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A B S T R A C T

To understand processes in urban environments, such as urban energy fluxes or surface temperature patterns, it
is important to map urban surface materials. Airborne imaging spectroscopy data have been successfully used to
identify urban surface materials mainly based on unmixing algorithms. Upcoming spaceborne Imaging
Spectrometers (IS), such as the Environmental Mapping and Analysis Program (EnMAP), will reduce the time
and cost-critical limitations of airborne systems for Earth Observation (EO). However, the spatial resolution of all
operated and planned IS in space will not be higher than 20 to 30m and, thus, the detection of pure Endmember
(EM) candidates in urban areas, a requirement for spectral unmixing, is very limited. Gradient analysis could be
an alternative method for retrieving urban surface material compositions in pixels from spaceborne IS. The
gradient concept is well known in ecology to identify plant species assemblages formed by similar environmental
conditions but has never been tested for urban materials. However, urban areas also contain neighbourhoods
with similar physical, compositional and structural characteristics. Based on this assumption, this study in-
vestigated (1) whether cover fractions of surface materials change gradually in urban areas and (2) whether
these gradients can be adequately mapped and interpreted using imaging spectroscopy data (e.g. EnMAP) with
30m spatial resolution.

Similarities of material compositions were analysed on the basis of 153 systematically distributed samples on
a detailed surface material map using Detrended Correspondence Analysis (DCA). Determined gradient scores for
the first two gradients were regressed against the corresponding mean reflectance of simulated EnMAP spectra
using Partial Least Square regression models. Results show strong correlations with R2=0.85 and R2= 0.71 and
an RMSE of 0.24 and 0.21 for the first and second axis, respectively. The subsequent mapping of the first gradient
reveals patterns that correspond to the transition from predominantly vegetation classes to the dominance of
artificial materials. Patterns resulting from the second gradient are associated with surface material composi-
tions that are related to finer structural differences in urban structures. The composite gradient map shows
patterns of common surface material compositions that can be related to urban land use classes such as Urban
Structure Types (UST). By linking the knowledge of typical material compositions with urban structures, gra-
dient analysis seems to be a powerful tool to map characteristic material compositions in 30m imaging spec-
troscopy data of urban areas.

1. Introduction

More than 54% of the world's population is currently residing in
cities. This percentage will continue to increase in the future (UN,
2014), leading to an urgent and growing demand for detailed and
spatially explicit information about urban areas. Chen et al. (2012)

discuss the detailed information of surface materials needed for urban
weather and climate modelling and specify the requirements to better
describe urban canopy models. These models are based on information
about the spatial configuration of urban areas and about the surface
materials of urban objects that drive surface-atmosphere exchange
processes (e.g. Shashua-Bar et al., 2004; Taleghani et al., 2015; Bruse
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and Fleer, 1998). Knowledge gained from such model simulations can
be used to measure and understand the impacts of climate change on
urban areas. Since these impacts affect the urban population locally
(Grimm et al., 2008), urban planning focuses on the transformation of
cities in response to the changing climate and to develop adaptation
responses in advance (Carter et al., 2015).

A wide range of airborne and spaceborne Earth Observation mis-
sions have previously been used to study details of urban structures
(Voltersen et al., 2014; Cai et al., 2017), urban growth (Esch et al.,
2017; Pesaresi et al., 2016; Bagan and Yamagata, 2012; Herold et al.,
2003) and ecological functions of urban areas (Lakes and Kim, 2012;
Alberti, 2005; Alonzo et al., 2016). With the wider availability of air-
borne imaging spectrometers, studies have been expanded to map and
quantify surface material composition in urban areas (Roessner et al.,
2001; Heiden et al., 2007; Heiden et al., 2012; Okujeni et al., 2013;
Priem and Canters, 2016; Segl et al., 2003; Franke et al., 2009;
Demarchi et al., 2014). The main advantage of using imaging spectro-
scopy data is the rich spectral information content that enables a de-
tailed surface material inventory.

However, airborne imaging spectroscopy data have limited avail-
ability and are cost-intensive and, thus, not applicable for frequent
monitoring of cities. These limitations can be overcome with space-
borne imaging spectrometers, although studies are still rare due to the
limited availability of sensor data. There are a few urban studies using
spaceborne imaging spectroscopy data from former and operating
sensors, such as Hyperion on EO-1 (Cavalli et al., 2008; Fan and Deng,
2014; Weng and Lu, 2008; Weng et al., 2008; Xu and Gong, 2007;
Zhang, 2016) and CHRIS on the PROBA platform (Demarchi et al.,
2012a; Demarchi et al., 2012b; Duca and Del Frate, 2008; Licciardi and
Del Frate, 2011). Data from Chinese platforms such as the HJ-1A and
TG-1 (Tong et al., 2014; Guo et al., 2016) and the Russian Resurs-P fleet
(Zaichko, 2014) are also promising but currently not available to the
public. There are several spaceborne imaging spectrometer missions
planned for the near future such as PRISMA (Guarini et al., 2017),
DESIS (Mueller et al., 2017), EnMAP (Guanter et al., 2015), HyspIRI
(Abrams and Hook, 2013) and HISUI (Matsunaga et al., 2014). These
upcoming missions could provide data on a regular and operational
basis suitable for monitoring urban functionalities.

To explore the full potential of spaceborne imaging spectrometer
data in urban environments, simulated imagery has been used (e.g.
Roberts et al., 2012; Okujeni et al., 2015; Rosentreter et al., 2017).
These studies focus on adapting and improving mapping methods,
where the majority of mapping concepts and techniques has to cope
with the high spectral information content and the complex spectral
mixtures (Small, 2003) that occur in the image data due to diverse
material compositions and structures in the urban environment. A
variety of linear and non-linear Spectral Mixture Analyses (SMA) have
been developed (Shimabukuro and Smith, 1991; Keshava, 2003; Adams
and Gillespie, 2006), all of which estimate abundances of surface ma-
terials within a pixel, provided that all occurring surface materials, so-
called Endmembers (EM) are known (Adams et al., 1986). This concept
was successfully applied to airborne imaging spectroscopy data for
various environments (Adams and Smith, 1986; Asner and Lobell, 2000;
Okin et al., 2001; Asner and Heidebrecht, 2002; Neville et al., 2003;
Roth et al., 2012; Roberts et al., 2017). However, uncertainty in
abundance estimation increases with the number of EMs in a mixing
model (Winter et al., 2003). Therefore, concepts such as Multiple
Endmember Spectral Mixture Analysis (MESMA) (Roberts et al., 1998)
have been developed, which allows the number of EMs per pixel to be
varied and optimized (e.g. Dennison and Roberts, 2003). Further,
mathematical and spatial constraints have been introduced (e.g.
Dennison and Roberts, 2003; Roessner et al., 2001; Rogge et al., 2006;
Franke et al., 2009) to reduce the number of EMs per pixel (Zare and
Ho, 2014), rather than considering all EMs occurring in a scene for
generating the per-pixel mixture model. The EM variability and its in-
fluence on spectral mixture analysis have been discussed in Somers

