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Abstract

In this work, we develop a method for detecting differences in the topological distribution of cells
forming epithelial tissues. In particular, we extract topological information from their images using
persistent homology and a summary statistic called persistent entropy. This method is scale invariant,
robust to noise and sensitive to global topological features of the tissue. We have found significant
differences between chick neuroepithelium and epithelium of Drosophila wing discs in both, larva and
prepupal stages. Besides, we have tested our method, with good results, with images of mathematical
tesselations that model biological tissues.

remark: this paper has been submitted to the journal pattern recognition letter.

1 Introduction

Topology is the branch of mathematics that deals with properties of space that keep invariant under
continuous transformations. These properties are extremely important in networks.

Nowadays, computational topology and geometry are playing an increasing role in quantitative biology
and biomedical engineering. In particular, the data analysis tool persistent homology [1, 2] has been
successfully applied in fields such as tumor segmentation [3], analysis of biological networks [4] or diagnostic
of chronic obstructive pulmonary disease [5].

Epithelia are packed tissues formed by tightly assembled cells. Their apical surfaces are similar to
convex polygons forming a natural tessellation. Recently, many studies have been focused on their natural
organization, in part justified because changes in this organization may indicate an early onset of disease
[6, 7]. Therefore, being able to quantify differences in their topological distribution is an interesting
problem.

The study of epithelial organization has been mainly focused on the distributions of the number of
neighbors of the cells. In [8], the authors compared the polygon distributions of natural and mathematical
tesselations of the plane (called centroidal Voronoi tessellations or CVTs); in [9], tissues are compared
using the graphlet degree distribution agreement distance (GDD), which measures differences in terms of
small subgraphs (graphlets) contained in the network representing the cells and their neighboring relations.
Despite their achievements, both measurements rely on local properties of the network. Therefore, a value
sensitive to global topological properties may offer new insights. In particular, the fact that such a value
was a real number is advantageous for two reasons: first, due to the small number of samples available
for this kind of study, univariate statistical tests are the best option; second, a number could be easily
combined with other values in the Epigraph tool [9] to improve it.

Two examples of topological statistics which are numbers and are able to measure global features of
the network are persistent entropy [10, 11] and the sum of the bars in the persistence barcode (see barcode
definition in section 2), which appears in [5] together with the upper star filtration under the name of
upwards complexity.

In this paper, we show how persistent entropy is useful for reflecting different topological distributions
in epithelial tissues. A first approach to use Topological Data Analysis for that aim was presented in
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[12]. There, a weighted network was constructed to model the cell arrangements and persistent homology
was computed to describe it. However, alpha complexes are known as a better model to represent a
map of convex regions as it is the case of a segmented image of a biological tissue. For that reason, we
started an experimental work in [13] using such a model and computing persistent entropy. In this paper,
we improve the method, focusing in the ability of describing different topological arrangements of cells
independently of the scale of the image. We also further analyse statistically the experimental results to
reach well-founded conclusions.

2 Material and methods

In this section, we recall the tools from Topological Data Analysis (TDA) used and then, how we adapt
them to the posed problem.

2.1 TDA concepts

Simplicial complex and filtration An n-simplex is the convex hull of a set of n linearly independent
points τ = {p1, . . . , pn}. Each k-simplex contained in τ with k < n is called a face. A simplicial complex
K is formed by a set of simplices satisfying:

1. Every face of a simplex in K is also in K.

2. The intersection of two simplices in K is a face of both simplices.

The dimension of a simplicial complex is the maximum of the dimensions of its simplices.
A filtration over a simplicial complex K is a finite increasing sequence of simplicial complexes

K1 ⊂ K2 . . . ⊂ Kn = K

It is commonly defined using a monotonic function f : K → R by which we mean that for any two simplices
δ, τ ∈ K, if δ is a face of τ , then f(δ) ≤ f(τ). That way, if a1 ≤ . . . ≤ an are the function values of all the
simplices in K, then the subcomplexes Ki = f−1(−∞, ai], for i = 1 . . . n define a filtration over K.

