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Abstract. We study the rate of growth experienced by the Kro-
necker coefficients as we add cells to the rows and columns index-
ing partitions. We do this by moving to the setting of the reduced
Kronecker coefficients.

1. Introduction

The Kronecker coefficients gλ,µ,ν are fundamental constants in Rep-
resentation Theory. They describe how irreducible representations of
GL(V ⊗W ) split, when viewed as representations of GL(V )×GL(W ).
They are also the structural constants for the tensor products of irre-
ducible representations of the symmetric groups.

In spite of their importance, very little is known about the Kronecker
coefficients, and this leaves some fundamental questions unanswered.
For example, are the Kronecker coefficients described by a positive
combinatorial rule, akin to the Littlewood–Richardson rule [2, 3, 22]?
How difficult is it, algorithmically, to compute Kronecker coefficients
[39, 10, 7, 42], or to determine they are nonzero [44, 21]? Remarkably,
this latter problem relates the Kronecker coefficients with the quantum
marginal problem in Quantum Information Theory [30, 13, 12].

A feature of the Kronecker coefficients that has been studied re-
cently is the stability phenomenon: the fact that some sequences of
Kronecker coefficients are eventually constant. The first example of
such a behavior was observed by Murnaghan in 1938 [40]. The Kro-
necker coefficients gλ,µ,ν are indexed by triples of partitions (λ, µ, ν),
and Murnaghan’s stable sequences are obtained by incrementing the
first part of all three partitions at each step. Their limit values (the
reduced, or stable Kronecker coefficients) are interesting objects in their
own right. As seen in [8], they contain enough information to recover
the value of the Kronecker coefficients and are believed to be simpler
to understand. For example, it is conjectured that they satisfy the
saturation property [28, 31], and they have been used to find efficient
formulas for computing some Kronecker coefficients [7].
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Many more sequences of Kronecker coefficients are stable: large fam-
ilies have been produced by means of methods from geometry [36, 37,
38], enumerative combinatorics [54, 55] or symmetric functions cal-
culations [41]. These stable sequences of Kronecker coefficients have
general term of the form gλ+nα,µ+nβ,ν+nγ, where we add, and multiply
a partition by a scalar, as it is usually done for vectors.

Murnaghan’s case corresponds to α = β = γ = (1).
In [52], it was conjectured that gλ+nα,µ+nβ,ν+nγ stabilizes (for any

λ, µ, ν) if and only if gα,β,γ = 1. This was proved in [47]. These
stability phenomena are, as an aside, the prototype for the very general
representation stability phenomenon unveiled in algebraic topology; see
[15, 14, 46].

In this paper we present two new results related to the stability of
Kronecker coefficients. The first one is indeed a result of stability,
but the sequence that we consider is not of the type gλ+nα,µ+nβ,ν+nγ.
At each step, we simultaneously increase the first row and the first
column of the Young diagrams of all three indexing partitions. We call
this phenomenon hook stability.

Note that this hook stability does not seem to fit straighforwardly
in the representation theory of fixed general linear groups, since it
involves sequences of Kronecker coefficients indexed by partitions with
unbounded lengths.

The second result is about the asymptotics of some sequences of
Kronecker coefficients of type gλ+nα,µ+nβ,ν+nγ, that do not stabilize,
but are shown to grow linearly.

We describe the relevant coefficients (the limits for hook stability,
and the coefficients appearing in quasipolynomial formulas for the as-
ymptotic estimates, for the result on linear growth) by means of gen-
erating series.

Our tools are the following:

(1) Vertex operators on symmetric functions. Vertex operators on
symmetric functions provide generating functions for Schur func-
tions. They have been used widely by Thibon and his collab-
orators to establish several properties of stability. See Section
2.4.1 for references and a basic treatment of vertex operators.

(2) The λ–ring formalism for symmetric functions. This formalism
is in fact a calculus on morphisms from the algebra of symmetric
functions. See Section 2.3 for basic definitions and references.

(3) Schur generating series will be used to encode families of con-
stants indexed by several partitions by means of symmetric
series in several sets of variables. Important structural con-
stants for symmetric functions have very compact Schur gen-
eraing series when expressed within the Lambda–ring formal-
ism: σ[XY +XZ] for Littlewood–Richardson coefficients, and
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σ[XY Z] for Kronecker coefficients. The coefficients introduced
in this paper also have have simple Schur generating series.

The two sets of results in this paper (hook stability and linear growth)
are obtained by first considering stability properties and linear growth
for families of reduced Kronecker coefficients, and then translating the
results obtained to Kronecker coefficients.

The two sets of results for reduced Kronecker coefficients are obtained
the same way: by simplifying Schur generating series for sequences of
reduced Kronecker coefficients by means of vertex operators. Because
we have at our disposal two conjugate vertex operators (one related to
first row increasing, the other to first column increasing) we simulta-
neously get these two sets of results.

This article is structured as follows. In Section 2 we introduce the
basic tools used in this article. In particular, we review the two vertex
operators that allow us to increase the sizes of the first row and column
of a partition.

Section 3 presents the reduced Kronecker coefficients: it includes
an elementary proof of Brion’s formula [9], which we have not seen in
the literature, and an elementary derivation of the generating function
for the reduced Kronecker coefficients indexed by one row (and one
column) shapes.

Section 4 provides the main technical lemma that allows us to factor
a symmetric function (polynomial) out of some symmetric series. This
lemma is applied twice in Sections 5 and 6, once with each of the two
conjugate vertex operators.

In Section 5, we prove stability for the sequences of reduced Kro-
necker coefficients whose indexing partitions have their first column
growing (Section 5.1). We deduce in Section 5.2 the hook stability
property for Kronecker coefficients. Another approach to proving this
property is explored in Section 5.3. We are not able to get an alterna-
tive proof of the hook stability property through this approach, but are
led to the conjecture that Kronecker coefficients weakly increase when
incrementing at the same time the first row and the first column of the
diagram of each of their three indexing partitions (Conjecture 5.12).

In Section 6, we study the effect of the growth of the first rows
of the partitions indexing a reduced Kronecker coefficient and obtain
linear quasipolynomial formulas when these first rows are big enough.
This also provides asymptotic linear quasipolynomial formulas for some
sequences of Kronecker coefficients gλ+nα,µ+nβ,ν+nγ where, together with
other conditions, the partitions α, β and γ have at most two parts.

Schur generating functions for the limit values gλ,µ,ν in the hook
stability property, and the coefficients of the quasipolynomial formulas
of Section 6, are derived in Section 7.

Section 8 reviews some examples appearing in the literature, that
study the effect of increasing the sizes of the other rows and columns.
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Two appendices round up the results. In Appendix A, we provide a
table with some constants appearing in Theorem 7.3. Appendix B con-
tains a proof of some stability bounds for the hook stability described
by Theorem 5.6.

2. Preliminaries

2.1. Partitions. A partition of n is a weakly descending sequence of
non-negative integers whose sum is n. Two partitions that differ by a
string of zeros are considered to be the same. The positive terms in
a partition are called its parts, and the length ℓ(λ) of the partition λ
is defined as the number of parts. The weight |λ| of the partition λ is
the sum of its parts. The conjugate of a partition λ will be denoted λ′,
and with parts λ′

1, λ
′
2, . . .. The empty partition will be denoted by ∅.

Let ∪ and + be the standard operations on partitions, as defined in
[35, I.§1]. If n is a nonnegative integer and λ = (λ1, λ2, . . . , λk) is a
partition, then nλ is the dilation of λ by a factor n, that is the partition
(nλ1, nλ2, . . . , nλk).

Let λ be the partition obtained after removing the first term of λ.

This operation can be iterated: λ is the partition obtained from λ by
removing the first two terms.

Let λ̂ be the partition obtained after removing the first row and the
first column in the diagram of λ.

The sequence defined by prepending a first term a to the partition
λ will be denoted (a, λ). The resulting sequence (a, λ1, λ2, . . .) is not
necessarily a partition since we may have that a < λ1. Given an
integer N , we denote by λ[N ] the sequence (N − |λ|, λ), which is also
not necessarily a partition.

Finally, for any non–empty partition λ, we will write λ ⊕ (a|b) for
λ+ (a) ∪ (1b).

For example, if λ = (8, 3, 3, 1), then we have that λ = (3, 3, 1),

λ = (3, 1), λ̂ = (2, 2), λ[20] = (5, λ) = (5, 8, 3, 3, 1) (not a partition),
λ[25] = (10, λ) = (10, 8, 3, 3, 1) and λ⊕ (7|4) = (15, 3, 3, 1, 1, 1, 1, 1).

2.2. Symmetric functions, Schur functions and Jacobi–Trudi

determinants. For λ a finite sequence of integers of length n, we
define

sλ = det
(
hλj+i−j

)
i,j=1...n

,

where h0 = 1 and hk = 0 for k < 0.
The Jacobi-Trudi formula implies that when λ is a partition then

sλ is the Schur function indexed by λ. Since rearranging the columns
of the above determinant suffices to order the parts of any sequence of
integers, we always obtain for sλ either a Schur function (up to sign), or

zero. For example, sλ1,λ2
=

∣∣∣∣
hλ1

hλ2−1

hλ1+1 hλ2

∣∣∣∣ , s1,2 = 0, and s1,3 = −s(2,2).
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Let SymQ = SymQ(X) be the algebra of symmetric functions with
rational coefficients, with underlying alphabets X = {x1, x2, . . .}. We
denote by 〈 | 〉 or 〈 | 〉X the scalar product on SymQ defined by saying
that the Schur functions are an orthonormal basis. For any symmetric
function f , f⊥ will denote the adjoint of multiplication by f . The
scalar product is conveniently extended whenever it makes sense. For
instance 〈

∞∑

i=0

fit
i

∣∣∣∣∣

∞∑

j=0

gj

〉
=

∞∑

i=0

(
∞∑

j=0

〈fi | gj〉

)
ti

if, for each i, fi is a symmetric function and for each j, gj is a homo-
geneous symmetric function of degree j.

We also consider symmetric functions in different alphabets (set of
variables) X , Y , Z. The scalar product is canonically extended to the
algebras SymQ(X) ⊗Q SymQ(Y ), SymQ(X) ⊗Q SymQ(Y ) ⊗Q SymQ(Z)
they generate, and denoted by 〈 | 〉X,Y and 〈 | 〉X,Y,Z .

2.3. The λ–ring formalism for symmetric functions, and spe-

cializations. Let A be any commutative algebra over a field K of
characteristic zero

Given a morphism of algebras A from SymQ to A, the image of a
symmetric function f under A will be denoted with f [A] rather than
A(f) and called “specialization of f at A”.

Since the power sum symmetric functions pk (k ≥ 1) generate SymQ

and are algebraically independent, the map

(1) A 7→ (p1[A], p2[A], . . .)

is a bijection from the set of all morphisms of algebras from SymQ to A
to the set of infinite sequences of elements fromA. This set of sequences
is endowed with its operations of component-wise sum, product, and
product by a scalar. The bijection (1) is used to lift these operations
to the set of morphism from SymQ to A. This defines expressions like
f [A + B], f [−A], f [AB], f [A/B] . . . where f is a symmetric function
and A and B are two specializations, and more general expressions
f [P (A,B, . . .)] where P (A,B, . . .) is a rational function in several spe-
cializations A, B . . . with coefficients in K. Note that, by definition,
for any power sum pk (k ≥ 1), specializations A and B and scalar z,

pk[A+B] = pk[A] + pk[B], pk[AB] = pk[A]pk[B], pk[zA] = zpk[A].

Here are some important specializations. The specialization at −1 is
defined on power sums by pk[−1] = −1 for all k. The specialization ε
is defined by pk[ε] = (−1)k for all k. The product of the two previous
specializations is −ε and fulfills pk[−εX ] = (−1)k+1pk[X ] for all k. As
a consequence, the transformation f [X ] 7→ f [−εX ] coincides with the
standard involution ω defined by ωsλ = sλ′ for all λ. There is also the
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specialization X⊥ such that for any symmetric function f , f [X⊥] = f⊥,
the adjoint of the multiplication by f with respect to 〈 | 〉X .

Lemma 2.1. Let σ[X ] =
∑

n≥0 hn[X ] be the generating function for the
complete homogeneous symmetric functions in X. It has the following
well-known properties:

(1) Given an alphabet X,

σ[X ] =
∏

x∈X

1

1− x
and σ[−X ] =

∏

x∈X

(1− x).

In particular for a single variable t, σ[t] = 1/(1−t) and σ[−t] =
1− t;

(2) Cauchy’s Identity : σ[XY ] =
∑

λ sλ[X ]sλ[Y ].
(3) Given any two alphabets A and B, σ[A+B] = σ[A]σ[B].
(4) The adjoint of multiplication by σ[AX ] with respect to 〈 | 〉X . It

has the following effect: σ[AX⊥]f [X ] = f [X + A].
(5) As a particular case, we have the reproducing kernel property of

σ[AX ]: for any symmetric function f , 〈σ[AX ] | f [X ]〉 = f [A].

Standard references for these results are [35] and [33]. See also [5].

