
Review
Basic Principles of Temporal Dynamics
Masahiro Ryo ,1,2,* Carlos A. Aguilar-Trigueros,1,2 Liliana Pinek,1,2 Ludo A.H. Muller,1,2 and
Matthias C. Rillig1,2
Highlights
Temporal dynamics are inherently
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ished to understand ecological tem-
poral dynamics in recent years.

A key finding of recent studies is that
driver–response relationships are not
necessarily constant through time,
but rather, that they are conditioned
by the recent and historical past.
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need to be summarized to increase the
understanding and predictability of
complex temporal dynamics in ecol-
ogy and evolution.
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All ecological disciplines consider temporal dynamics, although relevant con-
cepts have been developed almost independently. We here introduce basic
principles of temporal dynamics in ecology. We figured out essential features
that describe temporal dynamics by finding similarities among about 60 eco-
logical concepts and theories. We found that considering the hierarchically
nested structure of complexity in temporal patterns (i.e. hierarchical complex-
ity) can well describe the fundamental nature of temporal dynamics by express-
ing which patterns are observed at each scale. Across all ecological levels,
driver–response relationships can be temporally variant and dependent on both
short- and long-term past conditions. The framework can help with designing
experiments, improving predictive power of statistics, and enhancing commu-
nications among ecological disciplines.

The Need for Basic Principles of Temporal Dynamics
All ecological disciplines consider temporal dynamics with major paradigms shifting from one to
another: equilibrium (see Glossary) to nonequilibrium, and stationary to nonstationary (Box
1). Understanding temporal dynamics is becoming more important in the Anthropocene. Several
time-related concepts and statistics have emerged recently [1–4]. Nevertheless, ecology still lacks
basic principles that underlie all studies relevant to temporal dynamics [5], and the exchange of
knowledge about temporal dynamics among subdisciplines is limited [6,7].

Recently developed concepts include, for example, temporal ecology [5], abrupt shifts in
ecological systems [8], ecological memory [3], lag hypothesis for community dynamics [9],
and asymptotic environmentally determined trajectories [1]. These were proposed
almost independently of each other. However, they all consider that driver–response relation-
ships are not necessarily constant through time, but they depend on the recent and historical
past. This perspective brings together various concepts to figure out the essence of temporal
dynamics across ecological and temporal scales.

We here introduce basic principles of temporal dynamics in ecology. Our primary challenge was to
figure out essential features that describe temporal dynamics by finding similarities among about
60 ecological concepts and theories. Theexamples are taken largely from population, community,
and evolutionary ecology, but more examples can be found in Table S1 (see supplemental
information online). We also summarize the value of the concept, ranging from improving study
design to catalyzing knowledge integration among disconnected subdisciplines.

Hierarchical Complexity
We applied the concept of hierarchy [10–12] for describing temporal patterns (i.e., driver–
response relationships in time series) to uncover universal features across the existing time-
related concepts. The concept of hierarchy often considers a nested structure of hierarchical
scales including absolute scale (seconds < minutes < hours) and relative scale (period
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Glossary
Asymptotic environmentally
determined trajectory: trajectory of
a population process that is
approached by other trajectories.
For example, regardless of initial
conditions, any trajectories converge
eventually into a single trajectory
that is determined by the
surrounding environmental
fluctuations. This concept can
explain population and community
dynamics in a nonstationary
environment.
Carryover: interaction effects
(additive or nonadditive) of multiple
drivers that occur sequentially.
Ecological memory: capacity of
past states or experiences to explain
present or future responses of an
ecological system. The length,
temporal pattern, and strength of the
memory are important components
for quantification.
Equilibrium: state of stable
conditions in which all forces cancel
each other out and thus all factors
remain temporally stable. The state
goes back to the previous stable
state or reaches another stable state
after perturbations.
Lag hypotheses: The no-lag
hypothesis, in community ecology,
argues that a community
composition is in equilibrium with the
given environment at that location at
a given time. On the contrary, the lag
hypothesis argues that it is in
nonequilibrium with the
contemporary environment [9].

Box 1. Paradigm Shifts in Understanding Temporal Phenomena

The studies about temporal dynamics relied historically on the equilibrium concept. The equilibrium concept posits that
any ecological system will sooner or later return to a determined stable condition after any perturbations [68,69]. The
notion of a balance traces back to the ancient Greeks [70,71]. The concept was reformed in the 17th century with more
mechanistic views [72,73], and the 18th century gave rise to the concept of balance of nature [74]. This concept is widely
supported by the existence of self-regulating mechanisms [18] (e.g., homeostasis of individual, population growth,
negative feedback of community, and resistance-resilience and compensatory dynamics of ecosystems).

