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Asexual development, conidiation, in the filamentous fungus Neurospora crassa is a simple developmental process that starts
with the growth of aerial hyphae. Then, the formation of constrictions and subsequent maturation gives rise to the mature conidia
that are easily dispersed by air currents. Conidiation is regulated by environmental factors such as light, aeration and nutrient
limitation, and by the circadian clock. Different regulatory proteins acting at different stages of conidiation have been described.
The role of transcription factors such as FL, and components of signal transduction pathways such as the cAMP phosphodies-
terase ACON-2 suggest a complex interplay between differential transcription and signal transduction pathways. Comparisons
between the molecular basis of conidiation in N. crassa and other filamentous fungi will help to identify common regulatory

elements.
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Introduction

Neurospora crassa is an ascomycete heterothallic filamentous
fungus that grows as branched multinucleated hyphae with
perforated septa. In nature, species of Neurospora have been
found in a wide range or areas that include tropical, subtrop-
ical and temperate regions, and the fungus is easily detected
growing on the surface of fire-scorched vegetation because of
its ability to metabolize cellulose and the activation by heat of
the sexual spores (ascospores) (Jacobson et al. 2006; Jacobson
et al. 2004; Luque et al. 2012; Turner et al. 2001). N. crassa
has been used as a model organism for the research on several
aspects of eukaryotic biology, including the mechanism of
recombination, genome defence by RNAI, circadian clock
regulation and light sensing (Davis and Perkins 2002;
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Perkins and Davis 2000; Roche et al. 2014) The life cycle of
N. crassa includes asexual reproduction and the development
of vegetative conidia that are easy to disperse. The develop-
mental processes that lead to conidiation in N. crassa are,
however, very different from those regulating conidiation in
Aspergillus nidulans, despite both being members of the
Ascomycota. Here, we review our knowledge of the regula-
tion, the genetics and molecular basis of conidiation in
N. crassa. We propose that the simplified mode of vegetative
reproduction in N. crassa and related fungi may help to un-
derstand asexual development in other ascomycetes with more
complex conidiation pathways.

Morphological events during conidiation
in Neurospora crassa

There are two pathways for asexual reproduction in N. crassa:
macroconidiation and microconidiation. Macroconidiation
(henceforth conidiation) is induced by the transfer from a lig-
uid to an air interface, desiccation and nutrient depletion, and
is influenced by several environmental factors such as light
and CO; levels, and by the circadian rhythm (Springer 1993).
Conidiation is a very simple developmental process. The in-
duction of conidiation promotes a change in the direction of
growth of the vegetative hyphae that grow away from the
substrate, and leads to the formation of a mass of aerial
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hyphae. About 4 h after conidial induction, hyphal growth
changes from apical elongation to apical budding leading to
the formation of chains of proconidia that are divided by mi-
nor constrictions. Budding continues in proconidial chains,
and major constrictions appear approximately 8 h after the
induction of conidiation. This results in the separation of each
proconidia during their maturation into full conidia (Fig. 1A).
Interconidial junctions are cleaved several hours later, but
fragile connective threads hold conidia together until they
are dispersed by wind currents (Springer 1993; Springer and
Yanofsky 1989). The entire process of conidiation takes be-
tween 12 and 24 h. However, conidia undergo a biochemical
maturation period of several days before they are able of effi-
cient germination (Fig. 1B).

The other asexual reproduction pathway, microconidiation,
is often observed in old cultures. Microconidia are
uninucleated spores morphologically and developmentally
different from macroconidia. It has been shown that mutants
affected in macroconidiation are not affected in
microconidiation, suggesting that both pathways are indepen-
dent and should have few common regulatory elements, if any
(Maheshwari 1999). Microconidia emerge from a protuber-
ance in the vegetative hyphae which constricts until
microconidia are liberated. Externally, microconidia are
smaller than conidia and do not contain carotenoids in their
cell wall. They are less viable than macroconidia (Springer
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1993; Springer et al. 1992; Springer and Yanofsky 1989). In
addition, microcycle conidiation has been observed in wild
type isolates of N. crassa, but the genetics and morphological
characterization have been limited (Maheshwari 1991).

The regulation of conidiation

The process of conidiation is regulated by a number of envi-
ronmental factors and endogenous signals that should be prop-
erly coordinated by the fungus in order to produce conidia
when environmental conditions are appropriate for vegetative
reproduction. Conidia formation is normally observed when
the fungus is exposed to air, but carbon starvation can induce
conidiation in submerged mycelia (Madi et al. 1994; Madi
et al. 1997). In N. crassa and other fungi, developmental cy-
cles are often initiated by the same environmental stresses that
induce the accumulation of high levels of trehalose, including
carbon starvation, increased temperature and desiccation (Li
et al. 1997; Sargent and Kaltenborn 1972; Springer and
Yanofsky 1992; Sun et al. 2011). Moreover, the process of
development itself is considered to cause physiological stress
on organisms. In mature conidia, higher levels of trehalose
and stress response proteins may be required for resistance
and survival (Héfker et al. 1998; Rensing and Monnerjahn
1998). Thus, trehalose may play a dual role in the cell, func-
tioning as a reserve carbohydrate for future hyphal growth and
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as a stress protectant. The mechanism of induction of
conidiation after the transition to an air interphase is not well
understood but it has been proposed that the development of
conidia helps the fungus to cope with the excess of damaging
oxygen radicals (Hansberg et al. 1993; Peraza and Hansberg
2002).

Light regulates conidiation (Springer 1993), and the regu-
lation by light of conidiation requires the activity of proteins
WC-1 and WC-2 (Lauter and Russo 1990). WC-1 contains a
zinc finger, a chromophore-binding domain (LOV) and PAS
domains for protein-protein interactions (Ballario et al. 1996;
Crosthwaite et al. 1997). The chromophore-binding domain
binds the flavin FAD, allowing WC-1 to act as a blue-light
photoreceptor (Froehlich et al. 2002; He et al. 2002). The
protein WC-2 contains a zinc finger and a PAS domain, and
interacts with WC-1 (Linden and Macino 1997) to form a
White Collar Complex (WCC). This complex, upon light ex-
posure, binds transiently to the promoters of light-inducible
genes to activate their transcription (Belden et al. 2007,
Froehlich et al. 2002; He and Liu 2005; Smith et al. 2010),
including the promoter of /7 (fluffy), a gene that encodes a key
regulator of conidiation. Conidiation increases in N. crassa
cultures exposed to light suggesting that light may activate
the transcription of key regulatory genes which indeed accu-
mulate after light exposure as it has been shown for fI or csp-1
among others (Belden et al. 2007; Chen et al. 2009; Olmedo
et al. 2010a; Olmedo et al. 2010b).