Finally, it is well-known that using operations on alphabet, we can re-
cover the Littlewood–Richardson, cλ,µ,ν and the Kronecker coefficients,
gλ,µ,ν :

sλ[X + Y ] =
∑

µ,ν

cλ,µ,νsµ[X ]sν [Y ]

sλ[XY ] =
∑

µ,ν

gλ,µ,νsµ[X ]sν [Y ].(2)

While (2) can be used to define the Kronecker coefficients, they can
also be defined as follows. Let λ and µ be partitions of some integers.
Define a product ∗ on the ring of symmetric functions where the

(3) pλ ∗ pµ = δλ,µz
−1
λ pλ,

where, as usual, zλ = 1m1m1! · · ·n
mnmn! and mi are the number of

parts of λ equal to i. Then, if ν is also a partition, the Kronecker
coefficients gλ,µ,ν are

sµ[X ] ∗ sν [X ] =
∑

λ

gλ,µ,νsλ[X ].

It’s clear from (3), that gλ,µ,ν = 0 if λ, µ and ν are not partitions of the
same integer.

2.4. Vertex operators for symmetric functions.
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2.4.1. Vertex operators. The vertex operator for symmetric functions
Γ(t|X) is defined on the basis of Schur functions in X by:

Γ(t|X) : sα[X ] 7→
∑

n∈Z

s(n,α)[X ]tn

where t is an additional variable. Recall that Schur functions are de-
fined using the Jacobi–Trudi identity in terms of the complete homo-
geneous basis, and that hn is equal to zero when n < 0.

From [11, Lemma 3.1], this operator can be factorized as Γ(t|X) =

σ[tX ]σ
[
−1

t
X⊥
]
and therefore fulfills

(4) Γ(t|X)f [X ] = σ[tX ]f

[
X −

1

t

]

for any symmetric function f . In particular, given any partition α,

(5)
∑

n∈Z

s(n,α)[X ]tn = Γ(t|X)sα[X ] = σ[tX ]sα

[
X −

1

t

]
.

Alternatively, using the index n for the weights of the partitions in the
formal series instead of for the first parts, we have also

(6)
∑

n∈Z

s(n−|α|,α)[X ]tn = t|α|Γ(t|X)sα[X ] = σ[tX ]sα [tX − 1] .

This follows from (4), and the fact that Schur functions are homoge-
neous.

This vertex operator is a classical tool in the theory of symmetric
functions used in particular by Jing (see for instance [24]), and, for the
study of various phenomena of stability, by Thibon and his collabo-
rators [53, 49, 11, 48, 32]. It is the generating series for Bernstein’s
creation operators introduced in [56]. See also [35, I.§5 Ex. 29].

2.4.2. Vertex operators for columns. The vertex operator Γ(t|X) asso-
ciates to any Schur function sα a generating series for the Schur func-
tions s(n,α) obtained by prepending a first part n to α. Let us build
another operator that associates to sα a generating series for the Schur
functions sα+(1n) obtained by adjoining to the Young diagram of α a
first column (1n). For this, apply the involution ω (that maps sα to
sα′), next the vertex operator Γ(t|X) (appends a first row to α′) and
then again ω (the new first row of α′ becomes a new first column at-
tached to α). That is, our new operator is ωΓ(t|X)ω. It sends any Schur
function sα to ωΓ(t|X)sα′ , which is equal to

∑
n ωs(n,α′)t

n.
Set λ = (n, α′). Recall that s(n,α′) is the Jacobi–Trudi determinant

det(hλj+i−j)i,j of order ℓ(α
′) + 1. The involution ω exchanges hk with

ek. Therefore ωs(n,α′) = det(eλj+i−j)i,j . We will denote with s̃(1n|α) the
value of this determinant. When n ≥ α′

1, this determinant is equal
to sα+(1n), the Schur function indexed by the partition obtained from
α by adding a new column of size n to its diagram. For instance,
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Γ(−εt|X)(s∅) = ω(σ[tX ]), the generating function for the elementary
symmetric functions. We have thus

ωΓ(t|X)ωsα[X ] =
∑

n∈Z

s̃(1n|α)[X ]tn

=
∑

n≥α′

1

sα+(1n)[X ]tn + terms of degree < α′
1 in t.

Since ω coincides with f [X ] 7→ f [−εX ],

(ωΓ(t|X)ω)(f) = ωΓ(t|X)f [−εX ] = ωσ[tX ]f

[
−ε

(
X −

1

t

)]
,

= σ[−εtX ]f

[
−ε

(
−εX −

1

t

)]
= σ[−εtX ]f

[
X −

1

(−εt)

]
,

and thus

ωΓ(t|X)ω = σ[−εtX ]σ

[
−

1

−εt
X⊥

]
.

We will write Γ(−εt|X) for ωΓ(t|X)ω.
The operator Γ(−εt|X) appears, for instance, in [24, 23, 25]. The oper-

ators Γ(t|X) and Γ(−εt|X) are Vα(t) with α = 1 and α = −1 respectively
in the notations of [23]. They are S(t) and S∗(t) in the notations of
[25].

3. Reduced Kronecker coefficients

3.1. Murnaghan Stability. Murnaghan observed [40] that, for any
triple of partitions λ, µ, ν of some positive integer n, the sequence
of Kronecker coefficients gλ+(m),µ+(m),ν+(m) stabilizes (i.e. is eventually
constant).

Several classical proofs exist of this fact. It has been shown by Little-
wood using invariant theory [34], by Brion using geometric methods [9,
§3.4, Corollary 1], and by Thibon by means of vertex operators [53, §3].
More recent proofs have been obtained by interpreting the Kronecker
coefficients in the setting of representations of partition algebras [4],
and by constructing appropriate frameworks for addressing stability in
general [14, 46].

The stable value of the sequence gλ+(m),µ+(m),ν+(m) does not depend
on the first part of λ, µ and ν. Accordingly, it will be denoted gλ,µ,ν ,
and called here a reduced Kronecker coefficient. More precisely, the
sequence with general term gλ[N ],µ[N ],ν[N ], beginning at some suitably
large N , has a limit whose value we label with gλ,µ,ν . Thus, while the
reduced Kronecker coefficients are defined for any triple of partitions,
the Kronecker coefficients are only defined for triples of partitions of
the same integer.
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M. Brion has shown that the sequence of Kronecker coefficients
gλ+(m),µ+(m),ν+(m) is weakly increasing [9, §3.4, Corollary 1]. This im-
plies in particular that gλ,µ,ν ≤ gλ,µ,ν

It is shown in [8, Theorem 1.5] that gλ+(m),µ+(m),ν+(m) = gλ,µ,ν holds
for all m such that |λ|+m ≥ N0(α, β, γ), where

(7) N0(α, β, γ) =
|α|+ α1 + |β|+ β1 + |γ|+ γ1

2
.

Moreover, Murnaghan showed that the reduced Kronecker coeffi-
cients are zero unless the following inequalities hold:

Lemma 3.1 (Murnaghan’s inequalities). The reduced Kronecker coef-
ficient gλ,µ,ν are zero unless the following three conditions hold:




|λ| ≤ |µ|+ |ν|
|µ| ≤ |λ|+ |ν|
|ν| ≤ |λ|+ |µ|

(8)

3.2. Brion’s formula and the generating series for the Reduced

Kronecker Coefficients. In [9, §3.4, Corollary 1], M. Brion obtained
the following formula for the reduced Kronecker coefficients.

Proposition 3.2. For any three partitions α, β and γ,

(9) gα,β,γ = 〈sα[X ]sβ[Y ] |σ[XY ]sγ [XY +X + Y ]〉X,Y .

We include an elementary proof of Brion’s formula (and, at the same
time, of Murnaghan’s stability), based on the following elementary
lemma.

Lemma 3.3. A sequence with general term un stabilizes (is eventually
constant) if and only if its generating series g(t) =

∑
n unt

n takes the
form P (t)/(1 − t) with P (t) a polynomial. Moreover, the stable value
of the sequence is P (1).

Proof of Proposition 3.2. All scalar products appearing in this proof
will be taken with respect to X, Y , as in the statement of the proposi-
tion.

Let α, β and γ be three partitions. We have, for n big enough,

gα[n],β[n],γ[n] =
〈
sγ[n][XY ]

∣∣ sα[n][X ]sβ[n][Y ]
〉
.

We can write as well

gα[n],β[n],γ[n] =

〈
sγ[n][XY ]

∣∣∣∣∣
∑

a

sα[a][X ] ·
∑

b

sβ[b][Y ]

〉
.

Indeed, the extra terms in the right–hand side of the scalar product do
not contribute since they do not the same degree as the left–hand side.
We simplify the series on the right–hand side using (5), to get

gα[n],β[n],γ[n] =
〈
sγ[n][XY ]

∣∣σ[X ]sα[X − 1] · σ[Y ]sβ[Y − 1]
〉
.
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Let us introduce the generating series

g(t) =
∑

n

〈
sγ[n][XY ]

∣∣σ[X ]sα[X − 1]σ[Y ]sβ[Y − 1]
〉
tn

=

〈
∑

n

sγ[n][XY ]tn

∣∣∣∣∣ σ[X ]sα[X − 1]σ[Y ]sβ[Y − 1]

〉
.

From (6), with XY instead of X , we have

g(t) = 〈σ[tXY ]sγ[tXY − 1] |σ[X ]sα[X − 1] · σ[Y ]sβ[Y − 1]〉

Using the adjoints of σ[X ] and σ[Y ] (see Lemma 2.1), we get

g(t) = 〈σ[t(X + 1)(Y + 1)]sγ[t(X + 1)(Y + 1)− 1] | sα[X − 1]sβ[Y − 1]〉

= σ[t] 〈σ[tXY ]σ[tX ]σ[tY ]sγ [t(X + 1)(Y + 1)− 1] | sα[X − 1]sβ[Y − 1]〉

= σ[t] 〈σ[tXY ]sγ[t(X + 1)(Y + 1)− 1] | sα[X + t− 1]sβ[Y + t− 1]〉 .

(Note that we specialized σ[AX⊥] to A = 1.) That is, g(t) = 1
1−t

P (t),
with P (t) equal to

P (t) = 〈σ[tXY ]sγ[t(X + 1)(Y + 1)− 1] | sα[X + t− 1]sβ[Y + t− 1]〉 .

We expand σ[tXY ] =
∑∞

k=0 hk[XY ]tk, and observe that the terms
hk[XY ]tk, for k big enough, do not contribute to the scalar product.
Indeed, they are homogeneous of total degree 2k in X and Y , while
the right–hand side has degree |α| + |β|. The infinite series can thus
be truncated, and, P (t) is equal to
〈

k0∑

k=0

hk[XY ]tksγ[t(X + 1)(Y + 1)− 1]

∣∣∣∣∣ sα[X + t− 1] · sβ[Y + t− 1]

〉
.

Under this form, it is manifest that P (t) is a polynomial in t.
After Lemma 3.3, the sequence of coefficients of g(t) is eventually

constant. This sequence of coefficients coincides with the sequence of
Kronecker coefficients gα[n],β[n],γ[n] for n ≫ 0. This proves that this
sequence of Kronecker coefficients is eventually constant. Finally, sub-
stituting 1 for t in the expression for P (t) we get Brion’s Formula. �

Brion’s formula is equivalent to the following identity:

σ[XY ]sγ [XY +X + Y ] =
∑

α,β

gα,β,γsα[X ]sβ[Y ].

Introducing a third alphabet Z, multiplying by sγ [Z], and summing
over all partitions γ, yields the following analogue of Cauchy’s formula
for reduced Kronecker coefficients, which makes manifest the symmetry
in the three indexing partitions:

(10)
∑

α,β,γ

gα,β,γsα[X ]sβ[Y ]sγ[Z] = σ[XY Z +XY +XZ + Y Z].
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Conversely, Brion’s Formula is obtained from (10) by taking the
scalar product with sγ[Z] and making use of the reproducing kernel
property for σ[AZ] with A = XY +X + Y .

3.3. Reduced Kronecker coefficients indexed by three one–row

shapes or three one–column shape. Let x, y and z be three vari-
ables. By specializing, in the generating series for the reduced Kro-
necker coefficients (10), the alphabets X , Y and Z to x, y, and z, we
get that

σ[xyz + xy + xz + yz] =
∑

(a,b,c)∈N3

g(a),(b),(c)x
aybzc,

which is the ordinary generating function for the reduced Kronecker
coefficients indexed by three one–row shapes.

Similarly, we get the generating function for the reduced Kronecker
coefficients indexed by three one–column shapes by specializing, in (10),
the alphabets X , Y and Z to −εx, −εy, and −εz:

σ[−εxyz + xy + xz + yz] =
∑

(a,b,c)∈N3

g(1a),(1b),(1c)x
aybzc.

From the properties of the series σ, one gets straightforwardly the
following simple expressions for the generating series:

σ[−εxyz + xy + xz + yz] =
1 + xyz

(1− xy)(1− xz)(1 − yz)

and

σ[xyz + xy + xz + yz] =
1

(1− xyz)(1− xy)(1− xz)(1 − yz)
,

which is, as an aside,

1

1− (xyz)2
· σ[−εxyz + xy + xz + yz].

