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A B S T R A C T

The competition between crack penetration in the layers and cohesive delamination along interfaces is herein
investigated in reference to laminate ceramics, with special attention to the occurrence of crack deflection and
crack branching. These phenomena are simulated according to a recent variational approach coupling the phase
field model for brittle fracture in the laminae and the cohesive zone model for quasi-brittle interfaces. It is shown
that the proposed variational approach is particularly suitable for the prediction of complex crack paths in-
volving crack branching, crack deflection and cohesive delamination. The effect of different interface properties
on the predicted crack path tortuosity is investigated and the ability of the method to simulate fracture in layered
ceramics is proven in relation to experimental data taken from the literature.

1. Introduction

Ceramic materials are largely used in technological applications,
especially with the aim of achieving a desired resistance to severe wear
or corrosive phenomena at high temperatures. However, the main
drawback of ceramics regards their brittleness and, to increase their
toughness, laminates are often used alternating ceramic and metallic
layers. For instance, in [1,2], Al/SiC and Al/TiN laminates have been
explored and tested. The metallic layers make the composite able to
withstand higher deformations by means of the development of plas-
ticity at several locations within the specimen, and therefore increasing
the overall toughness of the laminate. The same toughening process has
been achieved by alternating ceramic layers with polymeric layers in
[3]. The main drawback of these solutions is that metals and polymers
loose their mechanical properties at high temperatures and have a low
wear resistance. A possible way to enhance the toughness of ceramics is
to introduce quasi-brittle interfaces [4,5]. Then, a stack of ceramic
layers alternated by thin layers of a very brittle ceramic is a possible
effective technological solution. Such brittle layers act as a quasi-brittle
interfaces which make the crack path very complex, thus increasing the
overall material toughness by acting on the crack tortuosity. This me-
chanism has been firstly theorized in the framework of linear elastic
fracture mechanics (LEFM) by the so called Cook–Gordon mechanism
[6]. It is the result of crack branching and crack deflection typical of the

competition between crack penetration in the layers and delamination
along the existing interfaces. Another approach to foster complex crack
paths is to introduce porous layers between the ceramic ones [7].
However, the drawback of porous materials is their low wear resistance.
Alternatively, tough interfaces with preexisting defects could be in-
serted among the layers [8]. The tough interface can be made of a
ceramic material which guarantees the resistance to wear and corro-
sion, also at high temperatures. The defects in the tough interfaces
guarantee the development of crack deflection with a consequent
toughening of the material.

Considering the technological strategies herein described, the in-
troduction of an interface with tailored properties clearly emerges as a
strategy to create a complex crack pattern and consequently enhance
the apparent material toughness. In this article, we investigate these
possibilities by examining and modelling the interaction between crack
penetration in the layers and cohesive delamination at the interfaces
between materials with different elastic and fracture properties. This
problem has been mathematically addressed in many publications using
different methodologies, cf. [9–11]. Differing from previous investiga-
tions, this problem is herein analysed by means of the numerical
method published in [12], which has been recently extended to a 3D
finite deformation framework in [13] and applied to fracture of ani-
sotropic polycrystalline Silicon in [14]. The novelty of the current ap-
proach relies upon the innovative variational framework combining the
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phase field method of fracture and the cohesive zone model. In parti-
cular, the role played by the internal characteristic length scales of the
two approaches is rigorously analysed in order to understand their ef-
fect on the resulting crack path and its tortuosity as a way to enhance
the overall composite toughness.

The manuscript is organized as follows. Section 2 summarizes the
principal features of the variational framework herein employed. In
Section 3, the numerical method is applied to predict the crack path in
laminates. Special attention is devoted to examining the effect of tough
and quasi-brittle interfaces and reproducing also experimental results
related to a ceramic laminate taken from literature. Finally, the main
conclusions of the current investigation are drawn in Section 4.

2. Variational model

In this section, the coupled phase field and cohesive zone model
formulation developed in [12] is resumed. We first present the funda-
mental hypothesis of the current coupling approach in Section 2.1.
Later, the phase field method for brittle fracture formulation and the
cohesive zone model compatible with the phase field model are out-
lined in Sections 2.2 and 2.3, respectively. Finally, the corresponding
finite element formulation within the infinitesimal deformation setting
is derived in Section 2.4.