Conidiation is regulated by the endogenous circadian clock
resulting in bands of conidia every 22.5 h of growth in the
dark (Dunlap and Loros 2017). The mechanism by which the
clock regulates conidiation has been characterized in detail
and is based on a negative feedback loop in which the positive
element is the WCC which activates transcription of frg. FRQ
is the negative element of the clock and together with its
partners the RNA helicase FRH and the casein kinase-1
(CK-1) blocks its own transcription as well as the transcription
of the other WCC-regulated genes (Crosthwaite et al. 1997;
Dunlap and Loros 2004; Heintzen and Liu 2007). The oscil-
latory amount of FRQ during the circadian cycle promotes
changes in the abundance, phosphorylation and activity of
the WCC during growth in the dark (Brunner and
Schafmeier 2006; Dunlap 2006; Dunlap and Loros 2006).

Genetics of conidiation: regulatory genes
and proteins

Genetics has helped to identify some of the key elements that
regulate conidiation in N. crassa. Several genes required for
conidiation have been described and their genetic interactions
have been established. Strains with mutations in aconidiate-2
(acon-2) or fluffyoid (fld) are blocked in the transition from
filamentous to budding growth. Mutations in aconidiate-3
(acon-3) or fluffy (fl) allow the production of minor

constrictions, but development is blocked and few major con-
strictions between proconidia are detected. Mutations in two
conidial separation genes (csp-1 and csp-2) prevent the sepa-
ration of the cross walls in matured conidia to release free
conidia (Springer 1993). Of these genes, attention has focused
on the products of genes fI (NCU08726), csp-1 (NCU02713)
and csp-2 (NCU06095) that are transcription factors that
should act by regulating transcription of genes that partic-
ipate in the development of conidia. These genes are all
light-inducible providing a connection between light reg-
ulation and conidiation (Bailey and Ebbole 1998; Chen
et al. 2009; Lambreghts et al. 2009; Paré et al. 2012;
Smith et al. 2010).

The fI gene has been characterized in detail. The FL protein
is a 792-amino acid polypeptide containing a Zn,Cysg
binuclear zinc cluster domain belonging to the Galdp family
(Bailey and Ebbole 1998). Mutations in f7 block conidiation at
the formation of minor constrictions, few hours after the in-
duction of conidiation (Springer and Yanofsky 1989). fI
mRNA accumulates in aerial hyphae where conidiation-
specific genes are expressed suggesting an important role for
FL in the expression of those genes (Bailey-Shrode and
Ebbole 2004). However, it has been also found that f/
mRNA accumulates shortly after induction of conidiation sug-
gesting an additional role for FL in the formation of aerial
hyphae (Correa and Bell-Pedersen 2002). The importance of
FL as one of the major regulators of conidiation in N. crassa
relies on the observation of conidial development when /7 is
overexpressed in submerged vegetative hyphae (Bailey-
Shrode and Ebbole 2004). The overexpression of /I in vegeta-
tive hyphae leads to the expression of eas (Bailey-Shrode and
Ebbole 2004), the gene for the hydrophobin rodlet protein
located on the surface of matured conidia (Bell-Pedersen
et al. 1992; Lauter et al. 1992). This observation supports
the described binding of FL to the eas promoter
(Rerngsamran et al. 2005). Other regulatory genes have been
found to be upregulated when f1 is overexpressed in vegetative
myecelia, including the conidiation-specific genes con-6 and
con-10 (Rerngsamran et al. 2005) supporting the proposal of
FL as a conidiation-specific transcription factor. It has been
described that the aconidial phenotype of a fI mutant can be
partially suppressed by mutation in the gene vib-1, a transcrip-
tion factor that is involved in the regulation of heterokaryon
incompatibility. This would suggest that FL. may regulate
conidiation through the repression of VIB-1 (Xiang and
Glass 2002). The f7 gene is directly activated by light through
the binding of the WCC to a light regulatory element on its
promoter located at position — 640 from initiator ATG
(Olmedo et al. 2010a). /I mRNA accumulates rhythmically
in an ACON-2-dependent manner (Correa and Bell-
Pedersen 2002), supporting the proposal that the rhythmic
production of conidial bands requires the rhythmic accumula-
tion of f/ mRNA.
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Other conidiation mutants have been isolated and charac-
terized. ACON-2 is a cAMP phosphodiesterase, but its role in
the regulation of conidiation remains to be investigated in
detail (Greenwald et al. 2010), and FLD has been proposed
to be a transcription factor (Carrillo et al. 2017; McCluskey
et al. 2011). ACON-3 is a protein without any identified do-
main and is the homologue of MedA, a protein that partici-
pates in the regulation of conidiation of Aspergillus nidulans
(Chung et al. 2011). It is interesting to note the abundance of
transcription factor mutants that are blocked in conidiation.
CSP-1 is a light-inducible zinc finger transcription factor
(Lambreghts et al. 2009; Smith et al. 2010) and CSP-2 was
identified as a light-regulated grainy head-like transcription
factor (Colot et al. 2006; Paré et al. 2012). CSP-2 is involved
in the development and remodelling of the cell wall and plays
a role in the activation of genes related with defence and
virulence (Paré et al. 2012). A third transcription factor,
FLB-3, has been recently characterized. It is the N. crassa
homologue of FIbC, a transcription factor that participates in
the regulation of A. nidulans conidiation. The fIh-3 mutant is
blocked in conidiation, shows altered sexual development and
is unable to complete the sexual cycle (Boni et al. 2018).
These results suggest that FLB-3 plays a key role in the tran-
scriptional coordination between asexual and sexual
reproduction.

Transcriptional regulation during conidiation

The discovery that several transcription factors regulate
conidiation suggested a key role in transcriptional regulation
during conidiation. In addition, several genes have been found
to be highly expressed during conidiation (Roberts et al. 1988)
although their mutants do not have a clear developmental
phenotype. The con genes of N. crassa are preferentially
expressed during conidiation but some of them are also in-
duced by light in vegetative mycelia in a WC-dependent man-
ner (Corrochano et al. 1995; Lauter and Russo 1991; Madi
et al. 1994). The genes con-10 and con-6 contain several reg-
ulatory elements in their promoters that are responsible for
their transcriptional regulation by development, light and the
circadian clock (Corrochano et al. 1995; Lee and Ebbole
1998; Olmedo et al. 2010b). Similar complex regulation has
been observed for genes con-5 and con-13, since they are
regulated by light and conidiation although their promoters
have not been extensively characterized.