Proposition 3.4. The above generating series admit the following ex-
pansions:

(11) σ[−εxyz + xy + xz + yz] =
∑

(a,b,c)∈C∩N3

xaybzc

and

(12) σ[xyz+xy+xz+yz] =
∑

(a,b,c)∈C∩N3

(
1 +

[
min{ℓ1, ℓ2, ℓ3}

2

])
xaybzc

where ℓi = ℓi(a, b, c) with

(13)
ℓ1(a, b, c) = b+ c− a,
ℓ2(a, b, c) = a + c− b,
ℓ3(a, b, c) = a+ b− c
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and C is the cone in R3 with coordinates a, b, c, defined by

(14)
ℓ1 ≥ 0,
ℓ2 ≥ 0,
ℓ3 ≥ 0.

Remark 3.5. The inequalities (14), defining the cone C, are precisely
those described by Murnaghan’s inequalities (8), as a non–vanishing
condition for the reduced Kronecker coefficients.

Remark 3.6. The proposition amounts to explicit formulas for the re-
duced Kronecker coefficients indexed by three one–row shapes and three
one–column shapes:

g(1a),(1b),(1c) =

{
1 if (a, b, c) ∈ C,
0 otherwise.

g(a),(b),(c) =

{
1 +

[
min{ℓ1,ℓ2,ℓ3}

2

]
if (a, b, c) ∈ C,

0 otherwise.

They can be derived from [45, Corollary 5] and [45, Theorem 13]
respectively. We give a different proof below.

Proof. We first prove (11). We begin with the expansion

1

(1− xy)(1− xz)(1 − yz)
=

∑

(i,j,k)∈N3

(xy)i(xz)j(yz)k =
∑

(i,j,k)∈N3

xi+jyi+kzj+k.

We solve the following system in i, j, k, over the rational numbers:

a = i + j
b = i + k
c = j + k

It has a unique solution, i = (a + b − c)/2, j = (a + c − b)/2, k =
(b + c − a)/2. This solution is a triple of nonnegative integers if and
only if a+ b+ c ≡ 0 mod 2, and the inequalities (14) hold. Therefore,

1

(1− xy)(1− xz)(1 − yz)
=
∑

xaybzc,

where the sum is over all (a, b, c) ∈ N3 ∩ C that satisfy a + b + c ≡ 0
mod 2. As a consequence, we have also

xyz

(1− xy)(1− xz)(1 − yz)
=
∑

xaybzc

where the sum is over all (a, b, c) ∈ N3 ∩ C that satisfy a + b + c ≡ 1
mod 2. Formula (11) follows.
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Let us prove now (12). We observe that

σ[xyz + xy + xz + yz] =
1

1− (xyz)2
σ[−εxyz + xy + xz + yz]

=
∑

m∈N

x2my2mz2m ·
∑

(i,j,k)∈N3∩C

xiyjzk.

Therefore, the coefficient g(a),(b),(c) of x
aybzc in σ[xyz+xy+xz+ yz] is

the number of integers m ≥ 0 such that (a, b, c) − 2(m,m,m) ∈ C. It
is obtained as the number of solutions m ≥ 0 of

∀i ∈ {1, 2, 3}, ℓi((a, b, c)− 2(m,m,m)) ≥ 0

But ℓi((a, b, c)− 2(m,m,m)) = ℓi(a, b, c)− 2ℓi(m,m,m) = ℓi(a, b, c)−
2m. Therefore g(a),(b),(c) is the number of integers m ≥ 0 such that
m ≤ ℓi(a, b, c)/2 for all i = 1, 2, 3. This is 1+[mini ℓi/2], as claimed. �

4. A factorization.

Given an alphabet X ′, define Γ(X′|X) = σ[X ′X ]σ
[
− 1

X′
X⊥
]
. This

allows us to consider the two vertex operators we are working with in
this paper simultaneously, as for X ′ = t we recover the standard vertex
operator, and for X ′ = −ǫt the vertex operator for columns.

Let X , Y , Z, X ′, Y ′ and Z ′ be six independent alphabets. Let
F (X, Y, Z) = XY Z +XZ + Y Z +XY . For any triple of partitions α,
β, γ, let Φα,β,γ be the series
(15)
Φα,β,γ =

〈
σ[F (X, Y, Z)]

∣∣Γ(X′|X)sα[X ]Γ(Y ′|Y )sβ[Y ]Γ(Z′|Z)sγ[Z]
〉
X,Y,Z

Then Φα,β,γ is a symmetric series in each of the sets of variables X ′,
Y ′ and Z ′. Lemma 4.1 below decribes this symmetric series in more
detail.

Lemma 4.1. For any partitions α, β and γ, there exists a symmetric
function Qα,β,γ (in the alphabets X ′, Y ′ and Z ′) such that

Φα,β,γ = σ[X ′Y ′Z ′ +X ′Y ′ +X ′Z ′ + Y ′Z ′] ·Qα,β,γ.

The symmetric function Qα,β,γ is the coefficient of sα[X ]sβ[Y ]sγ[Z] in
the expansion in the Schur basis of σ[H ] (as a symmetric series in X,
Y and Z), where

H = (X+X ′)(Y +Y ′)(Z+Z ′)+(X+X ′)(Y +Y ′)+(X+X ′)(Z+Z ′)

+ (Y + Y ′)(Z + Z ′)− (X ′Y ′Z ′ +X ′Y ′ +X ′Z ′ + Y ′Z ′)

−X/X ′ − Y/Y ′ − Z/Z ′.

The main point of this lemma is that Qα,β,γ is not just a symmetric
series but a symmetric function; it has finitely many non–zero homo-
geneous components.
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Proof. Fix three partitions α, β and γ.
In (15), we move the Γ(|) to the left–hand side of the scalar product by

taking adjoints. The adjoint of Γ(X′|X) (with respect to the alphabetX)
is the operator σ[− 1

X′
X ]σ[X ′X⊥] that sends f [X ] to σ[− 1

X′
X ]f [X+X ′]

and, likewise, for Γ(Y ′|Y ) and Γ(Z′|Z).
As a result, Φα,β,γ = 〈σ[G] | sα[X ]sβ [Y ]sγ[Z]〉 with

G = F (X +X ′, Y + Y ′, Z + Z ′)−X/X ′ − Y/Y ′ − Z/Z ′.

Let us split G as G = F (X ′, Y ′, Z ′) +H . That is, H is obtained from
G by deleting all monomials that do not involve X , Y nor Z. Then H
is given by the formula in the lemma.

We have σ[G] = σ[F (X ′, Y ′, Z ′)]·σ[H ] by Lemma 2.1. Since σ[F (X ′, Y ′, Z ′)]
does not depend on X , Y and Z, it can be factored out of the scalar
product:

Φα,β,γ = σ[F (X ′, Y ′, Z ′)] · 〈σ[H ] | sα[X ]sβ[Y ]sγ [Z]〉X,Y,Z .

This gives the announced factorization, since the scalar product in the
above formula is equal to Qα,β,γ.

We contend that the non–zero homogeneous components of Qα,β,γ

(in the variables in X ′, Y ′ and Z ′) have bounded degrees. Indeed, we
have the expansion

σ[H ] =
∞∑

k=0

hk[H ].

But all terms in H have total degree at least 1, with respect to the
variables X , Y and Z. Therefore for each k, hk[H ] is a sum of homoge-
neous symmetric functions (in X , Y and Z) of total degrees ≥ k. When
k > |α| + |β| + |γ|, the term hk[H ] does not contribute to the scalar
product with sα[X ]sβ[Y ]sγ [Z]. The sum can therefore be truncated, so
that

Qα,β,γ =

〈
|α|+|β|+|γ|∑

k=0

hk[H ]

∣∣∣∣∣∣
sα[X ]sβ[Y ]sγ[Z]

〉

X,Y,Z

.

This makes clear that the homogeneous components of Q, as a sym-
metric series in X ′, Y ′ and Z ′, have bounded degree. �

5. Hook stability

In this section, we show the existence of a stability phenomenon rem-
iniscent of the one described by Murnaghan, when we simultaneously
increase the first row and first column of each of the three indexing
partitions of a Kronecker coefficient. We call this “hook stability”.
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We start by establishing the corresponding property for reduced Kro-
necker coefficients (Section 5.1). The hook stability property for Kro-
necker coefficients is then deduced in Section 5.2. An alternative ap-
proach to proving this property, using only well–known properties of
Kronecker coefficients, is explored in Section 5.3.

5.1. Stability for reduced Kronecker coefficients under first

column increasing. In this section we show that reduced Kronecker
coefficients themselves stabilize when we increase the first column of
each of their three indexing partitions.

Example 5.1. The reduced Kronecker coefficients g(2,2)∪1k ,(3)∪1k ,(4)∪1k
stabilize with stable value 204. Their first values for k = 1,2,. . . are

1, 17, 66, 133, 180, 198, 203, 204, 204, 204 . . .

and g(2,2)∪1k ,(3)∪1k ,(4)∪1k = 204 for all k ≥ 8.

More interesting examples are given in Remark 3.6 (where we com-
binatorially describe all possible situations that can obtained when we
start with three empty shapes) and Example 5.4.

We now proceed to study the general situation. Let α, β and γ be
three partitions.

Theorem 5.2. For any triple of partitions α, β, γ, there exist integers
k1, k2, k3 and gα,β,γ such that whenever a ≥ ℓ(α), b ≥ ℓ(β), c ≥ ℓ(γ),
and

(16)
b+ c− a ≥ k1
a+ c− b ≥ k2
a+ b− c ≥ k3,

we have gα+(1a),β+(1b),γ+(1c) = gα,β,γ.

In light of Theorem 5.2, we call the value gα,β,γ the column stable
value of the reduced Kronecker coefficient.

The conditions a ≥ ℓ(α), b ≥ ℓ(β), c ≥ ℓ(γ) ensure us that, after
adding cells to the new first columns of the three original partitions,
we obtain proper partitions. Note that they define a translation of the
cone described by Murnaghan’s inequalities: see (8).

Proof. For any nonnegative integers a, b, c, set

φ−
a,b,c =

〈
σ[F (X, Y, Z)]

∣∣ s̃(1a|α)[X ]s̃(1b|β)[Y ]s̃(1c|γ)[Z]
〉
.

with F (X, Y, Z) = XY Z +XY +XZ + Y Z. Comparing with (10) we
obtain that, when a ≥ ℓ(α), b ≥ ℓ(β) and c ≥ ℓ(γ),

φ−
a,b,c = gα+(1a),β+(1b),γ+(1c).

Let us consider the generating series Φ−
α,β,γ =

∑
a,b,c φ

−
a,b,cx

aybzc. Then

Φ−
α,β,γ = 〈σ[F (X, Y, Z)]|Γ(−εx|X)sα[X ]Γ(−εy|Y )sβ[Y ]Γ(−εz|Z)sγ[Z]〉
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That is, Φ−
α,β,γ is the specialization of the series Φα,β,γ of Lemma 4.1

at X ′ = −εx, Y ′ = −εy and Z ′ = −εz. Let Q−
α,β,γ(x, y, z) be the

polynomial obtained from Qα,β,γ by means of the same specialization.
After Lemma 4.1, we have thus Φ−

α,β,γ = σ[−εxyz+xy+xz+yz]·Q−
α,β,γ.

Set t(a,b,c) = xaybzc. Let
∑

ω∈Ω qωt
ω = Q−

α,β,γ be the expansion of Q−
α,β,γ

in monomials, where Ω is the (finite) support of Q−
α,β,γ. It follows from

(11) that

σ[−εxyz + xy + xz + yz] =
∑

θ∈C∩N3

tθ.

Therefore,

Φ−
α,β,γ(x, y, z) =

∑

ω∈Ω,θ∈C∩N3

qωt
ω+θ.

It follows that, for any τ = (a, b, c) ∈ Z3, φ−
τ =

∑
ω qω, where the sum

is over all ω such that τ − ω ∈ C. Recall that the cone C is defined by
the inequalities ℓi ≥ 0 (see Proposition 3.4). Therefore, the sum is over
all ω such that ℓi(τ −ω) ≥ 0 for all i, or, equivalently, ℓi(τ) ≥ ℓi(ω) for
all i.

Suppose now that ℓi(τ) ≥ ℓi(ω) for all i and all ω ∈ Ω, or, equiva-
lently, that ℓi(τ) ≥ maxω∈Ω ℓi(ω) for all i. Then φ−

τ =
∑

ω∈Ω qω, a value
that does not depend on τ .

This proves the theorem, with ki = maxω∈Ω ℓi(ω). �

Remark 5.3. One can show that in Theorem 5.2, one can take

k1 = |α|+ α1 + β ′
1 + γ′

1,
k2 = |β|+ β1 + α′

1 + γ′
1,

k3 = |γ|+ γ1 + α′
1 + β ′

1.

Example 5.4. Let us compute some polynomials Q−
α,β,γ.