The equilibrium concept flourished, but at the same time, was also criticized [75–77]. Negative results reporting failure to
provide equilibrium states were rarely seen, until Pickett [69] and others called for broad attention to this situation. The
need to reconcile both equilibrium and nonequilibrium paradigms hatched the theory of multiple equilibria in the 1970s
and 1980s [16,48,78]. An ecological system can shift its state from one state to another, when the degree of a
perturbation exceeds an allowable capacity [16,79–81]. Together with the notion of these nonlinear dynamics,
considering temporal dynamics also paved the way for ecology beyond the equilibrium concept. The nonequilibrium
paradigm focuses explicitly on time series to better describe the temporal dynamics of ecological systems. It assumes
that no stable condition exists, and the past experiences across various scales influence on the current state of a system
[1,19,44,82]. Understanding such nonequilibrium dynamics has been at the center of modern ecology [82].

Collectively, this paradigm shift has given rise to a range of questions about temporal dynamics of ecological systems.
These include how do temporal changes in environmental conditions determine system states, and how has the current
state of the system been reached through time?
A < period B). Yet, instead of scale, we consider a nested structure of hierarchical complexity:
single-event level, multiple-events level, and the trajectory level. A single event is a subset of
multiple events occurring within a given period of the entire trajectory (i.e., single event < mul-
tiple events < trajectory; Figure 1). We refer to an event as an irregular change in either
endogenous or exogenous conditions of the system within a limited period, in which the
occurrence period and some aspects of the change are definable given a certain rule (e.g.,
exceeding a defined threshold value).

Hierarchical complexity is a key to summarizing basic principles applicable across temporal and
ecological scales. For example, we consider that pulse-shape events are considered to belong
to the same category, irrespective of scale. If we had relied on scale, similar patterns at different
scales could not be compared. Moreover, many generic terms describing temporal dynamics
(e.g., pulse and press) cannot be attributed to any specific time scale.
Nonequilibrium: state that does not
reach an equilibrium (see
Equilibrium).
Nonstationary: characteristic of
time-series that is not stationary (see
Stationary). Statistical parameters of
time-series change over time.
Stationary: characteristic of time-
series whose statistical parameters
including mean, variance, and
autocorrelation are temporally
constant. Stationary and equilibrium
are sometimes interchangeably used.
However, stationary is a statistical
term, while equilibrium is a term to
represent the state of a system. A
system can be considered at
equilibrium under a stationary
condition, but an equilibrium state
does not necessarily satisfy
stationarity.

Figure 1. Hierarchical Complexity. The idea deals with driver–response relationships in time-series across three levels
of complexity. The levels are hierarchically nested, as single-event (i.e., one driver and one response) is a subset of multiple
events that are a part of the trajectory. The key property is that driver–response relationships are not necessarily constant
through time, but they can change over time due to recent and historical past experience. Hierarchical complexity can be
observed at any scale. Temporal dynamics at each of the levels affect each other.
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Temporal ecology: emerging field
in ecology, which is focused on
understanding how time influences
ecological systems beyond the
prevalent knowledge about temporal
dynamics. Temporal ecology has
been proposed to intertwine with
spatial ecology, which is an
integrative multidisciplinary field to
address issues across spatial and
ecological scales.
Basic Principles of Temporal Dynamics
Basic principles of temporal dynamics are described at each level of complexity (Figure 2). Some
ecological concepts can cover multiple levels (Table S1; see supplemental information online), but
for simplicity, we sort them into one level in the following. When looking across scales, the
proposed hierarchies can be further nested (e.g., a trajectory at a small scale could be a subset of a
single event at a larger scale). This nestedness is a fundamental nature of temporal dynamics, and
a level of complexity may depend on how closely the dynamics are observed (i.e., not the scale but
the resolution). A level of complexity for an observed pattern can be reasonably assigned by
clarifying which feature of the basic principles (discussed in detail below) is studied.

Single Event Level
Types
A single event characterizes both driver and response. For the sake of brevity, a driver and a
response are represented by a single attribute each (e.g., temperature as driver and fitness as
response), although multivariate attributes are possible [13].

Driver types are classified into pulse (transient), step (including press), or ramp [5,8,14]. After the
emergence, a pulse returns to the previous condition after reaching a peak, a step ends up at a
different magnitude, and a ramp makes a trend (upper left of Figure 2). No change (constant)
can be additionally considered. Any pairings of driver and response types are possible (4
driver � 4 response types).

