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Abstract

In magnetically confined fusion plasmas, MHD instabilities such as the Edge Local-

ized Modes (ELMs), present in current devices, need to be kept under control in order

to avoid too high heat fluxes on plasma facing components. Therefore, substantial

efforts have been focused on developing techniques to mitigate these instabilities.

Among these methods, one of the most promising techniques is the application of

external Magnetic Perturbations (MPs), which have been observed to effectively mit-

igate or even suppress ELM instabilities. However, the inclusion of a 3D perturbative

field has a strong impact on the plasma stability and confinement.

Fast-ions (i.e. supra-thermal ions) resulting from the fusion device plasma heat-

ing systems and fusion reactions require a good confinement to preserve the device

performance and integrity. Therefore, the study of the impact that perturbative

fields have on energetic particles is crucial to assess and design the MPs systems in

future machines like ITER.

In this thesis, dedicated experiments in AUG have been carried out to analyse the

fast-ion transport dependence on the poloidal spectra of the perturbation, showing

that the amplitude of the observed fast-ion losses depends strongly on the ener-

getic particle phase space and poloidal mode spectra of the external perturbation.

The transport mechanism underlying these experimental results has been analysed

through realistic numerical simulations using the ASCOT code. The results of these

simulations have been combined with an analytical theory of nonlinear wave-particle

resonances. This has shown that the combination of multiple linear and nonlinear

resonances with the applied perturbative fields create a region where resonant trans-

port is maximised. This transport occurs at the plasma edge and depends on the

perturbation poloidal and toroidal spectra, as well as the magnetic equilibrium and
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particle orbit topology. The impact of the collisionality and the radial electric fields

on these resonances has also been assessed throughout this work. This analysis con-

tributes to the ability to control the resonant transport at the plasma edge, which

opens new avenues for the control of the energetic particle population and associated

MHD fluctuations in future burning plasmas.
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Chapter 1

Introduction

1.1 Fusion as energy source

To satisfy the energy demand derived from the current technological progress and

increasing population, nuclear fusion appears as a clean energy source alternative to

fossil fuel, which at present represents ≈80% of the global primary energy consump-

tion [1]. The use of fossil fuel as the main energy source is not only restricted by the

limited resources, but also by its capacity to increase dramatically the green house

emission levels.

Nuclear fusion releases energy when two light nuclei combine into a heavier ele-

ment following Einstein’s famous mass relation. This process has been observed in

nature as the way in which stars are fueled. In the sun, the energy is extracted from

the conversion of two protons into helium through a three step fusion process called

the proton-proton chain [2].

To achieve fusion, the reactants must overcome the Coulomb barrier. This issue

is solved in the case of the stars by means of the large gravity forces caused by

their huge masses. On the Earth, as it is impossible to reproduce the intensity of

the gravity field, the solution involves heating the nuclei up to several keV. How-

ever, this alternative is limited by the reactivity of the nuclear processes. In figure

1.1 the cross sections of various reactions as a function of the kinetic energy are

6
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Figure 1.1: Cross-sections corresponding to different fusion reactions as a function of the
kinetic energy [3].

shown. This indicates that the most promising reaction to reproduce on Earth is the

D + T → He + n, which releases 17.6 MeV of energy, reaction as it has the largest

reactivity at the lowest energy.

The D-T reaction is not only the most favourable one in terms of reaction rate, but

also regarding the availability of the reactants. Deuterium is abundant on earth and

can be found in sea water. Tritium is more rare, but can be obtained from Li and

the resulting neutrons from the D-T reaction. The neutrons produced in the D-T

reaction carry most of the energy released, so they can also be used to boil water

into steam to generate electricity.

At the high temperatures required to achieve fusion reactions, the matter is in a

ionised state dominated by collective phenomena and self-organised called plasma.

To achieve controlled fusion on earth as a viable energy source, the power balance of

the process must be positive, i.e. the energy released from the fusion reaction must

be higher than the energy provided to heat the plasma, taking into account that the

conversion process of energy released into useful energy entails additional losses. If

the energy provided by the fusion reaction itself is enough to maintain the fusion

processes without any external input power, the plasma is said to ignite and the

nuclear reactions become self-sustained. However, the sustainability of an ignited
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plasma requires a good confinement of the plasma. The conditions which must be

fulfilled in a fusion reaction volume to guarantee a positive power balance are given

by the triple product [4]:

T · n · τE > 3× 1021m−3 keV s (1.1)

for D-T reactions, where T is the plasma temperature, n is the plasma density

and τE is the energy confinement time, defined as ratio between the plasma energy

and the power loss. This criterion provides a measure of the feasibility of a certain

plasma confinement system from the perspective of achieving plasma ignition.

In order to accomplish fusion reactions in hot plasmas, a good confinement of the

matter is essential as the probability of elastic Coulomb interactions is higher than

fusion reactions. Since the 1950s this problem has been approached through different

methods that fall into two main categories: inertial and magnetic confinement.

• Intertial confinement:

In this confinement approach, a capsule of fuel is heated and compressed by

a powerful laser until the fusion reaction burns the fuel. In this process, the

reactants are confined by its own inertia and the confinement time only lasts

for a very short time, on the order of microseconds.

• Magnetic confinement:

As the plasma consists of ionised particles, in the presence of a magnetic field

their trajectories are tied to the magnetic field lines by the Lorentz force.

Magnetic devices usually have a toroidal symmetry to ensure closed magnetic

field lines and therefore, restrict the ion trajectories. However, as will be

discussed later, this toroidal geometry is not enough to ensure the confinement

of particles.

1.2 Tokamaks and the role of fast-ions

Among all different approaches to provide sufficient confinement to accomplish con-

trolled fusion, the most developed concept is the tokamak. A tokamak is a toroidal
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a) b)

Figure 1.2: a) Sketch of the main components of a tokamak device. The total magnetic
field (black lines) consist of a poloidal field (green arrows) generated by the plasma current
and a toroidal field (blue arrow) generated by the toroidal field coils (blue). b) Poloidal
cross section of a tokamak showing the constant flux surfaces of a magnetic equilibrium
indicating the separatrix as the boundary between closed and open magnetic field lines.

fusion device based on magnetic confinement that combines a toroidal magnetic field

(blue arrow in Fig. 1.2 a)) and a poloidal magnetic field (green arrows in Fig. 1.2 a)).

The toroidal field is generated by a set of toroidal coils (blue coils in Fig. 1.2 a)) that

results in a magnetic field that depends on the distance to the device toroidal axis

with 1/R. However, this toroidal field is not capable of confining charged particles by

itself due to the orbits drifts caused by the magnetic gradient ∇B. To overcome this

issue, a primary transformer coil in the centre of the device (green coils in Fig. 1.2

a)) induces a toroidal current in the plasma that acts as the secondary transformer

circuit and generates a poloidal field (green arrows in Fig. 1.2 a)). The combination

of the poloidal and toroidal magnetic fields forms the resulting helical magnetic field

of a tokamak (black arrows in Fig. 1.2 a)).

Figure 1.2 b) shows the poloidal cross section of a typical tokamak divertor plasma.

This configuration aims to keep the plasma away from the main wall and concentrate

the plasma wall interaction volume to a dedicated area called divertor. In figure 1.2

b), the contours represent the constant flux surfaces associated to closed magnetic

field lines (red) and open field lines (magenta). The value associated to each con-
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P(R, z)

φ

Figure 1.3: Sketch showing the surface S used to define the poloidal magnetic flux Ψpol.

tour is calculated as the flux of the poloidal magnetic field intersecting a surface of

revolution along the toroidal axis S that connects each point to the magnetic axis:

Ψpol =

∫
B · dS (1.2)

Figure 1.3 shows the surface S (blue) to define the poloidal flux associated to a

given (R, z) position. The poloidal flux is not dependent on the toroidal coordinate

and is commonly used as a radial coordinate (ψpol). In this work, a normalised

function of ψpol is used as a generalised radial coordinate defined as:

ρpol =

√
ψpol − ψaxis
ψsep − ψaxis

(1.3)

where ψsep and ψaxis are the poloidal flux values evaluated at the last magnetic

closed surface (separatrix) and at the magnetic axis, respectively.

The helicity of the magnetic field lines is one of the main characteristics of the

magnetic equilibrium in a tokamak and can be related to the plasma stability. The

evaluation of the helicity is given by the safety factor defined as [5]:

q(ρpol) =
1

2π

∫ 2π

0

(
rBφ

RBθ

)
ρpol

dθ (1.4)

evaluated at the corresponding constant ρpol surface. The safety factor is a func-

tion of the radial coordinate ρpol and represents the number of toroidal turns of a
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field line to complete one poloidal turn.

The tokamak is presented as a device capable of confining hot plasmas through

magnetic fields. However, to achieve the plasma conditions required to produce fu-

sion reactions, the plasma needs to be heated up to several keV by means of different

sources:

• The induced plasma current produces ohmic heating via the Joule effect.

This method is only effective to heat the plasma up to temperatures in the

order of keV since the resistivity of the plasma limits the dissipated energy

[4, 6].

• Electron/Ion cyclotron resonant heating (ECRH/ICRH) systems use radio

frequencies to accelerate electrons/ions whose cyclotron frequencies are in the

vicinity of the radiofrequency.

• The injection of a high energy beam of neutral particles (NBI), which

ionise and transfer part of their energy to the bulk plasma through Coulomb

collisions.

• Energetic α particles released in the D-T reaction which transfer their energy

through Coulomb collisions.

The use of some of these heating systems is inherent to the generation of a new

particle distribution with energies above the thermal plasma. This energetic popu-

lation, usually referred to as fast-ions, plays an essential role in the performance

of a tokamak as they carry large amounts of energy. A poor confinement of these

particles can lead to a dramatic decrease of the tokamak efficiency by losing stored

plasma energy. In addition, a localised release of fast-ions into the vessel walls can

cause severe material damages.

1.3 Motivation and scope of this work

Toroidal symmetry is the basis of magnetic fusion devices. Nested flux surfaces

and particle constants of motion ensure plasma confinement in toroidal magnetic
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fusion devices. Symmetry breaking 3D fields can, however, be used to overcome

some difficulties intrinsic to ideal toroidal geometries, modifying the overall plasma

confinement and stability [7].

In tokamaks, 3D perturbative fields may be mandatory to preserve the device per-

formance and possibly even integrity against intolerable plasma fluctuations that,

if allowed to grow unabated, could damage the vacuum vessel though localised and

intense particle losses [8–11].

The impact that externally applied 3D fields have on the overall plasma stability

and confinement is, however, complicated by several simultaneous nonlinear effects

that compete at different spatio-temporal scales [12, 13]. These effects include the

magnetic equilibrium, main plasma parameters and perturbation mode spectra [14–

17].

The fast-ion population is particularly affected by these perturbative fields as they

have relatively long mean free paths and slowing-down times [18–25]. For the rea-

sons stated above, energetic particles will be present in future fusion reactors as a

part of the heating systems or as the product of the fusion reactions in the plasma.

Therefore, the analysis of the fast-ion population in the presence of perturbative

fields needs to be fully assessed.

In this thesis, the fast-ion transport has been analysed in the presence of exter-

nally applied 3D magnetic perturbations through experimental data and numerical

simulations. The experimental data showed a clear dependence of the fast-ion trans-

port with the magnetic configuration of the perturbation. This result was analysed

by means of numerical simulations carried out with the ASCOT code [26] which

revealed the existence of a resonant interaction between the fast-ions and the mag-

netic perturbation. The obtained results both numerical and experimental have been

supported by an analytical theory in the framework of linear and nonlinear resonant

interactions, providing a consistent understanding of the energetic particle transport

due to 3D magnetic perturbations.
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1.4 Outline

The work presented in this thesis is structured as follows. Chapter 2 introduces

the main theories and concepts used throughout this work regarding the general be-

haviour of fast-ions in tokamaks.