We will consider the case when α, β and γ are one–row shapes,
(p), (q) and (r) respectively. The coefficient of s(p)[X ]s(q)[Y ]s(r)[Z] in
σ[H(−εx,−εy,−εz)] can be obtained by specializing the alphabets to
only one letter: X = {x1}, Y = {y1}, Z = {z1}, and taking the coeffi-
cient of xp

1y
p
1z

r
1. That is, the generating function σ[H(−εx,−εy,−εz)]

becomes an ordinary generating function:

∑
Q−

(p),(q),(r)x
p
1y

q
1z

r
1 =

(1 + xyz1)(1 + xzy1)(1 + yzx1)

(1− x1y1z1)

×
(1 + yx1)(1 + xy1)(1 + zx1)(1 + xz1)(1 + zy1)(1 + yz1)

(1− x1y1)(1− x1z1)(1− y1z1)(1 +
x1

x
)(1 + y1

y
)(1 + z1

z
)
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From this, it follows, for instance,

Q−
∅,∅,∅ = 1,

Q−
∅,∅,(1) = x+ y + xy − 1/z,

Q−
∅,∅,(2) = x2y2 + x2y + xy2 + xy − xy/z − x/z − y/z + 1/z2,

Q−
∅,(1),(1) = x2yz + x2y + x2z + 2 xyz + x2,

+ xy + xz + yz − x− x/y − x/z + 1/(yz)− 1,

Let us consider more closely the case ∅, ∅, (1). This case corre-
sponds to the reduced Kronecker coefficients g(1a),(1b),(2,1c−1). From the
description g(1a),(1b),(2,1c−1) =

∑
qω, with the sum over the ω in the sup-

port of Q− such that (a, b, c) ∈ ω + C, we obtain the following explicit
description (it is assumed that c ≥ 1):

g(1a),(1b),(2,1c−1) =





1 for c = |a− b| with a+ b > c+ 1
and for c > |a− b| with a+ b = c+ 1,

2 for c > |a− b| with a+ b > c+ 1,
0 otherwise.

This is the Kronecker coefficient g(n−a,1a),(n−b,1b),(n−c−1,2,1c−1) for n ≥
(a+ b+ c+ 5)/2.

This result also follows from the computations in [45] and [53].

5.2. Towards hook stability for the Kronecker coefficients. We
discuss how, combining our results, with the classical stability phe-
nomena of Murnaghan, we obtain that the Kronecker coefficients are
stable when we increase the first row and first column of the three in-
dexing partitions simultaneously. We will be using the notations for λ,

λ̂, λ⊕ (a|b) as defined in Section 2.1.

Example 5.5. Table 1 presents the Kronecker coefficients gλ⊕(i|j),λ⊕(i|j),λ⊕(i|j)

for λ = (3, 3) and i and j between 0 and 9. We know that each column
of the table is stable because of Murnaghan’s result, and that each
row is eventually zero because these sequences will eventually fail a
condition for positivity described by Dvir, Klemm, and Clausen–Meier
in [20, 29, 16]. But we observe a more general stability phenomenon.
There is a grey region where the coefficients are 145.

Let λ, µ and ν be three non–empty partitions of the same weight.
Let a, b, c and m be nonnegative integers, such that a, b and c do
not exceed m. Under certain conditions, made precise in Theorem 5.6
below, we will have:

gλ⊕(m−a|a),µ⊕(m−b|b),ν⊕(m−c|c) = gλ∪(1a),µ∪(1b),ν∪(1c) = gλ̂,µ̂,ν̂.

This is made precise in the following theorem.
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❍
❍
❍
❍
❍
❍

i
j

0 1 2 3 4 5 6 7 8 9

0 0 1 5 5 1 0 0 0 0 0
1 1 8 27 40 30 11 1 0 0 0
2 1 15 53 89 91 64 33 11 1 0
3 2 19 62 108 129 122 97 64 33 11
4 2 19 63 112 138 141 135 122 97 64
5 2 19 63 112 139 145 144 141 135 122
6 2 19 63 112 139 145 145 145 144 141
7 2 19 63 112 139 145 145 145 145 145
8 2 19 63 112 139 145 145 145 145 145
9 2 19 63 112 139 145 145 145 145 145

Table 1. The Kronecker coefficients g(3,3)⊕(i|j),(3,3)⊕(i|j),(3,3)⊕(i|j).

Theorem 5.6. For any triple of non–empty partitions λ, µ, ν of the
same weight, there exists integers d1, d2, d3 and d such that for all
(a, b, c,m) ∈ N4 with

(17)
ℓi(a, b, c) ≥ di for all i ∈ {1, 2, 3},

m− (a+ b+ c)/2 ≥ d,
m ≥ a, b, c.

we have,

(18) gλ⊕(m−a|a),µ⊕(m−b|b),ν⊕(m−c|c) = gλ∪(1a),µ∪(1b),ν∪(1c) = gλ̂,µ̂,ν̂ .

The linear forms ℓi(a, b, c) in the theorem are those defined in (13).

Proof. Let N be the weight of λ, µ and ν. The second equality in

(18) holds when ℓi(a + λ′
1 − 1, b + µ′

1 − 1, c + ν ′
1 − 1) ≥ ki(λ̂, µ̂, ν̂)

for all i, where ki are defined in Theorem 5.2. We have ℓi(a + λ′
1 −

1, b + µ′
1 − 1, c + ν ′

1 − 1) = ℓi(a, b, c) + ℓi(λ
′
1, µ

′
1, ν

′
1) − 1. Therefore

the second equality holds when, for all i, we have ℓi(a, b, c) ≥ di, with

di = ki(λ̂, µ̂, ν̂)− ℓi(λ
′
1, µ

′
1, ν

′
1) + 1.

On the other hand, the first equality in (18) holds when m + N ≥
N0(λ∪(1

a), µ∪(1b), ν∪(1c)) (the number N0 as defined in (7)). Lemma
5.8, that comes just below, shows that

N0(λ∪ (1a), µ∪ (1b), ν ∪ (1c)) ≤ N0(λ̂, µ̂, ν̂)+
λ′
1 + µ′

1 + ν ′
1

2
+

a+ b+ c

2
.

From this we conclude that the first equality holds when m− (a+ b+

c)/2 ≥ d with d = N0(λ̂, µ̂, ν̂) +
λ′

1
+µ′

1
+ν′

1

2
−N. �

Example 5.7. Let us go back to Table 1. The reduced Kronecker coef-
ficients g(3)∪(1j ),(3)∪(1j ),(3)∪(1j ) are 2, 19, 63, 112, 139 and then, for j ≥ 5,

to g(2),(2),(2) = 145. Moreover, the sequences are stable when j ≥ 5 and
i− 5 ≥ (j − 5)/2.
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The Kronecker coefficients of the main diagonal are 0, 8, 53, 108,
138, and finally 145 for all m ≥ 5. The values of the bounds d and di
for the stability degrees given in the proof of Theorem 5.6 are d = 3
and di = 5. This corresponds to stability for j ≥ 5 and i − j/2 ≥ 3,
which is not far from being sharp.

Lemma 5.8. Let λ, µ and ν be three non–empty partitions with the

same weight. We have N0(λ, µ, ν) ≤ N0(λ̂, µ̂, ν̂) +
λ′

1+µ′

1+ν′1
2

.

Proof. Recall from (7) that N0(λ, µ, ν) = |λ|+λ1+|µ|+µ1+|ν|+ν1
2

. Observe

that |λ| = |λ̂|+ (λ′
1 − 1) and

λ1 =

{
λ̂1 +1 if ℓ(λ) ≥ 2,

λ̂1 if ℓ(λ) = 1.

Likewise for µ and ν instead of λ. The lemma follows. Additionally
we see that the inequality is actually an equality, except when at least
one of the partitions has only one row. �

Corollary 5.9. Let λ, µ and ν be non–empty partitions of the same
weight. The sequence of Kronecker coefficients gλ⊕(n|n),µ⊕(n|n),ν⊕(n|n)

stabilizes to gλ̂,µ̂,ν̂.

Proof. This corresponds to (a, b, c,m) = (n, n, n, 2n) and fulfills all
inequalities in (17) for n ≫ 0. �

Remark 5.10. For (a, b, c,m) = n · (1, 1, 1, 2) we have ℓi = n and m −
(a + b + c)/2 = n/2. Therefore the stable behavior in Corollary 5.9
takes place already for n ≥ max(2 d, d1, d2, d3).

5.3. Another approach to the hook stability property, derived

from Murnaghan’s stability and conjugation. In this section we
show that using only the well–known invariance of the Kronecker co-
efficients under conjugating two of their three indexing partitions (see
for instance [35, 50]),

(19) gλ,µ,ν = gλ′,µ′,ν = gλ′,µ,ν′ = gλ,µ′,ν′,

it is not difficult to prove Theorem 5.6 in a special case.
Namely, one derives from the symmetry property in (19), in an ele-

mentary way, that for any three partitions λ, µ, ν of the same weight,
there exists integers d, d1, d2, d3 such that (18) holds when (17) holds
with additional condition that a + b + c ≡ 0 mod 2. To recover the
full theorem, it would be enough to establish that there exists m big
enough such that

(20) gλ⊕(2m|2m),µ⊕(2m|2m),ν⊕(2m|2m) =

gλ⊕(2m+1|2m+1),µ⊕(2m+1|2m+1),ν⊕(2m+1|2m+1) .
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Conjecture 5.11. For any three partitions λ, µ and ν of the same
weight, and any (a, b, c,m) fulfilling the inequalities

(21)
ℓi ≥ 0 for all i ∈ {1, 2, 3},

m ≥ a+ b+ c.

there is

(22) gλ,µ,ν ≤ gλ⊕(m−a|a),µ⊕(m−b|b),ν⊕(m−c|c).

Again, using the symmetries of the Kronecker coefficients, it is not
difficult to prove this conjecture in a restricted case, namely that (22)
holds for all partitions λ, µ, ν of the same weight and all (a, b, c,m)
fulfilling (21) and, additionally, that a+ b+ c ≡ 0 mod 2.

Therefore Conjecture 5.11 is equivalent to the following seemingly
much weaker statement.

Conjecture 5.12 (Equivalent form of Conjecture 5.11). For any three
partitions λ, µ and ν of the same weight,

gλ,µ,ν ≤ gλ⊕(1|1),µ⊕(1|1),ν⊕(1|1).

Remark 5.13. Conjecture 5.12 was checked by computer, with SAGE
[51], for all triples of partitions of weight at most 16.

Remark 5.14. A proof of Conjecture 5.12 would provide an alternative
proof of Theorem 5.6.

Indeed, assuming Conjecture 5.12, we have the inequalities

(23) gλ⊕(2m|2m),µ⊕(2m|2m),ν⊕(2m|2m)

≤ gλ⊕(2m+1|2m+1),µ⊕(2m+1|2m+1),ν⊕(2m+1|2m+1)

≤ gλ⊕(2m+2|2m+2),µ⊕(2m+2|2m+2),ν⊕(2m+2|2m+2) .

The two bounds in this inequality are equal for m big enough by the
hook stability property proved using only the invariance of the Kro-
necker coefficients under conjugation in (19). Then (20) would follow.

6. The second row

In this section, we describe the asymptotic behavior of some se-
quences of Kronecker coefficients gλ+nα,µ+nβ,ν+nγ where the integer n
varies, and the partitions α, β and γ have at most two parts. To this
end, we move to the setting of the reduced Kronecker coefficients.

We first consider in Section 6.1 the family of reduced Kronecker co-
efficients g(a,α),(b,β),(c,γ) where the first parts a, b and c vary arbitrarily,
while the remaining parts α, β, γ are fixed. We obtain for these co-
efficients, when a, b and c are big enough, quasipolynomial formulas
in a, b, c, of degree at most 1 and period at most 2. This generalizes
Proposition 3.4 corresponding to α, β, γ equal to the empty partition.

We determine in Section 6.2 the vanishing of the generic leading
coefficient Aα,β,γ in these formulas. In Section 6.3, we describe the
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asymptotic behavior of sequences of reduced Kronecker coefficients
gλ+n·(a),µ+n·(b),ν+n·(c) with the partitions λ, µ, ν and the integers a, b, c
fixed, while n varies.

The asymptotic behaviors of the corresponding sequences of Kro-
necker coefficients is then derived in Section 6.4.

6.1. For reduced Kronecker coefficients. In this section, we ob-
tain quasipolynomial formulas in a, b, c for some reduced Kronecker
coefficients g(a,α),(b,β),(c,γ), with α, β, γ fixed.

Theorem 6.1. Let α, β and γ be three partitions. There exists integers
k′
1, k

′
2, k

′
3 and Aα,β,γ, Bα,β,γ and Cα,β,γ, such that whenever a ≥ α1,

b ≥ β1, c ≥ γ1 and

a− b ≥ k′
1,

a− c ≥ k′
2,

b+ c− a ≥ k′
3

(24)

we have

g(a,α),(b,β),(c,γ) =
1

2
Aα,β,γ·(b+c−a)+Bα,β,γ+

{
0 for b+ c− a even,

Cα,β,γ/2 for b+ c− a odd.