Voronoi diagram and α-complex A Voronoi diagram is a partitioning of the plane depending on a
set of vertices {v1, . . . , vn}: for each vertex vi we define the function di(x) = d(vi, x) and a region given
by

Vi = {x | di(x) ≤ dj(x), ∀j = 1, · · ·n}.

That is, each region is formed by points for which that vertex is the closest one (see the first image in
Figure 1). An α-complex is a filtration [14, p. 68] that can be defined starting from a Voronoi diagram.
Consider Bir as the ball of center vi and radius r. For each r, consider the region U ir = Bir ∩ Vi and define
the simplicial complex Kr with simplices

τ = [v0 . . . vk] ∈ Kr ⇔
⋂

i=0...k

U ir 6= ∅.

In other words, a simplex is in Kr if and only if the intersection of balls with radius r and centers its
vertices together with their Voronoi regions is not empty. If the points are in general position in the
plane, no i-simplex will arise with i greater than 2 and the final simplicial complex is known as Dealunay
triangulation [14, p. 63], see Figure 1.
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Figure 1: An example of alpha complex filtration. The first image coincides with the Voronoi diagram
and the last one with the Dealunay triangulation

Persistent homology and barcodes In Algebraic Topology, the concept of homology class allows to
define holes rigorously and compute them using linear algebra. Intuitively, an n-dimensional hole in a
simplicial complex is a cavity when n = 2, a cycle when n = 1 and a connected component when n = 0.
Persistent homology is the main tool in TDA defined for tracking the persistence (birth, lifetime and
death) of holes along a filtration. For example, in the case of an α-complex constructed from a point
cloud on the plane, 0-dimensional and 1-dimensional persistent homology describe, respectively, the evo-
lution of connected components and cycles as the radius of the balls increase.

The persistence of each n-dimensional hole is represented using an interval of the form [a, b], where a
is the birth time, if Ka is the simplicial complex (in the filtration) where the hole first appeared and b
is the death time if Kb is the first simplicial complex (in the filtration) where the hole disappeared. If
the hole remains until the final simplicial complex, we write b = ∞. This representation is called the
n-dimensional persistence barcode and each interval a bar. We give an example in figure 2. A formal
definition of homology and persistent homology together with fast algorithms for computing it and proofs
of robustness to noise can be found in [14].

Dimension 0

0 1 2 3 4

Dimension 1

0 1 2 3 4

Figure 2: Top: example of a filtration K. Bottom: barcodes representing connected components and
cycles.

Persistent entropy Barcodes are very intuitive but their statistical analysis is rather complex [15].
Landscapes are an equivalent representation which are more comfortable for it, but statistics on them lack
of specifics tests so far and rely on the law of large numbers [16]. Therefore, in order to perform a useful
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Figure 3: Left: Intuition behind the algorithm. We pick cells following a spiral until the desired number
is reached. Right: Toy example. Taking as input n = 5, the output is the set of labels C = {4, 3, 5, 2, 7}.

statistical analysis of persistent homology for small samples, we need a real number that encapsulates
the information contained in the barcode. Persistent entropy [10, 11] is an stable topological statistic
[17] and can be seen as an adaptation of Shannon entropy (Shannon index in ecology) to the persistent
homology context. Given a barcode without infinite bars B = {[ai, bi]}i=1...n consider the length of the
bars `i = bi − ai and their sum L(B) = `1 + . . .+ `n. Then, its persistent entropy is:

PE(B) =

n∑
i=1

− `i
L(B)

log

(
`i

L(B)

)
Note that when calculating persistent entropy the lengths of the bars are normalized with respect to their
total sum.

2.2 Normalization of number of cells and selection method

The common workflow in persistent homology consists in taking the data, defining a filtration over it and
computing its persistent homology and the associated barcode. For this study, we will take the centroids
of the cells in each image as input data, use the Voronoi diagram to approximate the boundaries of the
cells and compute its α-complex. After that, we will analyze it statistically using persistent entropy.
Nevertheless, in order to make sure that persistent entropy measures what we want, we need to adapt it
to our problem.