2.1. Fundamental hypothesis

The formulation herein presented is developed in the general
Euclidean space of dimension ndim under infinitesimal deformation
setting. Let us consider a body ∈Ω ℝndim with a generic shape, where
the boundaries of the body are denoted by ∂ ∈ −Ω ℝn 1dim (Fig. 1). Ki-
nematic and traction boundary conditions can be respectively pre-
scribed on the disjointed parts of the boundaries ∂Ωu and ∂Ωt (with
∂Ωt ∪ ∂Ωu= ∂Ω and ∂Ωt ∩ ∂Ωu=∅). Then, the prescribed displace-
ments and tractions are denoted by:

= ∂ = ∂u u t σ non Ω and · on Ω ,u t (1)

where n is the outward normal unit vector to the body, and σ is the

Cauchy stress tensor. The body forces are represented by the function
→f : Ω ℝv

ndim. The composite is characterized by quasi-brittle inter-
faces, Γi, and a crack in the layer represented as an internal dis-
continuity, Γb (see Fig. 1(a)). A generic point in the bulk of the body is
denoted by the vector of its Cartesian coordinates x, while a generic
point on the interface Γi is denoted by the vector xc.

The free energy functional which governs the mechanics of the body
Ω is defined as [15,16]:

∫ ∫= + = +
∖

ψu u εΠ( , Γ) Π ( , Γ) Π (Γ) ( ) dΩ dΓ,e
cΩ Γ Ω Γ Γ

G (2)

where ψe(ε) is the elastic energy density, ε is the strain field, and cG is
the fracture energy.

The main idea to couple the phase field approach for brittle fracture
and the cohesive zone model is to split the fracture energy function cG in
two parts. One part ( c

bG ) describes fracture in the layers and it is
modelled by the phase field approach. The second part ( iG ) describes
the cohesive fracture of the interfaces and it is modelled by the cohesive
zone approach. Then, the free energy functional in Eq. (2) can be re-
written as:

∫ ∫
∫

= + + = +

+

∖
ψu ε u

g

Π( , Γ , Γ) Π Π Π ( ) dΩ ( , ) dΓ

( , , ) dΓ,

b i
e

c
b

i

Ω Γ Γ Ω Γ Γ

Γ

b i
b

i

G

G

d

h d (3)

where g denotes the vector of displacement discontinuities at the in-
terface, h is an history parameter as in [17] to avoid re-healing of the
material and the non uniqueness of the solution, and d is the phase field
degradation variable which will be further detailed in the next section.

2.2. Phase field approach for brittle fracture

The phase field approach for brittle fracture [15,18] is a variational
approach which considers a crack as a diffuse damage instead of a sharp
discontinuity (Fig. 1(a)). Within this framework, the potential energy of
the bulk is formulated as follows:

∫ ∫= + ∇ψ γu εΠ ( , ) ( , ) dΩ ( , ) dΩ,b c
b

xΩ Ω
Gd d d d (4)

Fig. 1. Schematic representation of an arbitrary body with a discontinuity in the domain and an interface: (a) Left: discrete discontinuity in the domain. Right: smeared discontinuity in
the domain based on the phase field concept. (b) Diffusive crack modeling solution for the one-dimensional crack problem.
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where ψ ε( , )d is the elastic energy stored in the bulk, the symbol ∇x•
denotes the spatial gradient operator, and ∇γ ( , )xd d is the so called
crack density functional which reads [15]:

∇ = + ∇γ
l

l( , ) 1
2 2

| |x x
2 2d d d d (5)

where l is the phase field internal length parameter governing the
sharpness of the crack according to the equation presented in Fig. 1(b)
for the mono-dimensional case.