et al. (2011).
The applicability of spectral unmixing approaches for identifying

surface materials using present and upcoming spaceborne imaging
spectrometer systems is limited. The spatial resolution of most of these
systems ranges between 20m and 30m. Consequently, the number of
EMs per pixel usually increases and the complexity of spectral mixtures
in urban areas can hardly be explained by models containing just a few
EMs. Further, it is challenging to find spectrally pure EMs, which is a
requirement for SMA. The latter problem was tackled by a concept
developed by Okujeni et al. (2013) that uses synthetically mixed urban
spectra applied to simulated EnMAP data of Berlin (Okujeni et al.,
2015) using support vector regression. Sub-pixel abundances of surface
categories such as roofs, pavement, low vegetation and trees could be
estimated with higher accuracies in comparison to spaceborne multi-
spectral data (Okujeni et al., 2015). However, the majority of detailed
surface material related information is lost in this generalization be-
cause the mixed spectra cannot be deconvolved at this high thematic
level. Improvements in mapping the broad vegetation, imperviousness
and soil classes (Ridd, 1995) or extended VIS (vegetation-impervious-
soil) classes (e.g. Weng et al., 2008; Okujeni et al., 2015) could be
achieved by using spaceborne imaging spectroscopy data instead of
multispectral imagery with the same spatial resolution.

By changing the perspective from Earth Observation (EO) images to
the ground, it becomes obvious that even highly heterogeneous land-
scapes such as urban environments contain urban neighbourhoods with
similar structural and compositional characteristics (Tobler, 1970).
Often, these physical characteristics are a result of the specific land use.
Industrial areas serve as an extreme example. They are often composed
of large low-rise to mid-rise buildings and mainly impervious open
surfaces. In contrast to industrial sites, residential areas such as de-
tached housing developments are composed of small low-rise buildings,
pervious surfaces such as gardens and exposed soils. This obvious link
between land cover and land use is reflected in various urban classifi-
cation systems such as the German Urban Structure Type (UST) clas-
sification (Wittig et al., 1998; Gilbert, 1994; Maier et al., 1996) that was
established by urban ecologists to study urban biota. It describes urban
areas as an ecosystem with biotic and abiotic components, whereby the
ecosystem is formed by its history, structure and function (Sukopp and
Weiler, 1988; Wittig et al., 1998; Niemela, 1999). The well-known
Urban Atlas (UA) nomenclature (EEA, 2017) is built by merging
CORINE and the GMES Urban Services to compare the development and
structure of European cities. The UA classes mainly describe land use,
which cannot easily be related to physical parameters such as those
required by urban climatologists (Lefebvre, 2015). Therefore, Stewart
and Oke (2012) developed the Local Climate Zone (LCZ) framework.
This framework explicitly considers the physical characteristics of
urban areas, such as building height and compactness, vegetation
abundance, and surface material characteristics, to serve as input for
urban climate models. However, this framework is also subject to land
use terms, as the class LCZ 10 “Heavy industry” shows, but it reveals the
link between an area's land use and its resulting land cover parameters.

In summary, all of these classification frameworks have in common
that they postulate the existence of urban neighbourhoods with similar
physical, compositional, structural or land use characteristics or a
mixture of it. Urban neighbourhoods are hence also composed of spe-
cific surface material compositions and these compositions are re-
presented by typical spectral mixtures in spaceborne imaging spectro-
scopy data. The existence of such neighbourhood-specific mixtures of
surface materials have been investigated by statistical analyses of
roofing materials and their occurrence in UST classes in Munich,
Germany (Heiden et al., 2003, 2012; Heldens, 2010). Bochow et al.
(2007) successfully used the composition of surface materials, in ad-
dition to structural and form parameters, as a proxy for updating urban
biotope maps in Dresden, Germany. Finally, Earth Observation based
concepts of Vegetation-Imperviousness-Soil (VIS; Ridd, 1995) and ex-
tended VIS studies could show even at a very coarse spatial scale that
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there are areas dominated by high albedo surfaces such as metals and
concrete instead of areas that are more mixed with vegetation. The
above described logic and previous work support the assumption that
neighbourhood-specific surface material compositions and, thus, ty-
pical spectral mixtures are very likely to exist. Bearing in mind the
drawbacks of spectral unmixing approaches, a new methodology is
required to interpret the complex spectral mixtures in spaceborne
imaging spectroscopy data.

A possible way to interpret complex spectral mixtures is to use
gradient analysis, which so far has been used to map species compo-
sitions in natural ecosystems. We can consider the mixture of urban
surface materials in analogy to the species mixture in a natural vege-
tation stand. Species mixtures are not arbitrary but result from the
ecological demands of the individual species and gradients in the pre-
vailing environmental conditions. Each species has an optimal, multi-
variate set of environmental conditions that fully meets its demands. In
consequence, the highest occurrence probability of the species is given
for these optimal conditions (Fig. 1a). The species is also able to subsist
slightly outside its environmental optimum, but with a lower occur-
rence probability. In unsuitable conditions, the species will not occur.
As different species have different demands, the optima of their oc-
currence probability curves on the environmental gradients differ,
while the curves of species with similar ecological demands show some
overlap. This induces a gradually changing species composition along
environmental gradients in mixed vegetation stands. The concept of
gradual changes in species composition in the vegetation continuum,
the so-called floristic gradients, was first introduced by Gleason (1926)
as an alternative to classificatory approaches. It has been successfully
used in several studies for mapping vegetation as continuous fields
based on remote sensing (Schmidtlein and Sassin, 2004; Schmidtlein
et al., 2007; Feilhauer et al., 2011, 2014; Harris et al., 2015; Neumann
et al., 2015, 2016). In the city, gradient analysis was first used by Gu
et al. (2015) to quantify the composition of tree species using multi-
sensor remote sensing data. Besides the fact that the resulting gradient
maps preserve the fuzziness of natural vegetation patterns and, thus,
provide a more accurate generalization rather than discrete classes, the
approach has a fundamental advantage: The gradient concept is based
on the assumption that all pixels are mixed and no “pure” pixel exists. It
is, thus, not necessary to identify EMs to apply the concept. Instead, the
gradients are extracted from a representative sample of mixed species
compositions (Schmidtlein and Sassin, 2004). For this purpose, a gra-
dient analysis is performed to analyse inter-correlations in the dis-
tributions of co-occurring species. The gradient analysis is basically a
dimensionality reduction of the species occurrence data, where the

original n dimensions of a data set with n species is reduced to a few,
independent floristic gradients. It is important to note that the extracted
gradients are non-spatial and only describe gradual transitions of spe-
cies occurrences in the species feature space. No information on the
geographical position of the samples is considered in their extraction.