Characteristics
Driver and response are characterized by magnitude, duration, and rate of change (middle left
of Figure 2; [15]). These characteristics allow various comparisons: norm versus extreme (any
characteristic); low versus high (magnitude); transient versus persistent (duration); abrupt
versus gradual (rate of change); fast versus slow (rate of change); acute versus chronic (rate
of change and duration); and pulse versus press versus ramp (rate of change and duration).

Patterns
Threshold; Thresholds are attributable to the characteristics. A minimal exceedance threshold
represents the value of a driver characteristic to trigger a response, while a maximal exceed-
ance threshold represents the value at which the driver characteristic causes an irreversible
response (cf. regime shift; lower left of Figure 2).

The equilibrium paradigm assumes no maximal threshold and transient responses [16,17].
Negative feedback is a key mechanism for equilibrium, irrespective of ecological scales [18]: for
example, individual homeostasis, population density dependence, community compensatory
dynamics, and ecosystem resilience. The nonequilibrium paradigm explicitly considers persis-
tent responses beyond the maximal threshold, including mode switching of individual and
regime shifts of ecosystems [16,17,19,20]. Regime shifts in an ecosystem can occur not only
based on the magnitude of a driver [21], but also the rate of change of a driver [22], the duration
of a pulsed driver, and their interactions [13].
Lag; Lags also cause nonlinear patterns; for example, lagged dynamics, legacy, antecedent
effects, or ecological memory [3,23,24]. Lag patterns are quantifiable by latent duration (the
interval between the occurrence timing of the driver and the emergence of the response) and
time to peak (lower left of Figure 2).

In physiological ecology, lag patterns that have their origin early in development but that are first
seen in juveniles or adults are known as latent effects [25]. In individual ecology, carryover
Trends in Ecology & Evolution, August 2019, Vol. 34, No. 8 725



Figure 2. Basic Principles of Temporal Dynamics. At each level of complexity, some unique properties are summarized. At single-event level, for instance, there
are four different types of patterns, three quantifiable characteristics, and two important nonlinear patterns. For all drawings, the horizontal axis is time and the vertical
axis can be any measurable quantity. Driver and response are categorized by their shape based on type (upper panels), and their characteristics are quantitatively
measurable (middle panels). By considering the combination of driver and response, driver–response relationships may give rise to some level-dependent patterns
(lower panels).
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effects are referred when a nonlethal event during a previous season affects the current status
of an individual ([26]; note that this definition differs from our definition of carryover which
appears in the following section). Storage effects, linking population and community ecology,
are a mechanism that explains species coexistence in a changing environment because each
species can benefit from a transient opportunity for increasing fitness [27]. In community
ecology, a ‘ghost of competition past’ is invoked when avoidance of competition in a current
community is attributed to previous competition having led to niche separation [28]. In
ecosystem ecology, ‘afterlife effects’ and ‘legacy effects’ describe the persistent impacts of
a species and individual on abiotic or biotic processes of an ecosystem after their disappear-
ance [29]. Their underlying common idea is that an event in the past partially explains the current
behavior of the system [3,9].

Multiple Events Level
Types
Multiple events are combinations of two or more events. Depending on the number of drivers
and responses and their respective event types, we consider the following four types: single-
type univariable, multitype univariable, single-type multivariable, and multiple-type multivariable
(upper middle of Figure 2). Single-type owns only one event type (e.g., repeated pulses), while
multitype owns more types such as pulse and press. A variable with various temporal
characteristics belongs to multitype univariable (e.g., hydrologic regimes in a river where
the flow shows pulse-type floods and press-type droughts over time [15]). Multivariable, for
example, studies multiple stressors.

Characteristics
The joint characteristics of the drivers and responses are definable: for example, the order, the
interval period, and the frequency of occurrences (center of Figure 2). The order of occurrence
can often cause significant consequences in ecology and evolution as historical contingency
[30–34].

Patterns
Accumulative Carryover; Carryover patterns, the effect of a driver can change according to
the previous events, are about lags but emerge at the multiple-events level. Accumulative
carryover occurs when the effects of sequential events additively accumulate over time [8],
because of a short interval between events (lower middle of Figure 2). Frequent disturbances
are a cause of disequilibrium [9,17,35]. Accumulative carryover causes interesting dynamics in
which a threshold is met by the accumulative effects of frequent, small disturbances.
Interactive Carryover; Interactive carryover occurs when the preceding driver changes an
internal parameter or mechanism of a system, such that the system responds to a following
driver differently from how it would have responded not having experienced the first driver. An
antecedent driver may amplify some characteristics of the response of the system to the
following driver (i.e., synergism) or weaken them (antagonism) (lower middle of Figure 2). While
accumulative carryover results from a short interval between events (adding up), interactive
carryover does not necessarily follow this and can happen due to a distant past memory.