The elastic energy in Eq. (4) takes the following form:

= ++ −ψ ψ ψε ε ε( , ) ( ) ( ) ( ),e ed g d (6a)

= ++ + +ψ λ με ε ε( )
2

( tr[ ] ) tr[ ],e 2 2
(6b)

= +− − −ψ λ με ε ε( )
2

( tr[ ] ) tr[ ],e 2 2
(6c)

where λ and μ are the Lamé constants, tr[•] denotes the trace operator,
ϵ+ and ϵ− denote the positive and negative counterpart of the strain
tensor, respectively, and g ( )d is a degradation function:

= − +( ) (1 ) .2 Kg d d (7)

In Eq. (6a), the elastic energy has been split in its positive and ne-
gative counterparts according to the formulation in [19,20]. The posi-
tive counterpart of the elastic energy is produced by the tensile stresses
while the negative counterpart is produced by compression. Positive
and negative stresses can be computed by the derivative of the elastic
energy with respect to the strain tensor. Then, the introduction of the
positive and negative split of the strain tensor leads to:

=
∂
∂

= + = ++ − ± ± ±
ψ

λ μσ
ε

σ σ σ ε 1 ε:
ˆ

( ) ; with ( tr[ ] ) 2 ,g d (8)

Then, since the degradation function in Eq. (7) affects only the
positive counterpart, damage can only develop when the material is
under tension, avoiding damage growth in compression.

2.3. Cohesive zone model compatible with the phase field

In this section, the classical linear cohesive zone model with tension
cut-off [21] is particularized in order to take into account the effect of
the bulk damage d. First of all, the cohesive counterpart of the fracture
energy in Eq. (3) is decomposed in the sum of the Mode I and Mode II
fracture energies, IG and IIG , respectively. Based on the formulation
outlined in [12], the critical crack opening displacement (gc) depends
on the bulk damage d according to the linear relation

= − +g g g( ) (1 )c c c,0 ,1d d d , where = =g g ( 0)c c,0 d and = =g g ( 1)c c,1 d .
Then, the cohesive traction vs. relative displacement laws for Mode I
and Mode II take the form shown in Fig. 2, and are described by the
following equations:

=
⎧

⎨
⎩

< <

≥
=

⎧

⎨
⎩

< <

≥
σ

k
τ

k, if 0 1;

0, if 1,

, if 0 1;

0, if 1.

n
g
g

g
g

g
g

t
g
g

g
g

g
g

n n

n

t t

t
nc nc

nc

tc tc

tc (9)

where σ and τ are the Mode I and Mode II tractions, respectively, g is the
relative displacement, and the subscript n and t refers to opening and
sliding, respectively. The stiffness of the cohesive relation, k, depends
on damage d according to the formulae:

= =( ) ( )k k k k, .n n
g
g t t

g
g,0

2
,0

2
nc,0

nc

tc,0

tc (10)

where k0 and g0 are, respectively, the stiffness and critical relative
displacements at = 0d .

In this formulation, among the different potential alternatives, we
have adopted the hypothesis of keeping constant the critical energy
release rate of the interface, c

iG , for many reasons. Firstly, the model is
formulated starting from the Griffith energy balance criterion, then in
Eq.(3) we set up a clear and explicit split between the dissipated energy
due to the bulk fracture and to the interface delamination. Corre-
spondingly, c

iG becomes the material parameter that governs the in-
terface failure. This choice endows a clear characterization of the in-
terface fracture energy. In fact, among the four parameters entering the
cohesive law, c

iG can be obtained in a straightforward manner from
experimental tests [22].

Finally, the mixed mode failure criterion proposed in [23] is here-
with considered to trigger the interface failure:

⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

= 1,I
i

i

i

i
IC

2
II

IIC

2
G

G

G

G (11)

where I
iG and i

IIG are the dissipated fracture energies which take the
form:

= =
− + − +

n g k g( ) , ( ) .I
i

t n
g

g g
i

t t
g

g g
1
2 ,0

2
[(1 ) ] II

1
2 ,0

2
[(1 ) ]

nc,0
2

nc,0 nc,1
2

tc,0
2

tc,0 tc,1
2G Gd d

d d d d

(12)

The critical fracture energies i
ICG and i

IICG are:

= =g k g k, .i
n

i
tIC

1
2 nc,0

2
,0 IIC

1
2 tc,0

2
,0G G (13)

2.4. Finite element formulation

The finite element formulation of the previous fracture mechanics
models is herein derived. First of all, the weak form of the free energy
functional in Eq. (3) is deduced using the standard Galerkin procedure.
Then, the variation of the bulk energy functional (Eq. (4)) with respect
to the displacements u and the phase field variable d takes the form:

Fig. 2. Schematic representation of the cohesive zone model coupled with the phase field variable for brittle fracture in the bulk. (a) Mode I CZM traction σ vs. gn. (b) Mode II CZM
traction τ vs. gt.
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∫ ∫