The availability of the N. crassa genome sequence made
possible the creation of a gene knockout mutant collection for
almost all the genes identified in the genome (Colot et al.
2006; Dunlap et al. 2007). The viable knockout mutants have
been analysed and their developmental phenotypes have been
characterized (Borkovich et al. 2004; Carrillo et al. 2017,
Colot et al. 2006). Several strains bearing mutations in genes
coding for transcription factors have shown defects in

@ Springer

different stages of the V. crassa life cycle. Most of them were
found to have impaired asexual sporulation although the cor-
relation between the phenotypes and gene expression during
conidiation has not been stablished for most genes yet
(Carrillo et al. 2017).

In a few cases, the role of transcriptional regulators on
conidiation has been investigated. Mutations in the Gal4-
like transcription factor VAD-5 or the velvet protein VE-
1 reduce the growth of aerial hyphae (Bayram et al. 2008;
Sun et al. 2012). The gene chc-1 encodes a protein with a
helix-loop-helix binding domain and the mutant shows
enhanced conidiation, in particular under high CO,
(Sun et al. 2011).

Signal transduction pathways that regulate
conidiation

The key role of the cAMP phosphodiesterase ACON-2 in
conidiation indicated that other signal transduction pathways
participated in the regulation of conidiation in addition to the
transcriptional regulation of conidiation genes.

Conidiation in N. crassa is also regulated by signalling
pathways based on heterotrimeric G proteins and G protein-
coupled receptors (GPCR). G proteins play key roles as sig-
nalling proteins in eukaryotes where they form heterotrimers
composed of «, 3 and 'y subunits which are associated with
the plasma membrane (Neves et al. 2002; Won et al. 2012).
The G subunit binds GTP and GDP and hydrolyses GTP to
GDP, and the Gf3 and Gy subunits form a dimer. In the inac-
tive state, the Go subunit binds GDP and the three subunits
are present in a complex in association with a GPCR. Ligand
binding to the GPCR leads to exchange of GTP for GDP on
the Gx protein and dissociation of the Goe and G3y dimer.
Both the Ga-GTP and Gy moieties regulate downstream
effector proteins in various systems, including ion channels,
adenylyl-cyclases, phosphodiesterases and phospholipases.
GTP hydrolysis on the Goe subunit allows the GDP-bound
Go to reassociate with the Gy dimer and the GPCR at the
membrane, ready to reinitiate the signalling cycle (Li et al.
2007).

Neurospora has three Goe subunits (GNA 1-3), one Gf3
protein (GNB-1), one Gy protein (GNG-1) and several pre-
dicted GPCRs (Li et al. 2007). GNA-1 was the first identified
G protein subunit in filamentous fungi, and participates to-
gether with the GPCR GPR-4 and the protein kinase A
(PKA) in the regulation of carbon source-dependent apical
growth and asexual development (Ivey et al. 1996; Ivey
et al. 2002; Ivey et al. 1999; Li and Borkovich 2006; Turner
and Borkovich 1993). GNA-3 regulates conidiation via mod-
ulating a cAMP-dependent pathway and acts as a negative
regulator of conidiation (Kays and Borkovich 2004; Kays
et al. 2000). The GNB-1 (Gf)/GNG-1(Gy) dimer is required
for the stability of Go proteins and acts as a repressor of
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conidiation (Krystofova and Borkovich 2005; Yang et al.
2002). Recent studies have demonstrated that RIC-8 (resistant
to inhibitors of cholinesterase) positively regulates Goe sub-
units, GNA-1 and GNA-3, and deletion of ric-8 results in
defects in growth and asexual development. Mutations that
activate the GNA-1 and GNA-3 proteins in the Aric-§ back-
ground partially suppress Aric-8 phenotypes. RIC-8 interacts
with GNA-1 and GNA-3 in the yeast two-hybrid assays and
acts as a GEF (guanine nucleotide exchange factor) for GNA-
1 and GNA-3 in vitro (Wright et al. 2011). The phenotypes of
mutants in 36 GPCRs have been analysed. Mutations in 14
GPCR genes lead to alterations in conidiation, specifically in
the formation of aerial hyphae. About half of the mutants
showed a reduction, and half of the mutant had an increase
in the amount of aerial hyphae. Several mutants had pleiotro-
pic effects on development suggesting cross regulations be-
tween hyphal growth, sexual and asexual development in
N. crassa (Cabrera et al. 2015).

Mutants in components of other signal transduction path-
ways show alterations in conidiation. Mutants in genes coding
for calcium signalling components suggest a role for calcium
signalling in conidiation (Barman and Tamuli 2017). The
GTP-binding cytoskeletal proteins septins participate in cell
polarity and the strains with deletions in septin genes show
alterations in conidiation, among other developmental pheno-
types (Berepiki and Read 2013).

In addition, kinases participate in the regulation of
conidiation. The NDR kinase COT-1 regulates hyphal
branching and interacts with several proteins that modulate
its regulatory activities. The interacting proteins include
MOB2A/B, the arginine methyltransferase SKB1 and the reg-
ulatory subunits of the protein phosphatase 2A. Mutations in
these proteins lead to changes in the regulation of COT-1
activity and alterations in conidiation, suggesting that they
play a regulatory role in this developmental process (Dvash
et al. 2010; Feldman et al. 2013; Shomin-Levi and Yarden
2017; Ziv et al. 2013). The mutant in the second NDR kinase,
DBF-2, shows alterations in the growth of aerial hyphae and
conidiation (Dvash et al. 2010), and a similar phenotype is
observed in the mutant in the putative histidine kinase DCC-
1 (Barba-Ostria et al. 2011).