In chapter 3, a derivation of the analytical theory of linear wave-particle resonant

interaction in presented. Thereafter, this formalism is extended to include nonlinear

interactions by introducing a periodic perturbation in the analised particle trajecto-

ries.

Chapter 4 includes a description of the AUG focusing on the technical aspects related

to the fast-ion sources and the generation of externally applied magnetic perturba-

tions. The orbit following code ASCOT is introduced.

In chapter 5, a description of the set up for the dedicated experiment carried out in

the AUG to analyse the fast-ion transport in the presence of a perturbed magnetic

field is presented with the experimental data obtained. The results of chapter 3 are

used here to identify the fast-ion transport observed in the numerical simulations

as linear and nonlinear resonant interaction between the particles and the applied

magnetic perturbation.

Chapter 6 presents the results of the numerical simulations of fast-ion transport

carried out with the ASCOT code reproducing the behaviour observed in the ex-

periment. The fast-ion transport is characterised in the framework of resonant

wave-particle interactions through the variation of the toroidal canonical momentum

analysing its dependence on the perturbation poloidal spectra, perturbation ampli-

tude, Coulomb collisions and radial electric field. Finally, chapter 7 is dedicated to

summarise and discuss the most relevant results of this work



Chapter 2

Fast-ions in tokamak

The analysis of fast-ion transport in plasmas is crucial to achieve controlled nuclear

fusion on earth. In this chapter, fast-ions in tokamaks are fully characterised and

the necessary concepts involved in this work are introduced. First, the main fast-

ion sources are presented. Then, the equations of motion are described in detail,

leading to the analysis of the orbits topologies. Finally, the most relevant transport

mechanisms are presented, focusing on the wave-particle resonant transport as it

constitutes the basis of this thesis.

2.1 External heating as source of fast-ions

In tokamaks, the burning plasma regime is reached by means of heating systems

which can affect the fast-ion distribution in the plasma. These heating systems

include external mechanisms including the NBI and ICRH, and fusion born products

such as α particles in D−T plasmas. In this section, a brief description of the main

fast-ion sources is presented.

• Neutral beam injector (NBI)

The operating principle of the NBI system consists of a high energy beam of

neutral atoms, mostly deuterium or hydrogen with energies above 10 keV. This

beam is accelerated externally and neutralised so atoms can penetrate into

the plasma without being deflected by the magnetic field. Once the neutral is

14
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injected, it follows a rectilinear path until it ionises through electron and ion

collision and charge exchange processes with the thermal ions. Each ionisation

method has different cross-sections that depend on the energy, but in total,

the NBI birth distribution has an exponential decrease along its path. When

a particle is ionised, it is confined by the magnetic field. It transfers its energy

to the plasma through collisions thus, heating the plasma [27].

In order to accelerate the injected neutrals, initially charged particles are ex-

tracted from an ion source, then accelerated through an electric potential and

finally neutralised. The ion sources do not only contain D and H, but also

molecular species such as H+
2 , H

+
3 , D

+
2 , D

+
3 , resulting into a final beam which

contains energetic ions at energies E0, E0/2 and E0/3, where E0 is the main

injection energy.

In the ASDEX Upgrade tokamak (AUG), the NBI system consists of two boxes

at different toroidal locations and each one contains four beams with differ-

ent injection geometries, which can be radial or tangential to the magnetic

field. The initial fast-ion population generated by the NBI system is strongly

anisotropic, localised along the injection direction as it is shown in figure 2.1 for

AUG. Also, defining the particle pitch as the cosine between the total velocity

and the direction of the magnetic field lines as

Λ = v‖/v (2.1)

the birth distribution has a clear preferred value of pitch determined by the

injection geometry and the magnetic equilibrium, restricting the topology of

the ion orbits. A detailed description of the orbit topologies is given in section

2.5.

• Ion Cyclotron Resonance Heating (ICRH)

A charged particle in a magnetic field has a cyclotron motion perpendicular to

the magnetic field lines. In the presence of external electromagnetic waves, the

wave-particle interaction can result into the acceleration or deceleration of the

ion depending on the phase coupling [28]. The ICRH system uses the resonant



Chapter 2. Fast-ions in tokamak 16

R [m]

z
 [
m

]

 

 

1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

0

5

10

15

x 10
20

R [m]

z
 [
m

]

 

 

4 6 8
−5

0

5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

19

AUG ITER

#particles m -2 #particles m -2a) c)

R [m]

z
 [
m

]

 

 

1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

1

2

3

4

5

x 10
19

AUG

#particles m -2b)

Figure 2.1: 2D histogram showing the surface density of the initial ion distribution pro-
jected onto the poloidal cross section for: a) NBI birth distribution in AUG. b) ICRH
accelerated fast-ion distribution in AUG. c) Fusion born α particle distribution in ITER

interaction between the rotating ions and electromagnetic waves defined by

ω − k‖v‖ − gωc = 0 (2.2)

to accelerate the plasma ions [29]. There, ω is the frequency of the external

wave, ωc is the cyclotron frequency, k‖ is the parallel component of the wave

vector, v‖ is the parallel velocity and g is the mode number associated to the

cyclotron frequency. In AUG, the electromagnetic waves are generated by a

set of antennas using operation frequencies in the range of 30-90 MHz which

can inject up to 6 MW power [30].

The fast-ion distribution resulting from the ICRH heating in AUG is shown

in figure 2.1 b). The cyclotron frequency increases with the intensity of the

magnetic field, considering that the magnetic field in a tokamak varies with

the radius, a given resonant condition only affects a layer within a fixed radial

location.

• Fusion-born products

In tokamak plasmas, the fusion reactions release large amounts of energy. As

presented in chapter 1.2, in future devices hosting D + T reactions, energetic
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α particles will be the main fast-ion source. The generation of α particles via

fusion processes can happen through different reactions.

– Thermonuclear (target-target). Fusion reactions involving two ions from

the bulk plasma.

– Beam-target. Fusion reactions between NBI ions and the bulk plasma.

– Beam-beam. Fusion reactions involving two NBI ions.

Figure 2.1 c) shows the α birth distribution due to thermonuclear reactions

in ITER. In the thermonuclear case, the initial distribution of fusion-born

products has a maximum in the centre as the density and temperatures are

higher, which increases the reactivity of the fusion process.

2.2 Equations of motion

2.2.1 Full gyromotion

The time evolution of a charged particle in a electromagnetic field can be obtained

from the Euler-Lagrange equations:

d

dt

(
∂L

∂ẋ

)
=

(
∂L

∂x

)
(2.3)

where the noncanonical expression in cartesian coordinates is given by [31]:

L =
m

2
|ẋ|2 + eẋ · A(x, t)− eΦ(x, t) (2.4)

with m and e are the particle mass and charge. The magnetic and electric fields

are described through their vector A and scalar Φ potential respectively. Here the

canonical momentum p can be defined as:

p =
∂L

∂ẋ
(2.5)

p = mẋ + eA (2.6)
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Writing the hamiltonian through the Legendre transformation as a function of

the phase-space coordinates (x, p):

H = p · ẋ− L =
1

2m
|p− eA|2 + eΦ (2.7)

where the particle velocity can be defined using equation 2.6 as:

v =

(
p− eA
m

)
: (2.8)

This allows one to rewrite the langrangian as a function of variables (x, ẋ, v, v̇):

L = ṗx−H = ṗx− 1

2m
|p− eA|2 − eΦ (2.9)

L = (mv + eA) · ẋ−
(
eΦ +

m

2
v2
)

(2.10)

Using the Euler-Lagrange equations in each variable one can obtain:

d

dt

(
∂L

∂v̇

)
=

(
∂L

∂v

)
→ ẋ = v (2.11)

d

dt

(
∂L

∂ẋ

)
=

(
∂L

∂x

)
→ d

dt
(mv + eA) = ∇ (eA · ẋ− eΦ) (2.12)

Taking into account the expressions for the electromagnetic fields as a function

of the scalar and vector potentials:

E = −∂A

∂t
−∇φ

B = ∇×A

equation can be rewritten as the Lorentz force:

mv̇ = E + eẋ×B (2.13)

Equations 2.11 and 2.2.1 provide the time evolution of a particle considering the

the full motion.
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2.2.2 Guiding centre motion

According to equation 2.13, in the absence of an electric field, the Lorentz force is

perpendicular to the particle velocity and the energy is conserved [32]. Figure 2.2

a) shows the resulting helical motion of the particle around the magnetic field lines

which can be decomposed into parallel and perpendicular components v = v‖b+v⊥,

with b the unitary vector in the direction of the magnetic field. The parallel velocity

v‖ is constant as there is no force in this direction, while the perpendicular velocity

v⊥ describes a circular motion with frequency ωc and gyroradious ρ:

ωc =
|e|B
m

(2.14)

ρ =
mv⊥
|e|B

(2.15)

The ion trajectory can be decomposed into two different motions. Figure 2.2

b) shows the position of the ion as the superposition of the motion of the guiding

centre (R) and the Larmor radius (ρ). However, if the considered magnetic field has

a slow time variation compared to the gyrofrequency of the ion (ωc) and the spatial

scale length is large compared to the gyroradius (ρ), the gyrophase is an ignorable

coordinate and the magnetic moment µ is constant [33]. Here, the magnetic moment

is the product of the current associated to the gyromotion (eωc/2π) and the area

encosed by ρ:

µ = I · A =
eωc
2π
· 2πρ2 =

mv2
⊥

2B
(2.16)

In this case, the guiding centre approach describes the trajectory of the particle

ignoring its gyromotion. The guiding centre theory started as a nonhamiltoninan

formulation [33, 34], but the errors derived from the lack of an energy conservation

law motivated the development of a guiding centre hamiltonian theory [31]. The

lagrangian of a charged particle in the guiding centre coordinates reads:
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Figure 2.2: a) Helical motion of an electron (blue) along the magnetic field lines (red). b)
Decomposition of the particle location into guiding centre and gyromotion.

L = (eA +mv‖b) · Ṙ +
mµ

e
χ̇−H

H =
1

2
mv2
‖ + µB + eΦ

where b is a unit vector in the direction of the magnetic field and the gyrocentre is

described by its magnetic moment as defined in equation 2.16, i.e. position, parallel

velocity and gyrophase (µ,R, v‖, χ). Using the Euler-Lagrange equation 2.3 it can

be obtained that:

Ṙ = v‖
B∗

B∗‖
+ E∗ × b

B∗‖

v̇‖ =
e

m

B∗

B∗‖
· E∗

µ̇ = 0

χ̇ =
eB

m

with B∗‖ = B∗ · b and the effective fields are given by:
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E∗ = −∂A∗

∂t
−∇φ∗

B∗ = ∇×A∗

Φ∗ = Φ +
µB

e

A∗ = A +
mv‖b

e

Although this description is an approximation of the particle motion, it can result

in large savings of computational resources when the approximation is valid.

2.3 Guiding centre particle drifts

Although the ASCOT code calculates the particle trajectories using the exact ex-

pression for the equations of motion in the hamiltonian formalism as it was described

in section 2.2, for the sake of clarity, in this section the orbit drifts are presented in

Northrop formulation [34] of the guiding centre motion to illustrate the drifts affect-

ing a single particle in a tokamak. The exact expression for these drift can be found

at [31].