∫

= − − +

⎡⎣ + ∇ ∇ ⎤⎦
+ ∀

+ψ

δ δ

u u σ ε ε

u u u

δΠ ( , δ , d, δd) : δ dΩ 2(1 d)δd ( ) dΩ

l · ( ) dΩ

δΠ ( , δ ) δ , δd,

b e

c
b

l

b

x x

Ω Ω

Ω
1

,ext

2G d d d d

(14)

where ∈ = = ∂ ∈δ δu u u u u{ | on Ω , }u
u

1HV is the vector of the dis-
placement test function, and ∈ = = ∈δ δ δ{ | 0 on Γ , }b

0Hd V d d dd is
the damage test function. The contribution of the external forces in the
variation of the bulk energy functional is defined as follow:

∫ ∫= ∂ + ∀
∂

δ δ δ δ δ δu u t u f u uΠ ( , ) · d Ω · dΩ , .b v,ext Ω Ω
d (15)

Finally, the variation of the interface energy functional ΠΓi in Eq. (3)
is defined as:

∫ ⎜ ⎟= ⎛
⎝

∂
∂

+ ∂
∂

⎞
⎠

∀δ δ δ δ δ δ δu u u
u

u u uΠ ( , , , ) ( , ) ( , ) dΓ , .
i i

Γ Γi
i

G G
d d

d d

d
d d

(16)

The phase field model has been implemented within a 4-node iso-
parametric finite element. The cohesive zone model has been im-
plemented using a 4-node interface finite element. The detailed finite
element implementation in the software FEAP [24] and all the related
operators can be found in [12] and are omitted here for the sake of
brevity.

3. Simulation of complex crack paths in layered ceramics

The prediction of the crack path in ceramic laminates is a very
challenging issue. Various factors such as the elastic mismatch of the
constituent materials and the properties of the interfaces [23,25] make
the crack propagating along tortuous paths which are very difficult to
be simulated using previous numerical methods. The present approach
resolves most of their drawbacks primarily associated to remeshing or
corner-case problems.

3.1. Complex crack paths for laminates under tensile loading: analysis of
failure patterns with quasi-brittle or tough interfaces

In this section we study the effect of the interface toughness on the
resulting crack path. The case of a single-edge notched bi-material la-
minate under tension (Fig. 3) is herein considered. The laminate has
been modelled using the phase field finite elements for the bulk and the
interface finite elements compatible with the phase field between each
layer. The materials which compose the laminate are: a soft material 1
with high fracture toughness; a stiff material 2 with low fracture
toughness. The material parameters are collected in Table 1.

Three cases have been examined: (1) laminate with perfectly
bonded layers; (2) laminate with tough interfaces; (3) laminate with
brittle interfaces. Note that the toughness of the interfaces is always
larger than the toughness of the materials composing the laminae, to
simulate configurations consistent with technological solutions for
ceramics laminates.

In the first simulation, no interface elements are introduced in order
to simulate fully bonded layers. The phase field internal length l is set
very small for both layers (see Table 1), to reproduce LEFM predictions
as discussed in [26]. The results of the simulations are shown in Fig. 4.
The first layer that shows crack nucleation is the second one (material
2). In such a layer, two parallel cracks are predicted to propagate si-
multaneously (Fig. 4(a)) and can be considered as two branches of the
initial notch in the layer 1. After increasing the applied load, each crack
in the second layer further branches in the next brittle layer (Fig. 4(b)).
The same process continues for the next brittle layer but only two
branches are now developed (Fig. 4(c)). At this stage, the cracks in the
brittle layers start connecting through the material 1. Finally, failure of
the specimen is achieved (Fig. 4(d)) and it is the result of a complex
crack path mostly localized in the mid-span cross-section of the

specimen.
In the second simulation, we introduce interface elements between

each layer. The parameters used for the interface are
σc,0= τc,0= 100MPa and k0= 2000MPa/mm to model a stiff quasi-
brittle interface. As expected, the evolution of the predicted crack path
is very different from that of the previous simulation. The first layer
where cracks nucleate is the second one (Fig. 5(a)) with the same
pattern as in the first simulation. Immediately after that, delamination
along the interface between the first and the second layer takes place
(Fig. 5(b)). Then, the first layer is cracked by the propagation from the

Fig. 3. Specimen geometry.