In transferring this concept to mixtures of urban surface materials,
we follow the hypothesis of the existence of typical surface material
compositions in urban neighbourhoods, assuming that urban surface
materials form patterns of co-occurring cover fractions along a non-
spatial gradient in the material feature space (Fig. 1b). Here, we can
assume that each surface material has a maximum in its distribution
along one or multiple, non-spatial gradients and that these gradients
can be extracted in a data-driven way using the gradient analysis
techniques adopted from ecology. Since the approach treats all urban
areas as mixtures, it may be applicable to spaceborne imaging spec-
troscopy data despite their rather coarse spatial resolution with com-
plex mixed pixels. In the present proof-of-concept-study, we test whe-
ther the gradient concept offers a feasible solution for the analysis of
urban data sets with a high amount of spectral mixtures. In particular,
we aim to answer three questions:

• Are there gradual transitions in the occurrence of urban surface
materials so that the gradient concept can be applied?

• Can these material gradients be related to spectral mixtures and can
their spatial distribution be mapped with imaging spectroscopy data
with 30m spatial resolution?

• How can these spectral patterns be used to retrieve urban material
compositions?

2. Study area

An area of 4.12 km2, east of the city centre of Munich, Germany,
was selected as the study site (48.133045°N, 11.565026°E and
48.106969°N, 11.631842°E). The Isar River with a broad vegetated
river side, mainly east of the river, crosses through the study site from
the southwest to the northeast. Further north, the large and con-
spicuous complex of the German Museum is located on an island. West
of the Isar River, the study site is dominated by buildings originating in
the Wilhelminian time, mainly built in the 19th to early 20th centuries.
This part of the old town is characterized by a dense perimeter block
development with a large variety of different roofing materials and
marginal proportions of open space (see Fig. 2). On the eastern side of
the Isar River, different USTs are alternated. The residential areas can
be generally divided into perimeter and regular block development,

)b)a

Fig. 1. a) Plant species show a maximum occurrence probability on environmental gradients (such as temperature, water, light, and nutrient availability) where the
environmental conditions meet their ecological demand. However, they are able to subsist outside this optimum setting, resulting in a unimodal occurrence
probability on the environmental gradient. b) Similarly, urban materials (here M1 – M7) are assumed to show a unimodal trend in their cover fractions along a non-
spatial gradient in the material feature space. Co-occurrences in these distributions result in characteristic material mixtures that form gradual transitions and may be
mapped with spectral data.
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high-rise buildings, row house development and detached and semi-
detached houses, according to the definition of UST classification in
Heldens (2010). Additionally, the study site is shaped by several in-
dustrial areas with an agglomeration of differently sized halls and
warehouses. The largest industrial area in the study site is located east
of the railway station Ostbahnhof in the northern part. In the centre, a
larger green space indicates the dimension of the eastern cemetery with
a systematic combination of woody and non-woody vegetation tra-
versed by small paths. In the southeastern part, the study site mostly
consists of residential areas with detached and semi-detached houses
with typically higher proportions of vegetation. For sporting and leisure
purposes, several sporting fields and public parks are spread over the
entire study site. In summary, USTs characterizing the study site range
from residential and commercial dwellings to industrial areas, road and
rail network, recreation areas such as sports fields, cemeteries, open
green spaces including forested areas, and a section of the Isar River.
The variety of different USTs accompanied by a wide range of pre-
dominate surface materials embedded in a relatively small-scaled area
provide almost ideal preconditions for investigating urban surface
material compositions and the analysis for urban gradients. For a visual
representation of USTs, refer to Heldens (2010) and Heiden et al.
(2012), who illustrate the differences between the individual USTs
using selected examples of high-resolution orthophotos of the city of
Munich.

3. Data

3.1. Airborne imaging spectroscopy data - HyMap

Imaging spectroscopy data were used for two purposes; first, as a
basis for detailed surface material mapping (Heiden et al., 2012) as a
surrogate for ground truth data regarding the actual material compo-
sition, and second, for simulating EnMAP reflectance of the study site.
These image data were acquired with the HyMap hyperspectral sensor
(Cocks et al., 1998) during the HyEurope 2007 flight campaign on June
17th and June 25th 2007 by the German Aerospace Center (DLR)

Oberpfaffenhofen, Germany. Spectroscopic measurements of the study
site were recorded from a flight height of 2000m for 128 spectral bands
ranging from 450 to 2500 nm, resulting in a pixel size of 4m×4m.
The pre-processing of the image data was carried out as described in
Heldens (2010) and Heiden et al. (2012) and includes radiometric
correction (Cocks et al., 1998), removal of three noisy bands, atmo-
spheric correction, transformation into reflectance values, a nadir-
normalization to correct the brightness gradient with ATCOR (Richter,
2009), geometric correction into WGS-84, UTM zone 32 N using the
software ORTHO (Mueller et al., 2005), and orthorectification based on
a digital terrain model produced from SRTM (Shuttle Radar Topo-
graphy Mission) data (Habermeyer et al., 2008). Heldens (2010) report
an average Root Mean Squared Error (RMSE) of 0.8 pixels after geo-
metric pre-processing.

3.2. Surface material map

A detailed surface material map derived from HyMap data, with 42
initial surface material classes, served as the basis for the sampling and
ordination procedure. Surface materials were identified with an auto-
mated multi-stage processing system (Heiden et al., 2012) based on the
following steps: a) spectral feature-based extraction of EMs (Segl et al.,
2006) using a spectral library of image spectra (Roessner et al., 2011),
b) maximum likelihood classification using the previously determined
EMs to increase the number of spectrally pure pixels in the image
(Roessner et al., 2000; Roessner et al., 2001), c) improvement of surface
material classification based on a digital surface model (DSM) obtained
from a High Resolution Stereo Camera (HRSC) (Heldens, 2010) and d)
iterative linear spectral unmixing to model remaining mixed pixels
while considering two EMs per pixel. At 4m HyMap resolution, almost
half of the pixels correspond to pure material spectra, while the other
half is composed of dominant surface material abundances. In Heldens
(2010) and Heiden et al. (2012), accuracies for the surface material
map were determined with an area-based approach to identify differ-
ences between the surface material map and the validation data origi-
nating from digitized building blocks using 3K aerial orthophotos. The

PVC
polyethylene

roofing bitumen
roofing tar
asphalt
synthetic turf

aluminium

copper
zinc

(vegetated) railway tracks
siliceous sand
soil

vegetated roof

deciduous trees
lawn/ meadow/ dry vegetation

river/ pond/ pool

shadow
unclassified/ facade

roofing tiles

roofing concrete

cobblestone

concrete/ concrete slab

red loose chippings

roofing gravel

0                 500             1.000 Meters 

sample 
100 m 

Fig. 2. Detailed urban surface material map determined from HyMap data with a systematic sampling scheme (Section 5.1) in which circles represent the sample size
and position in the Munich study site. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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accuracies of surface material classes were indicated by a mean abso-
lute error (Willmott and Matsuura, 2005) of up to 14%, with the highest
underestimation of 10% occurring for the artificial material classes
‘asphalt’ and ‘concrete’ and almost 20% for the natural surface material
class ‘deciduous trees’. For individual accuracies of single surface ma-
terial classes please refer to Heiden et al. (2012).