Comparison of conidiation in N. crassa
with the asexual program of other ascomycetes

The widespread occurrence of conidiation in ascomycetes
highlights the importance of this process during the evolution
of'this group of fungi (Berbee and Taylor 2001). N. crassa and
A. nidulans diverged more than 300 million years ago (Taylor
and Berbee 2006; Taylor and Ellison 2010). Conidiation in
A. nidulans has been investigated in detail and several mutants
affected on conidiation have been characterized (Park and Yu
2012). These mutants provide the tools to address questions

about the evolution of conidiation. Morphologically, asexual
development in A. nidulans is significantly different from that
in N. crassa. In A. nidulans, conidiation begins with the for-
mation of a foot cell and is followed by successive emergence
of the stalk, vesicle, metulae, phialides and finally aerial
spores or conidia (Park and Yu 2012). The master regulator
of conidiation in A. nidulans is encoded by the gen briA
(bristle). Although it has no sequence similarity with fI, the
activation of br/A transcription is sufficient to induce
conidiation, and in a similar manner to f/, br/A is activated
by light in a WC-dependent manner (Mooney and Yager
1990; Ruger-Herreros et al. 2011). BrlA activates transcription
of another regulatory gene, abaA (abacus). Unlike briA,
overexpression of abaA does not induce conidiation but
does cause an arrest of vegetative growth and induction of
genes normally observed during conidiation (Adams et al.
1990; Adams et al. 1998). There are many other genes act-
ing upstream of BrlA and whose mutation gives rise to
aconidial phenotypes. Most of these genes are conserved
in the Aspergilli (Ojeda-Lopez et al. 2018). Some of these
genes are also found in the N. crassa genome (Fig. 2) and
have been found to complement the defect on sporulation
on the corresponding mutants in A. nidulans (Table 1)
(Chung et al. 2011; Shen et al. 1998). Despite the presence
of several homologous genes between A. nidulans and
N. crassa, their conidiation pathways differ in both their
regulation and morphology, highlighting the simplicity of
the conidiation program in N. crassa (Fig. 2).

Conclusion

Conidiation in N. crassa has a complex regulation but is a
simple developmental process when compared with vege-
tative reproduction in other filamentous fungi. The isola-
tion of aconidial mutants and the identification of the genes
involved showed that differential transcription and signal
transduction pathways have key roles in conidiation. The
role of environmental regulation in conidiation is less un-
derstood. The role of light on the regulation of conidiation
by controlling transcription of f/ and other key regulatory
genes has been proposed, but the connection between nu-
trient sensing and conidiation, and how the transition from
a liquid to an air interphase activates conidiation remain to
be investigated in detail. It is possible that some of these
environmental signals are sensed by any of the GPCRs that
have been described in N. crassa. The N. crassa genome
sequence and the collection of single mutants with dele-
tions in most of the genes in the genome have provided a
large collection of mutants with altered conidiation. The
large number of conidiation mutants suggests that altering
conidiation is not very difficult, but identifying key regula-
tors, like FL or ACON-2, required genetic screens and
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Fig. 2 Comparison between the regulatory genes controlling conidiation
in A. nidulans (in grey) vs. N. crassa (in blue). Conidiation in A. nidulans
is controlled by the master regulator br/A which is necessary and
sufficient to induce asexual development. Different pathways lead to
the transcriptional activation of br/A: a protein kinase A-dependent cas-
cade which promotes filamentous growth is blocked by the action of FluG

strong mutant phenotypes, not a reduction or increase in
conidiation. Future work should focus on identifying new
key regulators of conidiation perhaps by looking for condi-
tional aconidial mutants.

Table1 Homologous genes between A. nidulans and N. crassa and the
corresponding phenotype of the knockout mutants

Aspergillus Neurospora crassa Phenotype of the N.crassa
nidulans mutant
SfgA - -
fluG NCU04264 Wild type
fIbA NCU08319 Wild type
fIbB NCU07379, tcf~5  Wild type
fIbC NCU03043, fIb-3  Aconidial
fIbD NCUO01312, rca-1  Wild type
fIE NCU05255 Unknown
JfadA NCU06493, gna-1  Wild type
pkaA NCU06240, pkac-1 Pleiotropic
StuA NCUO01414, asm-1  Short aerial hyphae
VosA NCU05964, vos-1  Reduced conidiation
medA NCU07617, Aconidial
acon-3
briA - -
abaA - -
wetA NCU01033 Wild type
- NCU8726, f1 Aconidial
- NCU9739, fld Aconidial
ANI1251 NCU2713, csp-1 Conidial separation defective
AN4878 NCU06095, csp-2  Conidial separation defective
pdeB NCU00478, Aconidial
acon-2
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factor. At the same time, several fluffy genes (fIb genes) directly activate
transcription of brlA. In this scenario, many of the genes important for
conidiation in A. nidulans are also present in N. crassa genome although
the morphological and regulatory processes in both fungi substantially
differ.

The comparison of the conidiation pathways in N. crassa
and A. nidulans shows a few common features like the regu-
lation by light of key transcriptional regulators, and the key
role of transcriptional regulation, but many differences like
those in morphology and the use of specific proteins in each
pathway. It seems that there is not a basic conidiation pathway
shared by all ascomycetes but different developmental solu-
tions based on differential transcription and common signal
transduction pathways to the problem of how to develop co-
nidia. However, we expect that further characterization of
conidiation in N. crassa and comparison with other filamen-
tous fungi will help to identify common elements in the reg-
ulation of fungal development.

Acknowledgements Research in the laboratory of LMC is supported by
the Spanish Ministry of Science, Innovation and Universities (BI02015-
67148-R) and European Funds (European Regional Development Fund,
ERDF).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of
interest.

References

Adams TH, Deising H, Timberlake WE (1990) brlA requires both
zinc fingers to induce development. Mol Cell Biol 10:1815—
1817

Adams TH, Wieser JK, Yu JH (1998) Asexual sporulation in Aspergillus
nidulans. Microbiol Mol Biol Rev 62:35-54

Bailey LA, Ebbole DJ (1998) The fluffy gene of Neurospora crassa en-
codes a Galdp-type C6 zinc cluster protein required for conidial
development. Genetics 148:1813—1820



Int Microbiol

Bailey-Shrode L, Ebbole DJ (2004) The fluffy gene of Neurospora crassa
is necessary and sufficient to induce conidiophore development.
Genetics 166:1741-1749

Ballario P, Vittorioso P, Magrelli A, Talora C, Cabibbo A, Macino G
(1996) White collar-1, a central regulator of blue light responses in
Neurospora, is a zinc finger protein. EMBO J 15:1650-1657

Barba-Ostria C, Lledias F, Georgellis D (2011) The Neurospora crassa
DCC-1 protein, a putative histidine kinase, is required for normal
sexual and asexual development and carotenogenesis. Eukaryot Cell
10:1733-1739. https://doi.org/10.1128/EC.05223-11