Interactive carryover effects are often reported as physiological responses of organisms to
sequential transient stresses as a defensive mechanism: for example, learning, imprinting,
priming, and acquired resistance [36,37] (Table S1; see supplemental information online). Even
organisms lacking a nervous system such as microbes and plants show interactive carryover
[36–38]. The interactive carryover occurring at the individual level may influence population
[38,39] and community dynamics [40].
Trends in Ecology & Evolution, August 2019, Vol. 34, No. 8 727



Trajectory Level
Type
Trajectory level represents the long-term variability of a system, including a large number of
events: for example, life history strategy, community assembly, and succession. Trajectory
types can be classified based on statistical properties [8,41] (4 driver � 4 response types):
Stationary, trend stationary, cyclostationary, and nonstationary (upper right of Figure 2).
Stationary assumes time-invariant mean and covariance, which may additionally follow a trend
(i.e., trend stationary) or cyclic pattern (cyclostationary; e.g. seasonality in temperature).
Nonstationary dynamics change mean, variance, and/or autocorrelation in time [42]. Regime
shifts are an example of such [43]. Yet, nonstationary is far less studied than stationary but
being recognized as an important feature [1,44,45].

Characteristics
Statistical properties characterize trajectory patterns, including mean, variance, and autocorrela-
tion [5,8]. A variance is often used to evaluate the severity of a single event (norm or extreme).

Age, the time since the system emerged, is another key characteristic (middle right of Figure 2).
Several properties of single and multiple events may depend on the system age (e.g.,
emergence or terminal phases). Ecosystems change in functional performance depending
on the successional stage of the community (e.g., young and old forests differing in resource
use efficiency [46]). Many systems are the most sensitive to perturbations throughout the
lifetime when they are emerged.

Ecologists’ interpretations of the same driver also vary according to system age: for example, at
the population level, the effect of individual arrival is called founder effects at the establishment
phase of a local population [47] and called rescue effects at the terminal phase. At the
community level, species arrival is studied as priority effects if a local community is sparse
[34] and studied as species invasion if the community was already established. Considering age
clarifies many ecological contexts.

Patterns
Divergence; Small differences may completely change the dynamics of a system and thus the
future trajectory [48] (lower right of Figure 2), known as butterfly effects in chaos theory [49].
Divergence patterns have been often studied in the context of genetics and evolution as
historical contingency [33]. Examples are maternal effects at the individual level, where the
maternal genotype or phenotype influences the offspring phenotype [50]. Founder effects
occur at the population level, where the establishment of a new population by a small number of
individuals from a larger population determines the genetic variation within the established
patch [51]. Priority effects are at the community level, where the first arrival of a species
influences establishment success of the later-arriving species [34]. In evolution, adaptive
radiation explains a process in which organisms diversify from an ancestral species to a variety
of forms at an exceptionally high speed when species arrive in a novel environment. Contrary to
adaptive radiation, phylogenetic niche conservatism is the result of processes that inhibit trait
divergence in related lineages [52,53].
Convergence; The idea opposite to divergence is convergence, where the recent past conditions
might be more influential for the current dynamics of a system, and therefore they are eventually
independent of initial conditions (lower right of Figure 2; [1]). Convergence is implicitly assumed in
most ecological studies that correlate drivers and responses as a snapshot, as this assumption
requires only current or recent past information and allows neglecting the influence of long-distant
past. Divergence and convergence jointly determine the dynamics of a system [31].
728 Trends in Ecology & Evolution, August 2019, Vol. 34, No. 8



Interactions across Levels
Recognizing the inter-relatedness of single events, multiple events, and trajectory levels is
inevitable to understand temporal dynamics. For example, the effect of a physiological stress on
growth of an organism is studied mostly at the single event level, but results may greatly differ
depending on both recent and distant-past experiences [54]. This is a retrospective recognition
of the inter-relatedness. In this case, one can study the possibility that lag and threshold
patterns depend on what the system has experienced previously and the age. On the contrary,
as a prospective recognition, one can study the effects of a stressor at the infancy stage on the
following trajectory dynamics.