For simplicity and consistency reasons, several material classes were
aggregated, after they were initially differentiated according to spectral
intra-class variabilities, such as different coatings or according to aging
effects. These material instances (e.g. old and new roofing tiles), were
therefore aggregated to surface materials (e.g. roofing tiles). In addi-
tion, classes labelled as unknown, shadow or facades were removed
from the surface material map, since only real surface materials that
can be identified by remote sensing should be analysed with gradient
analysis. The process of aggregation and removal of single material
classes leads to a material map consisting of 27 surface material classes.
This modified surface material map (Fig. 2) was used for the sampling
(Sections 4.1 and 5.1) to analyse material compositions with gradient
analysis (Section 4.2). Table 1 lists the number of pixels in the surface
material map (Fig. 2) for the 27 surface material classes and the frac-
tional abundances within the samples.

3.3. EnMAP data

The HyMap data were also used as input to simulate EnMAP re-
flectance values of the study site (Fig. 3) using the end-to-end simulator
(Segl et al., 2012). The simulated EnMAP data are characterized by a
ground sampling distance of 30m and 242 spectral bands ranging from
423 nm to 2439 nm. Sensor specific characteristics for the prospective

EnMAP mission are given in Guanter et al. (2015). In the range of the
overlapping spectral bands (904 nm to 985 nm) of the two sensors
(VNIR and SWIR), only the spectral bands of the SWIR sensor were
used. Additional spectral bands ranging from 1358 nm to 1429 nm and
1318 nm to 1960 nm were eliminated due to atmospheric water ab-
sorption.

The samples shown in Fig. 2 (see Section 4.1), are also used for the
extraction of spectral signatures and their subsequent linkage to the
gradients obtained from the surface material compositions. For this
purpose, the mean simulated EnMAP reflectance values of all pixels
whose centre coordinates lie within a sampling polygon were calculated
and used for the further analysis.

4. Methods

The complex material compositions in the urban environment are
subjected to gradient analysis in order to analyse patterns of co-oc-
curring cover fractions. Fig. 4 provides an overview of the required
input data, the main processing steps (sampling, ordination, regression
and prediction) and the resulting outputs from gradient analysis.

4.1. Sampling

The intention to analyse urban material compositions in simulated
EnMAP pixels with gradient analysis requires a fundamental under-
standing of the occurrence of surface materials with regard to material-
specific gradual transitions. This information can be obtained by de-
fining samples from the surface material map (Fig. 2) with the aim to
describe all occurring surface material classes and their compositions.
Material compositions in the study site were analysed by means of a
systematic sampling grid consisting of 153 circular polygons, each with
a diameter of 100m, evenly distributed over the study site (Fig. 2). The
polygon diameter of 100m was chosen to ensure that mixtures of ma-
terials are present in each sample and that each polygon is covered by
multiple simulated EnMAP pixels. Polygons were arranged with inter-
distances of 300m between the centre points of each polygon. A sys-
tematic sampling scheme has the advantage that the urban space is
sampled with a homogeneous spatial density; the inter-distances were
used to mitigate effects of spatial autocorrelation in the data. Conse-
quently, the sampling fully covers the diverse urban structures dom-
inating the study site. Cover fractions of single surface material classes
per sample were stored in a database (material table) that was finally
used as input for the analysis of surface material compositions using the
ordination method.

4.2. Ordination

The matrix of surface material cover fractions per polygon was
passed on to a gradient analysis to extract the main gradients in surface
material composition from the data. The gradient analysis arranges the
sampling polygons according to their material composition in a multi-
dimensional gradient space. No information on the geographic position
of the sampling polygons is considered; hence, the resulting gradients
are feature space gradients and not spatial gradients. Samples with si-
milar material compositions are located nearby in the gradient space,
whereas samples with very dissimilar material compositions are located
on the opposing end of a gradient axis. The gradients are numbered in
hierarchically decreasing order, i.e. the first gradient is the longest and
most pronounced one, higher order gradients are less prominent. The
position of each sample in the gradient space is indicated by a nu-
merical score – the so-called gradient score – which is determined by
the ordination in order to evaluate its similarities with respect to the
composition of the material classes and their cover fractions. These
gradient scores are an indicator of the surface material composition in
the sample and were, therefore, used as response variables in spatial
extrapolation models.

Table 1
Categorisation of urban surface materials (with material abbreviations) into
material groups, including total and sampled cover fractions per surface ma-
terial in the Munich study site.

Material Group Surface
Material

Abbreviation Total pixels
in surface
material map

Sampled
Cover
Fractions in
[%]

Minerals roofing tiles rtil 66,886 9.2%
roofing
concrete

rcon 27,440 7.4%

roofing gravel rgra 8,206 11.1%
concrete fcon 42,104 10.2%
concrete slabs pcon 11,015 8.7%
loose chippings prlc 20,546 10.7%
cobblestone pcob 47,358 8.5%

Metals copper rcop 13,366 8.6%
zinc rzin 7,607 8.0%
aluminium ralu 10,466 8.5%

Hydrocarbons PVC rpvc 13,434 8.2%
polyethylene rpol 8,625 9.2%
roofing
bitumen

rbit 14,883 8.3.%

roofing tar rtar 29,249 8.8%
asphalt fasp 84,854 8.1%
synthetic turf fkun 3,209 9.1%

Vegetation deciduous trees vdec 172,784 8.1%
lawn vlaw 16,983 8.7%
meadow vmea 87,525 8.9%
dry vegetation vdry 35,690 8.9%
vegetated roof rveg 18,879 8.0%

Soil and Water siliceous sand bsan 11,765 8.9%
humous soil bsoi 2,978 6.0%
river wriv 4,518 10.7%
pond wpon 4,691 8.5%

Railway tracks railway tracks prail 10,811 7.2%
vegetated
railway tracks

prailveg 11,546 8.1%

Total Σ (100%)
787,418

∅ 8.7%
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Several techniques can be used to perform a gradient analysis; here,
we used detrended correspondence analysis (DCA; Hill and Gauch,
1980), since DCA is an established technique in vegetation science and
has been successfully used for gradient mapping before (e.g.
Schmidtlein and Sassin, 2004; Feilhauer and Schmidtlein, 2009;
Feilhauer et al., 2011). In the present study, the selection of DCA was
simply based on the authors' good experience with this technique in
ecological analyses. No systematic analysis of the performance of DCA
for urban gradient analysis in comparison to other techniques were
conducted. In consequence, other methods for gradient analysis could
have likewise been used for this pilot study. In ecology, DCA is used to
model a sample distribution of varying plant species assemblages on the
basis of unimodal occurrence probabilities along environmental

gradients. The underlying assumption here is that species' occurrence is
maximized in optimal environmental conditions. This behaviour can be
determined in species samples of cover abundances that are collected
over wide ranges of external gradients. For every species, a Weighted
Average (WA) over all samples of cover abundances can be calculated
using Gradient Values (GV) as weights. Subsequently, the samples and
species are projected into a rank-ordered WA x GV matrix. The resulting
matrix represents species abundances in a diagonal structure, where
dissimilarities between species and gradient responses are maximized at
the endpoints of the diagonal. In DCA, the gradients are not measured a
priori. They start with random values and will be iteratively re-calcu-
lated until an optimal diagonal matrix is generated. Hence, the resulting
GV represents a factor variable that allows for an optimal delineation of