Barman A, Tamuli R (2017) The pleiotropic vegetative and sexual devel-
opment phenotypes of Neurospora crassa arise from double mutants
of the calcium signaling genes plc-1, splA2, and cpe-1. Curr Genet
63:861-875. https://doi.org/10.1007/500294-017-0682-y

Bayram O, Krappmann S, Seiler S, Vogt N, Braus GH (2008) Neurospora
crassa ve-1 affects asexual conidiation. Fungal Genet Biol 45:127—
138. https://doi.org/10.1016/j.fgb.2007.06.001

Belden WJ, Larrondo LF, Froehlich AC, Shi M, Chen C-H, Loros JJ,
Dunlap JC (2007) The band mutation in Neurospora crassa is a
dominant allele of RAS-1 implicating RAS signaling in circadian
output. Genes Dev 21:1494—1505. https://doi.org/10.1101/gad.
1551707

Bell-Pedersen D, Dunlap JC, Loros JJ (1992) The Neurospora circadian
clock-controlled gene, ccg-2, is allelic to eas and encodes a fungal
hydrophobin required for formation of the conidial rodlet layer.
Genes Dev 6:2382-2394

Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees
and geologic time. In: McLaughlin DJ, McLaughlin EG, Lemke PA
(eds) Systematics and evolution. Springer, Berlin Heidelberg, pp
229-245. https://doi.org/10.1007/978-3-662-10189-6_10

Berepiki A, Read ND (2013) Septins are important for cell polarity,
septation and asexual spore formation in Neurospora crassa and
show different patterns of localisation at germ tube tips. PLoS One
8:¢63843. https://doi.org/10.1371/journal.pone.0063843

Boni AC et al (2018) Neurospora crassa developmental control mediated
by the FLB-3 transcription factor. Fungal Biol. 122:570-582.
https://doi.org/10.1016/j.funbio.2018.01.004

Borkovich KA et al (2004) Lessons from the genome sequence of
Neurospora crassa: tracing the path from genomic blueprint to mul-
ticellular organism. Microbiol Mol Biol Rev 68:1-108

Brunner M, Schafmeier T (2006) Transcriptional and post-transcriptional
regulation of the circadian clock of cyanobacteria and Neurospora.
Genes Dev 20:1061-1074. https://doi.org/10.1101/gad.1410406

Cabrera IE et al (2015) Global analysis of predicted G protein-coupled
receptor genes in the filamentous fungus, Neurospora crassa. G3
(Bethesda) 5:2729-2743. https://doi.org/10.1534/g3.115.020974

Carrillo AJ et al (2017) Functional profiling of transcription factor genes
in Neurospora crassa. G3 (Bethesda, Md) 7:2945-2956. https://doi.
org/10.1534/g3.117.043331

Chen C-H, Ringelberg CS, Gross RH, Dunlap JC, Loros JJ (2009)
Genome-wide analysis of light-inducible responses reveals hierar-
chical light signalling in Neurospora. EMBO J 28:1029-1042.
https://doi.org/10.1038/emboj.2009.54

Chung D-W, Greenwald C, Upadhyay S, Ding S, Wilkinson HH, Ebbole
DJ, Shaw BD (2011) Acon-3, the Neurospora crassa ortholog of the
developmental modifier, medA, complements the conidiation defect
of the Aspergillus nidulans mutant. Fungal Genet Biol 48:370-376.
https://doi.org/10.1016/j.fgb.2010.12.008

Colot HV et al (2006) A high-throughput gene knockout procedure for
Neurospora reveals functions for multiple transcription factors. Proc
Natl Acad Sci USA 103:10352—-10357. https://doi.org/10.1073/
pnas.0601456103

Correa A, Bell-Pedersen D (2002) Distinct signaling pathways from the
circadian clock participate in regulation of rhythmic conidiospore
development in Neurospora crassa. Eukaryot Cell 1:273-280

Corrochano LM, Lauter FR, Ebbole DJ, Yanofsky C (1995) Light and
developmental regulation of the gene con-10 of Neurospora crassa.
Dev Biol 167:190-200. https://doi.org/10.1006/dbio.1995.1016

Crosthwaite SK, Dunlap JC, Loros JJ (1997) Neurospora wc-1 and wc-2:
transcription, photoresponses, and the origins of circadian rhythmic-
ity. Science 276:763-769

Davis RH, Perkins DD (2002) Timeline: Neurospora: a model of model
microbes. Nat Rev Genet 3:397—403. https://doi.org/10.1038/
nrg797

Dunlap JC (2006) Proteins in the Neurospora circadian clockworks. J
Biol Chem 281:28489-28493. https://doi.org/10.1074/jbc.
R600018200

Dunlap JC, Loros JJ (2004) The neurospora circadian system. J Biol
Rhythm 19:414-424. https://doi.org/10.1177/0748730404269116

Dunlap JC, Loros JJ (2006) How fungi keep time: circadian system in
Neurospora and other fungi. Curr Opin Microbiol 9:579-587.
https://doi.org/10.1016/j.mib.2006.10.008

Dunlap JC, Loros JJ (2017) Making time: conservation of biological
clocks from fungi to animals. Microbiol Spectr. 5 https://doi.org/
10.1128/microbiolspec. FUNK-0039-2016

Dunlap JC et al (2007) A circadian clock in Neurospora: how genes and
proteins cooperate to produce a sustained, entrainable, and compen-
sated biological oscillator with a period of about a day. Cold Spring
Harb Symp Quant Biol 72:57—68. https://doi.org/10.1101/sqb.2007.
72.072

Dvash E, Kra-Oz G, Ziv C, Carmeli S, Yarden O (2010) The NDR kinase
DBEF-2 is involved in regulation of mitosis, conidial development,
and glycogen metabolism in Neurospora crassa. Eukaryot Cell 9:
502-513. https://doi.org/10.1128/EC.00230-09

Feldman D, Ziv C, Gorovits R, Efrat M, Yarden O (2013) Neurospora
crassa protein arginine methyl transferases are involved in growth
and development and interact with the NDR kinase COT1. PLoS
One 8:¢80756. https://doi.org/10.1371/journal.pone.0080756

Froehlich AC, Liu Y, Loros JJ, Dunlap JC (2002) White Collar-1, a
circadian blue light photoreceptor, binding to the frequency promot-
er. Science (New York, NY) 297:815-819. https://doi.org/10.1126/
science.1073681