In the presence of external forces F perpendicular to the magnetic field B, a charged

particle exhibits a drift which can be expressed through a velocity drift of the guiding

centre given by:

vdrift =
1

q

F×B

B2
(2.17)

In a tokamak, the drifts due to the toroidal magnetic configuration are the ∇B
drift, the E ×B drift and the curvature drift.

• ∇B drift

Assuming that the magnetic field lines are straight but the intensity changes

along one direction, the gyroradius of a given ion is smaller in the region where

B is more intense according to equation 2.15. The periodic change in the
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Figure 2.3: Effect of ∇B ×B drift on ions and electrons.

gyroradius leads to a particle drift that is perpendicular to the direction of the

magnetic field and its gradient.

The force on a dipole caused by a variation in the magnetic field is given by:

F = µ∇B (2.18)

where µ is the magnetic moment associate to the gyromotion. Combining equa-

tion 2.17 and 2.18, the drift velocity associated to the magnetic inhomogeneity

yields:

v∇B =
mv2
⊥

2qB3
∇B ×B (2.19)

From equation 2.16 it is clear that the direction of the drift depends on the

sign of the charge so, in the presence of a ∇B, ions and electrons are forced

into opposite directions, creating a charge separation and thus, inducing an

electric field.

• Curvature drift

If the intensity of the magnetic field is homogeneous but the magnetic field is

curved by a constant radius (Rc), particles following the field lines experiment

an outwards force caused by the lack of a centrifugal force to maintain the
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curvature. The centrifugal force required to curve the ion trajectory along the

magnetic field lines is:

F = −
mv2
‖

R2
c

Rc (2.20)

Using equations 2.17 and 2.20, the curvature drift can be expressed as:

vRc =
mv2
‖

qR2
c

Rc ×B
B2

(2.21)

Considering a typical toroidal magnetic field where the intensity of B decreases

with the radius, both the curvature drift and the ∇B drift are in the same

direction. Another similarity with the ∇B drift is the charge dependency,

resulting into both drifts contributing to a charge separation.

• E ×B drift

In the presence of an electric field, charged particles exhibit a force in the

direction of the field given by F = eZE. From equation 2.17 it follows that:

vE×B =
E×B

B2
(2.22)

This drift accelerates the particle, and therefore increases the gyroradius, when

the velocity has a positive component in the same direction as E × B and

decelerates, reducing the gyroradius, through the other half of the gyromotion.

The periodic difference in the gyroradius results into a drift perpendicular to

the applied electric field and independent of the charge as shown in figure 2.4.

2.4 Constants of motion and adiabatic invariants

In order to characterise a particle motion, it is common to make use of conserved

quantities. Each symmetry in the motion of a system entails a conservation law,

which means that an integral of motion exists [35]. In general, for each ignorable
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Figure 2.4: Effect of E ×B drift on ions and electrons.

coordinate, the action I =
∮
Pxdx is kept constant, with Px the canonical momentum

associated to a given coordinate x.

Constants of motion:

• Energy

In the absence of an electric field, the Lorentz force is always perpendicular

to the particle displacement and the work done is zero. In this case, and

considering a static magnetic field, the kinetic energy is an exact invariant.

E =
1

2
mv2
⊥ +

1

2
mv2
‖ = µB +

1

2
mv2
‖ = const. (2.23)

• Toroidal canonical momentum Pφ

Ideal tokamak fields have perfect toroidal symmetry. Assuming this, the Hamil-

tonian describing a particle in an axisymmetric field is independent of the

toroidal coordinate φ, which leads to the temporal invariance of the associated

canonical momentum Pφ according to Noether’s theorem [35].

Pφ = mvφR− eZψpol = const. (2.24)

where vφ is the toroidal component of the velocity, Ψ is the flux surface and

eZ is the ion charge. In a 2D magnetic equilibrium
dPφ
dt

= 0, however, if a

symmetry breaking field is included, the conditions of Noether’s theorem are
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no longer fulfilled, leading to a temporal variation in Pφ. From equation 2.24

it can be extracted that a positive (negative) variation of Pφ forces the particle

to drift to an inner (outer) flux surface Ψ, resulting into an inwards (outwards)

transport of the orbit (see appendix A).

Adiabatic invariants:

In a less restrictive level than the constants of motion, we find the adiabatic

invariants. This concept is relevant in physical systems where inhomogeneity of

the fields is sufficiently slow compared to the characteristic periodic motions. In

the adiabatic approximation the action integrals are not absolute constant, but the

variation is sufficiently small to be considered invariant. Orbits in tokamaks have

two main periodic motions: the gyromotion of the particle along the magnetic fields

and the bouncing motion described by the gyrocentre in the poloidal plane, so two

invariants associated to each motion are expected.

• First invariant: Magnetic moment

The first adiabatic invariant is the magnetic moment and is related to the

periodic gyromotion of a charged particle. Here, the canonical momentum Px =

mvxRx is Pα = mv⊥(α)ρ(α), as figure 2.2 shows. Calculating the associated

action and considering the definition of µ used in 2.16:

∮
mv⊥(α)ρ(α)dα = 2πmv⊥ρ =

4πm2

q
µ = const. (2.25)

It is important to notice that the magnetic moment can only be considered as

an adiabatic invariant in the approximation where ∇B/B � ρ and dB/dt
B
� ωc.

• Second invariant: Longitudinal invariant

The longitudinal invariant is associated to the bouncing motion of trapped

particles between two turning points. A typical trapped particle is illustrated

in figure 2.5. More details on the fast-ion orbit topology will be presented in

section 2.5.

The parallel velocity of the ion is integrated over a bouncing period:
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J =

∮
mv‖dl (2.26)

where l is the arc length described by the particle guiding centre along the field

line. In this case, the guiding centre trajectory is not strictly closed, but if the

∇B/B � ρ condition is held and the time variation of the fields are small compared

to the bouncing frequency, it can be regarded as approximately closed.

2.5 Orbit topology

As it was previously mentioned in this chapter, there is a wide variety of fast-ion

present in a tokamak plasma including different energies, pitch and spatial distri-

bution. The orbit topology of a particle is determined by its energy, pitch and the

magnetic equilibrium. The different topologies can be included in two main cate-

gories: trapped and passing orbits.

2.5.1 Trapped orbits

Consider a charged particle in a nonuniform magnetic field. The conservation of the

energy is implied as there are no external forces resulting into:

E =
1

2
mv2
‖ +

1

m
mv2
⊥ =

1

2
mv2
‖ + µB = const. (2.27)

where the µ definition 2.16 is included. Additionally, assuming the conditions

necessary to consider that the magnetic moment is constant, when the particle ex-

plores a region where the magnetic fields is more intense, the parallel component of

the velocity decreases to maintain E constant. In the limit case, the parallel velocity

is zero and the movement of the particle is reversed in the parallel direction, leading

to a confinement of the particle in the lower magnetic region. The position where

v‖ = 0 is called turning point. This type of orbit is referred to as trapped particle

and is illustrated in blue in figures 2.5 a) and b). Figure 2.5 a) illustrates the poloidal

cross section of AUG vessel including a trapped particle in blue, showing that the

motion is restricted to the low field side in the poloidal plane. However, this motion
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Figure 2.5: a) Poloidal cross section of AUG showing a trapped (blue) and a passing (red)
orbit. b) Toroidal cross section of AUG showing the toroidal projection of a trapped (blue)
and a passing (red) orbit

is not restricted in the toroidal direction as it is presented in figure 2.5 b), where the

toroidal projection of the orbit shows the transit φ between two turning points.

The trapping in the poloidal plane only occurs if the maximum intensity of the

magnetic field is such that:

Bmaxµ ≥
1

2
mv2
‖ + µBinitial (2.28)

Introducing the definition of the pitch 2.1 and the invariance of µ, the expression

can be rearranged into:

Bmax ≥
Binitial

1− Λ2
(2.29)

2.5.2 Passing orbits

The magnetic field in a tokamak decreases as 1/R, were R is the radial distance

measured from the geometrical axis. If the maximum intensity of the magnetic field

is not enough to reflect the parallel component of the particle, the orbit continues

into the high field side circling the magnetic axis. These are called passing orbits.

Figures 2.5 a) and b) illustrates the trajectory of a passing particle in red in the
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poloidal and toroidal planes.

In the case of passing trajectories, the particle pitch never changes its sign and,

consequently, the particle always moves in the same direction along the toroidal

coordinate. Figure 2.6 shows a comparison of the 3D motion of a trapped and

passing orbit.

2.6 Transport mechanisms in fusion plasmas

There are multiple ways to categorise particle transport depending on their nature

and the underlying physical mechanisms. The classification presented here is one

of the many possibilities that best fits the purposes of this work. Considering the

transport mechanism, it can be divided into: classical, neoclassical and fluctuation

induced transport.

• Classical and Neoclassical transport model

The Classical transport theory provides a description to calculate transport

coefficients of an ion species due to Coulomb collisions in the limit where the

mean free path is short compared to the macroscopic scale length [36]. Under
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this assumption, the transport occurs within local scales which allows one to

neglect the geometry of the magnetic fields.

The Neoclassical theory extends the assumption of the short collisional free

path to any arbitrary value [37, 38]. In this model, the transport has a depen-

dence with the geometry of the magnetic field giving rise to different regimes

depending on the collisionality. For high collisionality values where thermal

particles are not able to complete an orbit before their trajectories are deflected

by collisions is called the Pfirsh-Schlter [39]. The low collisionality limit, where

the ions free path is long enough to complete an orbit, is referred to as the

banana-plateau [40, 41].

Although the Neoclassical model has predicted successfully many features of

thermal transport, this theory is limited by several aspects including the need

of a minimum level of collisionality to ensure Maxwellian distributions or that

the transport process remains Markovian. Moreover, this description is only

applicable to static magnetic configurations.

• Fluctuation induced transport

Transport due to electromagnetic fluctuations fall outside the scope of the neo-

classical transport theory as it cannot ensure the Markovianity of the process

or a static magnetic field. Although tokamaks provide excellent confinement of

charged particles, the ideal axisymmetry of the magnetic fields can be broken

by mechanical constraints of the machine, intrinsic plasma instabilities and the

application of plasma control techniques [11, 42–46]. The interaction of charged

particles with these 3D electromagnetic fields can lead to a particle transport

and result into a degradation of the confinement [47]. These interactions are

specially relevant in the case of fast-ions because of their long mean free paths

which can lead to important displacement of their orbits with respect to the

flux surfaces [18, 20–25, 48].

– Turbulent transport
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Fluctuations affecting the plasma profiles such as the electron density or

temperature can lead to particle transport through turbulent mechanism

[49, 50]. These fluctuations can be driven by free energy sources including

mainly plasma gradients and currents and generate perturbations in the

charge distribution [51]. One of the main contributions to the turbulent

transport comes from the E × B component. In this case, the change

in the charge distribution produces fluctuations in the electric potential

originating an electric field E = ∇φ, which combined with the magnetic

field B results in a velocity drift.

– Wave-particle resonant transport

Wave-particle interaction is widely accepted to be crucial in the descrip-

tion of particle transport, especially in low collisionality plasmas [47, 52,

53]. The resonant condition between a wave and a particle ensures that

the interaction leads to a maximum variation of a given constant of mo-

tion, which occurs when the phase of a particle is similar to that of a

wave. The changes in the particle constants of motion can lead to a re-

distribution of the particles in the phase-space.