Fig. 3. Simulated EnMAP data for the Munich study site based on HyMap data. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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species variance within the samples. Since one gradient often does not
account for the total variance in species composition (samples with
different species assemblages can be close together in a one-dimen-
sional projection), additional axes are generated using decorrelated GVs
for the iteration. The overall procedure was introduced as reciprocal
averaging (Hill, 1973). In analogy to species abundances, the urban
material cover can be used for the averaging cascade in order to cal-
culate the diagonal representations of material samples within an urban
gradient space. Because the gradients result from correspondence
analysis, they are both unscaled and sometimes affected by artefacts.
For this reason, a rescaling and detrending process was introduced in
DCA. Although this correction is subject to criticism due to its mathe-
matical inelegance (McCune et al., 2002), it is a well-performing and
pragmatic technique that is frequently used in ecology. A major ad-
vantage of DCA over other algorithms for gradient analysis is the
scaling of the axes in Standard Deviation (SD) units, which allows a
detailed analysis of the compositional turnover in the gradient space: a
distance of four SDs on a gradient indicates a full turnover, e.g. two
samples with an inter-distance of four SDs have no surface materials in
common (Hill and Gauch, 1980). Samples with a shorter inter-distance
share at least occurrences of some materials. To mitigate an overly
prominent influence of rare materials on the ordination result, we used
the built-in downweighting option in our set up.

The number of gradients to be considered in the analysis is de-
termined from the respective gradient lengths, and the percentage of
total variance in the data set explained by the gradients. Short gradients
that explain only a small percentage of the total variance are often very
difficult to interpret, and hence, dismissed from the analysis.

4.3. Regression modelling and prediction

The gradient scores of the polygons were subsequently regressed
against the averaged simulated EnMAP reflectance spectra (Section 3.3)
of the corresponding pixels using Partial Least Square Regression
(PLSR; Wold et al., 2001). PLSR establishes a linear relationship be-
tween the reflectance values in the spectral EnMAP bands as predictor
variables and the corresponding DCA scores as response variables. A
separate model is built for each DCA axis. PLSR builds the regression
using latent vectors in order to handle the high degree of inter-corre-
lation of the spectral bands, to cope with the small number of samples
compared to the large number of spectral bands, and to maximize the
performance of the models. These latent vectors are linear combina-
tions of the original spectral bands that contain, on the one hand,
maximum spectral information and, on the other hand, are optimized
towards a good representation of the response variable. The spectral
information content is hierarchically decreasing from the first to the
higher order latent vectors. The number of latent vectors resulting in
the smallest validation error was identified and used for the final model
to minimize the risk of over-fitting. This number is determined in an
elaborate procedure by analysing trends in the cross-validation RMSE.
Here, we used a 10-fold cross-validation for this purpose. The im-
portance of the individual spectral bands in the model is determined by
considering the variability of the regression coefficients across the
cross-validation steps (Martens and Martens, 2000). A stable and high
absolute value of the coefficient in all steps of the cross-validation in-
dicates a high importance of the spectral band for the regression. This
approach allows for an efficient backward selection of spectral bands
and an iterative refinement of the model towards an optimized set of
spectral bands that is both parsimonious and has a strong and reliable
predictive power (Schmidtlein et al., 2012). The models are finally
applied to the image data for a spatial prediction of the DCA scores
across the study area.

5. Results

5.1. Sampling

The sampled cover fractions of the study site are relatively similar
(6%–11.1%), independent of the total coverage of the respective ma-
terial classes (Table 1). The similar cover fractions of individual ma-
terials in the samples show that the sampling schema considers all
materials equally, independent of their actual occurrence in the study
site. Cover fractions for each surface material class per sample de-
monstrate the heterogeneity of material compositions in urban areas,
even in these small observation units of the samples. Material compo-
sitions in the samples (Fig. 2) are formed by 4–26 different surface
materials. The complexity of material compositions varies depending
on the size of the urban objects and the position of the samples in the
study site. Therefore, highly diverse material compositions occur more
frequently in densely built-up areas of smaller objects (e.g. Wilhelmi-
nian styled urban neighbourhoods) and in industrial shaped neigh-
bourhoods, than in relatively homogeneous areas such as open green
spaces. Samples with the highest number of different surface materials
are represented by block developments located in the north and in the
transitional area of industrial and residential neighbourhoods in the
south of the test site.

5.2. Ordination

The two main gradients determined with the DCA have an axis
length of 3.1 SDs for the first gradient and 2.1 SDs for the second
gradient. Samples are distributed in the material-specific DCA-space
according to the determined gradient scores of the samples for both
gradients (Fig. 5). The material-specific DCA-spaces visualize the dif-
ferences in the occurrence of individual material classes in the sampled
study site (see Table 1).

For easier interpretation of the gradients, the samples were pro-
jected onto the corresponding axis. Most material classes show a max-
imum occurrence along the gradients, as indicated by the position and
size of the circles (Fig. 5). The left part of gradient 1 (negative DCA
scores) is covered by dominant vegetation classes such as trees and
meadows. The right part of gradient 1 (positive DCA scores) is mainly
dominated by roofing minerals and hydrocarbons, but also by materials
typically used for roads such as concrete (fcon) and asphalt (fasp).
Generally, all material classes show dominant occurrence patterns
along the first gradient.

Maximum occurrences for the material classes rtil, rtar, fasp, and
rcop are shown along the lower (negative) part of gradient 2, while
rcon, rgra, fcon, and rpol mainly occur on the upper (positive) area.
Some material classes (e.g. vdec) do not have a maximum occurrence
along the second gradient but occur across the entire axis with almost
even cover fractions. This is also shown by the different colour hues of
the samples along the second gradient. The maximum occurrences of
materials can be visualized by a biplot scaling of the samples. For this
purpose, material vectors were defined on the basis of the DCA scores,
which determine an orientation of the occurrence of materials in the
DCA-space (Fig. 6). These vectors, together with the material-specific
DCA-spaces (Fig. 5), serve as a tool for interpreting the gradients.