Greenwald CJ, Kasuga T, Glass NL, Shaw BD, Ebbole DJ, Wilkinson
HH (2010) Temporal and spatial regulation of gene expression dur-
ing asexual development of Neurospora crassa. Genetics 186:1217—
1230. https://doi.org/10.1534/genetics.110.121780

Hafker T, Techel D, Steier G, Rensing L (1998) Differential expression of
glucose-regulated (grp78) and heat-shock-inducible (hsp70) genes
during asexual development of Neurospora crassa. Microbiology
(Reading, England) 144(Pt 1):37-43

Hansberg W, de Groot H, Sies H (1993) Reactive oxygen species asso-
ciated with cell differentiation in Neurospora crassa. Free Radic Biol
Med 14:287-293

He Q, Liu Y (2005) Molecular mechanism of light responses in
Neurospora: from light-induced transcription to photoadaptation.
Genes Dev 19:2888-2899. https://doi.org/10.1101/gad.1369605

He Q, Cheng P, Yang Y, Wang L, Gardner KH, Liu Y (2002) White
collar-1, a DNA binding transcription factor and a light sensor.
Science 297:840—-843. https://doi.org/10.1126/science.1072795

Heintzen C, Liu Y (2007) The Neurospora crassa circadian clock. Adv
Genet 58:25-66. https://doi.org/10.1016/S0065-2660(06)58002-2

Ivey FD, Hodge PN, Tumer GE, Borkovich KA (1996) The G alpha i
homologue gna-1 controls multiple differentiation pathways in
Neurospora crassa. Mol Biol Cell 7:1283-1297

Ivey FD, Yang Q, Borkovich KA (1999) Positive regulation of adenylyl
cyclase activity by a galphai homolog in Neurospora crassa. Fungal
Genet Biol 26:48—61. https://doi.org/10.1006/fgbi.1998.1101

Ivey FD, Kays AM, Borkovich KA (2002) Shared and independent roles
for a Galpha(i) protein and adenylyl cyclase in regulating develop-
ment and stress responses in Neurospora crassa. Eukaryot Cell 1:
634-642. https://doi.org/10.1128/EC.1.4.634

@ Springer


https://doi.org/10.1128/EC.05223-11
https://doi.org/10.1007/s00294-017-0682-y
https://doi.org/10.1016/j.fgb.2007.06.001
https://doi.org/10.1101/gad.1551707
https://doi.org/10.1101/gad.1551707
https://doi.org/10.1007/978-3-662-10189-6_10
https://doi.org/10.1371/journal.pone.0063843
https://doi.org/10.1016/j.funbio.2018.01.004
https://doi.org/10.1101/gad.1410406
https://doi.org/10.1534/g3.115.020974
https://doi.org/10.1534/g3.117.043331
https://doi.org/10.1534/g3.117.043331
https://doi.org/10.1038/emboj.2009.54
https://doi.org/10.1016/j.fgb.2010.12.008
https://doi.org/10.1073/pnas.0601456103
https://doi.org/10.1073/pnas.0601456103
https://doi.org/10.1006/dbio.1995.1016
https://doi.org/10.1038/nrg797
https://doi.org/10.1038/nrg797
https://doi.org/10.1074/jbc.R600018200
https://doi.org/10.1074/jbc.R600018200
https://doi.org/10.1177/0748730404269116
https://doi.org/10.1016/j.mib.2006.10.008
https://doi.org/10.1128/microbiolspec.FUNK-0039-2016
https://doi.org/10.1128/microbiolspec.FUNK-0039-2016
https://doi.org/10.1101/sqb.2007.72.072
https://doi.org/10.1101/sqb.2007.72.072
https://doi.org/10.1128/EC.00230-09
https://doi.org/10.1371/journal.pone.0080756
https://doi.org/10.1126/science.1073681
https://doi.org/10.1126/science.1073681
https://doi.org/10.1534/genetics.110.121780
https://doi.org/10.1101/gad.1369605
https://doi.org/10.1126/science.1072795
https://doi.org/10.1016/S0065-2660(06)58002-2
https://doi.org/10.1006/fgbi.1998.1101
https://doi.org/10.1128/EC.1.4.634

Int Microbiol

Jacobson DJ et al (2004) Neurospora in temperate forests of western
North America. Mycologia 96:66—74

Jacobson DJ et al (2006) New findings of Neurospora in Europe and
comparisons of diversity in temperate climates on continental scales.
Mycologia 98:550-559

Kays AM, Borkovich KA (2004) Severe impairment of growth and dif-
ferentiation in a Neurospora crassa mutant lacking all heterotrimeric
G alpha proteins. Genetics 166:1229—1240

Kays AM, Rowley PS, Baasiri RA, Borkovich KA (2000) Regulation of
conidiation and adenylyl cyclase levels by the Galpha protein GNA-
3 in Neurospora crassa. Mol Cell Biol 20:7693-7705

Krystofova S, Borkovich KA (2005) The heterotrimeric G-protein sub-
units GNG-1 and GNB-1 form a Gbetagamma dimer required for
normal female fertility, asexual development, and galpha protein
levels in Neurospora crassa. Eukaryot Cell 4:365-378. https:/doi.
org/10.1128/EC.4.2.365-378.2005

Lambreghts R et al (2009) A high-density single nucleotide polymor-
phism map for Neurospora crassa. Genetics 181:767-781. https://
doi.org/10.1534/genetics.108.089292

Lauter FR, Russo VE (1990) Light-induced dephosphorylation of a
33 kDa protein in the wild-type strain of Neurospora crassa: the
regulatory mutants wc-1 and we-2 are abnormal. J Photochem
Photobiol B 5:95-103

Lauter FR, Russo VE (1991) Blue light induction of conidiation-specific
genes in Neurospora crassa. Nucleic Acids Res 19:6883-6886

Lauter FR, Russo VE, Yanofsky C (1992) Developmental and light reg-
ulation of eas, the structural gene for the rodlet protein of
Neurospora. Genes Dev 6:2373-2381

Lee K, Ebbole DJ (1998) Analysis of two transcription activation ele-
ments in the promoter of the developmentally regulated con-10 gene
of Neurospora crassa. Fungal Genet Biol 23:259-268. https://doi.
org/10.1006/fgbi.1998.1043

