S2 exhibit some

interesting characteristics: The localization patterns vary periodically with a period in the attosecond

time regime, i.e., τ̄ = 830 as and τ̄ = 590 as. The dynamics is mediated by a flux following a pincer-type

motion with the sources and the sinks for fluxes at the bond centers for S0 + S1 and at the atoms for

S0+S2. This confirms the working hypothesis of Ulusoy and Nest for the S0+S1 superposition state.[13]

146

Figure 5.4: Mechanism of ultrafast attosecond charge migration in different superposition states of benzene
molecule. Upper panels of (a) and (b) show the Lewis structures of the two superposition states. Lower pan-
els of (a) and (b) show the time evolution of the one-electron density for associated superposition states. The red
arrows refer the charge migration directions corresponding to two different mechanisms. This figure is adapted
from Paper CM1 and CM2.

As we mentioned earlier, laser control aromaticity of benzene molecule by Ulusoy and Nest
[49]

is

proved to be our inspiration to laser control symmetry of electronic structure in atoms and molecules.

They prepared two non-aromatic superposition states S0 + S1 (called Kekulé structures together with

degenerate superposition S0 − S1, see upper panels of Fig. 5.4a) and S0 + S2 by exciting the molecule

from its aromatic electronic ground state S0 to the first and second non-aromatic singlet excited states

S1 (with IRREP = B2u in D6h symmetry point group) and S2 (with IRREP = B1u in D6h symme-

try point group). The aromaticity of benzene molecule was measured by the corresponding bond

orders and Mulliken charges. They demonstrated that the electron charge are localized on bonds

for superposition S0 + S1 and partial positive and negative charges on alternating carbon atoms for

S0 + S2. The localized electrons circulate in the ring system in attosecond time scale, where the nuclei

are essentially frozen, thus the effects of kinetic couplings (non-adiabatic couplings) are negligible.

Therefore, both processes correspond to adiabatic attosecond charge migration (AACM) processes.

They estimated that totally 4.2 electrons are moving in the ring system for S0 + S1 and 1.5 electrons
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participate for S0 + S2. They also estimated that the electron charge moves in a pincer motion between

two equivalent Kekulé structures but without giving any quantitative analysis.

Therefore, for finding out how the electrons really move during the AACM, in Paper CM1 and CM2,

we focus on the quantitative analysis of electronic flux density during AACM for two non-aromatic

superpositions of the oriented benzene molecule. In CM1, we prepare the non-aromatic superposition

by 50% exciting the aromatic electronic ground state to the first non-aromatic singlet excited state,

which initiates AACM between two equivalent Kekulé structures. The simulation results indicate

that the electron charges are localized on every two bonds and the angular electronic flux during the

AACM presents a pincer-type motion with ”sources” and ”sinks” at the center of alternating bonds

varies periodically with T = 848 as, which depend on the energy difference between the ground state

S0 and excited state S1. The ground and first excited state are based on CASSCF(6,12) calculations

for the wave functions and CI singles and doubles calculations for the energies of excited states with

cc-pVTZ basis set.

The theory for angular electronic fluxes during the AACM for a ring-shaped molecule is transfered

from the previous theory on coherent tunneling
[97]

and the electronic continuity equation is used with

a problem specific boundary condition to analyze the angular electronic fluxes. Due to the computa-

tional costs, total wave function is represented by few selected dominant Slater determinants and all

others that contribute less than one percent are neglected. The angular electronic flux indicates that the

charge migration is pincer-type pattern. The integration of the angular electronic density difference

yields maximum 0.48 electrons flow concertedly through half the molecule plane. The error ±0.02 is

estimated qualitatively, because only few dominant Slater determinants are taken into account for the

wave function calculation. The error is specific for our choice of basis set and method. This amounts

to about 25% error due to the small number of electrons involved in the charge migration, however,

this does not affect the subsequent conclusions. The theory in Paper CM1 presents the first appli-

cation of the charge migration in an excited superposition state of oriented benzene molecule. The

results confirm the hypothesis of ref. [49] that the AACM in S0 + S1 is pincer-type motion, but the

number of the electrons that transferred during the AACM process is much smaller than their esti-

mation of 4.2 electrons. Such a small amount of electrons flow during the Kekulé structures implies

that the electrons are delocalized on the system, e.g. most electrons that are assigned to double bonds

in Kekulé structures actually penetrate into the neighboring single bonds. Consequently, large frac-

tion of electrons do not need to move. This phenomenon has been noted for electronic fluxes during

molecular reactions and vibrations in the electronic ground states (see ref. [118–123]) that the effect of

delocalization of electrons resulting in very small fraction of moving electrons. In principle, the Full
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CI calculation will give an exact number of electrons that flow during the process for a given basis.

Paper CM2 generates a non-aromatic superposition S0 + S2 of the aromatic electronic ground and

the second nonaromatic singlet excited state, where negative and positive charges are spatially local-

ized on alternating carbon nuclei. The quantum chemistry calculation is done in CASSCF(6,6) level,

aug-cc-pVTZ basis set and the energy calculation at MRCISD level.