5.3. Regression modelling

The best PLSR model for gradient 1 (Fig. 7a) resulted in R2= 0.85
for calibration and R2= 0.84 in 10-fold cross-validation. The final
model was based on 35 spectral bands (distributed over the entire
spectral range). These bands were selected because they survived the
backward selection process and were then summarized to two latent
vectors. The respective model error is indicated with an RMSE of 0.23
SDs for calibration and 0.24 SDs for validation. The model for the
second gradient included five latent vectors based on 13 spectral bands
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Fig. 5. Material-specific DCA-spaces facilitate the visualization of varying cover fractions in the samples to determine maximum occurrences of individual material
classes. The position of a circle centre defines the position of a sample and its material composition in the DCA-space, while the circle diameter visualizes the
material-specific cover fractions in each sample. The samples are coloured as a result of the transformation of the DCA-space into a colour space (see Fig. 9b).
Accumulated samples indicate the maximum occurrence of this material in the gradient space. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Fig. 6. Biplot scaling of the main material groups a) minerals, b) hydrocarbons, c) metals, d) vegetation, and e) the remaining material classes, composed of soil,
water, and railway tracks (see Table 1), to visualize the maximum occurrences of individual material classes in the DCA-space (represented by the position of material
names in the DCA-space).
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(mainly distributed in the SWIR region) with a fit of R2= 0.71 for ca-
libration and R2= 0.67 for validation (Fig. 7b). The respective RMSE
for the calibration of gradient 2 was 0.21 SDs and 0.22 SDs for vali-
dation.

5.4. Mapping of DCA scores

The regression models for the first and second gradient have been
applied to the simulated EnMAP data. Pixels with predicted DCA scores
exceeding±0.5 compared to the minimum or maximum DCA scores
determined for the samples are not taken into account (white pixels), as
these ranges were not covered by the sampling. A colour bar corre-
sponding to the gradient axis is used to visualize the predicted DCA
scores for gradient 1 (Fig. 8a) and gradient 2 (Fig. 8b). Fig. 8a and b
show the formation of different spatial patterns based on the specific
material compositions of the respective gradient, which do not coincide
and, thus, give an indication of different information represented by
each gradient.

The composite map in Fig. 9a combines predicted DCA scores for
gradients 1 and 2, resulting in Cartesian coordinates for each pixel. The
colour values of the pixels are taken from the position of the co-
ordinates in a two-dimensional colour space (shown in Fig. 9b) that is
related to the DCA-space. Accordingly, different material compositions
are marked by different colour shades of the pixels in the prediction
map (Fig. 9a). Similarly, coloured patterns indicate similar material
compositions. Fig. 9b shows the colour scheme that is assigned to the
DCA-space of both gradients with selective surface materials (written in
white). The position of the surface materials in the coloured DCA-space
highlights their maximum occurrence according to Fig. 6. However,
similar to Fig. 9a, the colour hues need to be interpreted as surface
material compositions.

The black solid and dashed boundaries in Fig. 9b results from the

visual analysis and interpretation of the prediction map (Fig. 9a) that is
described in detail in Section 6.2. First visual inspections indicate that
the UST classification of Munich (see Section 1) widely corresponds to
the patterns in the prediction map (Fig. 9a). We used this correlation to
interpret the colour hues with respect to a characteristic material
composition. For this purpose, we (1) selected samples from Fig. 2 that
are unambiguously assigned to a specific UST using corresponding
historical GoogleEarth orthophotos (Fig. 9a.I-VIII). The positions of the
samples are marked by Roman numerals plotted into the prediction
map. Subsequently, these samples were (2) highlighted in the colour-
coded DCA-space, which leads to the formation of clusters of samples
with similar material compositions. (3) Further samples are integrated
into these clusters, which are adjacent to the representative samples
(Fig. 9a.I-VIII) in the DCA-space, until a new assignment of samples no
longer alters the UST clusters. Finally, (4) the resulting clusters were
used to delineate USTs in the colour-coded DCA-space (solid and da-
shed lines in Fig. 9b). These cluster boundaries of USTs should not be
viewed as discrete class boundaries but should characterize a prob-
ability of the occurrence of material composition that is characteristic
for a certain UST. The delineated boundaries support the analysis of
characteristic material compositions of USTs.

5.5. Analysing characteristic material compositions

Characteristic material compositions of USTs were analysed in order
to gain an advanced understanding of typical spectral mixtures of si-
mulated EnMAP pixels in the urban scene. For this purpose, the selected
samples extracted from the sampling scheme (Fig. 2), as shown in
Fig. 9a.I-VIII, were analysed for the co-occurrence of individual mate-
rial classes and their cover fractions. Therefore, the material classes
were aggregated to the four main material groups – minerals, metals,
hydrocarbons and vegetation, according to Table 1. The material
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classes of soil and water were not considered, as these classes do not
frequently occur in the study site, nor the urban structure railway
tracks, as these are not among the observed USTs (Fig. 9a.I-VIII).
Abundances of individual material classes were averaged for all sam-
ples per USTs. On the basis of these observations, the USTs are de-
scribed by the most co-occurring cover fractions of dominating material
classes; thus, material classes with frequencies below 5% were ne-
glected in further analysis. Based on these statistics of averaged mate-
rial cover fractions, the two most prominent material classes of each
material group are displayed in Fig. 10, representing the most common
surface materials for a particular UST of the study site.

6. Discussion

6.1. Do gradients exist in urban material composition?

The results in Figs. 5 and 6 demonstrate the maximum occurrence of
material classes, which correspond to the theory of the probability
distribution along the respective gradient axis introduced in Fig. 1. This
indicates the applicability of the gradient concept for the analysis of
complex material compositions in cities. The gradient interpretation is
based on the analysis of dominant material distributions (determined
from material-specific DCA-spaces, Fig. 5) along a corresponding gra-
dient. On gradient 1, vegetation types mainly dominate the negative
range of the DCA-space, while their cover fractions decrease towards
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the positive end of the axis. In contrast, artificial materials such as fasp,
fcon, and rbit, which are often used for rooftops and streets of larger
manmade urban objects, dominate the positive end of the gradient 1
and, thus, can be interpreted as a gradient of imperviousness. The in-
terpretation of the second gradient, with a shorter axis length, is more
difficult. Artificial material groups such as minerals and hydrocarbons
dominate both the negative and positive range of gradient 2. From the
dominant occurrence of individual material classes along the gradient
axis, possible conclusions can be drawn about land use and the func-
tions of the built-up areas. For instance, materials that mainly occur in
industrial areas have positive DCA scores on the second gradient (e.g.
rcon, fcon, and rpol), while the negative DCA scores are dominated by
roofing materials such as rtil, rtar and rcop, which are typically found in
residential areas of European cities (Wittig et al., 1998). The maximum
occurrences of individual surface materials in the samples are high-
lighted in the biplot scaling (Fig. 6).