Li L, Borkovich KA (2006) GPR-4 is a predicted G-protein-coupled
receptor required for carbon source-dependent asexual growth and
development in Neurospora crassa. Eukaryot Cell 5:1287-1300.
https://doi.org/10.1128/EC.00109-06

Li C, Sachs MS, Schmidhauser TJ (1997) Developmental and
photoregulation of three Neurospora crassa carotenogenic genes
during conidiation induced by desiccation. Fungal Genet Biol 21:
101-108

Li L, Wright SJ, Krystofova S, Park G, Borkovich KA (2007)
Heterotrimeric G protein signaling in filamentous fungi. Annu Rev
Microbiol 61:423-452. https://doi.org/10.1146/annurev.micro.61.
080706.093432

Linden H, Macino G (1997) White collar 2, a partner in blue-light signal
transduction, controlling expression of light-regulated genes in
Neurospora crassa. EMBO J 16:98-109. https://doi.org/10.1093/
emboj/16.1.98

Luque EM et al. (2012) A relationship between carotenoid accumulation
and the distribution of species of the fungus neurospora in spain
PLoS ONE 7 doi:https://doi.org/10.1371/journal.pone.0033658

Madi L, Ebbole DJ, White BT, Yanofsky C (1994) Mutants of
Neurospora crassa that alter gene expression and conidia develop-
ment. Proc Natl Acad Sci USA 91:6226-6230

Madi L, Mcbride SA, Bailey LA, Ebbole DJ (1997) Gene involved i n
glucose transport and conidiation i n

Maheshwari R (1991) Microcycle conidiation and its genetic-basis in
Neurospora-Crassa. J Gen Microbiol 137:2103-2115. https:/doi.
0rg/10.1099/00221287-137-9-2103

Maheshwari R (1999) Microconidia ofNeurospora crassa fungal genetics
and biology 26:1-18 doi:https://doi.org/10.1006/FGBIL.1998.1103

McCluskey K, Wiest AE, Grigoriev IV, Lipzen A, Martin J, Schackwitz
W, Baker SE (2011) Rediscovery by whole genome sequencing:
classical mutations and genome polymorphisms in Neurospora
crassa. G3 (Bethesda) 1:303-316. https://doi.org/10.1534/g3.111.
000307

@ Springer

Mooney JL, Yager LN (1990) Light is required for conidiation in
Aspergillus nidulans. Genes Dev 4:1473-1482

Neves SR, Ram PT, Iyengar R (2002) G protein pathways. Science 296:
1636-1639. https://doi.org/10.1126/science. 1071550

Ojeda-Lopez M et al (2018) Evolution of asexual and sexual reproduction
in the aspergilli. Stud Mycol 91:37-59. https://doi.org/10.1016/].
simyc0.2018.10.002

Olmedo M, Ruger-Herreros C, Corrochano LM (2010a) Regulation by
blue light of the fluffy gene encoding a major regulator of
conidiation in Neurospora crassa Genetics 184 doi:https://doi.org/
10.1534/genetics.109.109975

Olmedo M, Ruger-Herreros C, Luque EM, Corrochano LM (2010b) A
complex photoreceptor system mediates the regulation by light of
the conidiation genes con-10 and con-6 in Neurospora crassa Fungal
Genet Biol 47 doi:https://doi.org/10.1016/j.fgb.2009.11.004

Paré A, Kim M, Juarez MT, Brody S, McGinnis W (2012) The functions
of grainy head-like proteins in animals and fungi and the evolution
of apical extracellular barriers. PLoS One 7:¢36254. https://doi.org/
10.1371/journal.pone.0036254

Park H-S, Yu J-H (2012) Genetic control of asexual sporulation in fila-
mentous fungi Curr Opin Microbiol doi:https://doi.org/10.1016/].
mib.2012.09.006

Peraza L, Hansberg W (2002) Neurospora crassa catalases, singlet oxy-
gen and cell differentiation Biol Chem 383:569-575 doi:Doi https://
doi.org/10.1515/B¢.2002.058

Perkins DD, Davis RH (2000) Neurospora at the millennium. Fungal
Genet Biol 31:153-167. https://doi.org/10.1006/fgbi.2000.1248

Rensing L, Monnerjahn C, Meyer U (1998) Differential stress gene ex-
pression during the development of Neurospora crassa and other
fungi. FEMS Microbiol Lett 168:159-166

Rerngsamran P, Murphy MB, Doyle SA, Ebbole DJ (2005) Fluffy, the
major regulator of conidiation in Neurospora crassa, directly acti-
vates a developmentally regulated hydrophobin gene. Mol
Microbiol 56:282-297. https://doi.org/10.1111/j.1365-2958.2005.
04544.x

Roberts AN, Berlin V, Hager KM, Yanofsky C (1988) Molecular analysis
of a Neurospora crassa gene expressed during conidiation. Mol Cell
Biol 8:2411-2418

Roche CM, Loros JJ, McCluskey K, Glass NL (2014) Neurospora Crassa
: looking back and looking forward at a model microbe. Am J Bot
101:2022-2035. https://doi.org/10.3732/ajb.1400377

Ruger-Herreros C, Rodriguez-Romero J, Fernandez-Barranco R, Olmedo
M, Fischer R, Corrochano LM, Canovas D (2011) Regulation of
conidiation by light in aspergillus nidulans Genetics 188 doi:
https://doi.org/10.1534/genetics.111.130096

Sargent ML, Kaltenborn SH (1972) Effects of medium composition and
carbon dioxide on circadian conidiation in <em>Neurospora</em>.
Plant Physiol 50:171-175

Shen WC, Wieser J, Adams TH, Ebbole DJ (1998) The Neurospora rca-1
gene complements an Aspergillus flbD sporulation mutant but has
no identifiable role in Neurospora sporulation. Genetics 148:1031—
1041

Shomin-Levi H, Yarden O (2017) The Neurospora crassa PP2A regula-
tory subunits RGB1 and B56 are required for proper growth and
development and interact with the NDR kinase COT1. Front
Microbiol 8:1694. https://doi.org/10.3389/fimicb.2017.01694

Smith KM et al (2010) Transcription factors in light and circadian clock
signaling networks revealed by genomewide mapping of direct tar-
gets for Neurospora white collar complex. Eukaryot Cell 9:1549—
1556. https://doi.org/10.1128/EC.00154-10

Springer ML (1993) Genetic control of fungal differentiation: the three
sporulation pathways of Neurospora crassa. BioEssays 15:365-374.
https://doi.org/10.1002/bies. 950150602