Persistent entropy is very sensitive to the number n of bars appearing in the barcode. A usual
technique in information theory is to divide the result by log(n) in order to obtain a value between 0
and 1. Unfortunately, apart from loosing the stability properties [17], the variance of PE(B)/ log(n) still
depends on n and therefore the number of bars affects to this summary statistic. If we want to be sure
we are finding differences in the topological distribution and not in the number of cells appearing in the
image, we must set a common number of cells in all the processed images. This way, the 0-dimensional
persistence barcodes will have the same number of bars (one per cell) and although there may be differences
in the number of cycles (1-dimensional persistent homology) this would be good, since it would represent
differences in the topological distribution.

Now, the question is how to select the cells that will take part in the analysis. In order to avoid
changes in the topological arrangement of the selected cells with respect to the original image, we follow
Algorithm 1 to take the cells following a spiral (Figure 3, left). Note that this process is expected to work
well due to the convexity of the cells. Our input is a labeled image M , where each region corresponding
to a cell is labeled with a natural number and the boundaries are tagged with 0, as shown in Figure 3,
right.
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Algorithm 1 Spiral selection of regions

1: procedure SPIRAL(M,n) . M is an image and n a number
2: C := { }
3: (x, y) := center (M) . central coordinates of M
4: if M(x, y) 6= 0 then
5: C := {M(x, y)}
6: end if
7: i := 0
8: while #C < n do . # is the number of elements
9: i := i+ 1

10: for j ∈ (1, . . . , i) do . repeat i times
11: if #C < n then
12: x := x+ (−1)i

13: if M(x, y) 6= 0 and M(x, y) /∈ C then
14: C := C ∪ {M(x, y)}
15: end if
16: end if
17: end for
18: for j ∈ (1, . . . , i) do . repeat i times
19: if #C < n then
20: y := y + (−1)i

21: if M(x, y) 6= 0 and M(x, y) /∈ C then
22: C := C ∪ {M(x, y)}
23: end if
24: end if
25: end for
26: end while
27: return C . return the first n labels around the center
28: end procedure

2.3 Scale invariance of the method

In addition, we expect this method to be scale invariant. Otherwise, the result may vary from images of
one tissue to other even if they have the same topological distribution. Persistent entropy, by definition, is
invariant with respect to the scale of the barcode with finite bars. Nevertheless, in barcodes with infinity
bars this invariance may not be satisfied depending on the treatment we make of these bars. In our case,
as α-complex always have one connected component and none cycles for a radius big enough, there is
only one 0-dimensional infinity bar which is born at moment 0, so that it gives no information about the
topology of the cells and it can be removed. Actually, if we do not remove it but limit its endpoint to
a fixed value, we eliminate the scale invariance of the method since the same pattern re-scaled will have
different barcodes as shown in Figure 4. Therefore, we remove the infinity bar of all barcodes in this
experiment. This is the main improvement with respect to the communication [13] and the differences in
the results are analyzed in Section 3.3.

2.4 Proposed method

We summarize here the steps of our method (see Figure 6 for a sketch):

1. Set a fixed number of cells and apply Algorithm 1.

2. Consider the point cloud given by the centroids of the selected cells and construct the α-complex.

3. Compute 0 and 1-dimensional persistence barcodes.
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Figure 4: The Voronoi diagrams in the first column are computed from images with the same pattern
differing with a scalar factor of two. In the barcodes of the second column the infinite bar have been
limited to 6. In the third column, the normalization of the bars produces different barcodes. The last
column shows how normalizing bars after removing the infinity bar provides the same barcodes and, hence,
equal entropy.

4. Remove the only infinity bar in the 0-dimensional barcode and compute persistent entropies PE0

and PE1.

5. Perform a statistical study to analyze the results.

3 Computational experiments

3.1 Data and experiments

The images for our experiments come from three types of epithelial tissues and three artificial tesselations
(called centroidal Voronoi tessellations or CVTs). Tissues are chick neuroepithelium (cNT), wing disc
in the larva (dWL) and prepupal stages (dWP) from Drosophila, see Figure 5, second row. The first is
relatively distinct to the other two so we expect to find differences in this topological distribution. The
other two tissues are taken from two proliferative stages separated by only 24 hours of developments, and
topological differences (if exist) are expected to be very difficult to prove. Further information about the
way images were obtained and segmented can be found in [18].