Proof. For any a, b, c, we set from (10)

φ+
a,b,c =

〈
σ[F (X, Y, Z)]

∣∣ s(a,α)[X ]s(b,β)[Y ]s(c,γ)[Z]
〉

where F (X, Y, Z) = XY Z +XY +XZ + Y Z. When a, b and c are at
least α1, β1 and γ1 respectively, we have that φ+

a,b,c = g(a,α),(b,β),(c,γ).

Consider Φ+
α,β,γ(x, y, z) =

∑
a,b,c φ

+
a,b,cx

aybzc. Then, Φ+
α,β,γ(x, y, z) is

equal to
〈
σ[F (X, Y, Z)]

∣∣Γ(x|X)sα[X ]Γ(y|Y )sβ[Y ]Γ(z|Z)sγ[Z]
〉
.

This is the specialization of Φα,β,γ (see Lemma 4.1) at X ′ = x, Y ′ = y
and Z ′ = z.

Let Q+
α,β,γ(x, y, z) be the image of Qα,β,γ from Lemma 4.1 under the

same specialization. From Lemma 4.1, Φ+
α,β,γ = σ[xyz + xy + xz +

yz] · Q+
α,β,γ. Set t

(a,b,c) = xaybzc. Write Q+
α,β,γ as a sum of monomials,

Q+
α,β,γ =

∑
ω∈Ω qωt

ω, with Ω the support of Q+
α,β,γ. From (12),

σ[xyz + xy + xz + yz] =
∑

θ∈C∩N3

rθt
θ

with rθ = 1 + [min{ℓ1(θ), ℓ2(θ), ℓ3(θ)}/2], and it follows that

Φ+
α,β,γ(x, y, z) =

∑

ω∈Ω,θ∈C∩N3

qωrθt
ω+θ.

For any τ = (a, b, c) ∈ Z3, we therefore have φ+
τ =

∑
qωrτ−ω where the

sum is over all ω ∈ Ω such that τ − ω ∈ C. Let C1 be the cone defined
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by the inequalities

(25)
ℓ1 ≥ 0,
ℓ2 ≥ ℓ1,
ℓ3 ≥ ℓ1,

or, equivalently,
b+ c ≥ a,
a ≥ b,
a ≥ c.

where, as usual, the parameters ℓi are defined as in (13). If ω is such
that τ − ω ∈ C1, then we have

rτ−ω = 1 +

[
ℓ1(τ − ω)

2

]

= 1 + ℓ1(τ)/2− ℓ1(ω)/2−

{
0 if ℓ1(ω) ≡ ℓ1(τ) (mod 2)
1/2 if ℓ1(ω) 6≡ ℓ1(τ) (mod 2)

Therefore, if τ fulfills τ − ω ∈ C1 for all ω in Ω, then we have

φ+
τ =

∑

ω∈Ω

qωrτ−ω =
∑

ω∈Ω

qω

(
1 +

[
ℓ1(τ − ω)

2

])

=
∑

ω∈Ω

qω +
1

2

∑

ω∈Ω

qωℓ1(τ)−
1

2

∑

ω∈Ω

qωℓ1(ω)−
1

2

∑

ω : ℓ1(ω)6≡
ℓ1(τ) mod 2

qω.

Note that |ω| ≡ ℓ1(ω) (mod 2) for all ω ∈ Z3. The condition ℓ1(ω) 6≡
ℓ1(τ) (mod 2) in the last sum can therefore be replaced with |ω| 6≡ |τ |
(mod 2).

Set
A =

∑

ω∈Ω

qω = Q+(1, 1, 1), K =
∑

ω∈Ω

qωℓ1(ω)

and
A+ =

∑

ω:|ω| even

qω, A− =
∑

ω:|ω| odd

qω.

We have obtained

φ+
τ = A+

A

2
ℓ1(τ)−

K

2
−

{
A−/2 if ℓ1(τ) is even,
A+/2 if ℓ1(τ) is odd.

= A+
A

2
ℓ1(τ)−

K

2
−

A−

2
−

{
0 if ℓ1(τ) is even,

(A+ − A−)/2 if ℓ1(τ) is odd.

Set Aα,β,γ = A, Bα,β,γ = A−K/2−A−/2 and Cα,β,γ = A+ −A−. The
formula in the theorem is obtained. Note that Bα,β,γ is an integer since
K ≡ A− (mod 2). Indeed,

K =
∑

ω

qωℓ1(ω) ≡
∑

ω

qω|ω| ≡
∑

ω:|ω| odd

qω (mod 2)

To conclude, observe that the condition τ − ω ∈ C1 for all ω in Ω,
can be rewritten as

ℓ1(τ) ≥ maxω∈Ω ℓ1(ω),
ℓ1(τ)− ℓ2(τ) ≥ maxω∈Ω (ℓ1(ω)− ℓ2(ω)) ,
ℓ1(τ)− ℓ3(τ) ≥ maxω∈Ω (ℓ1(ω)− ℓ3(ω)) ,
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which is equivalent to (24). This proves the theorem. �

Remark 6.2. Further computations show that one can take for the k′
i

in Theorem 6.1

k′
1 = |α|+ |β|+ |γ|+ β1,

k′
2 = |α|+ |β|+ |γ|+ γ1,

k′
3 = |α|+ |β|+ |γ|+ α1 + β1 + γ1.

Theorem 6.6 has the following immediate corollary for Kronecker
coefficients.

Corollary 6.3. Let k′
1, k

′
2 and k′

3 be as in Theorem 6.1.
For all partitions λ, µ, ν of the same weight N , fulfilling the condi-

tions
λ2 − µ2 ≥ k′

1,
λ2 − ν2 ≥ k′

2,
µ2 + ν2 − λ2 ≥ k′

3,

N − λ2 − µ2 − ν2 ≥ (|λ|+ |µ|+ |ν|)/2,

we have that

gλ,µ,ν =
1

2
A

λ,µ,ν
·(µ2+ν2−λ2)+B

λ,µ,ν
+

{
0 for λ2 + µ2 + ν2 even,

C
λ,µ,ν

/2 for λ2 + µ2 + ν2 odd.

Proof. The condition

N − λ2 − µ2 − ν2 ≥ (|λ|+ |µ|+ |ν|)/2

ensures that N ≥ N0(λ, µ, ν), so that gλ,µ,ν = gλ,µ,ν , as in Section 3.1.
Applying Theorem 6.6 gives the result. �

6.2. When is Aα,β,γ equal to zero? From Theorem 6.1, the coeffi-
cient Aα,β,γ is the generic leading term of the expression of g(a,α),(b,β),(c,γ)
that is quasipolynomial of degree 1 in a, b and c. It is relevant to ask
when it vanishes.

We will need the following lemma.

Lemma 6.4. Let λ, µ, ν and α, β, γ be partitions.

(1) If gα,β,γ 6= 0 then gλ+α,µ+β,ν+γ ≥ gλ,µ,ν.
(2) If gα,β,γ 6= 0 then gλ+α,µ+β,ν+γ ≥ gλ,µ,ν.

Proof. For the first assertion see [37].
The second assertion follows from the first one as follows. Suppose

that gα,β,γ 6= 0. There exist integers a, b and c such that gα,β,γ =
g(a,α),(b,β),(c,γ). In particular this Kronecker coefficient is non–zero. Let
p, q and r be integers such that (p, λ), (q, µ), (r, ν) are partitions of the
same weight. Then we have, for all n ≥ 0,

g(a+p+n,λ+α),(b+q+n,µ+β),(c+r+n,ν+γ) ≥ g(p+n,λ),(q+n,µ),(r+n,ν).

Taking n big enough, so that both Kronecker coefficients coincide with
the corresponding reduced Kronecker coefficient, we get gλ+α,µ+β,ν+γ ≥
gλ,µ,ν . �
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Proposition 6.5. Let α, β, γ be partitions. The coefficient Aα,β,γ is
zero if and only if all Kronecker coefficients g(a1,a2,α),(b1,b2,β),(c1,c2,γ) are
zero for all a1 ≥ a2 ≥ α1, b1 ≥ b2 ≥ β1, and c1 ≥ c2 ≥ γ1.

Proof. It is enough to show that Aα,β,γ is zero if and only if all re-
duced Kronecker coefficients g(a2,α),(b2,β),(c2,γ) are zero since, on the first
hand, we have always g(a1,a2,α),(b1,b2,β),(c1,c2,γ) ≤ g(a2,α),(b2,β),(c2,γ), as in see
Section 3.1; and, on the other hand, any reduced Kronecker coefficient
g(a2,α),(b2,β),(c2,γ) is equal to some Kronecker coefficient g(a1,a2,α),(b1,b2,β),(c1,c2,γ).

Assume that all reduced Kronecker coefficients g(a2,α),(b2,β),(c2,γ) are
zero. This is the case, in particular, for the coefficients g(n,α),(n,β),(n,γ).
But, from Theorem 6.6, for n big enough.

g(n,α),(n,β),(n,γ) =
Aα,β,γ

2
n + a bounded term.

Then Aα,β,γ must be zero.
Assume now that there exists some reduced Kronecker coefficient

g(a,α),(b,β),(c,γ) that is non–zero. After Lemma 6.4, we have, for all n ≥ 0,
g(a+n,α),(b+n,β),(c+n,γ) ≥ g(n),(n),(n) On the other hand, for n big enough,

g(a+n,α),(b+n,β),(c+n,γ) =
Aα,β,γ

2
n + a bounded term. But g(n),(n),(n) ∼

n
2

from Proposition 3.4. Whence, necessarily Aα,β,γ 6= 0.
�

6.3. Asymptotics of some sequences of reduced Kronecker co-

efficients gλ+n(a),µ+n(b),ν+n(c). We consider the asymptotic behavior of
the sequence with general term gλ+n(a),µ+n(b),ν+n(c), where (λ, µ, ν) is a
fixed triple of partitions, and ((a), (b), (c)) a fixed triple of partitions
with at most one part, and n(a) is n times the one–part partition (a).

We will set θ0 = (λ1, µ1, ν1) and θ = (a, b, c), so that θ0 + nθ =
(λ1 + na, µ1 + nb, ν1 + nc).

Three cases will be examined, corresponding to the position of θ =
(a, b, c) with respect to the cone C: outside, on the border or in the
interior. We will be able to say even more when θ is in the interior of
the smaller cone C1 defined in (25).

We will use the following decomposition from the proof of Theorem
6.1:

gλ+n(a),µ+n(b),ν+n(c) = φ+
θ =

∑

ω∈Ω

qωrθ0+nθ−ω

where Q+

λ,µ,ν
=
∑

ω∈Ω qωt
ω and rτ = 1 + [mini ℓi(τ)/2)] if τ ∈ C, and 0

else. The formula writes more explicitly:

(26) gθ0+nθ =
∑

qω

(
1 +

[
min

i

ℓi(θ0 − ω) + nℓi(θ)

2

])
,

where now the sum is over all ω such that: ℓi(θ0 − ω) + nℓi(θ) ≥ 0 for
all i.
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When θ is outside C. This means that ℓi(θ) < 0 for some i. Then
ℓi(θ0 −ω) + nℓi(θ) is < 0 for n ≫ 0. The sum (26) becomes empty. As
a consequence, in this case, gθ0+nθ = 0 for n ≫ 0.

When θ is on the border of C. This means that all inequalities ℓi(θ) ≥ 0
are fulfilled, but at least one of them is an equality. For i and j such
that ℓi(θ) > 0 and ℓj(θ) = 0, we have ℓi(θ0 − ω) + nℓi(θ) > ℓj(θ0 −
ω) + nℓj(θ) = ℓj(θ0 − ω) for n ≫ 0. Therefore all terms rθ0+nθ−ω

are independent on n. Also the sum is restricted to all ω such that
ℓi(θ0 − ω) + nℓi(θ) ≥ 0 for all i. For i such that ℓi(θ) > 0, this is
automatically fulfilled for n ≫ 0; there only remains the condition
ℓj(θ0 − ω) + nℓj(θ) ≥ 0 for all j such that ℓj(θ) = 0. This condition
is actually independent on n. This shows that gθ0+nθ is eventually
constant in this case.

When θ is in the interior of C. This means that ℓi(θ) > 0 for all i. For
n ≫ 0, the inequalities ℓi(θ0−ω)+nℓi(θ) ≥ 0 are fulfilled for all ω ∈ Ω.

We can assume, without loss of generality, that ℓ1(θ) ≤ ℓ2(θ) and
ℓ1(θ) ≤ ℓ3(θ). Then, for all ω, we have for n ≫ 0, that

qω ·
(
1 +

[
min

i
(ℓi(θ0 − ω) + nℓi(θ))/2

])

= qωℓ1(θ)/2 · n + a periodic term in n with period at most 2.

Summing over all ω ∈ Ω we get

gθ0+nθ =
Aλ,µ,ν

2
ℓ1(θ) · n + a periodic term in n with period at most 2.

When θ is in the interior of C1. Then we can apply Theorem 6.1 with
(λ1 + na, µ1 + nb, ν1 + nc) instead of (a, b, c).

Let us state the results obtained in a theorem.