In the theoretical framework provided in [54] for wave-particle resonant

interactions, one can express a generic magnetic fluctuation in the form:

g(r, φ, θ) =
∑
n,m

ei(nφ+mθ)gn,m(r) (2.30)

using a set of coordinates (r, φ, θ) adequate to express the periodicity of

the perturbation. Considering now the same fluctuation in the particle-

moving frame, the periodicity of the particle motion can be used to de-

scribe the fluctuation as a function of the particle poloidal and toroidal

precession frequencies as:

g(r, φ, θ) =
∑
n,m,p

ei(nω̄d+pωb)τ g̃n,m(r) (2.31)
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introducing p as the harmonic associated to the poloidal transit. From

equation 2.31 the resonant condition, obtained as the stationary of the

wave-particle phase, reads:

ω0 = nω̄d + pωb (2.32)

for trapped particles, where ω0 is the frequency of the mode. The syn-

chronization resulting from this interaction causes continuous transport

stands until the finite structures of the perturbation in the phase-space

detunes the phase or until the topology os the orbit changes.

∗ Overlapping

When one analyses the resonant conditions in a wave-particle sys-

tem, it is likely to find several possible combinations of harmonics

leading to different resonances. If these resonances are sufficiently

close in the phase-space, it can lead to a where deterministic particle

trajectories will move between two resonances in a chaotic manner.

Chirikov criterion [55] is usually applied to determine the chaotic

boundaries in the phase-space. This criterion is met when the width

of two contiguos resonances is larger than the distance between them,

leading to a chaotic region which causes particle transport.



Chapter 3

Nonlinear wave-particle resonances

In this chapter, previous results concerning the effects of the wave-particle interac-

tion [52, 54, 56] are presented to provide the adequate framework for the nonlinear

formulation. Using this results as the starting point, the formulation is expanded

to derive an analytical expression for nonlinear resonant interactions that will be

used to describe the fast-ion transport observed in both experimental (chapter 5)

and numerical (chapter 6) results.

3.1 Unperturbed trajectories

To analyse the behaviour of a charged particle in the presence of a magnetic pertur-

bation, the Hamiltonian can be written up to order εδ as [57]:

H = H0 + εδH1 (3.1)

with H0 and H1:

H0 =
1

2
mv2
‖ + µB (3.2)

H1 = −eZv‖A‖ (3.3)

considering a purely magnetic perturbation. Introducing now a fluctuation in the

parallel component of the magnetic potential with periodicites in the poloidal and

32
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Figure 3.1: a) Magnetic coordinates (r(Ψ), θ, φ). b) Sketch of a banana orbit illustrating
the coordinates (θc, ρb).

toroidal angles θ, φ:

A‖ =
∑
m,n

A‖n,m exp[i(nφ+mθ)] (3.4)

the perturbed Hamiltonian reads:

H1 = −eZv‖
∑
m,n

A‖n,m exp[i(nφ+mθ)] (3.5)

with n, m the toroidal and poloidal mode numbers and A‖n,m the Fourier coeffi-

cients of the perturbed magnetic potential.

Although poloidal and toroidal angles θ and φ are adequate to exhibit the field

periodicity (see figure 3.1 a)), the perturbation can be analysed in terms of the

action angle variables, with angles (α1, α2, α3) and associated actions (J1, J2, J3)

[58]. Here the magnetic momentum is assumed invariant, so there is no dependence

on α1. In the following, only trapped particles will be considered as they constitute

the majority of the ion population at the plasma edge in the LFS, where the NBI

deposition has a maximum. Considering this, the poloidal angle α2 = θc, defined as

the banana phase angle of the particle as shown in figure 3.1 b), and the toroidal

drift α3 = ξ are given by [59, 60]:

θ = Θ̃(θc) φ = ξ + qΘ̃(θc) + φ̃(ξ) (3.6)

where Θ̃ and φ̃ are periodic functions of θc and ξ. Considering this and neglecting

φ̃(ξ), the new coordinates for deeply trapped particles read:
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θ = θ0 sin θc φ = ξ + qθ0 sin(θc) (3.7)

Although this calculation was made for deeply trapped particles, it can be per-

formed for general periodic functions of Θ̃ and φ̃. Introducing now the particle

bounce frequency (ωb):

ωb =
2π∮
dθ/θ̇

(3.8)

which can be related to θc as θc = ωbτ , where τ is a time variable that follows the

particle location along the poloidal trajectory of period 2π/ωb. Using the banana

centre coordinates and associated frequencies, the parallel component of the velocity

can be written as:

ωb =
dθc
dt

dθ

dt
= J v‖

 −→ dθc = ωb
dθ

J v‖
→ v‖ =

θ0ωb
J

cos θc =
θ0ωb
2J

e±iθc (3.9)

with J the Jacobian of the transformation J = B · ∇θ/B. Including equation

(3.9) in the Hamiltonian (eq. (3.5)), this gives:

H1 = −eZ θ0ωb
2J

∑
n,m

A‖n,m exp[±iθc] exp[i(mθ + nφ)] (3.10)

which can be rewritten using equations (3.7) as a function of θc, ξ as:

H1 = −eZ θ0ωb
2J

∑
n,m

A‖n,m exp[±iθc] exp[i(m+ nq)θ0 sin θc] exp[inξ] (3.11)

Using the Jacobi-Anger identity [61], the term exp[i(m+nq)θ0 sin θc] in expression

(3.11) can be written as its Fourier expansion in the harmonics associated to θc:

exp[i(m+ nq)θ0 sin θc] =
∑
p

Jp exp[ipθc] (3.12)

with p the bounce harmonic and Jp a Bessel function of (m + nq)θ0. Therefore,
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the hamiltonian reads:

H1 = −eZ θ0ωb
2J

∑
n,m,p

A‖n,mJp exp[±iθc] exp[ipθc] exp[inξ] (3.13)

Using the canonical equations of Hamilton, the time evolution of Pφ can be

obtained from:

dJ3

dt
= − ∂H

∂α3

→ dPφ
dt

= −∂H
∂ξ

(3.14)

Combining equations (3.13) and (3.14):

dPφ
dt

= eZ
θ0ωb
2J

∑
n,m,p

inA‖n,mJp exp[i(nξ + (p± 1)θc)] (3.15)

which can be expressed as a function of the particle frequencies (ωb, ω̄d) associated

to the coordinates θc, ξ in the form:

dPφ
dt

= eZ
θ0ωb
2J

∑
n,m,p

inA‖n,mJp exp[i(nω̄d + pωb)τ ] (3.16)

where the bounce harmonic p±1 was renamed to p without any loss of generality.

In the theoretical framework of fast-ion transport, it is important to define the

conditions for which resonant transport can happen as a consequence of the in-

teraction between a plasma ion and waves. The resonant condition for trapped

ions provided by the stationarity of the wave-particle phase in equation (3.16) (i.e.
d
dt

(nω̄d + pωb)τ = 0) can be written as:

ω0 − nω̄d − pωb = 0 (3.17)

This expression holds for the unperturbed orbits where ω0 is the frequency of the

perturbation, providing the resonant condition for the linear case. In order to include

nonlinear effects in the resonant condition, it is necessary to include the changes in

the particle trajectories due to the perturbed fields in the Hamiltonian.
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3.2 Perturbed trajectories

If a linear resonant condition is not satisfied, it is assumed that the dominant im-

pact of the perturbation is to modulate periodically the bounce-averaged particle

displacement [52], introducing a shift in the particle trajectory accumulated through

each τ period. The expressions used to describe this motion containing the correction

added to the trajectories are given by:

θ = Θ̃(θc) + ∆θ (3.18)

φ = ξ + qΘ̃(θc) + ∆φ (3.19)

with

∆θ =

∫ τ

0

δθdt =

∫ τ

0

δθ̇
dθ

θ̇
(3.20)

∆φ =

∫ τ

0

δφ̇
dθ

θ̇
(3.21)

the corrections to θ and φ due to the finite amplitude of the perturbation accu-

mulated over a bounce period τ .

Using these expressions for θ and φ, the Hamiltonian in (3.5) reads:

H1 = −eZ θ0ωb
2J

∑
n,m

A‖n,mJp exp[±iθc] exp[ipθc] exp[inξ] exp[i(m∆θ + n∆φ)] (3.22)

Considering ∆θ and ∆φ periodic functions of θc and ξ with periods 2π/ωb, 2π/ω̄d:

exp[i(m∆θ + n∆φ)] = exp[iΞn,m(pθc + nξ)] =
∑
l

Sn,m,l exp[il(pθc + nξ)] (3.23)

with Ξn,m a periodic function in (pθc + nξ). Including equation (3.23) in (3.22):
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H1 = −eZ θ0ωb
2J

∑
n,m,p,l

A‖n,mJp exp[±iθc] exp[ipθc] exp[inξ] exp[il(pθc + nξ)] (3.24)

which can be readily arranged as:

H1 = −eZ θ0ωb
2J

∑
n,m,p,l

A‖n,mJp exp[i(p± 1 + lp)θc) + i(1 + l)nξ] (3.25)

Using equation (3.14), the temporal evolution of Pφ is:

dPφ
dt

= −eZ θ0ωb
2J

∑
n,m,p,l

A‖n,mJpin(1 + l) exp[i(p± 1 + lp)θc) + i(1 + l)nξ]

= −eZ θ0ωb
2J

∑
n,m,p,l

A‖n,mJpin(1 + l) exp[i(p± 1 + lp)ωb)τ + i(1 + l)nω̄dτ ]

Therefore, the resonant condition for stationary perturbations (ω0 = 0) can be

expressed as:

ωb
ω̄d

=
n(l + 1)

p(l + 1)± 1
(3.26)

This expression provides the ratio between bouncing and toroidal particle fre-

quencies that must be met to produce a resonant interaction between ions and the

magnetic perturbation caused by the RMP fields. In chapter 6 this equation is used

to analyse and identify the relevant resonances leading to fast-ion transport for dif-

ferent magnetic perturbations as a function of n, l and p.
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Methodology

4.1 Experimental Setup

This section gives an overview of the main elements involved in the set up of the

experiments that will be analysed throughout this work. As a part of the set up, a

description of the ASDEX Upgrade tokamak including the RMP coil system installed

in AUG to generate the 3D perturbations is presented. The characteristics of the

Neutral Beam Injector as the main fast-ion source will be introduced.

4.2 ASDEX Upgrade tokamak

ASDEX Upgrade [62] is a medium-size divertor tokamak located at the Max-Planck

Institute for Plasma Physics in Garching (Germany). In the AUG, the axisymmetric

magnetic field is generated by a set of 16 copper coils wrapped around the vessel and

arranged evenly spaced along the toroidal direction. Additionally there are 17 coils

used for the divertor, the plasma current and to control the position and shape of

the plasma. Table 4.1 presents the main AUG parameters.

4.2.1 Resonant Magnetic Perturbations

As it was mentioned in chapter 2, plasma instabilities, in particular, ELMs can lead

to a large enhancement of the radial transport. By applying a controlled magnetic

38
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Total height 9 m
Major radius 1.6 m
Minor radii 0.5/0.8 m
Magnetic field 3.9 T
Plasma current up to 1.4 MA
Plasma heating (NBI) 20 MW
Plasma heating (ICRH) 6 MW
Plasma heating (ECRH) 4 MW
Plasma mixture Hydrogen, deuterium
Plasma temperature 4 keV
Plasma density up to 2 · 1020 m−3

Vessel material Tungsten

Table 4.1: Main AUG parameters.

perturbation, we can degrade the edge confinement enough to lower the pressure

gradient such that the peeling-balloning boundary for Type-I ELMs is not hit. In

order to mitigate ELMs by means of magnetic perturbations, AUG has 16 coils in-

stalled in two rows, one above the midplane and one below, which generate Magnetic

Perturbations (MP) [11, 63]. Figure 4.1 shows the distribution of the RMP coils in

AUG and the generated magnetic perturbation along the separatrix.