CVTs are created inductively. In the first step, images are given by the Voronoi diagram of random set
of points generated using a poisson distribution. The following images are created taking the centroid of
each Voronoi region and computing a new Voronoi diagram. Iterating, we obtain a CVT path of images.
We call the set images obtained in the Nth step as CVT N , see Figure 5, first row, for some examples.

In [8] cNT, dWL and dWP were compared with CVTs using the proportion of polygons of each
image. Multivariate statistical test was not able to find differences between CVT4-dWL and CVT5-
dWP. Significant differences between cNT and CVT1, CVT2 were found with a narrow margin. It was
conjectured that the distribution of polygons in each tissue could be compared with the existing in the
CVT paths, with dWL and dWP being equivalent to CVT4 and CVT5 respectively and cNT lying between
CVT1 and CVT2.

We will assign persistent entropy values to each image (PE0 and PE1, corresponding respectively to
the zero and one dimensional persistence barcodes) and then apply univariate non parametric statistical
tests to find significant differences in their distributions. We use the techniques explained in the previous
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Figure 5: Top row: first, fourth and fifth image of a CVT path. Bottom row: images of tissues coming
from cNT, dWL and dWP.

Table 1: The number of cells in each picture.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

cNT 666 661 565 573 669 532 419 592 743 527 594 473 704 747 469 834

dWP 748 805 566 414 454 654 751 713 503 430 387 516 413 455 271 249

dWL 426 555 491 522 510 936 890 789 977 913 604 835 785 747 622

section, as displayed in Figure 6. Table 1 shows the number of valid cells (completely contained) in each
image. Taking into account the normalization in the number of cells explained in 2.2 and that we do
not want to discard any image, we consider 245 cells from each one. Functions used can be found in
https://github.com/Cimagroup and require [19] and [20].

3.2 Results

Comparing CVTs We calculate PE0 and PE1 of the barcodes obtained from the first 245 cells in each
image of CVT1, CVT4 and CVT5. Results are shown in Figure 7. First, we perform a Kruskal-Wallis
test to see if there are significant differences between the three groups and then a Dunn test for pairwise
comparison. We could distinguish all of them as shown in Table 2.

Comparing tissues We repeat the experiment with the first 245 cells in each cNT, dWL and dWP
image. Results are displayed in Figure 8. Again, we perform a Kruskal-Wallis test to see if there are sig-
nificant differences between the three groups and then a Dunn test to find pairwise differences. Significant
differences were found between cNT and dWP, dWL but not between these last two. See Table 3.

We have also compared persistent entropy values between cNT - CVT1, dWL - CVT4 and dWP -
CVT5 using the MannWhitney U test, finding significant differences between them (see Table 4).

Table 2: Kruskal-Wallis Test and Dunn Test for comparing the persistent entropies of CVT images.

KWT
p-value

PE0 PE1

3.398e-10 9.554e-11

DT p-value
adjusted

CVT 1 vs 4 CVT 4 vs 5 CVT 5 vs 1

PE0 2.165e-05 3.9e-02 3.054e-10
PE1 7.305e-05 9.122e-03 4.889e-11
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Figure 6: Steps followed to obtain the persistent entropy values. First, we extract the same number of
cells from each image using the spiral algorithm. Then, calculate their centroids and α-complexes. Finally,
we obtain their 0 or 1st dimensional barcode and calculate its persistent entropy.
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Figure 7: Boxplot representation of the results for the first, fourth and fifth images of a set of CVT paths.
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Figure 8: Boxplot representation of persistent entropy for the zero and first persistent homology of the
three tissues.
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Table 3: Kruskal-Wallis Test and Dunn Test for comparing the persistent entropies of tissues images.

KWT
p-value

PE0 PE1

1.846e-05 7.731e-07

DT p-value
adjusted

dWL vs dWP cNT vs dWL dWP vs cNT

PE0 0.653 3.561e-04 5.93 e-05
PE1 0.3765 1.145e-04 1.816e-06

Table 4: Comparing cNT, dWL and dWP with CVT1, CVT4 and CVT5 respectively, using the U of
Mann-Whitney test.