Theorem 6.6. Let λ, µ and ν be three partitions and (a, b, c) ∈ N3.
Without loss of generality, we can assume that max(a, b, c) = a. Sup-
pose that there exists n such that gλ+n(a),µ+n(b),ν+n(c) is non–zero. Then
Aλ,µ,ν is nonzero, and

(1) if (a, b, c) is in the interior of C, then

gλ+n(a),µ+n(b),ν+n(c) ∼n→∞

Aλ,µ,ν · (b+ c− a)

2
· n

and the difference is a periodic term in n with period at most 2.
(2) if, besides, (a, b, c) is in the interior of C1, then the periodic

term is{
Bλ,µ,ν −Cλ,µ,ν/2 if n and a+ b+ c are both odd,
Bλ,µ,ν otherwise.

(3) if (a, b, c) is on the border of C then gλ+n(a),µ+n(b),ν+n(c) is even-
tually constant.

(4) if (a, b, c) 6∈ C then gλ+n(a),µ+n(b),ν+n(c) = 0 for n ≫ 0.
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6.4. Asymptotics of some sequences of Kronecker coefficients.

Set L for the set of triples of partitions (λ, µ, ν) such that

|λ| = |µ| = |ν| ≥ N0(λ, µ, ν).

Note that the set L is stable under sum, and that (λ, µ, ν) ∈ L im-
plies that gλ,µ,ν = gλ,µ,ν. Theorem 6.6 has the following immediate
consequence for Kronecker coefficients.

Corollary 6.7. Let (λ, µ, ν) and (α, β, γ) be two triples of partitions
in L, with α, β and γ with at most two parts.

Without loss of generality, we assume that max(α2, β2, γ2) = α2.
Assume that there exists n such that gλ+nα,µ+nβ,ν+nγ is non–zero.
Then, A

λ,µ,ν
is nonzero, and

(1) if (α2, β2, γ2) is in the interior of C then

gλ+nα,µ+nβ,ν+nγ ∼n→∞

A
λ,µ,ν

· (β2 + γ2 − α2)

2
· n

and the difference is periodic in n with period at most 2.
(2) if besides, (α2, β2, γ2) is in the interior of C1, then the periodic

term is{
B

λ,µ,ν
−C

λ,µ,ν
/2 if n and a+ b+ c are both odd,

B
λ,µ,ν

otherwise.

(3) if (α2, β2, γ2) is on the border of C then gλ+nα,µ+nβ,ν+nγ is even-
tually constant.

(4) if (α2, β2, γ2) 6∈ C then gλ+nα,µ+nβ,ν+nγ = 0 for n ≫ 0.

Proof. Since (λ, µ, ν) and (α, β, γ) are in L, so are all triples of parti-
tions (λ+nα, µ+nβ, ν+nγ) for all n ≥ 0. Therefore, gλ+nα,µ+nβ,ν+nγ =
gλ+n(α2),µ+n(β2),ν+n(γ2)

for all n ≥ 0. Then we can apply Theorem
6.6. �

Remark 6.8. We make a few remarks about Corollary 6.7.

(1) Statement (2) is a particular case of a much more general state-
ment: given any three partitions α, β and γ, such that g(α, β, γ) >
0, the sequence with general term gλ+nα,µ+nβ,ν+nγ is eventually
constant, for all triples of partitions (α, β, γ) of the same weight,
if and only if gnα,nβ,nγ = 1 for all n ≥ 0. See [52, 46].

(2) For partitions with length at most 2 of the same weight, α =
(m − α2, α2), β = (m − β2, β2) and γ = (m − γ2, γ2), we have
that (α, β, γ) ∈ L ⇔ m ≥ α2 + β2 + γ2.

7. Generating series

Four families of constants were defined in the previous sections: the
limits gα,β,γ under “hook stability” (Section 5) and the coefficients
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Aα,β,γ, Bα,β,γ and Cα,β,γ appearing in the quasipolynomial formulas
of Section 6.

In this section, we provide, for these families of constants, generat-
ing series akin to the generating series for the Littlewood–Richardson
coefficients

σ[XY +XZ] =
∑

λ,µ,ν

cλ,µ,νsλ[X ]sµ[Y ]sν [Z],

for the Kronecker coefficients

σ[XY Z] =
∑

λ,µ,ν

gλ,µ,νsλ[X ]sµ[Y ]sν [Z],

and for the reduced Kronecker coefficients in (10).

7.1. Generating series for the coefficients g. We give now a gen-
erating series for the limit coefficients gα,β,γ.

Theorem 7.1. The limit gα,β,γ in Theorem 5.2 is the coefficient of
sα[X ]sβ[Y ]sγ[Z] in the expansion, in the Schur basis, of

σ [XY Z + (1− ε)(XY +XZ + Y Z +X + Y + Z)] .

Proof. It follows from the proof of Theorem 5.2 that gα,β,γ =
∑

ω∈Ω qω =

Q−
α,β,γ(1, 1, 1). After the proof of Theorem 5.2, Q−

α,β,γ(x, y, z) is the spe-
cialization of the symmetric function Qα,β,γ at X ′ = −εx, Y ′ = −εy,
Z ′ = −εz. Therefore, gα,β,γ is the specialization of Qα,β,γ at X ′ = −ε,
Y ′ = −ε, Z ′ = −ε. By definition of Qα,β,γ (see Lemma 4.1), this is
the coefficient of sα[X ]sβ[Y ]sγ[Z] in the expansion of σ[H(−ε,−ε,−ε)].
Finally, it is straightforward to compute that

H(−ε,−ε,−ε) = XY Z + (1− ε)(XY +XZ + Y Z +X + Y + Z).

�

Remark 7.2. We have used that Q−
α,β,γ(1, 1, 1) = gα,β,γ. Interestingly,

with the specialization x = −1, y = −1, z = −1 we getQ−
α,β,γ(−1,−1,−1) =

gα,β,γ.

7.2. Generating series for the coefficients A, B and C. Here we
will prove the following.

Theorem 7.3. Let α, β, γ be three partitions.
Let χ =

∑∞
n=1 pn, the formal sum of all power sum symmetric func-

tions.
Let W = XY +XZ + Y Z +X + Y + Z.
The coefficients Aα,β,γ, Cα,β,γ, and Bα,β,γ in Theorem 6.1 are the

coefficients of sα[X ]sβ[Y ]sγ[Z] in the expansions in the Schur basis of,
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respectively,

σ[XY Z + 2W ], σ[XY Z + (1 + ε)W ], and

σ[XY Z + 2W ] ·

(
3

4
+

1

4
σ[(ε− 1)W ]−

1

2
χ[W ] + χ[Y Z −X ]

)

Proof. Let us drop in this proof the indices (α, β, γ) of the coefficients
involved: A, B, C, Q+ stand for Aα,β,γ, Bα,β,γ, Cα,β,γ and Q+

α,β,γ.
With the notations of the proof of Theorem 6.1, we have A =

Q+(1, 1, 1), B = A−K/2− A−/2 and C = A+ − A−.
Remember that Q+ is the coefficient of sα[X ]sβ[Y ]sγ [Z] in the ex-

pansion in the Schur basis of σ[H(x, y, z)]. We have

H(x, y, z) = XY Z + (1 + z)XY + (1 + y)XZ + (1 + x)Y Z

+ (yz+ y+ z− 1/x)X + (xz + x+ z− 1/y)Y + (xy+ x+ y− 1/z)Z.

Specializing x,y,z at 1 we get that A is the coefficient of sα[X ]sβ[Y ]sγ [Z]
in the expansion in the Schur basis of σ[XY Z + 2W ].

Let us get now a generating series for the coefficients C. We have
C = A+ −A−, where A+ (resp. A−) is the sum of all coefficients qω of
Q+ such that ℓ1(ω) is even (resp. odd). Note that for any ω ∈ Z3, we
have ℓ1(ω) ≡ |ω| mod 2. Therefore, A+ (resp. A−) is also the sum of
all coefficients qω of Q+ such that |ω| is even (resp. odd). Thus

Q+(−1,−1,−1) =
∑

ω

qω (−1)|ω| = A+ −A− = C.

Specializing the variables x, y and z at −1 in σ[H(x, y, z)] (this cor-
responds to specializations at ε as alphabets), we get that C is the
coefficient of sα[X ]sβ[Y ]sγ [Z] in the expansion in the Schur basis of
σ[XY Z + (1 + ε)W ].

Now B = A−K/2−A−/2. Since C = A+ −A− and A = A+ +A−,
we have also B = 3A/4 + C/4 − K/2. The generating series for the
coefficients A and C have just been obtained. Let us focus on the
generating series for the coefficients K.

Note that

K =
∑

(a,b,c)∈Ω

qa,b,c(b+ c− a)

This can be obtained as ∂Q+(1/t,t,t)
∂t |t=1

. Therefore K is the coefficient

of sα[X ]sβ [Y ]sγ[Z] in the expansion in the Schur basis of

∂σ [H(1/t, t, t)]

∂t |t=1

We compute that

H(1/t, t, t) = t2X + t(W − Y Z) + (XY Z +W −X) + 1/tY Z.
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We now use that σ = exp (
∑∞

n=1 pn/n), where the pn are the power sum
symmetric functions (see [35, ]). We get that σ[H(1/t, t, t)] is equal to

exp

(
∞∑

n=1

pn[X ]t2n + pn[W − Y Z]tn + pn[XY Z +W −X ] + pn[Y Z]t−n

n

)
.

Derivating with respect to t and specializing t at 1, we obtain

∂σ[H(1/t, t, t)]

∂t |t=1
= σ[H(1, 1, 1)]·

∞∑

n=1

(2pn[X ] + pn[W − Y Z]− pn[Y Z])

Let χ =
∑∞

n=1 pn. Since H(1, 1, 1) = XY Z + 2W , we get

∂σ[H(1/t, t, t)]

∂t |t=1
= σ[XY Z + 2W ] · (χ[W ] + 2χ[X − Y Z]) .

The generating series for the coefficients Bα,β,γ is thus

3

4
σ[XY Z+2W ]+

1

4
σ[XY Z+(1+ε)W ]−

1

2
σ[XY Z+2W ]·(χ[W ] + 2χ[X − Y Z])

which is equal to

σ[XY Z + 2W ]

(
3

4
+

1

4
σ[(ε− 1)W ]−

1

2
χ[W ] + χ[Y Z −X ]

)
.

�

Remark 7.4. It is possible to rewrite the formula for the generating
function of the coefficients Bα,β,γ in such a way that it is clearly a
combination of Schur functions with integer coefficients (as we know
it is, after Theorem 6.1). There are many ways of doing this. One of
them is:

σ[XY Z + 2W ] ·

(
1−

∑

a even,b

(−1)bs(a|b)[W ] +
∑

a,b

(−1)bs(a|b)[Y Z −X ]

)

where (a|b) is the partition (1 + a, 1b) (”Frobenius notation” for parti-
tions, see [35, I. §1])

Example 7.5. One can derive from Theorem 7.3 the following formulas
for the coefficients in the paper, when two of the three indices are the
empty partition.

A(α1,α2),∅,∅ = α1 − α2 + 1,

C(α1,α2),∅,∅ =

{
(−1)α2 if α1 ≡ α2 mod 2,

0 otherwise.

B(α1,α2),∅,∅ is the nearest integer from − 3 ·
(α1)

2 − (α2 − 1)2

4

and, when (α1, α2) is not the empty partition,

B∅,(α1,α2),∅ is the nearest integer from − 3 ·
(α1 − 1)2 − (α2 − 2)2

4
.
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Similarly, one derives from Theorem 7.1 that

gα,∅,∅ =





2 if α is a hook,
1 if α = ∅,
0 otherwise.

8. Final remarks

The rate of growth experienced by the reduced Kronecker coefficients
as we add cells to remaining row is harder to understand. The stretched
Kronecker coefficients are known to be described by a quasi-polynomial;
see [37, 39, 1]. In particular, the following corollary holds.

Corollary 8.1 (Manivel, [37]). For any triple λ, µ, and ν, the stretched
Kronecker coefficient g(kλ, kµ, kν) is a quasi-polynomial function of
k ≥ 0.

Examples of these quasi-polynomial functions have been computed
in [6, 1]. All specializations of the form λ := λ + kµ will then be
described by quasi-polynomials in k.

Some particular instances of this problem have been studied in the
literature. Recall that in [40] Murnaghan observed that the reduced
Kronecker coefficients gλµ,ν such that |λ| = |µ| + |ν| coincide with the

Littlewood-Richardson coefficients cλµ,ν . For the stretched Littlewood-
Richardson coefficients, it has been shown in [43, 19] that g(kλ, kµ, kν)
is described by a polynomial (and not just a quasi-polynomial). More-
over, the degree of the stretched Littlewood-Richardson polynomials
have been studied in [26, 27].

Other families (that are not Littlewood-Richardson coefficients) have
appeared in the literature. For example, from the calculations appear-

ing in [18, 17] we know that the sequence ḡ
(k)
(ka),(ka) is described by a

quasipolynomial of degree 2a−1. However, the sequence ḡ
(k)

(2k−j,ka−1),(ka),

with k ≥ 2j is described by a quasipolynomial of degree 3a − 2. Note
that the period of both quasipolynomials divides ℓ, the least common
multiple of 1, 2, . . . , a, a+1. In fact, it has been checked that the period
is exactly ℓ for a ≤ 10 for the first family, and for a ≤ 7 for the second
one.