Axisymmetric fields have nested flux surfaces, which ensure that the particle

transport is mostly produced in the direction of the field lines. However, when a

magnetic perturbation is applied, the field lines can be distorted, creating magnetic

islands on the resonant surfaces q = m/n, with m and n the poloidal and toroidal

mode numbers respectively. Figure 4.2 shows the Poincaré plots corresponding to

an axisymmetric magnetic field and a 3D perturbative field generated by a n =

2 coil configuration, where the island chains appear at the resonant surfaces q =

3/2, 2, 5/2, 3, 7/2. If the resonant surfaces are too close or the amplitude of the

island is large enough, an overlapping of two or more island chains can lead to a

chaotic region. In figure 4.2 b) the region close to the separatrix (ρpol ≈ 1), where

the amplitude of the perturbation is larger, field line chaos can be observed.

The coil set up in AUG allows n = 1, 2, 4 toroidal symmetries depending on the

applied current. Figure 4.3 shows the intensity of the current flowing through each

coil (figure 4.3 a)) and the radial component of the associated n = 2 magnetic field
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Figure 4.2: Toroidal Poincaré maps of the magnetic fields for: a) axisymmetric field and
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(figure 4.3 b)). In addition to controlling the amplitude and toroidal symmetry of the

perturbative fields, it is also possible to modify the phase shift between the upper and

lower current sinusoids. Given the distribution of the coils along two rows at different

z locations, by fixing one row and rotating the other the applied field can be twisted.

Figure 4.3 c) shows a typical n = 2 configuration in which the current values are the

same for the upper and lower row. In this case, the phase shift between both sets

is ∆ϕUL = 0◦. In figure 4.3 d), the upper coils currents are rotated so the phase

between both signals is ∆ϕUL = 180◦. A change in the phase shift implies a mod-

ification of the poloidal mode spectra of the perturbation, which has an important

impact on the distortion of the magnetic flux surfaces and particle confinement.

4.2.2 Neutral Beam Injector

The mechanism by which particles are accelerated and injected into the plasma as

neutrals is described in section 2. In this section, the technical aspects of the NBI

heating system at AUG is described.
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Figure 4.4: Poloidal and toroidal sketches of the 8 neutral beam injectors installed in AUG.

The NBI set up consists of two boxes at different toroidal locations, each one con-

taining four beams capable of injecting a power of 2.5 MW per beam. The injection

geometry of the 8 beams is shown in figure 4.4, in a poloidal (4.4 a)) and toroidal

(4.4 b)) cross section of the vessel. One of the main features associated to each

beamline is the fixed pitch value, conditioning the topology of the ionised particles.

For injections parallel to the magnetic field lines, the dominant topology is passing,

while the more radial injections generate a population of trapped particles. In figure

4.5, the birth distributions generated by different injectors are presented as a 2D

histogram in the poloidal projection.

The NBI distribution decays exponentially with the path length as I(x) = I0e
−νx,

where I0 is the initial intensity, ν is the ionisation frequency and x is the distance

travelled through the plasma. The beam distributions shown in figure 4.5, calculated

with the BBNBI tool [64], show the exponential decay from the plasma edge, where

most of the ionisations occur. However, as the vacuum is not perfect between the

separatrix and the vessel, we can find a small population of fast-ions outside the

separatrix. To illustrate this, figure 4.6 shows the radial profile of the NBI distribu-

tion for radial (NBI#2) and tangential (NBI#6) injections. This small population

of fast-ions at the edge is extremely susceptible of being affected by the radial trans-
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port induced by magnetic perturbation as the field lines in this region bring those

particles very close to the RMP coils.

4.3 Numerical tool: The ASCOT code

The ASCOT code [26] is a numerical simulation tool used to follow the trajectories

of minority particle species, including Coulomb interactions with the bulk plasma

through a Monte Carlo operator [65]. In simulations of fusion plasmas, large statistics

are required to produce accurate results. This problem is handled in ASCOT by

means of considering the minority distribution as a particle ensemble that follows

the Fokker-Planck equation [66]:

∂f

∂t
+ ẋ · ∂f

∂x
=

(
∂f

∂t

)
collisions

(4.1)

where f(x) is the particle distribution in the phase space x = (r,v) and
(
∂f
∂t

)
collisions

is a stochastic Monte Carlo operator which models the effect of the Coulomb inter-

actions as small changes in the particle velocity. Although test particles in ASCOT

are affected by the collisions with the bulk plasma, the interaction between the same

species or the effect of a fast-ion distribution on the plasma is not considered.
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4.3.1 Particle tracing

Full orbit trajectories in ASCOT are calculated using the noncanonical Hamiltonian

equations of motion derived in section 2.2:

v̇ =
e

m
(E + v ×B)

ṙ = v

for a particle of charge e, mass m and velocity v. This system constitutes a set of

6 equations in the particle velocity space which can be solved in ASCOT using leap-

frog and fourth-order Runge-Kutta [67] integrating methods. However, considering

that the Runge-Kutta algorithm can lead to numerical drifts causing a variation in

the total energy, the leap-frog is introduced to trace the particle position and velocity

as:

vi+1 = vi +
e

m

(
Ei +

vi+1 + vi
2

×Bi

)
∆t (4.2)

ri+1 = ri + vi∆t (4.3)

This method ensures the conservation of the total particle energy [68] through

v2
i+1 = v2

i in the E = 0 case.

If a magnetic field is slowly varying in the time and space scales compared to the

particle motion, i.e. the spatial length of the field is bigger than the particle gyroradii

∇B/B � ρ and the frequency relative to the local field is small compared to the

gyrofrequency dB/dt
B
� ωc, the guiding centre approach is valid and it is accurate to

use the equations described in section 2.2. Aiming to reduce the simulation time, the

guiding centre approach was introduced by ignoring the gyromotion of the particle,

describing only the motion of the gyrocentre. To illustrate the different descriptions,

figure 4.7 shows the trajectory of a trapped ion in full orbit and guiding centre ap-

proach. The use of this approach reduces significantly the cpu-time of a simulation,

however, this description requires the conservation of the particle magnetic momen-



Chapter 4. Methodology 46

1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

R [m]

z
 [
m
]

Full orbit
Guiding centre

E=150keV
Λ=-0.5AUG

Figure 4.7: Trajectory of a trapped particle integrated in full orbit motion (blue) and using
the guiding centre approach (red).

tum.

In this work, the magnetic fields involved are static so the second condition is au-

tomatically satisfied, but the radial field structures are comparable to the particle

gyroradius. In this case a full orbit description must be kept to maintain the accuracy

of the simulations. This matter will be further discussed in section 6.

4.3.2 ASCOT inputs

The ASCOT simulations require a set of inputs that offer the possibility to provide

a given run with an accurate and realistic scenario. The main inputs are magnetic

background, particle inputs, plasma kinetic profiles and wall geometry.

Particle input

The initial particle distribution must contain the 6 velocity space coordinates (r,v)

to be traced in full orbit motion or 5 coordinates (R,Λ, E) in the guiding centre
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approach. The ASCOT code has an independent tool called BBNBI [64] capable of

generating the fast-ion distribution produced by the NBI injectors, which has been

benchmarked with other neutral beam ionisation models such as PENCIL [69] or

NUBEAM [70]. BBNBI has been developed to include the beam geometries of the

most relevant current tokamaks such as AUG, ITER, DIII-D and MAST. In this

work, all the NBI birth distributions were generated using this tool.

Magnetic background

In order to trace the charged particles, a model of the magnetic background is needed.

This includes the 3 components of the magnetic field (BR, Bz, Bφ) in cylindrical

coordinates arranged in a matrix that can be either 2D or 3D. For the axisymmetric

case, ASCOT calculates the magnetic field components from the Bφ and poloidal

flux Ψ provided by any equilibrium reconstruction code. For 3D magnetic fields,

ASCOT extracts the (B′R, B
′
z, B

′
φ) perturbative components and combines them with

the axisymmetric field.

Plasma kinetics

To ensure the accuracy of the Coulomb collision operator, ASCOT needs to be

provided with the plasma kinetic profiles, which includes the density and temperature

of ions and electrons as a 1D profile dependent of the radial coordinate ρpol. These

profiles are not only important for the Coulomb collision operator, but also for the

NBI ionisation profile generated with BBNBI. Additionally, it is possible to include

the plasma rotation velocity and the radial electric field.

Wall geometry

Simulating particle losses requires a limiting area for the calculation set by the vessel

walls. ASCOT works with both 2D and 3D realistic wall geometries. For the 2D case,

only a poloidal cross-section of the vessel is needed. As 3D elements of the plasma

facing components can be of important to accurately determine the wall heat loads

caused by escaping ions, it is possible to provide ASCOT with a triangular mesh

to model the 3D details of the wall. Equally important is the determination of a
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particle intersection with the walls. In ASCOT, the method used to identify particle

collisions with wall elements is a ray-polygon collision detector algorithm [71], which

calculates the intersection between a line and a planar element.

Coulomb interactions

The interaction of energetic particles with the bulk plasma through Coulomb colli-

sions is modeled in ASCOT by means of a Monte Carlo operator that evaluates the

interactions between time steps. The collision operator in the particle phase space

introduces a variation in the particle velocity [26] which contains a deterministic term

together with a stochastic part. The deterministic term includes the Hamilton equa-

tion and a collision friction term depending on the collision frequency which brings

the particle energy towards the energy thermal value. The second term introduces

stochastic processes that widens the velocity distribution.



Chapter 5

Experimental Results

Several experiments have been carried out at AUG to show the impact of the RMPs

poloidal mode spectra on ELM mitigation and associated fast-ion losses. In this

chapter, the results of experiment AUG#33143 is presented.

The discharge AUG#33143 was carried out in an ELMy H-mode, with a safety

factor value of q95 = 3.8 at 95% of the poloidal flux surface, low electron collisionality

ν∗e = 0.2 and high normalised βN = 2.4 [72]. The source of energetic particles was

introduced by means of 5 MW NBI distributed on 2 sources with 2.5 MW from 2 NBI

boxes, one at 60 kV (NBI#3) and the other at 93 kV (NBI#8). Figure 5.2 shows the

corss-section of AUG including the plasma shape and active beams.

In this experiment, a perturbation with a toroidal symmetry number n = 2

was generated by the RMP coils. The current at the lower coils was fixed, while the

current on the upper coils was rotating at 2 Hz, introducing a phase shift (∆ϕUL)

that resulted in a continuous scan of the poloidal mode spectra. In figure 5.1 a)

the coil currents corresponding to 3 different coils are presented as a function of

time, showing one of the lower currents (red), which is kept constant, and two of

the upper (black and blue) currents that were changing continuously. Although the

main toroidal mode number is n = 2, the symmetry is limited by the finite number

of coils, which introduces additional weak sidebands. Figures 5.1 b) and c) show

the radial component of the perturbation including all harmonics resulting from the

49
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calculation of the magnetic fields using Biot-Savart law compared to the pure n = 2

toroidal component.