U-MW p-value

adjusted
cNT vs CVT1 dWL vs CVT4 dWP vs CVT5

PE0 0.001 0.002 2.454e-05
PE1 2.737e-10 0.028 0.009

3.3 Comparison with previous results

A previous version of the method explained in this paper was discussed in the communication [13]. The
main difference lies in how the infinity bar of the 0-dimensional persistence barcode is treated. As we
have reasoned in 2.3, limiting the infinity bar to a fixed value may affect to the scale invariance of entropy.
However, in [13] we kept the infinity bar, considering its length to be the maximum of all the values of
the filtration function determining the α-complex. This affected the scale invariance of the method, and
therefore the size of the image changed the value of persistent entropy. In that experiment, the p-values of
Kruskal-Wallis Test for both persistent entropies of 0 and 1-dimensional barcodes, were also under 0.05.
As it can be seen in Table 5, the p-value in the 0-dimensional case of dWL vs dWP is much smaller than
the obtained when removing the infinity bar. This fact suggests that perhaps the differences detected in
the previous method were due to change of scale between images dWL and dWP and not because of a
different topological distribution, that is, the tissues may present similar organization but with cells of
different sizes. Therefore, if we use a statistic sensitive to scale, like the sum of the lengths L(B), we
should find significant differences between dWL and dWP. This is exactly the case, see Table 6.

3.4 Discussion about the number of cells

In 2.2 we reasoned that it was necessary a normalization in the number of cells. In order to have a
broader view, we have repeated the experiment again up to 385 cells (removing the two dWP images
with ID numbers 15 and 16, which have fewer valid cells), and plotted the p-values of each case. When
examining real tissues, differences (if existing) are found even with few cells: depending on the tissue, it
might be necessary from 5 to 20 cells. Differences between CVTs are also found with few cells, except for
CVT4 vs CVT5. In this case, PE1 performs much better than PE0 and 150 cells are required to start
finding differences. Finally, when comparing dWL with CVT4 and dWP with CVT5, PE0 works better
than PE1. In the first case, requiring 150 cells to find differences while in the second, only 30. These plots

Table 5: Dunn Test results when the infinity bar is not removed
DT p-value
adjusted

dWL vs dWP cNT vs dWL dWP vs cNT

PE0 0.0267 0.01600541 7.574294e-06
PE1 0.3272 5.792e-05 2.162e-06
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Table 6: Dunn Test for the sum of the lengths
DT p-value
adjusted

dWL vs dWP cNT vs dWL dWP vs cNT

PE0 0.0098 0.2335 0.1504

can be found in Figures 9, 10, 11. Note that, in all the cases in which we have found significant differences,
there is a minimum number of cells from which the existence of those differences are guaranteed. This is,
in fact, what is expected from a good measure of topological distributions.

4 Conclusions

We have used persistent entropy to find differences between the topology of the epithelium cNT and
the topologies of both, dWL and dWP. This method is robust to noise, scale invariant and sensitive to
global properties of the cell arrangement, making it a great statistic for summarizing the topology of
any distribution. These characteristics above are particularly important for the analysis of biological and
biomedical samples which often present a limited availability. In particular, this technique opens the door
to perform non-parametric tests for finding differences in the topological distribution of two biological
structures.

The method has been designed to analyze 2D surfaces of epithelial tissues and we hope this technique
may help to improve existing topological tools for tissues such as (19). However, recent works make
very clear that the biological complexity of epithelial organization lies in their 3D architecture [21]. Our
procedure can be generalized to analyze the connectivity of the cells in 3D tissues. Therefore, this approach
has the potential to quantify cell packing information from physiological conditions that can be compared
with mutants and disease samples.
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Figure 9: Statistical tests of cell tissues for different number of cells
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Figure 10: Statistical tests of CVT tesselation for different number of cells
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Figure 11: Top row: comparison of dWL and CVT4 for dimension 0 and 1. Bottom row: comparison of
dWP and CVT5 for dimension 0 and 1.
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