The position of the materials in the biplot scaling is also important
for the interpretation of the gradients. The further away the maximum
occurrences of the material classes from the origin of the DCA-space
(the longer the material vectors), the more reliable the prediction of the
occurrence of materials. The vector length is also influenced by the
frequency of material occurrences in the study site. For example, vdec is
represented by 172,784 pixels (Table 1) in the study site, showing a
long material vector. In contrast, bsoi, wpon and wriv have the lowest
number of pixels in the study site (2978, 4691 and 4518 pixels) ex-
pressed in short material vectors. It shows that the sampling scheme is
important because it represents the material abundances in the study
site. Nevertheless, the dominant material occurrences and their gradual
transitions show the formation of two interpretable urban gradients
analogous to the formation of floristic gradients on the basis of max-
imum occurrences of plant species.

The visualization of the maximum occurrences of material classes
along the gradient axes (Fig. 6) also indicate co-occurrences of mate-
rials. This means, for example, that in our study site, buildings covered
with roofing tar (rtar) are often located in the neighbourhood of
buildings with tiled roofs (rtil) and the streets are mostly asphalted
(fasp), whereas, in areas with a higher occurrence of polyethylene on
roofs (rpol), roofing tiles (rtil) are rarely found. These observations also

confirm the neighbouring occurrence of similarly composed samples in
the DCA-space. The probability of co-occurring material classes sup-
ports the assumption of the existence of typical spectral mixtures in
30m simulated EnMAP pixels. A drawback of the wider applicability of
this method could be the necessity of immense ground truth data. Since
generating ground truth information can be very time- and cost-intense,
if the samples are derived from field surveys or other non-automated
approaches, a detailed surface material map derived from airborne
imaging spectroscopy and height data is used in this study. This solid
data base was necessary to prove the existence of material gradients in
this study site, which is one of the major requirements to proceed with
investigations about the transferability of this concept. Since transfer-
ability analysis goes far beyond the scope of this paper, it should be
analysed in future studies focusing on the robustness of the gradients
and the regression models.

6.2. Are urban material gradients linked to complex spectral mixtures?

Results of the PLS regression analysis (Fig. 7) show strong correla-
tions between visually recognizable patterns of the simulated EnMAP
reflectance and gradual transitions of materials, especially in the first
gradient. The shorter length of gradient 2 led to a slightly weaker va-
lidation fit of the model compared to gradient 1. This also explains the
difficulties in interpreting the second gradient (Section 6.1).

The subsequent mapping of gradient 1 on the entire simulated
EnMAP image (Fig. 8a) allows the prediction of co-occurring cover
fractions and their pattern formation. Fig. 8a clearly shows spatial
patterns that are associated with green spaces on the one hand and
built-up areas on the other hand. Based on the patterns in Fig. 8a, we
observe a decrease in the proportion of vegetation coverage and, at the
same time, an increase in imperviousness with increasing DCA scores.
These findings are in line with the observation regarding the dominance
of vegetation classes in samples with negative DCA scores on axis 1 to
high cover fractions of roofing and paving materials on the opposing
end of the gradient (Fig. 5). Thus, gradient 1 expresses a rural-to-urban
transect (increasing urbanity from blue to red).

The prediction of gradient 2 shows new patterns (Fig. 8b) that in-
dicate additional gradual information originating from material
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material groups for a selection of averaged samples per UST (Fig. 9a.I-VIII). The class ‘others’ comprises the remaining materials of the four main material groups as
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occurrences. It is observed that pixels with predicted very high positive
DCA scores (red) for the second gradient are dominated by a compo-
sition of material classes with typically high albedos in the VNIR range
(bright material classes such as rpol), while very low predicted negative
DCA scores (dark blue) correspond to material compositions of rather
darker artificial materials, such as rtil. However, these findings can only
be observed for the very high and very low DCA scores, while material
compositions of pixels that are in the middle of the gradient space do
not fully correspond to this behaviour. Thus, a dominant occurrence of
materials along a brightness gradient (Small and Lu, 2006) for the
second gradient axis cannot be observed. Compared to the lower DCA
scores (blue), the very high DCA scores displayed in reddish shades
indicate a material composition that is rather unique. These pixels were
mainly composed of similar materials and characterize areas whose
material composition is rarely found in the study site, such as larger
sand areas or homogeneous roofs of larger storage halls. Variations in
blue patterns (DCA scores ranging from −1.5 to 0) represent urban
neighbourhoods with different building sizes and building orientations.
Light-blue to green patterns are associated with (semi-) detached
houses, while row house constructions appear in dark blue (an adjacent
pattern can be observed, for example in the northeast of the study site).
Mid-blue patterns are associated with perimeter block development and
high-density block development (Wilhelminian time) in the southwest
and northwest of the study site. Thus, the second gradient can be in-
terpreted as a structural gradient, although no structural information
was used in this study. Since the colour differences in Fig. 8 indicate
different material compositions, structural differences are most prob-
ably related to a certain material composition in the simulated EnMAP
pixels.

By combining the two gradients, new patterns that are associated
with spectral mixtures in the simulated EnMAP data can be found. The
patterns in Fig. 9a generally correspond to patterns from the surface
material maps. Interpretation of the coloured patterns in terms of ma-
terial compositions was carried out by visual inspections of the surface
material map. As a result, patterns with a greenish shade are char-
acterized by exceptionally high proportions of vegetation classes such
as vdec and vmea. Predominantly industrially shaped regions with a
significantly increased proportion of artificial materials, such as hy-
drocarbons, are characterized by yellowish pixels. The patterns in dif-
ferent shades of red characterize the various residential neighbour-
hoods, such as (semi-)detached houses, row houses, and block
developments. Each of these is composed of a characteristic material
mixture. The structural differences between the neighbourhoods de-
scribed for gradient 2 (Fig. 8b) are still present in the combined pre-
diction map. These findings are also supported by the orthophotos of
different types of buildings shown in Fig. 9a.I-VIII. Therefore, we con-
clude that the differentiation of the structural information must in-
directly result from the material compositions that determine the
spectral mixtures of simulated EnMAP pixels. These findings are sup-
ported by a study of Roberts et al. (2017) that already showed the
correlation between material fractions, determined with MESMA, with
structural information regarding height differences in urban environ-
ments. In forests, relationships between canopy structure and leaf bio-
chemistry were found in imaging spectroscopy data (Wang et al., 2017;
Knyazikhin et al., 2013). In summary, the patterns in the combined
prediction map enable a finer differentiation of the rural-to-urban
transition formed by gradient 1 (Fig. 8a) and confirm the existence of
co-occurring cover fractions of individual material classes in the si-
mulated EnMAP pixels.

One might argue that a simple Tasseled Cap transformation (Crist
and Kauth, 1986) of multispectral data results in a similar spatial pat-
tern as displayed in the gradient maps. In particular, the first DCA axis
with a gradual change in vegetation cover resembles the greenness
component, while only the extremes of the second DCA axis corre-
sponds to the brightness component; however, the interpretability of a
Tasseled Cap transformed image is largely limited to increases in

brightness and greenness, whereas the DCA-space enables more de-
tailed conclusions. This includes the opportunity to draw pixelwise
conclusions on the occurrence probability of specific materials based on
their distributions in the DCA space (Fig. 5) and the ability to quantify
the spatial turnover and functional diversity of materials along the
gradients (see, e.g., Feilhauer and Schmidtlein, 2009 and Rocchini
et al., 2018 for similar analyses targeting vegetation patterns). Neither
of this is possible with a Tasseled Cap transformed multispectral image.
We thus consider the additional effort required by the application of the
gradient concept as justified by the additional information provided.