The wave functions are expanded in terms of all 104 Slater determinants in the frame of CASSCF(6,6)

method, which give us more accurate results. For our specific choice of the polarization of the pulses

and the molecular geometry, the electronic flux is equal to zero in yz-symmetry plane, which also im-

plies that the electrons never move across any nucleus. The ”sources” and ”sinks” of electrons are on

alternating carbon nuclei while the electronic density flux flow between the nuclei but never across

the nuclei, which is contrast to the findings of Paper CM1 that the electrons flow across the carbon nu-

clei from bonds to bonds. The ”sources” and ”sinks” interchange clockwise and anticlockwise during

the first half period and reverse directions during the second half period, with period T = 590 as, see

lower panel of Fig. 5.4b. The electrons flow away from three alternating carbon nuclei with surplus

of electronic density δ− towards three neighboring carbon nuclei with a deficit of electronic density

δ+. The integration of electronic density difference over all but one coordinate gives us the direction

of the electronic density flux, which shows a pincer-type motion. The total number of electrons flow

concertedly clockwise or anti-clockwise involved in the charge migration process is 6× 0.2 = 1.2.

Based on this improved method and basis set, we find that the results (angular electronic den-

sity difference, yield and electronic density flux) for taking all 104 Slater determinants or only few

dominant Slater determinants into account show good agreement for superposition S0 + S2, but iden-

tical for superposition S0 + S1. This indicates that the properties of the angular electronic fluxes in

non-aromatic superposition states of benzene molecule are determined by very few dominant Slater

determinants for representing the wave functions of the electronic ground and two lowest-lying ex-

cited singlet states that involved in these two cases. The better method and basis give a more accurate

number of electrons that participate during AACM of S0 + S1, namely 0.72 electrons for CASSCF(6,6)

and basis aug-cc-pVTZ with MRCISD energy calculations, with comparison with 0.48 electrons for

CASSCF(6,12) and basis cc-pVTZ calculation, 30% improved. For the current method and basis choice,

the total number of electrons (1.2 electrons) flow in S0 + S2 is almost twice as large as 0.72 electrons

flow in S0 + S1.

In Paper CM1 and CM2, we determine the angular electronic density flux during AACM in two

different non-aromatic superposition states of oriented benzene molecule and specify the number

of electrons that participate in the charge migration process. Besides the different charge migration
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periods and the number of electrons participated in AACM, the mechanistic difference between these

two cases is that the ”sinks” and ”sources” of the electronic angular fluxes are at alternating bond

centers for S0 + S1 and at alternating carbon nuclei for S0 + S2, but the maximum of the flux are at

the carbon nuclei and at the CC bond centers, respectively. Control of the ultrafast attosecond charge

migration process echo our work in Paper SR1 - SR4 of coherent control electronic structure symmetry

breaking and restoration in attosecond time scale and few attoseconds precision.

The following context serves as a brief outlook. In our present theory of symmetry restoration in

molecule, we did not consider molecular vibrations, which play a role at longer times. However,

the proof-of-principle we propose here should remain valid when including vibrational motion, but

it will be more difficult. One simple extension of current model is the coupled electron-vibration

dynamics along the Jahn-Teller coordinates, which causes a further loss of symmetry and will affect

charge migration. The associated dynamics will also be more complicated. The chemical reactivity

of BH3 molecule can also be potentially controlled by exciting the molecule to molecular vibrational

excited state and then de-excites the molecule back to the ground nuclear configuration to restore the

symmetry. The molecular chirality controlled by laser pulse can be another extension application. The

theory may also attractive for intermolecular interactions in dense gases, and vibrational relaxation.

The present theory for coherent control of symmetry breaking and restoration of electronic structure

can be expanded to multi-photon excitation symmetry restoration and offer an exciting new frontier

for attosecond science.

The theory in CM1 and CM2 allows to prepare analogous initial state for other ring-shaped or linear

molecules and also to create the initial state in a large variety of different superpositions of electronic

states. The general theory of electronic flux during AACM in ring-shaped molecules supports many

kinds of applications, e.g. prepare oriented benzene molecule in an arbitrarily large variety of differ-

ent superposition states. The theory predicts that different initial superpositions of eigenstates induce

different flux patterns and will induce significant variations of the flux patterns when more excited

tunneling doublets are prepared.
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[64] S. Lünnemann, A. I. Kuleff, and L. S. Cederbaum, “Ultrafast charge migration in 2-phenylethyl-

N, n-dimethylamine”, Chem. Phys. Lett. 450, 232–235 (2008) (cit. on p. 4).
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[102] W. Domcke, D. Yarkony, and H. Köppel, Conical intersections: electronic structure, dynamics spec-

troscopy (Advanced Series in Physical Chemistry (World Scientific), 2004) (cit. on p. 9).

[103] P. W. Aktins and R. S. Friedman, Molecular quantum mechanics (Oxford University Press, New

York, 1997) (cit. on pp. 15, 19).