Figure 5.3 shows the time evolution of several plasma parameters corresponding

to shot #33143. The fast-ion losses were measured by the Fast Ion Lost Detector

(FILD) system [73]. In particular, the escaping ions measured with the FILD at the

midplane (z = 0.3m) and toroidal location φ = 123.5◦ (FILD2) are presented in fig-

ure 5.3 a). Figure 5.3 b) shows the time traces of the electron density at the plasma

edge and core. The poloidal currents at the outer divertor obtained from shunt

measurements (figure 5.3 c)) are typically used in AUG to detect ELM instabilities.

The RMP coils in AUG are installed close to the Passive Stabilisation Loop

(PSL)[74], where the induced image currents can attenuate the rotating perturba-

tive fields. In this experiment the rotating fields had a frequency of 2 Hz, which

required a correction by the PSL in order to determine the accurate value of ∆ϕUL.

Figure 5.3 d) shows the temporal dependence of the poloidal mode spectra ∆ϕUL

including the delay induced by the PSL (blue) and the curve without the correction

as reference (green).
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When the RMP coils are turned on at t=2 s, figures 5.3 a)-c) show density pump

out, partial ELM mitigation and fast-ion losses. A modulation can also be observed

as the response is different for different values of ∆ϕUL. These effect is especially

evident in the FILD signal, where fast-ion losses only appear for certain coil config-

urations between ∆ϕUL = 100◦ − 200◦.

This experiment reveals that ∆ϕUL has a strong effect on the plasma param-

eters, suggesting that particle transport caused by the symmetry-breaking fields can

be modified by the poloidal mode spectra. In the following chapters, an analysis

of the fast-ion confinement in the presence of 3D perturbative fields is presented to

provide an explanation of the underlying physical transport mechanism by means of

numerical simulations and an analytical model.
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Chapter 6

Numerical results

In this chapter the results of the fast-ion simulations carried out with the ASCOT

code to asses the ion transport in the presence of RMP with different poloidal mode

spectra are presented. This chapter is structured as follows: first a description of

the inputs used in these simulations is provided, then a comparison of the simulated

fast-ion losses and the AUG experiment described in chapter 5 is shown and finally

the Edge Resonant Transport Layer is introduced as the region where increased

transport of trapped particles is identified, with the resulting particle losses caused

by a resonant interaction with externally applied magnetic perturbations.

6.1 Input Modelling

The viability of this numerical model is based on its capability of reproducing the

measured data. For this purpose, the particle input and magnetic background were

carefully calculated from experimental data to simulate the fast-ion loss behaviour in

an environment as similar as possible to the experiment at conditions of the discharge

AUG#33143.

6.1.1 Input particles

The birth profile corresponding to NBI#8 was calculated with the BBNBI [64] mod-

ule using the measured density and temperature plasma profiles shown in figures

6.1 a) and b). As was presented in chapter 5, when the magnetic perturbation was

53
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Figure 6.1: Profiles of: a) Electron density for the perturbed (red) and unperturbed (blue)
case, b) Unperturbed electron temperature profile as a function of ρpol and c) Safety factor
profile as a function of ρpol

applied in experiment AUG#33143, the density profile decreased and also presented

a modulation with the perturbed poloidal mode spectra. The variation of the den-

sity profile can cause differences on the NBI birth profile, which in turn, can affect

the fast-ion losses especially at the scrape-off layer (SOL). For these simulations,

the unperturbed density and temperature profiles (figure 6.1) are kept constant to

isolate the effect of the poloidal mode spectra on the losses. The resulting initial

distribution of the NBI#8 ions is shown in figure 6.2 as the fast-ion surface density

projected onto the poloidal and toroidal cross-sections.

6.1.2 Magnetic background

The magnetic input was generated as a combination of the axisymmetric field and

the 3D perturbative fields. For these simulations, the AUG axisymmetric equilib-

rium was provided by the CLISTE code [75] using the values of the poloidal field

currents and the toroidal magnetic field. The radial profile of the safety factor for

the analysed discharge is shown in figure 6.1 c). The perturbed fields, including the

plasma response, have been calculated with the MARS-F code [76], which is a single

fluid, full MHD eigenvalue code in full toroidal geometry. These perturbative fields

include the main harmonic perturbation n = 2 as well as the secondary harmonic

n = 6 given by the realistic geometry of the MP coils. As a result, the values of the

combined fields are obtained in a cylindrical grid which is interpolated in ASCOT
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using cubic splines.

In order to validate the simulations against the experiment, the 3D fields were cal-

culated for different time points scanning the entire poloidal mode spectra of the

perturbation. Figure 6.3 presents the toroidal and poloidal Poincaré maps of the

magnetic field lines of the RMP perturbation for coil configuration ∆ϕUL = 40◦ in

vacuum approach and configurations ∆ϕUL = 40◦ and ∆ϕUL = 260◦ including the

plasma response showing the magnetic island chains at ρpol=0.7-1.0.

To illustrate the impact of the poloidal spectrum on the poloidal structures of the 3D

fields, figure 6.4 shows the radial component of the perturbation (δBR) in a poloidal

cross section of the AUG vessel at a toroidal angle φ = 0◦ for two different coil

configurations. In this configuration, the lower coils are fixed and the upper coils are

rotating to modify the poloidal spectra, also changing the structure and intensity of

the plasma response.
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6.1.3 Experimental validation

Using the calculated NBI#8 birth distribution and the different magnetic back-

grounds, the fast-ion transport was calculated for 10 different time points covering

the full range of the perturbation poloidal spectra. To relate each coil configuration

to the associated time point, the rotational shielding of the magnetic perturbation

caused by the currents induced in the PSL presented in figure 5.3 d) was taken into

account. The particle trajectories were followed with ASCOT in full orbit motion

using the leap-frog method with a time step of 10−9 s.

Figure 6.5 a) shows the total losses (normalised to their maximum) obtained with

ASCOT for t=5 ms particle following time for each RMP configuration using the

same initial particle distribution and ne profile. All cases show a similar trend with

the coils configuration, where a pure n = 2 perturbation in vacuum approach leads

to a minimum of the losses and n = 2, 6 including the plasma response maximises

the losses. These results also reveal that the impact of the plasma response on

energetic particle losses changes with the RMP poloidal mode spectra. While the

plasma response and vacuum approach for n = 2, 6 lead to similar fast-ion losses at

∆ϕUL = 260◦, the plasma response can increase the losses up to 20% at ∆ϕUL = 40◦.

Excluding prompt losses, i.e. particles lost to the walls during the first poloidal
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bounce, most of the losses induced by the 3D fields occur within the first 5 ms, so it

can be assumed that the chosen following time is representative of the fast-ion loss

behaviour.

Figure 6.5 b) shows the fast-ion losses measured with the FILD2 detector during

these experiments. The AUG FILD2 system [73] is located above the midplane at

z=0.30 m, R=2.19 m and φ = 123.5◦. The detector geometry allows the detection

of particles within a pitch range between Λ=-0.9 and Λ=-0.1 and gyroradii between

ρL=20 mm and ρL=120 mm. FILD measures fast-ion losses when the perturbation

fields have a poloidal mode spectra between 100◦ and 200◦ with a maximum at

∆ϕUL = 150◦. A reasonable good agreement, see red curve in Figure 6.5 b), is ob-

tained with ASCOT when filtering the lost particles that hit the FILD head, which

is included as a 3D element of the AUG wall in ASCOT. The error bars in this fig-

ure were calculated as the standard deviation of a binomial process ≈
√
N , with N

the number of ions reaching the FILD detector for each coil configuration. Charge-

exchange losses were neglected in this numerical model and assumed not to play a

key role in the understanding of the fast-ion transport dependency on the 3D fields

configuration.

6.2 Edge Resonant Transport Layer

The experimental results show that the fast-ion transport in the presence of 3D fields

depends on the poloidal mode spectra of the perturbation. Using the same model de-

scribed to validate the numerical results against the experimental data, the induced

fast-ion transport as a function of ∆ϕUL and the particle phase-space are analysed

through the variation of the toroidal canonical momentum.

For a charged particle in a magnetic field, the toroidal canonical momentum (Pφ) is

defined as:

Pφ = mRvφ − ZeΨpol (6.1)

as introduced in chapter 2.4. Here, m is the particle mass, R is the particle
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major radius, vφ is the toroidal component of the velocity, Ze is the particle charge

and Ψpol is the poloidal magnetic flux. Pφ is a constant of motion for axisymmetric

fields, but with the inclusion of non axisymmetric magnetic fields leading to a toroidal

symmetry breaking, Pφ is not an invariant and its variation is associated to a radial

transport of the particles. According to this definition, a positive variation in Pφ

means that the particle is drifting inwards, while a negative variation leads the ion

to drift outwards (see appendix A). The averaged variation of the fast-ion Pφ (〈δPφ〉)
was calculated as the time variation of Pφ averaged over approximately 10 bouncing

motions as follows:

〈δPφ〉 =

∑N
i=1(Pφ(i)− Pφ(0))

N
(6.2)

where Pφ(0) is the initial value of Pφ at t=0 s, i indicates different time points

along the particle orbit and N is the total number of time points used for the average.

Figure 6.6 a) shows 〈δPφ〉 as a function of the particle major radius and energy. Here,

each point in the (R, E) grid, which is constituted by 40000 particles, was calculated

by following each particle in full-orbit motion assuming a fixed initial gyrophase. An

example of the temporal evolution of Pφ used to generate the 〈δPφ〉 plot is presented

in figure 6.6 b). Here, Pφ shows a negative variation, which is associated to an

outwards transport of the particle.

Figure 6.7 shows the energetic particle 〈δPφ〉 as a function of the initial particle

pitch and plasma major radius for an energy of E=60 keV, initial z on the midplane

and two different ∆ϕUL.

Clear patterns appear for passing (Λ <-0.5 at R=2.0 m) and trapped (Λ >-0.5 at

R=2.0 m) ions with a maximal 〈δPφ〉 located within 10 cm around the separatrix. The

transport of trapped ions is dominated by resonant structures for all particle radial lo-

cations, while passing ions also show non-structured patterns from R=2.10 m. Indeed

non-structured 〈δPφ〉 regions are observed mainly for passing ions with R≥2.10 m,

where the field line chaos at the plasma edge has a stronger impact. These structures

also show a strong dependency with the particle initial pitch.

In order to identify the regions where 3D fields have an effect on fast-ion transport,

figure 6.8 presents 〈δPφ〉 in the E-R plane considering the full radius range from the

high field side to the low field side. This plot shows that the fast-ion transport due
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to RMP fields is located close to the plasma edge in both the low field side (LFS)

and high field side (HFS) while the inner plasma does not exhibit any transport

structures.

The patterns observed in the 〈δPφ〉 plots can be understood by comparing them

to the particle resonances. The static equilibrium for discharge AUG#33143 was

used to calculate the particle resonances as the ratio between the bounce (ωb) and

precessional frequency (ω̄d). In figures 6.9 a) and b) the frequency ratio has been

plotted for both the HFS and LFS, respectively. At the LFS, which is mainly pop-

ulated by trapped orbits, the frequency ratio exhibits a small gradient in the region

close to the SOL corresponding to deeply trapped ions. This gradient increases to-

wards the plasma core as it approaches the trapped/passing boundary, resulting in

a region with very high resonance density. In the HFS region, where the population

consists of passing orbits, the resonance gradient remains almost constant and the

frequency ratio has a small dependency on the particle initial energy.
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6.2.1 Low field side

Figures 6.10 a)-d) show 〈δPφ〉 as a function of the particle energy and initial major

radius with particle pitch Λ=-0.5 set by the NBI#8 injection geometry and initial

z on the midplane at z = 0m. Here, 〈δPφ〉 was calculated through full orbit sim-

ulations for different coil configurations to show the impact of ∆ϕUL on energetic

particle transport.