Table 1
Geometry and material/interface parameters.

Geometry parameters
L 6mm Specimen length
ly 0.25mm Layer thickness
h 0.005mm Interface thickness

Mechanical parameters material 1
E1 70,000MPa Material 1 Young modulus
v1 0.34 Material 1 Poisson ratio

1G 0.025 N/mm Material 1 fracture energy
l1 0.0075mm Material 1 phase field length scale parameter

Mechanical parameters material 2
E2 300,000MPa Material 2 Young modulus
v2 0.14 Material 2 Poisson ratio

2G 0.005 N/mm Material 2 fracture energy
l2 0.0075mm Material 2 phase field length scale parameter

Mechanical parameters interface
k0 2000MPa/mm Initial stiffness of interface
σc,0, τc,0 100MPa Initial peak stress of the tough interface

c
iG 2.5 N/mm Critical energy release rate for tough interface

σc,0, τc,0 1 MPa Initial peak stress of the brittle interface

c
iG 0.025 N/mm Critical energy release rate for brittle interface

σc,0/σc, τc,0/
τc

1 Ratio between the initial and final value of the
peak stress of the interface
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notch (Fig. 5(c)). Continuing with the simulation, cracking proceeds in
the material 2 layers together with the development of delamination at
interfaces (Fig. 5(d)). At failure, delamination makes the crack pattern
distributed along the whole specimen, as a primary difference from the
results of the first simulation. Another important aspect is that the
majority of the material 1 layers are not cracked, apart from the first
layer containing the notch.

In the third simulation we introduce a more brittle interface, setting

σc,0= τc,0= 1MPa and k0= 2000MPa/mm. The evolution of the crack
path is again quite different from the previous cases (Fig. 6). Thus, in
the current case, first, delamination is predicted to occur between the
first and the second layer (Fig. 6(a)). Then, the crack starts propagating
from the notch until it impinges onto the delaminated interface
(Fig. 6(b)). Subsequently, branching is predicted to take place in the
second layer (Fig. 6(c)), and each branched crack is developed starting
from the points where delamination was arrested. Furthermore, crack

Fig. 4. Crack evolution in the simulation with fully bonded layers.
Fig. 5. Crack evolution in the simulation with tough interface (σc,0 = 100MPa).
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penetration triggers delamination along the second interface. Finally,
the sample failure is the result of a sudden delamination along all the
interfaces and cracks in the brittle layers (Fig. 6(d)). Again, the material
1 layers have been preserved from cracking.

The force–displacement curves of the above three simulations are
shown in Fig. 7. All of them present an initial nonlinearity due to the
formation of damage in the bulk. After that, the curve of the first si-
mulation starts loosing the load-bearing capacity slowly with a smooth

softening. This is due to the gradual crack propagation within the
specimen. The curves corresponding to the second and third simula-
tions show a completely different crack pattern and the nonlinear ef-
fects are much more pronounced in the load–displacement curve due to
the occurrence of delamination. The development of cracking and de-
lamination events cause multiple drops in the resistant force.

The correspondence between crack/delamination events and the
drops in the force can be examined closely in Fig. 8. In these graphs, the
force–displacement curves are plotted together with other two quan-
tities, the total crack propagation length and the portion of crack pro-
pagation length in just the bulk. Both quantities are normalized with
respect to the layer thickness, ly. These plots show that, in general,
delamination and cracking occur simultaneously. This is in agreement
with the patterns in Figs. 5 and 6, where in some cases delamination
triggers crack formation in the layers or vice-versa. Another important
consideration is that the delamination length in the simulation with
quasi-brittle interfaces is bigger than the in simulation with tougher
interfaces.

Moreover, we compare the current predictions with the theoretical
results presented in [6], which complied with the so-called Cook–-
Gordon mechanism. According to that theory, the introduction of a
brittle interface should increase the apparent material strength. The
results reported in Fig. 7 seem to challenge this theory, since a brittle
interface reduces the apparent material strength as compared a tougher
one.