Springer ML, Yanofsky C (1989) A morphological and genetic analysis
of conidiophore development in Neurospora crassa. Genes Dev 3:
559-571


https://doi.org/10.1128/EC.4.2.365-378.2005
https://doi.org/10.1128/EC.4.2.365-378.2005
https://doi.org/10.1534/genetics.108.089292
https://doi.org/10.1534/genetics.108.089292
https://doi.org/10.1006/fgbi.1998.1043
https://doi.org/10.1006/fgbi.1998.1043
https://doi.org/10.1128/EC.00109-06
https://doi.org/10.1146/annurev.micro.61.080706.093432
https://doi.org/10.1146/annurev.micro.61.080706.093432
https://doi.org/10.1093/emboj/16.1.98
https://doi.org/10.1093/emboj/16.1.98
https://doi.org/10.1371/journal.pone.0033658
https://doi.org/10.1099/00221287-137-9-2103
https://doi.org/10.1099/00221287-137-9-2103
https://doi.org/10.1006/FGBI.1998.1103
https://doi.org/10.1534/g3.111.000307
https://doi.org/10.1534/g3.111.000307
https://doi.org/10.1126/science.1071550
https://doi.org/10.1016/j.simyco.2018.10.002
https://doi.org/10.1016/j.simyco.2018.10.002
https://doi.org/10.1534/genetics.109.109975
https://doi.org/10.1534/genetics.109.109975
https://doi.org/10.1016/j.fgb.2009.11.004
https://doi.org/10.1371/journal.pone.0036254
https://doi.org/10.1371/journal.pone.0036254
https://doi.org/10.1016/j.mib.2012.09.006
https://doi.org/10.1016/j.mib.2012.09.006
https://doi.org/10.1515/Bc.2002.058
https://doi.org/10.1515/Bc.2002.058
https://doi.org/10.1006/fgbi.2000.1248
https://doi.org/10.1111/j.1365-2958.2005.04544.x
https://doi.org/10.1111/j.1365-2958.2005.04544.x
https://doi.org/10.3732/ajb.1400377
https://doi.org/10.1534/genetics.111.130096
https://doi.org/10.3389/fmicb.2017.01694
https://doi.org/10.1128/EC.00154-10
https://doi.org/10.1002/bies.950150602

Int Microbiol

Springer ML, Yanofsky C (1992) Expression of con genes along the three
sporulation pathways of Neurospora crassa. Genes Dev 6:1052—
1057

Springer ML, Hager KM, Garrett-Engele C, Yanofsky C (1992) Timing
of synthesis and cellular localization of two conidiation-specific
proteins of Neurospora crassa. Dev Biol 152:255-262

Sun X, Zhang H, Zhang Z, Wang Y, Li S (2011) Involvement of a helix-
loop-helix transcription factor CHC-1 in CO(2)-mediated
conidiation suppression in Neurospora crassa. Fungal Genet Biol
48:1077-1086. https://doi.org/10.1016/j.fgb.2011.09.003

Sun X et al (2012) Analysis of the role of transcription factor VAD-5 in
conidiation of Neurospora crassa. Fungal Genet Biol 49:379-387.
https://doi.org/10.1016/j.fgb.2012.03.003

Taylor JW, Berbee ML (2006) Dating divergences in the Fungal Tree of
Life: review and new analyses. Mycologia 98:838-849

Taylor JW, Ellison CE (2010) Mushrooms: morphological complexity in
the fungi. Proc Natl Acad Sci U S A 107:11655-11656. https://doi.
org/10.1073/pnas.1006430107

Turner GE, Borkovich KA (1993) Identification of a G protein alpha
subunit from Neurospora crassa that is a member of the Gi family.
J Biol Chem 268:14805-14811

Turner BC, Perkins DD, Fairfield A (2001) Neurospora from natural
populations: a global study. Fungal Genet Biol 32:67-92. https://
doi.org/10.1006/fgbi.2001.1247

Won S, Michkov AV, Krystofova S, Garud AV, Borkovich KA (2012)
Genetic and physical interactions between G subunits and compo-
nents of the Gy dimer of heterotrimeric G proteins in Neurospora

crassa. Eukaryot Cell 11:1239-1248. https://doi.org/10.1128/EC.
00151-12

Wright SJ, Inchausti R, Eaton CJ, Krystofova S, Borkovich KA (2011)
RIC8 is a guanine-nucleotide exchange factor for Galpha subunits
that regulates growth and development in Neurospora crassa.
Genetics 189:165-176. https://doi.org/10.1534/genetics.111.
129270

Xiang Q, Glass NL (2002) Identification of vib-1, a locus involved in
vegetative incompatibility mediated by het-c in Neurospora crassa.
Genetics 162:89-101

Yang Q, Poole SI, Borkovich KA (2002) A G-protein beta subunit re-
quired for sexual and vegetative development and maintenance of
normal G alpha protein levels in Neurospora crassa. Eukaryot Cell 1:
378-390. https://doi.org/10.1128/EC.1.3.378

Ziv C, Feldman D, Aharoni-Kats L, Chen S, Liu Y, Yarden O (2013) The
N-terminal region of the Neurospora NDR kinase COT1 regulates
morphology via its interactions with MOB2A/B. Mol Microbiol 90:
383-399. https://doi.org/10.1111/mmi.12371

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

@ Springer


https://doi.org/10.1016/j.fgb.2011.09.003
https://doi.org/10.1016/j.fgb.2012.03.003
https://doi.org/10.1073/pnas.1006430107
https://doi.org/10.1073/pnas.1006430107
https://doi.org/10.1006/fgbi.2001.1247
https://doi.org/10.1006/fgbi.2001.1247
https://doi.org/10.1128/EC.00151-12
https://doi.org/10.1128/EC.00151-12
https://doi.org/10.1534/genetics.111.129270
https://doi.org/10.1534/genetics.111.129270
https://doi.org/10.1128/EC.1.3.378
https://doi.org/10.1111/mmi.12371

	Conidiation in Neurospora crassa: vegetative reproduction by a model fungus
	Abstract
	Introduction
	Morphological events during conidiation in Neurospora crassa
	The regulation of conidiation
	Genetics of conidiation: regulatory genes and proteins
	Transcriptional regulation during conidiation
	Signal transduction pathways that regulate conidiation
	Comparison of conidiation in N.�crassa with the asexual program of other ascomycetes

	Conclusion
	References