In figures 6.10 a)-d), clear transport structures are observed within 5 cm around the

separatrix. The maximum in the simulated total losses presented in figure 6.5 a) for

∆ϕUL = 40◦ appears correlated with a maximum outward transport as figure 6.7 a)

shows, while the minimum total losses for ∆ϕUL = 260◦ is related to the maximum

inward transport in figure 6.10 c). Configurations ∆ϕUL = 160◦ and ∆ϕUL = 300◦

lead to intermediate total losses that are reflected in a moderate transport (〈δPφ〉)
as figures 6.10 b) and d) show.

By overplotting the particle resonances in the 〈δPφ〉 figures of merit, a clear matching

between the maxima and minima in 〈δPφ〉 and particle resonances is found. This

matching indicates that, when the perturbation is applied, the ERTL induces fast-ion

transport through a combination of linear and nonlinear resonances. In this context,

a particle resonance will be considered linear if the trajectory frequency ratio meets
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the condition nωb− pω̄d = 0, where p is the bounce harmonic as described in section

3.1.

The particle resonances corresponding to a maximum variation of 〈δPφ〉 are ωb/ω̄d=2.25

for ∆ϕUL = 40◦, ωb/ω̄d=2 for ∆ϕUL = 160◦ and ωb/ω̄d=1.75 for ∆ϕUL = 260◦. Near

the trapped/passing boundary, the distance between consecutive resonances is re-

duced, which might cause a significant 〈δPφ〉 due to a resonance overlap in this

region. From the set of particle resonances shown in figure 6.9, the ones responsible

for the induced transport are located at the plasma edge, where the magnetic field

is most affected by the 3D perturbation, as can be seen from the Poincaré maps in

figure 6.3 at ρpol=0.85-1.00.

Figure 6.11 shows the radial profiles of 〈δPφ〉 corresponding to different ∆ϕUL
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configurations along a fixed value of the energy at E=50 keV. This figure illustrates

how ∆ϕUL can drastically change the transport intensity and the initial phase space

of the resonant particles at the edge. The impact of the plasma response on the

particle radial transport for this plasma discharge is shown in green for ∆ϕUL = 40◦

increasing the 〈δPφ〉 value by a maximum of 10%.

The role of initial toroidal phase is presented in figure 6.12, where 〈δPφ〉 is cal-

culated for different ∆ϕUL indicating the NBI#8 injection and the position of the

FILD detector. The structures in both configurations are dominated by the n=2

symmetry of the applied perturbation and the transport caused by multiple reso-

nant interactions at the trapped/passing boundary. Figure 6.10 a) indicates that,

for this configuration of ∆ϕUL, the NBI#8 injection is the least favourable with

respect to the perturbation as it injects particles with a set of initial particle coordi-

nates very susceptible of being affected by RMP induced transport, while figure 6.10

c) shows the opposite.

6.2.2 High field side

On the magnetic HFS, the variation of 〈δPφ〉 shows a different pattern since the fast-

ion population in this area consists of passing particles (figures 6.13 a)-d)). However,

the variation of the poloidal mode spectra has a similar effect on the resonances re-

sponsible for the fast-ion transport, showing the maximum transport intensity at
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∆ϕUL = 40◦ and minimum at ∆ϕUL = 260◦. The analysis of 〈δPφ〉 indicates that

the transport is resonant in the core plasma region, but becomes chaotic as it ap-

proaches the separatrix due to the perturbation of the magnetic field lines, which

has a large impact on the passing particles. The transport structure patterns and

intensity observed in this region have a minimal dependency with the energy as was

expected from the ωb/ω̄d ratio calculated in figure 6.9.

The calculation of 〈δPφ〉 as a function of the plasma major radius and toroidal

angle (figure 6.14) shows a resonant structure (R=1.25-1.45 m) that is dominated

by the n=2 toroidal mode number of the perturbation, which corresponds to the

structures observed at the associated Poincaré maps (figure 6.3). In addition to the

n=2 structures, a lobe structure is visible at the region closer to the separatrix and

is more intense when the resonant magnetic configuration is applied at ∆ϕUL = 40◦.

Note that these structures showing the fast-ion transport at the high-field side are

very similar to the divertor heat flux patterns observed in the AUG measurements

with similar coil configurations [77].

6.2.3 Resonant identification

The comparison between particle resonances and 〈δPφ〉 structures revealed that the

fast-ion transport is caused by resonant interactions. By comparing the values of

ωb/ω̄d to the 〈δPφ〉 structures, the resonances responsible for the transport could be

identified. However, to understand the physics behind these values, each resonance

in terms of the analytical theory of linear and nonlinear resonances presented in

chapter 3 needs to be identified.

The ratio between the particle poloidal and toroidal frequencies required to meet

the resonant condition when nonlinear effects are included is given by:

ωb
ω̄d

=
n(l + 1)

p(l + 1)± 1
(6.3)

as it was described in chapter 3 for trapped particles. It can be used to identify

resonances causing the fast-ion transport triggered by given values of ∆ϕUL. In the
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analysed shot, n=2 is fixed due to the perturbation symmetry and p can take integer

values reproducing most of the resonant structures in figure 6.10, where the ampli-

tude and location of the selected resonance depends strongly on the frequency ratio.

Tables 6.1 and 6.2 contain the values of ωb/ω̄d corresponding to the main reso-

nances found for each configuration together with the set of l, p0 and p′ parameters

to generate each value. Although the particle transport is caused by both linear and

nonlinear interactions, most of the resonances involved are observed to be nonlinear.

∆ϕUL = 40◦ ∆ϕUL = 160◦

ωb/ω̄p l p0 p′ n ωb/ω̄d l p0 p′ n
1.00 0 2 0 2 1.00 0 2 0 2
1.11 4 2 1 2 1.11 4 2 1 2
1.20 2 2 1 2 1.20 2 2 1 2
1.33 1 2 1 2 1.33 1 2 1 2
1.50 2 1 1 2 1.50 2 1 1 2
1.60 3 1 1 2 1.60 3 1 1 2
2.00 0 1 0 2 1.75 6 1 1 2
2.33 6 1 -1 2 2.00 0 1 0 2
2.40 5 1 -1 2

Table 6.1: Set of l, p0, p′ and n corresponding to the identified resonances at ∆ϕUL = 40◦

and ∆ϕUL = 160◦.

∆ϕUL = 260◦ ∆ϕUL = 300◦

ωb/ω̄p l p0 p′ n ωb/ω̄d l p0 p′ n
1.50 2 1 1 2 1.33 1 2 1 2
1.71 5 1 1 2 1.60 3 1 1 2
1.75 6 1 1 2 1.71 5 1 1 2
2.33 6 1 -1 2 2.33 6 1 -1 2
2.40 5 1 -1 2 2.40 5 1 -1 2

Table 6.2: Set of l, p0, p′ and n corresponding to the identified resonances at ∆ϕUL = 260◦

and ∆ϕUL = 300◦.

As the HFS region is populated by passing ions, the q value (q = 〈dφ/dθ〉) of the

magnetic field associated to the initial radial location of the particle, is approximately

similar to the inverse of the frequency ratio (ω̄d/ωb) presented in figures 6.13 a)-d).
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In this case, the determination of the frequency ratio was made by means of the

identification of the 1/q values corresponding to the maxima in the 〈δPφ〉 radial

profile at a fixed value of the energy. Figure 6.15 shows how each peak of the

〈δPφ〉 profile was associated to the inverse of q at the corresponding radial location,

generating the ω̄d/ωb value observed in figure 6.13.

6.3 Characterisation of the ERTL

Using the description of the ERTL as the region where fast-ion transport is max-

imised in the presence of a 3D perturbation, more extensive analysis on the depen-

dencies with the main plasma and operation parameters is presented in terms of

〈δPφ〉.

6.3.1 Perturbation amplitude

A scan in the amplitude of the magnetic perturbation was used to analyse its effects

on linear and nonlinear resonances (figures 6.16 a)-c)). For amplitude levels rou-

tinely used for ELM mitigation, both linear and nonlinear resonances cause particle

transport, but the resonant transport is mainly nonlinear (figure 6.17 a)). As the

amplitude decreases, the intensity of nonlinear resonances (l 6= 0) becomes weaker

(figure 6.17 b)) until they completely disappear and linear resonances are the dom-

inant transport mechanism (figure 6.17 c)). This fading of the 〈δPφ〉 structures

is summarized in figure 6.17 a), where structures associated to linear resonances

(marked with blue circles) are the only peaks that remain when the perturbation

amplitude decreases.

A more detailed description of the difference in the behaviour of linear and non

linear resonances is presented in figure 6.17 b), where the intensity of 〈δPφ〉 is shown

as a function of the perturbation amplitude. By comparing the increasing trends,

δB × 0.55 is observed to be the value delimiting the regions where linear and non

linear resonances are dominant.
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Figure 6.18: 〈δPφ〉 calculated for ∆ϕUL = 160◦ coil configuration for a particle distribu-
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collisionality ν∗e .

6.3.2 Coulomb collisions

The impact of Coulomb collisions on the ERTL is also assessed through realistic

simulations including collisions between fast-ions and the bulk plasma where particle

orbits have been traced using the same following time as in figure 6.16 to show

the effect of collisions within the same time scale. The ASCOT collision operator

includes pitch scattering [26] and uses a realistic value of the effective ion charge

(Zeff ) to determine the collision rates. Figure 6.18 a) shows 〈δPφ〉 including Coulomb

collisions considering the plasma parameters corresponding to shot AUG#33143. In

order to analyse the impact of collisionality on the transport structures, the electron

collisionality was changed by modifying the values of ion temperature, density and

Zeff as presented in figures 6.18 b) and c). The effect of increasing the collisionality

on the ERTL leads to a widening of the resonances, but also to an overall decrease

of the 〈δPφ〉 peak structure associated to the individual resonances.

6.3.3 Radial electric field

The effect of the radial electric field on the ERTL was also studied by means of 〈δPφ〉
as a function of the particle initial phase space and the strength of the Er profile.

The electric field used for these simulations, shown in figure 6.19 a), was calculated

based on experimental measurements for shot AUG#33143 from the magnetic axis
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to the separatrix, showing the common behaviour observed in H-mode plasmas [78].

Figures 6.19 b) and c) show 〈δPφ〉 considering the electric field for two values of Er

including Er × 0.5 and Er × 1, respectively.

As can be observed from the comparison between figures 6.19 b) and 6.16 a), the

impact of the radial electric field is to distort the resonant structures at the location

of the Er well, but it can also alter a small region outside the separatrix. This effect is

related to the topology of trapped orbits, where ions born outside the separatrix can

also explore inner regions of the plasma on the inner banana orbit leg. The orbital

frequency ratio ωb/ω̄d was calculated including the Er in figure 6.19 c), showing that

the distortion of the 〈δPφ〉 structures matches the new frequency ratio. Considering

this, it can be assumed that equation 6.3 is still valid in the presence of Er.

Although the structures are altered, the maximum variation of 〈δPφ〉 is not changed.