This contradiction can be explained by noting that the assumptions
of the Cook–Gordon model are not fully satisfied in the present com-
putational setting. One of the most relevant differences regards the fact
that in the Cook–Gordon model the material is considered homo-
geneous and linear elastic until the condition of fracture of the interface
is achieved. After delamination, discontinuities are considered along
the interface and, consequently, the interface starts interfering with the
linear elastic fracture mechanics crack tip stress distribution. In the
present model, on the other hand, interfaces are introduced as an ad-
ditional compliant material from the very beginning of the simulation.
In [12] it has been shown that the behaviour of such a system depends
on the ratio between the interface process zone size and the bulk energy
dissipation zone size (lCZM/l). Depending on this ratio, the apparent
strength of the overall material ranges between the strengths ruled by
the following limit models: a model with prefect bonded interfaces and
finite l; a model with elastic bulk material and finite lCZM. In our si-
mulations, the ratio lCZM/l is kept constant. In fact, the bulk properties
do not change (then l is constant), and lCZM is also constant since k is
fixed. This latter aspect is a consequence of dimensional analysis con-
siderations in [12] from which we deduced that

∝ =l E σ E k/ /(2 )c
i

CZM max
2G . The consequence of having a constant ratio

lCZM/l is that delamination is triggered earlier in the presence of a brittle
interface. Due to this, we have also longer delamination paths for a
brittle interface.

These conclusions lead to the second important difference with re-
spect to the Cook–Gordon model, where the load is supposed to be
applied as a remote tensile stress at infinity. The assumption of infinite
plane plays an important role, since there is no constrain on the size of
the delamination path. As a result, a brittle interface could lead to a
longer delamination with a consequent delayed crack propagation, in-
creasing the elastic energy release rate. The specimens that we simu-
lated are not long enough to be considered as infinite. Due to that, when
the interface is brittle, delamination reaches the boundaries of the
specimen causing the failure of the whole interface. This is also what
accelerates the final failure of the specimen. As a result, for a brittle
interface, the apparent strength of the specimen results lower than for a
more ductile one.

Finally, there are other assumptions made in the Cook–Gordon
model that are not in line with the hypotheses of the present approach.
For instance, Cook and Gordon neglected the effect of the vertical stress
σy in their interface fracture criterion. They made this simplification

Fig. 6. Crack evolution in the simulation with brittle interface (σc,0 = 1MPa).
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because their system is an homogeneous material with an interface,
while here we have a laminate with different elastic properties for the
laminae. This means that σy is not constant across the laminae and there
are jumps in correspondence of the interfaces. We cannot say quanti-
tatively how much is the effect of the variation of σy on the interface
delamination and on the overall strength. Nevertheless, we have good
motivations to believe that σy cannot be neglected and could be another
important source for possible discrepancies with respect to the
Cook–Gordon model.

3.2. Crack propagation in Si3N4/BN micro-laminate

In this section, we reproduce the experimental results in [4] con-
cerning the 4-point bending test of a silicon nitride/boron nitride
(Si3N4/BN) micro-laminate. Both constituent materials are brittle

ceramics. The laminate is structured with layers of Si3N4 of thickness
between 40 μm and 60 μm, alternated by layers of BN of variable
thickness between 2 μm and 10 μm (Fig. 9(a)). The BN layers act as
quasi-brittle interface between the Si3N4 layers.

The 4-point bending test geometry is shown in Fig. 9(b). The di-
mensions of the specimen are: total span L = 5mm, thickness T =
3mm, width W = 4mm. The outer and inner span of the 4-point
bending test are, respectively, S1= 4mm and S2= 2mm. This geo-
metry is discretized with phase field finite elements for the Si3N4 layers,
representing the bulk material, and cohesive interface finite elements
compatible with phase field for the BN layers. Due to the variable
thickness of the Si3N4 layers, in our simulation the thickness associated
to the layers of this material is set equal to 40, 50 or 60 μm. The as-
signment of the Si3N4 layer thickness is randomly chosen according to a
uniform distribution. The interface thickness, on the other hand, is set

Fig. 7. Force–displacement curve of the three simulations.

Fig. 8. Force–displacement curve compared with the crack and delamination length for the case of σmax = 100MPa (left) and σmax = 1MPa (right) normalized by the layer thickness ly.
The letter refer to the corresponding image in Fig. 5 for the case of σmax = 100MPa and to Fig. 6 for the case of σmax = 1MPa.