[104] D. Casanovaa, “Short-range density functional correlation within the restricted active space ci

method”, J. Chem. Phys. 148, 124118 (2018) (cit. on p. 16).

[105] P. A. M. Dirac, “Quantum mechanics of many-electron systems”, Proc. R. Soc. A 123, 714–733

(1929) (cit. on p. 16).

[106] J. Hinze, “MC-SCF. I. The multi-configuration self-consistent-field method”, J. Chem. Phys. 59,

6424 (1973) (cit. on p. 16).

[107] D. Ma, G. L. Manni, and L. Gagliardi, “The generalized active space concept in multiconfigu-

rational self-consistent field methods”, J. Chem. Phys. 135, 044128 (2011) (cit. on p. 16).

[108] P. A. Malmqvist, A. Rendell, and B. O. Roos, “The restricted active space self-consistent-field

method, implemented with a split graph unitary group approach”, J. Phys. Chem. 94, 5477–

5482 (1990) (cit. on p. 17).

[109] I. N. Levine, Quantum chemistry (Pearson Education, 2014) (cit. on p. 19).

[110] F. A. Cotton, Chemical applications of group theory (Wiley-Interscience, 1971) (cit. on p. 19).

[111] V. Deitz and D. H. Andrews, “The symmetry of the benzene molecule”, J. Chem. Phys 1, 62–67

(1933) (cit. on p. 19).

[112] I. Barth, J. Manz, Y. Shigeta, and K. Yagi, “Unidirectional electronic ring current driven by a

few cycle circularly polarized pulse: quantum model simulations for Mg-Porphyrin”, J. Am.

Chem. Soc. 128, 7043–7049 (2006) (cit. on pp. 24, 30).

179

https://doi.org/10.1002/andp.19263861802
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1063/1.5018895
https://doi.org/10.1098/rspa.1929.0094
https://doi.org/10.1098/rspa.1929.0094
https://doi.org/10.1063/1.1680022
https://doi.org/10.1063/1.1680022
https://doi.org/10.1063/1.3611401
https://doi.org/10.1021/j100377a011
https://doi.org/10.1021/j100377a011
https://doi.org/10.1063/1.1749221
https://doi.org/10.1063/1.1749221
https://doi.org/10.1021/ja057197l
https://doi.org/10.1021/ja057197l


[113] C. Leforestier, R. H. Bisseling, C. Cerjan, M. D. Feit, R. Friesner, A. Guldberg, A. Hammerich,

G. Jolicard, W. Karrlein, H.-D. Meyer, N. Lipkin, O. Roncero, and R. Kosloff, “A comparison of

different propagation schemes for the time dependent Schrödinger equation”, J. Compu. Phys.

94, 59–80 (1991) (cit. on p. 29).

[114] S. Blanes and P. C. Moan, “Practical symplectic partitioned Runge-Kutta and Runge-Kutta-

Nyström methods”, J. Comput. Appl. Math. 142, 313–330 (2002) (cit. on p. 29).

[115] S. Blanes and P. C. Moan, “Splitting methods for the time-dependent Schrödinger equation”,

Phys. Lett. A 265, 35–42 (2000) (cit. on p. 29).

[116] T. J. Park and J. C. Light, “Unitary quantum time evolution by iterative lanczos reduction”, J.

Chem. Phys. 85, 5870 (1986) (cit. on p. 29).

[117] H. Tal-Ezer and R. Kosloff, “An accurate and efficient scheme for propagating the time depen-

dent Schrödinger equation”, J. Chem. Phys. 81, 3967 (1984) (cit. on p. 29).

[118] I. Barth, H.-C. Hege, H. Ikeda, A. Kenfack, M. Koppitz, J. Manz, F. Marquardt, and G. K. Para-

monov, “Concerted quantum effects of electronic and nuclear fluxes in molecules”, Chem.

Phys. Lett. 481, 118–123 (2009) (cit. on p. 170).

[119] A. Kenfack, I. Barth, F. Marquardt, and B. Paulus, “Molecular isotopic effects on coupled elec-

tronic and nuclear fluxes”, Phys. Rev. A: At., Mol., Opt. Phys. 82, 062502 (2010) (cit. on p. 170).

[120] H.-C. Hege, J. Manz, F. Marquardt, B. Paulus, and A. Schild, “Electron flux during pericyclic

reactions in the tunneling limit: quantum simulation for cyclooctatetraene”, Chem. Phys. 376,

46–55 (2010) (cit. on p. 170).

[121] D. Andrae, I. Barth, T. Bredtmann, H.-C. Hege, J. Manz, F. Marquardt, and B. Paulus, “Elec-

tronic quantum fluxes during pericyclic reactions exemplified for the cope rearrangement of

semibullvalene”, J. Phys. Chem. B 115, 5476–5483 (2011) (cit. on p. 170).

[122] T. Bredtmann, E. Hupf, and B. Paulus, “Electronic fluxes during large amplitude vibrations

of single, double and triple bonds”, Phys. Chem. Chem. Phys. 14, 15494–15501 (2012) (cit. on

p. 170).
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