Also, due to the distortion of the resonances, the transport associated to 〈δPφ〉 at

high energies is eliminated, which might lead to a better ion confinement for this coil

configuration.
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6.3.4 Magnetic equilibrium

For the sake of simplicity, only one discharge was used to illustrate the different

dependencies of the ERTL. The results presented here are, however, applicable to

all AUG plasma discharges with MPs. The ERTL was analysed for two additional

discharges, AUG#33145 with a plasma current of Ip=0.7 MA, toroidal magnetic field

Bφ=-2.5 T and AUG#28061 with a plasma current of Ip=0.8 MA, toroidal magnetic

field Bφ=-1.8 T. Figure 6.20 a) shows the safety factor profiles corresponding to both

discharges and figure 6.20 b) shows the different coil configurations used to assess

the impact of the perturbation mode spectra on both equilibria.

In agreement with the previous results, figures 6.21 and 6.22 show that the ∆ϕUL

plays a key role in the observed overall particle transport. Here, it is important to

note that the ∆ϕUL responsible for the minimum/maximum particle transport de-

pends on the magnetic equilibrium. For the AUG#33145 equilibrium, the coil con-

figuration leading to the maximum outwards transport corresponds to ∆ϕUL = 180◦,

while for discharge AUG#28061 the maximum transport occur at ∆ϕUL = 0◦. The

analysis of the ERTL allows to chose the MP configuration together with the mag-

netic equilibrium such that fast-ion transport is minimised.

Safety factor

The effect of the equilibrium q profile on the ERTL was analysed through discharges

AUG#28061 and AUG#28059. The two shots selected for this study had similar
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Figure 6.21: AUG# 33145. 〈δPφ〉 on the LFS area as a function of plasma major radius
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Figure 6.22: AUG# 28061. 〈δPφ〉 on the LFS area as a function of plasma major radius
and energy for particle initial coordinates Λ=-0.5 and z=0 m at: a) ∆ϕUL = 0◦, b) ∆ϕUL =
90◦, c) ∆ϕUL = 180◦ and d) ∆ϕUL = 270◦.

plasma shapes to ensure that both equilibria had the separatrix located at the same

radial location as shown in figure 6.23. The q profiles corresponding to each magnetic

equilibrium are presented in figure 6.24 a).

Figure 6.24 b) shows the coil configuration corresponding to ∆ϕUL = 180◦ ap-

plied to both equilibria to calculate the 〈δPφ〉 presented in figures 6.24 c) and 6.24 d).

The observed impact of the q profile on the ERTL is a displacement of the resonances

towards the plasma core for higher values of q. This effect can be clearly identified

in the 〈δPφ〉 radial profiles shown in figure 6.24, where the maximum intensity of the

fast-ion transport is shifted inwards for AUG#28059 with higher q profile.

6.3.5 Toroidal symmetry of the magnetic perturbation

A similar analysis has been done using different toroidal symmetries for the 3D

perturbative fields, more specifically, the n = 4 symmetry has been analysed for

discharge AUG#34570. Figure 6.26 a) and b) shows 〈δPφ〉 for poloidal spectra
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∆ϕUL = 0◦ and ∆ϕUL = 180◦ corresponding to the coil configurations shown in

figure 6.26 c). The fast-ion transport observed for the n = 4 case is also located at

the plasma edge and has a dependence on the perturbation poloidal spectra.
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6.3.6 Convergence tests

The simulation parameters used throughout this section were carefully chosen from

the results of several convergence tests in different grid resolution, following time,

integration step and time points used to calculate 〈δPφ〉.

• Particle integration time step

To optimise the time step ∆tstep set for the leap-frog integration method, 〈δPφ〉
was calculated using different values. Figure 6.27 a)-c) show 〈δPφ〉 using three

values of ∆tstep. The location and shape of the structures does not change,

however, the intensity of 〈δPφ〉 in figure 6.27 a) presents a noticeable variation

with respect to figures 6.27 b) and c). In order to save as much cpu-time as

possible, ∆tstep = 10−9 s was chosen as an increased value shows a very similar

result.

• Grid resolution

The dependency on the initial particle grid size was also analysed by increasing

the grid resolution by a factor of 2. Figure 6.27 d) shows the increased grid

compared to 6.27 b) which was made using the regular 40000 particle resolution.

These plots show that doubling the grid size does not provide any relevant

information about the shape or intensity of the ERTL structures.

• Particle following time

Figure 6.28 shows 〈δPφ〉 using different particle following time ∆tft from 0.3 ms

to 5 ms. The effect of increasing ∆tft on the ERTL structures inside the

separatrix is weak and only observed in the 〈δPφ〉 intensity. The resonant

structures outside the separatrix exhibit a similar pattern with an increased

intensity, but as it only affects a region with a very low particle population, it

is not significative in the description of NBI fast-ion transport.

• Number of time points to calculate 〈δPφ〉

In all presented 〈δPφ〉 plots, the averaged variation of Pφ is calculated accord-

ing to expression 6.2, where N was defined as the total number of time points

along the particles trajectory used. As only the information of the selected time
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Figure 6.27: 〈δPφ〉 as a function of energy and initial radial position using particle pitch
Λ = −0.5 and z = 0m for: a)-c) different integration steps and d) different grid particle
resolution.
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Figure 6.28: 〈δPφ〉 as a function of energy and initial radial position using particle pitch
Λ = −0.5 and z = 0m for different values of ∆tft.
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Figure 6.30: Radial profile of 〈δPφ〉 at energy E=40 keV for different time intervals ∆tN
using a ∆ϕUL = 40◦.

points is needed to calculate 〈δPφ〉, the rest of the trajectory is not stored. Note

that this does not affect the integration time of the orbit, which is set to 10−9 s.

Figure 6.29 shows Pφ(t) in blue and the red circles indicate the selected time

points included in equation 6.2.

The time interval between each point ∆tN was tested for different values to find

the optimal value to avoid storing unnecessary data. In figure 6.30 the radial

profile of 〈δPφ〉 is presented using ∆tN values from 10−4 s to 10−9 s showing

that ∆tN = 10−5 is the minimal value required to calculated 〈δPφ〉 accurately.



Chapter 7

Summary and Discussion

This work identifies the Edge Resonant Transport Layer as the region which involves

the resonant transport responsible for the fast-ion losses in the presence of externally

applied 3D fields in a tokamak. This theoretical explanation for the fast-ion transport

is supported by ASCOT numerical simulations capable of reproducing experimental

results qualitatively.

The resonant transport studied in this work has been assessed through the vari-

ation of the toroidal canonical momentum, which is related to a radial drift on the

ion orbit in the presence of 3D fields. By analysing the 〈δPφ〉 for different magnetic

configurations, covering a full scan in the perturbation poloidal spectra, it has been

observed that the transport occurs due to resonant wave-particle interactions within

10 cm around the plasma edge. This ERTL depends on the fast-ion orbit topology,

perturbation spatial spectrum and amplitude as well as the plasma collisionality.

The associated resonant structures in the phase-space appear on both the HFS and

LFS.

An analytical expression to describe the resonant condition for nonlineal interac-

tions has been derived and used to identify the resonances responsible for the particle

transport observed in the ASCOT simulations.

These resonant transport structures in the particle phase-space have been char-
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acterised in terms of the amplitude of the externally applied magnetic perturbations.

It has been observed that the dominant resonant transport is linear for small am-

plitude perturbations, but it becomes nonlinear as the amplitude increases to levels

used routinely for RMP ELM suppression.

When Coulomb collisions are included, the interaction with the bulk plasma

causes a variation of the particle velocity, which leads to a breaking of the wave-

particle resonance condition and, as a consequence, the particle transport decreases.

The effects of the radial electric field have also been studied using different am-

plitudes of Er, observing a distortion of the ERTL structures. However, the location

of the resonant transport remains at the plasma edge and the intensity of the 〈δPφ〉
associated to the radial transport does not change significantly.

The 〈δPφ〉 was calculated using different toroidal symmetries for the external

perturbations which led to similar resonant structures in agreement with the previ-

ous results. The impact of a change in the safety factor was analysed. A inwards

radial shift in the phase-space of the resonant particles for higher values of the safety

factor was observed.

The results discussed in this work were used to shed light on the nature of the

fast-ion transport mechanism involved in the analysed experiment. The modelling

tools developed in this thesis can also be utilised to predict the energetic particle

confinement in current and future devices like ITER. Based on this, the analysis of

〈δPφ〉 can be applied to select future operational scenarios by modifying the ERTL,

which opens the possibility of fast-ion control through the application of 3D pertur-

bations. Furthermore, this provides the capability for future studies to optimize the

operational scenarios based on the device needs, avoiding a critical degradation of

fast-ion confinement while still mitigating plasma fluctuations.



Appendix A

Radial drift due to the variation of Pφ

The toroidal canonical momentum of a charged particle in a magnetic field is given

by:

Pφ = −eZΨ +mRvφ (A.1)

Considering a variation in Pφ between two consecutive points at poloidal angle

θ = 0◦ where the parallel velocity has de same sign, it reads:

∆Pφ = Pφ2 − Pφ1 = −eZ
∫ r2

r1

r′B

q
dr′ +mR0(vφ2 − vφ1) +m(r2vφ2 − r1vφ2) (A.2)

where θ, R0 and r represent the particle coordinates as shown in figure A.1. Let us

assume that between t1 and t2 the values do not change much, therefore ∆Pφ → dPφ.

dPφ = −eZ
∫ r2

r1

r′B

q
dr′ +mR0dvφ +md(rvφ) (A.3)

Taking into account that dvφ/dt = 0 at θ = 0:

dPφ
dt

= −eZ rB
q

dr

dt
+mvφ

dr

dt
=

(
−eZ rB

q
+mvφ

)
dr

dt
(A.4)

Considering that the toroidal velocity of a trapped ion at the midplane can be

approximated by its parallel velocity vφ ≈ v‖:
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Figure A.1: Fast-ion trapped trajectory indicating the coordinates corresponding to a
generic location P along the orbit.

vφ ≈
√

2εv⊥ =
√

2ε
v⊥
ωc
ωc =

√
2ερωc (A.5)

with ε = r/R. Here, the parallel velocity was approximated using the upper limit

for trapped orbits (i.e. the trapping cone) at θ = 0:

therefore:

dPφ
dt

= eZaB

(
−r/a

q
+
√

2ερ∗

)
dr

dt
(A.6)

where ρ∗ = ρ/a and a the plasma minor radius. Assuming the values r/a ≈ 1

and q ≈ 5, r/a
q
>>
√

2ερ∗, equation A.6 can be written as:

dPφ
dt
≈ −eZrB

q

dr

dt
(A.7)

From equation A.7, it follows that a negative variation of Pφ is related to an

increment of r, leading to a particle drift towards an outer poloidal flux surface.
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The author produced all figures in this chapter to illustrate the fundamen-

tal concepts.

• Chapter 3: Wave-particle nonlinear resonances.

The author has derived an expression for the nonlinear wave-particle inter-

action by extending the nonlinear resonant theory developed by F. Zonca and

L. Chen.

• Chapter 4: Methodology.

The author produced all figures in this chapter to illustrate the most relevant

features of the AUG tokamak and the numerical tool ASCOT.

• Chapter 5: Experimental results.

The author has processed and analysed the raw data corresponding to ded-

icated experiment AUG#33143.

• Chapter 6: Numerical results.

The author has carried out all ASCOT simulations presented in this chap-

ter, post-processed the results and calculated the variation of particle toroidal

canonical momentum. The author has also prepared most of the simulation
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inputs, including the density and temperatures profiles, modifications of the

3D vessel geometry to include the FILD detector, and magnetic equilibria in

vacuum approach.
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