6.3. Do spectral patterns correspond to characteristic material
compositions?

The interpretation of gradients discussed above and the patterns in
the prediction map of DCA scores (Fig. 9a) for the composed gradient
models (Section 6.2) can be related to the patterns of the main USTs
classification of the study site based on their material compositions. The
selected samples of USTs (Fig. 9a.I-VIII) were analysed in regard to
their dominating material cover fractions in order to specify their
characteristic material compositions. Fig. 10 shows that material
compositions are distinctive for all of the selected samples.

Even in visually similar USTs such as row houses and (semi-) de-
tached houses, the characteristic material compositions vary, especially
in the occurrence of different types of hydrocarbons. The findings are in
line with the formation of patterns in the mapping of the second gra-
dient (Fig. 8b). The patterns visualize the structural differences of the
USTs resulting from the different material compositions (Roberts et al.,
2017) and, thus, enable their differentiation. In contrast, the USTs high-
rise buildings and industry manifest the composition of the same co-
occurring materials, but with varying cover fractions of material classes
and also different proportions of remaining material classes. The similar
material composition of the most commonly co-occurring material
classes is also observable by the narrow positions of the two USTs in the
legend (Fig. 9b) and verifies the difficulties in the discrimination of
these two types in the prediction map. This may also be due to the fact
that high-rise buildings are rather underrepresented in the study site
(only three samples were available). The discrimination of the two USTs
could be tackled by using additional information on the building
heights, which can be derived from a digital surface model. In addition,
it was observed that the samples of unambiguously assignable USTs
consist of at least 2/3 co-occurring cover fractions of characteristic
material classes. Through its capability of linking the knowledge of
typical material compositions with urban structures, gradient analyses
is a powerful tool to map characteristic material compositions in 30m
imaging spectroscopy data of urban areas.

Further testing is required to answer the question whether the urban
gradient space can similarly be mapped with multispectral data or
whether such detailed information can only be retrieved from IS data. A
first hint is given by the regression coefficients of the PLSR model for
the second gradient. These coefficients (not shown here) indicate the
high explanatory power of narrow wavelength regions in the SWIR for
this gradient. In particular man-made materials such as metals and
hydrocarbons as well as minerals show specific absorption features in
these wavelength regions. Since the second gradient largely describes
variation in these materials, the regression coefficients are in line with
the pattern to be expected. Multispectral sensors provide only a few
broad bands in the SWIR region; we thus expect that multispectral data
are less suitable for modelling the second gradient.

7. Conclusion and outlook

According to our best knowledge, this is the first study that retrieves
surface material compositions from simulated spaceborne imaging
spectroscopy data with a spatial resolution of 30m. A concept devel-
oped for mapping floristic gradients in natural environments was
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applied to an urban test site in Munich, Germany, to explore the cap-
ability of this method to retrieve surface material compositions from
30m simulated EnMAP data. It has been demonstrated that there are
gradual changes in material compositions in urban areas and that these
gradients can be related to patterns of surface reflectance of simulated
EnMAP data. The predicted gradient scores for the simulated EnMAP
data results in patterns of material compositions that are related to a
rural-to-urban transect (gradient 1) and allow the differentiation of
structural subtleties associated with urban structures (gradient 2). The
first gradient ranges from fully pervious materials, such as different
vegetated surfaces, water bodies and open soils, to fully impervious
materials such as roofing materials, concrete and asphalt pavements
and metals. Although the second gradient is not as pronounced as the
first gradient, it contains information about material related structural
subtleties that can be linked to the use and function of built-up areas. A
brightness gradient as, for example, described in Small and Lu (2006)
could not be clearly observed in both gradients.

It is, however, important to note that DCA and, thus, also the gra-
dient approach used in this study are data-driven and the extracted
gradients are not simply transferable to other urban environments. The
gradient analysis only considers materials that are included in the
training dataset. Due to this fundamental constraint, the DCA-space
only describes gradual transitions in the material composition of
Munich. Any other urban environment may comprise new materials
that are not represented by the Munich dataset. The Munich gradients
are most likely not fully suitable to describe these environments, and
customized gradients have to be determined from a local training da-
taset. However, this opens up the potential for further investigations.
Since the underlying approach is data-driven, the robustness of the
identified gradients needs to be tested. The consideration of a larger
area of Munich, including more and possibly different urban materials,
would be the first step to analyse the robustness of the gradient inter-
pretation. Special emphasis should be placed on previously under-
represented material compositions of common urban structures (e.g.
high-rise buildings) and neighbourhoods with similar material compo-
sitions such as “industry” and “high-rise buildings”.

In addition, the influence of sample size and sample distribution
should be further analysed. If the polygon area is large enough to
contain a mixture of different materials, the gradient analysis will al-
ways come to a result, even if the material composition does not change
gradually. However, in this case, the dimensionality reduction will be
rather weak and result in many short gradients that are hardly inter-
pretable. On the other hand, if the polygon area is too small, the gra-
dient analysis will fail to extract the gradients since the co-occurrences
of materials are not adequately represented in the sampled data. In our
study, the gradient analysis resulted in two long gradients that could
easily be interpreted. This indicates that the polygon diameter of 100m
was sufficient for the purpose of this study. The quantity and size of the
samples (Fig. 2) result in a sampling coverage of 8.6% of the total area,
with the proportion of 6–11% (Table 1) for each material class re-
gardless of its occurrence in the study area. Accordingly, natural over-
or under-representations of material classes are taken into account and
also confirm the suitability of the selected sampling scheme for Munich.
Further research is needed to investigate the effects of the sampling
scale and design on the ordination outcome. This is an important aspect
to investigate the transferability of the approach to other cities.

The study presented in this paper reveals the potential for de-
termining urban surface material compositions from data of upcoming
spaceborne imaging spectroscopy missions such as EnMAP, PRISMA or
HISUI. Although the pixel size of this data (30m×30m) is too coarse
to resolve most of the urban objects, the gradient analysis seems to be a
suitable method to investigate the resulting complex spectral mixtures.
The advantage of using the gradient analysis is that 1) no pure EMs are
required and 2) material compositions and material co-occurrences can
be retrieved that go beyond VIS or extended VIS categories. Thus,
spaceborne imaging spectroscopy data could be a valuable and

complementary data source for urban studies where surface material
information are essential such as for urban climate modelling, urban
physical modelling and for sustainable urban planning. The design of
the presented study and the achieved insights build an important fun-
dament for future analyses that will explore the extent and conditions
to which the gradient concept can be transferred to unknown urban
areas.
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