Note that for a = 1, both sequences are described by a linear
quasipolynomial of period 2, as predicted by our work. For a = 2 the
first sequence is described by a quasipolynomial of degree 3, whereas
the second sequence is described by a quasipolynomial of degree 4. The
two resulting quasi polynomials are copied here.
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Example 8.2. The coefficients g
(k)
(k2),(k2) are given by the following quasipoly-

nomial of degree 3 and period 6:

g
(k)

(k2),(k2) =





1/72 (k + 6) (k2 + 6k + 12) if k ≡ 0 mod 6
1/72 (k + 5) (k2 + 7k + 4) if k ≡ 1 mod 6
1/72 (k + 4)3 if k ≡ 2 mod 6
1/72 (k + 3) (k2 + 9k + 12) if k ≡ 3 mod 6
1/72 (k + 2) (k2 + 10k + 28) if k ≡ 4 mod 6
1/72 (k + 1) (k + 4) (k + 7) if k ≡ 5 mod 6

The factorizations obtained for this families resemble those observed
and studied for the stretched Littlewood-Richardson coefficients in [26,
27].

Example 8.3. The coefficients ḡ
(k)

(2k−j,k),(k2), with k ≥ 2j, are given by

the following quasipolynomial of degree 4 and period 6:

ḡ
(k)
(2k−j,k),(k2) =





1/288 (j + 6) (j3 + 12j2 + 40j + 48) if j ≡ 0 mod 6
1/288 (j + 5)2 (j + 1) (j + 7) if j ≡ 1 mod 6
1/288 (j + 4)2 (j + 2) (j + 8) if j ≡ 2 mod 6
1/288 (j + 3) (j3 + 15j2 + 67j + 69) if j ≡ 3 mod 6
1/288 (j + 2) (j + 4)2 (j + 8) if j ≡ 4 mod 6
1/288 (j + 1) (j + 5)2 (j + 7) if j ≡ 5 mod 6

Interestingly, for both families, the sequences obtained as the result
of incrementing the parameter a (the sizes of the columns) is weakly
increasing, and bounded. This follows easily from the combinatorial
interpretations in terms of plane partitions provided in [18, 17].
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Appendix A. Table of coefficients

Tables 2 and 3 display the coefficients gα,β,γ, Aα,β,γ, Bα,β,γ and Cα,β,γ

for all partitions α, β and γ with weight at most 3. Note that gα,β,γ,
Aα,β,γ and Cα,β,γ are invariant under permutation of their three indices.
This is why the table gives their values only for α ≥ β ≥ γ, where the
order ≥ is the degree lexicographic ordering. The coefficients Bα,β,γ is
only invariant under permuting its last two indices.

These coefficients where calculated by series expansion of the gener-
ating series and using SAGE [51].

Appendix B. Bounds

We prove here the assertions made in Remarks 5.3 and 6.2 about the
values of the constants ki (in Theorem 5.2) and k′

i (in Theorem 6.1).
These technical and less central results do not appear in the printed
version of this work.

B.1. Hook stability, reduced Kronecker coefficients. In this sec-
tion, we find explicitly bounds for the quantities k1, k2, k3 appearing
in Theorem 5.2.

Theorem B.1. In Theorem 5.2, one can take



k1 = |α|+ α1 + β ′
1 + γ′

1,
k2 = |β|+ β1 + α′

1 + γ′
1,

k3 = |γ|+ γ1 + α′
1 + β ′

1

Proof. After the proof of Theorem 5.2, one can take ki = maxω∈Ω ℓi(ω),
where Ω is the support of Q− = Q−

α,β,γ(x, y, z).
Let us perform the change of variables x = vw

u
, y = uw

v
, z = uv

w
, so

that the identity xaybzc = uℓ1vℓ2wℓ3 holds. Then k1 (resp. k2, k3), as
defined above, is the degree of P with respect to the variable u (resp.
v, w).

After this change of variables, H(−εx,−εy,−εz) equals

XY Z +XY +XZ + Y Z − ε ·
(uv
w
XY +

uw

v
XZ +

vw

u
Y Z
)

+ u2X + v2Y + w2Z + ε
1

vw

(
u2 − uv2 − uw2

)
X

+ ε
1

uw

(
v2 − vu2 − vw2

)
Y + ε

1

uv

(
w2 − wu2 − wv2

)
Z.

We reorder the terms as follows:

H(−εx,−εy,−εz) = u2X + εuXH1 − εu
( v
w
Y +

w

v
Z
)
+H0.

where H0 is a sum of monomials with non-positive degree in u, and H1

is free of u and X . We now factorize σ[H(−εx,−εy,−εz)] as

σ[u2X ] · σ[εuXH1] · σ
[
−εu

v

w
Y
]
· σ
[
−εu

w

v
Z
]
· σ[H0]
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α β γ gα,β,γ Aα,β,γ Bα,β,γ Bβ,α,γ Bγ,α,β Cα,β,γ

∅ ∅ ∅ 1 1 1 1 1 1
(1) ∅ ∅ 2 2 0 1 1 0
(1) (1) ∅ 6 6 0 0 3 0
(1) (1) (1) 21 21 0 0 0 1
(2) ∅ ∅ 2 3 −2 1 1 1
(2) (1) ∅ 8 10 −7 −2 3 0
(2) (1) (1) 34 40 −25 −5 −5 0
(2) (2) ∅ 14 20 −14 −14 6 2
(2) (2) (1) 66 86 −57 −57 −14 0
(2) (2) (2) 145 203 −133 −133 −133 5
(2) (2) (1, 1) 144 150 −84 −84 −84 −4
(2) (2) (1, 1, 1) 204 134 −54 −54 −121 0
(2) (1, 1) ∅ 14 12 −8 −8 4 −2
(2) (1, 1) (1) 66 62 −33 −33 −2 0
(2) (1, 1) (1, 1) 145 131 −55 −55 −55 5
(2) (1, 1, 1) ∅ 16 6 −3 −6 3 0
(2) (1, 1, 1) (1) 84 46 −19 −42 4 0
(2) (1, 1, 1) (1, 1) 206 144 −45 −117 −45 0
(2) (1, 1, 1) (1, 1, 1) 326 240 −48 −168 −168 0
(1, 1) ∅ ∅ 2 1 −1 0 0 −1
(1, 1) (1) ∅ 8 6 −3 0 3 0
(1, 1) (1) (1) 34 28 −13 1 1 0
(1, 1) (1, 1) ∅ 14 12 −4 −4 8 2
(1, 1) (1, 1) (1) 66 54 −21 −21 6 0
(1, 1) (1, 1) (1, 1) 144 110 −38 −38 −38 −4
(3) ∅ ∅ 2 4 −6 0 0 0
(3) (1) ∅ 8 14 −20 −6 1 0
(3) (1) (1) 38 59 −78 −19 −19 1
(3) (2) ∅ 16 30 −42 −27 3 0
(3) (2) (1) 84 138 −178 −109 −40 0
(3) (2) (2) 206 348 −435 −261 −261 0
(3) (2) (1, 1) 204 258 −299 −170 −170 0
(3) (2) (1, 1, 1) 320 250 −250 −125 −250 0
(3) (1, 1) ∅ 16 18 −24 −15 3 0
(3) (1, 1) (1) 84 98 −118 −69 −20 0
(3) (1, 1) (1, 1) 206 220 −235 −125 −125 0
(3) (3) ∅ 22 50 −72 −72 3 0
(3) (3) (1) 122 240 −321 −321 −81 2
(3) (3) (2) 326 640 −820 −820 −500 0
(3) (3) (1, 1) 320 478 −574 −574 −335 0
(3) (3) (3) 565 1243 −1597 −1597 −1597 5
(3) (3) (2, 1) 1056 1632 −1888 −1888 −1888 0
(3) (3) (1, 1, 1) 544 506 −521 −521 −521 −4

Table 2. Table of the coefficients of the paper, for three
indexing partitions with weight at most 3 (part 1 of 2).
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α β γ gα,β,γ Aα,β,γ Bα,β,γ Bβ,α,γ Bγ,α,β Cα,β,γ

(3) (2, 1) ∅ 38 50 −66 −66 9 0
(3) (2, 1) (1) 224 288 −344 −344 −56 0
(3) (2, 1) (2) 610 824 −938 −938 −526 0
(3) (2, 1) (1, 1) 610 700 −738 −738 −388 0
(3) (2, 1) (2, 1) 2037 2465 −2515 −2515 −2515 1
(3) (2, 1) (1, 1, 1) 1056 928 −832 −832 −832 0
(3) (1, 1, 1) ∅ 22 10 −12 −12 3 0
(3) (1, 1, 1) (1) 122 80 −85 −85 −5 −2
(3) (1, 1, 1) (1, 1) 326 260 −240 −240 −110 0
(3) (1, 1, 1) (1, 1, 1) 565 451 −355 −355 −355 5
(2, 1) ∅ ∅ 2 2 −3 0 0 0
(2, 1) (1) ∅ 12 12 −15 −3 3 0
(2, 1) (1) (1) 64 64 −72 −8 −8 0
(2, 1) (2) ∅ 28 30 −36 −21 9 0
(2, 1) (2) (1) 152 164 −181 −99 −17 0
(2, 1) (2) (2) 382 442 −477 −256 −256 0
(2, 1) (2) (1, 1) 382 378 −371 −182 −182 0
(2, 1) (2) (1, 1, 1) 610 472 −394 −158 −394 0
(2, 1) (1, 1) ∅ 28 26 −28 −15 11 0
(2, 1) (1, 1) (1) 152 140 −139 −69 1 0
(2, 1) (1, 1) (1, 1) 382 330 −293 −128 −128 0
(2, 1) (2, 1) ∅ 74 74 −81 −81 30 0
(2, 1) (2, 1) (1) 428 428 −433 −433 −5 0
(2, 1) (2, 1) (2) 1168 1242 −1218 −1218 −597 0
(2, 1) (2, 1) (1, 1) 1168 1094 −982 −982 −435 0
(2, 1) (2, 1) (2, 1) 3933 3933 −3470 −3470 −3470 1
(2, 1) (2, 1) (1, 1, 1) 2037 1609 −1221 −1221 −1221 1
(2, 1) (1, 1, 1) ∅ 38 26 −24 −24 15 0
(2, 1) (1, 1, 1) (1) 224 160 −136 −136 24 0
(2, 1) (1, 1, 1) (1, 1) 610 444 −338 −338 −116 0
(2, 1) (1, 1, 1) (1, 1, 1) 1056 736 −480 −480 −480 0
(1, 1, 1) ∅ ∅ 2 0 0 0 0 0
(1, 1, 1) (1) ∅ 8 2 −2 0 1 0
(1, 1, 1) (1) (1) 38 17 −15 2 2 −1
(1, 1, 1) (1, 1) ∅ 16 10 −8 −3 7 0
(1, 1, 1) (1, 1) (1) 84 54 −42 −15 12 0
(1, 1, 1) (1, 1) (1, 1) 204 134 −97 −30 −30 0
(1, 1, 1) (1, 1, 1) ∅ 22 18 −12 −12 15 0
(1, 1, 1) (1, 1, 1) (1) 122 88 −59 −59 29 2
(1, 1, 1) (1, 1, 1) (1, 1) 320 206 −130 −130 −27 0
(1, 1, 1) (1, 1, 1) (1, 1, 1) 544 322 −175 −175 −175 −4

Table 3. Table of the coefficients of the paper, for three
indexing partitions with weight at most 3 (part 2 of 2).
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and expand each series, except σ[H0]. We get that σ[H(−εx,−εy,−εz)]
is equal to

∑
u2ihi[X ] ujej [XH1]

( v
w
u
)k

ek[Y ]
(w
v
u
)ℓ

eℓ[Z]σ[H0],

where the sum ranges over all nonnegative integers i, j, k, ℓ. Therefore,

Q− = 〈σ[H(−εx,−εy,−εz)] | sα[X ]sβ[Y ]sγ[Z]〉

=
∑

u2i+j+k+ℓvk−ℓwℓ−k
〈
ej[XH1]σ[H0]

∣∣ (h⊥
i sα)[X ](e⊥k sβ)[Y ](e⊥ℓ sγ[Z])

〉
.

We have h⊥
i sα = 0 unless i ≤ α1, and that e⊥k sβ = 0 (resp. e⊥ℓ sγ = 0)

unless j ≤ β ′
1 (resp. k ≤ γ′

1). Finally, since ej [XH1] is homogeneous of
degree j in X and h⊥

i sα has degree |α|− i, the summand corresponding
to i, j, k, ℓ can be non zero only if i ≤ α1, j ≤ |α| − i, k ≤ β ′

1 and
ℓ ≤ γ′

1. Therefore 2i+ j + k + ℓ ≤ |α|+ α1 + β ′
1 + γ′

1.
This proves that in Theorem 5.2, one can take k1 = |α|+α1+β ′

1+γ′
1.