A review emphasizes the need of modeling species and community responses to climatic and
ecological changes by taking paleo-information (i.e., trajectory) into account [55]. On the
contrary, a single driver may determine multiple-event level consequences (e.g., warming
determines the degree of priority effects [56]), and multiple events determine trajectory dynam-
ics (e.g., historical human activity influences arctic vegetation dynamics over millennia [57]). Yet,
the inter-relatedness of hierarchical complexity is understudied.
Short- and Long-Term Benefits of Applying This Framework
Short-Term Gain: Study Design and Improving Predictive Power
The components we summarize in Figure 2 can be used as a comprehensive checklist for
designing and evaluating studies (Box 2). Referring to these components helps with planning a
time-related study systematically: which levels of the complexity are targeted; are cross-level
interactions tested; which aspects of temporal patterns are quantified (e.g., magnitude and
interval); and what patterns may emerge (e.g., lag and threshold). As a reference, we highlight
some established experimental designs and statistical analyses in Figure S1 (see supplemental
information online). We also consider that the predictive ability to model the effects of past
conditions on ecological variables could be substantially improved by designing studies and
analyzing data using our approach [3,58].

The basic principles we offer can promote the use of existing time-series data to better
understand temporal dynamics [5,8]. Although many observations in ecology are either
nonreplicated or infrequently repeated [59], some databases and techniques are already
available: for example, the Long Term Ecological Research Network (https://lternet.edu/), the
National Ecological Observatory Network (https://www.neonscience.org/), Ameriflux (http://
ameriflux.lbl.gov/), the global species time-series database [60], and analysis of environmen-
tal DNA [61].
Short- to Medium-Term Gains: For Identifying Gaps and Transferring Concepts
Similar concepts may have different names and are applied in different fields. Identifying such
conceptual linkages can help transfer concepts from one ecological level to another. For
instance:
� Priority effects (i.e. system components arriving in different order) at the community level [34]
are conceptually similar to founder effect at the population level [47]. By transferring the
equivalent idea to the ecosystem level, we can ask if it plays a role which component of a
nutrient cycle establishes first (during a new colonization) for developing biogeochemical
dynamics.

� Priming effects (i.e., an initial stimulus prepares a system for a subsequent more deleterious
stressor; not the priming effect which refers to strong short-term changes in organic matter
decomposition in soil science [62]), originally defined at the individual level [37] and then
Trends in Ecology & Evolution, August 2019, Vol. 34, No. 8 729
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Box 2. The Concept as a Checklist to Contextualize Study Designs

We here demonstrate how the concept of the basic principles (see Figure 2 in main text) can be used as a checklist to systematically categorize time-related studies,
by introducing some examples: a laboratory experiment, statistical modeling framework, and meta-analysis.
(A) Experiment: The experimental study [54] investigated the effects of past inundation or drought events on the subsequent growth responses of plant species to

the same, opposite or more favorable conditions (cf. priming effects explain that an initial stimulus prepares a system for subsequent more deleterious stressor;
cross-protection, which is priming with different types of stresses). They found that the past inundation was more beneficial for species from wet habitats than
for others, while species from dry habitats acquired the strongest drought tolerance after a drought event. Therefore, this study was about carryover effects at
the multiple-events level, for which effect sizes were partially explained by the historical past at the trajectory level, as summarized in Table I (A).

(B) Modeling framework: The statistical modeling framework proposed in [3] takes recent past fluctuations into account for explaining the current status of any
ecological system (e.g., stomatal conductance, soil respiration, ecosystem productivity, and tree growth). They demonstrated that models with the recent past
effects included explained an additional 18–28% of response variation compared to models without them. This study was about explaining the variance of a
trajectory by including lag effects at the single-event level and both accumulative and interactive carryover effects at multiple-events level, seen in Table I (B).

(C) Meta-analysis: The meta-analysis [58] revealed that survival of primed microbes was about tenfold higher compared with that in nonprimed microbes based
on the findings from over 250 trials. This study is a meta-analysis about a specific type of interactive carryover effects across microbes [i.e., priming; Table I (C)].

We demonstrated that such categorization in the standardized rule makes comparison across studies easier. For instance, the examples A and C share a similar
focus based on the categorization, and similarity was more difficult to notice before categorization. In addition, the checklist (Table I) allows researchers to identify
which aspects of temporal dynamics are investigated, and more importantly, which of them have not been investigated. This systematic assessment helps with
finding novel and unexplored aspects of temporal dynamics.

Table I. The Proposed Concept as a Checklist for Evaluating Study Designs.