Fig. 9. (a) Si3N4/BN structure of the microlaminate; (b) 4-point bending experimental test geometry. Image (a) reprints from [4].
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Fig. 10. Numerically predicted vs. experimental force–displacement curves.

Fig. 11. Fracture propagation and delamination resulting from the numerical simulation. For each subfigure there is the damage contour plot on top and the x-displacement contour plot
on bottom.
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constant and equal to 5 μm. The material and fracture parameters of the
bulk are: Young modulus E = 310 GPa, Poisson ratio ν = 0.27, fracture
energy sG = 9 μN/μm and phase field internal length scale l = 2 μm.
The interface parameters are: σc,0= τc,0= 32MPa and k0= 70MPa/
μm.

The experimental force–displacement curve (Fig. 10) shows an in-
itial linear behaviour until the peak load of 475 N is reached. After this
point, the load-carrying capacity of the specimen drops down to around
40% of the peak load. Then, the load continue increasing until a second
drop is observed when the value of 240 N is reached. After this second
drop, the load-carrying capacity is reduced to 10% of that at peak load.
The specimen maintains this level until final failure.

Fig. 11 shows the evolution of the predicted crack pattern. Due to
symmetry of the geometry and of the boundary conditions, only half of
the domain has been simulated, using around 380.000 finite element
nodes and a finer mesh in the region where the crack is expected to
propagate. The simulation shows an initial linear behaviour until the
peak load of 475N is reached (Fig. 11(a)). Then, an interface situated in
the middle of the specimen thickness fails due to delamination
(Fig. 11(b)). After this first delamination event, the specimen continues
gaining load-carrying capacity until the Si3N4 layers start failing. Ac-
cording to the numerical predictions, the layers that first fail are that at
the intrados and the one immediately next to the delaminated interface
(Fig. 11(c)). The crack is predicted to continue its propagation towards
the extrados of the specimen until final failure (Fig. 11(d)). The result of
the simulation in terms of force–displacement curve shows a good
agreement with the experimental one (Fig. 10). The initial part of the
curve, the peak load and the drop in load-carrying capacity are very
well predicted, capturing the critical load at which damage events
occur. The final part of the simulation shows a more progressive failure
evolution until collapse. This is not in perfect agreement with experi-
ments, since we suppose that the second drop in the force noticed in
experiments is caused by a second severe delamination event which we
were not able to reproduce numerically. One possible source for this
mismatch can be attributed to the interface parameters, since no ex-
perimental characterization was available.

Another important result of the simulation is the very satisfactory
prediction of the crack pattern features conforming to the experimental
evidences. The experimental image in Fig. 12(a) shows the strong crack
deflection and branching developed due to delamination. The same
behaviour has been reproduced by the numerical simulation
(Fig. 12(b)) where both phenomena are present in the simulated crack
pattern.

4. Conclusions

In this work, a novel variational framework combining the phase

field method of fracture and the cohesive zone model approach has
been applied for modelling complex crack paths in ceramic laminates
within the context of the finite element method.

In particular, the predictive capabilities of the proposed modelling
tools have been exploited in relation to ceramic laminates. The effect of
tough or quasi-brittle interfaces has been quantified and compared to
the case of fully bonded layers. Based on the numerical predictions, we
have numerically quantified that introducing interfaces is a way to
increase the tortuosity of the crack path increasing the energy dis-
sipated before failure. It has been also identified that the peak cohesive
tractions govern the development of crack penetration, crack branching
and crack deflection phenomena.

Moreover, the applicability of the current computational method
has been examined through its application to real laminates structures
composed by Si3N4/BN layers. The numerical predictions showed that
the proposed framework enabled reproducing the key features of the
crack pattern and the force–displacement curve observed in the ex-
periments, proving the capabilities of the proposed approach to be used
as a tool for the design and characterization of ceramic laminates.

In light of the previous arguments, this work is expected to provide
a suitable modelling framework for more application-based problems
concerning crack pattern predictions in ceramic composites, among
other alternative multilayer or heterogeneous materials.

Moreover, as a research perspective, a comparison of the proposed
approach with the method provided in the theory of structured de-
formations [27–29] could be of interest for further investigations, to
provide a re-interpretation of the phase field approach to fracture in
terms of structured deformations.
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