By symmetry, it follows that one can also take k2 = |β|+ β1 + α′
1 + γ′

1

and k3 = |γ|+ γ1 + α′
1 + β ′

1. �

Remark B.2. More detailed computations show that the coefficient of
u|α|+α1+β′

1
+γ′

1 in Q−
α,β,γ is

sα′

[
1 + v2 + w2

vw

]
· sβ′[1]sγ′ [1]

where α is the partition obtained from α by removing its first row (and
α′ is the conjugate of α). This is non–zero if and only if β and γ have
at most one column, and α has at most three columns. This is, the
only case when the bound is reached.

B.2. First row for reduced Kronecker coefficients. We give bounds
for the constants k′

1, k
′
2 and k′

3 appearing In Theorem 6.1.

Theorem B.3. In Theorem 6.1, one can take




k′
1 = |α|+ |β|+ |γ|+ β1,

k′
2 = |α|+ |β|+ |γ|+ γ1,

k′
3 = |α|+ |β|+ |γ|+ α1 + β1 + γ1.

Proof. After the proof of Theorem 6.1, one can take




k′
1 = maxω∈Ω ℓ1(ω),

k′
2 = maxω∈Ω (ℓ1(ω)− ℓ2(ω)) ,

k′
3 = maxω∈Ω (ℓ1(ω)− ℓ3(ω)) .

Let us perform the change of variables x = uvw, y = vw, z = uw, so
that xaybzc = uℓ1−ℓ2vℓ1−ℓ3wℓ1. Then the constants k′

1, k
′
2, k

′
3 are the

degrees of Q+
α,β,γ in the variables, respectively, u, v and w.

Let us bound the degree in u of Q+. After the change of variables,
we obtain that H(x, y, z) = u2vw2Y + uH1 +H0 where H1 is free of u



KRONECKER COEFFICIENTS 39

and has all its terms of degree at least 1 in X , Y and Z, and H0 has
all its term of degree ≤ 0 in u. Thus,

σ[H ] = σ[u2vw2Y ]σ[uH1]σ[H0] =
∑

i,j

u2i+j(vw2)ihi[Y ]hj [H1]σ[H0]

and, therefore,

Q+ =
∑

i,j

u2i+j(vw2)j 〈hi[Y ]hj[H1]σ[H0] | sα[X ]sβ[Y ]sγ [Z]〉

=
∑

i,j

u2i+j(vw2)j
〈
hj [H1]σ[H0]

∣∣ sα[X ](h⊥
i sβ)[Y ]sγ [Z]

〉

Note that h⊥
i sβ = 0 unless i ≤ β1. Moreover the left–hand side of each

scalar product in the sum is now a sum of homogeneous symmetric
functions all of total degree at least j, while the right–hand side has
degree |α| + |β| + |γ| − i. Thus, the non-zero summands fulfill j ≤
|α|+ |β+ |γ|−i. We conclude that for all non–zero summands, 2i+j ≤
|α|+ |β|+ |γ|+ β1. �

Appendix C. Another approach to the hook stability

property, derived from Murnaghan’s

stability and conjugation

C.1. Half of Theorem 5.6. It is well–known that the Kronecker coef-
ficients are invariant under conjugation of any two of their arguments:

gλ,µ,ν = gλ′,µ′,ν = gλ′,µ,ν′ = gλ,µ′,ν′.

We have (conjugating the arguments in position 1 and 2), gλ,µ,ν =
gλ′,µ′,ν. Assuming that (λ′, µ′, ν) is stable, that is, that the value of the
Kronecker coefficient does not change by adding one to the first row of
each, we have

(27) gλ′,µ′,ν = gλ′⊕(1|0),µ′⊕(1|0),ν⊕(1|0).

Conjugating again the arguments in position 1 and 2, we have that
gλ′⊕(1|0),µ′⊕(1|0),ν⊕(1|0) = gλ⊕(0|1),µ⊕(0|1),ν⊕(1|0). We conclude that gλ,µ,ν =
gλ⊕(0|1),µ⊕(0|1),ν⊕(1|0). From Lemma 5.8 we get the following sufficient
condition for (27) to hold:

(28) N ≥ N0(λ̂, µ̂, ν̂) + (λ′
1 + µ1 + ν1)/2,

where, again, N is the weight of the partitions λ, µ and ν. Likewise, by
conjugating the partitions at positions 1 and 3, or 2 and 3, or the Kro-
necker coefficients, we would get that gλ,µ,ν = gλ⊕(0|1),µ⊕(1|0),ν⊕(0|1) and
gλ,µ,ν = gλ⊕(1|0),µ⊕(0|1),ν⊕(0|1), under the assumptions that, respectively

N ≥ N0(λ̂, µ̂, ν̂) + (λ1 + µ′
1 + ν1)/2,(29)

N ≥ N0(λ̂, µ̂, ν̂) + (λ1 + µ1 + ν ′
1)/2.(30)
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Of course we have also gλ,µ,ν = gλ⊕(1|0),µ⊕(1|0),ν⊕(1|0) when

(31) N ≥ N0(λ̂, µ̂, ν̂) + (λ′
1 + µ′

1 + ν ′
1)/2.

Assume that all four hypotheses (28),(29), (30) and (31) hold for
(λ, µ, ν). One can check that they hold as well for all triples of parti-
tions (λ⊕ (m−a|a), µ⊕ (m− b|b), ν⊕ (m− c|c)) such that (a, b, c,m) is
in the semigroup S generated by the four vectors (1, 1, 0, 1), (1, 0, 1, 1),
(1, 1, 0, 1) and (0, 0, 0, 1). It follows, by induction, that

gλ,µ,ν = gλ⊕(m−a|a),µ⊕(m−b|b),ν⊕(m−c|c)

for all (a, b, c,m) ∈ S. It is not difficult to establish (using again the
change of variables ℓ1, ℓ2, ℓ3) that the semigroup S is the set of points
(a, b, c,m) ∈ N4 that fulfill the condition (21) and, additionally, the
congruence a+ b+ c ≡ 0 mod 2.

Let us consider also the case when the triple (λ, µ, ν) is not assumed
to fulfill (28),(29), (30) and (31). Then one can check that (λ⊕ (m−
a|a), µ⊕ (m− b|b), ν⊕ (m− c|c)) fulfill these conditions when a system
of type (17) holds, with




d1 = 2 (N0 −N) + λ′
1 + µ1 + ν1,

d2 = 2 (N0 −N) + λ1 + µ′
1 + ν1,

d3 = 2 (N0 −N) + λ1 + µ1 + ν ′
1,

d = N0 −N + (λ′
1 + µ′

1 + ν ′
1)/2.

Therefore, we nearly recover the stability property of Theorem 5.6. To
recover the full theorem, it would be enough to establish that there
exists m big enough, such that

gλ⊕(2m|2m),µ⊕(2m|2m),ν⊕(2m|2m) = gλ⊕(2m+1|2m+1),µ⊕(2m+1|2m+1),ν⊕(2m+1|2m+1) .

See next subsection for a possible approach to this question.

C.2. A monotonicity conjecture. Remember that Murnaghan’s se-
quences of Kronecker coefficients are weakly increasing (see Section
3.1): for any three partitions λ, µ, ν of the same weight,

(32) gλ,µ,ν ≤ gλ+(1),µ+(1),ν+(1).

Here is, conjecturally, a more general monotonicity property.

Conjecture C.1 (Conjecture 5.11 restated). For any three partitions
λ, µ and ν of the same weight, and any (a, b, c,m) fulfilling (21),

gλ,µ,ν ≤ gλ⊕(m−a|a),µ⊕(m−b|b),ν⊕(m−c|c).

Again, using the symmetries of the Kronecker coefficients, it is not
difficult to prove part of this conjecture.

Proposition C.2. Let λ, µ and ν be three non–empty partitions of the
same weight. If gλ,µ,ν ≤ gλ⊕(1|1),µ⊕(1|1),ν⊕(1|1), then

gλ,µ,ν ≤ gλ⊕(m−a|a),µ⊕(m−b|b),ν⊕(m−c|c)

for all (a, b, c,m) fulfilling (21).
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Proof. We use again the symmetry of the Kronecker coefficients under
conjugating two arguments. We have the identity gλ,µ,ν = gλ′,µ′,ν . Us-
ing (32) we get gλ′,µ′,ν ≤ gλ′⊕(1|0),µ′⊕(1|0),ν⊕(1|0). Conjugating again the
arguments in position 1 and 2, we have that gλ′⊕(1|0),µ′⊕(1|0),ν⊕(1|0) is
equal to gλ⊕(0|1),µ⊕(0|1),ν⊕(1|0). Therefore, gλ,µ,ν ≤ gλ⊕(0|1),µ⊕(0|1),ν⊕(1|0).
Likewise gλ,µ,ν ≤ gλ⊕(0|1),µ⊕(1|0),ν⊕(0|1) and gλ,µ,ν ≤ gλ⊕(1|0),µ⊕(0|1),ν⊕(0|1).

Using these 3 identities, together with (32), we see that gλ,µ,ν ≤
gλ,µ,ν(τ) for all τ in the semigroup S generated by (1, 1, 0, 1), (1, 0, 1, 1),
(0, 1, 1, 1) and (0, 0, 0, 1) (here we use again the notation introduced af-
ter (31)). This semigroup was determined earlier: the points (a, b, c, N)
that fulfill (21) are exactly the elements of S and the elements (1, 1, 1, 1)+
τ for τ ∈ S. This proves the proposition. �

Proposition C.2 shows that Conjecture 5.11 is equivalent to the fol-
lowing seemingly much weaker statement.

Conjecture C.3 (Equivalent form of Conjecture 5.11; this is Conjec-
ture 5.12 restated). For any three partitions λ, µ and ν of the same
weight,

gλ,µ,ν ≤ gλ⊕(1|1),µ⊕(1|1),ν⊕(1|1).

Remark C.4. Conjecture 5.12 was checked by computer, with SAGE
[51], for all triples of partitions of weight at most 16.

Remark C.5. A proof of Conjecture 5.12 would provide an alternative
proof of Theorem 5.6.

Appendix D. One the generating function for the

coefficients Bα,β,γ

D.1. Expression involving Schur functions indexed by hooks.

It is proved in Theorem 7.3 that the Schur generating function for the
coefficients Bα,β,γ is

σ[XY Z + 2W ] ·

(
3

4
+

1

4
σ[(ε− 1)W ]−

1

2
χ[W ] + χ[Y Z −X ]

)

The following result is stated in a remark, with no proof,

Proposition D.1. Fix partitions α, β, γ. The coefficient Bα,β,γ in
Theorem 6.1 is the coefficient of sα[X ]sβ [Y ]sγ[Z] in the expansion in
the Schur basis of

σ[XY Z+2W ] ·

(
1−

∑

aeven ,b

(−1)bs(a|b)[W ] +
∑

a,b

(−1)bs(a|b)[Y Z −X ]

)
.

Proof. From Cauchy Formula,

(33) σ[(ε− 1)W ] = σ[(1− ε)(−W )] =
∑

λ

sλ[1− ε]sλ[−W ] =
∑

λ

sλ[1− ε](−1)|λ|sλ′ [W ].
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After [50, Ex. 7.43 with t = 1], sλ[1−ε] is 1 if λ is the empty partition,
2 if λ is a hook and 0 otherwise. Therefore,

σ[(ε− 1)W ] = 1 + 2
∑

a,b≥0

(−1)1+a+bs(a|b)[W ].

Thus,
3

4
+

1

4
σ[(ε− 1)W ] = 1 +

1

2

∑

a,b

(−1)1+a+bs(a|b)[W ].

After [35, I.§3. Ex. 11 (2) with µ = ∅], we have

(34) χ =
∑

a,b

(−1)bs(a|b).

Therefore,

3

4
+

1

4
σ[(ε− 1)W ]−

1

2
χ[W ] =

1 +
1

2

∑

a,b

(−1)1+a+bs(a|b)[W ]−
1

2

∑

a,b

(−1)bs(a|b)

= 1−
∑

a even,b

(−1)bs(a|b)[W ]

Using again (34) to rewrite χ[Y Z −X ], we get the following Formula
for the generating function of the coefficients of B:

σ[XY Z + 2W ] ·

(
1−

∑

aeven ,b

(−1)bs(a|b)[W ] +
∑

a,b

(−1)bs(a|b)[Y Z −X ]

)

�

D.2. Toolbox for other expressions. In order to write in other ways
the generating function for the coefficients Bα,β,γ, the following formu-
las may be useful:

σ[X ] · χ[X ] =
∑

k

k hk[X ],

σ[2X ] · χ[X ] =
∑

λ:ℓ(λ)≤2

(λ1 − λ2 + 1)(λ1 + λ2)

2
sλ[X ].

They follow from the fact that σ[tX ]χ[tX ] is the derivative of σ[tX ]
(for the first one), and that σ[2tX ]χ[2tX ] is the derivative of σ[2tX ].
Last, by Cauchy formula,

σ[2tX ] =
∑

λ

sλ[2]sλ[X ]t|λ|,

and sλ[2] = (λ1 − λ2 + 1) is λ has at most two parts, and is equal to 0
otherwise.
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