(A) Experiment (B) Modeling framework (C) Meta-analysis

Single Multiple Trajectory Single Multiple Trajectory Single Multiple Trajectory

Types Multitype
univariable

Applicable to any
types

Multitype
univariable

Characteristics The order of
occurrence

Different means Quantifiable The order of
occurrence

Patterns Carryover
observed

Lag
modeled

Carryover
modeled

Convergence
assumed

Carryover
evaluated

The most relevant levels are in bold type.
argued to be applicable at the community level [40], can also be considered at population
and ecosystem levels. For instance, does a prior milder stress provide greater resistance or
resilience in an ecosystem process rate?

Long-Term Gains: Toward Knowledge Integration across Ecological Fields
The idea of hierarchical complexity opens the door to comparing among organisms with
completely different lifespans, such as microbes and macrobes (i.e., irrespective of biological
hierarchy and temporal scale). Hierarchical scale captures the multiscale nature of temporal
dynamics by expressing what happen across scales (e.g., forest fires can last from hours to
years, from a hundred meters to hundreds of kilometers) [5,59,63–65]. By contrast, hierarchical
complexity describes the fundamental nature of temporal dynamics by expressing which
patterns are observed at each scale.

The concept of hierarchical complexity realizes the value of organizing disconnected fields of
research, including improving communication among scientists in disparate fields. Nearly 60
concepts we collected (Table S1; see supplemental information online) can be used to make
inroads towards unifying terminology:
� Using the same concept regardless of scale. For example, resilience is an ecosystem
concept, but could it also be applied to individuals, where it is currently not used but instead
described in terms of recovery, even though resistance is used equivalently at both levels.

� Creating a hierarchy of concepts. At a broader level, we also found that many concepts can
be organized in a hierarchical fashion. Such hierarchies could be used to unify different
730 Trends in Ecology & Evolution, August 2019, Vol. 34, No. 8



Outstanding Questions
Can the concept can be a nucleus for
the development of a temporal ecology
in analogy to spatial ecology, for exam-
ple, where local and regional-scale
processes would be the equivalent of
short-term and long-term past events?
Temporal dynamics have been far less
studied than spatial dynamics, even
though there is no shortage of terms
and concepts related to time in ecol-
ogy and evolution.

The current states of ecological sys-
tems are often explained without the
past information because acquiring
time-series data takes time and is lim-
ited by logistic constraints. Thus, the
temporal transition from the past is
largely neglected. To what extent is it
important to include past information
to explain the current state of ecologi-
cal systems? What is the relative
importance of the short-term past vs.
the long-term past?

Can basic principles of the idea of
hierarchical complexity be used in eco-
logical conservation and manage-
ment? For example, can an
ecosystem be ‘trained’ with repetitive
milder perturbations to be more resis-
concepts. For example, the concept of carryover effects in population ecology, in itself, has
been broadly defined to occur ‘ . . . in any situation in which an individual’s previous history
and experience explains their current performance in a given situation.’ [66]. Thus, this
concept encompasses a range of dynamics.

Concluding Remarks
We propose hierarchical complexity as a fundamental concept that describes temporal
patterns of driver–response relationship, based on the collection of nearly 60 terms and
concepts across subfields in ecology and evolution (Table S1; see supplemental information
online). We think that using this concept will advance ecology and evolution in two main ways.
First, it provides a common language for better communication among ecologists studying
analogous concepts in different subfields. Second, it stresses the need to consider past events
for adequately considering the current and future state of ecological phenomena. Across all
ecological levels, from individual to ecosystem, the ecological driver–response relationships
can be temporally variant and dependent on both short- and long-term past conditions.

Finally, wepose anopen question:can hierarchicalcomplexity be a nucleus for thedevelopment of
a temporal ecology [5] (see Outstanding Questions)? Such a field would be analogous to spatial
ecology, for example, where local and regional-scale processes would be the equivalent of short-
term (multiple-event) and long-term past (trajectory). While spatial ecology has flourished as a field
to study the spatial nature of ecological phenomena, no equivalent exists for the study of the
temporal nature of ecological phenomena. There are books on spatial ecology [67] but not on
temporal ecology. In addition, we found 300 000 versus 10 000 Google search hits of the terms
‘spatial ecology’ and ‘temporal ecology’, respectively (on March 7, 2019). This situation is
paradoxical, given that there is no shortage of terms and concepts related to time in ecology
and evolution. We think the time is ripe for the development of such a field.
tant and resilient?
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